Science.gov

Sample records for growth factor heparin

  1. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  2. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  3. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  4. Polyelectrolyte Complex for Heparin Binding Domain Osteogenic Growth Factor Delivery.

    PubMed

    Wing Moon Lam, Raymond; Abbah, Sunny Akogwu; Ming, Wang; Naidu, Mathanapriya; Ng, Felly; Tao, Hu; Goh Cho Hong, James; Ting, Kang; Hee Kit, Wong

    2016-01-01

    During reconstructive bone surgeries, supraphysiological amounts of growth factors are empirically loaded onto scaffolds to promote successful bone fusion. Large doses of highly potent biological agents are required due to growth factor instability as a result of rapid enzymatic degradation as well as carrier inefficiencies in localizing sufficient amounts of growth factor at implant sites. Hence, strategies that prolong the stability of growth factors such as BMP-2/NELL-1, and control their release could actually lower their efficacious dose and thus reduce the need for larger doses during future bone regeneration surgeries. This in turn will reduce side effects and growth factor costs. Self-assembled PECs have been fabricated to provide better control of BMP-2/NELL-1 delivery via heparin binding and further potentiate growth factor bioactivity by enhancing in vivo stability. Here we illustrate the simplicity of PEC fabrication which aids in the delivery of a variety of growth factors during reconstructive bone surgeries. PMID:27585207

  5. Growth factors with heparin binding affinity in human synovial fluid

    SciTech Connect

    Hamerman, D.; Taylor, S.; Kirschenbaum, I.; Klagsbrun, M.; Raines, E.W.; Ross, R.; Thomas, K.A.

    1987-12-01

    Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of /sup 3/H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1 M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.

  6. Heparin Affinity: Purification of a Tumor-Derived Capillary Endothelial Cell Growth Factor

    NASA Astrophysics Data System (ADS)

    Shing, Y.; Folkman, J.; Sullivan, R.; Butterfield, C.; Murray, J.; Klagsbrun, M.

    1984-03-01

    A tumor-derived growth factor that stimulates the proliferation of capillary endothelial cells has a very strong affinity for heparin. This heparin affinity makes it possible to purify the growth factor to a single-band preparation in a rapid two-step procedure. The purified growth factor is a cationic polypeptide, has a molecular weight of about 18,000, and stimulates capillary endothelial cell proliferation at a concentration of about 1 nanogram per milliliter.

  7. Effects of class I heparin binding growth factor and fibronectin on platelet adhesion and aggregation

    SciTech Connect

    Greisler, H.P.; Klosak, J.J.; Steinam, S.J.; Lam, T.M.; Burgess, W.H.; Kim, D.U. )

    1990-05-01

    Fibronectin and heparin binding growth factor-type 1 have been affixed to vascular graft surfaces to enhance the attachment and the proliferation of transplanted endothelial cells, respectively. The current study examines the effect of fibronectin and heparin binding growth factor-type 1 on platelet adhesion and activation in vivo and on platelet aggregation in vitro. Expanded polytetrafluoroethylene prostheses (5 cm x 4 mm internal diameter) were treated either with fibronectin (n = 9), fibronectin/heparin/heparin binding growth factor-type 1/heparin (n = 12), or neither (n = 13) and were interposed into canine aortoiliac systems bilaterally. Autogenous radiolabeled (Indium 111 oxine, 650 microCi) platelets were injected intravenously before reestablishment of circulation. Perfusion was maintained for 30 minutes, and prostheses were removed with segments of native aorta and distal iliac arteries bilaterally. Specimens were examined for thrombus-free surface area, by gamma well counting for adherent radiolabeled platelets, and by light microscopy and transmission and scanning electron microscopic techniques. Results showed that both the fibronectin and fibronectin/heparin/heparin binding growth factor-type 1/heparin pretreated prostheses contained significantly greater numbers of platelets and adherent radioactivity than did control graft segments when normalized to their ipsilateral iliac arteries. Fibronectin/heparin/heparin binding growth factor-type 1/heparin pretreated prostheses contained 27 +/- 16 times more radioactivity per square millimeter than ipsilateral iliac arteries, fibronectin pretreated prostheses had 13 +/- 8 times more radioactivity per square millimeter than ipsilateral iliac arteries, and untreated expanded polytetrafluoroethylene had 4 +/- 3 times more radioactivity per square millimeter than ipsilateral iliac arteries.

  8. The activation of fibroblast growth factors by heparin: synthesis, structure, and biological activity of heparin-like oligosaccharides.

    PubMed

    de Paz, J L; Angulo, J; Lassaletta, J M; Nieto, P M; Redondo-Horcajo, M; Lozano, R M; Giménez-Gallego, G; Martín-Lomas, M

    2001-09-01

    An effective strategy has been designed for the synthesis of oligosaccharides of different sizes structurally related to the regular region of heparin; this is illustrated by the preparation of hexasaccharide 1 and octasaccharide 2. This synthetic strategy provides the oligosaccharide sequence containing a D-glucosamine unit at the nonreducing end that is not available either by enzymatic or chemical degradation of heparin. It may permit, after slight modifications, the preparation of oligosaccharide fragments with different charge distribution as well. NMR spectroscopy and molecular dynamics simulations have shown that the overall structure of 1 in solution is a stable right-hand helix with four residues per turn. Hexasaccharide 1 and, most likely, octasaccharide 2 are, therefore, chemically well-defined structural models of naturally occurring heparin-like oligosaccharides for use in binding and biological activity studies. Both compounds 1 and 2 induce the mitogenic activity of acid fibroblast growth factor (FGF1), with the half-maximum activating concentration of 2 being equivalent to that of heparin. Sedimentation equilibrium analysis with compound 2 suggests that heparin-induced FGF1 dimerization is not an absolute requirement for biological activity. PMID:11828504

  9. Binding of the growth factor glycyl-L-histidyl-L-lysine by heparin.

    PubMed

    Rabenstein, D L; Robert, J M; Hari, S

    1995-12-01

    Evidence is presented that the growth factor glycyl-histidyl-lysine (GHK) binds to heparin, and the interaction has been characterized by [1H]NMR spectroscopy. 1H chemical shifts indicate that GHK interacts with both the carboxylic acid and the carboxylate forms of heparin. The chemical shift data are consistent with a weak delocalized binding of the triprotonated (ImH+, GlyNH3+, LysNH3+) form of GHK by the carboxylic acid form of heparin. As the pD is increased and the carboxylic acid groups are titrated, chemical shift data indicate that ammonium groups of GHK are hydrogen bonded to heparin carboxylate groups, while the histidyl imidazolium ring occupies the imidazolium-binding site of heparin. Evidence for site-specific binding includes displacement of chemical shift titration curves for heparin to lower pD, increased shielding of specific heparin protons by the imidazolium ring current and displacement of chemical shift titration curves for GHK to higher pD. Specific binding constants were determined for binding of the (ImH+, GlyNH3+), LysNH3+) forms of GHK by the carboxylate form of heparin from chemical shift vs. pD titration data. PMID:7498545

  10. Pharmacokinetics and distribution of heparin-binding growth factor I (endothelial cell growth factor) in the rat

    SciTech Connect

    Rosengart, T.K.; Kuperschmid, J.P.; Maciag, T.; Clark, R.E.

    1989-02-01

    Heparin-binding growth factor I (HBGF I), previously designated as endothelial cell growth factor, is a potent mitogen for endothelial cells in vitro, which may prove useful for promoting endothelial regeneration in vivo. Analysis of the pharmacokinetics and organ distribution of HBGF I is necessary before use of HBGF I as a pharmacological agent. Consequently, pharmacological studies were carried out with (125I)HBGF I in the rat. Intravenous injections of HBGF I were given with or without heparin (2.5 units/ng HBGF I). Blood concentrations of HBGF I decreased by one half 17 seconds after HBGF I bolus. This time was prolonged to 60 seconds when HBGF I was injected with heparin. The elimination half-life of HBGF I was 14 minutes in the presence of heparin. The highest concentrations of HBGF I following intravenous bolus were found in kidney, liver, and spleen, and the lowest in fat and brain. Heparin increased HBGF I concentrations in blood and all organs measured except kidney, which was significantly decreased (p less than 0.01). Intact HBGF I was recoverable from blood 5 minutes following intravenous administration. HBGF I underwent near-complete proteolytic digestion after more prolonged ex vivo incubation with rat plasma, but HBGF I was protected from proteolysis when incubations were conducted in the presence of heparin. Thus, it is feasible that HBGF I can be administered as a pharmacological agent in the presence of heparin. Further studies assessing acceleration of in vivo endothelial growth using HBGF I with heparin appear warranted.

  11. Heparin Binds Endothelial Cell Growth Factor, the Principal Endothelial Cell Mitogen in Bovine Brain

    NASA Astrophysics Data System (ADS)

    Maciag, Thomas; Mehlman, Tevie; Friesel, Robert; Schreiber, Alain B.

    1984-08-01

    Endothelial cell growth factor (ECGF), an anionic polypeptide mitogen, binds to immobilized heparin. The interaction between the acidic polypeptide and the anionic carbohydrate suggests a mechanism that is independent of ion exchange. Monoclonal antibodies to purified bovine ECGF inhibited the biological activity of ECGF in crude preparations of bovine brain. These data indicate that ECGF is the principal mitogen for endothelial cells from bovine brain, that heparin affinity chromatography may be used to purify and concentrate ECGF, and that the affinity of ECGF for heparin may have structural and perhaps biological significance.

  12. Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain.

    PubMed

    Thompson, L D; Pantoliano, M W; Springer, B A

    1994-04-01

    Fibroblast growth factors (FGF's) interact on cell surfaces with "low-affinity" heparan sulfate proteoglycans (HSPG) and "high-affinity" FGF receptors (FGFR) to initiate cell proliferation. Previous reports have implicated the binding of heparin, or heparan sulfate, to FGF as essential for FGF-mediated signal transduction and mitogenicity. However, the molecular recognition events which dictate the specificity of this interaction have remained elusive. Amino acid residues on the surface of basic FGF (bFGF) were targeted as potential heparin contacts on the basis of the position of sulfate anions in the X-ray crystal structure of bFGF and of a modeled pentasaccharide heparin-bFGF complex. Each identified amino acid was replaced individually with alanine by site-directed mutagenesis, and the resulting mutant proteins were characterized for differences in binding to a low molecular weight heparin (approximately 3000) by isothermal titrating calorimetry and also for differences in [NaCl] elution from a heparin-Sepharose affinity resin. The combination of site-directed mutagenesis and titrating calorimetry permitted an analysis of the energetic contributions of individual bFGF residues in the binding of heparin to bFGF. The key amino acids which comprise the heparin binding domain on bFGF constitute a discontinuous binding epitope and include K26, N27, R81, K119, R120, T121, Q123, K125, K129, Q134, and K135. Addition of the observed delta delta G degrees of binding for each single site mutant accounts for 8.56 kcal/mol (> 95%) of the free energy of binding. The delta delta G degrees values for N27A, R120A, K125A, and Q134A are all greater than 1 kcal/mol each, and these four amino acids together contribute 4.8 kcal/mol (56%) to the total binding free energy. Amino acid residues K119 through K135 reside in the C-terminal domain of bFGF and collectively contribute 6.6 kcal/mol (76%) of the binding free energy. Although 7 out of the 11 identified amino acids in the heparin

  13. Myogenic Growth Factor Present in Skeletal Muscle is Purified by Heparin-Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Kardami, Elissavet; Spector, Dennis; Strohman, Richard C.

    1985-12-01

    A myogenic growth factor has been purified from a skeletal muscle, the anterior latissimus dorsi, of adult chickens. In the range of 1-10 ng, this factor stimulates DNA synthesis as well as protein and muscle-specific myosin accumulation in myogenic cell cultures. Purification is achieved through binding of the factor to heparin. The factor is distinct from transferrin and works synergistically with transferrin in stimulating myogenesis in vitro.

  14. Growth factors-loaded stents modified with hyaluronic acid and heparin for induction of rapid and tight re-endothelialization.

    PubMed

    Choi, Dong Hoon; Kang, Sung Nam; Kim, Seong Min; Gobaa, Samy; Park, Bang Ju; Kim, Ik Hwan; Joung, Yoon Ki; Han, Dong Keun

    2016-05-01

    Rapid re-endothelialization of damaged vessel lining efficiently prevents restenosis and thrombosis and restores original vascular functions. In this study, we designed a novel metallic stent with a heparin-modified surface and used different methods, including 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and divinyl sulfone (DVS), to load growth factors. First we loaded heparin into a dopamine-conjugated hyaluronic acid (HA) coating to serve as a growth factor reservoir. In a second step, we took advantage of the heparin-binding domain of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) to gain advanced re-endothelialization capabilities. We demonstrated that DVS technique offered higher amount of growth factor loading. In vitro assessment also showed better capillary-like structure formation and localized gap junctions when DVS coating was employed. This study suggested that growth factor loaded stent modified by HA and heparin provided the advantage to rapid and tight restoration of endothelium. PMID:26928466

  15. Epidermal growth factor loaded heparin-based hydrogel sheet for skin wound healing.

    PubMed

    Goh, MeeiChyn; Hwang, Youngmin; Tae, Giyoong

    2016-08-20

    A heparin-based hydrogel sheet composed of thiolated heparin and diacrylated poly (ethylene glycol) was prepared via photo polymerization and human epidermal growth factor (hEGF) were loaded into it for the purpose of wound healing. It showed a sustained release profile of hEGF in vitro. In order to evaluate its function on wound healing in vivo, full thickness wounds were created on the dorsal surface of mice. Application of hEGF loaded heparin-based hydrogel sheet accelerated the wound closure compared to the non-treated control group, hEGF solution, and hEGF loaded PEG hydrogel sheet. Histological and immunohistological examinations also demonstrated an advanced granulation tissue formation, capillary formation, and epithelialization in wounds treated by hEGF loaded heparin-based hydrogel compared to other groups, and no biocompatibility issue was observed. In conclusion, the delivery of hEGF using the heparin-based hydrogel could accelerate the skin wound healing process. PMID:27178931

  16. Heparin-Binding Epidermal Growth Factor-like Growth Factor/Diphtheria Toxin Receptor in Normal and Neoplastic Hematopoiesis

    PubMed Central

    Vinante, Fabrizio; Rigo, Antonella

    2013-01-01

    Heparin-binding EGF-like growth factor (HB-EGF) belongs to the EGF family of growth factors. It is biologically active either as a molecule anchored to the membrane or as a soluble form released by proteolytic cleavage of the extracellular domain. HB-EGF is involved in relevant physiological and pathological processes spanning from proliferation and apoptosis to morphogenesis. We outline here the main activities of HB-EGF in connection with normal or neoplastic differentiative or proliferative events taking place primitively in the hematopoietic microenvironment. PMID:23888518

  17. Protection of transforming growth factor-beta 1 activity by heparin and fucoidan.

    PubMed

    McCaffrey, T A; Falcone, D J; Vicente, D; Du, B; Consigli, S; Borth, W

    1994-04-01

    The transforming growth factor-beta (TGF-beta) family of proteins exert diverse and potent effects on proliferation, differentiation, and extracellular matrix synthesis. However, relatively little is known about the stability or processing of endogenous TGF-beta activity in vitro or in vivo. Our previous work indicated that 1) TGF-beta 1 has strong heparin-binding properties that were not previously recognized because of neutralization by iodination, and 2) heparin, and certain other polyanions, could block the binding of TGF-beta 1 to alpha 2-macroglobulin (alpha 2-M). The present studies investigated the influence of heparin-like molecules on the stability of the TGF-beta 1 signal in the pericellular environment. The results indicate that heparin and fucoidan, a naturally occurring sulfated L-fucose polymer, suppress the formation of an initial non-covalent interaction between 125I-TGF-beta 1 and activated alpha 2-M. Electrophoresis of 125I-TGF-beta 1 showed that fucoidan protects TGF-beta 1 from proteolytic degradation by plasmin and trypsin. While plasmin caused little, if any, activation of latent TGF-beta derived from vascular smooth muscle cells (SMC), plasmin degraded acid-activated TGF-beta, and purified TGF-beta 1, and this degradation was inhibited by fucoidan. In vitro, heparin and fucoidan tripled the half-life of 125I-TGF-beta 1 and doubled the amount of cell-associated 125I-TGF-beta 1. Consistent with this protective effect, heparin- and fucoidan-treated SMC demonstrated elevated levels of active, but not latent, TGF-beta activity. PMID:7511146

  18. Synthetic heparin-binding factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul O.; Lin, Xinhua; Glass, John D.

    2010-04-20

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  19. Heparin Binding Epidermal Growth Factor Like Growth Factor Heals Chronic Tympanic Membrane Perforations With Advantage Over Fibroblast Growth Factor 2 and Epidermal Growth Factor in an Animal Model

    PubMed Central

    Santa Maria, Peter Luke; Weierich, Kendall; Kim, Sungwoo; Yang, Yunzhi Peter

    2016-01-01

    Hypothesis That heparin binding epidermal growth factor like growth factor (HB-EGF) heals chronic tympanic membrane (TM) perforations at higher rates than fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) in an animal model. Background A non-surgical treatment for chronic TM perforation would benefit those unable to access surgery or those unable to have surgery, as well as reducing the cost of tympanoplasty. Growth factor (GF) treatments have been reported in the literature with variable success with the lack of a suitable animal providing a major obstacle. Methods The GFs were tested in a validated mouse model of chronic TM perforation. A bio absorbable hydrogel polymer was used to deliver the GF at a steady concentration as it dissolved over four weeks. A control (polymer only, n=18) was compared to polymer loaded with HB-EGF (5ug/ml, n=18), FGF2 (100ug/ml, n=19) and EGF (250ug/ml, n=19). Perforations were inspected at four weeks. Results The healing rates, as defined as one hundred percent perforation closure, were control (5/18, 27.8%), HB-EGF (15/18, 83.3%), FGF2 (6/19, 31.6%) and EGF (3/19, 15.8%). There were no differences between FGF2 (p=0.80) and EGF (p=0.31) with control healing rates. HB-EGF (p= 0.000001) showed a significant difference for healing. The HB-EGF healed TMs showed layers similar to a normal TM, whilst the other groups showed a lack of epithelial migration. Conclusion This study confirms the advantage of HB-EGF over two other commonly used growth factors and is a promising non-surgical treatment of chronic TM perforations. PMID:26075672

  20. Nanoscale growth factor patterns by immobilization on a heparin-mimicking polymer.

    PubMed

    Christman, Karen L; Vázquez-Dorbatt, Vimary; Schopf, Eric; Kolodziej, Christopher M; Li, Ronald C; Broyer, Rebecca M; Chen, Yong; Maynard, Heather D

    2008-12-10

    In this study, electrostatic interactions between sulfonate groups of an immobilized polymer and the heparin binding domains of growth factors important in cell signaling were exploited to nanopattern the proteins. Poly(sodium 4-styrenesulfonate-co-poly(ethylene glycol) methacrylate) (pSS-co-pPEGMA) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using ethyl S-thiobenzoyl-2-thiopropionate as a chain transfer agent and 2,2'-azoisobutyronitrile (AIBN) as the initiator. The resulting polymer (1) was characterized by 1H NMR, GPC, FT-IR, and UV-vis and had a number average molecular weight (Mn) of 24,000 and a polydispersity index (PDI) of 1.17. The dithioester end group of 1 was reduced to the thiol, and the polymer was subsequently immobilized on a gold substrate. Binding of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) to the polymer via the heparin binding domains was then confirmed by surface plasmon resonance (SPR). The interactions were stable at physiological salt concentrations. Polymer 1 was cross-linked onto silicon wafers using an electron beam writer forming micro- and nanopatterns. Resolutions of 100 nm and arbitrary nanoscale features such as concentric circles and contiguous squares and triangles were achieved. Fluorescence microscopy confirmed that bFGF and VEGF were subsequently immobilized to the polymer micro- and nanopatterns. PMID:19554729

  1. Keratinocyte growth factor and hepatocyte growth factor/scatter factor are heparin-binding growth factors for alveolar type II cells in fibroblast-conditioned medium.

    PubMed Central

    Panos, R J; Rubin, J S; Csaky, K G; Aaronson, S A; Mason, R J

    1993-01-01

    Epithelial-mesenchymal interactions mediate aspects of normal lung growth and development and are important in the restoration of normal alveolar architecture after lung injury. To determine if fibroblasts are a source of soluble growth factors for alveolar type II cells, we investigated the effect of fibroblast-conditioned medium (CM) on alveolar type II cell DNA synthesis. Serum-free CM from confluent adult human lung fibroblasts was concentrated fivefold by lyophilization. Type II cells were isolated from adult rats by elastase dissociation and incubated with [3H]thymidine and varying dilutions of concentrated CM and serum from day 1 to 3 of culture. Stimulation of type II cell DNA synthesis by fibroblast-CM was maximal after 48 h of conditioning and required the presence of serum. The activity of the CM was eliminated by boiling and by treatment with trypsin, pepsin, or dithiothreitol and was additive with saturating concentrations of acidic fibroblast growth factor, epidermal growth factor, and insulin. The growth factor activity bound to heparin-Sepharose and was eluted with 0.6 and 1.0 M NaCl. Neutralizing antibody studies demonstrated that the primary mitogens isolated in the 0.6 and 1.0 M NaCl fractions were keratinocyte growth factor (KGF, fibroblast growth factor 7) and hepatocyte growth factor/scatter factor (HGF/SF), respectively. HGF/SF was demonstrated in the crude CM and KGF was detected in the 0.6 M NaCl eluent by immunoblotting. Northern blot analysis confirmed that the lung fibroblasts expressed both KGF and HGF/SF transcripts. Human recombinant KGF and HGF/SF induced a concentration- and serum-dependent increase in rat alveolar type II cell DNA synthesis. We conclude that adult human lung fibroblasts produce at least two soluble heparin-binding growth factors, KGF and HGF/SF, which promote DNA synthesis and proliferation of rat alveolar type II cells in primary culture. KGF and HGF/SF may be important stimuli for alveolar type II cell

  2. A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi H.; Kim, Sung-Hye; Decker, Caitlin G.; Wong, Darice Y.; Loo, Joseph A.; Maynard, Heather D.

    2013-03-01

    Basic fibroblast growth factor (bFGF) is a protein that plays a crucial role in diverse cellular functions, from wound healing to bone regeneration. However, a major obstacle to the widespread application of bFGF is its inherent instability during storage and delivery. Here, we describe the stabilization of bFGF by covalent conjugation with a heparin-mimicking polymer, a copolymer consisting of styrene sulfonate units and methyl methacrylate units bearing poly(ethylene glycol) side chains. The bFGF conjugate of this polymer retained bioactivity after synthesis and was stable to a variety of environmentally and therapeutically relevant stressors—such as heat, mild and harsh acidic conditions, storage and proteolytic degradation—unlike native bFGF. Following the application of stress, the conjugate was also significantly more active than the control conjugate system in which the styrene sulfonate units were omitted from the polymer structure. This research has important implications for the clinical use of bFGF and for the stabilization of heparin-binding growth factors in general.

  3. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules

    SciTech Connect

    Bashkin, P.; Doctrow, S.; Klagsbrun, M.; Svahn, C.M.; Folkman, J.; Vlodavsky, I. )

    1989-02-21

    Basic fibroblast growth factor (bFGF) exhibits specific binding to the extracellular matrix (ECM) produced by cultured endothelial cells. Binding was saturable as a function both of time and of concentration of {sup 125}I-bFGF. Scatchard analysis of FGF binding revealed the presence of about 1.5 x 10{sup 12} binding sites/mm{sup 2} ECM with an apparent k{sub D} of 610 nM. FGF binds to heparan sulfate (HS) in ECM as evidenced by (i) inhibition of binding in the presence of heparin or HS at 0.1-1 {mu}g/mL, but not by chondroitin sulfate, keratan sulfate, or hyaluronic acid at 10 {mu}g/mL, (ii) lack of binding to ECM pretreated with heparitinase, but not with chondroitinase ABC, and (iii) rapid release of up to 90% of ECM-bound FGF by exposure to heparin, HS, or heparitinase, but not to chondroitin sulfate, keratan sulfate, hyaluronic acid, or chondroitinase ABC. Oligosaccharides derived from depolymerized heparin, and as small as the tetrasaccharide, released the ECM-bound FGF, but there was little or no release of FGF by modified nonanticoagulant heparins such as totally desulfated heparin, N-desulfated heparin, and N-acetylated heparin. FGF released from ECM was biologically active, as indicated by its stimulation of cell proliferation and DNA synthesis in vascular endothelial cells and 3T3 fibroblasts. Similar results were obtained in studies on release of endogenous FGF-like mitogenic activity from Descement's membranes of bovine corneas. It is suggested that ECM storage and release of bFGF provide a novel mechanism for regulation of capillary blood vessel growth. Whereas ECM-bound FGF may be prevented from acting on endothelial cells, its displacement by heparin-like molecules and/or HS-degrading enzymes may elicit a neovascular response.

  4. Delivering heparin-binding insulin-like growth factor 1 with self-assembling peptide hydrogels.

    PubMed

    Florine, Emily M; Miller, Rachel E; Liebesny, Paul H; Mroszczyk, Keri A; Lee, Richard T; Patwari, Parth; Grodzinsky, Alan J

    2015-02-01

    Heparin-binding insulin-like growth factor 1 (HB-IGF-1) is a fusion protein of IGF-1 with the HB domain of heparin-binding epidermal growth factor-like growth factor. A single dose of HB-IGF-1 has been shown to bind specifically to cartilage and to promote sustained upregulation of proteoglycan synthesis in cartilage explants. Achieving strong integration between native cartilage and tissue-engineered cartilage remains challenging. We hypothesize that if a growth factor delivered by the tissue engineering scaffold could stimulate enhanced matrix synthesis by both the cells within the scaffold and the adjacent native cartilage, integration could be enhanced. In this work, we investigated methods for adsorbing HB-IGF-1 to self-assembling peptide hydrogels to deliver the growth factor to encapsulated chondrocytes and cartilage explants cultured with growth factor-loaded hydrogels. We tested multiple methods for adsorbing HB-IGF-1 in self-assembling peptide hydrogels, including adsorption prior to peptide assembly, following peptide assembly, and with/without heparan sulfate (HS, a potential linker between peptide molecules and HB-IGF-1). We found that HB-IGF-1 and HS were retained in the peptide for all tested conditions. A subset of these conditions was then studied for their ability to stimulate increased matrix production by gel-encapsulated chondrocytes and by chondrocytes within adjacent native cartilage. Adsorbing HB-IGF-1 or IGF-1 prior to peptide assembly was found to stimulate increased sulfated glycosaminoglycan per DNA and hydroxyproline content of chondrocyte-seeded hydrogels compared with basal controls at day 10. Cartilage explants cultured adjacent to functionalized hydrogels had increased proteoglycan synthesis at day 10 when HB-IGF-1 was adsorbed, but not IGF-1. We conclude that delivery of HB-IGF-1 to focal defects in cartilage using self-assembling peptide hydrogels is a promising technique that could aid cartilage repair via enhanced matrix

  5. Heparin Binding–Epidermal Growth Factor-Like Growth Factor for the Regeneration of Chronic Tympanic Membrane Perforations in Mice

    PubMed Central

    Kim, Sungwoo; Varsak, Yasin Kursad; Yang, Yunzhi Peter

    2015-01-01

    We aim to explore the role of epidermal growth factor (EGF) ligand shedding in tympanic membrane wound healing and to investigate the translation of its modulation in tissue engineering of chronic tympanic membrane perforations. Chronic suppurative otitis media (CSOM) is an infected chronic tympanic membrane perforation. Up to 200 million suffer from its associated hearing loss and it is the most common cause of pediatric hearing loss in developing countries. There is a need for nonsurgical treatment due to a worldwide lack of resources. In this study, we show that EGF ligand shedding is essential for tympanic membrane healing as it's inhibition, with KB-R7785, leads to chronic perforation in 87.9% (n=58) compared with 0% (n=20) of controls. We then show that heparin binding–EGF-like growth factor (5 μg/mL), which acts to shed EGF ligands, can regenerate chronic perforations in mouse models with 92% (22 of 24) compared with 38% (10 of 26), also with eustachian tube occlusion with 94% (18 of 19) compared with 9% (2 of 23) and with CSOM 100% (16 of 16) compared with 41% (7 of 17). We also show the nonototoxicity of this treatment and its hydrogel delivery vehicle. This provides preliminary data for a clinical trial where it could be delivered by nonspecialist trained healthcare workers and fulfill the clinical need for a nonsurgical treatment for chronic tympanic membrane perforation and CSOM. PMID:25567607

  6. Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate.

    PubMed

    Jha, Amit K; Mathur, Anurag; Svedlund, Felicia L; Ye, Jianqin; Yeghiazarians, Yerem; Healy, Kevin E

    2015-07-10

    Growth factors are critical for regulating and inducing various stem cell functions. To study the effects of growth factor delivery kinetics and presentation on stem cell fate, we developed a series of heparin-containing hyaluronic acid (HyA)-based hydrogels with various degrees of growth factor affinity and retention. To characterize this system, we investigated the effect of heparin molecular weight, fractionation, and relative concentration on the loading efficiency and retention kinetics of TGFβ1 as a model growth factor. At equal concentrations, high MW heparin both loaded and retained the greatest amount of TGFβ1, and had the slowest release kinetics, primarily due to the higher affinity with TGFβ1 compared to low MW or unfractionated heparin. Subsequently, we tested the effect of TGFβ1, presented from various heparin-containing matrices, to differentiate a versatile population of Sca-1(+)/CD45(-) cardiac progenitor cells (CPCs) into endothelial cells and form vascular-like networks in vitro. High MW heparin HyA hydrogels stimulated more robust differentiation of CPCs into endothelial cells, which formed vascular-like networks within the hydrogel. This observation was attributed to the ability of high MW heparin HyA hydrogels to sequester endogenously synthesized angiogenic factors within the matrix. These results demonstrate the importance of molecular weight, fractionation, and concentration of heparin on presentation of heparin-binding growth factors and their effect on stem cell differentiation and lineage specification. PMID:25931306

  7. Magnetic field-responsive release of transforming growth factor beta 1 from heparin-modified alginate ferrogels.

    PubMed

    Kim, Hwi; Park, Honghyun; Lee, Jae Won; Lee, Kuen Yong

    2016-10-20

    Stimuli-responsive polymeric systems have been widely used for various drug delivery and tissue engineering applications. Magnetic stimulation can be also exploited to regulate the release of pharmaceutical drugs, growth factors, and cells from hydrogels in a controlled manner, on-demand. In the present study, alginate ferrogels containing iron oxide nanoparticles were fabricated via ionic cross-linking, and their various characteristics were investigated. The deformation of the ferrogels was dependent on the polymer concentration, calcium concentration, iron oxide concentration, and strength of magnetic field. To modulate the release of transforming growth factor beta 1 (TGF-β1) under magnetic stimulation, alginate was chemically modified with heparin, as TGF-β1 has a heparin-binding domain. Alginate was first modified with ethylenediamine, and heparin was then conjugated to the ethylenediamine-modified alginate via carbodiimide chemistry. Conjugation of heparin to alginate was confirmed by infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Sustained release of TGF-β1 from alginate-g-heparin ferrogels was achieved, and application of a magnetic field to the ferrogels regulated TGF-β1 release, resultantly enhancing chondrogenic differentiation of ATDC5 cells, which were used as a model chondrogenic cell line. Alginate-based ferrogels that release drugs in a controlled manner may therefore be useful in many biomedical applications. PMID:27474590

  8. Heparinized magnetic mesoporous silica nanoparticles as multifunctional growth factor delivery carriers

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Liu, Chaoqun; Fan, Luna; Shi, Jiahua; Liu, Zhiqiang; Li, Ruifang; Sun, Liwei

    2012-12-01

    Well-defined magnetic mesoporous silica nanoparticles (MMSNs) with a core/shell structure were prepared via a one pot synthesis. Sphere-like magnetite aggregates were obtained as cores of the final nanoparticles by assembly in the presence of polyvinyl pyrrolidone and cetyltrimethylammonium bromide. The nanoparticles have the property of superparamagnetism with a saturation magnetization value of 20.3 emu g-1. In addition, the combination of heparin and fluorescence-labeled MMSNs endows the resultant particles (denoted as MFMSNs-HP) with magnetism and fluorescence properties, excellent dispersity in the buffer solutions and cell culture media, anticoagulant activity in the blood stream, and the controlled release of basic fibroblast growth factor (bFGF). Furthermore, the bFGF cell viability assays indicate that MFMSNs-HP has nearly no toxicity to human umbilical vein endothelial cells (HUVEC) up to a concentration of 200 μg ml-1, and the proliferation activity of bFGF incorporated into MFMSNs-HP could be retained for at least 6 days. All of these suggest that MFMSNs-HP may serve as a multifunctional carrier for the delivery of growth factors.

  9. Cooperative heparin-mediated oligomerization of fibroblast growth factor-1 (FGF1) precedes recruitment of FGFR2 to ternary complexes.

    PubMed

    Brown, Alan; Robinson, Christopher J; Gallagher, John T; Blundell, Tom L

    2013-04-16

    Fibroblast growth factors (FGFs) utilize cell surface heparan sulfate as a coreceptor in the assembly of signaling complexes with FGF-receptors on the plasma membrane. Here we undertake a complete thermodynamic characterization of the assembly of the FGF signaling complex using isothermal titration calorimetry. Heparin fragments of defined length are used as chemical analogs of the sulfated domains of heparan sulfate and examined for their ability to oligomerize FGF1. Binding is modeled using the McGhee-von Hippel formalism for the cooperative binding of ligands to a monodimensional lattice. Oligomerization of FGFs on heparin is shown to be mediated by positive cooperativity (α = 6). Heparin octasaccharide is the shortest length capable of dimerizing FGF1 and on longer heparin chains FGF1 binds with a minimal footprint of 4.2 saccharide units. The thermodynamics and stoichiometry of the ternary complex suggest that in solution FGF1 binds to heparin in a trans-dimeric manner before FGFR recruitment. PMID:23601319

  10. Heparin binding preference and structures in the fibroblast growth factor family parallel their evolutionary diversification

    PubMed Central

    Jiang, Chao; Wilkinson, Mark C.

    2016-01-01

    The interaction of a large number of extracellular proteins with heparan sulfate (HS) regulates their transport and effector functions, but the degree of molecular specificity underlying protein–polysaccharide binding is still debated. The 15 paracrine fibroblast growth factors (FGFs) are one of the paradigms for this interaction. Here, we measure the binding preferences of six FGFs (FGF3, FGF4, FGF6, FGF10, FGF17, FGF20) for a library of modified heparins, representing structures in HS, and model glycosaminoglycans, using differential scanning fluorimetry. This is complemented by the identification of the lysine residues in the primary and secondary binding sites of the FGFs by a selective labelling approach. Pooling these data with previous sets provides good coverage of the FGF phylogenetic tree, deduced from amino acid sequence alignment. This demonstrates that the selectivity of the FGFs for binding structures in sulfated polysaccharides and the pattern of secondary binding sites on the surface of FGFs follow the phylogenetic relationship of the FGFs, and so are likely to be the result of the natural selection pressures that led to the expansion of the FGF family in the course of the evolution of more complex animal body plans. PMID:27030175

  11. A heparin-binding growth factor secreted from breast cancer cells homologous to a developmentally regulated cytokine.

    PubMed

    Wellstein, A; Fang, W J; Khatri, A; Lu, Y; Swain, S S; Dickson, R B; Sasse, J; Riegel, A T; Lippman, M E

    1992-02-01

    We report purification of an 18-kDa heparin-binding growth factor secreted from human cancer cells which is homologous to a developmentally regulated, neurotrophic factor, heparin-binding growth-associated molecule/pleiotrophin (HB-GAM/PTN; Merenmies, J., and Rauvala, H. (1990) J. Biol. Chem. 265, 16721-16724; Li, Y. S., Milner, P. G., Chauhan, A. K., Watson, M. A., Hoffman, R. M., Kodner, C. M., Milbrandt, J., and Deuel, T. F. (1990) Science 250, 1690-1694). We have purified the protein from tissue culture supernatants of human breast cancer cells (MDA-MB 231) and have used soft agar cloning of an epithelial cell line (SW-13) to detect its growth stimulating activity. A 32,000-fold purification was achieved by isoelectric focusing, heparin affinity chromatography, and reversed phase high pressure liquid chromatography. The molecular mass of the protein was confirmed by gel filtration chromatography in the presence of detergent and bioassay of the fractions. The N-terminal sequence was homologous to HB-GAM/PTN, and polymerase chain reaction amplification and DNA sequencing confirmed that the respective transcript was present in the cancer cells. We conclude that HB-GAM/PTN can function as a tumor growth factor in addition to its role during neuronal development. PMID:1733956

  12. Heparin modulation of the neurotropic effects of acidic and basic fibroblast growth factors and nerve growth factor on PC12 cells

    SciTech Connect

    Neufeld, G.; Gospodarowicz, D.; Dodge, L.; Fujii, D.K.

    1987-04-01

    Nerve growth factor (NGF) and acidic or basic fibroblast growth factor (aFGF and bFGF, respectively) induce neurite outgrowth from the rat pheochromocytoma cell line, PC12. The neurites induced by these three factors are stable for up to a month in cell culture in the continued presence of any of the above growth factors. bFGF (ED50 = 30 pg/ml) is 800 fold more potent in stimulating neurite outgrowth than aFGF (ED50 = 25 ng/ml) and 260 fold more potent than NGF (ED50 = 8 ng/ml). While the neurotropic activities of aFGF and NGF are potentiated by heparin, that of bFGF is both partially inhibited or stimulated, depending upon the concentration of bFGF. Radioreceptor binding experiments show that aFGF and bFGF bind to a common binding site on the PC12 cell surface. Affinity labeling studies demonstrate a single receptor with an apparent molecular weight of 145,000 daltons, which corresponds to the high molecular weight receptor identified in BHK-21 cells. NGF does not appear to compete with aFGF or bFGF for binding to the receptor. Heparin blocked the binding of bFGF to the receptor but had only a small inhibitory effect on the binding of aFGF to the receptor. Thus, it appears that heparin inhibition of the neurotropic effects of bFGF occurs, at least in part, by impairing the interaction of bFGF with the receptor, while having little effect on that of aFGF. The stimulatory effects of heparin on the neurotropic activity of aFGF, bFGF, and NGF may occur through a site not associated with the respective cellular receptor for the growth factors.

  13. Angiopoietin-1 prevents severe bleeding complications induced by heparin-like drugs and fibroblast growth factor-2 in mice.

    PubMed

    Jerebtsova, Marina; Das, Jharna R; Tang, Pingtao; Wong, Edward; Ray, Patricio E

    2015-10-01

    Critically ill children can develop bleeding complications when treated with heparin-like drugs. These events are usually attributed to the anticoagulant activity of these drugs. However, previous studies showed that fibroblast growth factor-2 (FGF-2), a heparin-binding growth factor released in the circulation of these patients, could precipitate intestinal hemorrhages in mice treated with the heparin-like drug pentosan polysulfate (PPS). Yet very little is known about how FGF-2 induces bleeding complications in combination with heparin-like drugs. Here, we examined the mechanisms by which circulating FGF-2 induces intestinal hemorrhages in mice treated with PPS. We used a well-characterized mouse model of intestinal hemorrhages induced by FGF-2 plus PPS. Adult FVB/N mice were infected with adenovirus carrying Lac-Z or a secreted form of recombinant human FGF-2, and injected with PPS, at doses that do not induce bleeding complications per se. Mice treated with FGF-2 in combination with PPS developed an intestinal inflammatory reaction that increased the permeability and disrupted the integrity of submucosal intestinal vessels. These changes, together with the anticoagulant activity of PPS, induced lethal hemorrhages. Moreover, a genetically modified form of the endothelial ligand angiopoietin-1 (Ang-1*), which has powerful antipermeability and anti-inflammatory activity, prevented the lethal bleeding complications without correcting the anticoagulant status of these mice. These findings define new mechanisms through which FGF-2 and Ang-1* modulate the outcome of intestinal bleeding complications induced by PPS in mice and may have wider clinical implications for critically ill children treated with heparin-like drugs. PMID:26276817

  14. The metalloendopeptidase nardilysin (NRDc) is potently inhibited by heparin-binding epidermal growth factor-like growth factor (HB-EGF).

    PubMed Central

    Hospital, Véronique; Nishi, Eiichiro; Klagsbrun, Michael; Cohen, Paul; Seidah, Nabil G; Prat, Annik

    2002-01-01

    Nardilysin (N-arginine dibasic convertase, or NRDc) is a cytosolic and cell-surface metalloendopeptidase that, in vitro, cleaves substrates upstream of Arg or Lys in basic pairs. NRDc differs from most of the other members of the M16 family of metalloendopeptidases by a 90 amino acid acidic domain (DAC) inserted close to its active site. At the cell surface, NRDc binds heparin-binding epidermal growth factor-like growth factor (HB-EGF) and enhances HB-EGF-induced cell migration. An active-site mutant of NRDc fulfills this function as well as wild-type NRDc, indicating that the enzyme activity is not required for this process. We now demonstrate that NRDc starts at Met(49). Furthermore, we show that HB-EGF not only binds to NRDc but also potently inhibits its enzymic activity. NRDc-HB-EGF interaction involves the 21 amino acid heparin-binding domain (P21) of the growth factor, the DAC of NRDc and most probably its active site. Only disulphide-bonded P21 dimers are inhibitory. We also show that Ca(2+), via the DAC, regulates both NRDc activity and HB-EGF binding. We conclude that the DAC is thus a key regulatory element for the two distinct functions that NRDc fulfills, i.e. as an HB-EGF modulator and a peptidase. PMID:12095415

  15. Heparin-binding growth factor type 1 (acidic fibroblast growth factor): a potential biphasic autocrine and paracrine regulator of hepatocyte regeneration.

    PubMed Central

    Kan, M; Huang, J S; Mansson, P E; Yasumitsu, H; Carr, B; McKeehan, W L

    1989-01-01

    Heparin-binding growth factor type 1 (HBGF-1; sometimes termed acidic fibroblast growth factor) is potentially an important factor in liver regeneration. HBGF-1 alone (half-maximal effect at 60 pM) stimulated hepatocyte DNA synthesis and bound to a high-affinity receptor (Kd = 62 pM; 5000 per cell). Epidermal growth factor (EGF) neutralized or masked the mitogenic effect of HBGF-1 concurrent with appearance of low-affinity HBGF-1 binding sites. HBGF-1 reduced the inhibitory effect of transforming growth factor type beta (TGF-beta) on the EGF stimulus. Nanomolar levels of HBGF-1 decreased the EGF stimulus. An increase in hepatic HBGF-1 gene expression after partial hepatectomy precedes increases in expression of the EGF homolog, TGF-alpha, and nonparenchymal-cell-derived TGF-beta in the regenerating liver. Expression of HBGF-1 mRNA occurs in both hepatocytes and nonparenchymal cells and persists for 7 days in liver tissue after partial hepatectomy. HBGF-1 acting through a high-affinity receptor is a candidate for the early autocrine stimulus that drives hepatocyte DNA synthesis prior to or concurrent with the EGF/TGF-alpha stimulus. It may allow hepatocyte proliferation to proceed in the presence of low levels of TGF-beta. An EGF/TGF-alpha-dependent change in HBGF-1 receptor phenotype and increasing levels of nonparenchymal-cell-derived HBGF-1 and TGF-beta may serve to limit hepatocyte proliferation. Images PMID:2477840

  16. Involvement of reactive oxygen species in stimuli-induced shedding of heparin-binding epidermal growth factor-like growth factor.

    PubMed

    Umata, Toshiyuki

    2014-06-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a critical growth factor for a number of physiological and pathological processes, such as wound healing, atherosclerosis and cancer proliferation. HB-EGF is synthesized as a membrane form (proHB-EGF), and is shedded at the cell surface to yield soluble HB-EGF, resulting in making it active. In this study, the involvement of reactive oxygen species (ROS) in stimuli-induced shedding of HB-EGF was investigated using monkey kidney Vero cells overexpressing HB-EGF (Vero-H cells). 12-O-tetradecanoylphorbol-13-acetate (TPA), lysophosphatidic acid (LPA) as a ligand for seventransmembrane G protein coupled receptors (GPCR) and sorbitol as stress induced shedding of HB-EGF mediated protein kinase C (PKC)-δ, mitogen-activated protein kinase (MAPK) and p38MAPK, respectively. These stimuli-induced sheddings of HB-EGF were inhibited by N-acetyl-L-cysteine (NAC), suggesting the involvement of ROS. As specific inhibitors of these protein kinases inhibited the shedding of HB-EGF, these signaling pathways seem to be independent, respectively. In contrast, γ-ray irradiation did not induce shedding although it did increase intracellular ROS levels. Taken together, these results suggest that the synergistic generation of ROS and the activation of protein kinase are required to promote stimuli-induced shedding of HB-EGF. PMID:24930874

  17. The Soluble Heparin-Binding EGF-Like Growth Factor Stimulates EGF Receptor Trafficking to the Nucleus

    PubMed Central

    Korotkevych, Nataliia V.; Labyntsev, Andrii Ju.; Kolybo, Denis V.; Komisarenko, Serhiy V.

    2015-01-01

    Most ligands of epidermal growth factor receptor (EGFR) have the ability to induce EGFR translocation into the nucleus, where EGFR acts as an important transcriptional regulator. Soluble form of heparin-binding EGF-like growth factor (sHB-EGF) is one of the ligands for EGFR in many cell types; however, there is no evidence for the ability of sHB-EGF to induce EGFR nuclear importation. Here, we demonstrated that treatment of A431 cells with sHB-EGF resulted in nuclear localization of EGFR and such translocation occurs via retrograde pathway. It was shown by confocal microscopy and co-immunoprecipitation assay that the translocation complex consisted of both ligand and receptor. The chromatin immunoprecipitation assay showed the association of sHB-EGF–EGFR complex with promoter region of cyclin D1 in the cell nucleus and this association was prevented by application of EGFR kinase inhibitor AG-1478. The obtained data suggest that sHB-EGF acts similarly to other EGFR ligands and is capable to induce EGFR nuclear translocation as a part of ligand-receptor complex in a tyrosine phosphorylation-dependent manner. PMID:26016774

  18. Heparin-Binding Epidermal Growth Factor and Its Receptors Mediate Decidualization and Potentiate Survival of Human Endometrial Stromal Cells

    PubMed Central

    Chobotova, Katya; Karpovich, Natalia; Carver, Janet; Manek, Sanjiv; Gullick, William J.; Barlow, David H.; Mardon, Helen J.

    2006-01-01

    Heparin-binding epidermal growth factor (HB-EGF) has pleiotropic biological functions in many tissues, including those of the female reproductive tract. It facilitates embryo development and mediates implantation and is thought to have a function in endometrial receptivity and maturation. The mature HB-EGF molecule manifests its activity as either a soluble factor (sol-HB-EGF) or a transmembrane precursor (tm-HB-EGF) and can bind two receptors, EGFR and ErbB4/HER4. In this study, we identify factors that modulate expression of HB-EGF, EGFR, and ErbB4 in endometrial stromal cells in vitro. We demonstrate that levels of sol- and tm-HB-EGF, EGFR, and ErbB4 are increased by cAMP, a potent inducer of decidualization of the endometrial stroma. We also show that production of sol- and tm-HB-EGF is differentially modulated by TNFα and TGFβ. Our data suggest that HB-EGF has a function in endometrial maturation in mediating decidualization and attenuating TNFα- and TGFβ-induced apoptosis of endometrial stromal cells. PMID:15562026

  19. Heparin-conjugated poly(lactic-co-glycolic acid) nanospheres enhance large-wound healing by delivering growth factors in platelet-rich plasma.

    PubMed

    La, Wan-Geun; Yang, Hee Seok

    2015-04-01

    Platelet-rich plasma (PRP) contains many growth factors that are involved in tissue regeneration processes. For successful tissue regeneration, protein growth factors require a delivery vehicle for long-term and sustained release to a defect site in order to maintain their bioactivity. Previously, we showed that heparin-conjugated poly(lactic-co-glycolic acid) nanospheres (HCPNs) can provide long-term delivery of growth factors with affinity for heparin. In this study, we hypothesize that treatment of a skin wound with a mixture of PRP and HCPNs would provide long-term delivery of several growth factors contained in PRP to promote the skin wound healing process with preservation of bioactivity. The release of platelet-derived growth factor-BB (PDGF-BB), contained in PRP, from HCPN with fibrin gel (FG) showed a prolonged release period versus a PRP mixture with FG alone (FG-PRP). Also, growth factors released from PRP with HCPN and FG showed sustained human dermal fibroblast growth for 12 days. Full-thickness skin wound treatment in mice with FG-HCPN-PRP resulted in much faster wound closure as well as dermal and epidermal regeneration at day 9 compared with treatment with FG-HCPN or FG-PRP. The enhanced wound healing using FG-HCPN-PRP may be due to the prolonged release not only of PDGF-BB but also of other growth factors in the PRP. The delivered growth factors accelerated angiogenesis at the wound site. PMID:25284020

  20. Heparin-binding epidermal growth factor-like growth factor in hippocampus: modulation of expression by seizures and anti-excitotoxic action.

    PubMed

    Opanashuk, L A; Mark, R J; Porter, J; Damm, D; Mattson, M P; Seroogy, K B

    1999-01-01

    The expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), an EGF receptor ligand, was investigated in rat forebrain under basal conditions and after kainate-induced excitotoxic seizures. In addition, a potential neuroprotective role for HB-EGF was assessed in hippocampal cultures. In situ hybridization analysis of HB-EGF mRNA in developing rat hippocampus revealed its expression in all principle cell layers of hippocampus from birth to postnatal day (P) 7, whereas from P14 through adulthood, expression decreased in the pyramidal cell layer versus the dentate gyrus granule cells. After kainate-induced excitotoxic seizures, levels of HB-EGF mRNA increased markedly in the hippocampus, as well as in several other cortical and limbic forebrain regions. In the hippocampus, HB-EGF mRNA expression increased within 3 hr after kainate treatment, continued to increase until 24 hr, and then decreased; increases occurred in the dentate gyrus granule cells, in the molecular layer of the dentate gyrus, and in and around hippocampal pyramidal CA3 and CA1 neurons. At 48 hr after kainate treatment, HB-EGF mRNA remained elevated in vulnerable brain regions of the hippocampus and amygdaloid complex. Western blot analysis revealed increased levels of HB-EGF protein in the hippocampus after kainate administration, with a peak at 24 hr. Pretreatment of embryonic hippocampal cell cultures with HB-EGF protected neurons against kainate toxicity. The kainate-induced elevation of [Ca2+]i in hippocampal neurons was not altered in cultures pretreated with HB-EGF, suggesting an excitoprotective mechanism different from that of previously characterized excitoprotective growth factors. Taken together, these results suggest that HB-EGF may function as an endogenous neuroprotective agent after seizure-induced neural activity/injury. PMID:9870945

  1. A modular, plasmin-sensitive, clickable poly(ethylene glycol)-heparin-laminin microsphere system for establishing growth factor gradients in nerve guidance conduits.

    PubMed

    Roam, Jacob L; Yan, Ying; Nguyen, Peter K; Kinstlinger, Ian S; Leuchter, Michael K; Hunter, Daniel A; Wood, Matthew D; Elbert, Donald L

    2015-12-01

    Peripheral nerve regeneration is a complex problem that, despite many advancements and innovations, still has sub-optimal outcomes. Compared to biologically derived acellular nerve grafts and autografts, completely synthetic nerve guidance conduits (NGC), which allow for precise engineering of their properties, are promising but still far from optimal. We have developed an almost entirely synthetic NGC that allows control of soluble growth factor delivery kinetics, cell-initiated degradability and cell attachment. We have focused on the spatial patterning of glial-cell derived human neurotrophic factor (GDNF), which promotes motor axon extension. The base scaffolds consisted of heparin-containing poly(ethylene glycol) (PEG) microspheres. The modular microsphere format greatly simplifies the formation of concentration gradients of reversibly bound GDNF. To facilitate axon extension, we engineered the microspheres with tunable plasmin degradability. 'Click' cross-linking chemistries were also added to allow scaffold formation without risk of covalently coupling the growth factor to the scaffold. Cell adhesion was promoted by covalently bound laminin. GDNF that was released from these microspheres was confirmed to retain its activity. Graded scaffolds were formed inside silicone conduits using 3D-printed holders. The fully formed NGC's contained plasmin-degradable PEG/heparin scaffolds that developed linear gradients in reversibly bound GDNF. The NGC's were implanted into rats with severed sciatic nerves to confirm in vivo degradability and lack of a major foreign body response. The NGC's also promoted robust axonal regeneration into the conduit. PMID:26352518

  2. Heparin-binding properties of human serum spreading factor.

    PubMed

    Barnes, D W; Reing, J E; Amos, B

    1985-08-01

    Human serum spreading factor (SF) is a blood glycoprotein that promotes attachment and spreading and influences growth, migration, and differentiation of a variety of animal cells in culture. SF purified from human plasma or serum by chromatographic methods reported previously (Barnes, D. W., and Silnutzer, J. (1983) J. Biol. Chem. 258, 12548-12552) does not bind to heparin-Sepharose under conditions of physiological ionic strength and pH. In a further examination of the heparin-binding properties of human serum SF, we found that exposure of purified SF to 8 M urea altered several properties of the protein, including heparin affinity, and these alterations remained after removal of the urea from SF solutions. Urea-treated SF bound to heparin under physiological conditions, and salt concentrations of 0.4 M or higher were required for elution of urea-treated SF from heparin-Sepharose at pH 7.0. The alteration of heparin-binding properties of SF also was observed upon exposure of the protein to heat or acid. Treatment of SF with urea, heat, or acid resulted additionally in greatly decreased cell spreading-promoting activity of the molecule. The decreased biological activity was associated with a reduced ability of the treated SF to bind to the cell culture substratum, a prerequisite for the attachment-promoting activity of the molecule. Experiments examining the heparin-binding properties of native SF in unfractionated human plasma indicated that the major portion of SF in blood did not bind to heparin under conditions of physiological ionic strength and pH. PMID:2410408

  3. The Mitogenic Potential of Heparin-Binding Epidermal Growth Factor in the Human Endometrium Is Mediated by the Epidermal Growth Factor Receptor and Is Modulated by Tumor Necrosis Factor

    PubMed Central

    CHOBOTOVA, KATYA; MUCHMORE, MARY-ELIZABETH; CARVER, JANET; YOO, HYUNG-J; MANEK, SANJIV; GULLICK, WILLIAM J.; BARLOW, DAVID H.; MARDON, HELEN J.

    2006-01-01

    Heparin-binding epidermal growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family, is implicated in a variety of biological processes, including reproduction. Previous studies describe increased levels of HB-EGF in the human endometrium during the midsecretory stage of the menstrual cycle, suggesting a function for HB-EGF in implantation of the human blastocyst. Here we have investigated the expression and function of the soluble and transmembrane forms of HB-EGF in the human endometrium. We show that the expression of the transmembrane form of HB-EGF in the human endometrium is modulated according to the stage of the menstrual cycle. We present data demonstrating that both the soluble and transmembrane forms of HB-EGF induce DNA synthesis in human endometrial stromal cells. Furthermore, TNFα has a cooperative effect on HB-EGF, EGF, TGFα, and betacellulin-induced DNA synthesis in stromal cells, suggesting roles for the EGF family and TNFα in regeneration and maturation of human endometrium. Induction of DNA synthesis by HB-EGF and its modulation by TNFα in endometrial stromal cells are mediated by the EGF receptor and not the HB-EGF receptor ErbB4. Our data suggest key functions for HB-EGF, TNFα, and the EGF receptor in endometrial maturation, via autocrine/paracrine and juxtacrine pathways, in preparation for embryo implantation. PMID:12466384

  4. Biomedical Application of Low Molecular Weight Heparin/Protamine Nano/Micro Particles as Cell- and Growth Factor-Carriers and Coating Matrix

    PubMed Central

    Ishihara, Masayuki; Kishimoto, Satoko; Takikawa, Makoto; Hattori, Hidemi; Nakamura, Shingo; Shimizu, Masafumi

    2015-01-01

    Low molecular weight heparin (LMWH)/protamine (P) nano/micro particles (N/MPs) (LMWH/P N/MPs) were applied as carriers for heparin-binding growth factors (GFs) and for adhesive cells including adipose-derived stromal cells (ADSCs) and bone marrow-derived mesenchymal stem cells (BMSCs). A mixture of LMWH and P yields a dispersion of N/MPs (100 nm–3 μm in diameter). LMWH/P N/MPs can be immobilized onto cell surfaces or extracellular matrix, control the release, activate GFs and protect various GFs. Furthermore, LMWH/P N/MPs can also bind to adhesive cell surfaces, inducing cells and LMWH/P N/MPs-aggregate formation. Those aggregates substantially promoted cellular viability, and induced vascularization and fibrous tissue formation in vivo. The LMWH/P N/MPs, in combination with ADSCs or BMSCs, are effective cell-carriers and are potential promising novel therapeutic agents for inducing vascularization and fibrous tissue formation in ischemic disease by transplantation of the ADSCs and LMWH/P N/MPs-aggregates. LMWH/P N/MPs can also bind to tissue culture plates and adsorb exogenous GFs or GFs from those cells. The LMWH/P N/MPs-coated matrix in the presence of GFs may provide novel biomaterials that can control cellular activity such as growth and differentiation. Furthermore, three-dimensional (3D) cultures of cells including ADSCs and BMSCs using plasma-medium gel with LMWH/P N/MPs exhibited efficient cell proliferation. Thus, LMWH/P N/MPs are an adequate carrier both for GFs and for stromal cells such as ADSCs and BMSCs, and are a functional coating matrix for their cultures. PMID:26006248

  5. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  6. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    SciTech Connect

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer HBP sequence identified from HB-EGF has cell penetration activity. Black-Right-Pointing-Pointer HBP inhibits the NF-{kappa}B dependent inflammatory responses. Black-Right-Pointing-Pointer HBP directly blocks phosphorylation and degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer HBP inhibits nuclear translocation of NF-{kappa}B p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-{alpha} and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-{alpha} and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-{kappa}B-dependent inflammatory responses by directly blocking the phosphorylation and degradation of I{kappa}B{alpha} and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-{kappa}B. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  7. Role of G protein-coupled estrogen receptor-1, matrix metalloproteinases 2 and 9, and heparin binding epidermal growth factor-like growth factor in estradiol-17β-stimulated bovine satellite cell proliferation.

    PubMed

    Kamanga-Sollo, E; Thornton, K J; White, M E; Dayton, W R

    2014-10-01

    In feedlot steers, estradiol-17β (E2) and combined E2 and trenbolone acetate (a testosterone analog) implants enhance rate and efficiency of muscle growth; and, consequently, these compounds are widely used as growth promoters. Although the positive effects of E2 on rate and efficiency of bovine muscle growth are well established, the mechanisms involved in these effects are not well understood. Combined E2 and trenbolone acetate implants result in significantly increased muscle satellite cell number in feedlot steers. Additionally, E2 treatment stimulates proliferation of cultured bovine satellite cells (BSC). Studies in nonmuscle cells have shown that binding of E2 to G protein-coupled estrogen receptor (GPER)-1 results in activation of matrix metalloproteinases 2 and 9 (MMP2/9) resulting in proteolytic release of heparin binding epidermal growth factor-like growth factor (hbEGF) from the cell surface. Released hbEGF binds to and activates the epidermal growth factor receptor resulting in increased proliferation. To assess if GPER-1, MMP2/9, and/or hbEGF are involved in the mechanism of E2-stimulated BSC proliferation, we have examined the effects of G36 (a specific inhibitor of GPER-1), CRM197 (a specific inhibitor of hbEGF), and MMP-2/MMP-9 Inhibitor II (an inhibitor of MMP2/9 activity) on E2-stimulated BSC proliferation. Inhibition of GPER-1, MMP2/9, or hbEGF suppresses E2-stimulated BSC proliferation (P < 0.001) suggesting that all these are required in order for E2 to stimulate BSC proliferation. These results strongly suggest that E2 may stimulate BSC proliferation by binding to GPER-1 resulting in MMP2/9-catalyzed release of cell membrane-bound hbEGF and subsequent activation of epidermal growth factor receptor by binding of released hbEGF. PMID:25010024

  8. Controlled dual delivery of fibroblast growth factor-2 and Interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair.

    PubMed

    Chen, William C W; Lee, Brandon G; Park, Dae Woo; Kim, Kyobum; Chu, Hunghao; Kim, Kang; Huard, Johnny; Wang, Yadong

    2015-12-01

    Myocardial infarction (MI) causes myocardial necrosis, triggers chronic inflammatory responses, and leads to pathological remodeling. Controlled delivery of a combination of angiogenic and immunoregulatory proteins may be a promising therapeutic approach for MI. We investigated the bioactivity and therapeutic potential of an injectable, heparin-based coacervate co-delivering an angiogenic factor, fibroblast growth factor-2 (FGF2), and an anti-inflammatory cytokine, Interleukin-10 (IL-10) in a spatially and temporally controlled manner. Coacervate delivery of FGF2 and IL-10 preserved their bioactivities on cardiac stromal cell proliferation in vitro. Upon intramyocardial injection into a mouse MI model, echocardiography revealed that FGF2/IL-10 coacervate treated groups showed significantly improved long-term LV contractile function and ameliorated LV dilatation. FGF2/IL-10 coacervate substantially augmented LV myocardial elasticity. Additionally, FGF2/IL-10 coacervate notably enhanced long-term revascularization, especially at the infarct area. In addition, coacervate loaded with 500 ng FGF2 and 500 ng IL-10 significantly reduced LV fibrosis, considerably preserved infarct wall thickness, and markedly inhibited chronic inflammation at the infarct area. These results indicate that FGF2/IL-10 coacervate has notably greater therapeutic potential than coacervate containing only FGF2. Overall, our data suggest therapeutically synergistic effects of FGF-2/IL-10 coacervate, particularly coacervate with FGF2 and 500 ng IL-10, for the treatment of ischemic heart disease. PMID:26370927

  9. Latent transforming growth factor β-binding protein-3 and fibulin-1C interact with the extracellular domain of the heparin-binding EGF-like growth factor precursor

    PubMed Central

    Brooke, Joanna S; Cha, Jeong-Heon; Eidels, Leon

    2002-01-01

    Background The membrane-bound cell-surface precursor and soluble forms of heparin-binding epidermal growth factor-like growth factor (HB-EGF) contribute to many cellular developmental processes. The widespread occurrence of HB-EGF in cell and tissue types has led to observations of its role in such cellular and tissue events as tumor formation, cell migration, extracellular matrix formation, wound healing, and cell adherence. Several studies have reported the involvement of such extracellular matrix proteins as latent transforming growth factor β-binding protein, TGF-β, and fibulin-1 in some of these processes. To determine whether HB-EGF interacts with extracellular matrix proteins we used the extracellular domain of proHB-EGF in a yeast two-hybrid system to screen a monkey kidney cDNA library. cDNA clones containing nucleotide sequences encoding domains of two proteins were obtained and their derived amino acid sequences were evaluated. Results From ≈ 3 × 106 screened monkey cDNA clones, cDNA clones were recovered that contained nucleotide sequences encoding domains of the monkey latent transforming growth factor-β binding protein-3 (MkLTBP-3) and fibulin-1C protein. The amino acid sequence derived from the MkLTBP-3 gene shared 98.6% identity with human LTBP-3 and 86.7% identity with mouse LTBP-3 amino acid sequences. The amino acid sequence derived from the monkey fibulin-1C gene shared 97.2% identity with human fibulin-1C. Yeast two-hybrid screens indicate that LTBP-3 and fibulin-1C interact with proHB-EGF through their calcium-binding EGF-like modules. Conclusions The interactions of the extracellular domain of proHB-EGF with LTBP-3 and fibulin-1C suggest novel functions for HB-EGF between cell and tissue surfaces. PMID:11846885

  10. Sustained dual release of placental growth factor-2 and bone morphogenic protein-2 from heparin-based nanocomplexes for direct osteogenesis

    PubMed Central

    Liu, Yun; Deng, Li-Zhi; Sun, Hai-Peng; Xu, Jia-Yun; Li, Yi-Ming; Xie, Xin; Zhang, Li-Ming; Deng, Fei-Long

    2016-01-01

    Objective To compare the direct osteogenic effect between placental growth factor-2 (PlGF-2) and bone morphogenic protein-2 (BMP-2). Methods Three groups of PlGF-2/BMP-2-loaded heparin–N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) nanocomplexes were prepared: those with 0.5 μg PlGF-2; with 1.0 μg BMP-2; and with 0.5 μg PlGF-2 combined with 1.0 μg BMP-2. The loading efficiencies and release profiles of these growth factors (GFs) in this nanocomplex system were quantified using enzyme-linked immunosorbent assay, their biological activities were evaluated using cell counting kit-8, cell morphology, and cell number counting assays, and their osteogenic activities were quantified using alkaline phosphatase and Alizarin Red S staining assays. Results The loading efficiencies were more than 99% for the nanocomplexes loaded with just PlGF-2 and for those loaded with both PlGF-2 and BMP-2. For the nanocomplex loaded with just BMP-2, the loading efficiency was more than 97%. About 83%–84% of PlGF-2 and 89%–91% of BMP-2 were stably retained on the nanocomplexes for at least 21 days. In in vitro biological assays, PlGF-2 exhibited osteogenic effects comparable to those of BMP-2 despite its dose in the experiments being lower than that of BMP-2. Moreover, the results implied that heparin-based nanocomplexes encapsulating two GFs have enhanced potential in the enhancement of osteoblast function. Conclusion PlGF-2-loaded heparin–HTCC nanocomplexes may constitute a promising system for bone regeneration. Moreover, the dual delivery of PlGF-2 and BMP-2 appears to have greater potential in bone tissue regeneration than the delivery of either GFs alone. PMID:27042064

  11. Binding of heparin to human platelet factor 4.

    PubMed Central

    Cowan, S W; Bakshi, E N; Machin, K J; Isaacs, N W

    1986-01-01

    Platelet factor 4 is a small protein (Mr 7756) from the alpha-granules of blood platelets which binds strongly to and neutralizes the anticoagulant properties of heparin. From an analysis of X-ray crystallographic data a model for the binding of platelet factor 4 to heparin is proposed. PMID:3718482

  12. Heparin localization and fine structure regulate Burkitt's lymphoma growth

    SciTech Connect

    Berry, David; Lynn, David M.; Berry, Eric; Sasisekharan, Ram; Langer, Robert . E-mail: rlanger@mit.edu

    2006-09-29

    Burkitt's lymphoma (BL) is a B-cell malignancy associated with the Epstein-Barr virus (EBV). Mounting evidence has implicated heparan sulfate proteoglycans and heparan sulfate-like glycosaminoglycans (HSGAGs) in the initiation, severity, and progression of the malignancy. The importance of HSGAGs in regulating BL cell growth was therefore examined. Extracellular exogenous heparin inhibited cell growth >30%, while heparin internalized with poly({beta}-amino ester)s promoted proliferation up to 58%. The growth-modulating effects of heparin and internalized heparin were dependent on cell surface HSGAGs, PI3K, and Erk/Mek. Treatment of cells with protamine sulfate or with heparinases potently inhibited proliferation, with the greatest effects induced by heparinase I. Cell surface HSGAGs therefore play an important role in regulating BL proliferation and may offer a potential target for therapeutic intervention.

  13. Conditional loss of heparin-binding EGF-like growth factor results in enhanced liver fibrosis after bile duct ligation in mice

    SciTech Connect

    Takemura, Takayo; Yoshida, Yuichi; Kiso, Shinichi; Kizu, Takashi; Furuta, Kunimaro; Ezaki, Hisao; Hamano, Mina; Egawa, Mayumi; Chatani, Norihiro; Kamada, Yoshihiro; Imai, Yasuharu; Higashiyama, Shigeki; Iwamoto, Ryo; Mekada, Eisuke; Takehara, Tetsuo

    2013-07-26

    Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibrotic livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis.

  14. The anti-tumor effect of cross-reacting material 197, an inhibitor of heparin-binding EGF-like growth factor, in human resistant ovarian cancer

    SciTech Connect

    Tang, Xiao-han; Deng, Suo; Li, Meng; Lu, Mei-song

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer HB-EGF over-expression in A2780/Taxol, A2780/CDDP cells and the matched xenografts. Black-Right-Pointing-Pointer CRM197 induces enhanced apoptosis in A2780/Taxol and A2780/CDDP cells. Black-Right-Pointing-Pointer CRM197 arrests A2780/Taxol and A2780/CDDP cells at G0/G1 phase. Black-Right-Pointing-Pointer CRM197 suppressed the A2780/Taxol and A2780/CDDP growth of xenografts. -- Abstract: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. Cross-reacting material 197 (CRM197), a specific HB-EGF inhibitor, has been proven to represent possible chemotherapeutic agent for ovarian cancer. However, the effect of CRM197 on the resistant ovarian carcinoma cells has not been sufficiently elucidated. Here, we found that HB-EGF was over-expressed in a paclitaxel-resistant human ovarian carcinoma cell line (A2780/Taxol) and a cisplatin-resistant cell line (A2780/CDDP), as well as the xenograft mouse tissue samples with these cells. To investigate the possible significance of the HB-EGF over-expression in A2780/Taxol and A2780/CDDP cells, we inhibited HB-EGF expression by CRM197 to investigate the effect of CRM197 treatment on these cells. We observed that CRM197 significantly induced anti-proliferative activity in a dose-dependent manner with the cell-cycle arrest at the G0/G1 phase and enhanced apoptosis in A2780/Taxol and A2780/CDDP cells. The sensitive ovarian carcinoma parental cell line (A2780), A2780/Taxol and A2780/CDDP cells formed tumors in nude mice, and enhanced tumorigenicity was observed in drug-resistant tumors. Furthermore, we observed that CRM197 significantly suppressed the growth of drug-resistant ovarian cancer xenografts in vivo (p < 0.001). These results suggest that CRM197 as an HB-EGF-targeted agent has potent anti-tumor activity in paclitaxel- and cisplatin-resistant ovarian cancer which over-express HB-EGF.

  15. Heparin platelet factor 4 antibody positivity in pseudothrombocytopenia.

    PubMed

    Balcik, Ozlem Sahin; Akdeniz, Derya; Cipil, Handan; Uysal, Sema; Isik, Ayse; Kosar, Ali

    2012-01-01

    Pseudothrombocytopenia (PTCP) is a laboratory event of platelet clustering related to drugs used for anticoagulation. This condition is engendered by autoantibodies against platelets in usually EDTA-anticoagulated blood. Pseudothrombocytopenia has no clinical significance but when evaluated as true thrombocytopenia, this misconception may lead to unnecessary diagnostic procedures. Heparin-induced thrombocytopenia with thrombosis (HITT) is a complication of heparin treatment caused by heparin platelet factor 4 (HPF-4) antibodies, leading to platelet activation and hypercoagulability. In our study, 48 patients with PTCP and 36 healthy volunteers were included. Heparin platelet factor 4 antibody positivity was detected in 12 patients from PTCP group; nobody from control group had. Citrated serum samples and peripheral blood smears showed normal platelet count. Of the 4 patients using heparin derivative, 1 (2.1%) had antibody positivity but without any bleeding symptoms. In conclusion, HPF-4 antibody positivity might be a risk factor for PTCP. Clinicians should be aware of this kind of condition. PMID:21593020

  16. Effect of antigen-dependent clearance on pharmacokinetics of anti-heparin-binding EGF-like growth factor (HB-EGF) monoclonal antibody.

    PubMed

    Kasai, Noriyuki; Yoshikawa, Yukitaka; Enokizono, Junichi

    2014-01-01

    Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family and is an important therapeutic target in some types of human cancers. KM3566 is a mouse anti-HB-EGF monoclonal antibody that neutralizes HB-EGF activity by inhibiting the binding of HB-EGF to its receptors. Based on the results of our pharmacokinetics study, a humanized derivative antibody, KHK2866, is rapidly cleared from serum and shows nonlinear pharmacokinetics in cynomolgus monkeys. In this study, we examined the antigen-dependent clearance of an anti-HB-EGF monoclonal antibody in vivo and in vitro in order to pharmacokinetically explain the rapid elimination of KHK2866. We revealed tumor size-dependent clearance of KM3566 in in vivo studies and obtained good fits between the observed and simulated concentrations of KM3566 based on the two-compartment with a saturable route of clearance model. Furthermore, in vivo imaging analyses demonstrated tumor-specific distribution of KM3566. We then confirmed rapid internalization and distribution to lysosome of KM3566 at a cellular level. Moreover, we revealed that the amounts of HB-EGF on cell surface membrane were maintained even while HB-EGF was internalized with KM3566. Recycled or newly synthesized HB-EGF, therefore, may contribute to a consecutive clearance of KM3566, which could explain a rapid clearance from serum. These data suggested that the rapid elimination in pharmacokinetics of KM3566 is due to antigen-dependent clearance. Given that its antigen is expressed in a wide range of normal tissue, it is estimated that the rapid elimination of KHK2866 from cynomolgus monkey serum is caused by antigen-dependent clearance. PMID:25517307

  17. Identification of tyrosines 154 and 307 in the extracellular domain and 653 and 766 in the intracellular domain as phosphorylation sites in the heparin-binding fibroblast growth factor receptor tyrosine kinase (flg).

    PubMed Central

    Hou, J.; McKeehan, K.; Kan, M.; Carr, S. A.; Huddleston, M. J.; Crabb, J. W.; McKeehan, W. L.

    1993-01-01

    Four tyrosine residues have been identified as phosphorylation sites in the tyrosine kinase isoform of the heparin-binding fibroblast growth factor receptor flg (FGF-R1). Baculoviral-insect cell-derived recombinant FGF-R1 was phosphorylated and fragmented with trypsin while immobilized on heparin-agarose beads. Phosphotyrosine peptides were purified by chromatography on immobilized anti-phosphotyrosine antibody and analyzed by Edman degradation and electrospray tandem mass spectrometry. Tyrosine residue 653, which is in a homologous spatial position to major autophosphorylation sites in the catalytic domain of the src and insulin receptor kinases, is the major intracellular FGF-R1 phosphorylation site. Residue 766 in the COOH-terminus outside the kinase domain is a secondary site. Tyrosine residues 154 and 307, which are in the extracellular domain of transmembrane receptor isoforms and are in an unusual sequence context for tyrosine phosphorylation, were also phosphorylated. PMID:8443592

  18. G3139, an Anti-Bcl-2 Antisense Oligomer that Binds Heparin-Binding Growth Factors and Collagen I, Alters In Vitro Endothelial Cell Growth and Tubular Morphogenesis

    PubMed Central

    Stein, C.A.; Wu, SiJian; Voskresenskiy, Anatoliy M.; Zhou, Jin-Feng; Shin, Joongho; Miller, Paul; Souleimanian, Naira; Benimetskaya, Luba

    2009-01-01

    Purpose We examined the effects of G3139 on the interaction of heparin-binding proteins (e.g., FGF2 and collagen I) with endothelial cells. G3139 is an 18mer phosphorothioate oligonucleotide targeted to the initiation codon region of the Bcl-2 mRNA. A randomized, prospective global Phase III trial in advanced melanoma (GM301) has evaluted G3139 in combination with dacarbazine. However, the mechanism of action of G3139 is incompletely understood, as it is unlikely that Bcl-2 silencing is the sole mechanism for chemo-sensitization in melanoma cells. Experimental Design The ability of G3139 to interact with and protect heparin-binding proteins was quantitated. The effects of G3139 on the binding of FGF2 to high affinity cell surface receptors, and the induction of cellular mitogenesis and tubular morphogenesis in HMEC-1 and HUVEC cells were determined. Results G3139 binds with picomolar affinity to collagen I. By replacing heparin, the drug can potentiate the binding of FGF2 to FGFR1 IIIc, and it protects FGF from oxidation and from proteolysis. G3139 can increase endothelial cell mitogenesis and tubular morphogenesis of HMEC-1 cells in 3D collagen gels, increases the mitogenesis of HUVEC cells similarly, and induces vessel sprouts in the rat aortic ring model. Conclusions G3139 dramatically affects the behavior of endothelial cells. There may be a correlation between this observation and the treatment interaction with LDH observed clinically. PMID:19351753

  19. In vitro effects of heparin and tissue factor pathway inhibitor on factor VII assays. possible implications for measurements in vivo after heparin therapy.

    PubMed

    Bladbjerg, E M; Larsen, L F; Ostergaard, P; Jespersen, J

    2000-12-01

    The coagulant activity of blood coagulation factor VII (FVII:C) can be lowered by changes in lifestyle and by therapeutic intervention, e.g. heparin infusion. The question is, however, whether FVII:C determined ex vivo is a valid measure of the FVII activity in vivo. We measured plasma FVII:C, activated FVII (FVIIa), FVII protein (FVII:Ag), tissue factor pathway inhibitor (TFPI), triglycerides, and free fatty acids (FFA) before and 15 min after infusion of a bolus of unfractionated heparin (50 IU/kg body weight) in 12 healthy subjects. Additionally, we conducted in vitro experiments to investigate the effect of unfractionated heparin and TFPI, which is released from the endothelium by heparin, on FVII:C, FVIIa, and FVII:Ag. Heparin infusion decreased triglycerides and increased FFA and TFPI. This was accompanied by significant reductions in FVIIa, FVII:C and FVII:Ag. In vitro, anti-TFPI antibodies increased FVIIa and FVII:C, and heparin reduced FVIIa. The heparinase Hepzyme was unable to abolish the effect of heparin. There were no in vitro effects on FVII:Ag. We conclude that, due to interference by TFPI and heparin in post-heparin plasma, it is impossible to measure the in vivo FVII activity by means of FVII clotting assays. These assays should therefore not be used to measure the coagulation status of patients in heparin therapy, unless extraordinary precautions are taken to eliminate TFPI and heparin effects ex vivo. The observed effect of heparin on FVII:Ag should be investigated further. PMID:11132652

  20. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    PubMed

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n

  1. Mechanical prophylaxis is a heparin-independent risk for anti–platelet factor 4/heparin antibody formation after orthopedic surgery

    PubMed Central

    Bito, Seiji; Migita, Kiyoshi; Nakamura, Mashio; Shinohara, Kazuhito; Sato, Tomotaro; Tonai, Takeharu; Shimizu, Motoyuki; Shibata, Yasuhiro; Kishi, Kazuhiko; Kubota, Chikara; Nakahara, Shinnosuke; Mori, Toshihito; Ikeda, Kazuo; Ota, Shusuke; Minamizaki, Takeshi; Yamada, Shigeru; Shiota, Naofumi; Kamei, Masataka; Motokawa, Satoru

    2016-01-01

    Platelet-activating antibodies, which recognize platelet factor 4 (PF4)/heparin complexes, induce spontaneous heparin-induced thrombocytopenia (HIT) syndrome or fondaparinux-associated HIT without exposure to unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH). This condition mostly occurs after major orthopedic surgery, implying that surgery itself could trigger this immune response, although the mechanism is unclear. To investigate how surgery may do so, we performed a multicenter, prospective study of 2069 patients who underwent total knee arthroplasty (TKA) or hip arthroplasty. Approximately half of the patients received postoperative thromboprophylaxis with UFH, LMWH, or fondaparinux. The other half received only mechanical thromboprophylaxis, including dynamic (intermittent plantar or pneumatic compression device), static (graduated compression stockings [GCSs]), or both. We measured anti-PF4/heparin immunoglobulins G, A, and M before and 10 days after surgery using an immunoassay. Multivariate analysis revealed that dynamic mechanical thromboprophylaxis (DMT) was an independent risk factor for seroconversion (odds ratio [OR], 2.01; 95% confidence interval [CI], 1.34-3.02; P = .001), which was confirmed with propensity-score matching (OR, 1.99; 95% CI, 1.17-3.37; P = .018). For TKA, the seroconversion rates in patients treated with DMT but no anticoagulation and in patients treated with UFH or LMWH without DMT were similar, but significantly higher than in patients treated with only GCSs. The proportion of patients with ≥1.4 optical density units appeared to be higher among those treated with any anticoagulant plus DMT than among those not treated with DMT. Our study suggests that DMT increases risk of an anti-PF4/heparin immune response, even without heparin exposure. This trial was registered to www.umin.ac.jp/ctr as #UMIN000001366. PMID:26659923

  2. Mechanical prophylaxis is a heparin-independent risk for anti-platelet factor 4/heparin antibody formation after orthopedic surgery.

    PubMed

    Bito, Seiji; Miyata, Shigeki; Migita, Kiyoshi; Nakamura, Mashio; Shinohara, Kazuhito; Sato, Tomotaro; Tonai, Takeharu; Shimizu, Motoyuki; Shibata, Yasuhiro; Kishi, Kazuhiko; Kubota, Chikara; Nakahara, Shinnosuke; Mori, Toshihito; Ikeda, Kazuo; Ota, Shusuke; Minamizaki, Takeshi; Yamada, Shigeru; Shiota, Naofumi; Kamei, Masataka; Motokawa, Satoru

    2016-02-25

    Platelet-activating antibodies, which recognize platelet factor 4 (PF4)/heparin complexes, induce spontaneous heparin-induced thrombocytopenia (HIT) syndrome or fondaparinux-associated HIT without exposure to unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH). This condition mostly occurs after major orthopedic surgery, implying that surgery itself could trigger this immune response, although the mechanism is unclear. To investigate how surgery may do so, we performed a multicenter, prospective study of 2069 patients who underwent total knee arthroplasty (TKA) or hip arthroplasty. Approximately half of the patients received postoperative thromboprophylaxis with UFH, LMWH, or fondaparinux. The other half received only mechanical thromboprophylaxis, including dynamic (intermittent plantar or pneumatic compression device), static (graduated compression stockings [GCSs]), or both. We measured anti-PF4/heparin immunoglobulins G, A, and M before and 10 days after surgery using an immunoassay. Multivariate analysis revealed that dynamic mechanical thromboprophylaxis (DMT) was an independent risk factor for seroconversion (odds ratio [OR], 2.01; 95% confidence interval [CI], 1.34-3.02; P = .001), which was confirmed with propensity-score matching (OR, 1.99; 95% CI, 1.17-3.37; P = .018). For TKA, the seroconversion rates in patients treated with DMT but no anticoagulation and in patients treated with UFH or LMWH without DMT were similar, but significantly higher than in patients treated with only GCSs. The proportion of patients with ≥1.4 optical density units appeared to be higher among those treated with any anticoagulant plus DMT than among those not treated with DMT. Our study suggests that DMT increases risk of an anti-PF4/heparin immune response, even without heparin exposure. This trial was registered to www.umin.ac.jp/ctr as #UMIN000001366. PMID:26659923

  3. Interactions between nattokinase and heparin/GAGs.

    PubMed

    Zhang, Fuming; Zhang, Jianhua; Linhardt, Robert J

    2015-12-01

    Nattokinase (NK) is a serine protease extracted from a traditional Japanese food called natto. Due to its strong fibrinolytic and thrombolytic activity, NK is regarded as a valuable dietary supplement or nutraceutical for the oral thrombolytic therapy. In addition, NK has been investigated for some other medical applications including treatment of hypertension, Alzheimer's disease, and vitreoretinal disorders. The most widely used clinical anticoagulants are heparin and low molecular weight heparins. The interactions between heparin and proteins modulate diverse patho-physiological processes and heparin modifies the activity of serine proteases. Indeed, heparin plays important roles in almost all of NK's potential therapeutically applications. The current report relies on surface plasmon resonance spectroscopy to examine NK interacting with heparin as well as other glycosaminoglycans (GAGs). These studies showed that NK is a heparin binding protein with an affinity of ~250 nM. Examination with differently sized heparin oligosaccharides indicated that the interaction between NK and heparin is chain-length dependent and the minimum size for heparin binding is a hexasaccharide. Studies using chemically modified heparin showed the 6-O-sulfo as well as the N-sulfo groups but not the 2-O-sulfo groups within heparin, are essential for heparin's interaction with NK. Other GAGs (including HS, DS, and CSE) displayed modest binding affinity to NK. NK also interfered with other heparin-protein interactions, including heparin's interaction with antithrombin and fibroblast growth factors. PMID:26412225

  4. Antibodies from patients with heparin-induced thrombocytopenia/thrombosis are specific for platelet factor 4 complexed with heparin or bound to endothelial cells.

    PubMed Central

    Visentin, G P; Ford, S E; Scott, J P; Aster, R H

    1994-01-01

    Heparin-induced thrombocytopenia/thrombosis (HITP) is thought to be mediated by immunoglobulins that activate platelets in the presence of pharmacologic concentrations of heparin, but the molecular basis for this relatively common and often serious complication of heparin therapy has not been established. We found that plasma from each of 12 patients with HITP contained high titer (> or = 1:200) antibodies that reacted with immobilized complexes of heparin and platelet factor 4 (PF4), a heparin-binding protein contained in platelet alpha-granules. Recombinant human PF4 behaved similarly to PF4 isolated from platelets in this assay system. Complexes formed at an apparent heparin/PF4 molecular ratio of approximately 1:2 (fresh heparin) and approximately 1:12 (outdated heparin) were most effective in binding antibody. Immune complexes consisting of PF4, heparin, and antibody reacted with resting platelets; this interaction was inhibited by a monoclonal antibody specific for the Fc gamma RII receptor and by excess heparin. Human umbilical vein endothelial cells, known to express heparin-like glycosaminoglycan molecules on their surface, were recognized by antibody in the presence of PF4 alone; this reaction was inhibited by excess heparin, but not by anti-Fc gamma RII. Antibodies reactive with heparin/PF4 were not found in normal plasma, but IgG and IgM antibodies were detected at dilutions of 1:10 (IgG) and 1:50 (IgM) in 3 of 50 patients (6%) with other types of immune thrombocytopenia. These findings indicate that antibodies associated with HITP react with PF4 complexed with heparin in solution or with glycosaminoglycan molecules on the surface of endothelial cells and provide the basis for a new hypothesis to explain the development of thrombocytopenia with thrombosis or disseminated intravascular coagulation in patients sensitive to heparin. PMID:8282825

  5. The heparin binding domain of vitronectin is the region that is required to enhance insulin-like growth factor-I signaling.

    PubMed

    Maile, Laura A; Busby, Walker H; Sitko, Kevin; Capps, Byron E; Sergent, Tiffany; Badley-Clarke, Jane; Ling, Yan; Clemmons, David R

    2006-04-01

    We have shown that vitronectin (Vn) binding to a cysteine loop sequence within the extracellular domain of the beta3-subunit (amino acids 177-184) of alphaVbeta3 is required for the positive effects of Vn on IGF-I signaling. When Vn binding to this sequence is blocked, IGF-I signaling in smooth muscle cells is impaired. Because this binding site is distinct from the site on beta3 to which the Arg-Gly-Asp sequence of extracellular matrix ligands bind (amino acids 107-171), we hypothesized that the region of Vn that binds to the cysteine loop on beta3 is distinct from the region that contains the Arg-Gly-Asp sequence. The results presented in this study demonstrate that this heparin binding domain (HBD) is the region of Vn that binds to the cysteine loop region of beta3 and that this region is sufficient to mediate the positive effects of Vn on IGF-I signaling. We provide evidence that binding of the HBD of Vn to alphaVbeta3 has direct effects on the activation state of beta3 as measured by beta3 phosphorylation. The increase in beta3 phosphorylation associated with exposure of cells to this HBD is associated with enhanced phosphorylation of the adaptor protein Src homology 2 domain-containing transforming protein C and enhanced activation MAPK, a downstream mediator of IGF-I signaling. We conclude that the interaction of the HBD of Vn binding to the cysteine loop sequence of beta3 is necessary and sufficient for the positive effects of Vn on IGF-I-mediated effects in smooth muscle cells. PMID:16322097

  6. Modulation of heparin cofactor II activity by histidine-rich glycoprotein and platelet factor 4.

    PubMed Central

    Tollefsen, D M; Pestka, C A

    1985-01-01

    Heparin cofactor II is a plasma protein that inhibits thrombin rapidly in the presence of either heparin or dermatan sulfate. We have determined the effects of two glycosaminoglycan-binding proteins, i.e., histidine-rich glycoprotein and platelet factor 4, on these reactions. Inhibition of thrombin by heparin cofactor II and heparin was completely prevented by purified histidine-rich glycoprotein at the ratio of 13 micrograms histidine-rich glycoprotein/microgram heparin. In contrast, histidine-rich glycoprotein had no effect on inhibition of thrombin by heparin cofactor II and dermatan sulfate at ratios of less than or equal to 128 micrograms histidine-rich glycoprotein/microgram dermatan sulfate. Removal of 85-90% of the histidine-rich glycoprotein from plasma resulted in a fourfold reduction in the amount of heparin required to prolong the thrombin clotting time from 14 s to greater than 180 s but had no effect on the amount of dermatan sulfate required for similar anti-coagulant activity. In contrast to histidine-rich glycoprotein, purified platelet factor 4 prevented inhibition of thrombin by heparin cofactor II in the presence of either heparin or dermatan sulfate at the ratio of 2 micrograms platelet factor 4/micrograms glycosaminoglycan. Furthermore, the supernatant medium from platelets treated with arachidonic acid to cause secretion of platelet factor 4 prevented inhibition of thrombin by heparin cofactor II in the presence of heparin or dermatan sulfate. We conclude that histidine-rich glycoprotein and platelet factor 4 can regulate the antithrombin activity of heparin cofactor II. Images PMID:3838317

  7. Two Novel Heparin-binding Vascular Endothelial Growth Factor Splices, L-VEGF144 and L-VEGF138, are Expressed in Human Glioblastoma Cells.

    PubMed

    Shen, Chiung-Chyi; Cheng, Wen-Yu; Chiao, Ming-Tsang; Liang, Yea-Jiuan; Mao, Tsuo-Fei; Liu, Bai-Shuan

    2016-01-01

    The expression levels of different vascular endothelial growth factor A (VEGF) isoforms are associated with the angiogenesis and the patient's prognoses in human cancers. Ribosomes specifically scan from 5' to 3' CUG initiation codon in the long 5'-untranslated region (5'-UTR) of the VEGF mRNA, resulting in the generation of high mol wt VEGF isoform [call large VEGF (L-VEGF)]. Alternative splicing of VEGF mRNA transcripts results in several isoforms with distinct properties that are dependent up their exon compositions. In this study, we observed two novel kinds of splicing VEGF isoforms that transcripted at the first upstream CUG codon, and which we have named large-VEGF144 (LVEGF144), and large-VEGF138 (L-VEGF138). The expression levels of messenger RNA for the different VEGF splice forms were analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). After DNA sequencing, the genetic structure of L-VEGF144 involved not only a partial exon 1, exon 6a, and exons 7-8, but also an unique 108- nucleotides insertion of VEGF intron 5 interposed between exon 1 and exon 6. At the same time, L-VEGF144 lacked most of the Nterminal fragments (exons 1-5). We further found that a specific detection model could easily and rapidly confirm the presence of L-VEGF144 mRNA fragments in the biopsies or cell lines via RT-PCR assay. In addition, we used visible fluorescent fusion proteins to prove that both L-VEGF144 and L-VEGF138 have nuclear localization ability. Taken together, the findings of this study indicate that, unlike previously identified isoforms, these novel VEGF isoforms are likely to suggest a further level of complexity in the angiogenic process. PMID:27220431

  8. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  9. Quantitative description of thermodynamic and kinetic properties of the platelet factor 4/heparin bonds

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi-Huong; Greinacher, Andreas; Delcea, Mihaela

    2015-05-01

    Heparin is the most important antithrombotic drug in hospitals. It binds to the endogenous tetrameric protein platelet factor 4 (PF4) forming PF4/heparin complexes which may cause a severe immune-mediated adverse drug reaction, so-called heparin-induced thrombocytopenia (HIT). Although new heparin drugs have been synthesized to reduce such a risk, detailed bond dynamics of the PF4/heparin complexes have not been clearly understood. In this study, single molecule force spectroscopy (SMFS) is utilized to characterize the interaction of PF4 with heparins of defined length (5-, 6-, 8-, 12-, and 16-mers). Analysis of the force-distance curves shows that PF4/heparin binding strength rises with increasing heparin length. In addition, two binding pathways in the PF4/short heparins (<=8-mers) and three binding pathways in the PF4/long heparins (>=8-mers) are identified. We provide a model for the PF4/heparin complexes in which short heparins bind to one PF4 tetramer, while long heparins bind to two PF4 tetramers. We propose that the interaction between long heparins and PF4s is not only due to charge differences as generally assumed, but also due to hydrophobic interaction between two PF4s which are brought close to each other by long heparin. This complicated interaction induces PF4/heparin complexes more stable than other ligand-receptor interactions. Our results also reveal that the boundary between antigenic and non-antigenic heparins is between 8- and 12-mers. These observations are particularly important to understand processes in which PF4-heparin interactions are involved and to develop new heparin-derived drugs.Heparin is the most important antithrombotic drug in hospitals. It binds to the endogenous tetrameric protein platelet factor 4 (PF4) forming PF4/heparin complexes which may cause a severe immune-mediated adverse drug reaction, so-called heparin-induced thrombocytopenia (HIT). Although new heparin drugs have been synthesized to reduce such a risk, detailed

  10. Heparin inhibition of von Willebrand factor-dependent platelet function in vitro and in vivo.

    PubMed Central

    Sobel, M; McNeill, P M; Carlson, P L; Kermode, J C; Adelman, B; Conroy, R; Marques, D

    1991-01-01

    The intravenous administration of heparin to patients before open heart surgery reduced ristocetin cofactor activity by 58% (P less than 0.01, t test), and this impairment of von Willebrand factor-dependent platelet function was closely related to plasma heparin levels (r2 = 0.9), but not to plasma von Willebrand factor (vWF) levels. We hypothesized that heparin may inhibit vWF-dependent platelet hemostatic functions by directly binding vWF in solution and interfering with vWF-GpIb binding. Using the in vitro techniques of ristocetin-induced platelet agglutination, fluorescent flow cytometric measurement of vWF-platelet binding, and conventional radioligand binding assays we observed that heparin inhibited both vWF-dependent platelet function and vWF-platelet binding in a parallel and dose-dependent manner. Heparin also inhibited platelet agglutination induced by bovine vWF and inhibited the binding of human asialo-vWF to platelets in ristocetin-free systems. The inhibitory potency of heparin was not dependent upon its affinity for antithrombin III, but was molecular weight dependent: homogeneous preparations of lower molecular weight were less inhibitory. Heparin impairment of vWF function may explain why some hemorrhagic complications of heparin therapy are not predictable based on techniques for monitoring the conventional anticoagulant effects of heparin. PMID:2022745

  11. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  12. Identification of heparin-binding EGF-like growth factor (HB-EGF) as a biomarker for lysophosphatidic acid receptor type 1 (LPA1) activation in human breast and prostate cancers.

    PubMed

    David, Marion; Sahay, Debashish; Mege, Florence; Descotes, Françoise; Leblanc, Raphaël; Ribeiro, Johnny; Clézardin, Philippe; Peyruchaud, Olivier

    2014-01-01

    Lysophosphatidic acid (LPA) is a natural bioactive lipid with growth factor-like functions due to activation of a series of six G protein-coupled receptors (LPA₁₋₆). LPA receptor type 1 (LPA₁) signaling influences the pathophysiology of many diseases including cancer, obesity, rheumatoid arthritis, as well as lung, liver and kidney fibrosis. Therefore, LPA₁ is an attractive therapeutic target. However, most mammalian cells co-express multiple LPA receptors whose co-activation impairs the validation of target inhibition in patients because of missing LPA receptor-specific biomarkers. LPA₁ is known to induce IL-6 and IL-8 secretion, as also do LPA₂ and LPA₃. In this work, we first determined the LPA induced early-gene expression profile in three unrelated human cancer cell lines expressing different patterns of LPA receptors (PC3: LPA₁,₂,₆; MDA-MB-231: LPA1,2; MCF-7: LPA₂,₆). Among the set of genes upregulated by LPA only in LPA₁-expressing cells, we validated by QPCR and ELISA that upregulation of heparin-binding EGF-like growth factor (HB-EGF) was inhibited by LPA₁-₃ antagonists (Ki16425, Debio0719). Upregulation and downregulation of HB-EGF mRNA was confirmed in vitro in human MDA-B02 breast cancer cells stably overexpressing LPA₁ (MDA-B02/LPA₁) and downregulated for LPA₁ (MDA-B02/shLPA1), respectively. At a clinical level, we quantified the expression of LPA₁ and HB-EGF by QPCR in primary tumors of a cohort of 234 breast cancer patients and found a significantly higher expression of HB-EGF in breast tumors expressing high levels of LPA₁. We also generated human xenograph prostate tumors in mice injected with PC3 cells and found that a five-day treatment with Ki16425 significantly decreased both HB-EGF mRNA expression at the primary tumor site and circulating human HB-EGF concentrations in serum. All together our results demonstrate that HB-EGF is a new and relevant biomarker with potentially high value in quantifying LPA

  13. Current structural biology of the heparin interactome.

    PubMed

    Pomin, Vitor H; Mulloy, Barbara

    2015-10-01

    Heparin is the best known therapeutically active carbohydrate. It can bind and regulate multiple functional proteins such as coagulation cofactors, chemokines, and growth factors. This versatility has led to the recently developed concept of the heparin interactome--a group of proteins that, as the name implies, interact with heparin. The heparin interactome is structurally and functionally diverse. Though natural ligands of this class of proteins may be any of the glycosaminoglycans however, their structural biology is generally studied using heparin as a model compound. NMR spectroscopy contributes significantly to structural investigations of the resultant complexes in solution. This review aims therefore at discussing the current status in structural biology of the molecular complexes formed between heparin and its protein partners through the current concept of the heparin interactome. PMID:26038285

  14. Endovascular Stents and Stent-Grafts: Is Heparin Coating Desirable?

    SciTech Connect

    Nelson, Stephen R.; Souza, Nandita M. de; Allison, David J.

    2000-07-15

    Heparins are glycosaminoglycans that, in addition to their anticoagulant activity, have interactions with growth factors and other glycoproteins. These interactions may stimulate neointimal hyperplasia when heparin is delivered locally on stents and stent-grafts. Modifying the structure of heparin to retain anticoagulant activity while minimizing these stimulatory effects on the vascular endothelium is desirable and may be achieved by understanding the relationships between the structure and function of the various parts of the heparin molecule.

  15. Harnessing endogenous growth factor activity modulates stem cell behavior

    PubMed Central

    Hudalla, Gregory A.; Kouris, Nicholas A.; Koepsel, Justin T.; Ogle, Brenda M.; Murphy, William L.

    2014-01-01

    The influence of specific serum-borne biomolecules (e.g. heparin) on growth factor-dependent cell behavior is often difficult to elucidate in traditional cell culture due to the random, non-specific nature of biomolecule adsorption from serum. We hypothesized that chemically well-defined cell culture substrates could be used to study the influence of sequestered heparin on human mesenchymal stem cell (hMSC) behavior. Specifically, we used bio-inert self-assembled monolayers (SAMs) chemically modified with a bioinspired heparin-binding peptide (termed “HEPpep”) and an integrin-binding peptide (RGDSP) as stem cell culture substrates. Our results demonstrate that purified heparin binds to HEPpep SAMs in a dose-dependent manner, and serum-borne heparin binds specifically and in a dose-dependent manner to HEPpep SAMs. These heparin-sequestering SAMs enhance hMSC proliferation by amplifying endogenous fibroblast growth factor (FGF) signaling, and enhance hMSC osteogenic differentiation by amplifying endogenous bone morphogenetic protein (BMP) signaling. The effects of heparin-sequestering are similar to the effects of supraphysiologic concentrations of recombinant FGF-2. hMSC phenotype is maintained over multiple population doublings on heparin-sequestering substrates in growth medium, while hMSC osteogenic differentiation is enhanced in a bone morphogenetic protein-dependent manner on the same substrates during culture in osteogenic induction medium. Together, these observations demonstrate that the influence of the substrate on stem cell phenotype is sensitive to the culture medium formulation. Our results also demonstrate that enhanced hMSC proliferation can be spatially localized by patterning the location of HEPpep on the substrate. Importantly, the use of chemically well-defined SAMs in this study eliminated the confounding factor of random, non-specific biomolecule adsorption, and identified serum-borne heparin as a key mediator of hMSC response to endogenous

  16. Detection and characterization of heparin-binding proteins with a gel overlay procedure

    SciTech Connect

    Mehlman, T.; Burgess, W.H. )

    1990-07-01

    The binding of {sup 125}I-labeled derivatives of heparin has been used by several investigators to identify heparin-binding fragments of different heparin-binding proteins. In this report we utilize the procedure described by J.W. Smith and D.J. Knauer (1987, Anal. Biochem. 160, 105-114) to produce {sup 125}I-fluorescein-heparin. Using this derivative, we compare the use of gel overlay procedures with Western blot procedures for the detection of heparin-binding proteins following polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. We show that the gel overlay procedure is a relatively simple and sensitive method for visualizing heparin-binding proteins. In addition, we use the procedure to characterize the heparin-binding properties of heparin-binding growth factor 1 (acidic fibroblast growth factor) with synthetic peptide competitors and site-directed mutants of the growth factor.

  17. Heparin coating of tantalum coronary stents reduces surface thrombin generation but not factor IXa generation.

    PubMed

    Blezer, R; Cahalan, L; Cahalan, P T; Lindhout, T

    1998-07-01

    In the present study we used an in-vitro technique to examine initiation and propagation of blood coagulation at the surface of tantalum coronary stents exposed to flowing platelet-rich and platelet-free plasma. The time course of factor IXa production at the surface of the stent was not influenced by platelets. In spite of a significant factor IXa production, no thrombin activity was detected when the tantalum stent was exposed to platelet-free plasma; only when the stent was exposed to platelet-rich plasma was extensive thrombin production observed. These findings indicate that tantalum triggers blood coagulation, but that (adherent) platelets are essential for thrombin generation. Heparin-coated tantalum stents exposed to flowing platelet-rich plasma showed that factor IXa generation was slightly reduced compared with the bare stent. However, the heparin coating drastically delayed the onset of thrombin generation and largely reduced the steady-state production of thrombin. We found a clear relationship between the antithrombin binding capacity and the antithrombogenic potential of the heparin-coated stents. The mode of action of immobilized heparin is thought to abrogate thrombin generation by inhibiting thrombin-dependent positive feedback reactions at the surface of the coronary stent. PMID:9712292

  18. Secretion by stimulated murine macrophages of a heparin-binding fibroblast growth activity, distinct from basic FGE and IL-1

    SciTech Connect

    Rappolee, D.A.; Banda, M.J.; Werb, Z.

    1986-03-01

    Wound healing requires granulation and formation of neovascularization tissue. These two events require increases in fibroblasts, vascular endothelial, and smooth muscle cells. Macrophages may produce several growth factors which participate in these would healing events. To test this hypothesis they have partially purified a fibroblast growth promoting activity from a murine macrophage cell line (P388 Dl). The activity causes growth in Balb/c and Swiss 3T3 cells as measured by thymidine uptake, nuclear labeling and increase in cell number. PDGF, Basic FGF, and EGF are also mitogenic by thymidine uptake, but purified human IL-1 and recombinant murine IL-1 are not. The activity is pH 2.5-, freeze/thaw-, and dialysis/lyphilyzation-stable. The activity elutes from heparin-Sepharose at 2.0M, but not 0.15m, 0.5M, or 3.0M NaCl. Basic FGF elutes from the same heparin-Sepharose batch at 3.0M, but not at the other three NaCl concentrations. The growth activity is secreted by viable murine macrophage line cells (P388D1, WEHI-3, RAW 264.7) at a 48 hour peak after activating (LPS) or phagocytic stimuli. Unstimulated P388D1 caused growth 1.7 times control whereas stimulation increases the growth 5.1 to 7.1 times control. The optimal activity concentration fails to complement insulin in an assay in which optimal basic FGF concentration complements insulin. These data suggest that the activity may contain a progression factor.

  19. Heparin-chitosan nanoparticle functionalization of porous poly(ethylene glycol) hydrogels for localized lentivirus delivery of angiogenic factors

    PubMed Central

    Thomas, Aline M.; Gomez, Andrew J.; Palma, Jaime L.; Yap, Woon Teck

    2014-01-01

    Hydrogels have been extensively used for regenerative medicine strategies given their tailorable mechanical and chemical properties. Gene delivery represents a promising strategy by which to enhance the bioactivity of the hydrogels, though the efficiency and localization of gene transfer have been challenging. Here, we functionalized porous poly(ethylene glycol) hydrogels with heparin-chitosan nanoparticles to retain the vectors locally and enhance lentivirus delivery while minimizing changes to hydrogel architecture and mechanical properties. The immobilization of nanoparticles, as compared to homogeneous heparin and/or chitosan, is essential to lentivirus immobilization and retention of activity. Using this gene-delivering platform, we over-expressed the angiogenic factors sonic hedgehog (Shh) and vascular endothelial growth factor (Vegf) to promote blood vessel recruitment to the implant site. Shh enhanced endothelial recruitment and blood vessel formation around the hydrogel compared to both Vegf-delivering and control hydrogels. The nanoparticle-modified porous hydrogels for delivering gene therapy vectors can provide a platform for numerous regenerative medicine applications. PMID:25023395

  20. Heparin binding to platelet factor-4. An NMR and site-directed mutagenesis study: arginine residues are crucial for binding.

    PubMed Central

    Mayo, K H; Ilyina, E; Roongta, V; Dundas, M; Joseph, J; Lai, C K; Maione, T; Daly, T J

    1995-01-01

    Native platelet factor-4 (PF4) is an asymmetrically associated, homo-tetrameric protein (70 residues/subunit) known for binding polysulphated glycosaminoglycans like heparin. PF4 N-terminal chimeric mutant M2 (PF4-M2), on the other hand, forms symmetric tetramers [Mayo, Roongta, Ilyina, Milius, Barker, Quinlan, La Rosa and Daly (1995) Biochemistry 34, 11399-11409] making NMR studies with this 32 kDa protein tractable. PF4-M2, moreover, binds heparin with a similar affinity to that of native PF4. NMR data presented here indicate that heparin (9000 Da cut-off) binding to PF4-M2, while not perturbing the overall structure of the protein, does perturb specific side-chain proton resonances which map to spatially related residues within a ring of positively charged side chains on the surface of tetrameric PF4-M2. Contrary to PF4-heparin binding models which centre around C-terminal alpha-helix lysines, this study indicates that a loop containing Arg-20, Arg-22, His-23 and Thr-25, as well as Lys-46 and Arg-49, are even more affected by heparin binding. Site-directed mutagenesis and heparin binding data support these NMR findings by indicating that arginines more than C-terminal lysines, are crucial to the heparin binding process. Images Figure 4 PMID:8526843

  1. In vivo studies on the binding of heparin and its fractions with platelet factor 4

    SciTech Connect

    Walz, D.A.; Hung, G.L.

    1985-01-01

    PF4 has a half-life in plasma of less than 3 minutes, and its rapid clearance appears to be a function of binding to the vascular endothelium. Once bound to the endothelium, PF4 can be released by heparin in a time-dependent manner; recovery is greater the sooner heparin is administered following PF4 infusion. This heparin-induced release of PF4 can be abolished if the heparin is first complexed with hexadimethrine bromide. Likewise, this heparin-induced release of PF4 is dependent upon the type of heparin used; low molecular weight heparin fractions and fragments do not cause the PF4 rebound seen with intact heparin. Thus, it would appear that low molecular weight forms of heparin are advantageous in that their in vivo administration would not be mediated by such platelet modulators as PF4.

  2. The Clinical Significance and Risk Factors of Anti-Platelet Factor 4/heparin Antibody on Maintenance Hemodialysis Patients: A Two-Year Prospective Follow-up

    PubMed Central

    Yao, Li; Lin, Hongli; Li, Jijun; Zhao, Jiuyang; Zhang, Zhimin; Lun, Lide; Zhang, Jianrong; Li, Mingxu; Huang, Qi; Yang, Yang; Jiang, Shimin; Wang, Yong; Zhu, Hanyu; Chen, Xiangmei

    2013-01-01

    Background Heparin-induced thrombocytopenia is an immune response mediated by anti-PF4/heparin antibody, which is clinically characterized by thrombocytopenia and thromboembolic events. In this study, a prospective and multi-center clinical investigation determined the positive rate of anti-PF4/heparin antibody in maintenance hemodialysis patients in China, identified the related risk factors, and further explored the effect of the anti-PF4/heparin antibody on bleeding, thromboembolic events, and risk of death in the patients. Methods The serum anti-PF4/heparin antibody was measured in 661 patients from nine hemodialysis centers, detected by IgG-specific ELISA and followed by confirmation with excess heparin. Risk factors of these patients were analyzed. Based on a two-year follow-up, the association between the anti-PF4/heparin antibody and bleeding, thromboembolic events, and risk of death in the patients was investigated. Results The positivity rate of the anti-PF4/heparin antibody in maintenance hemodialysis patients was 5.6%. With diabetes as an independent risk factor, the positivity rate of the anti-PF4/heparin antibody decreased in the patients undergoing weekly dialyses ≥3 times. The positivity rate of the anti-PF4/heparin antibody was not related to the occurrence of clinical thromboembolic events and was not a risk factor for death within two years in maintenance hemodialysis patients. Negativity for the anti-PF4/heparin antibody combined with a reduction of the platelet count or combined with the administration of antiplatelet drugs yielded a significant increase in bleeding events. However, the composite determination of the anti-PF4/heparin antibody and thrombocytopenia, as well as the administration of antiplatelet drugs, was not predictive for the risk of thromboembolic events in the maintenance hemodialysis patients. Conclusions A single detection of the anti-PF4/heparin antibody did not predict the occurrence of clinical bleeding, thromboembolic

  3. Oral heparins.

    PubMed

    Hiebert, Linda M

    2002-01-01

    The antithrombotic drug heparin is administered parenterally and believed not effective orally. Oral heparin would be most suitable for long term administration, often required for the prevention of thrombosis. Following parenteral administration, heparin is taken up by endothelial cells. Our laboratory has shown that heparin is similarly taken up by endothelium following oral administration, despite low plasma heparin concentrations. In a twenty-four hour period, endothelial heparin concentrations are greatest within 15 minutes of oral dosing although plasma levels never exceed one percent of dose. Endothelial uptake accounts for a considerable amount of absorption if the total body endothelium is considered. In support of oral heparin absorption, we demonstrated a dose-dependent decrease in thrombosis incidence in a rat jugular vein model following single oral doses of unfractionated heparins (bovine and porcine) or low molecular weight heparins (reviparin, logiparin and ardeparin). Low molecular weight heparins were effective at lower doses than unfractionated heparins where a fifty percent reduction in thrombosis was observed with 0.025 mg/kg reviparin, 0.1 mg/kg logiparin, versus 7.5 mg/kg bovine unfractionated heparin. These studies support the work of others demonstrating measurable systemic changes following oral heparin administration and suggest that heparin may be effective when administered by the oral route. It also indicates that the presence of heparin in plasma likely reflects a much greater amount associated with endothelium. PMID:11934211

  4. Bioengineered heparin

    PubMed Central

    Lord, Megan S; Whitelock, John M

    2014-01-01

    Heparin is a widely used drug for the control of blood coagulation. The majority of heparin that is produced commercially is derived from animal sources, is poly-disperse in nature and therefore ill-defined in structure. This makes regulation of heparin challenging with respect to identifying its absolute structural identity, purity, and efficacy. This raises the question as to whether there might be alternative methods of producing commercial grade heparin. The commentary highlights ways that we might manufacture heparin using bioengineering approaches to yield a successful therapeutic replacement for animal-derived heparin in the future. PMID:24902029

  5. Controlled release and gradient formation of human glial-cell derived neurotrophic factor from heparinated poly(ethylene glycol) microsphere-based scaffolds.

    PubMed

    Roam, Jacob L; Nguyen, Peter K; Elbert, Donald L

    2014-08-01

    Introduction of spatial patterning of proteins, while retaining activity and releasability, is critical for the field of regenerative medicine. Reversible binding to heparin, which many biological molecules exhibit, is one potential pathway to achieve this goal. We have covalently bound heparin to poly(ethylene glycol) (PEG) microspheres to create useful spatial patterns of glial-cell derived human neurotrophic factor (GDNF) in scaffolds to promote peripheral nerve regeneration. Labeled GDNF was incubated with heparinated microspheres that were subsequently centrifuged into cylindrical scaffolds in distinct layers containing different concentrations of GDNF. The GDNF was then allowed to diffuse out of the scaffold, and release was tracked via fluorescent scanning confocal microscopy. The measured release profile was compared to predicted Fickian models. Solutions of reaction-diffusion equations suggested the concentrations of GDNF in each discrete layer that would result in a nearly linear concentration gradient over much of the length of the scaffold. The agreement between the predicted and measured GDNF concentration gradients was high. Multilayer scaffolds with different amounts of heparin and GDNF and different crosslinking densities allow the design of a wide variety of gradients and release kinetics. Additionally, fabrication is much simpler and more robust than typical gradient-forming systems due to the low viscosity of the microsphere solutions compared to gelating solutions, which can easily result in premature gelation or the trapping of air bubbles with a nerve guidance conduit. The microsphere-based method provides a framework for producing specific growth factor gradients in conduits designed to enhance nerve regeneration. PMID:24816282

  6. Controlled Release and Gradient Formation of Human Glial-Cell Derived Neurotrophic Factor from Heparinated Poly(ethylene glycol) Microsphere-based Scaffolds

    PubMed Central

    Roam, Jacob L.; Nguyen, Peter K.; Elbert, Donald L.

    2014-01-01

    Introduction of spatial patterning of proteins, while retaining activity and releasability, is critical for the field of regenerative medicine. Reversible binding to heparin, which many biological molecules exhibit, is one potential pathway to achieving this goal. We have covalently bound heparin to poly(ethylene glycol) (PEG) microspheres to create useful spatial patterns of glial-cell derived human neurotrophic factor (GDNF) in scaffolds to promote peripheral nerve regeneration. Labeled GDNF was incubated with heparinated microspheres that were subsequently centrifuged into cylindrical scaffolds in distinct layers containing different concentrations of GDNF. The GDNF was then allowed to diffuse out of the scaffold, and release was tracked via fluorescent scanning confocal microscopy. The measured release profile was compared to predicted Fickian models. Solutions of reaction-diffusion equations suggested the concentrations of GDNF in each discrete layer that would result in a nearly linear concentration gradient over much of the length of the scaffold. The agreement between the predicted and measured GDNF concentration gradients was high. Multilayer scaffolds with different amounts of heparin and GDNF and different crosslinking densities allow the design of a wide variety of gradients and release kinetics. Additionally, fabrication is much simpler and more robust than typical gradient-forming systems due to the low viscosity of the microsphere solutions compared to gelating solutions, which can easily result in premature gelation or the trapping of air bubbles with a nerve guidance conduit. The microsphere-based method provides a framework for producing specific growth factor gradients in conduits designed to enhance nerve regeneration. PMID:24816282

  7. The Anti-Factor Xa Range For Low Molecular Weight Heparin Thromboprophylaxis

    PubMed Central

    Ward, Salena M.

    2015-01-01

    Low molecular weight heparins (LMWHs) are now the mainstay option in the prevention and treatment of venous thromboembolism. In some patients receiving therapeutic doses of LMWH, activity can be measured by quantifying the presence of Anti-factor Xa (AFXa) for dose adjustment. However, currently there are no guidelines for LMWH monitoring in patients on thromboprophylactic, doses, despite certain patient populations may be at risk of suboptimal dosing. This review found that while the AFXa ranges for therapeutic levels of LMWHs are relatively well defined in the literature, prophylactic ranges are much less clear, thus making it difficult to interpret current research data. From the studies published to date, we concluded that a reasonable AFXa target range for LMWH deep venous thromboses prophylaxis might be 0.2-0.5 IU/mL. PMID:26733269

  8. Covalent immobilization of stem cell inducing/recruiting factor and heparin on cell-free small-diameter vascular graft for accelerated in situ tissue regeneration.

    PubMed

    Shafiq, Muhammad; Jung, Youngmee; Kim, Soo Hyun

    2016-06-01

    The development of cell-free vascular grafts has tremendous potential for tissue engineering. However, thrombus formation, less-than-ideal cell infiltration, and a lack of growth potential limit the application of electrospun scaffolds for in situ tissue-engineered vasculature. To overcome these challenges, here we present development of an acellular tissue-engineered vessel based on electrospun poly(L-lactide-co-ɛ-caprolactone) scaffolds. Heparin was conjugated to suppress thrombogenic responses, and substance P (SP) was immobilized to recruit host cells. SP was released in a sustained manner from scaffolds and recruited human bone marrow-derived mesenchymal stem cells. The biocompatibility and biological performance of the grafts were evaluated by in vivo experiments involving subcutaneous scaffold implantation in Sprague-Dawley rats (n = 12) for up to 4 weeks. Histological analysis revealed a higher extent of accumulative host cell infiltration, neotissue formation, collagen deposition, and elastin deposition in scaffolds containing either SP or heparin/SP than in the control groups. We also observed the presence of a large number of laminin-positive blood vessels, von Willebrand factor (vWF(+) ) cells, and alpha smooth muscle actin-positive cells in the explants containing SP and heparin/SP. Additionally, SP and heparin/SP grafts showed the existence of CD90(+) and CD105(+) MSCs and induced a large number of M2 macrophages to infiltrate the graft wall compared with that observed with the control group. Our cell-free grafts could enhance vascular regeneration by endogenous cell recruitment and by mediating macrophage polarization into the M2 phenotype, suggesting that these constructs may be a promising cell-free graft candidate and are worthy of further in vivo evaluation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1352-1371, 2016. PMID:26822178

  9. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    SciTech Connect

    Story, M.T. )

    1989-05-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue.

  10. Induction of mast cell proliferation, maturation, and heparin synthesis by the rat c-kit ligand, stem cell factor

    SciTech Connect

    Tsai, M.; Takeishi, Takashi; Geissler, E.N. ); Thompson, H.; Metcalfe, D.D. ); Langley, K.E.; Zsebo, K.M.; Galli, S.J. )

    1991-07-15

    The authors investigated the effects of a newly recognized multifunctional growth factor, the c-kit ligand stem cell factor (SCF), on mouse mast cell proliferation and phenotype. Recombinant rat SCF{sup 164} (rrSCF{sup 164}) induced the development of large numbers of dermal mast cells in normal mice in vivo. Many of these mast cells had features of connective tissue-type mast cells (CTMC), in that they were reactive both with the heparin-binding fluorescent dye berberine sulfate and with safranin. In vitro, rrSCF{sup 164} induced the proliferation of cloned interleukin 3 (IL-3)-dependent mouse mast cells and primary populations of IL-3-dependent, bone marrow-derived cultured mast cells (BMCMC), which represent immature mast cells, and purified peritoneal mast cells, which represent a type of mature CTMC> BMCMC maintained in rrSCF{sup 164} not only proliferated but also matured. These findings identify SCF as a single cytokine that can induce immature, IL-3-dependent mast cells to mature and to acquire multiple characteristics of CTMC. These findings also directly demonstrate that SCF can regulate the development of a cellular lineage expressing c-kit through effects on both proliferation and maturation.

  11. Attachment of Flexible Heparin Chains to Gelatin Scaffolds Improves Endothelial Cell Infiltration

    PubMed Central

    Leijon, Jonas; Carlsson, Fredrik; Brännström, Johan; Sanchez, Javier; Larsson, Rolf; Nilsson, Bo; Rosenquist, Magnus

    2013-01-01

    Long-term survival of implanted cells requires oxygen and nutrients, the need for which is met by vascularization of the implant. The use of scaffolds with surface-attached heparin as anchoring points for angiogenic growth factors has been reported to improve this process. We examined the potential role of surface modification of gelatin scaffolds in promoting endothelial cell infiltration by using a unique macromolecular conjugate of heparin as a coating. Compared to other heparin coatings, this surface modification provides flexible heparin chains, representing a new concept in heparin conjugation. In vitro cell infiltration of scaffolds was assessed using a three-dimensional model in which the novel heparin surface, without growth factors, showed a 2.5-fold increase in the number of infiltrating endothelial cells when compared to control scaffolds. No additional improvement was achieved by adding growth factors (vascular endothelial growth factor and/or fibroblast growth factor-2) to the scaffold. In vivo experiments confirmed these results and also showed that the addition of angiogenic growth factors did not significantly increase the endothelial cell infiltration but increased the number of inflammatory cells in the implanted scaffolds. The endothelial cell-stimulating ability of the heparin surface alone, combined with its growth factor-binding capacity, renders it an interesting candidate surface treatment to create a prevascularized site prepared for implantation of cells and tissues, in particular those sensitive to inflammation but in need of supportive revascularization, such as pancreatic islets of Langerhans. PMID:23327585

  12. Heparin-induced thrombocytopenia.

    PubMed

    Brieger, D B; Mak, K H; Kottke-Marchant, K; Topol, E J

    1998-06-01

    Heparin-induced thrombocytopenia (HIT) is a potentially serious complication of heparin therapy and is being encountered more frequently in patients with cardiovascular disease as use of anticoagulant therapy becomes more widespread. Our understanding of the pathophysiology of this immune-mediated condition has improved in recent years, with heparin-platelet factor 4 complex as the culprit antigen in most patients. New sensitive laboratory assays for the pathogenic antibody are now available and should permit an earlier, more reliable diagnosis, but their optimal application remains to be defined. For patients in whom HIT is diagnosed, immediate discontinuation of heparin infusions and elimination of heparin from all flushes and ports are mandatory. Further management of patients with HIT is problematic at present, as there are no readily available alternative anticoagulant agents in the United States with proven efficacy in acute coronary disease. The direct thrombin inhibitors appear to be the most promising alternatives to heparin, when continued use of heparin is contraindicated, and the results of several multicenter trials evaluating their application in patients with HIT are awaited. PMID:9626819

  13. The Roles of Growth Factors in Keratinocyte Migration

    PubMed Central

    Seeger, Mark A.; Paller, Amy S.

    2015-01-01

    Significance: The re-epithelialization of wounded skin requires the rapid and coordinated migration of keratinocytes (KC) into the wound bed. Almost immediately after wounding, cells present at or attracted to the wound site begin to secrete a complex milieu of growth factors. These growth factors exert mitogenic and motogenic effects on KCs, inducing the rapid proliferation and migration of KCs at the wound edge. Recent Advances: New roles for growth factors in KC biology are currently being discovered and investigated. This review will highlight the growth factors, particularly transforming growth factor-α (TGF-α), heparin-binding epidermal growth factor (HB-EGF), insulin-like growth factor 1 (IGF-1), fibroblast growth factor 7 (FGF-7), FGF-10, and hepatocyte growth factor (HGF), which have conclusively been shown to be the most motogenic for KCs. Critical Issues: The cellular and molecular heterogeneity of wounded tissue makes establishing direct relationships between specific growth factors and KC migration difficult in situ. The absence of this complexity in simplified in vitro experimental models of migration makes the clinical relevance of the results obtained from these in vitro studies ambiguous. Future Directions: Deciphering the relationship between growth factors and KC migration is critical for understanding the process of wound healing in normal and disease states. Insights into the basic science of the effects of growth factors on KC migration will hopefully lead to the development of new therapies to treat acute and chronic wounds. PMID:25945284

  14. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  15. Vascular Endothelial Growth Factor is a Secreted Angiogenic Mitogen

    NASA Astrophysics Data System (ADS)

    Leung, David W.; Cachianes, George; Kuang, Wun-Jing; Goeddel, David V.; Ferrara, Napoleone

    1989-12-01

    Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.

  16. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  17. Growth factors in haemopoiesis.

    PubMed

    Jones, A L; Millar, J L

    1989-01-01

    Haemopoietic growth factors have for over two decades allowed experimentalists to grow haemopoietic bone marrow cells in vitro. With refinements in technique and the discovery of novel growth factors, all of the known haemopoietic lineages can now be grown in vitro. This has allowed a much greater understanding of the complex process of haemopoiesis from the haemopoietic stem cell to the mature, functioning end-cell. The in vivo action of these growth factors has been harder to investigate. Although recombinant technology has afforded us the much greater quantities necessary for in vivo work, problems remain with administration because of effects on other tissues. Interpretation of results is difficult because of the complex inter-relationships which exist between factors. Some of these have been defined in vitro and it appears likely that they also operate in vivo. Erythropoietin is a physiological regulator of erythropoiesis. It has been detected in vivo with levels responding appropriately to stress (i.e. elevated in anaemia) and, when administered in pharmacological doses, has been shown to correct anaemia. Granulocyte/macrophage colony-stimulating factor (GM-CSF) has been detected in vivo and may influence the production and function of granulocytes and macrophages, although how it is regulated is unknown. Granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor are ore lineage-specific. Interleukin 3 (IL-3), although it has not been detected in vivo, may act on a primitive marrow precursor by expanding the population and making these cells more susceptible to other growth factors, such as GM-CSF. Interleukin 1 (IL-1) has been detected in vivo, does not appear to have any isolated action on bone marrow (except possibly radioprotection) but probably acts synergistically with other growth factors, such as G-CSF. Interleukins 2, 4, 5 and 6 have not been detected in vivo. All have effects on B-cells. In addition IL-2 is an essential

  18. Peptide growth factors, part B

    SciTech Connect

    Barnes, D.; Sirbasku, D.A.

    1987-01-01

    This book discusses the following topics: Platelet-Derived Growth Factor;Nerve and Glial Growth Factors;PC12 Pheochromocytoma Cells;Techniques for the Study of Growth Factor Activity;Genetic Approaches and Biological Effects.

  19. Array-based functional screening of heparin glycans.

    PubMed

    Puvirajesinghe, Tania M; Ahmed, Yassir A; Powell, Andrew K; Fernig, David G; Guimond, Scott E; Turnbull, Jeremy E

    2012-05-25

    Array methodologies have become powerful tools for interrogation of glycan-protein interactions but have critically lacked the ability to generate cell response data. Here, we report the development of a slide-based array method exemplified by measurement of activation of fibroblast growth factor signaling by heparin saccharides. Heparan sulfate-deficient Swiss 3T3 cells were overlaid onto an aminosilane-coated slide surface onto which heparin saccharides had been spotted and immobilized. The cells were transiently stimulated with FGF2 and immunofluorescence measured to assess downstream ERK1/2 phosphorylation. Activation of this signaling pathway response was restricted to cells exposed to heparin saccharides competent to activate FGF2 signaling. Differential activation of the overlaid cells by different-sized heparin saccharides was demonstrated by quantitative measurement of fluorescence intensity. This "glycobioarray" platform has significant potential as a generic tool for functional glycomics screening. PMID:22633407

  20. The suppression of fibroblast growth factor 2/fibroblast growth factor 4-dependent tumour angiogenesis and growth by the anti-growth factor activity of dextran derivative (CMDB7).

    PubMed Central

    Bagheri-Yarmand, R.; Kourbali, Y.; Mabilat, C.; Morère, J. F.; Martin, A.; Lu, H.; Soria, C.; Jozefonvicz, J.; Crépin, M.

    1998-01-01

    Our previous studies showed that carboxymethyl benzylamide dextran (CMDB7) blocks basic fibroblast growth factor (FGF-2)-dependent cell proliferation of a human breast epithelial line (HBL100), suggesting its potential role as a potent antiangiogenic substance. The derived cell line (HH9), which was transformed with the hst/FGF4 gene, has been shown to be highly proliferative in vitro and to induce angiogenic tumours in nude mice. We show here that CMDB7 inhibits the mitogenic activities of the conditioned media from HBL 100 and HH9 cells in a dose-dependent manner. When HH9 cells were injected s.c. into nude mice, CMDB7 treatment (300 mg kg(-1) week(-1)) suppressed the tumour take and the tumour growth by about 50% and 80% respectively. Immunohistochemical analysis showed a highly significant decrease, by more than threefold, in the endothelial density of viable tumour regions, together with a significant increase in the necrosis area. This antiangiogenic activity of CMDB7 was further demonstrated by direct inhibition of calf pulmonary artery (CPAE) and human umbilical vein (HUVEC) endothelial cell proliferation and migration in vitro. In addition, we showed that CMDB7 inhibits specifically the mitogenic effects of the growth factors that bind to heparin such as FGF-2, FGF-4, platelet-derived growth factor (PDGF-BB) and transforming growth factor (TGF-beta1), but not those of epidermal growth factor (EGF) and insulin-like growth factor (IGF-1). These results demonstrate that CMDB7 inhibits FGF-2/FGF-4-dependent tumour growth and angiogenesis, most likely by disrupting the autocrine and paracrine effects of growth factors released from the tumour cells. Images Figure 4 PMID:9662260

  1. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2.

    PubMed

    Goonasekera, Chandhi S; Jack, Kevin S; Bhakta, Gajadhar; Rai, Bina; Luong-Van, Emma; Nurcombe, Victor; Cool, Simon M; Cooper-White, Justin J; Grøndahl, Lisbeth

    2015-01-01

    Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active. PMID:26474791

  2. Pluripotency transcription factor Sox2 is strongly adsorbed by heparin but requires a protein transduction domain for cell internalization

    SciTech Connect

    Albayrak, Cem; Yang, William C.; Swartz, James R.

    2013-02-15

    Highlights: ► Both R9Sox2 and Sox2 bind heparin with comparable affinity. ► Both R9Sox2 and Sox2 bind to fibroblasts, but only R9Sox2 is internalized. ► Internalization efficiency of R9Sox2 is 0.3% of the administered protein. ► Heparan sulfate adsorption may be part of a mechanism for managing cell death. -- Abstract: The binding of protein transduction domain (PTD)-conjugated proteins to heparan sulfate is an important step in cellular internalization of macromolecules. Here, we studied the pluripotency transcription factor Sox2, with or without the nonaarginine (R9) PTD. Unexpectedly, we observed that Sox2 is strongly adsorbed by heparin and by the fibroblasts without the R9 PTD. However, only the R9Sox2 fusion protein is internalized by the cells. These results collectively show that binding to heparan sulfate is not sufficient for cellular uptake, thereby supporting a recent hypothesis that other proteins play a role in cell internalization of PTD-conjugated proteins.

  3. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications

    PubMed Central

    Liang, Yingkai; Kiick, Kristi L.

    2014-01-01

    Heparin plays an important role in many biological processes, via its interaction with various proteins, and hydrogels and nanoparticles comprising heparin exhibit attractive properties such as anticoagulant activity, growth factor binding, as well as antiangiogenic and apoptotic effects, making them great candidates for emerging applications. Accordingly, this review summarizes recent efforts in the preparation of heparin-based hydrogels and formation of nanoparticles, as well as the characterization of their properties and applications. The challenges and future perspectives for heparin-based materials are also discussed. Prospects are promising for heparin-containing polymeric biomaterials in diverse applications ranging from cell carriers for promoting cell differentiation to nanoparticle therapeutics for cancer treatment. PMID:23911941

  4. Heparin Microparticle Effects on Presentation and Bioactivity of Bone Morphogenetic Protein-2

    PubMed Central

    Hettiaratchi, Marian H.; Miller, Tobias; Temenoff, Johnna S.; Guldberg, Robert E.; McDevitt, Todd C.

    2014-01-01

    Biomaterials capable of providing localized and sustained presentation of bioactive proteins are critical for effective therapeutic growth factor delivery. However, current biomaterial delivery vehicles commonly suffer from limitations that can result in low retention of growth factors at the site of interest or adversely affect growth factor bioactivity. Heparin, a highly sulfated glycosaminoglycan, is an attractive growth factor delivery vehicle due to its ability to reversibly bind positively charged proteins, provide sustained delivery, and maintain protein bioactivity. This study describes the fabrication and characterization of heparin methacrylamide (HMAm) microparticles for recombinant growth factor delivery. HMAm microparticles were shown to efficiently bind several heparin-binding growth factors (e.g. bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (FGF-2)), including a wide range of BMP-2 concentrations that exceeds the maximum binding capacity of other common growth factor delivery vehicles, such as gelatin. BMP-2 bioactivity was assessed on the basis of alkaline phosphatase (ALP) activity induced in skeletal myoblasts (C2C12). Microparticles loaded with BMP-2 stimulated comparable C2C12 ALP activity to soluble BMP-2 treatment, indicating that BMP-2-loaded microparticles retain bioactivity and potently elicit a functional cell response. In summary, our results suggest that heparin microparticles stably retain large amounts of bioactive BMP-2 for prolonged periods of time, and that presentation of BMP-2 via heparin microparticles can elicit cell responses comparable to soluble BMP-2 treatment. Consequently, heparin microparticles present an effective method of delivering and spatially retaining growth factors that could be used in a variety of systems to enable directed induction of cell fates and tissue regeneration. PMID:24881028

  5. Click-coated, heparinized, decellularized vascular grafts

    PubMed Central

    Dimitrievska, Sashka; Cai, Chao; Weyers, Amanda; Balestrini, Jenna L.; Lin, Tylee; Sundaram, Sumati; Hatachi, Go; Spiegel, David A.; Kyriakides, Themis R.; Miao, Jianjun; Li, Guoyun; Niklason, Laura; Linhardt, Robert J.

    2014-01-01

    A novel method enabling the engineering of a dense and appropriately oriented heparin-containing layer on decellularized aortas has been developed. Amino groups of decellularized aortas were first modified to azido groups using 3-azidobenzoic acid. Azide-clickable dendrons were attached onto the azido groups through “alkyne-azide” click chemistry, affording a ten-fold amplification of adhesions sites. Dendron end groups were finally decorated with end-on modified heparin chains. Heparin chains were oriented like heparan sulfate groups on native endothelial cells surface. XPS, NMR, MS and FTIR were used to characterize the synthesis steps, building the final heparin layered coatings. Continuity of the heparin coating was verified using fluorescent microscopy and histological analysis. Efficacy of heparin linkage was demonstrated with factor Xa antithrombogenic assay and platelet adhesion studies. The results suggest that oriented heparin immobilization to decellularized aortas may improve the in vivo blood compatibility of decellularized aortas and vessels. PMID:25463496

  6. Dimerization Capacities of FGF2 Purified with or without Heparin-Affinity Chromatography

    PubMed Central

    Chiu, Liang-Yuan; Taouji, Said; Moroni, Elisabetta; Colombo, Giorgio; Chevet, Eric; Sue, Shih-Che; Bikfalvi, Andreas

    2014-01-01

    Fibroblast growth factor-2 (FGF2) is a pleiotropic growth factor exhibiting a variety of biological activities. In this article, we studied the capacity of FGF2 purified with or without heparin affinity chromatography to self-associate. Analyzing the NMR HSQC spectra for different FGF2 concentrations, heparin-affinity purified FGF2 showed perturbations that indicate dimerization and are a higher-order oligomerization state. HSQC perturbation observed with different FGF2 concentrations revealed a heparin-binding site and two dimer interfaces. Thus, with increasing protein concentrations, FGF2 monomers make contacts with each other and form dimers or higher order oligomers. On the contrary, FGF2 purified with ion-exchange chromatography did not show similar perturbation indicating that self-association of FGF2 is eliminated if purification is done without heparin-affinity chromatography. The HSQC spectra of heparin-affinity purified FGF2 can be reproduced to some extent by adding heparin tetra-saccharide to ion exchange chromatography purified FGF2. Heparin-affinity purified FGF2 bound to acceptor and donor beads in a tagged form using His-tagged or GST-tagged proteins, also dimerized in the AlphaScreen™ assay. This assay was further validated using different experimental conditions and competitors. The assay constitutes an interesting tool to study dimerization of other FGF forms as well. PMID:25299071

  7. The effects of angiogenic growth factors on extravillous trophoblast invasion and motility.

    PubMed

    Lash, G E; Cartwright, J E; Whitley, G S; Trew, A J; Baker, P N

    1999-11-01

    There is accumulating evidence that deficient trophoblast invasion of the placental bed spiral arteries is crucial to the pathogenesis of pre-eclampsia and intrauterine growth restriction. However, the factors which regulate the process of trophoblast invasion remain unclear. We have investigated whether extravillous trophoblast invasion and motility are mediated by the angiogenic growth factors, vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). The SGHPL-4 extravillous trophoblast cell line was utilized. Expression of mRNA for the receptors of VEGF and PlGF (KDR and flt-1) was determined using the reverse transcriptase polymerase chain reaction. An in vitro model of invasion assessed the number and length of trophoblast processes invading into an extracellular matrix. The motility of cells under standard culture conditions was also quantified. The effect of the addition of VEGF and PlGF (+/-heparin) on trophoblast invasion and motility was determined. The effect of VEGF and PlGF (+/-heparin) on SGHPL-4 cell proliferation was assessed by cell counts at 24, 48 and 72 h post-addition of growth factor. The SGHPL-4 cells expressed mRNA for the flt-1 but not the KDR receptor. The addition of VEGF resulted in a significant decrease in the number of trophoblast processes formed (P< 0.02); this effect was not influenced by the addition of heparin. However, there was no effect on the length of processes formed in response to VEGF (+/-heparin). The addition of PlGF had no effect on either the number or the length of processes formed. The addition of VEGF increased the motility of the SGHPL-4 cells (P< 0.002); the addition of heparin prevented this VEGF-induced increase in motility. The addition of PlGF had no effect on SGHPL-4 motility (+/-heparin). Neither growth factor had any effect on the proliferative ability of SGHPL-4 cells. Contrary to our hypothesis, we did not find that the angiogenic growth factors, VEGF and PlGF, mediated the in vitro

  8. Binding Potency of Heparin Immobilized on Activated Charcoal for DNA Antibodies.

    PubMed

    Snezhkova, E A; Tridon, A; Evrard, B; Nikolaev, V G; Uvarov, V Yu; Tsimbalyuk, R S; Ivanuk, A A; Komov, V V; Sakhno, L A

    2016-02-01

    In vitro experiments showed that heparin adsorbed on activated charcoal can bind antibodies raised against native and single-stranded DNA in a diluted sera pool with a high level of these DNA. Thus, heparin used as anticoagulant during hemosorption procedure can demonstrate supplementary therapeutic activity resulting from its interaction with various agents involved in acute and chronic inflammatory reactions such as DNA- and RNA-binding substances, proinflammatory cytokines, complement components, growth factors, etc. Research and development of heparin-containing carbonic adsorbents for the therapy of numerous inflammatory and autoimmune diseases seems to be a promising avenue in hematology. PMID:26902353

  9. Growth hormone, growth factors, and acromegaly

    SciTech Connect

    Ludecke, D.K.; Tolis, G.T.

    1987-01-01

    This book contains five sections, each consisting of several papers. The section headings are: Biochemistry and Physiology of GH and Growth Factors, Pathology of Acromegaly, Clinical Endocrinology of Acromegaly, Nonsurgical Therapy of Acromegaly, and Surgical Therapy of Acromegaly.

  10. Synthesis and structural study of two new heparin-like hexasaccharides.

    PubMed

    Lucas, Ricardo; Angulo, Jesús; Nieto, Pedro M; Martín-Lomas, Manuel

    2003-07-01

    Two new heparin-like hexasaccharides, 5 and 6, have been synthesised using a convergent block strategy and their solution conformations have been determined by NMR spectroscopy and molecular modelling. Both hexasaccharides contain the basic structural motif of the regular region of heparin but with negative charge distributions which have been designed to get insight into the mechanism of fibroblast growth factors (FGFs) activation. PMID:12945695

  11. Measuring Anti–Factor Xa Activity to Monitor Low-Molecular-Weight Heparin in Obesity: A Critical Review

    PubMed Central

    Egan, Gregory; Ensom, Mary H H

    2015-01-01

    Background: The choice of whether to monitor anti–factor Xa (anti-Xa) activity in patients who are obese and who are receiving low-molecular-weight heparin (LMWH) therapy is controversial. To the authors’ knowledge, no systematic review of monitoring of anti-Xa activity in such patients has been published to date. Objective: To systematically ascertain the utility of monitoring anti-Xa concentrations for LMWH therapy in obese patients. Data Sources: MEDLINE (1946 to September 2014), the Cochrane Database of Systematic Reviews, Embase (1974 to September 2014), PubMed (1947 to September 2014), International Pharmaceutical Abstracts (1970 to September 2014), and Scopus were searched using the terms obesity, morbid obesity, thrombosis, venous thrombosis, embolism, venous thromboembolism, pulmonary embolism, low-molecular weight heparin, enoxaparin, dalteparin, tinzaparin, anti-factor Xa, anti-factor Xa monitoring, anti-factor Xa activity, and anti-factor Xa assay. The reference lists of retrieved articles were also reviewed. Study Selection and Data Extraction: English-language studies describing obese patients treated with LMWH or reporting anti-Xa activity were reviewed using a 9-step decision-making algorithm to determine whether monitoring of LMWH therapy by means of anti-Xa activity in obesity is warranted. Studies published in abstract form were excluded. Data Synthesis: The analysis showed that anti-Xa concentrations are not strongly associated with thrombosis or hemorrhage. In clinical studies of LMWH for thromboprophylaxis in bariatric surgery, orthopedic surgery, general surgery, and medical patients, and for treatment of venous thrombo embolism and acute coronary syndrome, anti-Xa activity can be predicted from dose of LMWH and total body weight; no difference in clinical outcome was found between obese and non-obese participants. Conclusions: Routinely determining anti-Xa concentrations in obese patients to monitor the clinical effectiveness of LMWH is

  12. Comparison of Low-Molecular-Weight Heparins Prepared From Bovine Lung Heparin and Porcine Intestine Heparin.

    PubMed

    Guan, Yudong; Xu, Xiaohui; Liu, Xinyue; Sheng, Anran; Jin, Lan; Linhardt, Robert J; Chi, Lianli

    2016-06-01

    Currently porcine intestine is the only approved source for producing pharmaceutical heparin in most countries. Enoxaparin, prepared by benzylation and alkaline depolymerization from porcine intestine heparin, is prevalent in the anticoagulant drug market. It is predicted that porcine intestine heparin-derived enoxaparin (PIE) will encounter shortage, and expanding its production from heparins obtained from other animal tissues may, therefore, be inevitable. Bovine lung heparin is a potential alternative source for producing enoxaparin. Critical processing parameters for producing bovine lung heparin-derived enoxaparin (BLE) are discussed. Three batches of BLEs were prepared and their detailed structures were compared with PIEs using modern analytical techniques, including disaccharide composition, intact chain mapping by liquid chromatography-mass spectrometry and 2-dimensional nuclear magnetic resonance spectroscopy. The results suggested that the differences between PIEs and BLEs mainly result from N-acetylation differences derived from the parent heparins. In addition, bioactivities of BLEs were about 70% of PIEs based on anti-factor IIa and Xa chromogenic assays. We conclude that BLE has the potential to be developed as an analogue of PIE, although some challenges still remain. PMID:27238483

  13. Deep vein thrombosis, ecythyma gangrenosum and heparin-induced thrombocytopenia occurring in a man with a heterozygous Factor V Leiden mutation

    PubMed Central

    Apostolova, Mariya; Weng, Baoying; Pote, Harry H.; Ashcraft, Harold; Goldblatt, Curtis; Woolley, Paul V.

    2012-01-01

    Skin necrosis and limb gangrene are occasional thrombotic manifestations of anticoagulation therapy. We report a man heterozygous for the Factor V Leiden (FVL) mutation, and with a history of recurrent deep venous thrombosis, who initially presented with a necrotic skin lesion of the right flank while on warfarin therapy with a therapeutic international normalized ratio. Warfarin was discontinued and he received intravenous heparin. Thereafter he developed thrombocytopenia and pedal erythema and was diagnosed with heparin-induced thrombocytopenia (HIT). Heparin was replaced with argatroban. He ultimately underwent bilateral below-knee amputations for the thrombotic complications of the HIT. The initial necrotic lesion healed with antibiotics and wound care. Pathologic examination of multiple biopsy specimens revealed two separate lesions. One was necrotic tissue infiltrated with methicillin resistant Staphylococcus aureus having features of ecthyma gangrenosum. The second showed thrombotic changes consistent with HIT. The case illustrates the differential diagnosis of skin necrosis and limb gangrene in patients on warfarin and heparin, and also the clinical complexities that can occur in a FVL heterozygote. PMID:23355938

  14. Molecular Insights into the Klotho-Dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members

    SciTech Connect

    Goetz,R.; Beenken, A.; Ibrahimi, O.; Kalinina, J.; Olsen, S.; Eliseenkova, A.; Xu, C.; Neubert, T.; Zhang, F.; et al.

    2007-01-01

    Unique among fibroblast growth factors (FGFs), FGF19, -21, and -23 act in an endocrine fashion to regulate energy, bile acid, glucose, lipid, phosphate, and vitamin D homeostasis. These FGFs require the presence of Klotho/{beta}Klotho in their target tissues. Here, we present the crystal structures of FGF19 alone and FGF23 in complex with sucrose octasulfate, a disaccharide chemically related to heparin. The conformation of the heparin-binding region between {beta} strands 10 and 12 in FGF19 and FGF23 diverges completely from the common conformation adopted by paracrine-acting FGFs. A cleft between this region and the {beta}1-{beta}2 loop, the other heparin-binding region, precludes direct interaction between heparin/heparan sulfate and backbone atoms of FGF19/23. This reduces the heparin-binding affinity of these ligands and confers endocrine function. Klotho/{beta}Klotho have evolved as a compensatory mechanism for the poor ability of heparin/heparan sulfate to promote binding of FGF19, -21, and -23 to their cognate receptors.

  15. Heparin fragments inhibit human vascular smooth muscle cell proliferation in vitro

    SciTech Connect

    Selden, S.C.; Johnson, W.V.; Maciag, T.

    1986-03-01

    The authors have examined the effect of heparin on human abdominal aortic smooth muscle cell growth. Cell proliferation was inhibited by more than 90% at a concentration of 20 ..mu..g/ml in a 12 day growth assay using heparin from Sigma, Upjohn or Calbiochem. Additionally, 200 ..mu..g/ml Upjohn heparin inhibits /sup 3/H-thymidine incorporation by 50% in short term assays using serum or purified platelet-derived growth factor (25-100ng/ml) to initiate the cell cycle. Homogeneous size classes of heparin fragments were prepared by nitrous acid cleavage and BioGel P-10 filtration chromatography. Deca-, octa-, hexa-, tetra-, and di-saccharides inhibited proliferation by 90% at concentrations of 280, 320, 260, 180 and 100 ..mu..g/ml, respectively, in a 12 day growth assay. These data confirm the work of Castellot et.al. and extend the range of inhibitory fragments down to the tetra- and di-saccharide size. These data suggest, therefore, that di-saccharide subunit of heparin is sufficient to inhibit vascular smooth muscle cell proliferation. The authors are now examining the role of the anhydromannose moiety on the reducing end of the nitrous acid generated fragments as a possible mediator of heparin-induced inhibition of vascular smooth muscle cell proliferation.

  16. Local Effect of Heparin Binding Neurotrophic Factor Combined With Chitosan Entubulization on Sciatic Nerve Repair in Rats

    PubMed Central

    Mehrshad, Ali; Seddighnia, Ashkan; Shadabi, Mohammadreza; Najafpour, Alireza; Mohammadi, Rahim

    2016-01-01

    Objective: To assess the effect of on sciatic nerve regeneration in animal model of rat. Methods: Seventy-five male Wistar rats were divided into five experimental groups randomly (each group containing 15 animals): Sham operation group (SHAM), autograft group (AUTO), transected control (TC), chitosan conduit (CHIT) and heparin binding neurotrophic factor treated group (CHIT/HBNF). In AUTO group a segment of sciatic nerve was transected and reimplanted reversely. In SHAM group sciatic nerve was exposed and manipulated. In transected group left sciatic nerve was transected and stumps were fixed in adjacent muscle (TC). In treatment group defect was bridged using a chitosan conduit (CHIT) filled with 10 µL HBNF (CHIT/HBNF). Each group was subdivided into four subgroups of five animals each and nerve fibers were studied in a 12-week period. Results: Behavioral, functional, biomechanical, electrophysiological and gastrocnemius muscle mass findings and morphometric indices confirmed faster recovery of regenerated axons in treatment group than in CHIT group (P=0.001). Immunohistochemical reactions to S-100 in treatment group were more positive than that in CHIT group. Conclusion: Local administration of improved functional recovery and morphometric indices of sciatic nerve. It could be considered as an effective treatment for peripheral nerve repair in practice. PMID:27331064

  17. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis.

    PubMed

    Li, Zhe; Qu, Tiejun; Ding, Chen; Ma, Chi; Sun, Hongchen; Li, Shirong; Liu, Xiaohua

    2015-02-01

    Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatic crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was increased by 2.4-fold compared with that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed compared to

  18. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis

    PubMed Central

    Li, Zhe; Qu, Tiejun; Ding, Chen; Ma, Chi; Sun, Hongchen; Li, Shirong; Liu, Xiaohua

    2014-01-01

    Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatical crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation, and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was 2.4-fold increase than that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed than in the controls

  19. Oral heparin results in the appearance of heparin fragments in the plasma of rats

    SciTech Connect

    Larsen, A.K.; Lund, D.P.; Langer, R.; Folkman, J.

    1986-05-01

    We have previously shown that angiogenesis inhibition and tumor regression can be accomplished by combinations of heparin or heparin fragments with cortisone. Oral heparin was also effective in combination with cortisone. We now show that a single oral dose of (/sup 35/S)heparin or (/sup 3/H)heparin (15,000 units/kg) results in continuous release of radioactive material into the bloodstream for at least 12 hr. This is associated with the presence of anti-factor Xa activity at a level of approximately equal to 0.1 unit/ml. The radioactive material is identified as oligo-, di-, and monosaccharides by its behavior in chromatographic systems, its possession of anti-factor Xa activity, and the effect of treatment with bacterial heparinase. The heparin fragments are extensively metabolized to fragments without anti-factor Xa activity that are readily subject to urinary excretion.

  20. Structural Basis for Antagonism by Suramin of Heparin Binding to Vaccinia Complement Protein

    SciTech Connect

    Ganesh, Vannakambadi K.; Muthuvel, Suresh Kumar; Smith, Scott A.; Kotwal, Girish J.; Murthy, Krishna H.M.

    2010-07-19

    Suramin is a competitive inhibitor of heparin binding to many proteins, including viral envelope proteins, protein tyrosine phosphatases, and fibroblast growth factors (FGFs). It has been clinically evaluated as a potential therapeutic in treatment of cancers caused by unregulated angiogenesis, triggered by FGFs. Although it has shown clinical promise in treatment of several cancers, suramin has many undesirable side effects. There is currently no experimental structure that reveals the molecular interactions responsible for suramin inhibition of heparin binding, which could be of potential use in structure-assisted design of improved analogues of suramin. We report the structure of suramin, in complex with the heparin-binding site of vaccinia virus complement control protein (VCP), which interacts with heparin in a geometrically similar manner to many FGFs. The larger than anticipated flexibility of suramin manifested in this structure, and other details of VCP-suramin interactions, might provide useful structural information for interpreting interactions of suramin with many proteins.

  1. Structural and Functional Basis of CXCL12 (stromal cell-derived factor-1 alpha) Binding to Heparin

    SciTech Connect

    Murphy,J.; Cho, Y.; Sachpatzidis, A.; Fan, C.; Hodsdon, M.; Lolis, E.

    2007-01-01

    CXCL12 (SDF-1a) and CXCR4 are critical for embryonic development and cellular migration in adults. These proteins are involved in HIV-1 infection, cancer metastasis, and WHIM disease. Sequestration and presentation of CXCL12 to CXCR4 by glycosaminoglycans (GAGs) is proposed to be important for receptor activation. Mutagenesis has identified CXCL12 residues that bind to heparin. However, the molecular details of this interaction have not yet been determined. Here we demonstrate that soluble heparin and heparan sulfate negatively affect CXCL12-mediated in vitro chemotaxis. We also show that a cluster of basic residues in the dimer interface is required for chemotaxis and is a target for inhibition by heparin. We present structural evidence for binding of an unsaturated heparin disaccharide to CXCL12 attained through solution NMR spectroscopy and x-ray crystallography. Increasing concentrations of the disaccharide altered the two-dimensional 1H-15N-HSQC spectra of CXCL12, which identified two clusters of residues. One cluster corresponds to {beta}-strands in the dimer interface. The second includes the amino-terminal loop and the a-helix. In the x-ray structure two unsaturated disaccharides are present. One is in the dimer interface with direct contacts between residues His25, Lys27, and Arg41 of CXCL12 and the heparin disaccharide. The second disaccharide contacts Ala20, Arg21, Asn30, and Lys64. This is the first x-ray structure of a CXC class chemokine in complex with glycosaminoglycans. Based on the observation of two heparin binding sites, we propose a mechanism in which GAGs bind around CXCL12 dimers as they sequester and present CXCL12 to CXCR4.

  2. Cell number and chondrogenesis in human mesenchymal stem cell aggregates is affected by the sulfation level of heparin used as a cell coating.

    PubMed

    Lei, Jennifer; Trevino, Elda; Temenoff, Johnna

    2016-07-01

    For particular cell-based therapies, it may be required to culture mesenchymal stem cell (MSC) aggregates with growth factors to promote cell proliferation and/or differentiation. Heparin, a negatively charged glycosaminoglycan (GAG) is known to play an important role in sequestration of positively charged growth factors and, when incorporated within cellular aggregates, could be used to promote local availability of growth factors. We have developed a heparin-based cell coating and we believe that the electrostatic interaction between native heparin and the positively charged growth factors will result in (1) higher cell number in response to fibroblast growth factor-2 (FGF-2) and 2) greater chondrogenic differentiation in response to transforming growth factor-β1 (TGF-β1), compared to a desulfated heparin coating. Results revealed that in the presence of FGF-2, by day 14, heparin-coated MSC aggregates increased in DNA content 8.5 ± 1.6 fold compared to day 1, which was greater than noncoated and desulfated heparin-coated aggregates. In contrast, when cultured in the presence of TGF-β1, by day 21, desulfated heparin-coated aggregates upregulated gene expression of collagen II by 86.5 ± 7.5 fold and collagen X by 37.1 ± 4.7 fold, which was higher than that recorded in the noncoated and heparin-coated aggregates. These observations indicate that this coating technology represents a versatile platform to design MSC culture systems with pairings of GAGs and growth factors that can be tailored to overcome specific challenges in scale-up and culture for MSC-based therapeutics. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1817-1829, 2016. PMID:26990913

  3. Interstitial fibrosis and growth factors.

    PubMed Central

    Lasky, J A; Brody, A R

    2000-01-01

    Interstitial pulmonary fibrosis (IPF) is scarring of the lung caused by a variety of inhaled agents including mineral particles, organic dusts, and oxidant gases. The disease afflicts millions of individuals worldwide, and there are no effective therapeutic approaches. A major reason for this lack of useful treatments is that few of the molecular mechanisms of disease have been defined sufficiently to design appropriate targets for therapy. Our laboratory has focused on the molecular mechanisms through which three selected peptide growth factors could play a role in the development of IPF. Hundreds of growth factors and cytokines could be involved in the complex disease process. We are studying platelet-derived growth factor because it is the most potent mesenchymal cell mitogen yet described, transforming growth factor beta because it is a powerful inducer of extracellular matrix (scar tissue) components by mesenchymal cells, and tumor necrosis factor alpha because it is a pleiotropic cytokine that we and others have shown is essential for the development of IPF in animal models. This review describes some of the evidence from studies in humans, in animal models, and in vitro, that supports the growth factor hypothesis. The use of modern molecular and transgenic technologies could elucidate those targets that will allow effective therapeutic approaches. Images Figure 1 Figure 2 PMID:10931794

  4. Growth factors in ischemic stroke

    PubMed Central

    Lanfranconi, S; Locatelli, F; Corti, S; Candelise, L; Comi, G P; Baron, P L; Strazzer, S; Bresolin, N; Bersano, A

    2011-01-01

    Abstract Data from pre-clinical and clinical studies provide evidence that colony-stimulating factors (CSFs) and other growth factors (GFs) can improve stroke outcome by reducing stroke damage through their anti-apoptotic and anti-inflammatory effects, and by promoting angiogenesis and neurogenesis. This review provides a critical and up-to-date literature review on CSF use in stroke. We searched for experimental and clinical studies on haemopoietic GFs such as granulocyte CSF, erythropoietin, granulocyte-macrophage colony-stimulating factor, stem cell factor (SCF), vascular endothelial GF, stromal cell-derived factor-1α and SCF in ischemic stroke. We also considered studies on insulin-like growth factor-1 and neurotrophins. Despite promising results from animal models, the lack of data in human beings hampers efficacy assessments of GFs on stroke outcome. We provide a comprehensive and critical view of the present knowledge about GFs and stroke, and an overview of ongoing and future prospects. PMID:20015202

  5. Total synthesis of biotinylated N domain of human hepatocyte growth factor.

    PubMed

    Raibaut, Laurent; Vicogne, Jérome; Leclercq, Bérénice; Drobecq, Hervé; Desmet, Rémi; Melnyk, Oleg

    2013-06-15

    Hepatocyte growth factor/scatter factor (HGF/SF) is the high affinity ligand of MET tyrosine kinase receptor. We report here the total synthesis of a biotinylated analogue of human HGF/SF N domain. Functionally, N domain is part of the HGF/SF high affinity binding site for MET and also the main HGF/SF binding site for heparin. The 97 Aa linear chain featuring a C-terminal biotin group was assembled in high yield using an N-to-C one-pot three segments assembly strategy relying on a sequential Native Chemical Ligation (NCL)/bis(2-sulfanylethyl)amido (SEA) native peptide ligation process. The folded protein displayed the native disulfide bond pattern and showed the ability to bind heparin. PMID:23523386

  6. Dynamic properties of biologically active synthetic heparin-like hexasaccharides.

    PubMed

    Angulo, Jesús; Hricovíni, Milos; Gairi, Margarida; Guerrini, Marco; de Paz, José Luis; Ojeda, Rafael; Martín-Lomas, Manuel; Nieto, Pedro M

    2005-10-01

    A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R

  7. Biology of FGFRL1, the fifth fibroblast growth factor receptor.

    PubMed

    Trueb, Beat

    2011-03-01

    FGFRL1 (fibroblast growth factor receptor like 1) is the most recently discovered member of the FGFR family. It contains three extracellular Ig-like domains similar to the classical FGFRs, but it lacks the protein tyrosine kinase domain and instead contains a short intracellular tail with a peculiar histidine-rich motif. The gene for FGFRL1 is found in all metazoans from sea anemone to mammals. FGFRL1 binds to FGF ligands and heparin with high affinity. It exerts a negative effect on cell proliferation, but a positive effect on cell differentiation. Mice with a targeted deletion of the Fgfrl1 gene die perinatally due to alterations in their diaphragm. These mice also show bilateral kidney agenesis, suggesting an essential role for Fgfrl1 in kidney development. A human patient with a frameshift mutation exhibits craniosynostosis, arguing for an additional role of FGFRL1 during bone formation. FGFRL1 contributes to the complexity of the FGF signaling system. PMID:21080029

  8. Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering.

    PubMed

    Tan, Huaping; Gong, Yihong; Lao, Lihong; Mao, Zhengwei; Gao, Changyou

    2007-10-01

    Gelatin, chitosan and hyaluronan with a weight ratio of 82.6%, 16.5% and 0.1% were chosen as a scaffold material to mimic the composition of natural cartilage matrix for cartilage tissue engineering. Water soluble carbodiimide was added into the biomacromolecule solution with a concentration of 5% to crosslink the complex. Following a freeze-drying procedure, a porous scaffold (control) was then prepared. To enhance chondrogenesis, heparin was covalently immobilized onto the scaffold by carbodiimide chemistry, through which basic fibroblast growth factor (bFGF) was further incorporated by a bioaffinity force. Incubation in phosphate buffered saline (PBS, pH 7.4) at 37 degrees C caused the weight loss of all kinds of the scaffolds, which could be brought by both the degradation and dissolution of the biomacromolecules. Compared with the control, however, the heparinized scaffold showed stronger ability to resist the weight loss, implying that a higher crosslinking degree was achieved by incorporation of the heparin. Rabbit auricular chondrocytes were seeded onto the ternary complex scaffold containing bFGF to assess cell response. Chondrocytes could adhere and proliferate in all kinds of the scaffold, regardless of the existence of bFGF. No significant difference on glycosaminoglycan (GAG) secretion was recorded between these scaffolds after cultured for 7 and 21 days too, although the absolute value from the Scaffold-heparin-bFGF was somewhat higher. However, chondrocytes seeded in the Scaffold-heparin-bFGF indeed showed significant higher viability than that on the control scaffold. These results reveal that the ternary complex scaffolds, in particular the one containing bFGF, are a potential candidate for cartilage tissue engineering. PMID:17554603

  9. Stabilization of somatropin by heparin.

    PubMed

    Zamiri, Camellia; Groves, Michael J

    2005-05-01

    Somatropin, human growth hormone (hGH), is an unstable protein, posing challenging problems for its formulation and long-term stability. Since hGH formed insoluble adducts with heparin our aim was to evaluate heparin as a stabilizing agent for the drug. These adducts were characterized by particle diameter, tertiary structure variations and release studies. Studies were also carried out to determine the stability of hGH in the presence and absence of heparin by an interfacial denaturation method and real-time stability studies by measuring hGH activity and particle diameter. Moreover, biological activity of hGH and hGH/UH (unfractionated heparin) adducts was identified by daily subcutaneous injections to hypophysectomized rats. There was a decrease in mean hydrodynamic particle diameter of hGH/UH adducts with increased pH (54.4 to 12.2 nm from pH 3 to pH 7) indicating that the adducts were either dissociating or dissolving at high pH. Furthermore, second-derivative spectroscopy indicated that complexation of hGH with heparin did not cause a major disruption in the tertiary structure of hGH but decreased the hydrophilic environment around the tyrosine residues. Release of hGH from hGH/UH adducts was pH and ionic strength dependent with the highest release at pH 8 (93%) and lowest release at pH 3 (0%) over the first hour. Interfacial denaturation methods indicated that vortex agitation over 120 s resulted in no change in the optical density of hGH/UH adducts compared with a substantial increase for hGH alone at pH 6.8. Real-time stability studies over 93 days demonstrated that hGH/UH adducts at both pH 3 and 7 with an excess of heparin produced the highest percent of active hGH remaining in the solution at 4 degrees C and 37 degrees C. The higher stability of hGH/UH adducts with excess heparin compared with the stoichiometric ratio was also confirmed by particle size measurements during storage. The biological activity of these adducts was comparable with hGH alone

  10. Growth factor identity is encoded by discrete coiled coil rotamers in the EGFR juxtamembrane region

    PubMed Central

    Doerner, Amy; Scheck, Rebecca; Schepartz, Alanna

    2015-01-01

    Summary Binding of the growth factor TGF-α to the EGFR extracellular domain is encoded through the formation of a unique anti-parallel coiled coil within the juxtamembrane segment. This new coiled coil is an ‘inside-out’ version of the coiled coil formed in the presence of EGF. A third, intermediary coiled coil interface is formed in the juxtamembrane segment when EGFR is stimulated with betacellulin. The seven growth factors that activate EGFR in mammalian systems (EGF, TGF-α, epigen, epiregulin, betacellulin, heparin-binding EGF, and amphiregulin) fall into distinct categories in which the structure of the coiled coil induced within the juxtamembrane segment correlates with cell state. The observation that coiled coil state tracks with the downstream signaling profiles for each ligand provides evidence for growth factor functional selectivity by EGFR. Encoding growth factor identity in alternative coiled coil rotamers provides a simple and elegant method for communicating chemical information across the plasma membrane. PMID:26091170

  11. Analyses of Interactions Between Heparin and the Apical Surface Proteins of Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kyousuke; Takano, Ryo; Takemae, Hitoshi; Sugi, Tatsuki; Ishiwa, Akiko; Gong, Haiyan; Recuenco, Frances C.; Iwanaga, Tatsuya; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2013-11-01

    Heparin, a sulfated glycoconjugate, reportedly inhibits the blood-stage growth of the malaria parasite Plasmodium falciparum. Elucidation of the inhibitory mechanism is valuable for developing novel invasion-blocking treatments based on heparin. Merozoite surface protein 1 has been reported as a candidate target of heparin; however, to better understand the molecular mechanisms involved, we characterized the molecules that bind to heparin during merozoite invasion. Here, we show that heparin binds only at the apical tip of the merozoite surface and that multiple heparin-binding proteins localize preferentially in the apical organelles. To identify heparin-binding proteins, parasite proteins were fractionated by means of heparin affinity chromatography and subjected to immunoblot analysis with ligand-specific antibodies. All tested members of the Duffy and reticulocyte binding-like families bound to heparin with diverse affinities. These findings suggest that heparin masks the apical surface of merozoites and blocks interaction with the erythrocyte membrane after initial attachment.

  12. Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development

    PubMed Central

    Everett, Allen D.; Lobe, David R.; Matsumura, Martin E.; Nakamura, Hideji; McNamara, Coleen A.

    2000-01-01

    Hepatoma-derived growth factor (HDGF) is the first member identified of a new family of secreted heparin-binding growth factors highly expressed in the fetal aorta. The biologic role of HDGF in vascular growth is unknown. Here, we demonstrate that HDGF mRNA is expressed in smooth muscle cells (SMCs), most prominently in proliferating SMCs, 8–24 hours after serum stimulation. Exogenous HDGF and endogenous overexpression of HDGF stimulated a significant increase in SMC number and DNA synthesis. Rat aortic SMCs transfected with a hemagglutinin-epitope–tagged rat HDGF cDNA contain HA-HDGF in their nuclei during S-phase. We also detected native HDGF in nuclei of cultured SMCs, of SMCs and endothelial cells from 19-day fetal (but not in the adult) rat aorta, of SMCs proximal to abdominal aortic constriction in adult rats, and of SMCs in the neointima formed after endothelial denudation of the rat common carotid artery. Moreover, HDGF colocalizes with the proliferating cell nuclear antigen (PCNA) in SMCs in human atherosclerotic carotid arteries, suggesting that HDGF helps regulate SMC growth during development and in response to vascular injury. PMID:10712428

  13. Heparin-induced conformational changes of fibronectin within the extracellular matrix promote hMSC osteogenic differentiation.

    PubMed

    Li, Bojun; Lin, Zhe; Mitsi, Maria; Zhang, Yang; Vogel, Viola

    2015-01-01

    An increasing body of evidence suggests important roles of extracellular matrix (ECM) in regulating stem cell fate. This knowledge can be exploited in tissue engineering applications for the design of ECM scaffolds appropriate to direct stem cell differentiation. By probing the conformation of fibronectin (Fn) using fluorescence resonance energy transfer (FRET), we show here that heparin treatment of the fibroblast-derived ECM scaffolds resulted in more extended conformations of fibrillar Fn in ECM. Since heparin is a highly negatively charged molecule while fibronectin contains segments of positively charged modules, including FnIII13, electrostatic interactions between Fn and heparin might interfere with residual quaternary structure in relaxed fibronectin fibers thereby opening up buried sites. The conformation of modules FnIII12-14 in particular, which contain one of the heparin binding sites as well as binding sites for many growth factors, may be activated by heparin, resulting in alterations in growth factor binding to Fn. Indeed, upregulated osteogenic differentiation was observed when hMSCs were seeded on ECM scaffolds that had been treated with heparin and were subsequently chemically fixed. In contrast, either rigidifying relaxed fibers by fixation alone, or heparin treatment without fixation had no effect. We hypothesize that fibronectin's conformations within the ECM are activated by heparin such as to coordinate with other factors to upregulate hMSC osteogenic differentiation. Thus, the conformational changes of fibronectin within the ECM could serve as a 'converter' to tune hMSC differentiation in extracellular matrices. This knowledge could also be exploited to promote osteogenic stem cell differentiation on biomedical surfaces. PMID:26214191

  14. Growth factors in orthopedic surgery

    PubMed Central

    Zaharia, C; Despa, N; Simionescu, M; Jinga, V; Fleseriu, I

    2010-01-01

    Growth factors have represented an essential issue of interest for the researchers and clinicians in orthopedics and trauma over the last 40 years. In the last 10 to 15 years, the advances registered in this field have permitted the identification of the most active cellular and humoral factors as well as the improvement of their use in the orthopedic and trauma surgery. Their domain of application has been continuously enlarged and the results have been visible from the beginning. The authors present their appreciation on the actual state of this subject as well as their experience with results and related conclusions. PMID:20302195

  15. Enhanced Survival and Engraftment of Transplanted Stem Cells using Growth Factor Sequestering Hydrogels

    PubMed Central

    Jha, Amit K.; Tharp, Kevin M.; Ye, Jianqin; Santiago-Ortiz, Jorge L.; Jackson, Wesley M.; Stahl, Andreas; Schaffer, David V.; Yeghiazarians, Yerem; Healy, Kevin E.

    2015-01-01

    We have generated a bioinspired tunable system of hyaluronic acid (HyA)-based hydrogels for Matrix-Assisted Cell Transplantation (MACT). With this material, we have independently evaluated matrix parameters such as adhesion peptide density, mechanical properties, and growth factor sequestering capacity, to engineer an environment that imbues donor cells with a milieu that promotes survival and engraftment with host tissues after transplantation. Using a versatile population of Sca-1+/CD45− cardiac progenitor cells (CPCs), we demonstrated that the addition of heparin in the HyA hydrogels was necessary to coordinate the presentation of TGFβ1 and to support the trophic functions of the CPCs via endothelial cell differentiation and vascular like tubular network formation. Presentation of exogenous TGFβ1 by binding with heparin improved differentiated CPC function by sequestering additional endogenously-produced angiogenic factors. Finally, we demonstrated that TGFβ1 and heparin-containing HyA hydrogels can promote CPC survival when implanted subcutaneously into murine hind-limbs and encouraged their participation in the ensuing neovascular response, including blood vessels that had anastomosed with the host’s blood vessels. PMID:25682155

  16. Transforming growth factor-beta 1 and fibroblast growth factors in rat growth plate.

    PubMed

    Jingushi, S; Scully, S P; Joyce, M E; Sugioka, Y; Bolander, M E

    1995-09-01

    Chondrocytes in the growth plate progress in an orderly fashion from resting through proliferating to hypertrophic cells. In the region of hypertrophic chondrocytes, the cartilage is invaded by capillary loops and endochondral ossification is initiated. It is currently believed that growth factors may regulate the proliferation and maturation of chondrocytes and the synthesis of extracellular matrix in the growth plate. The ordered sequence of proliferation and differentiation observed in the growth plate provides a unique opportunity to study the role of acidic fibroblast growth factor, basic fibroblast growth factor, and transforming growth factor-beta 1 in the regulation of these processes. In this study, expression of the mRNA of these growth factors was examined using total RNA extracted from the physis and epiphysis of rat tibias. Transforming growth factor-beta 1 mRNA was detected by Northern hybridization. Expression of the genes encoding acidic and basic fibroblast growth factors was demonstrated by polymerase chain reaction amplification. In addition, using polyclonal antibodies against these growth factors, we localized them by immunohistochemical analysis. Strong intracellular staining with a predominantly nuclear pattern was observed in chondrocytes from the proliferating and upper hypertrophic zones. In contrast, chondrocytes in the resting zone stained only faintly for the presence of these growth factors. Some chondrocytes in the resting zone adjacent to the proliferating zone stained with these antibodies, and the antibodies also stained cells in the zone of Ranvier, which regulates latitudinal bone growth. Lastly, the location of transforming growth factor-beta 1 was examined further with use of a polyclonal antipeptide antibody specific for its extracellular epitope.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7472755

  17. BIODEGRADABLE PHOTO-CROSSLINKED ALGINATE NANOFIBRE SCAFFOLDS WITH TUNEABLE PHYSICAL PROPERTIES, CELL ADHESIVITY AND GROWTH FACTOR RELEASE

    PubMed Central

    Jeong, Sung In; Jeon, Oju; Krebs, Melissa D.; Hill, Michael C.; Alsberg, Eben

    2012-01-01

    Nanofibrous scaffolds are of interest in tissue engineering due to their high surface area to volume ratio, interconnected pores, and architectural similarity to the native extracellular matrix. Our laboratory recently developed a biodegradable, photo-crosslinkable alginate biopolymer. Here, we show the capacity of the material to be electrospun into a nanofibrous matrix, and the ability to enhance cell adhesion and proliferation on these matrices by covalent modification with cell adhesion peptides. Additionally, the potential of covalently incorporating heparin into the hydrogels during the photopolymerisation process to sustain the release of a heparin binding growth factor via affinity interactions was demonstrated. Electrospun photo-crosslinkable alginate nanofibrous scaffolds endowed with cell adhesion ligands and controlled delivery of growth factors may allow for improved regulation of cell behaviour for regenerative medicine. PMID:23070945

  18. A role for the perlecan protein core in the activation of the keratinocyte growth factor receptor.

    PubMed Central

    Ghiselli, G; Eichstetter, I; Iozzo, R V

    2001-01-01

    Perlecan, a widespread heparan sulphate (HS) proteoglycan, is directly involved in the storing of angiogenic growth factors, mostly members of the fibroblast growth factor (FGF) gene family. We have previously shown that antisense targeting of the perlecan gene causes a reduced growth and responsiveness to FGF7 [also known as keratinocyte growth factor (KGF)] in human cancer cells, and that the perlecan protein core interacts specifically with FGF7. In the present paper, we have investigated human colon carcinoma cells in which the perlecan gene was disrupted by targeted homologous recombination. After screening over 1000 clones, we obtained two clones heterozygous for the null mutation with no detectable perlecan, indicating that the other allele was non-functioning. The perlecan-deficient cells grew more slowly, did not respond to FGF7 with or without the addition of heparin, and were less tumorigenic than control cells. Paradoxically, the perlecan-deficient cells displayed increased FGF7 surface binding. However, the perlecan protein core was required for functional activation of the KGF receptor and downstream signalling. Because heparin could not substitute for perlecan, the HS chains are not critical for FGF7-mediated signalling in this cell system. These results provide the first genetic evidence that the perlecan protein core is a molecular entity implicated in FGF7 binding and activation of its receptor. PMID:11563979

  19. Epidermal growth factor and growth in vivo

    SciTech Connect

    Rhodes, J.A.

    1986-01-01

    Epidermal growth factor (EGF) causes a dose-dependent thickening of the epidermis in suckling mice. The cellular mechanisms underlying this thickening were analyzed by measuring the effect of EGF on the cell-cycle. Neonatal mice were given daily injections of either 2ug EGF/g body weight/day or an equivalent volume of saline, and on the seventh day received a single injection of /sup 3/H-thymidine. At various times the mice were perfused with fixative; 1um sections of skin were stained with a modification of Harris' hematoxylin and were autoradiographed. The sections were analyzed using three methods based on the dependence on time after injection of /sup 3/H-thymidine of: frequency of labelled mitoses, labelling index, and reciprocal grains/nucleus. It was found that EGF caused a two-fold increase in the cell production rate. The effect of exogenous EGF on the morphology of gastric mucosa and incisors of suckling mice was also studied. The gastric mucosa appeared thicker in EGF-treated animals, but the effect was not statistically significant. In contrast to its effect on epidermis and gastric mucosa, EGF caused a significant, dose-dependent decrease in the size of the incisors. Because the mouse submandibular salivary gland is the major source of EGF the effect of sialoadenectomy on female reproductive functions was examined. Ablation of the submandibular gland had no effect on: length of estrus cycle, ability of the female to produce litters, length of the gestation period, litter size, and weight of the litter at birth. There was also no effect on survival of the offspring or on age at which the eyelids separated.

  20. Heparin-binding peptide amphiphile supramolecular architectures as platforms for angiogenesis and drug delivery

    NASA Astrophysics Data System (ADS)

    Chow, Lesleyann W.

    A fascinating phenomenon in nature is the self-assembly of molecules into a functional, hierarchical structure. In the past decade, the Stupp Laboratory has developed several classes of self-assembling biomaterials, one of which is the synthetic peptide amphiphile (PA). Self-assembling PAs are attractive and versatile biomolecules that can be customized for specific applications in regenerative medicine. In particular, a heparin-binding peptide amphiphile (HBPA) containing a specific heparin-binding peptide sequence was used here to induce angiogenesis and serve as a delivery vehicle for growth factors and small hydrophobic molecules. Throughout this dissertation, the HBPA/heparin system is used in different architectures for a variety of regenerative medicine applications. In one aspect of this work, hybrid scaffolds made from HBPA/heparin gelled on a poly(L-lactic acid) (PLLA) fiber mesh were used to promote angiogenesis to facilitate pancreatic islet transplantation for the treatment of type 1 diabetes. Delivery of growth factors with HBPA/PLLA scafflolds increased vessel density in vivo and correlated with improved transplant outcomes in a streptozotocin-induced diabetic mouse model. Soluble HBPA nanofiber architectures were also useful for islet transplantation applications. These nanofibers were used at concentrations below gelation to deliver growth factors into the dense islet cell aggregate, promoting cell survival and angiogenesis in vitro. The nanostructures infiltrated the islets and promoted the retention of heparin and growth factors within the islet. Another interesting growth factor release system discussed here is the HBPA membrane structure. HBPA was found to self-assemble with hyaluronic acid, a large biopolymer found in the body, into macroscopic, hierarchically-ordered membranes. Heparin was incorporated into these membranes and affected the membrane's mechanical properties and growth factor release. Human mesenchymal stem cells were also shown

  1. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    PubMed Central

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-01-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (<32 weeks gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments1,2. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI3. In a previous study, we demonstrated that epidermal growth factor receptor (EGFR) plays an important role in oligodendrocyte development4. Here, we examine whether enhanced epidermal growth factor receptor (EGFR) signaling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioral recovery in the developing brain. Using an established model of very preterm brain injury, we demonstrate that selective overexpression of human (h)EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells (OPCs) and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioral deficits on white matter-specific paradigms. Inhibition of EGFR signaling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in OPCs at a specific time after injury is clinically feasible and applicable for the treatment of premature children with white matter injury. PMID:24390343

  2. Cardiopulmonary Bypass Without Heparin.

    PubMed

    Rehfeldt, Kent H; Barbara, David W

    2016-03-01

    Due to familiarity, short half-life, ease of monitoring, and the availability of a reversal agent, heparin remains the anticoagulant of choice for cardiac operations requiring cardiopulmonary bypass (CPB). However, occasionally patients require CPB but should not receive heparin, most often because of acute or subacute heparin-induced thrombocytopenia (HIT). In these cases, if it is not feasible to wait for the disappearance of HIT antibodies, an alternative anticoagulant must be selected. A number of non-heparin anticoagulant options have been explored. However, current recommendations suggest the use of a direct thrombin inhibitor such as bivalirudin. This review describes the use of heparin alternatives for the conduct of CPB with a focus on the direct thrombin inhibitors. PMID:26872706

  3. Human Endothelial Cells: Use of Heparin in Cloning and Long-Term Serial Cultivation

    NASA Astrophysics Data System (ADS)

    Thornton, Susan C.; Mueller, Stephen N.; Levine, Elliot M.

    1983-11-01

    Endothelial cells from human blood vessels were cultured in vitro, with doubling times of 17 to 21 hours for 42 to 79 population doublings. Cloned human endothelial cell strains were established for the first time and had similar proliferative capacities. This vigorous cell growth was achieved by addition of heparin to culture medium containing reduced concentrations of endothelial cell growth factor. The routine cloning and long-term culture of human endothelial cells will facilitate studying the human endothelium in vitro.

  4. Structure of rat acidic fibroblast growth factor at 1.4 Å resolution

    SciTech Connect

    Kulahin, Nikolaj; Kochoyan, Arthur; Berezin, Vladimir; Bock, Elisabeth; Gajhede, Michael

    2007-02-01

    The structure of rat acidic fibroblast growth factor was determined and compared with those of human, bovine and newt origin. The rat and human structures were found to be very similar. Fibroblast growth factors (FGFs) constitute a family of 22 structurally related heparin-binding polypeptides that are involved in the regulation of cell growth, survival, differentiation and migration. Here, a 1.4 Å resolution X-ray structure of rat FGF1 is presented. Two molecules are present in the asymmetric unit of the crystal and they coordinate a total of five sulfate ions. The structures of human, bovine and newt FGF1 have been published previously. Human and rat FGF1 are found to have very similar structures.

  5. Heparin oligosaccharides: inhibitors of the biological activity of bFGF on Caco-2 cells.

    PubMed Central

    Jayson, G. C.; Gallagher, J. T.

    1997-01-01

    A number of growth factors, including members of the fibroblast growth factor (FGF) family - hepatocyte growth factor, vascular endothelial growth factor and heparin-binding epidermal growth factor - are dependent on heparan sulphate (HS) for biological activity mediated through their high-affinity signal-transducing receptors. This obligate requirement for HS prompted the search for antagonists of HS function that could be used as anti-growth factor drugs for the treatment of cancer. Basic FGF (bFGF) was the focus of this study. Caco-2, a human colon carcinoma cell line, was adapted to growth in serum-free medium so that investigation of its growth factor requirements for growth and migration could be performed in defined conditions (Jayson GC, Evans GS, Pemberton PW, Lobley RW, Allen T 1994, Cancer Res, 54, 5718-5723). This cell line multiplied and moved in a dose-dependent manner in response to bFGF. Here, we show that the mitogenic response to bFGF is dependent on the presence of heparan sulphate. A library of heparin oligosaccharides with uniform composition but variable length was generated [general formula [IdoA(2S)-GlcNS(6S)n], and oligosaccharides of defined lengths were tested for their ability to inhibit the biological activity of bFGF. While intact heparin and heparin-derived fragments of 12 monosaccharide units did not affect bFGF-induced cell division or bFGF-induced cell migration, octasaccharides and decasaccharides potently inhibited the bFGF-induced growth and migration responses. In particular, octasaccharides completely inhibited these biological activities at 10 microg ml-, a clinically achievable and tolerable concentration. This study shows that the length of an oligosaccharide determines its ability to block the biological activity of bFGF. The observation that the biological activity of cell-surface heparan sulphate can be antagonized in this way in a human carcinoma cell line suggests that oligosaccharides should be investigated further as

  6. Human recombinant interleukin-1 beta- and tumor necrosis factor alpha-mediated suppression of heparin-like compounds on cultured porcine aortic endothelial cells

    SciTech Connect

    Kobayashi, M.; Shimada, K.; Ozawa, T. )

    1990-09-01

    Cytokines are known to tip the balance of the coagulant-anticoagulant molecules on the endothelial cell surface toward intravascular coagulation. Their effects on endothelial cell surface-associated heparin-like compounds have not been examined yet. Incorporation of (35S)sulfate into heparan sulfate on cultured porcine aortic endothelial cells was suppressed by human recombinant interleukin-1 beta (rIL-1 beta) or tumor necrosis factor alpha (rTNF alpha) in a dose- and time-dependent manner with little effect on cell number, protein content, and (3H)leucine incorporation of cells. Maximal inhibition was achieved by incubation of cells with 100 ng/ml of rIL-1 beta or 5 ng/ml of rTNF alpha for 12-24 hours, resulting in a reduction of the synthesis of heparan sulfate on the cell surface by approximately 50%. The dose dependency was consistent with that seen in the stimulation of endothelial cell procoagulant activity by each cytokine. The suppression of heparan sulfate synthesis was sustained for at least 48 hours after pretreatment of cells with cytokines and was unchanged after the addition of indomethacin or polymyxin B. The rate of degradation of prelabeled 35S-heparan sulfate on the cell surface was not altered by cytokine treatments. Neither the size, the net negative charge, nor the proportion of the molecule with high affinity for antithrombin III of endothelial cell heparan sulfate was changed by cytokines. Furthermore, specific binding of 125I-labeled antithrombin III to the endothelial cell surface was reduced to 40-60% of control by cytokines. In parallel with reduction in binding, antithrombin III cofactor activity was partially diminished in cytokine-treated endothelial cells. Thus, cytokine-mediated suppression of heparin-like substance on endothelial cells appears to be another cytokine-inducible endothelial effects affecting coagulation.

  7. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    PubMed Central

    Nandy, Debashis; Mukhopadhyay, Debabrata

    2011-01-01

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed. PMID:24212642

  8. Heparin-Induced Thrombocytopenia: A Comprehensive Clinical Review.

    PubMed

    Salter, Benjamin S; Weiner, Menachem M; Trinh, Muoi A; Heller, Joshua; Evans, Adam S; Adams, David H; Fischer, Gregory W

    2016-05-31

    Heparin-induced thrombocytopenia is a profoundly dangerous, potentially lethal, immunologically mediated adverse drug reaction to unfractionated heparin or, less commonly, to low-molecular weight heparin. In this comprehensive review, the authors highlight heparin-induced thrombocytopenia's risk factors, clinical presentation, pathophysiology, diagnostic principles, and treatment. The authors place special emphasis on the management of patients requiring procedures using cardiopulmonary bypass or interventions in the catheterization laboratory. Clinical vigilance of this disease process is important to ensure its recognition, diagnosis, and treatment. Misdiagnosis of the syndrome, as well as misunderstanding of the disease process, continues to contribute to its morbidity and mortality. PMID:27230048

  9. A glycosylation-deficient endothelial cell mutant with modified responses to transforming growth factor-beta and other growth inhibitory cytokines: evidence for multiple growth inhibitory signal transduction pathways.

    PubMed Central

    Fafeur, V; O'Hara, B; Böhlen, P

    1993-01-01

    An endothelial cell line (M40) resistant to growth inhibition by transforming growth factor-beta type 1 (TGF beta 1) was isolated by chemical mutagenesis and growth in the presence of TGF beta 1. Like normal endothelial cells, this mutant is characterized by high expression of type II TGF beta receptor and low expression of type I TGF beta receptor. However, the mutant cells display a type II TGF beta receptor of reduced molecular weight as a result of a general defect in N-glycosylation of proteins. The alteration does not impair TGF beta 1 binding to cell surface receptors or the ability of TGF beta 1 to induce fibronectin or plasminogen activator inhibitor-type I production. M40 cells were also resistant to growth inhibition by tumor necrosis factor alpha (TNF alpha) and interleukin-1 alpha (IL-1 alpha) but were inhibited by interferon-gamma (IFN gamma) and heparin. These results imply that TGF beta 1, TNF alpha, and IL-1 alpha act through signal transducing pathways that are separate from pathways for IFN gamma and heparin. Basic fibroblast growth factor was still mitogenic for M40, further suggesting that TGF beta 1, TNF alpha, and IL-1 alpha act by direct inhibition of cell growth rather than by interfering with growth stimulatory pathways. Images PMID:8382975

  10. Nerve growth factor and asthma.

    PubMed

    Bonini, S; Lambiase, A; Lapucci, G; Properzi, F; Bresciani, M; Bracci Laudiero, M L; Mancini, M J; Procoli, A; Micera, A; Sacerdoti, G; Bonini, S; Levi-Schaffer, F; Rasi, G; Aloe, L

    2002-01-01

    An increasing body of evidence shows that nerve growth factor (NGF) exerts biological activity not only on the central and peripheral nervous system, but also on the immune system thereby influencing allergic diseases and asthma. (1) NGF circulating levels are increased in patients with allergic diseases and asthma, and are related to the severity of the inflammatory process and disease. In vernal keratoconjunctivitis, NGF plasma levels correlate with the number of mast cells infiltrating the conjunctiva, and NGF mRNA is increased in nasal mucosal scrapings of patients with allergic rhinitis who have high levels of NGF in serum and nasal fluids; NGF is further increased in nasal fluids after specific allergen challenge. (2) NGF is produced and released by several modulatory and effector cells of allergic inflammation and asthma, for example T-helper 2 lymphocytes, mast cells and eosinophils. (3) NGF receptors are expressed on the conjunctival epithelium of patients with allergic conjunctivitis and the number of NGF-receptor positive cells is increased in the conjunctiva of these patients. Indeed, local administration of NGF induces fibroblast activation and healing processes of human corneal ulcers, which suggests that NGF plays a role in tissue remodelling processes occurring in asthma. (4) NGF increases airway hyperreactivity to histamine in an animal model of asthma, while anti-NGF treatment reduces airway hyperreactivity induced by ovalbumin topical challenge in the sensitized mouse. PMID:12144547

  11. Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells

    PubMed Central

    Das, Jharna R; Gutkind, J. Silvio; Ray, Patricio E

    2016-01-01

    Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms. PMID:27097314

  12. Circulating Fibroblast Growth Factor-2, HIV-Tat, and Vascular Endothelial Cell Growth Factor-A in HIV-Infected Children with Renal Disease Activate Rho-A and Src in Cultured Renal Endothelial Cells.

    PubMed

    Das, Jharna R; Gutkind, J Silvio; Ray, Patricio E

    2016-01-01

    Renal endothelial cells (REc) are the first target of HIV-1 in the kidney. The integrity of REc is maintained at least partially by heparin binding growth factors that bind to heparan sulfate proteoglycans located on their cell surface. However, previous studies showed that the accumulation of two heparin-binding growth factors, Vascular Endothelial Cell Growth Factor-A (VEGF-A) and Fibroblast Growth Factor-2 (FGF-2), in combination with the viral protein Tat, can precipitate the progression of HIV-renal diseases. Nonetheless, very little is known about how these factors affect the behavior of REc in HIV+ children. We carried out this study to determine how VEGF-A, FGF-2, and HIV-Tat, modulate the cytoskeletal structure and permeability of cultured REc, identify key signaling pathways involved in this process, and develop a functional REc assay to detect HIV+ children affected by these changes. We found that VEGF-A and FGF-2, acting in synergy with HIV-Tat and heparin, affected the cytoskeletal structure and permeability of REc through changes in Rho-A, Src, and Rac-1 activity. Furthermore, urine samples from HIV+ children with renal diseases, showed high levels of VEGF-A and FGF-2, and induced similar changes in cultured REc and podocytes. These findings suggest that FGF-2, VEGF-A, and HIV-Tat, may affect the glomerular filtration barrier in HIV+ children through the induction of synergistic changes in Rho-A and Src activity. Further studies are needed to define the clinical value of the REc assay described in this study to identify HIV+ children exposed to circulating factors that may induce glomerular injury through similar mechanisms. PMID:27097314

  13. Improved production of recombinant fibroblast growth factor 7 (FGF7/KGF) from bacteria in high magnesium chloride.

    PubMed

    Luo, Yongde; Cho, Hyun-Hee; Jones, Richard B; Jin, Chengliu; McKeehan, Wallace L

    2004-02-01

    Because of specificity for both heparin/heparan sulfate and the receptor complex on epithelial cells relative to other fibroblast growth factor (FGF) homologues, there is considerable interest in clinical and commercial applications of FGF7 (also called keratinocyte growth factor or KGF) that require large quantities at reasonable cost. Production of recombinant FGF7 from bacteria suffers from lower yields and recovery relative to FGF1 and FGF2. Fusion of FGF7 at the N-terminus with glutathione-S-transferase (GST) followed by removal of GST by proteolysis while bound to natural ligand heparin improved the intrinsically low yields from Escherichia coli hosts to 3.2 mg per liter per OD(600), which was still only 10% of that for FGF1. Yield of the GST-FGF7 fusion product was improved to about 17 mg per liter per OD(600) in strain BL21(DE3)pLysS by inclusion of 10-100mM magnesium chloride (MgCl(2)) in the culture medium. This improved by about five times the yields of fully active 54ser-FGF7 after proteolytic excision of the GST portion from GST-FGF7 immobilized on heparin-Sepharose. This simple enhancement improves the cost-effectiveness of production of recombinant FGF7 in bacteria for clinical and commercial applications. PMID:14711521

  14. Heparin desulfation modulates VEGF release and angiogenesis in diabetic wounds.

    PubMed

    Freudenberg, Uwe; Zieris, Andrea; Chwalek, Karolina; Tsurkan, Mikhail V; Maitz, Manfred F; Atallah, Passant; Levental, Kandice R; Eming, Sabine A; Werner, Carsten

    2015-12-28

    While vascular endothelial growth factor (VEGF) has been shown to be one of the key players in wound healing by promoting angiogenesis current clinical applications of this growth factor to the wound environment are poorly controlled and not sustainable. Hydrogels made of sulfated glycosaminoglycans (GAG) allow for the sustained release of growth factors since GAGs engage in electrostatic complexation of biomolecules. In here, we explore a set of hydrogels formed of selectively desulfated heparin derivatives and star-shaped poly(ethylene glycol) with respect to VEGF binding and release and anticoagulant activity. As a proof of concept, supportive effects on migration and tube formation of human umbilical vein endothelial cells were studied in vitro and the promotion of wound healing was followed in genetically diabetic (db/db) mice. Our data demonstrate that the release of VEGF from the hydrogels is modulated in dependence on the GAG sulfation pattern. Hydrogels with low sulfate content (11% of initial heparin) were found to be superior in efficacy of VEGF administration, low anticoagulant activity and promotion of angiogenesis. PMID:26478015

  15. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    NASA Astrophysics Data System (ADS)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  16. Capture of endothelial cells under flow using immobilized vascular endothelial growth factor.

    PubMed

    Smith, Randall J; Koobatian, Maxwell T; Shahini, Aref; Swartz, Daniel D; Andreadis, Stelios T

    2015-05-01

    We demonstrate the ability of immobilized vascular endothelial growth factor (VEGF) to capture endothelial cells (EC) with high specificity under fluid flow. To this end, we engineered a surface consisting of heparin bound to poly-l-lysine to permit immobilization of VEGF through the C-terminal heparin-binding domain. The immobilized growth factor retained its biological activity as shown by proliferation of EC and prolonged activation of KDR signaling. Using a microfluidic device we assessed the ability to capture EC under a range of shear stresses from low (0.5 dyne/cm(2)) to physiological (15 dyne/cm(2)). Capture was significant for all shear stresses tested. Immobilized VEGF was highly selective for EC as evidenced by significant capture of human umbilical vein and ovine pulmonary artery EC but no capture of human dermal fibroblasts, human hair follicle derived mesenchymal stem cells, or mouse fibroblasts. Further, VEGF could capture EC from mixtures with non-EC under low and high shear conditions as well as from complex fluids like whole human blood under high shear. Our findings may have far reaching implications, as they suggest that VEGF could be used to promote endothelialization of vascular grafts or neovascularization of implanted tissues by rare but continuously circulating EC. PMID:25771020

  17. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor

    PubMed Central

    Hadadian, Shahin; Shamassebi, Dariush Norouzian; Mirzahoseini, Hasan; Shokrgozar, Mohamad Ali; Bouzari, Saeid; Sepahi, Mina

    2015-01-01

    Background: Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. Materials and Methods: In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD polyethylene glycol. The PEGylated form was separated by size exclusion chromatography. Structural, biological activity, and stability evaluations were performed using Fourier transform infrared (FITR) spectroscopy, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay and effect denaturing agent, respectively. Results: FITR spectroscopy revealed that both PEGylated and native forms had the same structures. MTT assay showed that PEGyalated form had a 30% reduced biological activity. Fluorescence spectrophotometry indicated that the PEGylated form denatured at higher concentrations of guanidine HCl (1.2 M) compared with native, which denatured at 0.8 M guanidine HCl. Conclusions: PEGylation of hBFGF makes it more stable against denaturing agent but reduces its bioactivity up to 30%. PMID:26605215

  18. Nuclear magnetic resonance characterization of the binding of peptides from HIV GP120 by heparin

    SciTech Connect

    Mahan, J.A.; Rabenstein, D.L.

    1995-12-01

    Heparin has recently been shown to inhibit the growth and replication of human immunodeficiency virus, HIV. The inhibition of HIV by heparin is believed to be partly the result of its binding to envelope glycoprotein gp120 of the virus. Amino acids 307-330 of gp120 form a heparin-binding domain having the sequence: N-N-T-R-K-S-I-R-I-Q-R-G-P-G-R-A-F-V-T-I-G-K-I-G. This paper will present results on the characterization of the interaction of heparin with synthetic peptides derived from the heparin-binding domain of gp120 of HIV using one and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. Information will be presented on the amino acid residues of the peptides that are involved in the binding to heparin, the nature of the interactions between heparin and these residues, and the structure of the peptides in the peptide-heparin complexes.

  19. Autocrine growth factors and solid tumor malignancy.

    PubMed Central

    Walsh, J. H.; Karnes, W. E.; Cuttitta, F.; Walker, A.

    1991-01-01

    The ability of malignant cells to escape the constraint that normally regulate cell growth and differentiation has been a primary focus of attention for investigators of cancer cell biology. An outcome of this attention has been the discovery that the protein products of oncogenes play a role in the activation of growth signal pathways. A second outcome, possibly related to abnormal oncogene expression, has been the discovery that malignant cells frequently show an ability to regulate their own growth by the release of autocrine growth modulatory substances. Most important, the growth of certain malignant cell types has been shown to depend on autocrine growth circuits. A malignant tumor whose continued growth depends on the release of an autocrine growth factor may be vulnerable to treatment with specific receptor antagonists or immunoneutralizing antibodies designed to break the autocrine circuit. Information is rapidly emerging concerning autocrine growth factors in selected human solid tissue malignancy. Images PMID:1926844

  20. Roles for Growth Factors in Cancer Progression

    PubMed Central

    Witsch, Esther; Sela, Michael; Yarden, Yosef

    2011-01-01

    Under physiological conditions, cells receive fate-determining signals from their tissue surroundings, primarily in the form of polypeptide growth factors. Integration of these extracellular signals underlies tissue homeostasis. Although departure from homeostasis and tumor initiation are instigated by oncogenic mutations rather than by growth factors, the latter are the major regulators of all subsequent steps of tumor progression, namely clonal expansion, invasion across tissue barriers, angiogenesis, and colonization of distant niches. Here, we discuss the relevant growth factor families, their roles in tumor biology, as well as the respective downstream signaling pathways. Importantly, cancer-associated activating mutations that impinge on these pathways often relieve, in part, the reliance of tumors on growth factors. On the other hand, growth factors are frequently involved in evolvement of resistance to therapeutic regimens, which extends the roles for polypeptide factors to very late phases of tumor progression and offers opportunities for cancer therapy. PMID:20430953

  1. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  2. The effect of Heparin-VEGF multilayer on the biocompatibility of decellularized aortic valve with platelet and endothelial progenitor cells.

    PubMed

    Ye, Xiaofeng; Wang, Haozhe; Zhou, Jingxin; Li, Haiqing; Liu, Jun; Wang, Zhe; Chen, Anqing; Zhao, Qiang

    2013-01-01

    The application of polyelectrolyte multilayer films is a new, versatile approach to surface modification of decellularized tissue, which has the potential to greatly enhance the functionality of engineered tissue constructs derived from decellularized organs. In the present study, we test the hypothesis that Heparin- vascular endothelial growth factor (VEGF) multilayer film can not only act as an antithrombotic coating reagent, but also induce proliferation of endothelial progenitor cells (EPCs) on the decellularized aortic heart valve. SEM demonstrated the adhesion and geometric deformation of platelets. The quantitative assay of platelet activation was determined by measuring the production of soluble P-selectin. Binding and subsequent release of heparin and VEGF from valve leaflets were assessed qualitatively by laser confocal scanning microscopy and quantitatively by ELISA methods. Human blood derived EPCs were cultured and the adhesion and growth of EPCs on the surface modified valvular scaffolds were assessed. The results showed that Heparin-VEGF multilayer film improved decellularized valve haemocompatibility with respect to a substantial reduction of platelet adhesion. Release of VEGF from the decellularized heart valve leaflets at physiological conditions was sustained over 5 days. In vitro biological tests demonstrated that EPCs achieved better adhesion, proliferation and migration on the coatings with Heparin-VEGF multilayer film. Combined, these results indicate that Heparin-VEGF multilayer film could be used to cover the decellularized porcine aortic valve to decrease platelet adhesion while exhibiting excellent EPCs biocompatibility. PMID:23359625

  3. Growth factors from genes to clinical application

    SciTech Connect

    Sara, V.R. ); Hall, K.; Low, H. )

    1990-01-01

    The last decade has witnessed an explosion in the identification of growth factors and their receptors. This has been greatly facilitated by recombinant DNA technology, which has provided the tools not only to identify these proteins at the gene level but also to produce recombinant proteins for evaluating their biological activities. With the help of such techniques, we are moving toward an understanding of the biosynthesis of growth factors and their receptors, structure-function relationships, as well as mechanisms for intracellular signal transmission. The possibility of modifying these factors has opened new fields of clinical application. In this paper, four major areas of growth factor research are presented: the characterization of growth factor genes and their protein products, growth factor receptors and signal transduction by the receptors to mediate biological action, the biological actions of the various growth factors, and the role of growth factors in health and disease and their possible clinical application. Some of the topics covered include: structure of the IGFs and their variants; isoforms of PDGF receptor types; tyrosine kinase activation; structure of G-proteins in biological membranes; possible therapeutic application of NGF in the treatment of Parkinson's and Alzheimer's diseases; PDGF's possible role in the development of several fibroproliferative diseases and its therapeutic application in wound healing; and the possible use of angiogenic inhibitors in tumor treatment.

  4. Growth factors for the treatment of ischemic brain injury (growth factor treatment).

    PubMed

    Larpthaveesarp, Amara; Ferriero, Donna M; Gonzalez, Fernando F

    2015-01-01

    In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans. PMID:25942688

  5. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  6. Environmental factors influencing growth and pubertal development.

    PubMed Central

    Delemarre-van de Waal, H A

    1993-01-01

    Postnatal growth is based on hereditary signals and environmental factors in a complex regulatory network. Each factor must be in an optimal state for normal growth of the child. Fetal conditions may also have consequences on postnatal height. Intrauterine growth retardation can be recovered postnatally, although postnatal growth remains depressed in about one-third of cases. After birth, the environment may exert either a positive or negative effect on growth. In underdeveloped countries, malnutrition plays a major role in inhibiting the growth process. Children from families of higher socioeconomic classes are taller than their coevals in the lower socioeconomic groups. Urbanization also has a positive effect on growth. Better child care is supported by sufficient food supply, appropriate health and sanitation services, and a higher level of education. Over the last century, these factors have induced a taller stature and a more rapid maturity in Europe, North America, and Australia; a phenomenon which has been referred to as "the secular trend" in growth. Recently, a secular trend has also been reported in some developing countries. Although urbanization in general appears to be associated with better conditions of living, this is not the case in the slums of South America or in Africa where rural children are better off than children living in the poor cities. This paper describes in more detail the different hereditary and environmental factors that act during the fetal period and postnatally, and which play a role in human growth and pubertal development. PMID:8243404

  7. Vascular growth factors in neuropsychiatry

    PubMed Central

    Newton, Samuel S.; Fournier, Neil M.; Duman, Ronald S.

    2014-01-01

    Recent advances in understanding the cellular and molecular basis of psychiatric illnesses have shed light on the important role played by trophic factors in modulating functional parameters associated with disease causality and drug action. Disease mechanisms are now thought to involve multiple cell types, including neurons and endothelial cells. These functionally distinct but interactively coupled cell types engage in cellular cross talk via shared and common signaling molecules. Dysregulation in their cellular signaling pathways influences brain function and alters behavioral performance. Multifunctional trophic factors such as VEGF and EPO that possess both neurotrophic and angiogenic actions are of particular interest due to their ability to rescue structural and plasticity deficits in neurons and vasculature. Obtaining insight into the behavioral, cellular and molecular actions of multi-functional trophic factors has the potential to open new and transformative therapeutic approaches. PMID:23475069

  8. [Interaction of heparin with amino group-containing materials].

    PubMed

    Nemets, E A; Kasatov, D A; Sevast'ianov, V I

    2001-01-01

    The influence of the glass surface immobilized aminogroups nature and the experiments conditions on the interactions between heparin and aminogroups containing surface was studied using total internal reflections fluorescence. It was shown, that the nature of the terminating aminogroup, but not its mobility or the amount of the aminogroups in the main chain, is the major factor influencing the heparin adsorbtion from individual solution. Both the nature of terminating aminogroup and its mobility determine heparin adsorption on the aminogroups containing surfaces from the blood plasma proteins containing solution. Heparin irreversibly adsorbed from individual solution is not replaced by blood plasma proteins. The tertiary aminogroups containing surface adsorbs maximal quantity of the heparin. PMID:11766264

  9. Heparin-induced thrombocytopenia: pathophysiology and new treatment options.

    PubMed

    Harenberg, J; Jörg, I; Fenyvesi, T

    2002-01-01

    Heparin induced thrombocytopenia (HIT) is a severe complication of heparin therapy. It is generally accompanied by a paradoxical decrease in platelets leading to activation of platelets and of the coagulation system. HIT type I is a mild, transient, non-immune disorder. HIT type II is an immune-mediated reaction towards neo-antigen on PF4, which is platelet factor 4 (PF4) that is exposed upon binding to heparins. A low sulfated octasaccharide is required for binding to PF4. The generated immunoglobulines bridge platelets by binding to the FcgRIIa-receptor. In patients with HIT type II heparin/LMW-heparin has to be discontinued immediately upon clinical suspicion. Diagnosis can be confirmed by laboratory tests. As patients are at high risk for or because they have developed thromboembolism, anticoagulation is mandatory, despite thrombocytopenia. Treatment options are danaparoid, r-hirudin, bivalirudin, argatroban, dextransulfate, and dermatansulfate. In future, fondaparinux and ximelagatran may be considered for treatment. PMID:13679659

  10. Intraoperative management of patients with heparin-induced thrombocytopenia.

    PubMed

    Kappa, J R; Fisher, C A; Todd, B; Stenach, N; Bell, P; Campbell, F; Ellison, N; Addonizio, V P

    1990-05-01

    For 11 patients with confirmed heparin-induced thrombocytopenia, we used reversible platelet inhibition with iloprost, a stable prostacyclin analogue, to permit safe heparin administration for cardiac (n = 9) or vascular (n = 2) operations. In vitro, iloprost (0.01 mumol/L) prevented both heparin-induced platelet aggregation and 14C-serotonin release in all patients. Therefore, intraoperatively, a continuous infusion of iloprost was started before administration of heparin and was continued until 15 minutes after administration of protamine. For cardiac patients, after heparin administration, the whole blood platelet count did not change (171,000 +/- 29,000/microL versus 174,000 +/- 29,000/microL, mean +/- standard error of the mean); no spontaneous platelet aggregation was observed, and plasma levels of the alpha-granule constituents platelet factor 4 and beta-thromboglobulin increased from 38 +/- 14 and 140 +/- 18 ng/mL to 591 +/- 135 and 235 +/- 48 ng/mL, respectively. Fibrinopeptide A levels actually decreased from 287 +/- 150 to 27 +/- 6 ng/mL. Furthermore, adenosine diphosphate-induced platelet activation was preserved, postoperative bleeding times were unchanged, and no heparin-related deaths occurred. Similar results were obtained in both vascular patients. We conclude that temporary platelet inhibition with iloprost now permits safe heparin administration in all patients with heparin-induced thrombocytopenia who require a cardiac or vascular operation. PMID:1692679

  11. Autocrine ligands of the epithelial growth factor receptor mediate inflammatory responses to diesel exhaust particles

    PubMed Central

    2014-01-01

    Background Diesel exhaust is associated with cardiovascular and respiratory mortality and morbidity. Acute exposure leads to increased IL-8 expression and airway neutrophilia, however the mechanism of this response is unknown. Objectives: As cigarette smoke-induced IL-8 expression by epithelial cells involves transactivation of the epidermal growth factor receptor (EGFR), we studied the effects of diesel exhaust particles (DEP) on IL-8 release and the role of the EGFR. Methods Primary bronchial epithelial cells (PBEC) were exposed to DEPs or carbon black. IL-8 and EGFR ligand expression (transforming growth factor alpha (TGFα), heparin-binding EGF-like growth factor, and amphiregulin (AR)) were assessed by quantitative RT-PCR and ELISA. Results DEP, but not carbon black, caused a dose-dependent increase in mitogen-activated protein kinase (MAPK) activation and IL-8 expression, however above 50 μg/ml there was an increase in cytotoxicity. At 50 μg/ml, DEPs stimulated transcription and release of IL-8 and EGFR ligands. IL-8 release was blocked by EGFR neutralizing antibodies, an EGFR-selective tyrosine kinase inhibitor and by the metalloprotease inhibitor, GM6001, which blocks EGFR ligand shedding. Neutralizing antibodies to AR, TGFα and heparin-binding (HB)-EGF reduced DEP-induced IL-8 by >50%. Conclusion Expression of IL-8 in response to DEPs is dependent on EGFR activation and that autocrine production of EGFR ligands makes a substantial contribution to this response. Capsule Summary: This study identifies a mechanism whereby diesel particles stimulates IL-8 release from bronchial epithelial cells. This mechanism may help to explain the recruitment of neutrophils into the airways of people exposed to particulate air pollution. PMID:24555532

  12. New Clue Found to Growth Factor Action.

    ERIC Educational Resources Information Center

    Hoffman, Michelle

    1991-01-01

    Discussed is the discovery which may help to explain epidermal growth factor effects on the cell skeleton. The role of a protein called profilin in the regulation of the microfilament system is described. (CW)

  13. Expression of growth factors in Dictyostelium discoideum.

    PubMed

    Asgari, S; Arun, S; Slade, M B; Marshall, J; Williams, K L; Wheldrake, J F

    2001-07-01

    Growth factors and their binding proteins are important proteins regulating mammalian cell proliferation and differentiation so there is considerable interest in producing them as recombinant proteins, especially in hosts that do not already produce a complex mixture of growth factors. Many growth factors require post-translational modifications making them unsuitable for production in Escherichia coli or other prokaryotes. Since several expression vector systems have been recently developed for foreign protein production in the cellular slime mould, Dictyostelium discoideum, we attempted to use two of these systems to express human insulin-like growth factor binding protein 6 (hIGFBP6) and bovine beta-cellulin (bBTC) as secreted proteins. Although both proteins were successfully produced in stably transformed amoebae, no secretion was detected in spite of several attempts to facilitate this occurring. PMID:11361083

  14. [T-LYMPHOCYTES AND TISSUE GROWTH FACTORS].

    PubMed

    Tishevskaya, N V; Gevorkyan, N M; Kozlova, N I

    2015-08-01

    Lympnoici regulation, in aciaition to ensuring tne protection of tne antigen, is aimecl at maintaining a qualitative, quantitative, structural and functional integrity of the body. T-lymphocytes and growth factors are involved in cell proliferation, differentiation, and tissue and organ regeneration. Lymphocyte's, sensitivity to homeostasis changes and their morphogenetic function are connected with a large number of receptors to bioactive substances and with their ability to syn- thesize and secrete hormones and tissue growth factors. At the same time tissue growth factors are involved in the development of thymocytes, in the differentiation of T helper and cytotoxic lymphocytes. Growth factors modulate the functions of Thl, Th2, Treg, Thl7, Th9. The important aspects of the interaction of T cells and EGF, TGF-P, FGF, VEGF, PlGF, HGF/SF in normal and pathological conditions are shown in this review. PMID:26591583

  15. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    SciTech Connect

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-08-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs.

  16. Synthesis and detection of N-sulfonated oversulfated chondroitin sulfate in marketplace heparin.

    PubMed

    Mans, Daniel J; Ye, Hongping; Dunn, Jamie D; Kolinski, Richard E; Long, Dianna S; Phatak, Nisarga L; Ghasriani, Houman; Buhse, Lucinda F; Kauffman, John F; Keire, David A

    2015-12-01

    N-sulfonated oversulfated chondroitin sulfate (NS-OSCS), recently reported as a potential threat to the heparin supply, was prepared along with its intermediate derivatives. All compounds were spiked into marketplace heparin and subjected to United States Pharmacopeia (USP) identification assays for heparin (proton nuclear magnetic resonance [(1)H NMR], chromatographic identity, % galactosamine [%GalN], anti-factor IIa potency, and anti-factor Xa/IIa ratio). The U.S. Food and Drug Administration (FDA) strong-anionic exchange high-performance liquid chromatography (SAX-HPLC) method resolved NS-OSCS from heparin and OSCS and had a limit of detection of 0.26% (w/w) NS-OSCS. The %GalN test was sensitive to the presence of NS-OSCS in heparin. Therefore, current USP heparin monograph tests (i.e., SAX-HPLC and %GalN) detect the presence of NS-OSCS in heparin. PMID:26278168

  17. Fibrin Encapsulation and Vascular Endothelial Growth Factor Delivery Promotes Ovarian Graft Survival in Mice

    PubMed Central

    Shikanov, Ariella; Zhang, Zheng; Xu, Min; Smith, Rachel M.; Rajan, Aniruddha; Woodruff, Teresa K.

    2011-01-01

    Ovarian cryopreservation before chemotherapy and autotransplantation post-treatment can restore fertility to women with premature ovarian failure. Although the majority of primordial follicles survive the cryopreservation cycle, the follicular pool is reduced after transplantation due to ischemic death. Therefore, we engineered a biomaterial-based system to promote angiogenesis in a mouse model of ovarian transplantation. To mimic the clinical situation of sterility, a bilateral ovariectomy was performed 2 weeks before transplantation, during which time serum levels of follicular stimulating hormone rose to menopausal levels. Before transplantation, vitrified/thawed ovarian tissue from 12-day-old C57Bl/6J pups was encapsulated in fibrin modified with heparin-binding peptide (HBP), heparin, and loaded with 0.5 μg vascular endothelial growth factor (VEGF). The group transplanted with fibrin-HBP-VEGF had twice as many surviving primordial follicles and an increased number of blood vessels relative to the no biomaterial control. Transplanted tissue was viable and supported natural conception that led to live and healthy offspring. The timeline of live births with VEGF delivery suggested that primary follicles survived transplantation, and provided the gametes for the first litter. Thus, VEGF delivery from fibrin supported integration of the transplant with the host, promoted angiogenesis, and enhanced engraftment and function of the tissue. PMID:21740332

  18. Predictive factors for intrauterine growth restriction

    PubMed Central

    Albu, AR; Anca, AF; Horhoianu, VV; Horhoianu, IA

    2014-01-01

    Abstract Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies. Abbreviations: SGA = small for gestational age; IUGR = intrauterine growth restriction; FGR = fetal growth restriction; IUFD = intrauterine fetal demise; HIV = human immunodeficiency virus; PAPP-A = pregnancy associated plasmatic protein A; β-hCG = beta human chorionic gonadotropin; MoM = multiple of median; ADAM-12 = A-disintegrin and metalloprotease 12; PP-13 = placental protein 13; VEGF = vascular endothelial growth factor; PlGF = placental growth factor; sFlt-1 = soluble fms-like tyrosine kinase-1; UAD = uterine arteries Doppler ultrasound; RI = resistence index; PI = pulsatility index; VOCAL = Virtual Organ Computer–Aided Analysis software; VI = vascularization index; FI = flow index; VFI = vascularization flow index; PQ = placental quotient PMID:25408721

  19. Organic growth factor requirements of some yeasts.

    PubMed

    Madan, M; Gulati, N

    1980-01-01

    Some sporogenous yeasts (Brettanomyces bruxellensis, Debaryomyces hansenii, Hansenula ciferrii, Hansenula polymorpha, Pichia polymorpha, Saccharomycopsis guttulata, and Saccharomyces chevalieri), isolated from various fruits have been examined for their organic growth factor requisites. H. ciferrii was completely deficient in thiamine, biotin, inositol, riboflavin, niacin, and partially deficient in pantothenic acid. It required an external supply of 0.1-1.0 ppm thiamine, 0.01-0.1 ppm biotin, 10.0 ppm inositol, 0.10 ppm niacin and riboflavin for its optimum growth. H. polymorpha showed partial deficiency only in xanthine. P. polymorpha gave indications of partial deficiencies in thiamine and biotin. S. guttulata was completely deficient in biotin, and partially deficient in adenine sulphate. It required 0.01 ppm biotin for optimum growth. S chevalieri was completely deficient in pyridoxine and partially deficient in thiamine. It required 0.1 ppm pyridoxine for maximum growth. D. hansenii and B bruxellensis were auxoautotrophic for the various growth factors studied. PMID:7242379

  20. Interaction of the 268-282 region of glycoprotein Ibalpha with the heparin-binding site of thrombin inhibits the enzyme activation of factor VIII.

    PubMed Central

    De Cristofaro, R; De Filippis, V

    2003-01-01

    Activation of factor VIII (FVIII) by thrombin plays a fundamental role in the amplification of the coagulation cascade and takes place through specific proteolytic cleavages at Arg(372), Arg(740) and Arg(1689). Full FVIII activation requires cleavage at Arg(372), a process involving the alpha-thrombin exosite-II; referred to as heparin-binding site (HBS). The present study was aimed at investigating the effect of glycoprotein Ibalpha (GpIbalpha; 1-282 fragment) binding to thrombin HBS on FVIII activation. Similar experiments were also performed using a synthetic peptide modelled on the 268-282 sequence of GpIbalpha, and sulphated successfully at all tyrosine residues present along its sequence, at positions 276, 278 and 279. Both GpIbalpha 1-282 and the sulphated GpIb 268-282 peptides induced a progressive decrease (up to 70%) in activated FVIII generation, assessed by coagulation and FXa-generation assays. Furthermore, SDS/PAGE and Western-blot experiments showed that the specific appearance of the 44 kDa A2 domain on cleavage of the FVIII Arg(372)-Ser(373) peptide bond was delayed significantly in the presence of either GpIbalpha 1-282 or GpIb 268-282 peptide. Moreover, the effect of the latter on thrombin-mediated hydrolysis of a peptide having the sequence 341-376 of FVIII was investigated using reverse-phase HPLC. The k (cat)/ K (m) values of the FVIII 341-376 peptide hydrolysis by thrombin decreased linearly as a function of the GpIbalpha 268-282 peptide concentration, according to a competitive inhibition effect. Taken together, these experiments suggest that the sulphated 268-282 region of GpIbalpha binds to thrombin HBS, and is responsible for the inhibition of the Arg(372)-Ser(373) bond cleavage and activation of FVIII. PMID:12689334

  1. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications

    PubMed Central

    Seib, F. Philipp; Herklotz, Manuela; Burke, Kelly A.; Maitz, Manfred F.; Werner, Carsten; Kaplan, David L.

    2013-01-01

    Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708

  2. Monitoring Low Molecular Weight Heparins at Therapeutic Levels: Dose-Responses of, and Correlations and Differences between aPTT, Anti-Factor Xa and Thrombin Generation Assays

    PubMed Central

    Thomas, Owain; Lybeck, Emanuel; Strandberg, Karin; Tynngård, Nahreen; Schött, Ulf

    2015-01-01

    Background Low molecular weight heparins (LMWH’s) are used to prevent and treat thrombosis. Tests for monitoring LMWH’s include anti-factor Xa (anti-FXa), activated partial thromboplastin time (aPTT) and thrombin generation. Anti-FXa is the current gold standard despite LMWH’s varying affinities for FXa and thrombin. Aim To examine the effects of two different LMWH’s on the results of 4 different aPTT-tests, anti-FXa activity and thrombin generation and to assess the tests’ concordance. Method Enoxaparin and tinzaparin were added ex-vivo in concentrations of 0.0, 0.5, 1.0 and 1.5 anti-FXa international units (IU)/mL, to blood from 10 volunteers. aPTT was measured using two whole blood methods (Free oscillation rheometry (FOR) and Hemochron Jr (HCJ)) and an optical plasma method using two different reagents (ActinFSL and PTT-Automat). Anti-FXa activity was quantified using a chromogenic assay. Thrombin generation (Endogenous Thrombin Potential, ETP) was measured on a Ceveron Alpha instrument using the TGA RB and more tissue-factor rich TGA RC reagents. Results Methods’ mean aPTT at 1.0 IU/mL LMWH varied between 54s (SD 11) and 69s (SD 14) for enoxaparin and between 101s (SD 21) and 140s (SD 28) for tinzaparin. ActinFSL gave significantly shorter aPTT results. aPTT and anti-FXa generally correlated well. ETP as measured with the TGA RC reagent but not the TGA RB reagent showed an inverse exponential relationship to the concentration of LMWH. The HCJ-aPTT results had the weakest correlation to anti-FXa and thrombin generation (Rs0.62–0.87), whereas the other aPTT methods had similar correlation coefficients (Rs0.80–0.92). Conclusions aPTT displays a linear dose-respone to LMWH. There is variation between aPTT assays. Tinzaparin increases aPTT and decreases thrombin generation more than enoxaparin at any given level of anti-FXa activity, casting doubt on anti-FXa’s present gold standard status. Thrombin generation with tissue factor-rich activator is

  3. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  4. Heparin: Past, Present, and Future.

    PubMed

    Oduah, Eziafa I; Linhardt, Robert J; Sharfstein, Susan T

    2016-01-01

    Heparin, the most widely used anticoagulant drug in the world today, remains an animal-derived product with the attendant risks of adulteration and contamination. A contamination crisis in 2007-2008 increased the impetus to provide non-animal-derived sources of heparin, produced under cGMP conditions. In addition, recent studies suggest that heparin may have significant antineoplastic activity, separate and distinct from its anticoagulant activity, while other studies indicate a role for heparin in treating inflammation, infertility, and infectious disease. A variety of strategies have been proposed to produce a bioengineered heparin. In this review, we discuss several of these strategies including microbial production, mammalian cell production, and chemoenzymatic modification. We also propose strategies for creating "designer" heparins and heparan-sulfates with various biochemical and physiological properties. PMID:27384570

  5. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells.

    PubMed Central

    Sehgal, I; Bailey, J; Hitzemann, K; Pittelkow, M R; Maihle, N J

    1994-01-01

    Amphiregulin is a heparin-binding epidermal growth factor (EGF)-related peptide that binds to the EGF receptor (EGF-R) with high affinity. In this study, we report a role for amphiregulin in androgen-stimulated regulation of prostate cancer cell growth. Androgen is known to enhance EGF-R expression in the androgen-sensitive LNCaP human prostate carcinoma cell line, and it has been suggested that androgenic stimuli may regulate proliferation, in part, through autocrine mechanisms involving the EGF-R. In this study, we demonstrate that LNCaP cells express amphiregulin mRNA and peptide and that this expression is elevated by androgenic stimulation. We also show that ligand-dependent EGF-R stimulation induces amphiregulin expression and that androgenic effects on amphiregulin synthesis are mediated through this EGF-R pathway. Parallel studies using the estrogen-responsive breast carcinoma cell line, MCF-7, suggest that regulation of amphiregulin by estrogen may also be mediated via an EGF-R pathway. In addition, heparin treatment of LNCaP cells inhibits androgen-stimulated cell growth further suggesting that amphiregulin can mediate androgen-stimulated LNCaP proliferation. Together, these results implicate an androgen-regulated autocrine loop composed of amphiregulin and its receptor in prostate cancer cell growth and suggest that the mechanism of steroid hormone regulation of amphiregulin synthesis may occur through androgen upregulation of the EGF-R and subsequent receptor-dependent pathways. Images PMID:8049525

  6. Heparin-Based Coacervate of FGF2 Improves Dermal Regeneration by Asserting a Synergistic Role with Cell Proliferation and Endogenous Facilitated VEGF for Cutaneous Wound Healing.

    PubMed

    Wu, Jiang; Ye, Jingjing; Zhu, Jingjing; Xiao, Zecong; He, Chaochao; Shi, Hongxue; Wang, Yadong; Lin, Cai; Zhang, Hongyu; Zhao, Yingzheng; Fu, Xiaobing; Chen, Hong; Li, Xiaokun; Li, Lin; Zheng, Jie; Xiao, Jian

    2016-06-13

    Effective wound healing requires complicated, coordinated interactions and responses at protein, cellular, and tissue levels involving growth factor expression, cell proliferation, wound closure, granulation tissue formation, and vascularization. In this study, we develop a heparin-based coacervate consisting of poly(ethylene argininylaspartate digylceride) (PEAD) as a storage matrix, heparin as a bridge, and fibroblast growth factor-2 (FGF2) as a cargo (namely heparin-FGF2@PEAD) for wound healing. First, in vitro characterization demonstrates the loading efficiency and control release of FGF2 from the heparin-FGF2@PEAD coacervate. The following in vivo studies examine the wound healing efficiency of the heparin-FGF2@PEAD coacervate upon delivering FGF2 to full-thickness excisional skin wounds in vivo, in comparison with the other three control groups with saline, heparin@PEAD as vehicle, and free FGF2. Collective in vivo data show that controlled release of FGF2 to the wounds by the coacervate significantly accelerates the wound healing by promoting cell proliferation, stimulating the secretion of vascular endothelial growth factor (VEGF) for re-epithelization, collagen deposition, and granulation tissue formation, and enhancing the expression of platelet endothelial cell adhesion molecule (CD31) and alpha-smooth muscle actin (α-SMA) for blood vessel maturation. In parallel, no obvious wound healing effect is found for the control, vehicle, and free FGF2 groups, indicating the important role of the coavervate in the wound healing process. This work designs a suitable delivery system that can protect and release FGF2 in a sustained and controlled manner, which provides a promising therapeutic potential for topical treatment of wounds. PMID:27196997

  7. Heparin-Binding Motifs and Biofilm Formation by Candida albicans

    PubMed Central

    Green, Julianne V.; Orsborn, Kris I.; Zhang, Minlu; Tan, Queenie K. G.; Greis, Kenneth D.; Porollo, Alexey; Andes, David R.; Long Lu, Jason; Hostetter, Margaret K.

    2013-01-01

    Candida albicans is a leading pathogen in infections of central venous catheters, which are frequently infused with heparin. Binding of C. albicans to medically relevant concentrations of soluble and plate-bound heparin was demonstrable by confocal microscopy and enzyme-linked immunosorbent assay (ELISA). A sequence-based search identified 34 C. albicans surface proteins containing ≥1 match to linear heparin-binding motifs. The virulence factor Int1 contained the most putative heparin-binding motifs (n = 5); peptides encompassing 2 of 5 motifs bound to heparin-Sepharose. Alanine substitution of lysine residues K805/K806 in 804QKKHQIHK811 (motif 1 of Int1) markedly attenuated biofilm formation in central venous catheters in rats, whereas alanine substitution of K1595/R1596 in 1593FKKRFFKL1600 (motif 4 of Int1) did not impair biofilm formation. Affinity-purified immunoglobulin G (IgG) recognizing motif 1 abolished biofilm formation in central venous catheters; preimmune IgG had no effect. After heparin treatment of C. albicans, soluble peptides from multiple C. albicans surface proteins were detected, such as Eno1, Pgk1, Tdh3, and Ssa1/2 but not Int1, suggesting that heparin changes candidal surface structures and may modify some antigens critical for immune recognition. These studies define a new mechanism of biofilm formation for C. albicans and a novel strategy for inhibiting catheter-associated biofilms. PMID:23904295

  8. Post Treatment With an FGF Chimeric Growth Factor Enhances Epithelial Cell Proliferation to Improve Recovery From Radiation-Induced Intestinal Damage

    SciTech Connect

    Nakayama, Fumiaki; Hagiwara, Akiko; Umeda, Sachiko; Asada, Masahiro; Goto, Megumi; Oki, Junko; Suzuki, Masashi; Imamura, Toru; Akashi, Makoto

    2010-11-01

    Purpose: A fibroblast growth factor (FGF) 1-FGF2 chimera (FGFC) was created previously and showed greater structural stability than FGF1. This chimera was capable of stimulating epithelial cell proliferation much more strongly than FGF1 or FGF2 even without heparin. Therefore FGFC was expected to have greater biologic activity in vivo. This study evaluated and compared the protective activity of FGFC and FGF1 against radiation-induced intestinal injuries. Methods and Materials: We administered FGFC and FGF1 intraperitoneally to BALB/c mice 24 h before or after total-body irradiation (TBI). The numbers of surviving crypts were determined 3.5 days after TBI with gamma rays at doses ranging from 8 to 12 Gy. Results: The effect of FGFC was equal to or slightly superior to FGF1 with heparin. However, FGFC was significantly more effective in promoting crypt survival than FGF1 (p < 0.01) when 10 {mu}g of each FGF was administered without heparin before irradiation. In addition, FGFC was significantly more effective at promoting crypt survival (p < 0.05) than FGF1 even when administered without heparin at 24 h after TBI at 10, 11, or 12 Gy. We found that FGFC post treatment significantly promoted 5-bromo-2'-deoxyuridine incorporation into crypts and increased crypt depth, resulting in more epithelial differentiation. However, the number of apoptotic cells in FGFC-treated mice decreased to almost the same level as that in FGF1-treated mice. Conclusions: These findings suggest that FGFC strongly enhanced radioprotection with the induction of epithelial proliferation without exogenous heparin after irradiation and is useful in clinical applications for both the prevention and post treatment of radiation injuries.

  9. Intratracheal Heparin Improves Plastic Bronchitis Due to Sulfur Mustard Analog

    PubMed Central

    Houin, Paul R.; Veress, Livia A.; Rancourt, Raymond C.; Hendry-Hofer, Tara B.; Loader, Joan E.; Rioux, Jacqueline S.; Garlick, Rhonda B.; White, Carl W.

    2014-01-01

    Summary Background Inhalation of sulfur mustard (SM) and SM analog, 2-chloroethyl ethyl sulfide (CEES), cause fibrinous cast formation that occludes the conducting airways, similar to children with Fontan physiology-induced plastic bronchitis. These airway casts cause significant mortality and morbidity, including hypoxemia and respiratory distress. Our hypothesis was that intratracheal heparin, a highly cost effective and easily preserved rescue therapy, could reverse morbidity and mortality induced by bronchial cast formation. Methods Sprague-Dawley rats were exposed to 7.5% CEES via nose-only aerosol inhalation to produce extensive cast formation and mortality. The rats were distributed into three groups: non-treated, phosphate-buffered saline (PBS)-treated, and heparin-treated groups. Morbidity was assessed with oxygen saturations and clinical distress. Blood and bronchoalveolar lavage fluid (BALF) were obtained for analysis, and lungs were fixed for airway microdissection to quantify the extent of airway cast formation. Results Heparin, given intratracheally improved survival (100%) when compared to non-treated (75%) and PBS-treated (90%) controls. Heparin-treated rats also had improved oxygen saturations, clinical distress and airway cast scores. Heparin-treated rats had increased thrombin clotting times, factor Xa inhibition and activated partial thromboplastin times, indicating systemic absorption of heparin. There were also increased red blood cells (RBCs) in the BALF in 2/6 heparin-treated rats compared to PBS-treated control rats. Conclusions Intratracheal heparin 1 hr after CEES inhalation improved survival, oxygenation, airway obstruction, and clinical distress. There was systemic absorption of heparin in rats treated intratracheally. Some rats had increased RBCs in BALF, suggesting a potential for intrapulmonary bleeding if used chronically after SM inhalation. PMID:24692161

  10. Epidermal Growth Factor and Intestinal Barrier Function.

    PubMed

    Tang, Xiaopeng; Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng; Fang, Rejun

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  11. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  12. Binding, internalization, and degradation of basic fibroblast growth factor in human microvascular endothelial cells

    SciTech Connect

    Bikfalvi, A.; Dupuy, E.; Inyang, A.L.; Tobelem, G. ); Fayein, N.; Courtois, Y. ); Leseche, G. )

    1989-03-01

    The binding, internalization, and degradation of basic fibroblast growth factor (bFGF) in human omental microvascular endothelial cells (HOME cells) were investigated. Binding studies of bFGF in human endothelial cells have not yet been reported. Basic FGF bound to HOME cells. The number of low-affinity binding sites was found to be variable. Washing the cells with 2 M phosphate-buffered saline removed completely {sup 125}I-bFGF bound to low-affinity binding sites but decreased also the high-affinity binding. The majority of the surface-bound {sup 125}I-bFGF was removed by washing the cells with acetic acid buffer at pH 3. At this temperature, degradation of the internalized ligand was followed after 1 hour by the appearance of three major bands of 15,000 10,000, and 8,000 Da and was inhibited by chloroquine. These results demonstrated two classes of binding sites for bFGF in HOME cells; the number of high-affinity binding sites being larger than the number reported for bovine capillary endothelial cells. The intracellular processing of bFGF in HOME cells seems to be different from that of heparin binding growth factor-1 in murine lung capillary endothelial cells and of eye-derived growth factor-1 in Chinese hamster fibroblasts.

  13. Nerve Growth Factor and Diabetic Neuropathy

    PubMed Central

    Vinik, Aaron

    2003-01-01

    Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium. PMID:14668049

  14. Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor.

    PubMed Central

    Mellon, J. K.; Cook, S.; Chambers, P.; Neal, D. E.

    1996-01-01

    We have examined levels of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) in neoplastic and non-neoplastic bladder tissue using a standard radioimmunoassay technique. Tumour samples had much higher TGF-alpha levels compared with EGF and TGF-alpha levels in malignant tissue were significantly higher than in benign bladder samples. There was, in addition, a difference in mean EGF levels from 'normal' bladder samples from non-tumour bearing areas of bladder in patients with bladder cancer compared with 'normal' bladder tissue obtained at the time of organ retrieval surgery. Levels of EGF and TGF-alpha did not correlate with levels of EGF receptor (EGFR) as determined by a radioligand binding method but levels of TGF-alpha > 10 ng gm-1 of tumour tissue did correlate with EGFR positivity defined using immunohistochemistry. These data suggest that TGF-alpha is the likely ligand for EGFR in bladder tumours. PMID:8605103

  15. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  16. Growth hormone, insulin-like growth factor system and carcinogenesis.

    PubMed

    Boguszewski, Cesar Luiz; Boguszewski, Margaret Cristina da Silva; Kopchick, John J

    2016-01-01

    The growth hormone (GH) and insulin-like growth factor (IGF) system plays an important role in the regulation of cell proliferation, differentiation, apoptosis, and angiogenesis. In terms of cell cycle regulation, the GH-IGF system induces signalling pathways for cell growth that compete with other signalling systems that result in cell death; thus the final effect of these opposed forces is critical for normal and abnormal cell growth. The association of the GH-IGF system with carcinogenesis has long been hypothesised, mainly based on in vitro studies and the use of a variety of animal models of human cancer, and also on epidemiological and clinical evidence in humans. While ample experimental evidence supports a role of the GH-IGF system in tumour promotion and progression, with several of its components being currently tested as central targets for cancer therapy, the strength of evidence from patients with acromegaly, GH deficiency, or treated with GH is much weaker. In this review, we will attempt to consolidate this data. (Endokrynol Pol 2016; 67 (4): 414-426). PMID:27387246

  17. Effect of heparin on the biological properties and molecular signature of human mesenchymal stem cells.

    PubMed

    Ling, Ling; Camilleri, Emily T; Helledie, Torben; Samsonraj, Rebekah M; Titmarsh, Drew M; Chua, Ren Jie; Dreesen, Oliver; Dombrowski, Christian; Rider, David A; Galindo, Mario; Lee, Ian; Hong, Wanjin; Hui, James H; Nurcombe, Victor; van Wijnen, Andre J; Cool, Simon M

    2016-01-15

    Chronic use of heparin as an anti-coagulant for the treatment of thrombosis or embolism invokes many adverse systemic events including thrombocytopenia, vascular reactions and osteoporosis. Here, we addressed whether adverse effects might also be directed to mesenchymal stem cells that reside in the bone marrow compartment. Harvested human bone marrow-derived mesenchymal stem cells (hMSCs) were exposed to varying doses of heparin and their responses profiled. At low doses (<200 ng/ml), serial passaging with heparin exerted a variable effect on hMSC proliferation and multipotentiality across multiple donors, while at higher doses (≥ 100 μg/ml), heparin supplementation inhibited cell growth and increased both senescence and cell size. Gene expression profiling using cDNA arrays and RNA-seq analysis revealed pleiotropic effects of low-dose heparin on signaling pathways essential to hMSC growth and differentiation (including the TGFβ/BMP superfamily, FGFs, and Wnts). Cells serially passaged in low-dose heparin possess a donor-dependent gene signature that reflects their altered phenotype. Our data indicate that heparin supplementation during the culturing of hMSCs can alter their biological properties, even at low doses. This warrants caution in the application of heparin as a culture supplement for the ex vivo expansion of hMSCs. It also highlights the need for careful evaluation of the bone marrow compartment in patients receiving chronic heparin treatment. PMID:26484394

  18. Growth hormone-insulinlike growth factor I and immune function.

    PubMed

    Gelato, M C

    1993-04-01

    Growth hormone (GH) and insulinlike growth factor I (IGF-I) may be part of a neuroendocrine immune axis that stimulates cellular proliferation of primary lymphoid organs (bone marrow, thymus) as well as stimulates activation of peripheral lymphocytes and macrophages to enhance specific immune responses. GH can also stimulate production of thymic hormones and cytokines, and in this way impact on immune function. It is not clear whether GH and IGF-I act independently or whether the action of GH is mediated by local production of IGF-I by lymphocytes. Both GH and IGF-I and their receptors are present in lymphocytes. Thus, cells of the immune system may be important targets of the GH-IGF-I axis. PMID:18407143

  19. Growth Factors and Astrocytes Metabolism: Possible Roles for Platelet Derived Growth Factor.

    PubMed

    Cabezas, Ricardo; Avila-Rodriguez, Marco; Vega-Vela, Nelson E; Echeverria, Valentina; González, Janneth; Hidalgo, Oscar A; Santos, Altair B; Aliev, Gjumrakch; Barreto, George E

    2016-01-01

    Astrocytes exert multiple functions in the brain such as the development of blood-brain barrier characteristics, the promotion of neurovascular coupling, attraction of cells through the release of chemokines, clearance of toxic substances and generation of antioxidant molecules and growth factors. In this aspect, astrocytes secrete several growth factors (BDNF, GDNF, NGF, and others) that are fundamental for cell viability, oxidant protection, genetic expression and modulation of metabolic functions. The platelet derived growth factor (PDGF), which is expressed by many SNC cells, including astrocytes, is an important molecule that has shown neuroprotective potential, improvement of wound healing, regulation of calcium metabolism and mitochondrial function. Here we explore some of these astrocyte-driven functions of growth factors and their possible therapeutic uses in the context of neurodegeneration. PMID:26477707

  20. Non-coding Double-stranded RNA and Antimicrobial Peptide LL-37 Induce Growth Factor Expression from Keratinocytes and Endothelial Cells.

    PubMed

    Adase, Christopher A; Borkowski, Andrew W; Zhang, Ling-Juan; Williams, Michael R; Sato, Emi; Sanford, James A; Gallo, Richard L

    2016-05-27

    A critical function for skin is that when damaged it must simultaneously identify the nature of the injury, repair barrier function, and limit the intrusion of pathogenic organisms. These needs are carried out through the detection of damage-associated molecular patterns (DAMPs) and a response that includes secretion of cytokines, chemokines, growth factors, and antimicrobial peptides (AMPs). In this study, we analyzed how non-coding double-stranded RNA (dsRNAs) act as a DAMP in the skin and how the human cathelicidin AMP LL-37 might influence growth factor production in response to this DAMP. dsRNA alone significantly increased the expression of multiple growth factors in keratinocytes, endothelial cells, and fibroblasts. Furthermore, RNA sequencing transcriptome analysis found that multiple growth factors increase when cells are exposed to both LL-37 and dsRNA, a condition that mimics normal wounding. Quantitative PCR and/or ELISA validated that growth factors expressed by keratinocytes in these conditions included, but were not limited to, basic fibroblast growth factor (FGF2), heparin-binding EGF-like growth factor (HBEGF), vascular endothelial growth factor C (VEGFC), betacellulin (BTC), EGF, epiregulin (EREG), and other members of the transforming growth factor β superfamily. These results identify a novel role for DAMPs and AMPs in the stimulation of repair and highlight the complex interactions involved in the wound environment. PMID:27048655

  1. Immobilization of Heparin: Approaches and Applications

    PubMed Central

    Murugesan, Saravanababu; Xie, Jin; Linhardt, Robert J.

    2014-01-01

    Heparin, an anticoagulant, has been used in many forms to treat various diseases. These forms include soluble heparin and heparin immobilized to supporting matrices by physical adsorption, by covalent chemical methods and by photochemical attachment. These immobilization methods often require the use of spacers or linkers. This review examines and compares various techniques that have been used for the immobilization of heparin as well as applications of these immobilized heparins. In the applications reviewed, immobilized heparin is compared with soluble heparin for efficient and versatile use in each of the various applications. PMID:18289079

  2. Structural Snapshots of Heparin Depolymerization by Heparin Lyase I

    SciTech Connect

    Han, Young-Hyun; Garron, Marie-Line; Kim, Hye-Yeon; Kim, Wan-Seok; Zhang, Zhenqing; Ryu, Kyeong-Seok; Shaya, David; Xiao, Zhongping; Cheong, Chaejoon; Kim, Yeong Shik; Linhardt, Robert J.; Jeon, Young Ho; Cygler, Miroslaw

    2010-01-12

    Heparin lyase I (heparinase I) specifically depolymerizes heparin, cleaving the glycosidic linkage next to iduronic acid. Here, we show the crystal structures of heparinase I from Bacteroides thetaiotaomicron at various stages of the reaction with heparin oligosaccharides before and just after cleavage and product disaccharide. The heparinase I structure is comprised of a {beta}-jellyroll domain harboring a long and deep substrate binding groove and an unusual thumb-resembling extension. This thumb, decorated with many basic residues, is of particular importance in activity especially on short heparin oligosaccharides. Unexpected structural similarity of the active site to that of heparinase II with an ({alpha}/{alpha}){sub 6} fold is observed. Mutational studies and kinetic analysis of this enzyme provide insights into the catalytic mechanism, the substrate recognition, and processivity.

  3. Growth Hormone and Insulin-Like Growth Factor-1.

    PubMed

    Nicholls, Adam R; Holt, Richard I G

    2016-01-01

    Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. PMID:27347885

  4. Waste management - cytokines, growth factors and cachexia.

    PubMed

    Saini, Amarjit; Al-Shanti, Nasser; Nasser, Al-Shanti; Stewart, Claire E H

    2006-12-01

    Muscle damage with a lack of regeneration, manifests itself in several life-threatening diseases, including cancer cachexia, congestive heart failure, AIDS and sepsis. Often misdiagnosed as a condition simply of weight loss, cachexia is actually a highly complex metabolic disorder involving features of anorexia, anaemia, lipolysis and insulin resistance. A significant loss of lean body mass arises from such conditions, resulting in wasting of skeletal muscle. Unlike starvation, the weight loss seen in chronic illnesses arises equally from loss of muscle and of fat. The cachectic state is particularly problematic in cancer, typifying poor prognosis and often lowering responses to chemotherapy and radiation treatment. More than half of cancer patients suffer from cachexia, and strikingly, nearly one-third of cancer deaths are related to cachexia rather than the tumour burden. In considering this disorder, we are faced with a conundrum; how is it possible for uncontrolled growth to prevail in the tumour, in the face of unrestrained tissue loss in our muscles? Consistently, the catabolic state has been associated with a shift in the homeostatic balance between muscle synthesis and degradation mediated by the actions of growth factors and cytokines. Indeed, tumour necrosis factor-alpha (TNF-alpha) levels are raised in several animal models of cachectic muscle wasting, whereas the insulin-like growth factor (IGF) system acts potently to regulate muscle development, hypertrophy and maintenance. This concept of skeletal muscle homeostasis, often viewed as the net balance between two separate processes of protein synthesis and degradation has however changed. More recently, the view is that these two biochemical processes are not occurring independently of each other but in fact are finely co-ordinated by a web of intricate signalling networks. This review, therefore, aims to discuss data currently available regarding the mechanisms of degeneration and regeneration with

  5. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  6. Molecular basis for the Kallmann syndrome-linked fibroblast growth factor receptor mutation

    SciTech Connect

    Thurman, Ryan D.; Kathir, Karuppanan Muthusamy; Rajalingam, Dakshinamurthy; Kumar, Thallapuranam K. Suresh

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer The structural basis of the Kallmann syndrome is elucidated. Black-Right-Pointing-Pointer Kallmann syndrome mutation (A168S) induces a subtle conformational change(s). Black-Right-Pointing-Pointer Structural interactions mediated by beta-sheet G are most perturbed. Black-Right-Pointing-Pointer Ligand (FGF)-receptor interaction(s) is completely abolished by Kallmann mutation. Black-Right-Pointing-Pointer Kallmann mutation directly affects the FGF signaling process. -- Abstract: Kallmann syndrome (KS) is a developmental disease that expresses in patients as hypogonadotropic hypogonadism and anosmia. KS is commonly associated with mutations in the extracellular D2 domain of the fibroblast growth factor receptor (FGFR). In this study, for the first time, the molecular basis for the FGFR associated KS mutation (A168S) is elucidated using a variety of biophysical experiments, including multidimensional NMR spectroscopy. Secondary and tertiary structural analysis using far UV circular dichroism, fluorescence and limited trypsin digestion assays suggest that the KS mutation induces subtle tertiary structure change in the D2 domain of FGFR. Results of isothermal titration calorimetry experiments show the KS mutation causes a 10-fold decrease in heparin binding affinity and also a complete loss in ligand (FGF-1) binding. {sup 1}H-{sup 15}N chemical perturbation data suggest that complete loss in the ligand (FGF) binding affinity is triggered by a subtle conformational change that disrupts crucial structural interactions in both the heparin and the FGF binding sites in the D2 domain of FGFR. The novel findings reported in this study are expected to provide valuable clues toward a complete understanding of the other genetic diseases linked to mutations in the FGFR.

  7. The Role of Endogenous Epidermal Growth Factor Receptor Ligands in Mediating Corneal Epithelial Homeostasis

    PubMed Central

    Peterson, Joanne L.; Phelps, Eric D.; Doll, Mark A.; Schaal, Shlomit; Ceresa, Brian P.

    2014-01-01

    Purpose. To provide a comprehensive study of the biological role and therapeutic potential of six endogenous epidermal growth factor receptor (EGFR) ligands in corneal epithelial homeostasis. Methods. Kinetic analysis and dose response curves were performed by using in vitro and in vivo wound-healing assays. Biochemical assays were used to determine receptor expression and activity. Human tears were collected and quantitatively analyzed by multianalyte profiling for endogenous EGFR ligands. Results. Epidermal growth factor receptor ligands improved wound closure and activated EGFR, but betacellulin (BTC) was the most efficacious promoter of wound healing in vitro. In contrast, only epidermal growth factor (EGF) promoted wound healing in vivo. Human tears from 25 healthy individuals showed EGFR ligands at these average concentrations: EGF at 2053 ± 312.4 pg/mL, BTC at 207 ± 39.4 pg/mL, heparin-binding EGF at 44 ± 5.8 pg/mL, amphiregulin at 509 ± 28.8 pg/mL, transforming growth factor-α at 84 ± 19 pg/mL, and epiregulin at 52 ± 15 pg/mL. Conclusions. Under unwounded conditions, only EGF was present at concentrations near the ligand's Kd for the receptor, indicating it is the primary mediator of corneal epithelial homeostasis. Other ligands were present but at concentrations 11- to 7500-fold less their Kd, preventing significant ligand binding. Further, the high levels of EGF and its predicted binding preclude receptor occupancy by exogenous ligand and can explain the discrepancy between the in vitro and in vivo data. Therefore, therapeutic use of EGFR ligands may be unpredictable and impractical. PMID:24722692

  8. Heparin Characterization: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Jones, Christopher J.; Beni, Szabolcs; Limtiaco, John F. K.; Langeslay, Derek J.; Larive, Cynthia K.

    2011-07-01

    Although heparin is an important and widely prescribed pharmaceutical anticoagulant, its high degree of sequence microheterogeneity and size polydispersity make molecular-level characterization challenging. Unlike nucleic acids and proteins that are biosynthesized through template-driven assembly processes, heparin and the related glycosaminoglycan heparan sulfate are actively remodeled during biosynthesis through a series of enzymatic reactions that lead to variable levels of O- and N-sulfonation and uronic acid epimers. As summarized in this review, heparin sequence information is determined through a bottom-up approach that relies on depolymerization reactions, size- and charge-based separations, and sensitive mass spectrometric and nuclear magnetic resonance experiments to determine the structural identity of component oligosaccharides. The structure-elucidation process, along with its challenges and opportunities for future analytical improvements, is reviewed and illustrated for a heparin-derived hexasaccharide.

  9. Disruption of cell-matrix interactions by heparin enhances mesenchymal progenitor adipocyte differentiation

    SciTech Connect

    Luo Weijun; Shitaye, Hailu; Friedman, Michael; Bennett, Christina N.; Miller, Joshua; MacDougald, Ormond A.; Hankenson, Kurt D.

    2008-11-01

    Differentiation of marrow-derived mesenchymal progenitors to either the osteoblast or adipocyte lineage is reciprocally regulated. Factors that promote osteoblastogenesis inhibit adipogenesis, while adipogenic factors are inhibitory to osteoblast differentiation. Heparin, a soluble glycosaminoglycan, inhibits bone formation in vivo and osteoblast cell differentiation and function in vitro, and has been shown to promote adipocyte differentiation. To elucidate the role that heparin plays in the adipogenic induction of murine mesenchymal progenitors, we studied immortalized marrow stromal cells (IM-MSC), the MSC cell line, ST2, and 3T3L1 pre-adipocytes. Heparin alone was not sufficient to induce adipogenesis, but enhanced the induction under a variety of adipogenic cocktails. This effect was both dose- and time-dependent. Heparin showed a positive effect at concentrations > 0. 1 {mu}g/ml when applied before day 3 during the induction course. Heparin's effect on adipogenesis was independent of cell proliferation, cell density, and extracellular lipid. This effect is likely related to the unique structure of heparin because another polyanionic glycosaminoglycan, dextran sulfate, did not promote adipogenic differentiation. Heparin treatment altered morphology and adhesion characteristics of progenitor cells, resulting in cell rounding and aggregation. As well, heparin counteracted the known inhibitory effect of fibronectin on adipogenesis and decreased basal focal adhesion kinase and paxillin phosphorylation. We conclude that heparin-mediated disruption of cell-matrix adhesion enhances adipogenic potential.

  10. Expression of the vascular endothelial growth factor receptor, KDR, in human placenta.

    PubMed Central

    Vuckovic, M; Ponting, J; Terman, B I; Niketic, V; Seif, M W; Kumar, S

    1996-01-01

    Vascular endothelial growth factor (VEGF) is a heparin-binding growth factor known to act directly on vascular endothelial cells by promoting cell proliferation and permeability. To date, 3 structurally related cell surface receptors for VEGF, Flt-1, Flt-4 and KDR, have been identified and shown to be human type III receptor tyrosine kinases. The establishment of a vascular network is crucial to the development of the placenta and occurs through both angiogenesis and vasculogenesis. The signals controlling these processes are unclear. Immunohistochemical and in situ hybridisation techniques have localised VEGF in the trophoblast layers and VEGF binding to placental vascular endothelial cells and haemangioblasts has been shown, suggesting a role for VEGF and its receptors in development of the vascular network. In this study we have used specific antibodies to localise KDR and endothelial cells in 1st and 3rd trimester human placenta. The staining showed a colocalisation of KDR with endothelial cells and haemangioblasts. No staining of trophoblast cells was observed, but strong staining of the endothelial cells was seen in the villous stroma adjacent to areas of trophoblast proliferation. Images Fig. 1 Fig. 2 PMID:8621335

  11. Vascular endothelial growth factor from Trimeresurus jerdonii venom specifically binds to VEGFR-2.

    PubMed

    Zhong, Shurong; Wu, Jianbo; Cui, Yunpeng; Li, Rui; Zhu, Shaowen; Rong, Mingqiang; Lu, Qiumin; Lai, Ren

    2015-09-01

    Vascular endothelial growth factors (VEGFs) play important roles in angiogenesis. In this study, a vascular endothelial growth factor named TjsvVEGF was purified from the venom of Trimeresurus jerdonii by gel filtration, affinity, ion-exchange and high-performance liquid chromatography. TjsvVEGF was a homodimer with an apparent molecular mass of 29 kDa. The cDNA encoding TjsvVEGF was obtained by PCR. The open reading frame of the cloned TjsvVEGF was composed of 432 bp coding for a signal peptide of 24 amino acid residues and a mature protein of 119 amino acid residues. Compared with other snake venom VEGFs, the nucleotide and deduced protein sequences of the cloned TjsvVEGF were conserved. TjsvVEGF showed low heparin binding activity and strong capillary permeability increasing activity. The KD of TjsvVEGF to VEFGR-2 is 413 pM. However, the binding of TjsvVEGF to VEGFR-1 is too weak to detect. Though TjsvVEGF had high sequence identities (about 90%) with Crotalinae VEGFs, the receptor preference of TjsvVEGF was similar to Viperinae VEGFs which had lower sequence identities (about 60%) with it. TjsvVEGF might serve as a useful tool for the study of structure-function relationships of VEGFs and their receptors. PMID:26107411

  12. Bioengineered heparins and heparan sulfates.

    PubMed

    Fu, Li; Suflita, Matthew; Linhardt, Robert J

    2016-02-01

    Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates. PMID:26555370

  13. Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition

    PubMed Central

    Järvinen, Tero A. H.; Prince, Stuart

    2015-01-01

    Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer. PMID:26697491

  14. Further insights into the anti-PF4/heparin IgM immune response.

    PubMed

    Krauel, Krystin; Schulze, Annika; Jouni, Rabie; Hackbarth, Christine; Hietkamp, Bernhard; Selleng, Sixten; Koster, Andreas; Jensch, Inga; van der Linde, Julia; Schwertz, Hansjörg; Bakchoul, Tamam; Hundt, Matthias; Greinacher, Andreas

    2016-04-01

    Anti-platelet factor 4 (PF4)/heparin antibodies are not only the cause of heparin-induced thrombocytopenia but might also play a role in the antibacterial host defence. Recently, marginal zone (MZ) B cells were identified to be crucial for anti-PF4/heparin IgG antibody production in mice. Combining human studies and a murine model of polymicrobial sepsis we further characterised the far less investigated anti-PF4/heparin IgM immune response. We detected anti-PF4/heparin IgM antibodies in the sera of paediatric patients < 6 months of age after cardiac surgery and in sera of splenectomised mice subjected to polymicrobial sepsis. In addition, PF4/heparin-specific IgM B cells were not only found in murine spleen, but also in peritoneum and bone marrow upon in vitro stimulation. Together, this indicates involvement of additional B cell populations, as MZ B cells are not fully developed in humans until the second year of life and are restricted to the spleen in mice. Moreover, PF4/heparin-specific B cells were detected in human cord blood upon in vitro stimulation and PF4-/- mice produced anti-PF4/heparin IgM antibodies after polymicrobial sepsis. In conclusion, the anti-PF4/heparin IgM response is a potential innate immune reaction driven by a B cell population distinct from MZ B cells. PMID:26467272

  15. Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor

    PubMed Central

    Duan, Bin; Wang, Min

    2010-01-01

    Integrating an advanced manufacturing technique, nanocomposite material and controlled delivery of growth factor to form multifunctional tissue engineering scaffolds was investigated in this study. Based on calcium phosphate (Ca–P)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposite microspheres, three-dimensional Ca–P/PHBV nanocomposite scaffolds with customized architecture, controlled porosity and totally interconnected porous structure were successfully fabricated using selective laser sintering (SLS), one of the rapid prototyping technologies. The cytocompatibility of sintered Ca–P/PHBV nanocomposite scaffolds, as well as PHBV polymer scaffolds, was studied. For surface modification of nanocomposite scaffolds, gelatin was firstly physically entrapped onto the scaffold surface and heparin was subsequently immobilized on entrapped gelatin. The surface-modification improved the wettability of scaffolds and provided specific binding site between conjugated heparin and the growth factor recombinant human bone morphogenetic protein-2 (rhBMP-2). The surface-modified Ca–P/PHBV nanocomposite scaffolds loaded with rhBMP-2 significantly enhanced the alkaline phosphatase activity and osteogenic differentiation markers in gene expression of C3H10T1/2 mesenchymal stem cells. Together with osteoconductive nanocomposite material and controlled growth factor delivery strategies, the use of SLS technique to form complex scaffolds will provide a promising route towards individualized bone tissue regeneration. PMID:20504805

  16. Heparin induced thrombocytopenia management with bivalirudin.

    PubMed

    Meera, R; Rachel, D; Ramakrishnapillai, V; Vijayaraghavan, G

    2007-01-01

    We report a case of Heparin Induced Thrombocytopenia (HIT) following percutaneous coronary intervention. The case is unique in that thrombocytopenia occurred very early after heparin administration and responded well to a regime of bivalirudin-a direct thrombin inhibitor readily available in India. Heparin, Thrombocytopenia, Bivalirudin Acute HIT, occurring within few hours of heparin therapy have been reported in patients previously exposed to unfractionated heparin (UFH) or low molecular weight heparin (LMWH) 1. Prompt recognition of the condition and timely intervention with direct thrombin inhibitors, can result in salvaging patients from this potentially fatal complication. PMID:19126942

  17. Enhanced regenerative healing efficacy of a highly skin-permeable growth factor nanocomplex in a full-thickness excisional mouse wound model

    PubMed Central

    Bae, Il-Hong; Park, Jin Woo; Kim, Dae-Yong

    2014-01-01

    Exogenous administration of growth factors has potential benefits in wound healing; however, limited percutaneous absorption, inconsistent efficacy, and the need for high doses have hampered successful clinical use. To overcome these restrictions, we focused on the development of a topical formulation composed of highly skin-permeable multimeric nanocomplex of growth factors. In the present study, we fused low-molecular-weight protamine (LMWP) with epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-I), and platelet-derived growth factor A ligand (PDGF-A) (producing recombinant [r]LMWP-EGF, rLMWP-IGF-I, and rLMWP-PDGF-A, respectively) via genetic modification. Then, we used in vitro cell proliferation studies to assess the biological activity and the benefits of the combination. The LMWP-conjugated growth factors were complexed with low-molecular-weight heparin (LMWH) and formulated with Poloxamer 188 as a delivery vehicle. After confirming the enhanced skin permeability, in vivo studies were performed to assess whether the LMWP-conjugated growth factor nanocomplex formulations accelerated the healing of full-thickness wounds in mice. The LMWP-conjugated growth factors were biologically equivalent to their native forms, and their combination induced greater fibroblast proliferation. rLMWP-EGF showed significantly enhanced permeability and cumulative permeation, and the rates for rLMWP-IGF-I and rLMWP-PDGF-A, across excised mouse skin, were 124% and 164% higher, respectively, than for the native forms. The LMWP-fused growth factors resulted in formation of nanocomplexes (23.51±1.12 nm in diameter) in combination with LMWH. Topical delivery of growth factors fused with LMWP accelerated wound re-epithelialization significantly, accompanied by the formation of healthy granulation tissue within 9 days compared with a free–growth factor complex or vehicle. Thus, the LMWP-conjugated growth factor nanocomplex can induce rapid, comprehensive healing and may

  18. Characterization of insulin-like growth factor I and epidermal growth factor receptors in meningioma

    SciTech Connect

    Kurihara, M.; Tokunaga, Y.; Tsutsumi, K.; Kawaguchi, T.; Shigematsu, K.; Niwa, M.; Mori, K. )

    1989-10-01

    Receptors for insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) were localized and characterized in eight samples of human meningioma (four fibrous, two meningothelial, and two angioblastic types), using quantitative autoradiographic techniques. Effects of both growth factors on deoxyribonucleic acid (DNA) synthesis in the cultured meningioma cells were examined. High numbers of specific binding sites for both IGF-I and EGF were homogeneously present in tissue sections derived from fibrous and meningothelial types of meningiomas, whereas binding sites for these growth factors were not detectable in adjacent leptomeninges. While relatively large numbers of IGF-I binding sites were located in the wall of the intratumoral vasculature, the number of binding sites in the stromal component was lower in angioblastic-type meningiomas, including a low number of EGF binding sites detected only in the stromal portion. Scatchard analysis revealed the presence of a single class of high-affinity binding sites for both IGF-I and EGF in the meningiomas examined (dissociation constant (Kd) = 0.6 to 2.9 nM, and the maximum number of binding sites (Bmax) = 16 to 80 fmol/mg for IGF-I; and Kd = 0.6 to 4.0 nM, Bmax = 3 to 39 fmol/mg for EGF). Both growth factors increased the synthesis of DNA, in a dose-dependent manner, as measured by 3H-thymidine incorporation. The combination of IGF-I and EGF synergistically stimulated the synthesis of DNA, and the effects seen with 10% fetal bovine serum could be reproduced at a concentration of 10(-10) M. These observations can be interpreted to mean that both IGF-I and EGF may be involved in the growth modulation of meningiomas, possibly through paracrine or autocrine mechanisms.

  19. Entrapment of basic fibroblast growth factor (bFGF) in a succinylated chitosan nanoparticle delivery system and release profile.

    PubMed

    Butko, Alison; Bonat Celli, Giovana; Paulson, Allan; Ghanem, Amyl

    2016-07-01

    Basic fibroblast growth factor (bFGF) helps to regulate the proliferation and migration of fibroblasts, the proliferation of endothelial cells, and aids the development of angiogenesis. Its in vivo half-life is on the order of minutes due to extensive degradation and inactivation, which could be potentially reduced by controlled release vehicles. In this study, bFGF was entrapped into chitosan (CS) and N-succinyl-chitosan (SC) nanoparticles, with and without heparin, at two levels of initial loading, followed by further characterization of the particles. Release studies were conducted using radiolabeled bFGF-loaded nanoparticles. Both types of nanoparticles loaded similar amounts of bFGF (60.2 and 68.6% for CS and SC, respectively). The release profile varied greatly among the samples, and a burst release was observed in most cases, with the release amount approaching its final value in the first 6 h. The final amount released varied from 1.5 to 18% of the amount of bFGF-entrapped. The concomitant encapsulation of heparin and the use of SC as a nanoparticle matrix contributed to the largest amount of bFGF release (18%) over the time investigated. PMID:27146359

  20. Fibroblast growth factor 23 and bone mineralisation

    PubMed Central

    Guo, Yu-Chen; Yuan, Quan

    2015-01-01

    Fibroblast growth factor 23 (FGF23) is a hormone that is mainly secreted by osteocytes and osteoblasts in bone. The critical role of FGF23 in mineral ion homeostasis was first identified in human genetic and acquired rachitic diseases and has been further characterised in animal models. Recent studies have revealed that the levels of FGF23 increase significantly at the very early stages of chronic kidney disease (CKD) and may play a critical role in mineral ion disorders and bone metabolism in these patients. Our recent publications have also shown that FGF23 and its cofactor, Klotho, may play an independent role in directly regulating bone mineralisation instead of producing a systematic effect. In this review, we will discuss the new role of FGF23 in bone mineralisation and the pathophysiology of CKD-related bone disorders. PMID:25655009

  1. Neuropeptides as lung cancer growth factors.

    PubMed

    Moody, Terry W; Moreno, Paola; Jensen, Robert T

    2015-10-01

    This manuscript is written in honor of the Festschrift for Abba Kastin. I met Abba at a Society for Neuroscience meeting and learned that he was Editor-in-Chief of the Journal Peptides. I submitted manuscripts to the journal on "Neuropeptides as Growth Factors in Cancer" and subsequently was named to the Editorial Advisory Board. Over the past 30 years I have published dozens of manuscripts in Peptides and reviewed hundreds of submitted manuscripts. It was always rewarding to interact with Abba, a consummate professional. When I attended meetings in New Orleans I would sometimes go out to dinner with him at the restaurant "Commanders Palace". When I chaired the Summer Neuropeptide Conference we were honored to have him receive the Fleur Strand Award one year in Israel. I think that his biggest editorial contribution has been the "Handbook of Biologically Active Peptides." I served as a Section Editor on "Cancer/Anticancer Peptides" and again found that it was a pleasure working with him. This review focuses on the mechanisms by which bombesin-like peptides, neurotensin and vasoactive intestinal peptide regulate the growth of lung cancer. PMID:25836991

  2. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  3. Epidermal growth factor signaling in transformed cells

    PubMed Central

    Lindsey, Stephan; Langhans, Sigrid A.

    2016-01-01

    Members of the epidermal growth factor receptor (EGFR/ErbB) family play a critical role in normal cell growth and development. However, many ErbB family members, especially EGFR, are aberrantly expressed or deregulated in tumors and are thought to play crucial roles in cancer development and metastatic progression. In this chapter, we provide an overview of key mechanisms contributing to aberrant EGFR/ErbB signaling in transformed cells which results in many phenotypic changes associated with the earliest stages of tumor formation, including several hallmarks of epithelial-to-mesenchymal transition (EMT). These changes often occur through interaction with other major signaling pathways important to tumor progression resulting in a multitude of transcriptional changes that ultimately impact cell morphology, proliferation and adhesion, all of which are crucial for tumor progression. The resulting mesh of signaling networks will need to be taken into account as new regimens are designed for targeting EGFR for therapeutic intervention. As new insights into the molecular mechanisms of the cross-talk of EGFR signaling with other signaling pathways and their role in therapeutic resistance to anti-EGFR therapies are gained a continual reassessment of clinical therapeutic regimes and strategies will be required. Understanding the consequences and complexity of EGF signaling and how it relates to tumor progression is critical for the development of clinical compounds and establishing clinical protocols for the treatment of cancer. PMID:25619714

  4. Identification and partial characterization of the fibroblast growth factor receptor of baby hamster kidney cells

    SciTech Connect

    Neufeld, G.; Gospodarowicz, D.

    1985-11-05

    The binding of biologically active, SVI-labeled basic fibroblast growth factor (FGF) to baby hamster kidney-derived cell line cells (BHK-21) was studied at 4 degrees C. Unlabeled FGF displaced cell surface bound SVI-FGF, but platelet-derived growth factor, epidermal growth factor, insulin, or transferrin did not. Binding was saturable both as a function of time and as a function of increasing SVI-FGF concentrations. Scatchard analysis of the binding data revealed the presence of about 1.2 X 10(5) binding sites/cell with an apparent KD of 270 pM. The number of the binding sites was down-regulated following preincubation of the cells with FGF. The density of binding sites/cell also decreased as an inverse function of cell density. When SVI-FGF binding was studied in a BHK-21 cell membrane preparation, it was found that the membranal binding site displayed a lower KD of 21 pM. SVI-FGF was covalently cross-linked to its cell surface receptor on intact BHK-21 cells using the homobifunctional agent disuccinimidyl suberate. Two macromolecular species with an apparent molecular weight of 145,000 and SV,000, respectively, were labeled under both reducing and nonreducing conditions. Unlabeled FGF competed with SVI-FGF for binding to both macromolecular species. The labeling of the macromolecules was also inhibited by heparin. No labeling was observed in the absence of the cross-linkers or when heat-inactivated SVI-FGF was used instead of radiolabeled, biologically active FGF.

  5. Design of Growth Factor Sequestering Biomaterials

    PubMed Central

    Belair, David G.; Le, Ngoc Nhi; Murphy, William L.

    2014-01-01

    Growth factors (GFs) are major regulatory proteins that can govern cell fate, migration, and organization. Numerous aspects of the cell milieu can modulate cell responses to GFs, and GF regulation is often achieved by the native extracellular matrix (ECM). For example, the ECM can sequester GFs and thereby control GF bioavailability. In addition, GFs can exert distinct effects depending on whether they are sequestered in solution, at two-dimensional interfaces, or within three-dimensional matrices. Understanding how the context of GF sequestering impacts cell function in the native ECM can instruct the design of soluble or insoluble GF sequestering moieties, which can then be used in a variety of bioengineering applications. This Feature Article provides an overview of the natural mechanisms of GF sequestering in the cell milieu, and reviews the recent bioengineering approaches that have sequestered GFs to modulate cell function. Results to date demonstrate that the cell response to GF sequestering depends on the affinity of the sequestering interaction, the spatial proximity of sequestering in relation to cells, the source of the GF (supplemented or endogenous), and the phase of the sequestering moiety (soluble or insoluble). We highlight the importance of context for the future design of biomaterials that can leverage endogenous molecules in the cell milieu and mitigate the need for supplemented factors. PMID:25182455

  6. Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures.

    PubMed Central

    Nakamura, T; Teramoto, H; Ichihara, A

    1986-01-01

    A growth factor (HGF) stimulating DNA synthesis of adult rat hepatocytes in primary culture was found in rat platelets. HGF was purified from rat platelets to homogeneity by a three-step procedure: stimulation of its release from platelets by thrombin, cation-exchanger fast protein liquid chromatography on a Mono S column, and heparin-Sepharose chromatography. HGF was clearly distinguishable from the platelet-derived growth factor (PDGF) by fast protein liquid chromatography. HGF was a heat- and acid-labile cationic protein that was inactivated by reduction with dithiothreitol. Its molecular mass was estimated to be 27 kDa by NaDodSO4/PAGE and its amino acid composition was very different from that of PDGF. The purified HGF stimulated DNA synthesis in adult rat hepatocytes at 2 ng/ml and was maximally effective at 20 ng/ml; its effect was additive or synergistic with those of insulin and EGF, depending on their combinations. HGF did not stimulate DNA synthesis of Swiss 3T3 cells, while PDGF did not stimulate that of hepatocytes. Thus, HGF showed clearly different cell specificity from PDGF in its growth-promoting activities. These findings indicate that HGF is a growth factor in platelets for mature hepatocytes. Images PMID:3529086

  7. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    SciTech Connect

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  8. Heparin effect on DNA synthesis in a murine fibrosarcoma cell line: influence of anionic density

    SciTech Connect

    Piepkorn, M.W.; Daynes, R.A.

    1983-09-01

    The effects of heparin subfractions on DNA synthesis in a murine cutaneous fibrosarcoma cell line were examined. Porcine mucosal heparin was preparatively fractionated for anionic charge density by DEAE-Sephadex chromatography and for molecular weight by Sephadex G-100 filtration. The cell line was plated from confluent monolayer cultures and grown in medium and fetal bovine serum, with or without a heparin fraction at a final concentration of 10 micrograms/ml. At intervals thereafter, the cells were pulsed with (/sup 3/H)thymidine. A low-charge density heparin fraction stimulated (/sup 3/H)thymidine incorporation (cpm/mg protein and cpm/cell) during the first 3 days of growth compared to control values without added heparin, whereas a high-charge density heparin fraction had little of this effect (186 +/- 35% of control vs. 101 +/- 14%, respectively; P less than .05). The augmentation of DNA synthesis observed with the low-charge density fraction correlated with increased proportions of cells in S and G2 phases compared with those of the controls, as determined by flow cytofluorometry. Low- and high-molecular-weight heparin fractions did not significantly alter DNA synthesis. Heparin subfractions are thus heterogeneous with respect to their effect on cellular DNA synthesis in this tumor line.

  9. Unfractionated Heparin Promotes Osteoclast Formation in Vitro by Inhibiting Osteoprotegerin Activity.

    PubMed

    Li, Binghan; Lu, Dan; Chen, Yuqing; Zhao, Minghui; Zuo, Li

    2016-01-01

    Heparin has been proven to enhance bone resorption and induce bone loss. Since osteoclasts play a pivotal role in bone resorption, the effect of heparin on osteoclastogenesis needs to be clarified. Since osteocytes are the key modulator during osteoclastogenesis, we evaluated heparin's effect on osteoclastogenesis in vitro by co-culturing an osteocyte cell line (MLO-Y4) and pre-osteoclasts (RAW264.7). In this co-culture system, heparin enhanced osteoclastogenesis and osteoclastic bone resorption while having no influence on the production of RANKL (receptor activator of NFκB ligand), M-CSF (macrophage colony-stimulating factor), and OPG (osteoprotegerin), which are three main regulatory factors derived from osteocytes. According to previous studies, heparin could bind specifically to OPG and inhibit its activity, so we hypothesized that this might be a possible mechanism of heparin activity. To test this hypothesis, osteoclastogenesis was induced using recombinant RANKL or MLO-Y4 supernatant. We found that heparin has no effect on RANKL-induced osteoclastogenesis (contains no OPG). However, after incubation with OPG, the capacity of MLO-Y4 supernatant for supporting osteoclast formation was increased. This effect disappeared after OPG was neutralized and reappeared after OPG was replenished. These results strongly suggest that heparin promotes osteocyte-modulated osteoclastogenesis in vitro, at least partially, through inhibiting OPG activity. PMID:27110777

  10. Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2

    PubMed Central

    Xu, Xian; Jha, Amit K.; Duncan, Randall L.; Jia, Xinqiao

    2011-01-01

    We are interested in developing hydrophilic particulate systems that are capable of sequestering growth factors, regulating their release and potentiating their biological functions. Towards this end, heparin (HP)-decorated, hyaluronic acid (HA)-based, hydrogel particles (HGPs) were synthesized using an inverse emulsion polymerization technique employing divinyl sulfone as the crosslinker. By varying the feed composition of the aqueous phase, the amount of heparin integrated in the particles can be systematically tuned. The resulting microscopic particles are spherical in shape and contain nanosized pores suitable for growth factor encapsulation. The covalently immobilized heparin retained its ability to bind bone morphogenetic protein 2 (BMP-2) specifically, and its release kinetics can be adjusted by tuning the particle composition. Compared to the pure HA particles, the hybrid HA/HP HGPs show a higher BMP-2 loading capacity. While BMP-2 was released from HA HGPs with a significant initial burst, a near zero-order release kinetics was observed from HA/HP hybrid particles with an optimized heparin content of 0.55 μg per milligram HGPs. The ability of HA/HP hybrid particles to present BMP-2 in a controlled manner, combined with the innate bioactivity of HA, induced robust and consistent chondrogenic differentiation of murine mesenchymal stem cells, as evidenced by the up-regulation of mRNA levels of chondrogenic markers and the production of cartilage-specific extracellular matrix components. The simplicity of the particle synthesis, combined with the defined biological activities of the constituent building blocks, renders the HP-decorated, HA-based hydrogel particle system an attractive candidate for the sustained release of BMP-2, possibly for cartilage repair and regeneration. PMID:21550426

  11. Endorsement of Growth Factors in Experiential Training Groups

    ERIC Educational Resources Information Center

    Kiweewa, John; Gilbride, Dennis; Luke, Melissa; Seward, Derek

    2013-01-01

    The purpose of this study was to identify student growth factors during a semester long Master's level group counseling class. Results indicated that 12 growth factors accounted for 86% of the total number of critical incidents that participants reported as influencing their personal growth and awareness during the group experience. Two other…

  12. Gene Expression of Growth Factors and Growth Factor Receptors for Potential Targeted Therapy of Canine Hepatocellular Carcinoma

    PubMed Central

    IIDA, Gentoku; ASANO, Kazushi; SEKI, Mamiko; SAKAI, Manabu; KUTARA, Kenji; ISHIGAKI, Kumiko; KAGAWA, Yumiko; YOSHIDA, Orie; TESHIMA, Kenji; EDAMURA, Kazuya; WATARI, Toshihiro

    2013-01-01

    ABSTRACT The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC. PMID:24189579

  13. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  14. The neuronal cell-surface molecule mitogenic for Schwann cells is a heparin-binding protein.

    PubMed Central

    Ratner, N; Hong, D M; Lieberman, M A; Bunge, R P; Glaser, L

    1988-01-01

    The cell surface of embryonic peripheral neurons provides a mitogenic stimulus for Schwann cells. We report (i) the solubilization of this mitogenic activity from rat dorsal root ganglion neurons grown in tissue culture and (ii) the solubilization and partial purification of mitogenic activity from neonatal rat brains. Extracted mitogenic activity is peripheral rather than intrinsic to the membrane, stable after extraction, and active as a mitogen in the absence of serum (the most stringent criterion defining the neuronal mitogen). We have previously provided evidence suggesting that a neuronal cell-surface heparan sulfate proteoglycan is required for expression of the neurons' mitogenic activity. We now show that mitogenic activity can be extracted from the membrane dissociated from proteoglycan as assayed by its ability to bind to immobilized heparin. After dissociation, low concentrations of heparin (1 micrograms/ml) inhibit the ability of the mitogen to stimulate Schwann cell division. Basic fibroblast growth factor (FGF) is weakly mitogenic for Schwann cells, but it is not present in mitogenic brain extracts (based on immunoblotting). Immunodepletion experiments with specific antibodies to FGF indicate that the mitogenic activity extracted from neurons is not a form of this heparin-binding mitogen. Acidic FGF is not mitogenic for Schwann cells and is not present in mitogenic brain extracts. We suggest that these and previous data indicate the neurite mitogen is a proteoglycan-growth factor complex that limits mitogenic activity to the axonal surface, protects mitogen against inactivation by other proteoglycans, and provides for effective presentation of mitogen to the Schwann cell. PMID:3413130

  15. Isolated placental vessel response to vascular endothelial growth factor and placenta growth factor in normal and growth-restricted pregnancy.

    PubMed

    Szukiewicz, Dariusz; Szewczyk, Grzegorz; Watroba, Mateusz; Kurowska, Ewa; Maslinski, Slawomir

    2005-01-01

    Vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF) cause vasodilation. We examined the vasomotor response of isolated placental vessels to VEGF and PlGF in normal (group I) and intrauterine growth retardation (IUGR)-complicated pregnancy (group II). Rings of vessels were prepared in vitro and mounted on the vessel myograph plunged in tissue bath. The magnitude of dilation to increased doses of VEGF and PlGF has been studied. VEGF is a more potent vasodilator than PlGF. Both, VEGF- and PlGF-induced vasorelaxation was diminished in the IUGR (group II) nearly by half, compared to control (group I). Relative placental nitric oxide deficiency, or decreased sensitivity to VEGF and PlGF may contribute to the development of high impedance fetoplacental circulation. PMID:15591804

  16. The Role of Vascular Endothelial Growth Factors and Fibroblast Growth Factors in Angiogenesis during Otitis Media

    PubMed Central

    Husseman, Jacob; Palacios, Sean D.; Rivkin, Alexander Z.; Oehl, Heinz; Ryan, Allen F.

    2012-01-01

    The middle ear response to otitis media includes transformation and hyperplasia of the mucosal epithelium and subepithelial connective tissue. Significant neovascularization is also noted, which occurs both to support the hypertrophied mucosa and to mediate the increased trafficking of leukocytes. We investigated the role of two known potent angiogenic growth factor families, the fibroblast growth factors (FGFs) and vascular endothelial growth factors (VEGFs), in middle ear mucosal angiogenesis. DNA microarrays were used to evaluate the expression of FGFs and VEGFs, as well as their receptors and unique signaling proteins, in the middle ears of mice undergoing a complete course of acute bacterial otitis media. In addition, a member of each family was introduced to the middle ear submucosal compartment of the normal middle ears of guinea pigs, by a continuous-release osmotic minipump system over 1 week. During the course of bacterial otitis media, a significant regulation of a number of genes important for angiogenesis was identified. Histologic evaluation of middle ear mucosa following micropump infusion of both FGF1 and VEGF-A showed significant angiogenesis at the site of infusion in comparison to control saline infusion. These results support a role for FGFs and VEGFs in the neovascularization of the middle ear mucosa during otitis media, and offer a potential avenue for therapeutic intervention. PMID:22104377

  17. Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6

    PubMed Central

    Volz, Yvonne; Koschut, David; Matzke-Ogi, Alexandra; Dietz, Marina S.; Karathanasis, Christos; Richert, Ludovic; Wagner, Moritz G.; Mély, Yves; Heilemann, Mike; Niemann, Hartmut H.; Orian-Rousseau, Véronique

    2015-01-01

    CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs. PMID:26181364

  18. Vascular Endothelial Growth Factor in Eye Disease

    PubMed Central

    Penn, J.S.; Madan, A.; Caldwell, R.B.; Bartoli, M.; Caldwell, R.W.; Hartnett, M.E.

    2012-01-01

    Collectively, angiogenic ocular conditions represent the leading cause of irreversible vision loss in developed countries. In the U.S., for example, retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration are the principal causes of blindness in the infant, working age and elderly populations, respectively. Evidence suggests that vascular endothelial growth factor (VEGF), a 40 kDa dimeric glycoprotein, promotes angiogenesis in each of these conditions, making it a highly significant therapeutic target. However, VEGF is pleiotropic, affecting a broad spectrum of endothelial, neuronal and glial behaviors, and confounding the validity of anti-VEGF strategies, particularly under chronic disease conditions. In fact, among other functions VEGF can influence cell proliferation, cell migration, proteolysis, cell survival and vessel permeability in a wide variety of biological contexts. This article will describe the roles played by VEGF in the pathogenesis of retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. The potential disadvantages of inhibiting VEGF will be discussed, as will the rationales for targeting other VEGF-related modulators of angiogenesis. PMID:18653375

  19. [Epidermal growth factor, innovation and safety].

    PubMed

    Esquirol Caussa, Jordi; Herrero Vila, Elisabeth

    2015-10-01

    Bioidentical recombinant human epidermal growth factor (rhEGF) is available in concentrations and purity suitable for therapeutic use in long time stable formulations. Beneficial effects in several skin pathologies and lesions have been reported (traumatic and surgical wound healing, laser induced wounds, abnormal scars, keloids, radiation or chemotherapy induced dermatitis, post inflammatory hyperpigmentation or for skin aging damage repairing) and also may be considered for the treatment of several oropharingeal and high gastroesophageal tract mucosa diseases (mouth sores, pharyngeal fistulas, ulcers), and several corneal or conjunctive mucosa lesions. rhEGF has not shown any important side or collateral effects in humans or in laboratory experimentation animals, showing optimal tolerability and safety with continuous use for months. Compounding gives advantages of versatility, individualization, personalization, molecular stability, safety and effectiveness in ideal conditions, showing good tissue penetration, both on intact skin and skin lesions that expose the lower planes to the surface. rhEGF compounds can be considered for prevention or as a treatment of diverse skin and mucosa diseases and conditions through compounding preparations. PMID:25433777

  20. Connective tissue growth factor in tumor pathogenesis

    PubMed Central

    2012-01-01

    Key roles for connective tissue growth factor (CTGF/CCN2) are demonstrated in the wound repair process where it promotes myofibroblast differentiation and angiogenesis. Similar mechanisms are active in tumor-reactive stroma where CTGF is expressed. Other potential roles include prevention of hypoxia-induced apoptosis and promoting epithelial-mesenchymal transistion (EMT). CTGF expression in tumors has been associated to both tumor suppression and progression. For example, CTGF expression in acute lymphoblastic leukemia, breast, pancreas and gastric cancer correlates to worse prognosis whereas the opposite is true for colorectal, lung and ovarian cancer. This discrepancy is not yet understood. High expression of CTGF is a hallmark of ileal carcinoids, which are well-differentiated endocrine carcinomas with serotonin production originating from the small intestine and proximal colon. These tumors maintain a high grade of differentiation and low proliferation. Despite this, they are malignant and most patients have metastatic disease at diagnosis. These tumors demonstrate several phenotypes potentially related to CTGF function namely: cell migration, absent tumor cell apoptosis, as well as, reactive and well vascularised myofibroblast rich stroma and fibrosis development locally and in distal organs. The presence of CTGF in other endocrine tumors indicates a role in the progression of well-differentiated tumors. PMID:23259759

  1. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries.

    PubMed

    Billings, Paul C; Pacifici, Maurizio

    2015-01-01

    Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics. PMID:26076122

  2. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    PubMed Central

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-01-01

    Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177

  3. Heparin induces the expression of specific matrix proteins by human intestinal smooth muscle cells

    SciTech Connect

    Cochran, D.L.; Perr, H.; Graham, M.F.; Diegelmann, R.F.

    1986-03-01

    Human intestinal smooth muscle (HISM) cells have recently been identified as the major cell type responsible for stricture formation in Crohn's disease. Heparin, a sulfated glycosaminoglycan, has been shown to be a key modulator of vascular smooth muscle cell (VSMC) growth both in vivo and in vitro and to affect the phenotypic expression of proteins made by VSMC. Heparin has also been shown to effect the growth of HISM cells and in this report the authors demonstrate that heparin also has very specific effects on proteins released by HISM cells in vitro. Examination of the proteins in the culture medium of heparin-treated HISM cells observed at 3 time points following sparse plating and proliferation revealed an increase in /sup 35/S-methionine-labeled 200, 37, and 35 kd proteins. A transient effect on a 48 kd protein was observed in substrate-attached material left on the culture dish after the cells were removed with EGTA. No effects on intracellular labeled proteins could be demonstrated. The protein phenotype of HISM cells exposed to heparin appears very similar to that observed in VSMC. The release of specific proteins following exposure to heparin does not appear to be species specific. This response to heparin may reflect a significant influence of this glycosaminoglycan on the phenotypic expression of these cells.

  4. Antivascular Endothelial Growth Factor Agents for Neovascular Age-Related Macular Degeneration

    PubMed Central

    Zampros, Ilias; Praidou, Anna; Brazitikos, Periklis; Ekonomidis, Panagiotis; Androudi, Sofia

    2012-01-01

    Age-related macular degeneration (AMD) is the leading cause of severe visual loss and blindness over the age of 50 in developed countries. Vascular endothelial growth factor (VEGF) is considered as a critical molecule in the pathogenesis of choroidal neovascularization (CNV), which characterizes the neovascular AMD. Anti-VEGF agents are considered the most promising way of effectively inhibition of the neovascular AMD process. VEGF is a heparin-binding glycoprotein with potent angiogenic, mitogenic and vascular permeability-enhancing activities specific for endothelial cells. Two anti-VEGF agents have been approved by the US Food and Drug Administration (FDA) for the treatment of neovascular AMD. Pegaptanib sodium, which is an aptamer and ranibizumab, which is a monoclonal antibody fragment. Another humanized monoclonal antibody is currently off-label used, bevacizumab. This paper aims to discuss in details the effectiveness, the efficacy and safety of these three anti-VEGF agents. New anti-VEGF compounds which are recently investigated for their clinical usage (VEGF-trap, small interfering RNA) are also discussed for their promising outcomes. PMID:22174998

  5. Nucleolin regulates phosphorylation and nuclear export of fibroblast growth factor 1 (FGF1).

    PubMed

    Sletten, Torunn; Kostas, Michal; Bober, Joanna; Sorensen, Vigdis; Yadollahi, Mandana; Olsnes, Sjur; Tomala, Justyna; Otlewski, Jacek; Zakrzewska, Malgorzata; Wiedlocha, Antoni

    2014-01-01

    Extracellular fibroblast growth factor 1 (FGF1) acts through cell surface tyrosine kinase receptors, but FGF1 can also act directly in the cell nucleus, as a result of nuclear import of endogenously produced, non-secreted FGF1 or by transport of extracellular FGF1 via endosomes and cytosol into the nucleus. In the nucleus, FGF1 can be phosphorylated by protein kinase C δ (PKCδ), and this event induces nuclear export of FGF1. To identify intracellular targets of FGF1 we performed affinity pull-down assays and identified nucleolin, a nuclear multifunctional protein, as an interaction partner of FGF1. We confirmed a direct nucleolin-FGF1 interaction by surface plasmon resonance and identified residues of FGF1 involved in the binding to be located within the heparin binding site. To assess the biological role of the nucleolin-FGF1 interaction, we studied the intracellular trafficking of FGF1. In nucleolin depleted cells, exogenous FGF1 was endocytosed and translocated to the cytosol and nucleus, but FGF1 was not phosphorylated by PKCδ or exported from the nucleus. Using FGF1 mutants with reduced binding to nucleolin and a FGF1-phosphomimetic mutant, we showed that the nucleolin-FGF1 interaction is critical for the intranuclear phosphorylation of FGF1 by PKCδ and thereby the regulation of nuclear export of FGF1. PMID:24595027

  6. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction

    PubMed Central

    Awada, Hassan K.; Johnson, Noah R.; Wang, Yadong

    2015-01-01

    Treatment of ischemia through therapeutic angiogenesis faces significant challenges. Growth factor (GF)-based therapies can be more effective when concerns such as GF spatiotemporal presentation, bioactivity, bioavailability, and localization are addressed. During angiogenesis, vascular endothelial GF (VEGF) is required early to initiate neovessel formation while platelet-derived GF (PDGF-BB) is needed later to stabilize the neovessels. The spatiotemporal delivery of multiple bioactive GFs involved in angiogenesis, in a close mimic to physiological cues, holds great potential to treat ischemic diseases. To achieve sequential release of VEGF and PDGF, we embed VEGF in fibrin gel and PDGF in a heparin-based coacervate that is distributed in the same fibrin gel. In vitro, we show the benefits of this controlled delivery approach on cell proliferation, chemotaxis, and capillary formation. A rat myocardial infarction (MI) model demonstrated the effectiveness of this delivery system in improving cardiac function, ventricular wall thickness, angiogenesis, cardiac muscle survival, and reducing fibrosis and inflammation in the infarct zone compared to saline, empty vehicle, and free GFs. Collectively, our results show that this delivery approach mitigated the injury caused by MI and may serve as a new therapy to treat ischemic hearts pending further examination. PMID:25836592

  7. Human mast cell basic fibroblast growth factor in pulmonary fibrotic disorders.

    PubMed Central

    Inoue, Y.; King, T. E.; Tinkle, S. S.; Dockstader, K.; Newman, L. S.

    1996-01-01

    Mast cells (MCs) are abundant in fibrotic tissue, although their role in fibrogenesis remains obscure. Recent studies suggest MCs may produce basic fibroblast growth factor (bFGF). To evaluate the hypothesis that MC bFGF contributes to the fibrotic response in human interstitial lung disease, we studied lung tissue, bronchoalveolar lavage fluid and serum in 1) idiopathic pulmonary fibrosis, 2) chronic beryllium disease and sarcoidosis, 3) control subjects with no disease or who were beryllium sensitized with normal lung histology. Diseased subjects underwent clinical assessments to stage disease severity. We determined that most bFGF+ cells in lung interstitium are MCs and are most abundant in idiopathic pulmonary fibrosis. Distribution of bFGF+ MCs matched that of extracellular matrix deposition and correlated with the extent of fibrosis morphometrically. Only one bFGF isoform (17.8 kd) was found in idiopathic pulmonary fibrosis and chronic beryllium disease lung tissues and interacted with heparin-like molecules in the lung. Using a human MC line, we verified that MCs express bFGF mRNA and protein that localizes to cytoplasmic granules. Clinically, bFGF concentrations in bronchoalveolar lavage fluid and serum were highest in disease states and correlated with bronchoalveolar lavage cellularity and severity of gas exchange abnormalities, supporting a role for MC bFGF in the pulmonary fibrotic response and its clinical consequence. Images Figure 1 Figure 2 Figure 7 Figure 10 Figure 11 Figure 12 PMID:8952537

  8. Fibroblast Growth Factor Signaling in Metabolic Regulation

    PubMed Central

    Nies, Vera J. M.; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T.; Atkins, Annette R.; Evans, Ronald M.; Jonker, Johan W.; Downes, Michael Robert

    2016-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions. PMID:26834701

  9. Novel Drosophila receptor that binds multiple growth factors

    SciTech Connect

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-05-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10/sup -6/ to 10/sup -8/ M. The 100 kDa protein can be affinity-labeled with these /sup 125/I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by /sup 125/I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors.

  10. Growth factor array fabrication using a color ink jet printer.

    PubMed

    Watanabe, Kohei; Miyazaki, Takeshi; Matsuda, Ryoichi

    2003-04-01

    We have developed a novel method for growth factor analysis using a commercial color ink jet printer to fabricate substrata patterned with growth factors. We prepared substrata with insulin printed in a simple pattern or containing multiple areas of varying quantities of printed insulin. When we cultured the mouse myoblast cell line, C2C12, on the insulin-patterned substrata, the cells were grown in the same pattern with the insulin-printed pattern. Cell culture with the latter substrata demonstrated that quantity control of insulin deposition by a color ink jet printer is possible. For further applications, we developed substrata with insulin-like growth factor-I (IGF-I) and basic fibroblast growth factor (bFGF) spotted in 16 different areas in varying combinations and concentrations (growth factor array). With this growth factor array, C2C12 cells were cultured, and the onset of muscle cell differentiation was monitored for the expression of the myogenic regulator myogenin. The ratio of cells expressing myogenin varied with the doses of IGF-I and bFGF in the sections, demonstrating a feasibility of growth factor array fabrication by a color ink jet printer. Since a printer manipulates several colors, this method can be easily applied to multivariate analyses of growth factors and attachment factors affecting cell growth and differentiation. This method may provide a powerful tool for cell biology and tissue engineering, especially for stem cell research in investigating unknown conditions for differentiation. PMID:12719645

  11. Preparation and preliminary in vitro evaluation of a bFGF-releasing heparin-conjugated poly(ε-caprolactone) membrane for guided bone regeneration.

    PubMed

    Cao, Cong; Song, Ying; Yao, Qianqian; Yao, Yang; Wang, Tianlu; Huang, Bo; Gong, Ping

    2015-01-01

    In an effort to improve guided bone regeneration (GBR), we successfully fabricated a novel basic fibroblast growth factor (bFGF)-releasing heparin-conjugated poly(ε-caprolactone) membrane (hep-PCL/bFGF). This material has a porous microstructure with smooth and rough pore walls before and after heparinization, respectively. Our FTIR analyses indicated that chemical bonds were formed between PCL and heparin with a new amide C=O band at 1660 cm(-1) and a band at 3400 cm(-1) that can be attributed to -OH stretching in cross-linked heparin. We showed that bFGF was released from hep-PCL/bFGF in a continuous pattern, which remained for 3 weeks. We evaluated MG63 cell proliferation and biocompatibility of GBR membrane by a CCK-8 assay and a live/dead assay. The CCK-8 results revealed that the hep-PCL/bFGF group had superiority compared to other groups. Furthermore, cell morphology of hep-PCL membrane exhibited larger projected areas than those of PCL surfaces based on scanning electron microscopy analysis and immunofluorescent staining of cell cytoskeleton and vinculin expression. Our alkaline phosphatase activity assay also confirmed better performance of the hep-PCL/bFGF group. These results suggested that this novel hep-PCL/bFGF membrane is suitable for osteoblast-like cells to attach, proliferate, and differentiate. Therefore, the hep-PCL/bFGF membrane has potential to be a biodegradable membrane for GBR and warrants further investigation. PMID:26065539

  12. INSULIN INDUCED EPIDERMAL GROWTH FACTOR ACTIVATION IN VASCULAR SMOOTH MUSCLE CELLS IS ADAM-DEPENDENT

    PubMed Central

    Roztocil, Elisa; Nicholl, Suzanne M.; Davies, Mark G.

    2008-01-01

    Background With the rise in metabolic syndrome, understanding the role of insulin signaling within the cells of vasculature has become more important but yet remains poorly defined. The study examines the role of insulin actions on a pivotal cross-talk receptor, Epidermal Growth Factor Receptor (EGFR). EGFR is transactivated by both G-protein-coupled receptors and receptor linked tyrosine kinases and is key to many of their responses. Objective To determine the pathway of EGFR transactivation by insulin in human coronary smooth muscle cells (VSMC) Methods VSMC were cultured in vitro. Assays of EGFR phosphorylation were examined in response to insulin in the presence and absence of the plasmin inhibitors (e-aminocaproic acid and aprotinin) matrix metalloprotease (MMP) inhibitor GM6001, the ADAM (A Disintegrin And Metalloproteinase Domain) inhibitors TAPI-0 and TAPI-1, Heparin binding epidermal growth factor (HB-EGF) inhibitor, CRM197, HB-EGF inhibitory antibodies, EGF inhibitory antibodies and the EGFR inhibitor AG1478. Results Insulin induced time-dependent EGFR phosphorylation, which was inhibited by AG1478 in a concentration dependent manner. Application of the plasmin inhibitors did not block the response. EGFR phosphorylation by insulin was blocked by inhibition of MMP activity and the ligand HB-EGF. The presence of the ADAM inhibitors, TAPI-0 and TAPI-1 significantly decreased EGFR activation. EGFR phosphorylation by EGF was not interrupted by inhibition of plasmin, MMPs TAPIs, or HB-EGF. Direct blockade of the EGFR prevented activation by both insulin and EGF. Conclusion Insulin can induce transactivation of EGFR by an ADAM-mediated, HB-EGF dependent process. This is the first description of crosstalk via ADAM between insulin and EGFR in vascular SMC. Targeting a pivotal cross-talk receptor such as EGFR, which can be transactivated by both G-protein-coupled receptors and receptor tyrosine kinases is an attractive molecular target. PMID:18656632

  13. Synthetic oligosaccharides as heparin-mimetics displaying anticoagulant properties.

    PubMed

    Avci, Fikri Y; Karst, Nathalie A; Linhardt, Robert J

    2003-01-01

    Heparin and low molecular weight heparins are major clinical anticoagulants and the drugs of choice for the treatment of deep venous thrombosis. The discovery of an antithrombin binding domain in heparin focused interest on understanding the mechanism of heparin's antithrombotic/ anticoagulant activity. Various heparin-mimetic oligosaccharides have been prepared in an effort to replace polydisperse heparin and low molecular weight heparins with a structurally-defined anticoagulant. The goal of attaining a heparin-mimetic with no unwanted side-effects has also provided motivation for these efforts. This article reviews structure-activity relationship (SAR) of structurally-defined heparin-mimetic oligosaccharides. PMID:14529394

  14. An Exploratory Study of Factors Differentiating Freshmen Educational Growth.

    ERIC Educational Resources Information Center

    Lenning, Oscar T.

    The present study was an exploratory investigation of factors that differentiate students who exhibit "negative educational growth" from a group of equally able students who exhibit marked "positive educational growth." Educational growth was operationally defined as estimated true test-retest change on American College Tests (ACT) composite…

  15. Heparinized styrene-butadiene-styrene elastomers.

    PubMed

    Goosen, M F; Sefton, M V

    1979-05-01

    A heparinized high-strength elastomer has been developed which is potentially useful as a nonthrombogenic vascular prosthesis. A surface hydroxylated styrene-butadiene-styrene (SBS) block copolymer with at least 40% extent of reaction after glow-discharge cleaning was coated with a 20% acetylated polyvinyl alcohol/heparin mixture containing glutaraldehyde and magnesium chloride. After curing at 80 degrees C for 100 min, the polyvinyl alcohol, heparin, and hydroxylated SBS were covalently bound to each other by acetal bridges. The effects of the various substrate and coating parameters were optimized to achieve very strong adhesion between the coating layer and the surface hydroxylated SBS. Heparin was not leached from the surface of the new material using 3M saline at pH 7.4 despite a detection limit of 10(-5) micrograms heparin/cm2 min. Prolonged partial thromboplastin times of greater than 1200 sec were observed (control: PTT = 120 sec). Preliminary ex vivo testing using a simple arteriovenous shunt in the leg of a rabbit showed good thromboresistance. The heparinized SBS shunt chamber remained patent for more than two hours without desorption of heparin. It was concluded that surface hydroxylated SBS heparinized by acetal coupling owed its thromboresistance to the heparin covalently bound to the surface and not to a microenvironment of heparin in solution at the blood/material interface. PMID:438224

  16. Analysis of Heparins Derived From Bovine Tissues and Comparison to Porcine Intestinal Heparins.

    PubMed

    St Ange, Kalib; Onishi, Akihiro; Fu, Li; Sun, Xiaojun; Lin, Lei; Mori, Daisuke; Zhang, Fuming; Dordick, Jonathan S; Fareed, Jawed; Hoppensteadt, Debra; Jeske, Walter; Linhardt, Robert J

    2016-09-01

    Heparin is a widely used clinical anticoagulant. It is also a linear glycosaminoglycan with an average mass between 10 and 20 kDa and is primarily made up of trisulfated disaccharides comprised of 1,4-linked iduronic acid and glucosamine residues containing some glucuronic acid residues. Heparin is biosynthesized in the Golgi of mast cells commonly found in the liver, intestines, and lungs. Pharmaceutical heparin currently used in the United States is primarily extracted from porcine intestines. Other sources of heparin including bovine intestine and bovine lung are being examined as potential substitutes for porcine intestinal heparin. These additional sources are intended to serve to diversify the heparin supply, making this lifesaving drug more secure. The current study examines bovine heparins prepared from both intestines and lung and compares these to porcine intestinal heparin. The structural properties of these heparins are examined using nuclear magnetic resonance, gel permeation chromatography, and disaccharide analysis of heparinase-catalyzed depolymerized heparin. The in vitro functional activities of these heparins have also been determined. The goal of this study is to establish the structural and functional similarities and potential differences between bovine and porcine heparins. Porcine and bovine heparins have structural and compositional similarities and differences. PMID:27084870

  17. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage.

    PubMed

    Johns, D E; Athanasiou, K A

    2008-09-01

    Tissue-engineered fibrocartilage could become a feasible option for replacing tissues such as the knee meniscus or temporomandibular joint disc. This study employed five growth factors (insulin-like growth factor-I, transforming growth factor-beta1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor) in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs had lower biomechanical and biochemical properties than the controls with no growth factors, suggesting a detrimental effect, but the treatment with insulin-like growth factor-I tended to improve the constructs. Additionally, the 6-week time point was consistently better than that at 3 weeks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  18. Targeting the opioid growth factor: opioid growth factor receptor axis for treatment of human ovarian cancer.

    PubMed

    Zagon, Ian S; Donahue, Renee; McLaughlin, Patricia J

    2013-05-01

    The opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis is a biological pathway that is present in human ovarian cancer cells and tissues. OGF, chemically termed [Met(5)]-enkephalin, is an endogenous opioid peptide that interfaces with OGFr to delay cells moving through the cell cycle by upregulation of cyclin-dependent inhibitory kinase pathways. OGF inhibitory activity is dose dependent, receptor mediated, reversible, protein and RNA dependent, but not related to apoptosis or necrosis. The OGF-OGFr axis can be targeted for treatment of human ovarian cancer by (i) administration of exogenous OGF, (ii) genetic manipulation to over-express OGFr and (iii) use of low dosages of naltrexone, an opioid antagonist, which stimulates production of OGF and OGFr for subsequent interaction following blockade of the receptor. The OGF-OGFr axis may be a feasible target for treatment of cancer of the ovary (i) in a prophylactic fashion, (ii) following cytoreduction or (iii) in conjunction with standard chemotherapy for additive effectiveness. In summary, preclinical data support the transition of these novel therapies for treatment of human ovarian cancer from the bench to bedside to provide additional targets for treatment of this devastating disease. PMID:23856908

  19. Extracellular matrix and growth factors in branching morphogenesis

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1993-01-01

    The unifying hypothesis of the NSCORT in gravitational biology postulates that the ECM and growth factors are key interrelated components of a macromolecular regulatory system. The ECM is known to be important in growth and branching morphogenesis of embryonic organs. Growth factors have been detected in the developing embryo, and often the pattern of localization is associated with areas undergoing epithelial-mesenchymal interactions. Causal relationships between these components may be of fundamental importance in control of branching morphogenesis.

  20. Heparin inhibits mesangial cell proliferation in habu-venom-induced glomerular injury.

    PubMed Central

    Coffey, A. K.; Karnovsky, M. J.

    1985-01-01

    The authors have investigated the ability of anticoagulant heparin and nonanticoagulant heparin to inhibit mesangial-cell proliferation after the administration of habu (Trimeresurus flavorivids) snake venom to rats. Rats given injected habu venom exhibited glomerular capillary cystic lesions 6 to 24 hours later, and marked mesangial proliferation was noted within the cyst after 3 days. At 7 days 87% of these lesions (nodules) contained primarily mesangial cells embedded in a dense matrix and fibrin. A decrease in the frequency of nodules and the persistence of cysts indicate effective antiproliferative treatment. When anticoagulant heparin treatment extended from 18 hours after venom administration until sacrifice at 7 days, the percentage of nodules was reduced to 40%. Nonanticoagulant heparins resulted in some, but inconsistent, inhibition of mesangial-cell proliferation. The mechanism of the antiproliferative action of heparin on mesangial cells is not known but may be similar to that for vascular smooth muscle growth regulation. The authors suggest that endogenous heparin in the glomerular basement membrane and mesangial matrix may exert an antiproliferative effect under normal conditions. Loss of this inhibition due to glomerular damage might be reversed by the addition of exogenous heparin. Images Figure 1 PMID:3875292

  1. Heparin modulates human intestinal smooth muscle (HISM) cell proliferation and matrix production

    SciTech Connect

    Graham, M.; Perr, H.; Drucker, D.E.; Diegelmann, R.F.

    1986-03-01

    (HISM) cell proliferation and collagen production may play a role in the pathogenesis of intestinal stricture in Crohn's disease. The present studies were performed to evaluate the effects of heparin, a known modulator of vascular smooth muscle cells, on HISM cell proliferation and collagen production. Heparin (100 ..mu..g/ml) was added daily to HISM cell cultures for cell proliferation studies and for 24 hours at various time points during culture for collagen synthesis studies. Collagen synthesis was determined by the uptake of /sup 3/H proline into collagenase-sensitive protein. Heparin completely inhibited cell proliferation for 7 days, after which cell numbers increased but at a slower rate than controls. Cells released from heparin inhibition demonstrated catch-up growth to control levels. Collagen production was significantly inhibited by 24 hours exposure to heparin but only at those times during culture when collagen synthesis was maximal (8 to 12 days). Non-collagen protein synthesis was inhibited by heparin at all time points during culture. Heparin through its modulation of HISM cells may play an important role in the control of the extracellular matrix of the intestinal wall.

  2. Growth factor-eluting technologies for bone tissue engineering.

    PubMed

    Nyberg, Ethan; Holmes, Christina; Witham, Timothy; Grayson, Warren L

    2016-04-01

    Growth factors are essential orchestrators of the normal bone fracture healing response. For non-union defects, delivery of exogenous growth factors to the injured site significantly improves healing outcomes. However, current clinical methods for scaffold-based growth factor delivery are fairly rudimentary, and there is a need for greater spatial and temporal regulation to increase their in vivo efficacy. Various approaches used to provide spatiotemporal control of growth factor delivery from bone tissue engineering scaffolds include physical entrapment, chemical binding, surface modifications, biomineralization, micro- and nanoparticle encapsulation, and genetically engineered cells. Here, we provide a brief review of these technologies, describing the fundamental mechanisms used to regulate release kinetics. Examples of their use in pre-clinical studies are discussed, and their capacities to provide tunable, growth factor delivery are compared. These advanced scaffold systems have the potential to provide safer, more effective therapies for bone regeneration than the systems currently employed in the clinic. PMID:25967594

  3. Unfractionated Heparin Promotes Osteoclast Formation in Vitro by Inhibiting Osteoprotegerin Activity

    PubMed Central

    Li, Binghan; Lu, Dan; Chen, Yuqing; Zhao, Minghui; Zuo, Li

    2016-01-01

    Heparin has been proven to enhance bone resorption and induce bone loss. Since osteoclasts play a pivotal role in bone resorption, the effect of heparin on osteoclastogenesis needs to be clarified. Since osteocytes are the key modulator during osteoclastogenesis, we evaluated heparin’s effect on osteoclastogenesis in vitro by co-culturing an osteocyte cell line (MLO-Y4) and pre-osteoclasts (RAW264.7). In this co-culture system, heparin enhanced osteoclastogenesis and osteoclastic bone resorption while having no influence on the production of RANKL (receptor activator of NFκB ligand), M-CSF (macrophage colony-stimulating factor), and OPG (osteoprotegerin), which are three main regulatory factors derived from osteocytes. According to previous studies, heparin could bind specifically to OPG and inhibit its activity, so we hypothesized that this might be a possible mechanism of heparin activity. To test this hypothesis, osteoclastogenesis was induced using recombinant RANKL or MLO-Y4 supernatant. We found that heparin has no effect on RANKL-induced osteoclastogenesis (contains no OPG). However, after incubation with OPG, the capacity of MLO-Y4 supernatant for supporting osteoclast formation was increased. This effect disappeared after OPG was neutralized and reappeared after OPG was replenished. These results strongly suggest that heparin promotes osteocyte-modulated osteoclastogenesis in vitro, at least partially, through inhibiting OPG activity. PMID:27110777

  4. Alternative diagnosis to heparin-induced thrombocytopenia in two critically ill patients despite a positive PF4/heparin-antibody test

    PubMed Central

    Hron, Gregor; Knutson, Folke; Thiele, Thomas; Althaus, Karina; Busemann, Christoph; Friesecke, Sigrun; Greinacher, Andreas

    2013-01-01

    Thrombocytopenia can cause diagnostic challenges in patients who have received heparin. Heparin-induced thrombocytopenia (HIT) is often considered in the differential diagnosis, and a positive screening can be mistaken as confirmation of the disorder. We present two patients who both received low-molecular-weight heparin for several days. In the first patient, clinical judgment rejected the suspicion of HIT despite a positive screening assay, and treatment for the alternative diagnosis of post-transfusion purpura was correctly initiated. In the second patient, the inaccurate diagnosis HIT was pursued due to a positive screening assay, while the alternative diagnosis of drug-dependent thrombocytopenia caused by piperacillin/tazobactam was rejected. This resulted in re-exposure to piperacillin/tazobactam which caused a second episode of severe thrombocytopenia. A positive screening assay for platelet factor 4/heparin-antibody should be verified by a functional assay, especially in patients with low pretest probability for HIT. PMID:24102149

  5. Plumbagin Ameliorates CCl4-Induced Hepatic Fibrosis in Rats via the Epidermal Growth Factor Receptor Signaling Pathway

    PubMed Central

    Chen, Si; Chen, Yi; Chen, Bi; Cai, Yi-jing; Zou, Zhuo-lin; Wang, Jin-guo; Lin, Zhuo; Wang, Xiao-dong; Fu, Li-yun; Hu, Yao-ren; Chen, Yong-ping; Chen, Da-zhi

    2015-01-01

    Epidermal growth factor (EGF) and its signaling molecules, EGFreceptor (EGFR) and signal transducer and activator of transcription factor 3 (STAT3), have been considered to play a role in liver fibrosis and cirrhosis. Plumbagin (PL) is an extracted component from the plant and has been used to treat different kinds of cancer. However, its role in regulation of EGFR and STAT3 during liver fibrosis has not been investigated. In this study, the effects of PL on the regulation of EGFR and STAT3 were investigated in carbon tetrachloride (CCl4) induced liver fibrosis and hepatic stellate cells (HSC-T6). PL significantly attenuated liver injury and fibrosis in CCl4 treated rats. At concentrations of 2 to 6 μM, PL did not induce significant cytotoxicity of HSC-T6 cells. Moreover, PL reduced phosphorylation of EGFR and STAT3 in both fibrotic liver and heparin-binding EGF-like growth factor (HB-EGF) treated HSC-T6 cells. Furthermore, PL reduced the expression of α-SMA, EGFR, and STAT3 in both fibrotic liver and HB-EGF treated HSC-T6 cells. In conclusion, plumbagin could ameliorate the development of hepatic fibrosis through its downregulation of EGFR and STAT3 in the liver, especially in hepatic stellate cells. PMID:26550019

  6. Material factors influencing metallic whisker growth

    NASA Astrophysics Data System (ADS)

    Rodekohr, Chad L.

    Whiskering refers to the formation of slender, long, metallic filaments, much thinner than a human hair, that grow on a metallic thin film surface. They are readily observed for pure and alloyed zinc (Zn), silver (Ag), cadmium (Cd), indium (In), and tin (Sn) surfaces. The longest reported whisker length is 4.5 mm long but most high-aspect ratio whiskers range from 1-500 mum. The focus of this research is upon Sn whiskers. Sn whiskers pose serious reliability problems for the electronics industry and are known to be the source of failure in a wide range of electronic devices, such as nuclear power facilities, heart pacemakers, commercial satellites, aviation radar, telecommunication equipment, and desktop computers. The problem with whiskering has been recently exacerbated by the worldwide shift to lead (Pb) free electronics and the continuing reduction in electrical contact pitches. A thorough understanding of the growth mechanism of Sn whiskers is urgently needed. Currently, there is no universally accepted model that explains the broad range of observations on whiskering. The goals of this research are: (1) to develop a more detailed understanding of the physical mechanisms leading to the initiation and growth of Sn whiskers and (2) to outline reasonable mitigation strategies that could be followed to reduce or eliminate the problem of Sn whiskers. The major contributions of this work are: (1) A reliable method for growing Sn whiskers with predictable incubation times has been developed and tested. (2) A surface oxide is not necessary for whisker growth. (3) Intermetallic compounds (IMC) are not necessary for whisker growth. (4) Smoother, not rougher, substrate surfaces promote whisker growth. (5) Whiskers grow under both compressive and tensile thin film stress states. (6) Whisker growth increases with externally applied compression and tension forces. (7) Sn whiskers are composed of pure Sn except for the expected thin, native Sn oxide on their surface. (8) For

  7. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  8. EDUCATION AS A FACTOR IN ECONOMIC GROWTH.

    ERIC Educational Resources Information Center

    MACKERTICH, ALEX

    THE VALUE OF AN EDUCATION IN THE ECONOMIC GROWTH OF AN UNDERDEVELOPED COUNTRY (INDIA) WAS INVESTIGATED USING THE CASE STUDY APPROACH. DATA WERE GATHERED AT BOTH THE CENTRAL GOVERNMENT AND VILLAGE LEVELS THROUGH INTERVIEWS WITH INDIAN GOVERNMENT OFFICIALS AND FROM OFFICIAL GOVERNMENT PUBLICATIONS CONCERNING THE NATION'S EDUCATIONAL EFFORTS, AS…

  9. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    SciTech Connect

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.; Russell, J.D.; Trupin, J.S.

    1988-01-01

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloid fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.

  10. Heparin Resistance and Anticoagulation Failure in a Challenging Case of Cerebral Venous Sinus Thrombosis.

    PubMed

    King, Adam B; O'Duffy, Anne E; Kumar, Avinash B

    2016-07-01

    We report a challenging case of cerebral venous sinus thrombosis (multiple etiologic factors) that was complicated by heparin resistance secondary to suspected antithrombin III (ATIII) deficiency. A 20-year-old female previously healthy and currently 8 weeks pregnant presented with worsening headaches, nausea, and decreasing Glasgow Coma Scale/Score (GCS), necessitating mechanical ventilatory support. Imaging showed extensive clots in multiple cerebral venous sinuses including the superior sagittal sinus, transverse, sigmoid, jugular veins, and the straight sinus. She was started on systemic anticoagulation and underwent mechanical clot removal and catheter-directed endovascular thrombolysis with limited success. Complicating the intensive care unit care was the development of heparin resistance, with an inability to reach the target partial thomboplastin time (PTT) of 60 to 80 seconds. At her peak heparin dose, she was receiving >35 000 units/24 h, and her PTT was subtherapeutic at <50 seconds. Deficiency of ATIII was suspected as a possible etiology of her heparin resistance. Fresh frozen plasma was administered for ATIII level repletion. Given her high thrombogenic risk and challenges with conventional anticoagulation regimens, we transitioned to argatroban for systemic anticoagulation. Heparin produces its major anticoagulant effect by inactivating thrombin and factor X through an AT-dependent mechanism. For inhibition of thrombin, heparin must bind to both the coagulation enzyme and the AT. A deficiency of AT leads to a hypercoagulable state and decreased efficacy of heparin that places patients at high risk of thromboembolism. Heparin resistance, especially in the setting of critical illness, should raise the index of suspicion for AT deficiency. Argatroban is an alternate agent for systemic anticoagulation in the setting of heparin resistance. PMID:27366296

  11. The incorporation of bFGF mediated by heparin into PCL/gelatin composite fiber meshes for guided bone regeneration.

    PubMed

    Lee, Ji-hye; Lee, Young Jun; Cho, Hyeong-jin; Kim, Dong Wan; Shin, Heungsoo

    2015-04-01

    The concept of guided bone regeneration facilitated by barrier membranes has been widely considered to achieve enhanced bone healing in maxillofacial surgery. However, the currently available membranes are limited in their active regulation of cellular activities. In this study, we fabricated polycaprolactone/gelatin composite electrospun nanofibers incorporated with basic fibroblast growth factor (bFGF) to direct bone regeneration. The fibrous morphology was maintained after the crosslinking and subsequent conjugation of heparin. Release of bFGF from electrospun nanofibers without heparin resulted in a spontaneous burst, while the heparin-mediated release of bFGF decreased the burst release in 24 h. The bFGF released from the nanofibers enhanced the proliferation and migration of human mesenchymal stem cells as well as the tubule formation of human umbilical cord blood cells. The subcutaneous implantation of fibers incorporated with bFGF mobilized a large number of cells positive for CD31 and smooth muscle alpha actin within 2 weeks. The effect of the nanofibers incorporated with bFGF on bone regeneration was evaluated on a calvarial critical size defect model. As compared to the mice that received fibers without bFGF, which presented minimal new bone formation (5.36 ± 3.4 % of the defect), those that received implants of heparinized nanofibers incorporated with 50 or 100 ng/mL bFGF significantly enhanced new bone formation (10.82 ± 2.2 and 17.55 ± 6.08 %). Taken together, our results suggest that the electrospun nanofibers incorporating bFGF have the potential to be used as an advanced membrane that actively enhances bone regeneration. PMID:25787740

  12. Evaluation of Heparin Anticoagulation Protocols in Post–Renal Transplant Recipients (EHAP-PoRT Study)

    PubMed Central

    Ng, Joan Chung Yan; Leung, Marianna; Landsberg, David

    2016-01-01

    Background: Disturbances in hemostasis are common among renal transplant recipients. Because of the risk of thromboembolism and graft loss after transplant, a prophylactic heparin protocol was implemented at St Paul’s Hospital in Vancouver, British Columbia, in 2011. Therapeutic heparin is sometimes prescribed perioperatively for patients with preexisting prothrombotic conditions. There is currently limited literature on the safety and efficacy of heparin use in the early postoperative period. Objectives: The primary objectives were to document, for patients who underwent renal transplant, the incidence of major bleeding and of thrombosis in those receiving therapeutic heparin, prophylactic heparin, and no heparin anticoagulation in the early postoperative period and to compare these rates for the latter 2 groups. The secondary objectives included a comparison of the risk factors associated with major bleeding and thrombosis. Methods: Adult patients who received a renal transplant at St Paul’s Hospital between January 2008 and July 2013 were included in this retrospective cohort study. Electronic health records and databases were used to divide patients into the 3 heparin-use cohorts, to identify cases of major bleeding and thrombosis, and to characterize patients and events. The Fisher exact test was used for the primary outcome analysis, and descriptive statistics were used for all other outcomes. Results: A total of 547 patients were included in the analysis. Major bleeding was observed in 6 (46%) of the 13 patients who received therapeutic heparin; no cases of thrombosis occurred in these patients. Major bleeding occurred in 8 (3.0%) of the 266 patients who received prophylactic heparin and 9 (3.4%) of the 268 who received no heparin (p > 0.99). Thrombosis occurred in 1 (0.4%) and 3 (1.1%) of these patients, respectively (p = 0.62). Major bleeding occurred more frequently among patients with a low-target heparin protocol, but 61% of values for partial

  13. Addressing endotoxin issues in bioengineered heparin.

    PubMed

    Suwan, Jiraporn; Torelli, Amanda; Onishi, Akihiro; Dordick, Jonathan S; Linhardt, Robert J

    2012-01-01

    Heparin is a widely used clinical anticoagulant that is prepared from pig intestine. A contamination of heparin in 2008 has led to a reexamination of animal-derived pharmaceuticals. A bioengineered heparin prepared by bacterial fermentation and chemical and enzymatic processing is currently under development. This study examines the challenges of reducing or removing endotoxins associated with this process that are necessary to proceed with preclinical in vivo evaluation of bioengineered heparin. The current process is assessed for endotoxin levels, and strategies are examined for endotoxin removal from polysaccharides and enzymes involved in this process. PMID:23586950

  14. Structural Stability of Human Fibroblast Growth Factor-1 Is Essential for Protective Effects Against Radiation-Induced Intestinal Damage

    SciTech Connect

    Nakayama, Fumiaki; Umeda, Sachiko; Yasuda, Takeshi; Asada, Masahiro; Motomura, Kaori; Suzuki, Masashi; Zakrzewska, Malgorzata; Imamura, Toru; Imai, Takashi

    2013-02-01

    Purpose: Human fibroblast growth factor-1 (FGF1) has radioprotective effects on the intestine, although its structural instability limits its potential for practical use. Several stable FGF1 mutants were created increasing stability in the order, wild-type FGF1, single mutants (Q40P, S47I, and H93G), Q40P/S47I, and Q40P/S47I/H93G. This study evaluated the contribution of the structural stability of FGF1 to its radioprotective effect. Methods and Materials: Each FGF1 mutant was administered intraperitoneally to BALB/c mice in the absence of heparin 24 h before or after total body irradiation (TBI) with {gamma}-rays at 8-12 Gy. Several radioprotective effects were examined in the jejunum. Results: Q40P/S47I/H93G could activate all subtypes of FGF receptors in vitro much more strongly than the wild-type without endogenous or exogenous heparin. Preirradiation treatment with Q40P/S47I/H93G significantly increased crypt survival more than wild-type FGF1 after TBI at 10 or 12 Gy, and postirradiation treatment with Q40P/S47I/H93G was effective in promoting crypt survival after TBI at 10, 11, or 12 Gy. In addition, crypt cell proliferation, crypt depth, and epithelial differentiation were significantly promoted by postirradiation treatment with Q40P/S47I/H93G. The level of stability of FGF1 mutants correlated with their mitogenic activities in vitro in the absence of heparin; however, preirradiation treatment with the mutants increased the crypt number to almost the same level as Q40P/S47I/H93G. When given 24 h after TBI at 10 Gy, all FGF1 mutants increased crypt survival more than wild-type FGF1, and Q40P/S47I/H93G had the strongest mitogenic effects in intestinal epithelial cells after radiation damage. Moreover, Q40P/S47I/H93G prolonged mouse survival after TBI because of the repair of intestinal damage. Conclusion: These findings suggest that the structural stability of FGF1 can contribute to the enhancement of protective effects against radiation-induced intestinal

  15. High-growth-factor implosions (HEP4)

    SciTech Connect

    Landen, O.L.; Keane, C.J.; Hammel, B.A.

    1996-06-01

    In inertial confinement fusion (ICF), the kinetic energy of an ablating, inward-driven, solid spherical shell is used to compressionally heat the low-density fuel inside. For a given drive, the maximum achievable compressed fuel density and temperature - and hence the maximum neutron production rate depend on the degree of shell isentropy and integrity maintained during the compression. Shell integrity will be degraded by hydrodynamic instability growth of areal density imperfections in the capsule. Surface imperfections on the shell grow as a result of the Richtmyer-Meshkov and Rayleigh-Taylor (RT) instabilities when the shell is accelerated by the ablating lower-density plasma. Perturbations at the outer capsule surface are transferred hydrodynamically to the inner surface, where deceleration of the shell by the lower-density fuel gives rise to further RT growth at the pusher-fuel interface.

  16. Growth Factors Regulate Expression of Mineral Associated Genes in Cementoblasts

    PubMed Central

    Saygin, N. Esra; Tokiyasu, Yoshihiko; Giannobile, William V.; Somerman, Martha J.

    2008-01-01

    Background Knowledge of the responsiveness of cells within the periodontal region to specific bioactive agents is important for improving regenerative therapies. The aim of this study was to determine the effect of specific growth factors, insulin-like growth factor-I (IGF-I), platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) on cementoblasts in vitro and ex vivo. Methods Osteocalcin (OC) promoter driven SV40 transgenic mice were used to obtain immortalized cementoblasts. Growth factor effects on DNA synthesis were assayed by [3H]-thymidine incorporation. Northern analysis was used to determine the effects of growth factors on gene expression profile. Effects of growth factors on cementoblast induced biomineralization were determined in vitro (von Kossa stain) and ex vivo (re-implantation of cells in immunodeficient (SCID) mice). Results All growth factors stimulated DNA synthesis compared to control. Twenty-four hour exposure of cells to PDGF-BB or TGF-β resulted in a decrease in bone sialoprotein (BSP) and osteocalcin (OCN) mRNAs while PDGF-BB also increased osteopontin (OPN) mRNA. Cells exposed to IGF-I for 24 hours exhibited decreased transcripts for OCN and OPN with an upregulation of BSP mRNA noted at 72 hours. In vitro mineralization was inhibited by continuous application of PDGF-BB or TGF-β, while cells exposed to these factors prior to implantation into SCID mice still promoted biomineralization. Conclusions These data indicate IGF-I, PDGF-BB, and TGF-β influence mitogenesis, phenotypic gene expression profile, and biomineralization potential of cementoblasts suggesting that such factors alone or in combination with other agents may provide trigger factors required for regenerating periodontal tissues. PMID:11063392

  17. Evaluation of Three Growth Factors for TMJ Disc Tissue Engineering

    PubMed Central

    Detamore, Michael S.; Athanasiou, Kyriacos A.

    2015-01-01

    Arguably one of the most complex joints in the body, the temporomandibular joint (TMJ) presents one of the most difficult problems in modern medicine. Tissue engineering, for the TMJ disc in particular, has been proposed as a potential breakthrough treatment strategy for TMJ disorders. Central to tissue engineering is understanding growth factor effects on TMJ disc cells, and to the best of our knowledge, this is the first 3D growth factor study for these cells. The purpose was to examine the effects of high and low concentrations of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF), and transforming growth factor-β1 (TGF-β) on porcine TMJ disc cells. Cells were seeded onto non-woven PGA scaffolds (95% porosity) in spinner flasks, then cultured with a growth factor for 6 weeks. Constructs were analyzed for mechanical and structural integrity, cell number, and matrix biosynthesis. All growth factors improved mechanical and structural integrity compared to the control. IGF and TGF-β were most effective at promoting collagen synthesis, although there were no significant differences in glycosaminoglycan synthesis or cell number between any groups. After considering the economic advantage of IGF over TGF-β, the conclusion of this study is to use IGF in future TMJ disc tissue engineering experiments. PMID:15868729

  18. Growth factors in critical illness: regulation and therapeutic aspects.

    PubMed

    Frost, R A; Lang, C H

    1998-03-01

    The erosion of lean body mass observed during catabolic illness is still a major cause of morbidity and mortality. The known anabolic actions of growth hormone and insulin-like growth factor-I have stimulated interest in the use of these agents to mitigate the loss of muscle protein after injury. This review summarizes advances in our understanding of how nutrition, hormones and proinflammatory cytokines regulate the somatotropic axis in health and disease, and recent studies involving the use of growth hormone or insulin-like growth factor-I in the treatment of critically ill patients. PMID:10565348

  19. Use of heparin-coated central venous lines to prevent catheter-related bloodstream infection.

    PubMed

    Abdelkefi, Abderrahman; Achour, Wafa; Ben Othman, Tarek; Ladeb, Saloua; Torjman, Lamia; Lakhal, Amel; Ben Hassen, Assia; Hsairi, Mohamed; Ben Abdeladhim, Abdeladhim

    2007-06-01

    Bloodstream infections related to the use of central venous catheters are an important cause of patient morbidity, mortality, and increased health care costs. Catheter-related infection may be due to fibrin deposition associated with catheters. Interventions designed to decrease fibrin deposition have the potential to reduce catheter-related infections. This study was a randomized, controlled trial in which 246 patients with nontunneled central venous catheters were randomly assigned to receive a heparin-coated catheter with 50 mL/d of normal saline solution as a continuous infusion (heparin-coated group) or a noncoated catheter with a continuous infusion of low-dose unfractionated heparin (control group: continuous infusion of 100 U/kg/d). Catheter-related bloodstream infection occurred in 2.5% (3/120 catheters) in the heparin-coated group (0.9 events per 1,000 days) and in 9.1% (11/120 catheters) in the control group (3.5 events per 1,000 days; P = 0.027). No other risk factors were found for the development of catheter-related bloodstream infection. Six and seven patients experienced severe bleeding in the heparin-coated and control groups, respectively (P = 1.00). We did not observe heparin-induced thrombocytopenia. The use of heparin-coated catheters can be a safe and effective approach to the prevention of catheter-related bloodstream infection in patients with hematooncologic disease. PMID:17624052

  20. Heparin induced thrombocytopenia in critically ill: Diagnostic dilemmas and management conundrums

    PubMed Central

    Gupta, Sachin; Tiruvoipati, Ravindranath; Green, Cameron; Botha, John; Tran, Huy

    2015-01-01

    Thrombocytopenia is often noted in critically ill patients. While there are many reasons for thrombocytopenia, the use of heparin and its derivatives is increasingly noted to be associated with thrombocytopenia. Heparin induced thrombocytopenia syndrome (HITS) is a distinct entity that is characterised by the occurrence of thrombocytopenia in conjunction with thrombotic manifestations after exposure to unfractionated heparin or low molecular weight heparin. HITS is an immunologic disorder mediated by antibodies to heparin-platelet factor 4 (PF4) complex. HITS is an uncommon cause of thrombocytopenia. Reported incidence of HITS in patients exposed to heparin varies from 0.2% to up to 5%. HITS is rare in ICU populations, with estimates varying from 0.39%-0.48%. It is a complex problem which may cause diagnostic dilemmas and management conundrum. The diagnosis of HITS centers around detection of antibodies against PF4-heparin complexes. Immunoassays performed by most pathology laboratories detect the presence of antibodies, but do not reveal whether the antibodies are pathological. Platelet activation assays demonstrate the presence of clinically relevant antibodies, but only a minority of laboratories conduct them. Several anticoagulants are used in management of HITS. In this review we discuss the incidence, pathogenesis, diagnosis and management of HITS. PMID:26261772

  1. Bivalirudin as an Alternative to Heparin for Anticoagulation in Infants and Children

    PubMed Central

    2015-01-01

    Bivalirudin, a direct thrombin inhibitor, is a useful alternative to heparin for anticoagulation in infants and children. It has been found to be effective in patients requiring treatment of thrombosis, as well as those needing anticoagulation during cardiopulmonary bypass, extracorporeal life support, or with a ventricular assist device. While it has traditionally been used in patients who were unresponsive to heparin or who developed heparin-induced thrombocytopenia, it has recently been studied as a first-line agent. Bivalirudin, unlike heparin, does not require antithrombin to be effective, and as a result, has the potential to provide a more consistent anticoagulation. The case reports and clinical studies currently available suggest that bivalirudin is as effective as heparin at reaching target activated clotting times or activated partial thromboplastin times, with equivalent or the lower rates of bleeding or thromboembolic complications. It is more expensive than heparin, but the cost may be offset by reductions in the costs associated with heparin use, including anti-factor Xa testing and the need for administration of antithrombin. The most significant disadvantage of bivalirudin remains the lack of larger prospective studies demonstrating its efficacy and safety in the pediatric population. PMID:26766931

  2. A cyclic peptide derived from alpha-fetoprotein inhibits the proliferative effects of the epidermal growth factor and estradiol in MCF7 cells.

    PubMed

    Torres, Cristian; Antileo, Elmer; Epuñán, Maráa José; Pino, Ana María; Valladares, Luis Emilio; Sierralta, Walter Daniel

    2008-06-01

    A cyclic peptide derived from the active domain of alpha-fetoprotein (AFP) significantly inhibited the proliferation of MCF7 cells stimulated with the epidermal growth factor (EGF) or estradiol (E2). The action of these three agents on cell growth was independent of the presence of calf serum in the culture medium. Our results demonstrated that the cyclic peptide interfered markedly with the regulation of MAPK by activated c-erbB2. The cyclic peptide showed no effect on the E2-stimulated release of matrix metalloproteinases 2 and 9 nor on the shedding of heparin-binding EGF into the culture medium. We propose that the AFP-derived cyclic peptide represents a valuable novel antiproliferative agent for treating breast cancer. PMID:18497971

  3. Intestinal hormones and growth factors: Effects on the small intestine

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2009-01-01

    There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In partI, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids. PMID:19152442

  4. Motogenic substrata and chemokinetic growth factors for human skin cells

    PubMed Central

    Sutherland, Jennifer; Denyer, Morgan; Britland, Stephen

    2005-01-01

    Extracellular matrix remodelling and accurate spatio-temporal coordination of growth factor expression are two factors that are believed to regulate mitoses and cell migration in developing and regenerating tissues. The present quantitative videomicroscopical study examined the influence of some of the principal components of extracellular matrix and several growth factors that are known to be expressed in dermal wounds on three important facets of human skin cell behaviour in culture. Keratinocytes, melanocytes and dermal fibroblasts (and myofibroblast controls) exhibited varying degrees of substrate adhesion, division and migration depending on the composition of the culture substrate. Substrates that are recognized components of transitional matrices generally accentuated cell adhesion and proliferation, and were motogenic, when compared with serum-treated control surfaces, whereas components of more stable structures such as basement membrane had less influence. Platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and α fibroblastic growth factor (αFGF) all promoted cell proliferation and were chemokinetic to dermal fibroblasts, but not keratinocyte growth factor (KGF) or transforming growth factor β (TGFβ). PDGF, EGF and KGF, but not TGFβ or αFGF, all enhanced proliferation of dermal keratinocytes. The same growth factors, and in addition KGF, all stimulated motility in keratinocytes, but TGFβ and αFGF again had no effect. Developing a better understanding of the interdependency of factors that control crucial cell behaviour may assist those who are interested in the regulation of histogenesis and also inform the development of rational therapeutic strategies for the management of chronic and poorly healed wounds. PMID:16011545

  5. Targeting insulin-like growth factor pathways

    PubMed Central

    Yee, D

    2006-01-01

    Some cancer cells depend on the function of specific molecules for their growth, survival, and metastatic potential. Targeting of these critical molecules has arguably been the best therapy for cancer as demonstrated by the success of tamoxifen and trastuzumab in breast cancer. This review will evaluate the type I IGF receptor (IGF-IR) as a potential target for cancer therapy. As new drugs come forward targeting this receptor system, several issues will need to be addressed in the early clinical trials using these agents. PMID:16450000

  6. Homodimerization Controls the Fibroblast Growth Factor 9 Subfamily's Receptor Binding and Heparan Sulfate-Dependent Diffusion in the Extracellular Matrix

    SciTech Connect

    Kalinina, J.; Byron, S; Makarenkova, H; Olsen, S; Eliseenkova, A; Larochelle, W; Dhanabal, M; Blais, S; Mohammadi, M; et. al.

    2009-01-01

    Uncontrolled fibroblast growth factor (FGF) signaling can lead to human diseases, necessitating multiple layers of self-regulatory control mechanisms to keep its activity in check. Herein, we demonstrate that FGF9 and FGF20 ligands undergo a reversible homodimerization, occluding their key receptor binding sites. To test the role of dimerization in ligand autoinhibition, we introduced structure-based mutations into the dimer interfaces of FGF9 and FGF20. The mutations weakened the ability of the ligands to dimerize, effectively increasing the concentrations of monomeric ligands capable of binding and activating their cognate FGF receptor in vitro and in living cells. Interestingly, the monomeric ligands exhibit reduced heparin binding, resulting in their increased radii of heparan sulfate-dependent diffusion and biologic action, as evidenced by the wider dilation area of ex vivo lung cultures in response to implanted mutant FGF9-loaded beads. Hence, our data demonstrate that homodimerization autoregulates FGF9 and FGF20's receptor binding and concentration gradients in the extracellular matrix. Our study is the first to implicate ligand dimerization as an autoregulatory mechanism for growth factor bioactivity and sets the stage for engineering modified FGF9 subfamily ligands, with desired activity for use in both basic and translational research.

  7. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    PubMed

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates. PMID:24253764

  8. Regulation of Transforming Growth Factor β1, Platelet-Derived Growth Factor, and Basic Fibroblast Growth Factor by Silicone Gel Sheeting in Early-Stage Scarring

    PubMed Central

    Choi, Jaehoon; Lee, Eun Hee; Park, Sang Woo

    2015-01-01

    Background Hypertrophic scars and keloids are associated with abnormal levels of growth factors. Silicone gel sheets are effective in treating and preventing hypertrophic scars and keloids. There has been no report on the change in growth factors in the scar tissue following the use of silicone gel sheeting for scar prevention. A prospective controlled trial was performed to evaluate whether growth factors are altered by the application of a silicone gel sheet on a fresh surgical scar. Methods Four of seven enrolled patients completed the study. Transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) were investigated immunohistochemically in biopsies taken from five scars at 4 months following surgery. Results In both the epidermis and the dermis, the expression of TGF-β1 (P=0.042 and P=0.042) and PDGF (P=0.043 and P=0.042) was significantly lower in the case of silicone gel sheet-treated scars than in the case of untreated scars. The expression of bFGF in the dermis was significantly higher in the case of silicone gel sheet-treated scars than in the case of untreated scars (P=0.042), but in the epidermis, the expression of bFGF showed no significant difference between the groups (P=0.655). Conclusions The levels of TGF-β1, PDGF, and bFGF are altered by the silicone gel sheet treatment, which might be one of the mechanisms of action in scar prevention. PMID:25606485

  9. Vascular Endothelial Growth Factor/Placental Growth Factor Heterodimer Levels in Preterm Infants with Bronchopulmonary Dysplasia.

    PubMed

    Procianoy, Renato S; Hentges, Cláudia R; Silveira, Rita C

    2016-04-01

    Background Bronchopulmonary dysplasia (BPD) is associated with changes in pulmonary angiogenesis. However, the role of the vascular endothelial growth factor/placental growth factor (VEGF/PlGF) heterodimer, an antiangiogenic factor, remains unknown in this disease. Objective To compare VEGF/PlGF levels in preterm infants with and without BPD. Methods This study was approved by the Institutional Review Board. Preterm neonates with birth weight <2,000 g and gestational age ≤34 weeks were included. Exclusion criteria were: neonates transferred from other institutions after 72 hours of life; death before blood collection; presence of major congenital malformations, inborn errors of metabolism, and early sepsis; and mothers with multiple pregnancies, TORCH infections, HIV infection, or autoimmune diseases. BPD was defined as the need for oxygen therapy for a period equal to or greater than 28 days, accompanied by radiographic changes compatible with the disease. Blood was collected from neonates in the first 72 hours of life. VEGF/PlGF levels were measured using the enzyme-linked immunosorbent assay method. The chi-square test, t-test, Mann-Whitney test, analysis of variance, and Kruskal-Wallis test were used for statistical analysis. Variables found to be significant in the univariate analysis were included in the multivariate analysis. Results Seventy-three patients were included (19 with BPD, 43 without BPD, and 11 neonates who died in the first 28 days of life), with a mean (SD) gestational age of 30.32 (2.88) weeks and birth weight of 1,288 (462) g. Median VEGF/PlGF levels were higher in the groups with BPD and death in the first 28 days of life than in the group without BPD (16.46 [IQR, 12.19-44.57] and 20.64 [IQR, 13.39-50.22], respectively, vs. 9.14 [IQR, 0.02-20.64] pg/mL], p < 0.001). Higher VEGF/P1GF levels remained associated with BPD and death in the first 28 days of life in the multivariate analysis. Conclusion Higher plasma VEGF

  10. Carotid endarterectomy in patients with heparin-induced platelet activation: comparative efficacy of aspirin and iloprost (ZK36374).

    PubMed

    Kappa, J R; Cottrell, E D; Berkowitz, H D; Fisher, C A; Sobel, M; Ellison, N; Addonizio, V P

    1987-05-01

    Patients with heparin-induced platelet activation who are reexposed to heparin may have recurrent thrombocytopenia, intravascular thrombosis, arterial emboli, or sudden death. To permit carotid endarterectomy in two patients with confirmed heparin-induced platelet activation, we compared the efficacies of aspirin and iloprost, a stable analogue of prostacyclin, in preventing heparin-induced platelet activation. In the first patient, although aspirin prevented both in vitro heparin-induced platelet aggregation (70% without and 7.5% with aspirin) and 14C serotonin release (48% without and 0% with aspirin), intraoperative administration of heparin resulted in an increase in plasma levels of platelet factor 4 from 8 to 260 ng/ml and beta-thromboglobulin levels from 29 to 39 ng/ml. In addition, the circulating platelet count decreased from 221,000 to 174,000 microliters, and 15% spontaneous platelet aggregation was observed. Fortunately, fibrinopeptide A levels remained less than 10 ng/ml intraoperatively, and no thrombotic complications occurred. In the second patient, aspirin did not prevent heparin-induced platelet aggregation in vitro (65% without and 41% with aspirin); however, iloprost (0.01 mumol/L) prevented both in vitro heparin-induced platelet aggregation (59.5% without and 0.0% with iloprost) and 14C serotonin release (56.7% without and 0.0% with iloprost). Therefore, a continuous infusion of iloprost was begun before administration of heparin and was continued until 20 minutes after reversal of heparin with protamine. After intraoperative administration of heparin, plasma levels of platelet factor 4 increased from 19 to 200 ng/ml, and beta-thromboglobulin levels increased from 56 to 76 ng/ml.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2437338

  11. Anti-PF4/heparin antibodies associated with repeated hemofiltration-filter clotting: a retrospective study

    PubMed Central

    Lasocki, Sigismond; Piednoir, Pascale; Ajzenberg, Nadine; Geffroy, Arnaud; Benbara, Abdel; Montravers, Philippe

    2008-01-01

    Introduction Heparin-induced thrombocytopenia is an immune-mediated adverse drug reaction that is associated with a procoagulant state and both arterial and venous thrombosis. After observing two cases of repeated hemofiltration-filter clotting associated with high anti-PF4/heparin antibody concentrations, we systematically measured the anti-PF4/heparin antibody concentration in all cases of unexpected and repeated hemofiltration-filter clotting during continuous veno-venous hemofiltration (CVVH). The aim of this study was to identify factors associated with positive anti-PF4/heparin antibody in the case of repeated hemofiltration-filter clotting. Methods We reviewed the charts of all patients who had an anti-PF4/heparin antibody assay performed for repeated hemofiltration-filter clotting between November 2004 and May 2006 in our surgical intensive care unit. We used an enzyme-linked immunoabsorbent assay (heparin-platelet factor 4-induced antibody) with an optical density (OD) of greater than 1 IU considered positive. Results During the study period, anti-PF4/heparin antibody assay was performed in 28 out of 87 patients receiving CVVH. Seven patients were positive for anti-PF4/heparin antibodies (OD 2.00 [1.36 to 2.22] IU) and 21 were antibody-negative (OD 0.20 [0.10 to 0.32] IU). Baseline characteristics, platelet counts, and activated partial thromboplastin time ratios were not different between the two groups. CVVH duration was significantly decreased in antibody-positive patients (5.0 [2.5 to 7.5] versus 12.0 [7.5 to 24.0] hours; P = 0.007) as was CVVH efficiency (urea reduction ratio 17% [10% to 37%] versus 44% [30% to 52%]; P = 0.04) on heparin infusion. Anti-PF4/heparin antibody concentration was inversely correlated with CVVH duration. The receiver operating characteristic curve showed that a 6-hour cutoff was the best CVVH session duration to predict a positive antibody test (sensitivity 71%, specificity 85%, and area under the curve 0.83). CVVH duration

  12. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis.

    PubMed

    Riser, B L; Denichilo, M; Cortes, P; Baker, C; Grondin, J M; Yee, J; Narins, R G

    2000-01-01

    Connective tissue growth factor (CTGF) is a peptide secreted by cultured endothelial cells and fibroblasts when stimulated by transforming growth factor-beta (TGF-beta), and is overexpressed during fibrotic processes in coronary arteries and in skin. To determine whether CTGF is implicated in the pathogenesis of diabetic glomerulosclerosis, cultured rat mesangial cells (MC) as well as kidney cortex and microdissected glomeruli were examined from obese, diabetic db/db mice and their normal counterparts. Exposure of MC to recombinant human CTGF significantly increased fibronectin and collagen type I production. Furthermore, unstimulated MC expressed low levels of CTGF message and secreted minimal amounts of CTGF protein (36 to 38 kD) into the media. However, sodium heparin treatment resulted in a greater than fourfold increase in media-associated CTGF, suggesting that the majority of CTGF produced was cell- or matrix-bound. Exposure of MC to TGF-beta, increased glucose concentrations, or cyclic mechanical strain, all causal factors in diabetic glomerulosclerosis, markedly induced the expression of CTGF transcripts, while recombinant human CTGF was able to autoinduce its own expression. TGF-, and high glucose, but not mechanical strain, stimulated the concomitant secretion of CTGF protein, the former also inducing abundant quantities of a small molecular weight form of CTGF (18 kD) containing the heparin-binding domain. The induction of CTGF protein by a high glucose concentration was mediated by TGF-beta, since a TGF-beta-neutralizing antibody blocked this stimulation. In vivo studies using quantitative reverse transcription-PCR demonstrated that although CTGF transcripts were low in the glomeruli of control mice, expression was increased 28-fold after approximately 3.5 mo of diabetes. This change occurred early in the course of diabetic nephropathy when mesangial expansion was mild, and interstitial disease and proteinuria were absent. A substantially reduced

  13. Heparin-induced thrombocytopenia in solid organ transplant recipients: The current scientific knowledge.

    PubMed

    Assfalg, Volker; Hüser, Norbert

    2016-03-24

    Exposure to heparin is associated with a high incidence of immunization against platelet factor 4 (PF4)/heparin complexes. A subgroup of immunized patients is at risk of developing heparin-induced thrombocytopenia (HIT), an immune mediated prothrombotic adverse drug effect. Transplant recipients are frequently exposed to heparin either due to the underlying end-stage disease, which leads to listing and transplantation or during the transplant procedure and the perioperative period. To review the current scientific knowledge on anti-heparin/PF4 antibodies and HIT in transplant recipients a systematic PubMed literature search on articles in English language was performed. The definition of HIT is inconsistent amongst the publications. Overall, six studies and 15 case reports have been published on HIT before or after heart, liver, kidney, and lung transplantation, respectively. The frequency of seroconversion for anti-PF4/heparin antibodies ranged between 1.9% and 57.9%. However, different methods to detect anti-PF4/heparin antibodies were applied. In none of the studies HIT-associated thromboembolic events or fatalities were observed. More importantly, in patients with a history of HIT, reexposure to heparin during transplantation was not associated with thrombotic complications. Taken together, the overall incidence of HIT after solid organ transplantation seems to be very low. However, according to the current knowledge, cardiac transplant recipients may have the highest risk to develop HIT. Different alternative suggestions for heparin-free anticoagulation have been reported for recipients with suspected HIT albeit no official recommendations on management have been published for this special collective so far. PMID:27011914

  14. Heparin-induced thrombocytopenia in solid organ transplant recipients: The current scientific knowledge

    PubMed Central

    Assfalg, Volker; Hüser, Norbert

    2016-01-01

    Exposure to heparin is associated with a high incidence of immunization against platelet factor 4 (PF4)/heparin complexes. A subgroup of immunized patients is at risk of developing heparin-induced thrombocytopenia (HIT), an immune mediated prothrombotic adverse drug effect. Transplant recipients are frequently exposed to heparin either due to the underlying end-stage disease, which leads to listing and transplantation or during the transplant procedure and the perioperative period. To review the current scientific knowledge on anti-heparin/PF4 antibodies and HIT in transplant recipients a systematic PubMed literature search on articles in English language was performed. The definition of HIT is inconsistent amongst the publications. Overall, six studies and 15 case reports have been published on HIT before or after heart, liver, kidney, and lung transplantation, respectively. The frequency of seroconversion for anti-PF4/heparin antibodies ranged between 1.9% and 57.9%. However, different methods to detect anti-PF4/heparin antibodies were applied. In none of the studies HIT-associated thromboembolic events or fatalities were observed. More importantly, in patients with a history of HIT, reexposure to heparin during transplantation was not associated with thrombotic complications. Taken together, the overall incidence of HIT after solid organ transplantation seems to be very low. However, according to the current knowledge, cardiac transplant recipients may have the highest risk to develop HIT. Different alternative suggestions for heparin-free anticoagulation have been reported for recipients with suspected HIT albeit no official recommendations on management have been published for this special collective so far. PMID:27011914

  15. Visualization of growth factor receptor sites in rat forebrain

    SciTech Connect

    Quirion, R.; Araujo, D.; Nair, N.P.; Chabot, J.G.

    1988-01-01

    It is now known that various growth factors may also act in the central nervous system. Among them, it has recently been shown that epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) may possess trophic effects in the mammalian brain. We report here on the respective autoradiographic distribution of (/sup 125/I)EGF and (/sup 125/I)IGF-I receptor binding sites in the rat brain, both during ontogeny and in adulthood. It appears that (/sup 125/I)EGF sites are mostly found in the rat forebrain during brain development. On the other hand, (/sup 125/I)IGF-I sites are more widely distributed both during ontogeny and in adulthood. These results reveal the plasticity of the expression of EGF and IGF-I receptor sites in the mammalian brain. This could be relevant for the respective role of these two growth factors in the development and maintenance of neuronal function.

  16. Induction of a heparin-stimulated serine proteinase in sex accessory gland tumors of the Lobund-Wistar rat.

    PubMed

    Wilson, Michael J; Lind, Jeremy; Sinha, Akhouri A

    2015-08-01

    Induction of new proteinase activities that may process growth factors, modify cell surface receptors, cleave extracellular matrix proteins, etc. is considered fundamental in carcinogenesis. The purpose of this study was to characterize a novel proteinase activity induced in sex accessory gland cancers (about 70% in seminal vesicles) of adult male Lobund-Wistar rats by a single injection of N-nitroso-N-methylurea (NMU; 25mg/kg) followed by implanted testosterone propionate (45mg in silastic tubing every 2months) treatment for 10-14months. A 28kDa proteinase activity was detected in tumor extracts using SDS-gelatin gel zymography with incubations done without CaCl2. Its activity was stimulated 15 fold by heparin (optimal activity 1.5-3.0μg/lane) added to the tissue extract-SDS sample buffer prior to electrophoresis. No 28kDa heparin-stimulated proteinase (H-SP) was found in the dorsal, lateral and anterior (coagulating gland) prostate lobes or seminal vesicles of untreated adult rats, but there was a 26-30kDa Ca(2+)-independent proteinase activity in the ventral prostate that showed limited heparin stimulation. The 28kDa H-SP was completely inhibited by 1.0mM 4-(2-aminoethyl)benzenesulfonylfluoride (AESBF) indicating that it was a serine-type proteinase. Other types of proteinase inhibitors were without effect, including serine proteinase inhibitors benzamidine, tranexamic acid and ε-aminocaproic acid. Proteinase activities of about 28kDa were found with casein, fibrinogen or carboxymethylated transferrin as substrate, however, these activities were not stimulated by heparin. Similar levels of activities of the 28kDa H-SP were found in primary tumors and their metastases, but little/no activity was detected in serum, even from rats with large tumor volume and metastases. These data demonstrate overexpression of a heparin-stimulated 28kDa serine proteinase in the primary tumors of sex accessory gland cancers and their metastases. This proteinase either does not

  17. CRITICAL FACTORS CONTROLLING VEGETATION GROWTH ON COMPLETED SANITARY LANDFILLS

    EPA Science Inventory

    This study identifies some of the critical factors that affect tree and shrub growth on reclaimed sanitary landfill sites and determines which woody species are adaptable to the adverse growth conditions of such sites. Trees planted at the Edgeboro Landfill, East Brunswick, New J...

  18. 21 CFR 864.7525 - Heparin assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Heparin assay. 864.7525 Section 864.7525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7525 Heparin assay. (a) Identification....

  19. 21 CFR 864.7525 - Heparin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Heparin assay. 864.7525 Section 864.7525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7525 Heparin assay. (a) Identification....

  20. 21 CFR 864.7525 - Heparin assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Heparin assay. 864.7525 Section 864.7525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7525 Heparin assay. (a) Identification....

  1. 21 CFR 864.7525 - Heparin assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Heparin assay. 864.7525 Section 864.7525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7525 Heparin assay. (a) Identification....

  2. 21 CFR 864.7525 - Heparin assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Heparin assay. 864.7525 Section 864.7525 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7525 Heparin assay. (a) Identification....

  3. Heparin sensing: Blue-chip binding

    NASA Astrophysics Data System (ADS)

    Shriver, Zachary; Sasisekharan, Ram

    2013-08-01

    Heparin is an anionic polysaccharide that has tremendous clinical importance as an anticoagulant. Several dyes have been developed that can detect heparin, and the latest example -- named Mallard Blue -- has now been shown to have excellent sensing properties under biologically relevant conditions.

  4. Regulation of wound healing by growth factors and cytokines.

    PubMed

    Werner, Sabine; Grose, Richard

    2003-07-01

    Cutaneous wound healing is a complex process involving blood clotting, inflammation, new tissue formation, and finally tissue remodeling. It is well described at the histological level, but the genes that regulate skin repair have only partially been identified. Many experimental and clinical studies have demonstrated varied, but in most cases beneficial, effects of exogenous growth factors on the healing process. However, the roles played by endogenous growth factors have remained largely unclear. Initial approaches at addressing this question focused on the expression analysis of various growth factors, cytokines, and their receptors in different wound models, with first functional data being obtained by applying neutralizing antibodies to wounds. During the past few years, the availability of genetically modified mice has allowed elucidation of the function of various genes in the healing process, and these studies have shed light onto the role of growth factors, cytokines, and their downstream effectors in wound repair. This review summarizes the results of expression studies that have been performed in rodents, pigs, and humans to localize growth factors and their receptors in skin wounds. Most importantly, we also report on genetic studies addressing the functions of endogenous growth factors in the wound repair process. PMID:12843410

  5. Effect of sericin on diabetic hippocampal growth hormone/insulin-like growth factor 1 axis

    PubMed Central

    Chen, Zhihong; Yang, Songhe; He, Yaqiang; Song, Chengjun; Liu, Yongping

    2013-01-01

    Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus model was established by intraperitoneal injection of 25 mg/kg streptozotocin for 3 successive days, following which the rats were treated with sericin for 35 days. After treatment, the blood glucose levels of the diabetic rats decreased significantly, the growth hormone level in serum and its expression in the hippocampus decreased significantly, while the insulin-like growth factor-1 level in serum and insulin-like growth factor-1 and growth hormone receptor expression in the hippocampus increased significantly. The experimental findings indicate that sericin improves disorders of the growth hormone/insulin-like growth factor 1 axis to alleviate hippocampal damage in diabetic rats. PMID:25206472

  6. The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth

    PubMed Central

    Sferruzzi-Perri, A N; Owens, J A; Pringle, K G; Roberts, C T

    2011-01-01

    Maternal insulin-like growth factors (IGFs) play a pivotal role in modulating fetal growth via their actions on both the mother and the placenta. Circulating IGFs influence maternal tissue growth and metabolism, thereby regulating nutrient availability for the growth of the conceptus. Maternal IGFs also regulate placental morphogenesis, substrate transport and hormone secretion, all of which influence fetal growth either via indirect effects on maternal substrate availability, or through direct effects on the placenta and its capacity to supply nutrients to the fetus. The extent to which IGFs influence the mother and/or placenta are dependent on the species and maternal factors, including age and nutrition. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing degenerative diseases in adult life, understanding the role of maternal IGFs during pregnancy is essential in order to identify mechanisms underlying altered fetal growth and offspring programming. PMID:20921199

  7. Growth-promoting action and growth factor release by different platelet derivatives.

    PubMed

    Passaretti, F; Tia, M; D'Esposito, V; De Pascale, M; Del Corso, M; Sepulveres, R; Liguoro, D; Valentino, R; Beguinot, F; Formisano, P; Sammartino, G

    2014-01-01

    Abstract Platelet derivatives are commonly used in wound healing and tissue regeneration. Different procedures of platelet preparation may differentially affect growth factor release and cell growth. Preparation of platelet-rich fibrin (PRF) is accompanied by release of growth factors, including platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGFβ1), and several cytokines. When compared with the standard procedure for platelet-rich plasma (PRP), PRF released 2-fold less PDGF, but >15-fold and >2-fold VEGF and TGFβ1, respectively. Also, the release of several cytokines (IL-4, IL-6, IL-8, IL-10, IFNγ, MIP-1α, MIP-1β and TNFα) was significantly increased in PRF-conditioned medium (CM), compared to PRP-CM. Incubation of both human skin fibroblasts and human umbilical vein endothelial cells (HUVECs) with PRF-derived membrane (mPRF) or with PRF-CM enhanced cell proliferation by >2-fold (p<0.05). Interestingly, PRP elicited fibroblast growth at a higher extent compared to PRF. At variance, PRF effect on HUVEC growth was significantly greater than that of PRP, consistent with a higher concentration of VEGF in the PRF-CM. Thus, the procedure of PRP preparation leads to a larger release of PDGF, as a possible result of platelet degranulation, while PRF enhances the release of proangiogenic factors. PMID:23855408

  8. The monitoring of heparin administration by screening tests in experimental dogs.

    PubMed

    Mischke, R; Jacobs, C

    2001-04-01

    The objective of this study was to investigate the relationship between different screening tests of haemostasis and amidolytic plasma activities of unfractionated (standard) heparin in dogs. Different doses of intravenous (i.v.) [25, 50 or 100 IU Kg(-1)bodyweight (BW)] and subcutaneous (s.c.) heparin (250, 500 and 750 IU kg(-1)) were given to groups each of five clinically healthy adult beagles. Measurements of heparin activity with a factor Xa-dependent chromogenic substrate, activated partial thromboplastin time (APTT) (two different reagents), thrombin time (TT, two different thrombin activities in the reagent: 3 and 6 IU ml(-1)) and the reaction time of the resonance thrombogram (RTG -r) with two different measuring devices were performed at different times. The relationship between ratio values (actual/baseline values) of the coagulation tests and heparin activity was analysed based on regression analysis and correlation coefficient. The greatest alterations were seen for the TT([3 IU ml(-1)])and the RTG -r which were near or exceeded the upper limit of measuring range, if 25 IU kg(-1)BW heparin were given i.v. at heparin plasma levels of 0.54 +/- 0.13 IU ml(-1). These results show, that only APTT and TT measured with high thrombin activity assay appear suitable for guiding high dose heparin therapy in dogs. Averaged alterations of APTT ratio in canine plasma were less than those observed in people for similar plasma heparin levels, indicating that the guideline extrapolated from people for monitoring high dose heparin therapy using APTT may not be valid for use in dogs. After coagulation times had been converted into ratio values, based on regression analysis and Wilcoxon's test, differences of heparin sensitivity were found not only for TT measured with different thrombin activities but also for different APTT reagents (P < 0.001). The correlation between amidylotic antifactor Xa activity and ratio of coagulation times was only moderate and found to be

  9. Distribution of insulin-like growth factors in condylar hyperplasia.

    PubMed

    Götz, Werner; Lehmann, Tim Sebastian; Appel, Thorsten Robin; Rath-Deschner, Birgit; Dettmeyer, Reinhard; Luder, Hans-Ulrich; Reich, Rudolf H; Jäger, Andreas

    2007-01-01

    Condylar hyperplasia (CH) is a local overgrowth of the condylar process of the temporomandibular joint (TMJ) of unknown etiology. Probably, growth factors like the insulin-like growth factors (IGFs) are involved in its pathogenesis. Specimens from 12 patients were investigated histologically and immunohistochemically to obtain the distribution of the IGFs-I and -II and the IGF1 receptor. The results revealed juvenile and adult subtypes. While generally IGF-II could only be detected weakly, in the juvenile cases strong immunostaining for IGF-I in cartilage and bone supposes an influence on pathological growth processes. PMID:17695990

  10. Nerve growth factor binding domain of the nerve growth factor receptor

    SciTech Connect

    Welcher, A.A.; Bitler, C.M.; Radeke, M.J.; Shooter, E.M. )

    1991-01-01

    A structural analysis of the rat low-affinity nerve growth factor (NGF) receptor was undertaken to define the NGF binding domain. Mutant NGF receptor DNA constructs were expressed in mouse fibroblasts or COS cells, and the ability of the mutant receptors to bind NGF was assayed. In the first mutant, all but 16 amino acid residues of the intracellular domain of the receptor were removed. This receptor bound NGF with a K{sub d} comparable to that of the wild-type receptor. A second mutant contained only the four cysteine-rich sequences from the extracellular portion of the protein. This mutant was expressed in COS cells and the resultant protein was a secreted soluble form of the receptor that was able to bind NGF. Two N-terminal deletions, in which either the first cystein-rich sequence or the first and part of the second cystein-rich sequences were removed, bound NGF. However, a mutant lacking all four cysteine-rich sequences was unable to bind NGF. These results show that the four cysteine-rich sequences of the NGF receptor contain the NGF binding domain.

  11. Investigation of the structural stability of the human acidic fibroblast growth factor by hydrogen-deuterium exchange.

    PubMed

    Chi, Ya-Hui; Kumar, Thallampuranam Krishnaswamy S; Kathir, Karuppanan Muthusamy; Lin, Dong-Hai; Zhu, Guang; Chiu, Ing-Ming; Yu, Chin

    2002-12-24

    The conformational stability of the human acidic fibroblast growth factor (hFGF-1) is investigated using amide proton exchange and temperature-dependent chemical shifts, monitored by two-dimensional NMR spectroscopy. The change in free energy of unfolding (DeltaG(u)) of hFGF-1 is estimated to be 5.00 +/- 0.09 kcal.mol(-)(1). Amide proton-exchange rates of 74 residues (in hFGF-1) have been unambiguously measured, and the exchange process occurs predominately according to the conditions of the EX2 limit. The exchange rates of the fast-exchanging amide protons exposed to the solvent have been measured using the clean SEA-HSQC technique. The amide proton protection factor and temperature coefficient estimates show reasonably good correlation. Residues in beta-strands II and VI appear to constitute the stability core of the protein. Among the 12 beta-strands constituting the beta-barrel architecture of hFGF-1, beta-strand XI, located in the heparin binding domain, exhibits the lowest average protection factor value. Amide protons involved in the putative folding nucleation site in hFGF-1, identified by quench-flow NMR studies, do not represent the slow-exchanging core. Residues in portions of hFGF-1 experiencing high conformational flexibility mostly correspond to those involved in receptor recognition and binding. PMID:12484774

  12. The activation of fibroblast growth factors (FGFs) by glycosaminoglycans: influence of the sulfation pattern on the biological activity of FGF-1.

    PubMed

    Angulo, Jesús; Ojeda, Rafael; de Paz, José-Luis; Lucas, Ricardo; Nieto, Pedro M; Lozano, Rosa M; Redondo-Horcajo, Mariano; Giménez-Gallego, Guillermo; Martín-Lomas, Manuel

    2004-01-01

    Six synthetic heparin-like oligosaccharides have been used to investigate the effect of the oligosaccharide sulfation pattern on the stimulation of acidic fibroblast growth factor (FGF-1) induced mitogenesis signaling and the biological significance of FGF-1 trans dimerization in the FGF-1 activation process. It has been found that some molecules with a sulfation pattern that does not contain the internal trisaccharide motif, which has been proposed for high affinity for FGF-1, stimulate FGF-1 more efficiently than those with the structure of the regular region of heparin. In contrast to regular region oligosaccharides, in which the sulfate groups are distributed on both sides of their helical three-dimensional structures, the molecules containing this particular sulfation pattern display the sulfate groups only on one side of the helix. These results and the fact that these oligosaccharides do not promote FGF-1 dimerization according to sedimentation-equilibrium analysis, confirm the importance of negative-charge distribution in the activation process and strongly suggest that FGF dimerization is not a general and absolute requirement for biological activity. PMID:14695513

  13. [Novel role of growth factors in ovary function].

    PubMed

    Amsterdam, Abraham

    2010-12-01

    The development of the DNA microarray technique facilitated systematic studies of the modulation of gene function. Considerable attention has been focused on members of the growth factor family to elucidate the main regulators of oocyte maturation and ovarian follicle rupture. Among these growth factors, it was found, both in rodents and in humans, that amphiregulin (Ar) and epiregulin (Ep) of the epidermal growth factor (EGF) family were dramatically up-regulated by gonadotrophins in the intact ovary and in primary granulosa cells, respectively. Their role in cumulus expansion and oocyte maturation was established in rodents, and their synthesis under LH stimulation in granulosa cells was demonstrated in humans. To be activated, Ar and Ep must be cleaved by a disintegrin and metalloproteinases (ADAMs) family. However, the precise processing of Ar and Ep by the cumulus cells is still obscure. Future investigations using DNA microarray technique may reveal the repertoire of genes activated in Ar- and Ep-stimulated cumulus cells and may help elucidate the molecular basis of ovulation. EFG-like factors are also involved in triggering ovarian cancer The author hypothesized that the normal ovary maintains cyclicity in the formation of these growth factors preventing the ovary from developing ovarian cancer In ovarian cancer these growth factors are continuously formed in an autocrine manner, leading to transformation and subsequently to ovarian cancer. These growth factors are essential for both normal and neoplastic transformation of the ovary. Taking into consideration these growth factors in the treatment of ovarian malfunction may be one way of curing ovarian cancer. PMID:21916103

  14. Fabrication of chondroitin sulfate-chitosan composite artificial extracellular matrix for stabilization of fibroblast growth factor.

    PubMed

    Mi, Fwu-Long; Shyu, Shin-Shing; Peng, Chih-Kang; Wu, Yu-Bey; Sung, Hsing-Wen; Wang, Pei-Shan; Huang, Chi-Chuan

    2006-01-01

    The development of a novel, three-dimensional, macroporous artificial extracellular matrix (AECM) based on chondroitin sulfate (ChS)-chitosan (Chito) combination is reported. The composite AECM composed of ChS-Chito conjugated network was prepared by a homogenizing interpolyelectrolyte complex/covalent conjugation technique through co-crosslinked with N,N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide (EDC) and N-hydroxysuccinimide (NHS). In contrast to EDC/NHS, two different reagents, calcium ion and glutaraldehyde, were used to react with ChS or Chito for the preparation of ChS-Chito composites containing crosslinked ChS or Chito network in the matrix. The stability and in vitro enzymatic degradability of the glutaraldehyde-, EDC/NHS-, and Ca2+ -crosslinked ChS-Chito composite AECMs were all investigated in this study. The results showed that crosslinking improved the stability of prepared ChS-Chito AECMs in physiological buffer solution (PBS) and provided superior protective effect against the enzymatic hydrolysis of ChS, compared with their non-crosslinked counterpart. Because ChS was a heparin-like glycosaminoglycan (GAG), the ChS-Chito composite AECMs appeared to promote binding efficiency for basic fibroblast growth factor (bFGF). The bFGF releasing from the ChS-Chito composite AECMs retained its biological activity as examined by the in vitro proliferation of human fibroblast, depending on the crosslinking mode for the preparation of these composite AECMs. Histological assay showed that the EDC/NHS-crosslinked ChS-Chito composite AECM, after incorporated with bFGF, was biodegradable and could result in a significantly enhanced vascularization effect and tissue penetration. These results suggest that the ChS-Chito composite AECMs fabricated in this study may be a promising approach for tissue-engineering application. PMID:16224775

  15. Plasmin Modulates Vascular Endothelial Growth Factor-A-Mediated Angiogenesis during Wound Repair

    PubMed Central

    Roth, Detlev; Piekarek, Michael; Paulsson, Mats; Christ, Hildegard; Bloch, Wilhelm; Krieg, Thomas; Davidson, Jeffrey M.; Eming, Sabine A.

    2006-01-01

    Plasmin-catalyzed cleavage of the vascular endothelial growth factor (VEGF)-A isoform VEGF165 results in loss of its carboxyl-terminal heparin-binding domain and significant loss in its bioactivity. Little is known about the in vivo significance of this process. To investigate the biological relevance of the protease sensitivity of VEGF165 in wound healing we assessed the activity of a VEGF165 mutant resistant to plasmin proteolysis (VEGF165A111P) in a genetic mouse model of impaired wound healing (db/db mouse). In the present study we demonstrate that in this mouse model plasmin activity is increased at the wound site. The stability of the mutant VEGF165 was substantially increased in wound tissue lysates in comparison to wild-type VEGF165, thus indicating a prolonged activity of the plasmin-resistant VEGF165 mutant. The db/db delayed healing phenotype could be reversed by topical application of wild-type VEGF165 or VEGF165A111P. However, resistance of VEGF165 to plasmin cleavage resulted in the increased stability of vascular structures during the late phase of healing due to increased recruitment of perivascular cells and delayed and reduced endothelial cell apoptosis. Our data provide the first indication that plasmin-catalyzed cleavage regulates VEGF165-mediated angiogenesis in vivo. Inactivation of the plasmin cleavage site Arg110/Ala111 may preserve the biological function of VEGF165 in therapeutic angiogenesis under conditions in which proteases are highly active, such as wound repair and inflammation. PMID:16436680

  16. Insulin-like growth factor-II: possible local growth factor in pheochromocytoma.

    PubMed

    Gelato, M C; Vassalotti, J

    1990-11-01

    Pheochromocytomas, neural crest tumors, express an abundance of insulin-like growth factor-II (IGF-II). To assess further the potential for IGF-II to play an autocrine role for these tumors, we measured 1) IGF-II content by RRA in 7 pheochromocytomas and peripheral blood in these patients, 2) IGF-II receptors by Western analysis, and 3) characterized the tumor binding proteins by ligand blot studies. IGF-II levels in the tumors varied from 2.8-41 micrograms/g. Chromatography revealed that 60% of the peptide eluted as a large mol wt form of IGF-II (8.7-10 kDa); the remainder coeluted with mature peptide (7.5 kDa). This was in contrast to IGF-II levels in normal adrenal tissue (0.225 +/- 0.005 micrograms/g) or another neural crest-derived tumor, medullary carcinoma of the thyroid (0.63 +/- 0.02 micrograms/g). Serum IGF-II levels in the 7 patients with pheochromocytoma (720 +/- 71 ng/mL) were similar to those in 35 normal controls (762 +/- 69 ng/mL). Radiolabeled IGF-II (9 +/- 1%) and IGF-I (20 +/- 2%) bound specifically to pheochromocytoma membranes. Western analysis of these membranes using a specific antiserum directed against the type II receptor demonstrated a band at 210 kDa. Affinity cross-linking studies with [125I]IGF-I demonstrated a specific band at 140 kDa. Ligand blot analysis was performed on the void volume pools from the Sephadex G-75 column and demonstrated bands at about 30 and 25 kDa. In conclusion, these data 1) confirm that pheochromocytomas have increased levels of IGF-II; 2) demonstrate that despite high IGF-II concentrations in the tumors, peripheral levels are not elevated, suggesting that very little tumoral IGF-II is released into the circulation, unlike catecholamines; 3) demonstrate the presence of IGF-II and IGF-I receptors; 4) describe binding protein species similar to those present in other tissues. Thus, the presence of high levels of IGF-II and both type I and type II receptors suggests that IGF II may act through both receptors to

  17. Quantitative aspects of digital microscopy applied to cellular localization of heparin in smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Johnston, Richard F.; Hanzel, David K.; Stack, Bob; Brandley, Brian; Castellot, John

    1995-04-01

    High Resolution digital acquisition allows a great deal of flexibility in the types of questions that can be directed to microscopic samples. To eliminate subjective bias and provide quantitative results we have approached microscopy with an automated digital format. This mode can return quantitative data at high resolution over large fields. The digital format makes accessible data including [data segmentation]: multispectral colocalization, seeding and connectivity, particle size and shape distribution and population analysis. We have begun a program to investigate this approach using the confocal microscope. Scanning larger fields-of-view at lower spatial resolutions (e.g., low magnification objective) defines large maps that allow alignment of high spatial resolution (diffraction limited) sampling. The [objective] selection of the field-of-view with low spatial resolution reduces the subjective nature of the selection of a 'typical staining pattern'. High resolution digital scanning in three dimensions contribute both to the 'objective' nature of the analysis and allow for quantitation of characteristics not historically available/accessible. The complex carbohydrate heparin is implicated in tumor growth and wound healing by affecting angiogenesis, cell proliferation and motility. The internal localization of heparin within vascular cells appears to be a good predictor of the sensitivity of those cells to the action of heparin. Cells resistant to the antiproliferative action of heparin are able to sequester the heparin in large vacuoles whereas those cells sensitive to the carbohydrate do not exhibit these structures. We have applied our approach to QUANTITATIVE DIGITAL MICROSCOPY to the analysis of intracellular heparin distribution.

  18. Heparin regulates smooth muscle S phase entry in the injured rat carotid artery

    SciTech Connect

    Majesky, M.W.; Schwartz, S.M.; Clowes, M.M.; Clowes, A.W.

    1987-08-01

    Smooth muscle cell (SMC) proliferation in injured arteries is inhibited by heparin, but the mechanism of inhibition is unknown. In particular, it is not clear whether heparin prevents exit of quiescent SMC from the resting state, inhibits progression through the prereplicative (G1) sequence, or acts during DNA synthesis itself. In this study, induction of ornithine decarboxylase (ODC) activity was used as a marker of SMC entry into the cell cycle in an attempt to localize the site of heparin action during the initial hours after rat carotid injury. Rapid and transient induction of ODC activity was observed that reached a maximum (twenty-three-fold) 6 hours after wounding. Heparin failed to prevent ODC induction but greatly reduced frequencies of (/sup 3/H)thymidine-labelled SMC nuclei 33 hours after injury. Moreover, heparin infusion could be delayed for up to 18 hours after the injury event with no significant loss of antiproliferative effect. Further delays resulted in marked loss of growth inhibition. The results of these studies show that SMC rapidly and synchronously leave the resting state after injury and suggest that heparin acts late in the prereplicative (G1) sequence or early in S phase to inhibit SMC proliferation in damaged arteries.

  19. An opioid growth factor regulates the replication of microorganisms.

    PubMed

    Zagon, I S; McLaughlin, P J

    1992-01-01

    An opioid growth factor (OGF), [Met5]-enkephalin, interacts with the zeta (zeta) opioid receptor to modulate development of eukaryotes. We have found that [Met5]-enkephalin, an endogenous opioid peptide serves to inhibit the growth of S. aureus. This effect on growth involves cell proliferative events and is under tonic control, since potent opioid antagonists accelerate cell replication. Both the OGF and zeta opioid receptor were associated with these microorganisms. Other opioid receptors (mu, delta and kappa) were not detected. OGF also controlled the growth of other bacteria: P. aeruginosa and S. marcesans. These results indicate that OGF and its receptor, known to be important in the regulation of mammalian development, also function in the growth of simple unicellular organisms. We suggest that the endogenous opioid system related to growth originated billions of years ago. PMID:1313136

  20. Growth factors in the management of adult acute leukemia.

    PubMed

    Bernstein, S H

    1993-02-01

    This review has explored the various ways that growth factors may be used in the management of adult acute leukemia. Growth factors have the potential to reduce the morbidity and mortality of both induction and postremission therapy by enhancing hematopoietic recovery or, when used as an adjunct to standard antimicrobial therapy, reducing the infectious complications of chemotherapy. In addition, they may have favorable effects on the biology of leukemia either by recruitment of leukemic progenitors into cycle, rendering them more sensitive to the cytotoxic effects of chemotherapy, or by inducing the terminal differentiation of the leukemic clone. Finally, disruption of aberrant growth factor networks, thought to play a role in the pathogenesis of leukemia, may be a therapeutic strategy now that soluble receptors and receptor antagonists to such growth factors as IL-1 are available. Whether growth factors used in such ways will have beneficial, or in fact adverse, effects on the treatment outcome for acute leukemia is not yet known. As such, the use of growth factors in the management of adults with acute leukemia is still experimental and needs to be studied in the context of clinical trials. Perhaps the ultimate benefit to be derived from the study of these growth factors will be a deeper understanding of the genetic perturbations that define the leukemic state. The development of molecular therapeutic techniques, such as gene transfer technology and the use of antisense oligonucleotides, has paralleled our increasing knowledge of cytokines. The hope is that as we come to understand leukemia at the molecular level, we will be able to develop the new therapeutic tools necessary to increase the numbers of patients cured. PMID:8449861

  1. Evidence for a saturable mechanism of disappearance of standard heparin in rabbits

    SciTech Connect

    Boneu, B.; Caranobe, C.; Gabaig, A.M.; Dupouy, D.; Sie, P.; Buchanan, M.R.; Hirsh, J.

    1987-06-15

    This work demonstrates that after bolus intravenous injection standard heparin (SH) disappearance results from the combination of a saturable and a non saturable mechanism. Pharmacokinetics and pharmacodynamics of SH were studied by measuring the disappearance of increasing doses (5 - 500 anti-factor Xa U/kg) of /sup 125/I-heparin and of its biological effects. CPM curves allowed the determination of the half lives of heparin according to the dose injected. The half lives were clearly dose dependent and reached a plateau over 100 anti-factor Xa U/kg. The complex curve which describes the amount of heparin cleared per time unit after any given dose has been resolved into its two components reflecting a saturable and a non saturable mechanism of disappearance. For the doses less than 100 anti-factor Xa U/kg the saturable mechanism was preeminent and the anti-factor Xa activity disappearance followed an exponential pattern; for the doses less than 100 anti-factor Xa U/kg the contribution of the non saturable mechanism becomes more important and the anti-factor Xa activity disappearance followed a concave-convex pattern. Further experiments showed that the heparin half life shortened as the circulating anti-factor Xa activity decreased; this phenomenon may explain the concave-convex pattern of the curve of the anticoagulant effect observed after injection of large doses of SH.

  2. Interaction of the Heparin-Binding Consensus Sequence of β-Amyloid Peptides with Heparin and Heparin-Derived Oligosaccharides.

    PubMed

    Nguyen, Khanh; Rabenstein, Dallas L

    2016-03-10

    Alzheimer's disease (AD) is characterized by the presence of amyloid plaques in the AD brain. Comprised primarily of the 40- and 42-residue β-amyloid (Aβ) peptides, there is evidence that the heparan sulfate (HS) of heparan sulfate proteoglycans (HSPGs) plays a role in amyloid plaque formation and stability; however, details of the interaction of Aβ peptides with HS are not known. We have characterized the interaction of heparin and heparin-derived oligosaccharides with a model peptide for the heparin- and HS-binding domain of Aβ peptides (Ac-VHHQKLV-NH2; Aβ(12-18)), with mutants of Aβ(12-18), and with additional histidine-containing peptides. The nature of the binding interaction was characterized by NMR, binding constants and other thermodynamic parameters were determined by isothermal titration calorimetry (ITC), and relative binding affinities were determined by heparin affinity chromatography. The binding of Aβ(12-18) by heparin and heparin-derived oligosaccharides is pH-dependent, with the imidazolium groups of the histidine side chains interacting site-specifically within a cleft created by a trisaccharide sequence of heparin, the binding is mediated by electrostatic interactions, and there is a significant entropic contribution to the binding free energy as a result of displacement of Na(+) ions from heparin upon binding of cationic Aβ(12-18). The binding constant decreases as the size of the heparin-derived oligosaccharide decreases and as the concentration of Na(+) ion in the bulk solution increases. Structure-binding relationships characterized in this study are analyzed and discussed in terms of the counterion condensation theory of the binding of cationic peptides by anionic polyelectrolytes. PMID:26872053

  3. Cutaneous adverse reactions specific to epidermal growth factor receptor inhibitors

    PubMed Central

    Lupu, I; Voiculescu, VM; Bacalbasa, N; Prie, BE; Cojocaru, I; Giurcaneanu, C

    2015-01-01

    Classical antineoplastic therapy is encumbered by extensively studied adverse reactions, most often of systemic nature. The emergence of new generations of anticancer treatments, including epidermal growth factor receptor inhibitors, besides improving the response to treatment and the survival rate, is accompanied by the occurrence of new specific side effects, incompletely studied. These side effects are most often cutaneous (hand foot syndrome, acneiform reactions), and in some cases are extremely severe, requiring dose reduction or drug discontinuation. The prevention of the cutaneous adverse effects and their treatment require a close collaboration between the oncologist and the dermatologist. The occurrence of some of these skin adverse effects may be a favorable prognostic factor for the response to the cancer treatment and the overall survival. Abbreviations: EGFR = epidermal growth factor receptors; EGFRI = epidermal growth factor receptors inhibitors PMID:26361513

  4. Influence of chondroitin sulfate, heparin sulfate, and citrate on Proteus mirabilis-induced struvite crystallization in vitro.

    PubMed

    McLean, R J; Downey, J; Clapham, L; Nickel, J C

    1990-11-01

    Struvite crystals were produced by Proteus mirabilis growth in artificial urine, in the presence of a number of naturally occurring crystallization inhibitors. The use of phase contrast light microscopy enabled the effects of added chondroitin sulfate A, chondroitin sulfate C, heparin sulfate, or sodium citrate, on struvite crystal growth rates to be rapidly monitored as changes in crystal habit. Struvite crystals formed as a consequence of the urease activity of P. mirabilis under all chemical conditions. In the absence of inhibitor, early crystal development was marked by large quantities of amorphous precipitate, followed immediately by the appearance of rapidly growing X-shaped or planar crystals. Addition of the glycosaminoglycans, chondroitin sulfate A, chondroitin sulfate C, or heparin sulfate to the artificial urine mixture had no effect on the rate of crystal growth or appearance. When sodium citrate was present in elevated concentrations, crystal appearance was generally slowed, and the crystals assumed an octahedral, slow growing appearance. None of the added compounds had any influence on bacterial viability, pH, or urease activity. It is therefore likely that the inhibitory activity displayed by sodium citrate might be related to its ability to complex magnesium or to interfere with the crystal structure during struvite formation. From these experiments it would appear that citrate may be a factor in the natural resistance of whole urine to struvite crystallization. PMID:2122009

  5. Hepatocyte growth factor, hepatocyte growth factor activator and arginine in a rat fulminant colitis model

    PubMed Central

    Zwintscher, Nathan P.; Shah, Puja M.; Salgar, Shashikumar K.; Newton, Christopher R.; Maykel, Justin A.; Samy, Ahmed; Jabir, Murad; Steele, Scott R.

    2016-01-01

    Introduction Dextran sodium sulfate (DSS) is commonly used to induce a murine fulminant colitis model. Hepatocyte growth factor (HGF) has been shown to decrease the symptoms of inflammatory bowel disease (IBD) but the effect of its activator, HGFA, is not well characterized. Arginine reduces effects of oxidative stress but its effect on IBD is not well known. The primary aim is to determine whether HGF and HGFA, or arginine will decrease IBD symptoms such as pain and diarrhea in a DSS-induced fulminant colitis murine model. Methods A severe colitis was induced in young, male Fischer 344 rats with 4% (w/v) DSS oral solution for seven days; rats were sacrificed on day 10. Rats were divided into five groups of 8 animals: control, HGF (700 mcg/kg/dose), HGF and HGFA (10 mcg/dose), HGF and arginine, and high dose HGF (2800 mcg/kg/dose). Main clinical outcomes were pain, diarrhea and weight loss. Blinded pathologists scored the terminal ileum and distal colon. Results DSS reliably induced severe active colitis in 90% of animals (n = 36/40). There were no differences in injury scores between control and treatment animals. HGF led to 1.38 fewer days in pain (p = 0.036), while arginine led to 1.88 fewer days of diarrhea (P = 0.017) compared to controls. 88% of HGFA-treated rats started regaining weight (P < 0.001). Discussion/Conclusion Although treatment was unable to reverse fulminant disease, HGF and arginine were associated with decreased days of pain and diarrhea. These clinical interventions may reduce associated symptoms for severe IBD patients, even when urgent surgical intervention remains the only viable option. PMID:27144006

  6. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    PubMed

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression. PMID:25639875

  7. Cytokine and Growth Factor Responses After Radiotherapy for Localized Ependymoma

    SciTech Connect

    Merchant, Thomas E. Li Chenghong; Xiong Xiaoping; Gaber, M. Waleed

    2009-05-01

    Purpose: To determine the time course and clinical significance of cytokines and peptide growth factors in pediatric patients with ependymoma treated with postoperative radiotherapy (RT). Methods and Materials: We measured 15 cytokines and growth factors (fibroblast growth factor, epidermal growth factor, vascular endothelial growth factor [VEGF], interleukin [IL]-1{beta}, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, interferon-{gamma}, tumor necrosis factor-{alpha}, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and macrophage inflammatory protein-{alpha}) from 30 patients before RT and 2 and 24 h, weekly for 6 weeks, and at 3, 6, 9, and 12 months after the initiation of RT. Two longitudinal models for the trend of log-transformed measurements were fitted, one during treatment and one through 12 months. Results: During RT, log IL-8 declined at a rate of -0.10389/wk (p = 0.0068). The rate of decline was greater (p = 0.028) for patients with an infratentorial tumor location. The decline in IL-8 after RT was significant when stratified by infratentorial tumor location (p = 0.0345) and more than one surgical procedure (p = 0.0272). During RT, the decline in log VEGF was significant when stratified by the presence of a ventriculoperitoneal shunt. After RT, the log VEGF declined significantly at a rate of -0.06207/mo. The decline was significant for males (p = 0.0222), supratentorial tumors (p = 0.0158), one surgical procedure (p = 0.0222), no ventriculoperitoneal shunt (p = 0.0005), and the absence of treatment failure (p = 0.0028). Conclusion: The pro-inflammatory cytokine IL-8 declined significantly during RT and the decline differed according to tumor location. The angiogenesis factor VEGF declined significantly during the 12 months after RT. The decline was greater in males, those without a ventriculoperitoneal shunt, and in those with favorable disease factors, including one surgical procedure, supratentorial tumor location, and

  8. Inhibition of the growth factor MDK/midkine by a novel small molecule compound to treat non-small cell lung cancer.

    PubMed

    Hao, Huifang; Maeda, Yutaka; Fukazawa, Takuya; Yamatsuji, Tomoki; Takaoka, Munenori; Bao, Xiao-Hong; Matsuoka, Junji; Okui, Tatsuo; Shimo, Tsuyoshi; Takigawa, Nagio; Tomono, Yasuko; Nakajima, Motowo; Fink-Baldauf, Iris M; Nelson, Sandra; Seibel, William; Papoian, Ruben; Whitsett, Jeffrey A; Naomoto, Yoshio

    2013-01-01

    Midkine (MDK) is a heparin-binding growth factor that is highly expressed in many malignant tumors, including lung cancers. MDK activates the PI3K pathway and induces anti-apoptotic activity, in turn enhancing the survival of tumors. Therefore, the inhibition of MDK is considered a potential strategy for cancer therapy. In the present study, we demonstrate a novel small molecule compound (iMDK) that targets MDK. iMDK inhibited the cell growth of MDK-positive H441 lung adenocarcinoma cells that harbor an oncogenic KRAS mutation and H520 squamous cell lung cancer cells, both of which are types of untreatable lung cancer. However, iMDK did not reduce the cell viability of MDK-negative A549 lung adenocarcinoma cells or normal human lung fibroblast (NHLF) cells indicating its specificity. iMDK suppressed the endogenous expression of MDK but not that of other growth factors such as PTN or VEGF. iMDK suppressed the growth of H441 cells by inhibiting the PI3K pathway and inducing apoptosis. Systemic administration of iMDK significantly inhibited tumor growth in a xenograft mouse model in vivo. Inhibition of MDK with iMDK provides a potential therapeutic approach for the treatment of lung cancers that are driven by MDK. PMID:23976985

  9. Inhibition of the Growth Factor MDK/Midkine by a Novel Small Molecule Compound to Treat Non-Small Cell Lung Cancer

    PubMed Central

    Fukazawa, Takuya; Yamatsuji, Tomoki; Takaoka, Munenori; Bao, Xiao-Hong; Matsuoka, Junji; Okui, Tatsuo; Shimo, Tsuyoshi; Takigawa, Nagio; Tomono, Yasuko; Nakajima, Motowo; Fink-Baldauf, Iris M.; Nelson, Sandra; Seibel, William; Papoian, Ruben; Whitsett, Jeffrey A.; Naomoto, Yoshio

    2013-01-01

    Midkine (MDK) is a heparin-binding growth factor that is highly expressed in many malignant tumors, including lung cancers. MDK activates the PI3K pathway and induces anti-apoptotic activity, in turn enhancing the survival of tumors. Therefore, the inhibition of MDK is considered a potential strategy for cancer therapy. In the present study, we demonstrate a novel small molecule compound (iMDK) that targets MDK. iMDK inhibited the cell growth of MDK-positive H441 lung adenocarcinoma cells that harbor an oncogenic KRAS mutation and H520 squamous cell lung cancer cells, both of which are types of untreatable lung cancer. However, iMDK did not reduce the cell viability of MDK-negative A549 lung adenocarcinoma cells or normal human lung fibroblast (NHLF) cells indicating its specificity. iMDK suppressed the endogenous expression of MDK but not that of other growth factors such as PTN or VEGF. iMDK suppressed the growth of H441 cells by inhibiting the PI3K pathway and inducing apoptosis. Systemic administration of iMDK significantly inhibited tumor growth in a xenograft mouse model in vivo. Inhibition of MDK with iMDK provides a potential therapeutic approach for the treatment of lung cancers that are driven by MDK. PMID:23976985

  10. Growth factors in porcine full and partial thickness burn repair. Differing targets and effects of keratinocyte growth factor, platelet-derived growth factor-BB, epidermal growth factor, and neu differentiation factor.

    PubMed Central

    Danilenko, D. M.; Ring, B. D.; Tarpley, J. E.; Morris, B.; Van, G. Y.; Morawiecki, A.; Callahan, W.; Goldenberg, M.; Hershenson, S.; Pierce, G. F.

    1995-01-01

    The topical application of recombinant growth factors such as epidermal growth factor, platelet-derived growth factor-BB homodimer (rPDGF-BB), keratinocyte growth factor (rKGF), and neu differentiation factor has resulted in significant acceleration of healing in several animal models of wound repair. In this study, we established highly reproducible and quantifiable full and deep partial thickness porcine burn models in which burns were escharectomized 4 or 5 days postburn and covered with an occlusive dressing to replicate the standard treatment in human burn patients. We then applied these growth factors to assess their efficacy on several parameters of wound repair: extracellular matrix and granulation tissue production, percent reepithelialization, and new epithelial area. In full thickness burns, only rPDGF-BB and the combination of rPDGF-BB and rKGF induced significant changes in burn repair. rPDGF-BB induced marked extracellular matrix and granulation tissue production (P = 0.013) such that the burn defect was filled within several days of escharectomy, but had no effect on new epithelial area or reepithelialization. The combination of rPDGF-BB and rKGF in full thickness burns resulted in a highly significant increase in extracellular matrix and granulation tissue area (P = 0.0009) and a significant increase in new epithelial area (P = 0.007), but had no effect on reepithelialization. In deep partial thickness burns, rKGF induced the most consistent changes. Daily application of rKGF induced a highly significant increase in new epithelial area (P < 0.0001) but induced only a modest increase in reepithelialization (83.7% rKGF-treated versus 70.2% control; P = 0.016) 12 days postburn. rKGF also doubled the number of fully reepithelialized burns (P = 0.02) at 13 days postburn, at least partially because of marked stimulation of both epidermal and follicular proliferation as assessed by proliferating cell nuclear antigen expression. In situ hybridization for

  11. Differential binding of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: comparison of normal and abnormal human tissues.

    PubMed Central

    Friedl, A.; Chang, Z.; Tierney, A.; Rapraeger, A. C.

    1997-01-01

    Fibroblast growth factors (FGFs) play multiple roles during development and in adult tissues as paracrine regulators of growth and differentiation. FGFs signal through transmembrane receptor tyrosine kinases, but heparan sulfate is also required for signaling by members of the FGF family. In addition, heparan sulfate may be involved in determining tissue distribution of FGFs. Using biotinylated FGF-2 and FGF-7 (KGF) as probes, we have identified specific interactions between FGFs and heparan sulfates in human tissues. Both FGF species bind to tissue mast cells and to epithelial cell membranes. Binding to basement membrane heparan sulfate is tissue source dependent and specific. Although FGF-2 strongly binds to basement membrane heparan sulfate in skin and most other tissue sites examined, FGF-7 fails to bind to basement membrane heparan sulfate in most locations. However, in subendothelial matrix in blood vessels and in the basement membrane of a papillary renal cell carcinoma, strong FGF-7 binding is seen. In summary, distinct and specific affinities of heparan sulfates for different FGFs were identified that may affect growth factor activation and local distribution. Heparan sulfate may have a gatekeeper function to either restrict or permit diffusion of heparin-binding growth factors across the basement membrane. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9094999

  12. Heparin-induced thrombocytopenia: laboratory studies.

    PubMed

    Kelton, J G; Sheridan, D; Santos, A; Smith, J; Steeves, K; Smith, C; Brown, C; Murphy, W G

    1988-09-01

    This report describes studies into the pathophysiology of heparin-induced thrombocytopenia. The IgG fraction from each of nine patients with heparin-induced thrombocytopenia caused heparin-dependent platelet release of radiolabeled serotonin. Both the Fc and the Fab portions of the IgG molecule were required for the platelet reactivity. The platelet release reaction could be inhibited by the Fc portion of normal human or goat IgG, and patient F(ab')2, but not F(ab')2 from healthy controls. These results suggested that the Fab portion of IgG binds to heparin forming an immune complex and the immune complexes initiate the platelet release reaction by binding to the platelet Fc receptors. To directly challenge this hypothesis, we preincubated the serotonin-labeled platelets with the monoclonal antibody against the platelet Fc receptor (IV.3). This monoclonal antibody completely inhibited the release reaction caused by heparin and patient sera, as well as heat aggregated IgG, but did not block collagen or thrombin-induced platelet release. Heparin-dependent platelet release also could be inhibited in vitro by the addition of monocytes and neutrophils, but not by red cells, presumably because the Fc receptors on the phagocytic cells have a higher binding affinity for IgG complexes than do platelets. Platelets from patients with congenital deficiencies of specific glycoproteins Ib and IX (Bernard-Soulier syndrome) and IIb and IIIa (Glanzmann's thrombasthenia) displayed normal heparin-dependent release indicating that the release reaction did not require the participation of these glycoproteins. These studies indicate that heparin-induced thrombocytopenia is an IgG-heparin immune complex disorder involving both the Fab and Fc portion of the IgG molecule. PMID:3416077

  13. The biology of human epidermal growth factor receptor 2.

    PubMed

    Sundaresan, S; Penuel, E; Sliwkowski, M X

    1999-09-01

    Our understanding of the normal signaling mechanisms and functions of human epidermal growth factor receptor 2 (HER2) and other members of the HER family, namely epidermal growth factor receptor, HER3, and HER4, is growing rapidly. Activation of these receptors results in a diverse array of signals through the formation of homodimeric and heterodimeric receptor complexes; HER2 is the preferred dimerization partner for the other HERs. These oligomeric receptor complexes activate distinct signaling pathways, such as the Ras-MAPK and PI3-kinase pathways. These, in turn, affect various cellular processes. Recent gene deletion experiments in mice point to an important role for HER2 in cardiac and neural development, and evidence from other studies indicates that HER2 is involved in normal breast growth and development. Thus, HER2 is a key component of a complex signaling network that plays a critical role in the regulation of tissue development, growth, and differentiation. PMID:11122793

  14. Cellular Actions of Insulin-Like Growth Factor Binding Proteins

    PubMed Central

    Ferry, R. J.; Katz, L. E. L.; Grimberg, Adda; Cohen, P.; Weinzimer, S. A.

    2014-01-01

    The insulin-like growth factors (IGFs), insulin-like growth factor binding proteins (IGFBPs), and the IGFBP proteases are involved in the regulation of somatic growth and cellular proliferation both in vivo and in vitro. IGFs are potent mitogenic agents whose actions are determined by the availability of free IGFs to interact with the IGF receptors. IGFBPs comprise a family of proteins that bind IGFs with high affinity and specificity and thereby regulate IGF-dependent actions. IGFBPs have recently emerged as IGF-independent regulators of cell growth. Various IGFBP association proteins as well as cleavage of IGFBPs by specific proteases modulate levels of free IGFs and IGFBPs. The ubiquity and complexity of the IGF axis promise exciting discoveries and applications for the future. PMID:10226802

  15. Hammerhead Ribozyme-Mediated Knockdown of mRNA for Fibrotic Growth Factors: Transforming Growth Factor-Beta 1 and Connective Tissue Growth Factor

    PubMed Central

    Robinson, Paulette M.; Blalock, Timothy D.; Yuan, Rong; Lewin, Alfred S.; Schultz, Gregory S.

    2013-01-01

    Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor- β (TGF- β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF- β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF- β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF- β and CTGF in cell cultures. PMID:22131029

  16. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  17. Epidermal growth factor, from gene organization to bedside

    PubMed Central

    Zeng, Fenghua; Harris, Raymond C.

    2014-01-01

    In 1962, epidermal growth factor (EGF) was discovered by Dr. Stanley Cohen while studying nerve growth factor (NGF). It was soon recognized that EGF is the prototypical member of a family of peptide growth factors that activate the EGF receptors, and that the EGF/EGF receptor signaling pathway plays important roles in proliferation, differentiation and migration of a variety of cell types, especially in epithelial cells. After the basic characterization of EGF function in the first decade or so after its discovery, the studies related to EGF and its signaling pathway have extended to a broad range of investigations concerning its biological and pathophysiological roles in development and in human diseases. In this review, we briefly describe the gene organization and tissue distribution of EGF, with emphasis on its biological and pathological roles in human diseases. PMID:24513230

  18. Multiple Transcription Factor Families Regulate Axon Growth and Regeneration

    PubMed Central

    Moore, Darcie L.; Goldberg, Jeffrey L.

    2011-01-01

    Understanding axon regenerative failure remains a major goal in neuroscience, and reversing this failure remains a major goal for clinical neurology. While an inhibitory CNS environment clearly plays a role, focus on molecular pathways within neurons has begun to yield fruitful insights. Initial steps forward investigated the receptors and signaling pathways immediately downstream of environmental cues, but recent work has also shed light on transcriptional control mechanisms that regulate intrinsic axon growth ability, presumably through whole cassettes of gene target regulation. Here we will discuss transcription factors that regulate neurite growth in vitro and in vivo, including p53, SnoN, E47, CREB, STAT3, NFAT, c-Jun, ATF3, Sox11, NFκB, and Kruppel-like factors (KLFs). Revealing the similarities and differences among the functions of these transcription factors may further our understanding of the mechanisms of transcriptional regulation in axon growth and regeneration. PMID:21674813

  19. Insulin-like growth factor-1: roles in androgenetic alopecia.

    PubMed

    Panchaprateep, Ratchathorn; Asawanonda, Pravit

    2014-03-01

    Of all the cytokines or growth factors that have been postulated to play a role in hair follicle, insulin-like growth factor-1 (IGF-1) is known to be regulated by androgens. However, how IGF-1 is altered in the balding scalp has not yet been investigated. In this study, expressions of IGF-1 and its binding proteins by dermal papilla (DP) cells obtained from balding versus non-balding hair follicles were quantified using growth factor array. DP cells from balding scalp follicles were found to secrete significantly less IGF-1, IGFBP-2 and IGFBP-4 (P < 0.05) than their non-balding counterparts. Our data confirmed that the downregulation of IGF-1 may be one of the important mechanisms contributing to male pattern baldness. PMID:24499417

  20. A genome-wide association study of heparin-induced thrombocytopenia using an electronic medical record.

    PubMed

    Karnes, Jason H; Cronin, Robert M; Rollin, Jerome; Teumer, Alexander; Pouplard, Claire; Shaffer, Christian M; Blanquicett, Carmelo; Bowton, Erica A; Cowan, James D; Mosley, Jonathan D; Van Driest, Sara L; Weeke, Peter E; Wells, Quinn S; Bakchoul, Tamam; Denny, Joshua C; Greinacher, Andreas; Gruel, Yves; Roden, Dan M

    2015-04-01

    Heparin-induced thrombocytopenia (HIT) is an unpredictable, potentially catastrophic adverse effect of heparin treatment resulting from an immune response to platelet factor 4 (PF4)/heparin complexes. No genome-wide evaluations have been performed to identify potential genetic influences on HIT. Here, we performed a genome-wide association study (GWAS) and candidate gene study using HIT cases and controls identified using electronic medical records (EMRs) coupled to a DNA biobank and attempted to replicate GWAS associations in an independent cohort. We subsequently investigated influences of GWAS-associated single nucleotide polymorphisms (SNPs) on PF4/heparin antibodies in non-heparin treated individuals. In a recessive model, we observed significant SNP associations (odds ratio [OR] 18.52; 95% confidence interval [CI] 6.33-54.23; p=3.18×10(-9)) with HIT near the T-Cell Death-Associated Gene 8 (TDAG8). These SNPs are in linkage disequilibrium with a missense TDAG8 SNP. TDAG8 SNPs trended toward an association with HIT in replication analysis (OR 5.71; 0.47-69.22; p=0.17), and the missense SNP was associated with PF4/heparin antibody levels and positive PF4/heparin antibodies in non-heparin treated patients (OR 3.09; 1.14-8.13; p=0.02). In the candidate gene study, SNPs at HLA-DRA were nominally associated with HIT (OR 0.25; 0.15-0.44; p=2.06×10(-6)). Further study of TDAG8 and HLA-DRA SNPs is warranted to assess their influence on the risk of developing HIT. PMID:25503805

  1. A genome-wide association study of heparin-induced thrombocytopenia using an electronic medical record

    PubMed Central

    Karnes, Jason H; Cronin, Robert M; Rollin, Jerome; Teumer, Alexander; Pouplard, Claire; Shaffer, Christian M; Blanquicett, Carmelo; Bowton, Erica A; Cowan, James D; Mosley, Jonathan D; Van Driest, Sara L; Weeke, Peter E; Wells, Quinn S; Bakchoul, Tamam; Denny, Joshua C; Greinacher, Andreas; Gruel, Yves; Roden, Dan M

    2015-01-01

    Heparin-induced thrombocytopenia (HIT) is an unpredictable, potentially catastrophic adverse effect of heparin treatment resulting from an immune response to platelet factor 4 (PF4)/heparin complexes. No genome-wide evaluations have been performed to identify potential genetic influences on HIT. Here, we performed a genome-wide association study (GWAS) and candidate gene study using HIT cases and controls identified using electronic medical records (EMRs) coupled to a DNA biobank and attempted to replicate GWAS associations in an independent cohort. We subsequently investigated influences of GWAS-associated single nucleotide polymorphisms (SNPs) on PF4/heparin antibodies in non-heparin treated individuals. In a recessive model, we observed significant SNP associations (OR 18.52 [6.33–54.23], p=3.18×10−9) with HIT near the T-Cell Death-Associated Gene 8 (TDAG8). These SNPs are in linkage disequilibrium with a missense TDAG8 SNP. TDAG8 SNPs trended toward an association with HIT in replication analysis (OR 5.71 [0.47–69.22], p=0.17), and the missense SNP was associated with PF4/heparin antibody levels and positive PF4/heparin antibodies in non-heparin treated patients (OR 3.09 [1.14–8.13], p=0.02). In the candidate gene study, SNPs at HLA-DRA were nominally associated with HIT (OR 0.25 [0.15–0.44], p=2.06×10−6). Further study of TDAG8 and HLA-DRA SNPs is warranted to assess their influence on the risk of developing HIT. PMID:25503805

  2. Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies

    PubMed Central

    Kumorek, Marta; Kubies, Dana; Filová, Elena; Houska, Milan; Kasoju, Naresh; Mázl Chánová, Eliška; Matějka, Roman; Krýslová, Markéta; Bačáková, Lucie; Rypáček, František

    2015-01-01

    In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm2. The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm2) than on surfaces with a higher concentration of FGF-2 (120 ng/cm2). PMID:25945799

  3. Expression and localization of epidermal growth factor, transforming growth factor-α and epidermal growth factor receptor in the canine testis

    PubMed Central

    TAMADA, Hiromichi; TAKEMOTO, Kohei; TOMINAGA, Masato; KAWATE, Noritoshi; TAKAHASHI, Masahiro; HATOYA, Shingo; MATSUYAMA, Satoshi; INABA, Toshio; SAWADA, Tsutomu

    2015-01-01

    Gene expression of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and EGF receptor (EGF-R) and the localization of the corresponding proteins in the canine testis were studied. Levels of mRNA expressions were determined by semiquantitative reverse transcription polymerase chain reaction in the testes of the peripubertal (4–6 months), young adult (3–4 years), advanced adult (7–8 years) and senescent (11–16 years) groups. The EGF-R mRNA level in the testes of the peripubertal group was significantly higher than those in the other groups, whereas there was no difference in EGF and TGF-α mRNA levels among groups. Immunohistochemical stainings for EGF, TGF-α and EGF-R in the testis revealed that immunoreactivity in the seminiferous epithelium and Sertoli cell was weak and nonspecific for the stage of spermatogenesis, and distinct staining was found in Leydig cells. These results suggest that the EGF family of growth factors may be involved in testicular maturation and function in the dog. PMID:26498203

  4. Amyloid formation in human islets is enhanced by heparin and inhibited by heparinase.

    PubMed

    Potter, K J; Werner, I; Denroche, H C; Montane, J; Plesner, A; Chen, Y; Lei, D; Soukhatcheva, G; Warnock, G L; Oberholzer, J; Fraser, P E; Verchere, C B

    2015-06-01

    Islet transplantation is a promising therapy for patients with diabetes, but its long-term success is limited by many factors, including the formation of islet amyloid deposits. Heparin is employed in clinical islet transplantation to reduce clotting but also promotes fibrillization of amyloidogenic proteins. We hypothesized that heparin treatment of islets during pre-transplant culture may enhance amyloid formation leading to beta cell loss and graft dysfunction. Heparin promoted the fibrillization of human islet amyloid polypeptide (IAPP) and enhanced its toxicity to INS-1 beta cells. Heparin increased amyloid deposition in cultured human islets, but surprisingly decreased islet cell apoptosis. Treatment of human islets with heparin prior to transplantation increased the likelihood of graft failure. Removal of islet heparan sulfate glycosaminoglycans, which localize with islet amyloid deposits in type 2 diabetes, by heparinase treatment decreased amyloid deposition and protected against islet cell death. These findings raise the possibility that pretransplant treatment of human islets with heparin could potentiate IAPP aggregation and amyloid formation and may be detrimental to subsequent graft function. PMID:25833002

  5. Heparin-induced anaphylactoid reaction associated with heparin-induced thrombocytopenia in the ED.

    PubMed

    Foreman, Juron S; Daniels, Lauren M; Stettner, Edward A

    2014-12-01

    Although rare, heparin-induced anaphylactic and anaphylactoid reactions have been previously described in the literature. We present a case of a patient who presented to the emergency department with dyspnea and was subsequently diagnosed with an acute pulmonary venous thromboembolism. Shortly after being started on intravenous unfractionated heparin, she developed sudden cardiovascular collapse leading to a cardiopulmonary arrest. She was successfully resuscitated and, after further diagnostic evaluation, was found to have developed a heparin-induced anaphylactoid reaction. PMID:25097093

  6. Nerve growth factor levels and localisation in human asthmatic bronchi.

    PubMed

    Olgart Höglund, C; de Blay, F; Oster, J P; Duvernelle, C; Kassel, O; Pauli, G; Frossard, N

    2002-11-01

    Nerve growth factor (NGF) has recently been suggested to be an important mediator of inflammation. In support of this, serum levels of NGF have been shown to be enhanced in asthmatics. However, it has not yet been shown whether the levels of NGF are also altered locally in asthmatic airways, when compared with healthy subjects, and the localisation of potential sources of NGF in the human bronchus have not yet been described. The aim of the present study was to assess NGF levels in bronchoalveolar lavage fluid (BALF) from asthmatics and to compare them to those of control subjects. Furthermore, the authors wanted to localise potential sources of NGF in bronchial tissue, and to number NGF-immunopositive infiltrating cells in the bronchial submucosa. BALF and bronchial biopsies were obtained from seven control subjects and seven asthmatic patients by fibreoptic bronchoscopy. NGF protein levels were quantified by enzyme-linked immunosorbent assay in BALF. NGF localisation was examined by immunohistochemistry on bronchial biopsy sections. The asthmatics exhibited significantly enhanced NGF levels in BALF. Intense NGF-immunoreactivity was observed in bronchial epithelium, smooth muscle cells and infiltrating inflammatory cells in the submucosa, and to a lesser extent in the connective tissue. The asthmatics exhibited a higher number of NGF-immunoreactive infiltrating cells in the bronchial submucosa than control subjects. This study provides evidence that nerve growth factor is locally produced in the airways, and shows that this production is enhanced in asthmatics. These findings suggest that nerve growth factor is produced by both structural cells and infiltrating inflammatory cells in human bronchus in vivo, and the authors suggest that the increase in nerve growth factor protein in bronchoalveolar lavage fluid observed in asthmatic patients may originate both from structural cells, producing increased nerve growth factor levels in inflammatory conditons, and from

  7. Effects of growth factors on temporomandibular joint disc cells.

    PubMed

    Detamore, Michael S; Athanasiou, Kyriacos A

    2004-07-01

    The effects of growth factors on cartilaginous tissues are well documented. An exception is the temporomandibular joint (TMJ) disc, where data for growth factor effects on proliferation and biosynthesis are very limited. The purpose of this study was to quantify proliferation of and synthesis by TMJ disc cells cultured in monolayer with either platelet derived growth factor-AB (PDGF), basic fibroblast growth factor (bFGF) or insulin-like growth factor-I (IGF), at either a low (10 ng/ml) or high (100 ng/ml) concentration. Proliferation was assessed with a DNA quantitation technique, collagen synthesis was measured via a hydroxyproline assay, and GAG synthesis was determined with a dimethylmethylene blue dye binding assay at 14 days. Overall, the most beneficial growth factor was bFGF, which was most potent in increasing proliferation and GAG synthesis, and also effective in promoting collagen synthesis. At the high concentration, bFGF resulted in 96% more cells than the control and 30 to 45% more cells than PDGF and IGF. PDGF and bFGF were the most potent upregulators of GAG synthesis, producing 2-3 times more GAG than the control. IGF had no significant effect on GAG production, although at its higher concentration it increased collagen production by 4.5 times over the control. Collagen synthesis was promoted by bFGF at its lower concentration, with levels 4.2 times higher than the control, whereas PDGF had no significant effect on collagen production. In general, higher concentrations increased proliferation, whereas lower concentrations favoured biosynthesis. PMID:15126139

  8. Small Is Beautiful: Insulin-Like Growth Factors and Their Role in Growth, Development, and Cancer

    PubMed Central

    Maki, Robert G.

    2010-01-01

    Insulin-like growth factors were discovered more than 50 years ago as mediators of growth hormone that effect growth and differentiation of bone and skeletal muscle. Interest of the role of insulin-like growth factors in cancer reached a peak in the 1990s, and then waned until the availability in the past 5 years of monoclonal antibodies and small molecules that block the insulin-like growth factor 1 receptor. In this article, we review the history of insulin-like growth factors and their role in growth, development, organism survival, and in cancer, both epithelial cancers and sarcomas. Recent developments regarding phase I to II clinical trials of such agents are discussed, as well as potential studies to consider in the future, given the lack of efficacy of one such monoclonal antibody in combination with cytotoxic chemotherapy in a first-line study in metastatic non–small-cell lung adenocarcinoma. Greater success with these agents clinically is expected when combining the agents with inhibitors of other cell signaling pathways in which cross-resistance has been observed. PMID:20975071

  9. Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer.

    PubMed

    Maki, Robert G

    2010-11-20

    Insulin-like growth factors were discovered more than 50 years ago as mediators of growth hormone that effect growth and differentiation of bone and skeletal muscle. Interest of the role of insulin-like growth factors in cancer reached a peak in the 1990s, and then waned until the availability in the past 5 years of monoclonal antibodies and small molecules that block the insulin-like growth factor 1 receptor. In this article, we review the history of insulin-like growth factors and their role in growth, development, organism survival, and in cancer, both epithelial cancers and sarcomas. Recent developments regarding phase I to II clinical trials of such agents are discussed, as well as potential studies to consider in the future, given the lack of efficacy of one such monoclonal antibody in combination with cytotoxic chemotherapy in a first-line study in metastatic non-small-cell lung adenocarcinoma. Greater success with these agents clinically is expected when combining the agents with inhibitors of other cell signaling pathways in which cross-resistance has been observed. PMID:20975071

  10. Vascular growth factors play critical roles in kidney glomeruli.

    PubMed

    Gnudi, Luigi; Benedetti, Sara; Woolf, Adrian S; Long, David A

    2015-12-01

    Kidney glomeruli ultrafilter blood to generate urine and they are dysfunctional in a variety of kidney diseases. There are two key vascular growth factor families implicated in glomerular biology and function, namely the vascular endothelial growth factors (VEGFs) and the angiopoietins (Angpt). We present examples showing not only how these molecules help generate and maintain healthy glomeruli but also how they drive disease when their expression is dysregulated. Finally, we review how manipulating VEGF and Angpt signalling may be used to treat glomerular disease. PMID:26561594

  11. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  12. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  13. A novel signaling pathway of tissue kallikrein in promoting keratinocyte migration: Activation of proteinase-activated receptor 1 and epidermal growth factor receptor

    SciTech Connect

    Gao, Lin; Chao, Lee; Chao, Julie

    2010-02-01

    Biological functions of tissue kallikrein (TK, KLK1) are mainly mediated by kinin generation and subsequent kinin B2 receptor activation. In this study, we investigated the potential role of TK and its signaling pathways in cultured human keratinocyte migration and in a rat skin wound healing model. Herein, we show that TK promoted cell migration and proliferation in a concentration- and time-dependent manner. Inactive TK or kinin had no significant effect on cell migration. Interestingly, cell migration induced by active TK was not blocked by icatibant or L-NAME, indicating an event independent of kinin B2 receptor and nitric oxide formation. TK's stimulatory effect on cell migration was inhibited by small interfering RNA for proteinase-activated receptor 1 (PAR{sub 1}), and by PAR{sub 1} inhibitor. TK-induced migration was associated with increased phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), which was blocked by inhibition of protein kinase C (PKC), Src, EGFR and ERK. TK-induced cell migration and EGFR phosphorylation were blocked by metalloproteinase (MMP) inhibitor, heparin, and antibodies against EGFR external domain, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR). Local application of TK promoted skin wound healing in rats, whereas icatibant and EGFR inhibitor blocked TK's effect. Skin wound healing was further delayed by aprotinin and neutralizing TK antibody. This study demonstrates a novel role of TK in skin wound healing and uncovers new signaling pathways mediated by TK in promoting keratinocyte migration through activation of the PAR{sub 1}-PKC-Src-MMP pathway and HB-EGF/AR shedding-dependent EGFR transactivation.

  14. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed. PMID:26066416

  15. Growth factors in the treatment of early osteoarthritis

    PubMed Central

    Civinini, Roberto; Nistri, Lorenzo; Martini, Caterina; Redl, Birgit; Ristori, Gabriele; Innocenti, Massimo

    2013-01-01

    Summary Regenerative medicine is the science that studies the regeneration of biological tissues obtained through use of cells, with the aid of support structures and with biomolecules such as growth factors. As regards the growth factors the PRP, or the platelet-rich plasma, obtained from a withdrawal of autologous blood, concentrating the platelets, represents a safe, economical, easy to prepare and easy to apply source of growth factors. Numerous growth factors are in fact within the platelets and in particular a large number of them have a specific activity on neo-proliferation, on cartilage regeneration and in particular also an antiapoptotic effect on chondroblasts: - The PDGF which regulates the secretion and synthesis of collagen;- The EGF that causes cellular proliferation, endothelial chemotaxis and angiogenesis;- The VEGF that increases angiogenesis and vascular permeability;- The TGF-beta that stimulates the proliferation of undifferentiated MSC, stimulates chemotaxis of endothelial cells and angiogenesis;- The bFGF that promotes the growth and differentiation of chondrocytes and osteoblasts stimulates mitogenesis of mesenchymal cells, chondrocytes and osteoblasts. These properties have led to the development of studies that evaluated the efficacy of treatment of infiltrations in the knee and hip with platelet-derived growth factors. Regarding the knee it was demonstrated that in patients with moderate degree of gonarthrosis, the PRP is able to significantly reduce the pain and improve joint function, both on placebo and towards infiltrations with hyaluronic acid. The success of the treatment was proportional to the age of and inversely proportional to the severity of osteoarthritis according to Kellgren and Lawrence classification. The possibility of infiltrations guided with ultrasound into the hip led us to extend the indications also to hip arthrosis, as already showed by Sanchez. Even in coxarthrosis preliminary results at 6 and 12 months show that

  16. Insulin-Like Growth Factor I (IGF-1) Ec/Mechano Growth Factor – A Splice Variant of IGF-1 within the Growth Plate

    PubMed Central

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation. PMID:24146828

  17. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    PubMed

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. PMID:26798059

  18. Assessing the Factors of Regional Growth Decline of Sugar Maple

    NASA Astrophysics Data System (ADS)

    Bishop, D. A.; Beier, C. M.; Pederson, N.; Lawrence, G. B.; Stella, J. C.; Sullivan, T. J.

    2014-12-01

    Sugar maple (Acer saccharum Marsh) is among the most ecologically, economically and culturally important trees in North America, but has experienced a decline disease across much of its range. We investigated the climatic and edaphic factors associated with A. saccharum growth in the Adirondack Mountains (USA) using a well-replicated tree-ring network incorporating a range of soil fertility (base cation availability). We found that nearly 3 in 4 A. saccharum trees exhibited declining growth rates during the last several decades, regardless of tree age or size. Although diameter growth was consistently higher on base-rich soils, the negative trends in growth were largely consistent across the soil chemistry gradient. Sensitivity of sugar maple growth to climatic variability was overall weaker than expected, but were also non-stationary during the 20th century. We observed increasingly positive responses to late-winter precipitation, increasingly negative responses to growing season temperatures, and strong positive responses to moisture availability during the 1960s drought that became much weaker during the recent pluvial. Further study is needed of these factors and their interactions as potential mechanisms for sugar maple growth decline.

  19. Heparin-induced thrombocytopenia in essential thrombocytosis.

    PubMed

    Murawaki, Ayumi; Nakayasu, Hiroyuki; Doi, Mitsuru; Suzuki-Kinoshita, Kaori; Asai, Yasumasa; Omura, Hiromi; Nakashima, Kenji

    2012-11-01

    We report a 67-year-old woman with essential thrombocytosis who developed cerebral infarction and heparin-induced thrombocytopenia during treatment for the cerebral infarction. She developed additional cerebral infarcts, acute femoral artery occlusion, and thrombophlebitis of her lower extremities. She was successfully treated with argatroban. This is the first report of a patient with essential thrombocytosis who developed heparin-induced thrombocytopenia and serious conditions, which included multiple thromboembolisms and coagulation disorders mimicking disseminated intravascular coagulation. PMID:22425438

  20. Novel diagnostic assays for heparin-induced thrombocytopenia

    PubMed Central

    Rux, Ann H.; Hinds, Jillian L.; Dela Cruz, May; Yarovoi, Serge V.; Brown, Isola A. M.; Yang, Wei; Konkle, Barbara A.; Arepally, Gowthami M.; Watson, Stephen P.; Cines, Douglas B.; Sachais, Bruce S.

    2013-01-01

    Laboratory testing for heparin-induced thrombocytopenia (HIT) has important shortcomings. Immunoassays fail to discriminate platelet-activating from nonpathogenic antibodies. Specific functional assays are impracticable due to the need for platelets and radioisotope. We describe 2 assays that may overcome these limitations. The KKO-inhibition test (KKO-I) measures the effect of plasma on binding of the HIT-like monoclonal antibody KKO to platelet factor 4 (PF4)/heparin. DT40-luciferase (DT40-luc) is a functional test comprised of a B-cell line expressing FcγRIIa coupled to a luciferase reporter. We compared these assays to polyspecific and immunoglobulin (Ig)G-specific PF4/heparin enzyme-linked immunosorbent assays (ELISAs) in samples from 58 patients with suspected HIT and circulating anti-PF4/heparin antibodies. HIT was defined as a 4Ts score ≥ 4 and positive 14C-serotonin release assay. HIT-positive plasma demonstrated greater mean inhibition of KKO binding than HIT-negative plasma (78.9% vs 26.0%; P < .0001) and induced greater luciferase activity (3.14-fold basal vs 0.96-fold basal; P < .0001). The area under the receiver-operating characteristic curve was greater for KKO-I (0.93) than for the polyspecific (0.82; P = .020) and IgG-specific ELISA (0.76; P = .0044) and for DT40-luc (0.89) than for the IgG-specific ELISA (P = .046). KKO-I and DT40-luc showed better discrimination than 2 commercially available immunoassays, are simple to perform, and hold promise for improving the specificity and feasibility of HIT laboratory testing. PMID:23446735

  1. The role of hematopoietic growth factors in transfusion medicine.

    PubMed

    Whitsett, C F

    1995-02-01

    Hematopoietic growth factors have already had an enormous impact on transfusion practice by eliminating or reducing the need for red blood cell transfusions in a variety of anemic states characterized by an absolute or relative decrease in erythropoietin. In addition, GM-CSF and G-CSF have stimulated the production of autologous neutrophils in febrile neutropenic patients in whom granulocyte transfusions had been considered ineffective. With the discovery of c-Mpl ligand and the promising results obtained with IL-11 and IL-3, a combination of growth factors that successfully stimulate platelet production may soon be identified. This first era in the clinical application of hematopoietic growth factors has been characterized largely by treatment of the patient to stimulate production of autologous cells or to enhance the ability of transplanted hematopoietic progenitor cells to repopulate the patient. The use of G-CSF to increase the yield of granulocytes harvested by apheresis procedures and to mobilize peripheral blood stem cells in allogeneic donors has initiated a new era in which the cell donor is treated to enhance cell production and enhance the repopulating ability of hematopoietic progenitor cells. As our understanding of hematopoiesis grows, scientists will be able to identify growth factors to overcome or correct deficient hematopoiesis. Increasingly, component transfusions will be reserved for life-threatening situations in which endogenous cell production cannot be stimulated or cell production will be too slow to prevent life-threatening events. PMID:7737944

  2. Controlled growth factor release from synthetic extracellular matrices

    NASA Astrophysics Data System (ADS)

    Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.

    2000-12-01

    Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.

  3. NEUROBIOLOGICAL EFFECTS OF COLCHICINE: MODULATION BY NERVE GROWTH FACTOR

    EPA Science Inventory

    To study the effects of exogenously applied nerve growth factor (NGF) on colchicine-induced neurodegeneration in the dentate gyrus of the rat hippocampal formation, male Fischer 344 rats (n=75) weighing 275-325 grams received colchicine [COLCH; 2.5 ug/site in 0.5 ul of artificial...

  4. Role of fibroblast growth factors in organ regeneration and repair.

    PubMed

    El Agha, Elie; Kosanovic, Djuro; Schermuly, Ralph T; Bellusci, Saverio

    2016-05-01

    In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases. PMID:26459973

  5. Total Chemical Synthesis of Biologically Active Vascular Endothelial Growth Factor

    SciTech Connect

    Mandal, Kalyaneswar; Kent, Stephen B.H.

    2011-09-15

    The 204-residue covalent-dimer vascular endothelial growth factor (VEGF, see picture) with full mitogenic activity was prepared from three unprotected peptide segments by one-pot native chemical ligations. The covalent structure of the synthetic VEGF was confirmed by precise mass measurement, and the three-dimensional structure of the synthetic protein was determined by high-resolution X-ray crystallography.

  6. Regulation of liver regeneration by growth factors and cytokines

    PubMed Central

    Böhm, Friederike; Köhler, Ulrike A; Speicher, Tobias; Werner, Sabine

    2010-01-01

    The capability of the liver to fully regenerate after injury is a unique phenomenon essential for the maintenance of its important functions in the control of metabolism and xenobiotic detoxification. The regeneration process is histologically well described, but the genes that orchestrate liver regeneration have been only partially characterized. Of particular interest are cytokines and growth factors, which control different phases of liver regeneration. Historically, their potential functions in this process were addressed by analyzing their expression in the regenerating liver of rodents. Some of the predicted roles were confirmed using functional studies, including systemic delivery of recombinant growth factors, neutralizing antibodies or siRNAs prior to liver injury or during liver regeneration. In particular, the availability of genetically modified mice and their use in liver regeneration studies has unraveled novel and often unexpected functions of growth factors, cytokines and their downstream signalling targets in liver regeneration. This review summarizes the results obtained by functional studies that have addressed the roles and mechanisms of action of growth factors and cytokines in liver regeneration after acute injury to this organ. PMID:20652897

  7. Fibroblast Growth Factor-2 Alters the Nature of Extinction

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2011-01-01

    These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction,…

  8. Characterization and estrogen regulation of uterine growth factor activity

    SciTech Connect

    Beck, C.A.

    1988-01-01

    Acid extracts of rat, bovine and rabbit uterus stimulated glucose transport, measured by phosphorylation of 2-deoxyglucose and DNA synthesis, measured by {sup 3}H-thymidne incorporation, in uterine tumor cells and in primary cultures of rat uterine cells. The stimulation of glucose transport was of the same magnitude and followed the same time course as estradiol stimulation in vivo. Uteri from estradiol-treated rat uteri contained 4 times more glucose transport-stimulating activity as control uteri. DNA synthetic activity in rat uterine homogenates was elevated 3-fold within 18-24 h after estradiol injection. Gel filtration showed molecular weight heterogeneity with activity eluting between 10-30 kDA. Both activities were acid and heat stable, were reduced by trypsin but not by dextran-coated charcoal. The effect of purified growth factors on DNA synthesis in primary cultures of rat uterine cells was examined. Epidermal growth factor (EGF), basic fibroblasts growth factor (bFGF), and transforming growth factor-{beta} (TGF{beta}) had no effect on {sup 3}H-thymidine incorporation.

  9. Mapping growth-factor-modulated Akt signaling dynamics.

    PubMed

    Gross, Sean M; Rotwein, Peter

    2016-05-15

    Growth factors alter cellular behavior through shared signaling cascades, raising the question of how specificity is achieved. Here, we have determined how growth factor actions are encoded into Akt signaling dynamics by real-time tracking of a fluorescent sensor. In individual cells, Akt activity was encoded in an analog pattern, with similar latencies (∼2 min) and half-maximal peak response times (range of 5-8 min). Yet, different growth factors promoted dose-dependent and heterogeneous changes in signaling dynamics. Insulin treatment caused sustained Akt activity, whereas EGF or PDGF-AA promoted transient signaling; PDGF-BB produced sustained responses at higher concentrations, but short-term effects at low doses, actions that were independent of the PDGF-α receptor. Transient responses to EGF were caused by negative feedback at the receptor level, as a second treatment yielded minimal responses, whereas parallel exposure to IGF-I caused full Akt activation. Small-molecule inhibitors reduced PDGF-BB signaling to transient responses, but only decreased the magnitude of IGF-I actions. Our observations reveal distinctions among growth factors that use shared components, and allow us to capture the consequences of receptor-specific regulatory mechanisms on Akt signaling. PMID:27044757

  10. [Expression of tissue factor and vascular endothelial growth factor in colorectal carcinoma].

    PubMed

    Altomare, D F; Rotelli, M T; Memeo, V; Martinelli, E; Guglielmi, A; DeFazio, M; D'Elia, G; Pentimone, A; Colucci, M; Semeraro, N

    2003-01-01

    Tissue factor (TF) and vascular endothelial growth factor (VEGF) play an important role in tumor progression and metastasis. We analyzed their expression in the carcinoma and normal mucosa of 53 colorectal cancer patients. VEGF levels were significantly higher in the tumor and correlated with TF expression. No correlation was found with tumor stage. TF may influence tumor growth and metastasis by modulating VEGF expression and neoangiogenesis. PMID:12903530

  11. Aggregation of commercial heparin samples in storage.

    PubMed

    Racey, T J; Rochon, P; Awang, D V; Neville, G A

    1987-04-01

    The size distribution of heparin aggregates in commercial heparin preparations was examined with the technique of quasi-elastic light scattering. The size distributions were initially examined to determine if any relationship existed between the physical state of the heparin preparation, its age, and its biological activity. It was found that commercial heparin samples change their aggregation state in storage. The amount of aggregation appears to be related to the amount of time in storage and to the storage history. Storage of the samples under conditions of refrigeration and handling represents the storage history that most noticeably increases the aggregation state of the heparin preparations. These aggregates, once formed, appear to be stable. The biological activity of the heparin samples (as measured by the official test) was found to still fall within the accepted limits, independent of the aggregation state of the samples. It is not known what effect, if any, a change in the physical state of the commercial preparation should have on its biological activity. PMID:3598891

  12. Carbachol stimulates a different phospholipid metabolism than nerve growth factor and basic fibroblast growth factor in PC12 cells.

    PubMed Central

    Pessin, M S; Altin, J G; Jarpe, M; Tansley, F; Bradshaw, R A; Raben, D M

    1991-01-01

    We have examined 1,2-diglycerides (DGs) generated in PC12 cells in response to the muscarinic agonist carbachol and compared them with those generated in response to the differentiation factors nerve growth factor and basic fibroblast growth factor. Whereas carbachol stimulates a greater release of inositol phosphates, all three agonists generate similar levels of DGs. In this report, we have analyzed the molecular species of PC12 DGs generated in response to these three agonists. Additionally, we have analyzed the molecular species of PC12 phospholipids. The data indicate that 1) after 1 min of either nerve growth factor or basic fibroblast growth factor stimulation, DGs arise primarily from phosphoinositide hydrolysis; 2) in contrast, after 1 min of carbachol stimulation, DG are generated equally by both phosphoinositide and phosphatidylcholine hydrolysis; and 3) after 15 min of stimulation by any of these agonists, DGs are generated largely by phosphatidylcholine hydrolysis, with a smaller component arising from the phosphoinositides. These results suggest that at least part of the mechanism by which PC12 cells distinguish between different agonists is via alterations in phospholipid sources and kinetics of DG generation. PMID:1892912

  13. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    PubMed

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance. PMID:11953652

  14. Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor

    NASA Technical Reports Server (NTRS)

    Ellis, S.

    1981-01-01

    The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.

  15. Structural studies of neuropilin-2 reveal a zinc ion binding site remote from the vascular endothelial growth factor binding pocket.

    PubMed

    Tsai, Yi-Chun Isabella; Fotinou, Constantina; Rana, Rohini; Yelland, Tamas; Frankel, Paul; Zachary, Ian; Djordjevic, Snezana

    2016-05-01

    Neuropilin-2 is a transmembrane receptor involved in lymphangiogenesis and neuronal development. In adults, neuropilin-2 and its homologous protein neuropilin-1 have been implicated in cancers and infection. Molecular determinants of the ligand selectivity of neuropilins are poorly understood. We have identified and structurally characterized a zinc ion binding site on human neuropilin-2. The neuropilin-2-specific zinc ion binding site is located near the interface between domains b1 and b2 in the ectopic region of the protein, remote from the neuropilin binding site for its physiological ligand, i.e. vascular endothelial growth factor. We also present an X-ray crystal structure of the neuropilin-2 b1 domain in a complex with the C-terminal sub-domain of VEGF-A. Zn(2+) binding to neuropilin-2 destabilizes the protein structure but this effect was counteracted by heparin, suggesting that modifications by glycans and zinc in the extracellular matrix may affect functional neuropilin-2 ligand binding and signalling activity. PMID:26991001

  16. Layer-by-Layer assembled growth factor reservoirs for steering the response of 3T3-cells.

    PubMed

    Naves, Alliny F; Motay, Marvin; Mérindol, Rémi; Davi, Christiane P; Felix, Olivier; Catalani, Luiz H; Decher, Gero

    2016-03-01

    Layer-by-Layer (LbL) assemblies of heparin (Hep) and chitosan (Chi) were prepared for use as reservoirs for acidic and basic fibroblast growth factors (aFGFs and bFGFs, respectively). The effects of the architecture and composition of the reservoirs on the viability and proliferation of NIH-3T3 fibroblast cells were studied under starvation conditions. The reservoir stability was monitored by ellipsometry. The aFGF and bFGF loadings were determined using a dissipation-enhanced quartz crystal microbalance (QCM-D). Stability and release assays were performed in a phosphate buffer at physiological conditions. The results demonstrated that the amount of aFGF and bFGF loaded into and released from LbL reservoirs composed of 3 and 6 layer pairs could be controlled. Cell culture assays in low serum culture medium (LSCM) demonstrated that incorporating very small amounts of aFGF and bFGF into the (Hep/Chi)n multilayers significantly improved the proliferation of the NIH-3T3 fibroblasts. The cells did not proliferate on (Hep/Chi)n assemblies prepared in the absence of FGF under identical conditions. The LbL reservoirs were highly effective for the long-term storage (up to 9 months) of aFGF and bFGF. This work demonstrates the potential of LbL reservoirs for use as biomaterial coatings. PMID:26700236

  17. Calcium sulfate spinal cord scaffold: a study on degradation and fibroblast growth factor 1 loading and release.

    PubMed

    Åberg, Jonas; Eriksson, Olof; Spens, Erika; Nordblom, Jonathan; Mattsson, Per; Sjödahl, Johan; Svensson, Mikael; Engqvist, Håkan

    2012-02-01

    Currently, there is no regenerative strategy for the spinal cord that is part of clinical standard of core. Current paths usually include combinations of scaffold materials and active molecules. In a recent study, a permanent dental resin scaffold for treatment of spinal cord injury was designed. The results from studies on rats were promising. However, for potential clinical use, a biodegradable scaffold material that facilitates drug delivery and the regeneration of the spinal cord needs to be developed. Also a biodegradable material is expected to allow a better evaluation of the efficacy of the surgical method. In this article, the suitability of hardened calcium sulfate cement (CSC) for use as degradable spinal cord scaffolds is investigated in bench studies and in vitro studies. Compressive strength, degradation and microstructure, and the loading capability of heparin-activated fibroblast growth factor 1 (FGF1) via soaking were evaluated. The CSC could easily be injected into the scaffold mold and the obtained scaffolds had sufficient strength to endure the loads applied during surgery. When hardened, the CSC formed a porous microstructure suitable for loading of active substances. It was shown that 10 min of FGF1 soaking was enough to obtain a sustained active FGF1 release for 20-35 days. The results showed that CSC is a promising material for spinal cord scaffold fabrication, since it is biodegradable, has sufficient strength, and allows loading and controlled release of active FGF1. PMID:20624845

  18. Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis

    PubMed Central

    Morfoisse, Florent; Renaud, Edith; Hantelys, Fransky; Prats, Anne-Catherine; Garmy-Susini, Barbara

    2014-01-01

    Hypoxia is known to be a major factor in the induction of angiogenesis during tumor development but its role in lymphangiogenesis remains unclear. Blood and lymphatic vasculatures are stimulated by the vascular endothelial family of growth factors – the VEGFs. In this review, we investigate the role of hypoxia in the molecular regulation of synthesis of the lymphangiogenic growth factors VEGF-A, VEGF-C, and VEGF-D. Gene expression can be regulated by hypoxia at either transcriptional or translational levels. In contrast to strong induction of DNA transcription by hypoxia-inducible factors (HIFs), the majority of cellular stresses such as hypoxia lead to inhibition of cap-dependent translation of mRNA and downregulation of protein synthesis. Here, we describe how initiation of translation of VEGF mRNA is induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. Considering the implications of the lymphatic vasculature for metastatic dissemination, it is crucial to understand the molecular regulation of lymphangiogenic growth factors by hypoxia to obtain new insights into cancer therapy. PMID:27308316

  19. Vascular Endothelial growth factor signaling in hypoxia and Inflammation

    PubMed Central

    Ramakrishnan, S.; Anand, Vidhu; Roy, Sabita

    2014-01-01

    Infection, cancer and cardiovascular diseases are the major causes for morbidity and mortality in the United States according to the Center for Disease Control. The underlying etiology that contributes to the severity of these diseases is either hypoxia induced inflammation or inflammation resulting in hypoxia. Therefore, molecular mechanisms that regulate hypoxia-induced adaptive responses in cells are important areas of investigation. Oxygen availability is sensed by molecular switches which regulate synthesis and secretion of growth factors and inflammatory mediators. As a consequence, tissue microenvironment is altered by reprogramming metabolic pathways, angiogenesis, vascular permeability, pH homeostasis to facilitate tissue remodeling. Hypoxia inducible factor (HIF) is the central mediator of hypoxic response. HIF regulates several hundred genes and vascular endothelial growth factor (VEGF) is one of the primary target genes. Understanding the regulation of HIF and its influence on inflammatory response offers unique opportunities for drug development to modulate inflammation and ischemia in pathological conditions. PMID:24610033

  20. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  1. Acceleration of aneurysm healing by P(DLLA-co-TMC)-coated coils enabling the controlled release of vascular endothelial growth factor.

    PubMed

    Wang, Qiujing; Gao, Yuyuan; Sun, Xinlin; Ji, Bin; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Chen, Chengwei; Jiang, Xiaodan; Zhu, Aiping; Quan, Daping

    2014-08-01

    Since the introduction of the detachable coil in endovascular treatment of intracranial aneurysms, the in-hospital mortality rate has been significantly decreased. Recurrence of the aneurysm remains the major drawback of using detachable coils. We prepared a bioactive coil coated with poly(d,l-lactide)-7co-(1,3-trimethylene carbonate) (P(DLLA-co-TMC)), a novel copolymer for controlling the release of vascular endothelial growth factor (VEGF). Platinum coils were prepared by successive coating with cationic P(DLLA-co-TMC) and anionic heparin. Then, recombinant human VEGF-165 (rhVEGF) was immobilized by affinity binding to heparin. The morphological characteristics and sustained in vitro release of rhVEGF were examined using scanning electron microscopy and enzyme-linked immunosorbent assay, respectively. The efficacy of these novel coils modified by P(DLLA-co-TMC)/rhVEGF was tested using a common carotid artery aneurysm model in rats. Experimental aneurysms were embolized with unmodified, P(DLLA-co-TMC)/heparin-coated or P(DLLA-co-TMC)/rhVEGF-coated platinum coils (n = 18). The coils were removed on days 15, 30 and 90 after insertion, and the histological and immunohistochemical analysis of factor VIII was performed to confirm the presence of endothelial cells in the organized area. In addition, the controlled in vivo release of VEGF was confirmed by Western blotting analysis. The release of VEGF tended to increase during the whole period and no burst release was observed. In the group treated with P(DLLA-co-TMC)/rhVEGF-coated platinum coils, clot organization and endothelial cell proliferation were accelerated. The immunohistochemistry study showed that the expression of factor VIII was found in the P(DLLA-co-TMC)/rhVEGF-coated coil group but not in the other two groups. Furthermore, Western blotting analysis confirmed that the major released VEGF in the aneurysm sac was from the P(DLLA-co-TMC)/VEGF-coated coil. P(DLLA-co-TMC)/rhVEGF-coated platinum coils can

  2. Heparin identification test and purity test for OSCS in heparin sodium and heparin calcium by weak anion-exchange high-performance liquid chromatography.

    PubMed

    Hashii, Noritaka; Kawasaki, Nana; Itoh, Satsuki; Qin, Yan; Fujita, Naho; Hattori, Toshiaki; Miyata, Kazuyoshi; Bando, Aya; Sekimoto, Yuko; Hama, Takeshi; Kashimura, Masaki; Tatsumi, Masashi; Mabuchi, Kazunori; Namekawa, Hiroshi; Sakai, Toru; Hirose, Mio; Dobashi, Sei; Shimahashi, Hirotoshi; Koyama, Sadatoshi; Herr, Susanne Odgaard; Kawai, Kenzo; Yoden, Hikaru; Yamaguchi, Teruhide

    2010-09-01

    Heparin sodium and heparin calcium, which are widely used as anti-coagulants, are known to potentially contain the natural impurity dermatan sulfate (DS). Recently serious adverse events occurred in patients receiving heparin sodium in the US, and a contaminant oversulfated chondroitin sulfate (OSCS) was found to be a cause of the events. To ensure the quality and safety of pharmaceutical heparins, there is need of a physicochemical identification test that can discriminate heparin from the heparin-related substances as well as a sensitive purity test for OSCS. Recently, HPLC with a strong-anion exchange column was proposed as the methods for identifying heparin and determination of OSCS in heparin sodium. Although this method is convenient and easy to perform, the only column suitable for this purpose is the Dionex IonPac AS11-HC column. In this study, we developed alternative identification test and test for OSCS in both heparin sodium and heparin calcium using a weak anion-exchange column. The identification test allowed for separation of heparin from the impurity DS and contaminant OSCS in a shorter time. The purity test provided enough sensitivity, specificity, linearity, recovery and repeatability for OSCS. We believe that our methods will be useful for quality control of pharmaceutical heparins. PMID:20452241

  3. Extrinsic Factors Influencing Fetal Deformations and Intrauterine Growth Restriction

    PubMed Central

    Moh, Wendy; Graham, John M.; Wadhawan, Isha; Sanchez-Lara, Pedro A.

    2012-01-01

    The causes of intrauterine growth restriction (IUGR) are multifactorial with both intrinsic and extrinsic influences. While many studies focus on the intrinsic pathological causes, the possible long-term consequences resulting from extrinsic intrauterine physiological constraints merit additional consideration and further investigation. Infants with IUGR can exhibit early symmetric or late asymmetric growth abnormality patterns depending on the fetal stage of development, of which the latter is most common occurring in 70–80% of growth-restricted infants. Deformation is the consequence of extrinsic biomechanical factors interfering with normal growth, functioning, or positioning of the fetus in utero, typically arising during late gestation. Biomechanical forces play a critical role in the normal morphogenesis of most tissues. The magnitude and direction of force impact the form of the developing fetus, with a specific tissue response depending on its pliability and stage of development. Major uterine constraining factors include primigravida, small maternal size, uterine malformation, uterine fibromata, early pelvic engagement of the fetal head, aberrant fetal position, oligohydramnios, and multifetal gestation. Corrective mechanical forces similar to those that gave rise to the deformation to reshape the deformed structures are often used and should take advantage of the rapid postnatal growth to correct form. PMID:22888434

  4. Vascular Endothelial Growth Factor Acts Primarily via Platelet-Derived Growth Factor Receptor α to Promote Proliferative Vitreoretinopathy

    PubMed Central

    Pennock, Steven; Haddock, Luis J.; Mukai, Shizuo; Kazlauskas, Andrius

    2015-01-01

    Proliferative vitreoretinopathy (PVR) is a nonneovascular blinding disease and the leading cause for failure in surgical repair of rhegmatogenous retinal detachments. Once formed, PVR is difficult to treat. Hence, there is an acute interest in developing approaches to prevent PVR. Of the many growth factors and cytokines that accumulate in vitreous as PVR develops, neutralizing vascular endothelial growth factor (VEGF) A has recently been found to prevent PVR in at least one animal model. The goal of this study was to test if Food and Drug Administration–approved agents could protect the eye from PVR in multiple animal models and to further investigate the underlying mechanisms. Neutralizing VEGF with aflibercept (VEGF Trap-Eye) safely and effectively protected rabbits from PVR in multiple models of disease. Furthermore, aflibercept reduced the bioactivity of both experimental and clinical PVR vitreous. Finally, although VEGF could promote some PVR-associated cellular responses via VEGF receptors expressed on the retinal pigment epithelial cells that drive this disease, VEGF's major contribution to vitreal bioactivity occurred via platelet-derived growth factor receptor α. Thus, VEGF promotes PVR by a noncanonical ability to engage platelet-derived growth factor receptor α. These findings indicate that VEGF contributes to nonangiogenic diseases and that anti–VEGF-based therapies may be effective on a wider spectrum of diseases than previously appreciated. PMID:25261788

  5. Epidermal growth factor (EGF) antagonizes transforming growth factor (TGF)-beta1-induced collagen lattice contraction by human skin fibroblasts.

    PubMed

    Park, J S; Kim, J Y; Cho, J Y; Kang, J S; Yu, Y H

    2000-12-01

    Wound contraction plays an important role in healing, but in extreme conditions, it may lead to excessive scar formation and pathological wound contracture. To date, the key regulator of excessive contracture is known to be transforming growth factor-beta (TGF-beta1). In this study, we have evaluated epidermal growth factor (EGF) antagonism in fibroblast-populated collagen lattice (FPCL) gel contraction, which has been generally used as an in vitro model thought to mimic wound contraction in vivo. As expected, TGF-beta1 treatment enhanced normal fibroblast-induced collagen gel contraction in a dose-dependent manner. In contrast, EGF did not affect normal gel formation, but significantly antagonized TGF-beta1-induced gel formation (p<0.05 at 100 ng/ml), whereas the other growth factor, platelet-derived growth factor (PDGF), did not altered either normal or TGF-beta1-induced gel contractions. Similarly, EGF treatment, but not PDGF, also significantly suppressed TGF-beta1 release that was autologously elicited by TGF-beta1 treatment (p<0.01 at 100 ng/ml). Therefore, the results suggest that EGF may negatively regulate the role of TGF-beta1 through attenuating autologous release of TGF-beta1. PMID:11145189

  6. Transforming growth factor-beta and transforming growth factor beta-receptor expression in human meningioma cells.

    PubMed Central

    Johnson, M. D.; Federspiel, C. F.; Gold, L. I.; Moses, H. L.

    1992-01-01

    The transforming growth factor-beta (TGF beta) family in mammals includes three closely related peptides that influence proliferation and numerous physiologic processes in most mesenchymal cells. In this study, Northern blots, immunohistochemistry, TGF beta radioreceptor assays, TGF beta receptor affinity labeling and [3H] thymidine incorporation were used to evaluate whether primary cell cultures of human meningiomas synthesize the three TGF beta isoforms, bear TGF beta receptors, and respond to TGF beta. Transcripts for TGF beta 1 and 2 were detected in the three cases analyzed. Transforming growth factor-beta 1 immunoreactivity was detected in three of six cases, and TGF beta 2 and 3 immunoreactivity were detected in each case analyzed. Media conditioned by cells cultured from six meningiomas also contained latent TGF beta-like activity. Transforming growth factor-beta receptor cross-linking studies identified TGF beta binding sites corresponding to the type 1, type 2, and type 3 receptors on meningioma cells. Treatment with active TGF beta 1 produced a statistically significant reduction in [3H] thymidine incorporation after stimulation with 10% fetal calf serum and epidermal growth factor in all six cases studied. Images Figure 1 Figure 2 Figure 4 PMID:1325741

  7. FGF19 functions as autocrine growth factor for hepatoblastoma

    PubMed Central

    Elzi, David J.; Song, Meihua; Blackman, Barron; Weintraub, Susan T.; López-Terrada, Dolores; Chen, Yidong; Tomlinson, Gail E.; Shiio, Yuzuru

    2016-01-01

    Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain insight into cytokine signaling in hepatoblastoma, we employed mass spectrometry to analyze the proteins secreted from Hep293TT hepatoblastoma cell line we established and identified the specific secretion of fibroblast growth factor 19 (FGF19), a growth factor for liver cells. We determined that silencing FGF19 by shRNAs or neutralizing secreted FGF19 by anti-FGF19 antibody inhibits the proliferation of hepatoblastoma cells. Furthermore, blocking FGF19 signaling by an FGF receptor kinase inhibitor suppressed hepatoblastoma growth. RNA expression analysis in hepatoblastoma tumors revealed that the high expression of FGF19 signaling pathway components as well as the low expression of FGF19 signaling repression targets correlates with the aggressiveness of the tumors. These results suggest the role of FGF19 as autocrine growth factor for hepatoblastoma. PMID:27382436

  8. Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas.

    PubMed Central

    Hatva, E.; Böhling, T.; Jääskeläinen, J.; Persico, M. G.; Haltia, M.; Alitalo, K.

    1996-01-01

    Capillary hemangioblastomas and hemangiopericytomas are highly vascular central nervous system tumors of controversial origin. Of interest in their pathogenesis are mechanisms regulating endothelial cell growth. The endothelial cell mitogen vascular endothelial growth factor (VEGF) stimulates angiogenesis, and together with its two receptor tyrosine kinases VEGFR-1(FLT1) and VEGFR-2(KDR), is up-regulated during the malignant progression of gliomas. We have analyzed the expression of VEGF and its receptors, the related placental growth factor (PlGF) and the endothelial receptors FLT4 and Tie by in situ hybridization in capillary hemangioblastomas and hemangiopericytomas. VEGF mRNA was up-regulated in all of the hemangiopericytomas studied and highly expressed in the stromal cells of hemangioblastomas. In addition, some hemangioblastoma tumor cells expressed high levels of PlGF. Significantly elevated levels of Tie mRNA, Tie protein, VEGFR-1, and VEGFR-2 but not FLT4 mRNAs were observed in the endothelia of both tumor types. In hemangioblastomas, however, the receptors were also highly expressed by a subpopulation of stromal cells. Consistent results were obtained for a human hemangioblastoma cell line in culture. Up-regulation of the endothelial growth factors and receptors may result in autocrine or paracrine stimulation of endothelial cells and their precursors involved in the genesis of these two vascular tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8774132

  9. Transforming growth factor (TGF)-. alpha. in human milk

    SciTech Connect

    Okada, Masaki; Wakai, Kae; Shizume, Kazuo ); Iwashita, Mitsutoshi ); Ohmura, Eiji; Kamiya, Yoshinobu; Murakami, Hitomi; Onoda, Noritaka; Tsushima, Toshio

    1991-01-01

    Transforming growth factor (TGF)-{alpha} and epidermal growth factor (EGF) were measured in human milk by means of homologous radioimmunoassay. As previously reported, EGF concentration in the colostrum was approximately 200 ng/ml and decreased to 50 ng/ml by day 7 postpartum. The value of immunoreactive (IR)-TGF-{alpha} was 2.2-7.2 ng/ml, much lower than that of EGF. In contrast to EGF, the concentration of IR-TGF-{alpha} was fairly stable during the 7 postpartum days. There was no relationship between the concentrations of IR-TGF-{alpha} and IR-EGF, suggesting that the regulatory mechanism in the release of the two growth factors is different. On gel-chromatography using a Sephadex G-50 column, IR-EGF appeared in the fraction corresponding to that of authentic human EGF, while 70%-80% of the IR-TGF-{alpha} was eluted as a species with a molecular weight greater than that of authentic human TGF-{alpha}. Although the physiological role of TGF-{alpha} in milk is not known, it is possible that it is involved in the development of the mammary gland and/or the growth of newborn infants.

  10. Lifetime growth in wild meerkats: incorporating life history and environmental factors into a standard growth model.

    PubMed

    English, Sinéad; Bateman, Andrew W; Clutton-Brock, Tim H

    2012-05-01

    Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations. PMID:22108854

  11. Bivalirudin as an adjunctive anticoagulant to heparin in the treatment of heparin resistance during cardiopulmonary bypass-assisted cardiac surgery.

    PubMed

    McNair, E; Marcoux, J-A; Bally, C; Gamble, J; Thomson, D

    2016-04-01

    Heparin resistance (unresponsiveness to heparin) is characterized by the inability to reach acceptable activated clotting time values following a calculated dose of heparin. Up to 20% of the patients undergoing cardiothoracic surgery with cardiopulmonary bypass using unfractionated heparin (UFH) for anticoagulation experience heparin resistance. Although UFH has been the "gold standard" for anticoagulation, it is not without its limitations. It is contraindicated in patients with confirmed heparin-induced thrombocytopenia (HIT) and heparin or protamine allergy. The safety and efficacy of the use of the direct thrombin inhibitor bivalirudin for anticoagulation during cardiac surgery has been reported. However, there have been no reports on the treatment of heparin resistance with bivalirudin during CPB. In this review, we report the favorable outcome of our single-center experience with the alternative use of bivalirudin in the management of anticoagulation of heparin unresponsive patients undergoing coronary artery bypass graft surgery. PMID:25934498

  12. [Treatment and prophylaxis of deep venous thrombosis with low molecular weight heparins (meta-analysis of clinical trials)].

    PubMed

    Valiukiene, Laimute; Naudziūnas, Albinas; Unikauskas, Alvydas

    2003-01-01

    Deep-vein thrombosis is a relevant problem of today's medicine, because the risk to fall ill with this pathology is 2-5%; it increases in senior age. Direct and indirect acting thrombin inhibitors are used for treatment and prevention of vein thrombosis. Though great efficiency and safety of new anticoagulants (especially factor Xa inhibitors) were proven in clinical studies, unfractionated heparin and low molecular weight heparins are still most widely used in clinical practice. Low molecular weight heparins are obtained by depolymerizing heparin: its molecular weight is being decreased to 3-7 kDa, or 18-20 monosaccharides. Low molecular weight heparins strongly inhibit Xa coagulation factor and faintly - IIa, that's why their anti-Xa/anti-IIa proportion is >1 (unfractionated heparin = 1); enoxaparine and nadroparine show up the highest proportion. The low weight of these heparins determines good pharmacodynamic characteristics: excellent assimilation from subcutaneous layer, long circulation in plasma, infrequent side effects. Due to these characteristics they are convenient, safe and economically worth using (used by subcutaneous injections, prescribed only 1-2 times per day, coagulation control not required, possibility for patient to be treated at home); therefore low molecular weight heparins are more and more often used in treatment of deep-vein thrombosis and also in primary and secondary prevention. They are one of the most efficacious contemporary anticoagulants, which allow to decrease the deep-vein thrombosis treatment and prevention costs. This article presents literature review about low molecular weight heparins, their appliance in treatment and prophylaxis of deep-vein thrombosis. PMID:12738903

  13. Malignant Peripheral Nerve Sheath Tumor Invasion Requires Aberrantly Expressed Epidermal Growth Factor (EGF) Receptors and is Variably Enhanced by Multiple EGF Family Ligands

    PubMed Central

    Byer, Stephanie J.; Brossier, Nicole M.; Peavler, Lafe T.; Eckert, Jenell M.; Watkins, Stacey; Roth, Kevin A.; Carroll, Steven L.

    2013-01-01

    Aberrant epidermal growth factor receptor (EGFR) expression promotes the pathogenesis of malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with neurofibromatosis type 1, but the mechanisms by which EGFR expression promotes MPNST pathogenesis are poorly understood. We hypothesized that inappropriately expressed EGFRs promote MPNST invasion and found that these kinases are concentrated in MPNST invadopodia in vitro. EGFR knockdown inhibited the migration of unstimulated MPNST cells in vitro and exogenous EGF further enhanced MPNST migration in a substrate-specific manner, promoting migration on laminin and, to a lesser extent, collagen. Thus, in this setting, EGF acts as a chemotactic factor. We also found that the 7 known EGFR ligands (EGF, betacellulin, epiregulin, heparin-binding EGF, transforming growth factor α [TGFα], amphiregulin, and epigen) variably enhanced MPNST migration in a concentration-dependent manner, with TGFα being particularly potent. With the exception of epigen, these factors similarly promoted the migration of non-neoplastic Schwann cells. Although transcripts encoding all 7 EGFR ligands were detected in human MPNST cells and tumor tissues, only TGFα was consistently overexpressed and was found to colocalize with EGFR in situ. These data indicate that constitutive EGFR activation, potentially driven by autocrine or paracrine TGFα signaling, promotes the aggressive invasive behavior characteristic of MPNSTs. PMID:23399900

  14. The influence of site factors on eucalypt growth in Karnataka

    SciTech Connect

    Dury, S.J.; Manjunath, B.E.

    1992-12-31

    The effect of site factors on the growth of E. tereticornis hybrid plantations in Karnataka, southern India, is investigated. Sites have been characterized and classified on the basis of the physical and chemical conditions of the soil, topography and climate. Growth data have been collected from two sources: permanent sample plots, to relate growth to site conditions and to detect site change over time, and fertilizer trials, to investigate which nutrients or combination of nutrients enhance growth rates. Site indices calculated from the permanent sample plots are used as the basis for relating growth rates to soil type. The lower than expected mean annual increments of the plantations, which vary between 0.2 and 7 m{sup 3} ha{sup {minus}1} yr{sup {minus}1} at six years of age, are considered to be primarily the result of water stress. Three of the areas studied have similar soil characteristics, as confirmed by discriminant analysis, but have quite different average site indices. This is shown to be related to differences in average rainfall. Practices for reducing moisture stress are therefore recommended to improve productivity. The fertilizer trials show no clear growth response to nitrogen or phosphorus; possible reasons for this are outlined. Evidence of potassium deficiency is presented. The need for a combined fertilizer/irrigation trial is discussed.

  15. Divergent effects of epidermal growth factor and transforming growth factors on a human endometrial carcinoma cell line.

    PubMed

    Korc, M; Haussler, C A; Trookman, N S

    1987-09-15

    Epidermal growth factor (EGF), at concentrations ranging from 0.83 to 4.98 nM, markedly inhibited the proliferation of RL95-2 cells that were seeded at low plating densities (4.7 X 10(3) cells/cm2). Under the same incubation conditions, 16.6 pM EGF enhanced cell proliferation. At high plating densities (2.5 X 10(4) cells/cm2) 0.83 nM EGF also stimulated cell proliferation. Both the inhibitory and stimulatory effects of EGF were mimicked by transforming growth factor-alpha (TGF-alpha). However, the inhibitory action of TGF-alpha was always greater that of EGF. Binding studies with 125I-labeled TGF-alpha indicated that maximal cell surface binding of TGF-alpha occurred at 15 min, whereas maximal internalization occurred at 45 min. Both cell surface and internalized radioactivity declined sharply thereafter. Analysis of radioactivity released into the incubation medium during pulse-chase experiments indicated that RL95-2 cells extensively degraded both TGF-alpha and EGF. The lysosomotropic compound methylamine arrested the generation of low-molecular-weight degradation products of EGF, but not of TGF-alpha. In contrast to EGF and TGF-alpha, transforming growth factor-beta (TGF-beta) inhibited the proliferation of RL95-2 cells that were seeded at either low or high plating densities. Further, transforming growth factor-beta induced the appearance of large cuboidal cells that were readily distinguished from cells treated with either EGF or TGF-alpha. These findings point to complex regulatory actions of growth factors on the proliferation of RL95-2 cells and suggest that the processing of TGF-alpha following EGF receptor activation is distinct from the processing of EGF. PMID:3497713

  16. The Membrane-anchoring Domain of Epidermal Growth Factor Receptor Ligands Dictates Their Ability to Operate in Juxtacrine Mode

    SciTech Connect

    Dong, Jianying; Opresko, Lee; Chrisler, William B.; Orr, Galya; Quesenberry, Ryan D.; Lauffenburger, Douglas A.; Wiley, H S.

    2005-06-01

    All ligands of the epidermal growth factor receptor (EGFR) are synthesized as membrane-anchored precursors. Previous work has suggested that some ligands, such as EGF, must be proteolytically released to be active, whereas others, such as heparin binding EGF-like growth factor (HB-EGF) can function while still anchored to the membrane (i.e., juxtacrine signaling). To explore the structural basis for these differences in ligand activity, we engineered a series of membrane-anchored ligands in which the core, receptor-binding domain of EGF was combined with different domains of both EGF and HB-EGF. We found that ligands having the N-terminal extension of EGF could not bind to the EGFR, even when released from the membrane. Ligands lacking an N-terminal extension, but possessing the membrane-anchoring domain of EGF still required proteolytic release for activity, whereas ligands with the membrane anchoring domain of HB-EGF could elicit full biological activity while still membrane anchored. Ligands containing the HB-EGF membrane anchor, but lacking an N-terminal extension, activated EGFR during their transit through the Golgi apparatus . However, cell-mixing experiments and fluorescence resonance energy transfer (FRET) studies showed that juxtacrine signaling typically occurred in trans at the cell surface, at points of cell-cell contact. Our data suggest that the membrane-anchoring domain of ligands selectively controls their ability to participate in juxtacrine signaling and thus, only a subclass of EGFR ligands can act in a juxtacrine mode.

  17. Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis

    PubMed Central

    Morfoisse, Florent; Renaud, Edith; Hantelys, Fransky; Prats, Anne-Catherine; Garmy-Susini, Barbara

    2015-01-01

    Hypoxia is a major condition for the induction of angiogenesis during tumor development but its role in lymphangiogenesis remains unclear. Blood and lymphatic vasculatures are stimulated by growth factors from the vascular endothelial family: the VEGFs. In this review, we investigate the role of hypoxia in the molecular regulation of synthesis of lymphangiogenic growth factors VEGF-A, VEGF-C, and VEGF-D. Gene expression can be regulated at transcriptional and translational levels by hypoxia. Despite strong regulation of DNA transcription induced by hypoxia-inducible factors (HIFs), the majority of cellular stresses such as hypoxia lead to inhibition of cap-dependent translation of the mRNA, resulting in downregulation of protein synthesis. Here, we describe how translation initiation of VEGF mRNAs is induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. Considering the implication of the lymphatic vasculature in metastatic dissemination, it seems crucial to understand the hypoxia-induced molecular regulation of lymphangiogenic growth factors to obtain new insights for cancer therapy. PMID:27308508

  18. Key roles of necroptotic factors in promoting tumor growth.

    PubMed

    Liu, Xinjian; Zhou, Min; Mei, Ling; Ruan, Jiaying; Hu, Qian; Peng, Jing; Su, Hang; Liao, Hong; Liu, Shanling; Liu, WeiPing; Wang, He; Huang, Qian; Li, Fang; Li, Chuan-Yuan

    2016-04-19

    Necroptotic factors are generally assumed to play a positive role in tumor therapy by eliminating damaged tumor cells. Here we show that, contrary to expectation, necroptotic factors RIPK1, RIPK3, and MLKL promote tumor growth. We demonstrate that genetic knockout of necroptotic genes RIPK1, RIPK3, or MLKL in cancer cells significantly attenuated their abilities to grow in an anchorage-independent manner. In addition, they exhibited significantly enhanced radiosensitivity. The knockout cells also showed greatly reduced ability to form tumors in mice. Moreover, necrosulfonamide (NSA), a previously identified chemical inhibitor of necroptosis, could significantly delay tumor growth in a xenograft model. Mechanistically, we show that necroptoic factors play a significant role in maintaining the activity of NF-κB. Finally, we found that high levels of phosphorylated MLKL in human esophageal and colon cancers are associated with poor overall survival. Taken together, we conclude that pro-necroptic factors such as RIPK1, RIPK3, and MLKL may play a role in supporting tumor growth, and MLKL may be a promising target for cancer treatment. PMID:26959742

  19. Key roles of necroptotic factors in promoting tumor growth

    PubMed Central

    Liu, Xinjian; Zhou, Min; Mei, Ling; Ruan, Jiaying; Hu, Qian; Peng, Jing; Su, Hang; Liao, Hong; Liu, Shanling; Liu, WeiPing; Wang, He; Huang, Qian; Li, Fang; Li, Chuan-Yuan

    2016-01-01

    Necroptotic factors are generally assumed to play a positive role in tumor therapy by eliminating damaged tumor cells. Here we show that, contrary to expectation, necroptotic factors RIPK1, RIPK3, and MLKL promote tumor growth. We demonstrate that genetic knockout of necroptotic genes RIPK1, RIPK3, or MLKL in cancer cells significantly attenuated their abilities to grow in an anchorage-independent manner. In addition, they exhibited significantly enhanced radiosensitivity. The knockout cells also showed greatly reduced ability to form tumors in mice. Moreover, necrosulfonamide (NSA), a previously identified chemical inhibitor of necroptosis, could significantly delay tumor growth in a xenograft model. Mechanistically, we show that necroptoic factors play a significant role in maintaining the activity of NF-κB. Finally, we found that high levels of phosphorylated MLKL in human esophageal and colon cancers are associated with poor overall survival. Taken together, we conclude that pro-necroptic factors such as RIPK1, RIPK3, and MLKL may play a role in supporting tumor growth, and MLKL may be a promising target for cancer treatment. PMID:26959742

  20. Growth factor choice is critical for successful functionalization of nanoparticles

    PubMed Central

    Pinkernelle, Josephine; Raffa, Vittoria; Calatayud, Maria P.; Goya, Gerado F.; Riggio, Cristina; Keilhoff, Gerburg

    2015-01-01

    Nanoparticles (NPs) show new characteristics compared to the corresponding bulk material. These nanoscale properties make them interesting for various applications in biomedicine and life sciences. One field of application is the use of magnetic NPs to support regeneration in the nervous system. Drug delivery requires a functionalization of NPs with bio-functional molecules. In our study, we functionalized self-made PEI-coated iron oxide NPs with nerve growth factor (NGF) and glial cell-line derived neurotrophic factor (GDNF). Next, we tested the bio-functionality of NGF in a rat pheochromocytoma cell line (PC12) and the bio-functionality of GDNF in an organotypic spinal cord culture. Covalent binding of NGF to PEI-NPs impaired bio-functionality of NGF, but non-covalent approach differentiated PC12 cells reliably. Non-covalent binding of GDNF showed a satisfying bio-functionality of GDNF:PEI-NPs, but turned out to be unstable in conjugation to the PEI-NPs. Taken together, our study showed the importance of assessing bio-functionality and binding stability of functionalized growth factors using proper biological models. It also shows that successful functionalization of magnetic NPs with growth factors is dependent on the used binding chemistry and that it is hardly predictable. For use as therapeutics, functionalization strategies have to be reproducible and future studies are needed. PMID:26388717

  1. Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis.

    PubMed

    Morfoisse, Florent; Renaud, Edith; Hantelys, Fransky; Prats, Anne-Catherine; Garmy-Susini, Barbara

    2015-01-01

    Hypoxia is a major condition for the induction of angiogenesis during tumor development but its role in lymphangiogenesis remains unclear. Blood and lymphatic vasculatures are stimulated by growth factors from the vascular endothelial family: the VEGFs. In this review, we investigate the role of hypoxia in the molecular regulation of synthesis of lymphangiogenic growth factors VEGF-A, VEGF-C, and VEGF-D. Gene expression can be regulated at transcriptional and translational levels by hypoxia. Despite strong regulation of DNA transcription induced by hypoxia-inducible factors (HIFs), the majority of cellular stresses such as hypoxia lead to inhibition of cap-dependent translation of the mRNA, resulting in downregulation of protein synthesis. Here, we describe how translation initiation of VEGF mRNAs is induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. Considering the implication of the lymphatic vasculature in metastatic dissemination, it seems crucial to understand the hypoxia-induced molecular regulation of lymphangiogenic growth factors to obtain new insights for cancer therapy. PMID:27308508

  2. Blocking Fibroblast Growth Factor Receptor Signaling Inhibits Tumor Growth, Lymphangiogenesis, and Metastasis

    PubMed Central

    Larrieu-Lahargue, Frédéric; Welm, Alana L.; Bouchecareilh, Marion; Alitalo, Kari; Li, Dean Y.; Bikfalvi, Andreas; Auguste, Patrick

    2012-01-01

    Fibroblast Growth Factor receptor (FGFR) activity plays crucial roles in tumor growth and patient survival. However, FGF (Fibroblast Growth Factor) signaling as a target for cancer therapy has been under-investigated compared to other receptor tyrosine kinases. Here, we studied the effect of FGFR signaling inhibition on tumor growth, metastasis and lymphangiogenesis by expressing a dominant negative FGFR (FGFR-2DN) in an orthotopic mouse mammary 66c14 carcinoma model. We show that FGFR-2DN-expressing 66c14 cells proliferate in vitro slower than controls. 66c14 tumor outgrowth and lung metastatic foci are reduced in mice implanted with FGFR-2DN-expressing cells, which also exhibited better overall survival. We found 66c14 cells in the lumen of tumor lymphatic vessels and in lymph nodes. FGFR-2DN-expressing tumors exhibited a decrease in VEGFR-3 (Vascular Endothelial Growth Factor Receptor-3) or podoplanin-positive lymphatic vessels, an increase in isolated intratumoral lymphatic endothelial cells and a reduction in VEGF-C (Vascular Endothelial Growth Factor-C) mRNA expression. FGFs may act in an autocrine manner as the inhibition of FGFR signaling in tumor cells suppresses VEGF-C expression in a COX-2 (cyclooxygenase-2) or HIF1-α (hypoxia-inducible factor-1 α) independent manner. FGFs may also act in a paracrine manner on tumor lymphatics by inducing expression of pro-lymphangiogenic molecules such as VEGFR-3, integrin α9, prox1 and netrin-1. Finally, in vitro lymphangiogenesis is impeded in the presence of FGFR-2DN 66c14 cells. These data confirm that both FGF and VEGF signaling are necessary for the maintenance of vascular morphogenesis and provide evidence that targeting FGFR signaling may be an interesting approach to inhibit tumor lymphangiogenesis and metastatic spread. PMID:22761819

  3. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules

    PubMed Central

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  4. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules.

    PubMed

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  5. Multilayer films by blending heparin with semisynthetic cellulose sulfates: Physico-chemical characterization and cell responses.

    PubMed

    Aggarwal, Neha; Groth, Thomas

    2014-12-01

    Here, we report fabrication of polyelectrolyte multilayers by blending a natural glycosaminoglycan (heparin) with semisynthetic cellulose sulfates as polyanions paired with polycation chitosan. Two types of polyanionic blends were prepared by mixing heparin with either cellulose sulfates (CS) of high (CS2.6) or intermediate (CS1.6) sulfation degree in equal mass ratios. Multilayer growth was monitored by surface plasmon resonance (SPR) and quartz crystal micro balance with dissipation monitoring (QCM-D) where as surface wettability was measured by water contact angle measurements (WCA). Both SPR and QCM-D showed differences in biomolecular mass adsorption and dissipation values for different multilayers and also helped in estimating the hydration levels of layers. WCA indicated arrangement of polyanion and polycation layers within the multilayer systems, weather distinct layers, or more intermingled multilayers were established. Overall physico-chemical characterization data suggested a dominating incorporation of heparin over CS in blend multilayer systems. Biological interactions of these blend multilayers investigated with C2C12 cells also indicated a leading contribution of heparin in the blend systems. This current study suggested that heparin was preferentially incorporated over CS that are highly sulfated and points towards the dominance of carboxylic groups over sulfate groups in interacting with amino groups of chitosan. PMID:24464980

  6. Antitumor effect of hepatocyte growth factor on hepatoblastoma.

    PubMed

    Tsunoda, Y; Shibusawa, M; Tsunoda, A; Gomi, A; Yatsuzuka, M; Okamatsu, T

    1998-01-01

    A six month-old girl presented with an abdominal mass, and high serum level of alpha-fetoprotein. She was diagnosed as having a well-differentiated hepatoblastoma by open biopsy. The biopsy specimen was transplanted on a nude mouse, and a xenograft was successfully established. Because the xenograft maintained the characteristics of the original tumor, the effect of hepatocyte growth factor (HGF) on hepatoblastoma xenograft was investigated. Recently HGF was reported to be involved in growth, invasion, and metastasis of tumor cells. Contrary to our expectations, the treatment of hepatoblastoma xenograft with recombinant 20 ng/ml HGF produced a marked inhibition of cell growth and a suppression of producing alpha-fetoprotein. PMID:9891489

  7. A study of substrate factor on carbon nanotube forest growth

    NASA Astrophysics Data System (ADS)

    Read, Carlos; Call, Robert; Shen, T. C.

    2010-10-01

    Carbon Nanotube Forests (CNFs) are vertically grown carbon nanotubes. They can be as tall as millimeters with radii from less than one nm (single-walled) to more than a hundred nm (multi-walled). Their high surface to volume ratio provides a unique material system for EM radiation absorption, dry adhesive and biosensor applications. There have been numerous, but not all consistent reports on successful CNF growth. We find that the optimal growth conditions depend critically on the substrate, at least by the spray pyrolysis method we have adopted. To determine the substrate factor, we have investigated two grades of copper, stainless steel, silicon and quartz as substrates on which the catalytic particles and carbon source are delivered simultaneously by a ferrocine-xylene solution. We find that the interplay of lateral and in-diffusion of the iron atoms and interactions with existing gas molecules such as H2, O2, H2O on the substrates dictate the CNF growth.

  8. Modulation of epidermal growth factor receptors by human alpha interferon.

    PubMed Central

    Zoon, K C; Karasaki, Y; zur Nedden, D L; Hu, R Q; Arnheiter, H

    1986-01-01

    Treatment of Madin-Darby bovine kidney (MDBK) cells with human interferon (IFN)-alpha 2 at 37 degrees C results in a dose-dependent inhibition of cell growth and a reduction of the subsequent binding of 125I-labeled epidermal growth factor (EGF) at 4 degrees C. Human IFN-beta and -gamma, which exhibit little antiviral and antiproliferative activities on MDBK cells, have little effect on cell growth or the binding of 125I-labeled EGF to these cells. The binding of EGF is decreased after exposure to IFN-alpha for greater than 8 hr. Scatchard analyses of the EGF binding data indicate that a 20-hr exposure period results in a decrease in the apparent number of cell-surface EGF receptors and a reduction in the affinity of EGF for its receptor. The rate of internalization of EGF by MDBK cells does not appear to be affected by IFN treatment. PMID:3095830

  9. Modulation of epidermal growth factor receptors by human alpha interferon.

    PubMed

    Zoon, K C; Karasaki, Y; zur Nedden, D L; Hu, R Q; Arnheiter, H

    1986-11-01

    Treatment of Madin-Darby bovine kidney (MDBK) cells with human interferon (IFN)-alpha 2 at 37 degrees C results in a dose-dependent inhibition of cell growth and a reduction of the subsequent binding of 125I-labeled epidermal growth factor (EGF) at 4 degrees C. Human IFN-beta and -gamma, which exhibit little antiviral and antiproliferative activities on MDBK cells, have little effect on cell growth or the binding of 125I-labeled EGF to these cells. The binding of EGF is decreased after exposure to IFN-alpha for greater than 8 hr. Scatchard analyses of the EGF binding data indicate that a 20-hr exposure period results in a decrease in the apparent number of cell-surface EGF receptors and a reduction in the affinity of EGF for its receptor. The rate of internalization of EGF by MDBK cells does not appear to be affected by IFN treatment. PMID:3095830

  10. Insulin-like growth factor- I and factors affecting it in thalassemia major

    PubMed Central

    Soliman, Ashraf T.; Sanctis, Vincenzo De; Elalaily, Rania; Yassin, Mohamed

    2015-01-01

    Despite improvement of blood transfusion regimens and iron chelation therapy growth and maturational delay, cardiomyopathy, endocrinopathies and osteoporosis still occur in good number of thalassemic patients. Decreased IGF-1 secretion occurs in the majority of the thalassemic patients particularly those with growth and pubertal delay. Many factors contribute to this decreased synthesis of IGF-I including disturbed growth hormone (GH) - insulin-like growth factor - I (IGF-I) axis. The possible factors contributing to low IGF-I synthesis in thalassemia and the possible interaction between low IGF-I secretion and the occurrence of these complications is discussed in this mini-review. Improvement of IGF-I secretion in thalassemic patients should be intended to improve linear growth and bone mineral accretion in thalassemic patients. This can be attained through adequate correction of anemia and proper chelation, nutritional supplementation (increasing caloric intake), correction of vitamin D and zinc deficiencies, induction of puberty and correction of hypogonadism at the proper time and treating GH deficiency. This review paper provides a summary of the current state of knowledge regarding IGF-I and factors affecting it in patients with thalassaemia major (TM). Search on PubMed and reference lists of articles with the term ‘IGF-I, GH, growth, thalassemia, thyroxine, anemia, vitamin D, and zinc’ was carried out. A hundred and forty-eight articles were found and used in the write up and the data analyzed was included in this report. PMID:25729686

  11. Post-injury Hyperfibrinogenemia Compromises Efficacy of Heparin-Based VTE Prophylaxis

    PubMed Central

    Harr, Jeffrey N.; Moore, Ernest E.; Chin, Theresa L.; Ghasabyan, Arsen; Gonzalez, Eduardo; Wohlauer, Max V.; Sauaia, Angela; Banerjee, Anirban; Silliman, Christopher C.

    2013-01-01

    as a potential factor in heparin resistance. PMID:24351527

  12. Effects of medium flow on axon growth with or without nerve growth factor.

    PubMed

    Kumamoto, Junichi; Kitahata, Hiroyuki; Goto, Makiko; Nagayama, Masaharu; Denda, Mitsuhiro

    2015-09-11

    Axon growth is a crucial process in regeneration of damaged nerves. On the other hand, elongation of nerve fibers in the epidermis has been observed in skin of atopic dermatitis patients. Thus, regulation of nerve fiber extension might be an effective strategy to accelerate nerve regeneration and/or to reduce itching in pruritus dermatosis. We previously demonstrated that neurons and epidermal keratinocytes similarly contain multiple receptors that are activated by various environmental factors, and in particular, keratinocytes are influenced by shear stress. Thus, in the present study, we evaluated the effects of micro-flow of the medium on axon growth in the presence or absence of nerve growth factor (NGF), using cultured dorsal-root-ganglion (DRG) cells. The apparatus, AXIS™, consists of two chambers connected by a set of microgrooves, through which signaling molecules and axons, but not living cells, can pass. When DRG cells were present in chamber 1, NGF was present in chamber 2, and micro-flow was directed from chamber 1 to chamber 2, axon growth was significantly increased compared with other conditions. Acceleration of axon growth in the direction of the micro-flow was also observed in the absence of NGF. These results suggest that local micro-flow might significantly influence axon growth. PMID:26212442

  13. Fibroblast Growth Factor 23 in Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Bokhari, R.; Zwart, S. R.; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.

    2015-01-01

    Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight.

  14. Adipocytokines, gut hormones and growth factors in anorexia nervosa.

    PubMed

    Kowalska, Irina; Karczewska-Kupczewska, Monika; Strączkowski, Marek

    2011-09-18

    Anorexia nervosa is a complex eating disorder of unknown etiology which affects adolescent girls and young women and leads to chronic malnutrition. Clinical manifestations of prolonged semistarvation include a variety of physical features and psychiatric disorders. The study of different biological factors involved in the pathophysiology of anorexia nervosa is an area of active interest. In this review we have described the role of adipocytokines, neurotrophins, peptides of the gastrointestinal system and growth factors in appetite regulation, energy balance and insulin sensitivity in anorexia nervosa patients. PMID:21699889

  15. Nerve Growth Factor: A Focus on Neuroscience and Therapy

    PubMed Central

    Aloe, Luigi; Rocco, Maria Luisa; Omar Balzamino, Bijorn; Micera, Alessandra

    2015-01-01

    Nerve growth factor (NGF) is the firstly discovered and best characterized neurotrophic factor, known to play a critical protective role in the development and survival of sympathetic, sensory and forebrain cholinergic neurons. NGF promotes neuritis outgrowth both in vivo and in vitro and nerve cell recovery after ischemic, surgical or chemical injuries. Recently, the therapeutic property of NGF has been demonstrated on human cutaneous and corneal ulcers, pressure ulcer, glaucoma, maculopathy and retinitis pigmentosa. NGF eye drops administration is well tolerated, with no detectable clinical evidence of systemic or local adverse effects. The aim of this review is to summarize these biological properties and the potential clinical development of NGF. PMID:26411962

  16. EGF: new tricks for an old growth factor.

    PubMed

    Carpenter, G

    1993-04-01

    During the past year, the biology of epidermal growth factor (EGF) has been investigated in lower organisms (Caenorhabditis elegans, Drosophila and bacteria). These experiments have produced some surprising results: the identification of defects produced by mutation of EGF-like genes; the role of EGF receptors in bacterial invasion; and the role of EGF-like precursors as receptors for a bacteria toxin. PMID:8507498

  17. Cytokines and growth factors cross-link heparan sulfate

    PubMed Central

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  18. Growth hormone releasing factor-like immunoreactivity in human milk.

    PubMed

    Werner, H; Amarant, T; Fridkin, M; Koch, Y

    1986-03-28

    The presence of immunoreactive growth hormone-releasing factor (GRF) in human milk has been demonstrated. By using sequential high performance liquid chromatography, it has been shown that most of the immunoreactivity co-elutes with the synthetic, hypothalamic-like, GRF (1-40). The concentrations of GRF detected (between 152 and 432 pg GRF/ml milk) exceed several fold its values in plasma. PMID:3083812

  19. Fibrochondrogenesis of hESCs: growth factor combinations and cocultures.

    PubMed

    Hoben, Gwendolyn M; Willard, Vincent P; Athanasiou, Kyriacos A

    2009-03-01

    The successful differentiation of human embryonic stem cells (hESCs) to fibrochondrocyte-like cells and characterization of these differentiated cells is a critical step toward tissue engineering of musculoskeletal fibrocartilages (e.g., knee meniscus, temporomandibular joint disc, and intervertebral disc). In this study, growth factors and primary cell cocultures were applied to hESC embryoid bodies (EBs) for 3 weeks and evaluated for their effect on the synthesis of critical fibrocartilage matrix components: glycosaminoglycans (GAG) and collagens (types I, II, and VI). Changes in surface markers (CD105, CD44, SSEA, PDGFR alpha) after the differentiation treatments were also analyzed. The study was conducted in three phases: (1) examination of growth factors (TGF-beta 3, BMP-2, BMP-4, BMP-6, PDGF-BB, sonic hedgehog protein); (2) comparison of two cocultures (primary chondrocytes or fibrochondrocytes); and (3) the combination of the most effective growth factor and coculture regimen. TGF-beta 3 with BMP-4 yielded EBs positive for collagens I, II, and VI, with up to 6.7- and 4.8-fold increases in GAG and collagen, respectively. Analysis of cell surface markers showed a significant increase in CD44 with the TGF-beta 3 + BMP-4 treatment compared to the controls. Coculture with fibrochondrocytes resulted in up to a 9.8-fold increase in collagen II production. The combination of the growth factors BMP-4 + TGF-beta 3 with the fibrochondrocyte coculture led to an increase in cell proliferation and GAG production compared to either treatment alone. This study determined two powerful treatments for inducing fibrocartilaginous differentiation of hESCs and provides a foundation for using flow cytometry to purify these differentiated cells. PMID:18454697

  20. Skeletal effects of growth hormone and insulin-like growth factor-I therapy.

    PubMed

    Lindsey, Richard C; Mohan, Subburaman

    2016-09-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965

  1. Nerve growth factor-induced migration of endothelial cells.

    PubMed

    Dollé, Jean-Pierre; Rezvan, Amir; Allen, Fred D; Lazarovici, Philip; Lelkes, Peter I

    2005-12-01

    Nerve growth factor (NGF) is a well known neurotropic and neurotrophic agonist in the nervous system, which recently was shown to also induce angiogenic effects in endothelial cells (ECs). To measure NGF effects on the migration of cultured ECs, an important step in neoangiogenesis, we optimized an omnidirectional migration assay using human aortic endothelial cells (HAECs) and validated the assay with human recombinant basic fibroblast growth factor (rhbFGF) and human recombinant vascular endothelial growth factor (rhVEGF). The potencies of nerve growth factor purified from various species (viper, mouse, and recombinant human) to stimulate HAEC migration was similar to that of VEGF and basic fibroblast growth factor (bFGF) (EC50 of approximately 0.5 ng/ml). Recombinant human bFGF was significantly more efficacious than either viper NGF or rhVEGF, both of which stimulated HAEC migration by approximately 30% over basal spontaneous migration. NGF-mediated stimulation of HAEC migration was completely blocked by the NGF/TrkA receptor antagonist K252a [(8R*,9S*,11S*)-(/)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,-8H,11H-2,7b,11a-triazadibenzo(a,g)cycloocta(c,d,e)trindene-1-one] (30 nM) but not by the VEGF/Flk receptor antagonist SU-5416 [3-[(2,4-dimethylpyrrol-5-yl) methylidenyl]-indolin-2-one] (250 nM), indicating a direct effect of NGF via TrkA receptor activation on HAEC migration. Viper NGF stimulation of HAEC migration was additively increased by either rhVEGF or rhbFGF, suggesting a potentiating interaction between their tyrosine kinase receptor signaling pathways. Viper NGF represents a novel pharmacological tool to investigate possible TrkA receptor subtypes in endothelial cells. The ability of NGF to stimulate migration of HAEC cells in vitro implies that this factor may play an important role in the cardiovascular system besides its well known effects in the nervous system. PMID:16123305

  2. Heparin affinity purification of extracellular vesicles

    PubMed Central

    Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.

    2015-01-01

    Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely used isolation method is ultracentrifugation (UC) which requires expensive equipment and only partially purifies EVs. Previously we have shown that heparin blocks EV uptake in cells, supporting a direct EV-heparin interaction. Here we show that EVs can be purified from cell culture media and human plasma using ultrafiltration (UF) followed by heparin-affinity beads. UF/heparin-purified EVs from cell culture displayed the EV marker Alix, contained a diverse RNA profile, had lower levels of protein contamination, and were functional at binding to and uptake into cells. RNA yield was similar for EVs isolated by UC. We were able to detect mRNAs in plasma samples with comparable levels to UC samples. In conclusion, we have discovered a simple, scalable, and effective method to purify EVs taking advantage of their heparin affinity. PMID:25988257

  3. Heparan sulfate and heparin interactions with proteins

    PubMed Central

    Meneghetti, Maria C. Z.; Hughes, Ashley J.; Rudd, Timothy R.; Nader, Helena B.; Powell, Andrew K.; Yates, Edwin A.; Lima, Marcelo A.

    2015-01-01

    Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure–activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure–activity relationships and regulation will be discussed. PMID:26289657

  4. Angiogenesis and antifibrotic action by hepatocyte growth factor in cardiomyopathy.

    PubMed

    Taniyama, Yoshiaki; Morishita, Ryuichi; Aoki, Motokuni; Hiraoka, Kazuya; Yamasaki, Keita; Hashiya, Naotaka; Matsumoto, Kunio; Nakamura, Toshikazu; Kaneda, Yasufumi; Ogihara, Toshio

    2002-07-01

    Impairment of cardiac function in cardiomyopathy has been postulated to be related to decreased blood blow and increased collagen synthesis. Therefore, a therapeutic approach to alter the blood flow or fibrosis directly by means of growth factors may open a new therapeutic concept in dilated cardiomyopathy. From this viewpoint, hepatocyte growth factor (HGF) is a unique growth factor with antifibrosis and angiogenesis effects. Using the hereditary cardiomyopathic Syrian hamster as a model of genetically determined cardiomyopathy and heart failure, the effects of overexpression of HGF on fibrosis and microvascular dysfunction were examined. HGF gene or control vector was injected by the Hemagglutinating Virus of Japan-liposome method into the anterior heart of cardiomyopathic hamsters (Bio 14.6) under echocardiography once a week, from 12 to 20 weeks of age (total, 8 times). Blood flow, as assessed by a laser Doppler imager score, and the capillary density in hearts, as assessed by alkaline phosphatase staining, were significantly increased in hamsters transfected with HGF gene compared with control-vector-transfected hamsters (P<0.01). In contrast, the fibrotic area was significantly decreased in hamsters transfected with HGF gene compared with control (P<0.01). Overall, in vivo experiments demonstrated that transfection of HGF gene into the myocardium of cardiomyopathic hamsters stimulated blood flow through the induction of angiogenesis and reduction of fibrosis. These results suggest that HGF gene transfer may be useful to protect against myocardial injury in cardiomyopathy through its cardioprotective effects such as antifibrosis and angiogenesis actions. PMID:12105137

  5. Epidermal growth factor receptor family in lung cancer and premalignancy.

    PubMed

    Franklin, Wilbur A; Veve, Robert; Hirsch, Fred R; Helfrich, Barbara A; Bunn, Paul A

    2002-02-01

    Lung cancer, like many other epithelial malignancies, is thought to be the outcome of genetic and epigenetic changes that result in a constellation of phenotypic abnormalities in bronchial epithelium. These include morphologic epithelial dysplasia, angiogenesis, increased proliferative rate, and changes in expression of cell surface proteins, particularly overexpression of epidermal growth factor receptor (EGFR) family proteins. The EFGR family is a group of four structurally similar tyrosine kinases (EGFR, HER2/neu, ErbB-3, and ErbB-4) that dimerize on binding with a number of ligands, including EGF and transforming growth factor alpha. Epidermal growth factor receptor overexpression is pronounced in virtually all squamous carcinomas and is also found in > or = 65% of large cell and adenocarcinomas. It is not expressed in situ by small cell lung carcinoma. Overexpression of EGFR is one of the earliest and most consistent abnormalities in bronchial epithelium of high-risk smokers. It is present at the stage of basal cell hyperplasia and persists through squamous metaplasia, dysplasia, and carcinoma in situ. Recent studies of the effect of inhibitors of receptor tyrosine kinases suggest that patterns of coexpression of multiple members of the EGFR family could be important in determining response. Intermediate endpoints of such trials could include monitoring of phosphorylation levels in signal transduction molecules downstream of the receptor dimers. These trials represent a new targeted approach to lung cancer treatment and chemoprevention that will require greater attention to molecular endpoints than required in past trials. PMID:11894009

  6. Growth-regulated synthesis and secretion of biologically active nerve growth factor by human keratinocytes.

    PubMed

    Di Marco, E; Marchisio, P C; Bondanza, S; Franzi, A T; Cancedda, R; De Luca, M

    1991-11-15

    Nerve growth factor (NGF) transcripts were identified in normal human keratinocytes in primary and secondary culture. The expression of the NGF mRNA was strongly down-regulated by corticosteroids and was maximal when keratinocytes were in the exponential phase of growth. Immunofluorescence studies on growing keratinocytes colonies and on elutriated keratinocytes obtained from growing colonies and mature stratified epithelium showed specific staining of the Golgi apparatus only in basal keratinocytes in the exponential phase of growth. The keratinocyte-derived NGF was secreted in a biologically active form as assessed by neurite induction in sensory neurons obtained from chick embryo dorsal root ganglia. Based on these data we suggest that the basal keratinocyte is the cell synthesizing and secreting NGF in the human adult epidermis. The paracrine secretion of NGF by keratinocytes might have a major role in regulating innervation, lymphocyte function, and melanocyte growth and differentiation in epidermal morphogenesis as well as during wound healing. PMID:1718982

  7. Measuring Growth Hormone and Insulin-like Growth Factor-I in Infants: What is Normal?

    PubMed Central

    Hawkes, Colin Patrick; Grimberg, Adda

    2014-01-01

    The role of growth hormone (GH) and insulin-like growth factor-I (IGF-I) change through early childhood. Whereas poor growth is a later presenting feature, infants with isolated GH deficiency have a normal birth weight and length, and often present with hypoglycemia. IGF-I plays an important role antenatally and post-natally in somatic and brain growth. In order to evaluate the GH/IGF-I axis in infancy, an understanding of the normal physiology is required. Measurements of GH and IGF-I in this population should be interpreted in the context of the assays used, as well as their limitations. In this review, we summarize our current understanding of normal GH and IGF-I secretion in children under 18 months of age, and describe variations in the reported assay-specific measurements. PMID:24575549

  8. Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer

    PubMed Central

    O'Byrne, K J; Koukourakis, M I; Giatromanolaki, A; Cox, G; Turley, H; Steward, W P; Gatter, K; Harris, A L

    2000-01-01

    High microvessel density, an indirect measure of angiogenesis, has been shown to correlate with increased tumour size, lymph node involvement and poor prognosis in non-small-cell lung cancer (NSCLC). Tumour cell vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PD-ECGF) expression correlate with angiogenesis and a poor outcome in this disease. In a retrospective study VEGF and PD-ECGF expression and microvessel density were evaluated immunohistochemically in surgically resected specimens (T1–3, N0–2) from 223 patients with operable NSCLC using the VG1, P-GF.44C and JC70 monoclonal antibodies respectively. High VEGF immunoreactivity was seen in 104 (46.6%) and PD-ECGF in 72 (32.3%) cases and both were associated with high vascular grade tumours (P = 0.009 and P = 0.05 respectively). Linear regression analysis revealed a weak positive correlation between VEGF and PD-ECGF expression in cancer cells (r = 0.21;P = 0.002). Co-expression of VEGF and PD-ECGF was not associated with a higher microvessel density than VEGF or PD-ECGF only expressing tumours. Furthermore a proportion of high vascular grade tumours expressed neither growth factor. Univariate analysis revealed tumour size, nodal status, microvessel density and VEGF and PD-ECGF expression as significant prognostic factors. Tumour size (P< 0.02) and microvessel density (P< 0.04) remained significant on multivariate analysis. In conclusion, VEGF and PD-ECGF are important angiogenic growth factors and have prognostic significance in NSCLC. Furthermore the study underlines the prognostic significance of microvessel density in operable NSCLC. © 2000 Cancer Research Campaign PMID:10780522

  9. The significance of ACTH for the process of formation of complex heparin compounds in the blood during immobilization stress

    NASA Technical Reports Server (NTRS)

    Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, F. B.; Lyapina, L. A.

    1979-01-01

    Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex.

  10. 21 CFR 864.5680 - Automated heparin analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... determine the heparin level in a blood sample by mixing the sample with protamine (a heparin-neutralizing substance) and determining photometrically the onset of air-activated clotting. The analyzer also...

  11. 21 CFR 864.5680 - Automated heparin analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... determine the heparin level in a blood sample by mixing the sample with protamine (a heparin-neutralizing substance) and determining photometrically the onset of air-activated clotting. The analyzer also...

  12. 21 CFR 864.5680 - Automated heparin analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... determine the heparin level in a blood sample by mixing the sample with protamine (a heparin-neutralizing substance) and determining photometrically the onset of air-activated clotting. The analyzer also...

  13. Structural characterization of pharmaceutical heparins prepared from different animal tissues.

    PubMed

    Fu, Li; Li, Guoyun; Yang, Bo; Onishi, Akihiro; Li, Lingyun; Sun, Peilong; Zhang, Fuming; Linhardt, Robert J

    2013-05-01

    Although most pharmaceutical heparin used today is obtained from porcine intestine, heparin has historically been prepared from bovine lung and ovine intestine. There is some regulatory concern about establishing the species origin of heparin. This concern began with the outbreak of mad cow disease in the 1990s and was exacerbated during the heparin shortage in the 2000s and the heparin contamination crisis of 2007-2008. Three heparins from porcine, ovine, and bovine were characterized through state-of-the-art carbohydrate analysis methods with a view profiling their physicochemical properties. Differences in molecular weight, monosaccharide and disaccharide composition, oligosaccharide sequence, and antithrombin III-binding affinity were observed. These data provide some insight into the variability of heparins obtained from these three species and suggest some analytical approaches that may be useful in confirming the species origin of a heparin active pharmaceutical ingredient. PMID:23526651

  14. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo

    NASA Astrophysics Data System (ADS)

    Plate, Karl H.; Breier, Georg; Weich, Herbert A.; Risau, Werner

    1992-10-01

    CLINICAL and experimental studies suggest that angiogenesis is a prerequisite for solid tumour growth1,2. Several growth factors with mitogenic or chemotactic activity for endothelial cells in vitro have been described, but it is not known whether these mediate tumour vascularization in vivo3,4. Glioblastoma, the most common and most malignant brain tumour in humans, is distinguished from astrocytoma by the presence of necroses and vascular prolifer-ations5'6. Here we show that expression of an endothelial cell-specific mitogen, vascular endothelial growth factor (VEGF), is induced in astrocytoma cells but is dramatically upregulated in two apparently different subsets of glioblastoma cells. The high-affinity tyrosine kinase receptor for VEGF, flt, although not expressed in normal brain endothelium, is upregulated in tumour endothelial cells in vivo. These observations strongly support the concept that tumour angiogenesis is regulated by paracrine mechanisms and identify VEGF as a potential tumour angiogenesis factor in vivo.

  15. ATP differentially upregulates fibroblast growth factor 2 and transforming growth factor α in neonatal and adult mice: effect on neuroproliferation.

    PubMed

    Jia, C; Cussen, A R; Hegg, C C

    2011-03-17

    Multiple neurotrophic factors play a role in proliferation, differentiation and survival in the olfactory epithelium (OE); however, the signaling cascade has not been fully elucidated. We tested the hypotheses that ATP induces the synthesis and secretion of two neurotrophic factors, fibroblast growth factor 2 (FGF2) and transforming growth factor alpha (TGFα), and that these neurotrophic factors have a role in inducing proliferation. Protein levels of FGF2 and TGFα were increased 20 h post-intranasal instillation of ATP compared to vehicle control in adult Swiss Webster mice. Pre-intranasal treatment with purinergic receptor antagonist pyridoxal-phosphate-6-azophenyl-20,40-disulfonic acid (PPADS) significantly blocked this ATP-induced increase, indicating that upregulation of FGF2 and TGFα expression is mediated by purinergic receptor activation. However, in neonatal mouse, intranasal instillation of ATP significantly increased the protein levels of FGF2, but not TGFα. Likewise, ATP evoked the secretion of FGF2, but not TGFα, from neonatal mouse olfactory epithelial slices and PPADS significantly blocked ATP-evoked FGF2 release. To determine the role of FGF2 and TGFα in inducing proliferation, 5-bromo-2-deoxyuridine (BrdU) incorporation was examined in adult olfactory epithelium. Intranasal treatment with FGF receptor inhibitor PD173074 or epidermal growth factor receptor inhibitor AG1478 following ATP instillation significantly blocked ATP-induced BrdU incorporation. Collectively, these data demonstrate that ATP induces proliferation in adult mouse olfactory epithelium by promoting FGF2 and TGFα synthesis and activation of their receptors. These data suggest that different mechanisms regulate neurogenesis in neonatal and adult OE, and FGF2 and TGFα may have different roles throughout development. PMID:21187124

  16. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed Central

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-01-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8105469

  17. Maternal parity, fetal and childhood growth, and cardiometabolic risk factors.

    PubMed

    Gaillard, Romy; Rurangirwa, Akashi A; Williams, Michelle A; Hofman, Albert; Mackenbach, Johan P; Franco, Oscar H; Steegers, Eric A P; Jaddoe, Vincent W V

    2014-08-01

    We examined the associations of maternal parity with fetal and childhood growth characteristics and childhood cardiometabolic risk factors in a population-based prospective cohort study among 9031 mothers and their children. Fetal and childhood growth were repeatedly measured. We measured childhood anthropometrics, body fat distribution, left ventricular mass, blood pressure, blood lipids, and insulin levels at the age of 6 years. Compared with nulliparous mothers, multiparous mothers had children with higher third trimester fetal head circumference, length and weight growth, and lower risks of preterm birth and small-size-for-gestational-age at birth but a higher risk of large-size-for-gestational-age at birth (P<0.05). Children from multiparous mothers had lower rates of accelerated infant growth and lower levels of childhood body mass index, total fat mass percentage, and total and low-density lipoprotein cholesterol than children of nulliparous mothers (P<0.05). They also had a lower risk of childhood overweight (odds ratio, 0.75 [95% confidence interval, 0.63–0.88]). The risk of childhood clustering of cardiometabolic risk factors was not statistically significantly different (odds ratio, 0.82; 95% confidence interval, 0.64–1.05). Among children from multiparous mothers only, we observed consistent trends toward a lower risk of childhood overweight and lower cholesterol levels with increasing parity (P<0.05). In conclusion, offspring from nulliparous mothers have lower fetal but higher infant growth rates and higher risks of childhood overweight and adverse metabolic profile. Maternal nulliparity may have persistent cardiometabolic consequences for the offspring. PMID:24866145

  18. Influence of different growth factors on a rat choriocarcinoma cell line.

    PubMed

    Verstuyf, A; Goebels, J; Sobis, H; Vandeputte, M

    1993-01-01

    The influence of epidermal growth factor, insulin-like growth factors I and II, insulin, transforming growth factor beta 1 and transferrin on the growth of a postgestational rat choriocarcinoma was examined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. The cell line was cultured in RPMI 1640 medium supplemented with fetal calf serum, beta-mercaptoethanol, glucose, sodium pyruvate and antibiotics. The experiments were done in media supplemented with 10% (optimal) or 3% (suboptimal) fetal calf serum. Among the different growth factors tested, only epidermal growth factor and to a certain extent insulin had a growth-promoting effect by themselves. The other growth factors had either an additive effect in the presence of epidermal growth factor or no effect at all. The cytotrophoblast cells expressed both epidermal growth factor and transferrin receptors whereas the more differentiated giant cells expressed only transferrin receptors. PMID:8493450

  19. Growth and differentiation in cultured human thyroid cells: effects of epidermal growth factor and thyrotropin.

    PubMed

    Errick, J E; Ing, K W; Eggo, M C; Burrow, G N

    1986-01-01

    Human thyroid cells were grown and subcultured in vitro to examine their responses to known hormones and growth factors, and to serum. The cells were obtained from surgical specimens and were either neoplastic or nonneoplastic. The effects of culture conditions on cell growth were measured by changes in cell numbers and by stimulation of [3H]thymidine incorporation. The results showed that serum (0.5%) was essential for cell proliferation, and that a mixture of insulin (10 micrograms/ml), transferrin (5 micrograms/ml), hydrocortisone (10 micrograms/ml), somatostatin (10 ng/ml), and glycyl-histidyl-lysine (10 ng/ml) enhanced the effect of serum. Maximum growth of the cells was obtained when epidermal growth factor was present at 10(-9) M. Differentiation was measured by production of thyroglobulin, which was found to be stimulated by thyrotropin. This system provides a means to study the hormonal control of growth and differentiation in human thyroid cells. PMID:3511027

  20. Immunolocalisation of vascular endothelial growth factor (VEGF) in human neonatal growth plate cartilage

    PubMed Central

    HORNER, A.; BISHOP, N. J.; BORD, S.; BEETON, C.; KELSALL, A. W.; COLEMAN, N.; COMPSTON, J. E.

    1999-01-01

    Angiogenesis is essential for the replacement of cartilage by bone during growth and repair. In order to obtain a better understanding of the mechanisms regulating vascular invasion at sites of endochondral ossification we have investigated the expression of the endothelial cell-specific mitogen, vascular endothelial growth factor (VEGF), by chondrocytes in human neonatal growth plates. VEGF was absent from chondrocytes in the resting zone and only weakly expressed by occasional chondrocytes in the proliferating region. In the hypertrophic zone the number of chondrocytes stained and the intensity of staining for VEGF increased with chondrocyte hypertrophy, maximum expression of VEGF being observed in chondrocytes in the lower hypertrophic and mineralised regions of the cartilage. These observations provide the first demonstration of the presence of VEGF in situ in developing human bone and are consistent with in vitro observations demonstrating the upregulation of proangiogenic growth factor production with increasing chondrocyte hypertrophy. The presence of numerous small blood vessels and vascular structures in the subchondral region where VEGF expression was maximal indicates that VEGF produced by hypertrophic chondrocytes may play a key role in the regulation of vascular invasion of the growth plate. PMID:10445820

  1. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  2. Vascular Endothelial Growth Factor A Regulates the Secretion of Different Angiogenic Factors in Lung Cancer Cells.

    PubMed

    Frezzetti, Daniela; Gallo, Marianna; Roma, Cristin; D'Alessio, Amelia; Maiello, Monica R; Bevilacqua, Simona; Normanno, Nicola; De Luca, Antonella

    2016-07-01

    Vascular endothelial growth factor A (VEGFA) is one of the main mediators of angiogenesis in non-small cell lung cancer (NSCLC). Recently, it has been described an autocrine feed-forward loop in NSCLC cells in which tumor-derived VEGFA promoted the secretion of VEGFA itself, amplifying the proangiogenic signal. In order to investigate the role of VEGFA in lung cancer progression, we assessed the effects of recombinant VEGFA on proliferation, migration, and secretion of other angiogenic factors in A549, H1975, and HCC827 NSCLC cell lines. We found that VEGFA did not affect NSCLC cell proliferation and migration. On the other hand, we demonstrated that VEGFA not only produced a strong and persistent increase of VEGFA itself but also significantly induced the secretion of a variety of angiogenic factors, including follistatin (FST), hepatocyte growth factor (HGF), angiopoietin-2 (ANGPT2), granulocyte-colony stimulating factor (G-CSF), interleukin (IL)-8, leptin (LEP), platelet/endothelial cell adhesion molecule 1 (PECAM-1), and platelet-derived growth factor bb (PDGF-BB). PI3K/AKT, RAS/ERK, and STAT3 signalling pathways were found to mediate the effects of VEGFA in NSCLC cell lines. We also observed that VEGFA regulation mainly occurred at post-transcriptional level and that NSCLC cells expressed different isoforms of VEGFA. Collectively, our data suggested that VEGFA contributes to lung cancer progression by inducing a network of angiogenic factors, which might offer potential for therapeutic intervention. PMID:26542886

  3. Atomic features of an autoantigen in heparin-induced thrombocytopenia (HIT).

    PubMed

    Cai, Zheng; Zhu, Zhiqiang; Greene, Mark I; Cines, Douglas B

    2016-07-01

    Autoantigen development is poorly understood at the atomic level. Heparin-induced thrombocytopenia (HIT) is an autoimmune thrombotic disorder caused by antibodies to an antigen composed of platelet factor 4 (PF4) and heparin or cellular glycosaminoglycans (GAGs). In solution, PF4 exists as an equilibrium among monomers, dimers and tetramers. Structural studies of these interacting components helped delineate a multi-step process involved in the pathogenesis of HIT. First, heparin binds to the 'closed' end of the PF4 tetramer and stabilizes its conformation; exposing the 'open' end. Second, PF4 arrays along heparin/GAG chains, which approximate tetramers, form large antigenic complexes that enhance antibody avidity. Third, pathogenic HIT antibodies bind to the 'open' end of stabilized PF4 tetramers to form an IgG/PF4/heparin ternary immune complex and also to propagate the formation of 'ultralarge immune complexes' (ULCs) that contain multiple IgG antibodies. Fourth, ULCs signal through FcγRIIA receptors, activating platelets and monocytes directly and generating thrombin, which transactivates hematopoietic and endothelial cells. A non-pathogenic anti-PF4 antibody prevents tetramer formation, binding of pathogenic antibody, platelet activation and thrombosis, providing a new approach to manage HIT. An improved understanding of the pathogenesis of HIT may lead to novel diagnostics and therapeutics for this autoimmune disease. PMID:26970483

  4. An expandable, inducible hemangioblast state regulated by fibroblast growth factor.

    PubMed

    Vereide, David T; Vickerman, Vernella; Swanson, Scott A; Chu, Li-Fang; McIntosh, Brian E; Thomson, James A

    2014-12-01

    During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that "trap" murine cells in a proliferative state and endow them with a hemangioblast potential. These "expandable" hemangioblasts (eHBs) are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines. PMID:25458896

  5. Expression of transforming growth factor alpha and epidermal growth factor receptor in rat lung neoplasms induced by plutonium-239

    SciTech Connect

    Stegelmeier, B.L.; Gillett, N.A.; Hahn, F.F.; Kelly, G.; Rebar, A.H.

    1994-11-01

    Ninety-two rat lung proliferative lesions and neoplasms induced by inhaled {sup 239}PuO{sub 2} were evaluated for aberrant expression of transforming growth factor alpha (TGF-{alpha}) and epidermal growth factor receptor (EGFR). Expression of TGF-{alpha} protein, measured by immunohistochemistry, was higher in 94% of the squamous cell carcinomas and 87% of the foci of alveolar epithelial squamous metaplasia than that exhibited by the normal-appearing, adjacent lung parenchyma. In contrast, only 20% of adenocarcinomas and foci of epithelial hyperplasia expressed elevated levels of TGF-{alpha}. Many neoplasms expressing TGF-{alpha} also expressed excessive levels of EGFR mRNA. Southern and DNA slot blot analyses showed that the elevated EGFR expression was not due to amplification of the EGFR gene. These data suggest that increased amounts of TGF-{alpha} were early alterations in the progression of plutonium-induced squamous cell carcinoma, and these increases may occur in parallel with overexpression of the receptor for this growth factor. Together, these alterations create a potential autocrine loop for sustaining clonal expansion of cells initiated by high-LET radiation. 44 refs., 4 figs., 1 tab.

  6. Uptake and Intracellular Transport of Acidic Fibroblast Growth Factor: Evidence for Free and Cytoskeleton-anchored Fibroblast Growth Factor Receptors

    PubMed Central

    Citores, Lucía; Wesche, Jørgen; Kolpakova, Elona; Olsnes, Sjur

    1999-01-01

    Endocytic uptake and intracellular transport of acidic FGF was studied in cells transfected with FGF receptor 4 (FGFR4). Acidification of the cytosol to block endocytic uptake from coated pits did not inhibit endocytosis of the growth factor in COS cells transfected with FGFR4, indicating that it is to a large extent taken up by an alternative endocytic pathway. Fractionation of the cells demonstrated that part of the growth factor receptor was present in a low-density, caveolin-containing fraction, but we were unable to demonstrate binding to caveolin in immunoprecipitation studies. Upon treatment of the cells with acidic FGF, the activated receptor, together with the growth factor, moved to a juxtanuclear compartment, which was identified as the recycling endosome compartment. When the cells were lysed with Triton X-100, 3-([3-chloramidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate, or 2-octyl glucoside, almost all surface-exposed and endocytosed FGFR4 was solubilized, but only a minor fraction of the total FGFR4 in the cells was found in the soluble fraction. The data indicate that the major part of FGFR4 is anchored to detergent-insoluble structures, presumably cytoskeletal elements associated with the recycling endosome compartment. PMID:10564275

  7. HaloTag is an effective expression and solubilisation fusion partner for a range of fibroblast growth factors

    PubMed Central

    Taylor, Sarah E.; Mao, Xianqing; Wilkinson, Mark C.

    2015-01-01

    The production of recombinant proteins such as the fibroblast growth factors (FGFs) is the key to establishing their function in cell communication. The production of recombinant FGFs in E. coli is limited, however, due to expression and solubility problems. HaloTag has been used as a fusion protein to introduce a genetically-encoded means for chemical conjugation of probes. We have expressed 11 FGF proteins with an N-terminal HaloTag, followed by a tobacco etch virus (TEV) protease cleavage site to allow release of the FGF protein. These were purified by heparin-affinity chromatography, and in some instances by further ion-exchange chromatography. It was found that HaloTag did not adversely affect the expression of FGF1 and FGF10, both of which expressed well as soluble proteins. The N-terminal HaloTag fusion was found to enhance the expression and yield of FGF2, FGF3 and FGF7. Moreover, whereas FGF6, FGF8, FGF16, FGF17, FGF20 and FGF22 were only expressed as insoluble proteins, their N-terminal HaloTag fusion counterparts (Halo-FGFs) were soluble, and could be successfully purified. However, cleavage of Halo-FGF6, -FGF8 and -FGF22 with TEV resulted in aggregation of the FGF protein. Measurement of phosphorylation of p42/44 mitogen-activated protein kinase and of cell growth demonstrated that the HaloTag fusion proteins were biologically active. Thus, HaloTag provides a means to enhance the expression of soluble recombinant proteins, in addition to providing a chemical genetics route for covalent tagging of proteins. PMID:26137434

  8. Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3.

    PubMed

    Kartal, Ömer; Aydınöz, Seçil; Kartal, Ayşe Tuğba; Kelestemur, Taha; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Karademir, Ferhan; Süleymanoğlu, Selami; Kul, Mustafa; Yulug, Burak; Kilic, Ertugrul

    2016-08-01

    Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival. PMID:26943480

  9. Transcription factor LSF (TFCP2) inhibits melanoma growth

    PubMed Central

    Goto, Yuji; Yajima, Ichiro; Kumasaka, Mayuko; Ohgami, Nobutaka; Tanaka, Asami; Tsuzuki, Toyonori; Inoue, Yuji; Fukushima, Satoshi; Ihn, Hironobu; Kyoya, Mikiko; Ohashi, Hiroyuki; Kawakami, Tamihiro; Bennett, Dorothy C.; Kato, Masashi

    2016-01-01

    Late SV40 factor 3 (LSF), a transcription factor, contributes to human hepatocellular carcinoma (HCC). However, decreased expression level of LSF in skin melanoma compared to that in benign melanocytic tumors and nevi in mice and humans was found in this study. Anchorage-dependent and -independent growth of melanoma cells was suppressed by LSF overexpression through an increased percentage of G1 phase cells and an increased p21CIP1 expression level in vitro and in vivo. Anchorage-dependent growth in LSF-overexpressed melanoma cells was promoted by depletion of LSF in the LSF-overexpressed cells. Integrated results of our EMSA and chromatin immunoprecipitation assays showed binding of LSF within a 150-bp upstream region of the transcription start site of p21CIP1 in melanoma cells. Taken together, our results suggest potential roles of LSF as a growth regulator through control of the transcription of p21CIP1 in melanocytes and melanoma cells as well as a biomarker for nevus. PMID:26506241

  10. Production of human epidermal growth factor using adenoviral based system

    PubMed Central

    Negahdari, Babak; Shahosseini, Zahra; Baniasadi, Vahid

    2016-01-01

    Epidermal growth factor (EGF), a growth factor involved in cell growth and differentiation, is a small polypeptide with molecular weight of approximately 6 kDa known to be present in a number of different mammalian species. Experimental studies in animals and humans have demonstrated that the topical application of EGF accelerates the rate of epidermal regeneration of partial-thickness wounds and second-degree burns. Due to its commercial applications, Human EGF (hEGF) has been cloned in several forms. In the present study, adenoviral based expression system was used to produce biologically active recombinant hEGF. The presence of secreted recombinant hEGF was confirmed by a dot blot and its expression level was determined by enzyme-linked immuno-sorbent assay. Moreover, biological activity of secreted hEGF was evaluated by a proliferation assay performed on A549 cells. For production of hEGF in a secretory form, a chimeric gene coding for the hEGF fused to the signal peptide was expressed using adenoviral based method. This method enables the production of hEGF at the site of interest and moreover it could be used for cell proliferation and differentiation assays in tissue engineering research experiments instead of using commercially available EGF. PMID:27051431

  11. Fibroblast growth factor (FGF) signaling in development and skeletal diseases

    PubMed Central

    Teven, Chad M.; Farina, Evan M.; Rivas, Jane; Reid, Russell R.

    2014-01-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development. PMID:25679016

  12. Transcription factor LSF (TFCP2) inhibits melanoma growth.

    PubMed

    Goto, Yuji; Yajima, Ichiro; Kumasaka, Mayuko; Ohgami, Nobutaka; Tanaka, Asami; Tsuzuki, Toyonori; Inoue, Yuji; Fukushima, Satoshi; Ihn, Hironobu; Kyoya, Mikiko; Ohashi, Hiroyuki; Kawakami, Tamihiro; Bennett, Dorothy C; Kato, Masashi

    2016-01-19

    Late SV40 factor 3 (LSF), a transcription factor, contributes to human hepatocellular carcinoma (HCC). However, decreased expression level of LSF in skin melanoma compared to that in benign melanocytic tumors and nevi in mice and humans was found in this study. Anchorage-dependent and -independent growth of melanoma cells was suppressed by LSF overexpression through an increased percentage of G1 phase cells and an increased p21CIP1 expression level in vitro and in vivo. Anchorage-dependent growth in LSF-overexpressed melanoma cells was promoted by depletion of LSF in the LSF-overexpressed cells. Integrated results of our EMSA and chromatin immunoprecipitation assays showed binding of LSF within a 150-bp upstream region of the transcription start site of p21CIP1 in melanoma cells. Taken together, our results suggest potential roles of LSF as a growth regulator through control of the transcription of p21CIP1 in melanocytes and melanoma cells as well as a biomarker for nevus. PMID:26506241

  13. Preparative two-step purification of recombinant human basic fibroblast growth factor from high-cell-density cultivation of Escherichia coli.

    PubMed

    Garke, G; Deckwer, W D; Anspach, F B

    2000-01-14

    Aggregation and precipitation are major pitfalls during bioprocessing and purification of recombinant human basic fibroblast growth factor (rh-bFGF). In order to gain high yields of the soluble protein monomer with high biological activity, an efficient downstream process was developed, focussing on the combination of expanded bed adsorption (EBA) and heparin chromatography. After expression in E. coli TG1:plambdaFGFB, cells were harvested and washed; then the rh-bFGF was released via high pressure homogenization. The high viscosity of the feedstock of about 40 mPa s, showing non-newtonian behaviour, was reduced to 2 mPa s by the addition of DNase. The homogenate (5.6 l) was loaded directly on an expanded bed column (C-50) packed with the strong cation-exchanger Streamline SP. In the eluates, histone-like (HU) protein was identified as the main protein contaminant by sequence analysis. The thermodynamics and kinetics of rh-bFGF adsorption from the whole broth protein mixture were determined in view of competition and displacement effects with host-derived proteins. Optimal binding and elution conditions were developed with knowledge of the dependence of rh-bFGF adsorption isotherms on the salt concentration to allow direct application of eluates onto Heparin HyperD. This affinity support maintained selectivity and efficiency under CIP and over a wide range of flow-rates; both is advantageous for the flexibility of the purification protocol in view of a scalable process. Remaining DNA and HU protein were separated by Heparin HyperD. The endotoxin level decreased from approximately 1,000,000 EU/ml in the whole broth to 10 EU in 3 mg bFGF per ml. The final purification protocol yields >99% pure rh-bFGF as judged from SDS-PAGE and MALDI-TOF mass spectrometry with high mitogenic activity (ED50=1-1.5 ng/ml) of the lyophilized sample. In comparison to the conventional process, the overall protein recovery rose by 15% to 65% with saving time and costs. PMID:10681038

  14. Novel Feature of Mycobacterium avium subsp. paratuberculosis, Highlighted by Characterization of the Heparin-Binding Hemagglutinin Adhesin

    PubMed Central

    Lefrancois, Louise H.; Bodier, Christelle C.; Cochard, Thierry; Canepa, Sylvie; Raze, Dominique; Lanotte, Philippe; Sevilla, Iker A.; Stevenson, Karen; Behr, Marcel A.; Locht, Camille

    2013-01-01

    Mycobacterium avium subsp. paratuberculosis comprises two genotypically defined groups, known as the cattle (C) and sheep (S) groups. Recent studies have reported phenotypic differences between M. avium subsp. paratuberculosis groups C and S, including growth rates, infectivity for macrophages, and iron metabolism. In this study, we investigated the genotypes and biological properties of the virulence factor heparin-binding hemagglutinin adhesin (HBHA) for both groups. In Mycobacterium tuberculosis, HBHA is a major adhesin involved in mycobacterium-host interactions and extrapulmonary dissemination of infection. To investigate HBHA in M. avium subsp. paratuberculosis, we studied hbhA polymorphisms by fragment analysis using the GeneMapper technology across a large collection of isolates genotyped by mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) and IS900 restriction fragment length polymorphism (RFLP-IS900) analyses. Furthermore, we analyzed the structure-function relationships of recombinant HBHA proteins of types C and S by heparin-Sepharose chromatography and surface plasmon resonance (SPR) analyses. In silico analysis revealed two forms of HBHA, corresponding to the prototype genomes for the C and S types of M. avium subsp. paratuberculosis. This observation was confirmed using GeneMapper on 85 M. avium subsp. paratuberculosis strains, including 67 strains of type C and 18 strains of type S. We found that HBHAs from all type C strains contain a short C-terminal domain, while those of type S present a long C-terminal domain, similar to that produced by Mycobacterium avium subsp. avium. The purification of recombinant HBHA from M. avium subsp. paratuberculosis of both types by heparin-Sepharose chromatography highlighted a correlation between their affinities for heparin and the lengths of their C-terminal domains, which was confirmed by SPR analysis. Thus, types C and S of M. avium subsp. paratuberculosis may be

  15. Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors.

    PubMed Central

    Hu, P; Margolis, B; Skolnik, E Y; Lammers, R; Ullrich, A; Schlessinger, J

    1992-01-01

    One of the immediate cellular responses to stimulation by various growth factors is the activation of a phosphatidylinositol (PI) 3-kinase. We recently cloned the 85-kDa subunit of PI 3-kinase (p85) from a lambda gt11 expression library, using the tyrosine-phosphorylated carboxy terminus of the epidermal growth factor (EGF) receptor as a probe (E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cell 65:83-90, 1991). In this study, we have examined the association of p85 with EGF and platelet-derived growth factor (PDGF) receptors and the tyrosine phosphorylation of p85 in 3T3 (HER14) cells in response to EGF and PDGF treatment. Treatment of cells with EGF or PDGF markedly increased the amount of p85 associated with EGF and PDGF receptors. Binding assays with glutathione S-transferase (GST) fusion proteins demonstrated that either Src homology region 2 (SH2) domain of p85 is sufficient for binding to EGF and PDGF receptors and that receptor tyrosine autophosphorylation is required for binding. Binding of a GST fusion protein expressing the N-terminal SH2 domain of p85 (GST-N-SH2) to EGF and PDGF receptors was half-maximally inhibited by 2 and 24 mM phosphotyrosine (P-Tyr), respectively, suggesting that the N-SH2 domain interacts more stably with PDGF receptors than with EGF receptors. The amount of receptor-p85 complex detected in HER14 cells treated with EGF or PDGF. Growth factor treatment also increased the amount of p85 found in anti-PDGF-treated HER14 cells, suggesting that the vast majority of p85 in the anti-P-Tyr fraction is receptor associated but not phosphorylated on tyrosine residues. Only upon transient overexpression of p85 and PDGF receptor did p85 become tyrosine phosphorylated. These are consistent with the hypothesis that p85 functions as an adaptor molecule that targets PI 3-kinase to activated growth factor receptors. Images PMID:1372091

  16. Sulfated levan from Halomonas smyrnensis as a bioactive, heparin-mimetic glycan for cardiac tissue engineering applications.

    PubMed

    Erginer, Merve; Akcay, Ayca; Coskunkan, Binnaz; Morova, Tunc; Rende, Deniz; Bucak, Seyda; Baysal, Nihat; Ozisik, Rahmi; Eroglu, Mehmet S; Agirbasli, Mehmet; Toksoy Oner, Ebru

    2016-09-20

    Chemical derivatives of levan from Halomonas smyrnensis AAD6(T) with low, medium and high levels of sulfation were synthesized and characterized by FTIR and 2D-NMR. Sulfated levan samples were found to exhibit anticoagulation activity via the intrinsic pathway like heparin in a dose-dependent manner. Exceptionally high heparin equivalent activity of levan sulfate was shown to proceed via thrombin inhibition where decreased Factor Xa activity with increasing concentration was observed in antithrombin tests and above a certain concentration, levan sulfate showed a better inhibitor activity than heparin. In vitro experimental results were then verified in silico by docking studies using equilibrium structures obtained by molecular dynamic simulations and results suggested a sulfation dependent binding mechanism. With its high biocompatibility and heparin mimetic activity, levan sulfate can be considered as a suitable functional biomaterial to design biologically active, functionalized, thin films and engineered smart scaffolds for cardiac tissue engineering applications. PMID:27261753

  17. The emerging role of hepatocyte growth factor in renal diseases.

    PubMed

    Mao, Song; Zhang, Jianhua

    2016-06-01

    Hepatocyte growth factor (HGF), a kringle-containing polypeptide, acts on various epithelial cells to regulate cell growth, cell motility, and morphogenesis. HGF also accelerates tissue regeneration of injured organs and is regarded as a key molecule in organ regeneration. Besides the regeneration of the liver, HGF also plays a role in the renal regeneration. In addition, an adaptive alteration of HGF status in various renal diseases occurs. However, the precise role of HGF in various renal diseases remains elusive. The signaling pathways of HGF may be associated with renal diseases. In this review, we will try to provide an in-depth understanding of the underlying role of HGF and its possible interactions with other molecules in renal diseases. PMID:26460681

  18. THIAMINE AND NICOTINIC ACID: ANAEROBIC GROWTH FACTORS FOR MUCOR ROUXII

    PubMed Central

    Bartnicki-Garcia, S.; Nickerson, Walter J.

    1961-01-01

    Bartnicki-Garcia, S. (Rutgers, the State University, New Brunswick, N. J.), and Walter J. Nickerson. Thiamine and nicotinic acid: Anaerobic growth factors for Mucor rouxii. J. Bacteriol. 82:142–148. 1961.—Mucor rouxii requires preformed thiamine and nicotinic acid for anaerobic growth. Such requirements are not manifested during aerobic incubation. Aerobically, the fungus was shown to be able to synthesize both vitamins. The yeastlike form and the filamentous form of anaerobically grown M. rouxii exhibit the same vitamin requirements. Thiamine can be substituted by its thiazole moiety. Under certain conditions, nicotinic acid was partly substituted by tryptophan, kynurenine, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid. Anaerobically. the fungus (thiamine requiring) was about ten times more susceptible to pyrithiamine antagonism than the same organism grown aerobically (thiamine independent). PMID:16561911

  19. Anti-Vascular Endothelial Growth Factor Therapy in Breast Cancer

    PubMed Central

    Kristensen, Tina Bøgelund; Knutsson, Malin L. T.; Wehland, Markus; Laursen, Britt Elmedal; Grimm, Daniela; Warnke, Elisabeth; Magnusson, Nils E.

    2014-01-01

    Neo-angiogenesis is a critical process for tumor growth and invasion and has become a promising target in cancer therapy. This manuscript reviews three currently relevant anti-angiogenic agents targeting the vascular endothelial growth factor system: bevacizumab, ramucirumab and sorafenib. The efficacy of anti-angiogenic drugs in adjuvant therapy or as neo-adjuvant treatment has been estimated in clinical trials of advanced breast cancer. To date, the overall observed clinical improvements are unconvincing, and further research is required to demonstrate the efficacy of anti-angiogenic drugs in breast cancer treatments. The outcomes of anti-angiogenic therapy have been highly variable in terms of tumor response. New methods are needed to identify patients who will benefit from this regimen. The development of biomarkers and molecular profiling are relevant research areas that may strengthen the ability to focus anti-angiogenic therapy towards suitable patients, thereby increase the cost-effectiveness, currently estimated to be inadequate. PMID:25514409

  20. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems. PMID:12009194

  1. Interdependent epidermal growth factor receptor signalling and trafficking.

    PubMed

    Jones, Sylwia; Rappoport, Joshua Z

    2014-06-01

    Epidermal growth factor (EGF) receptor (EGFR) signalling regulates diverse cellular functions, promoting cell proliferation, differentiation, migration, cell growth and survival. EGFR signalling is critical during embryogenesis, in particular in epithelial development, and disruption of the EGFR gene results in epithelial immaturity and perinatal death. EGFR signalling also functions during wound healing responses through accelerating wound re-epithelialisation, inducing cell migration, proliferation and angiogenesis. Upregulation of EGFR signalling is often observed in carcinomas and has been shown to promote uncontrolled cell proliferation and metastasis. Therefore aberrant EGFR signalling is a common target for anticancer therapies. Various reports indicate that EGFR signalling primarily occurs at the plasma membrane and EGFR degradation following endocytosis greatly attenuates signalling. Other studies argue that EGFR internalisation is essential for complete activation of downstream signalling cascades and that endosomes can serve as signalling platforms. The aim of this review is to discuss current understanding of intersection between EGFR signalling and trafficking. PMID:24681003

  2. Fibroblast growth factor 15 deficiency impairs liver regeneration in mice

    PubMed Central

    Kong, Bo; Huang, Jiansheng; Zhu, Yan; Li, Guodong; Williams, Jessica; Shen, Steven; Aleksunes, Lauren M.; Richardson, Jason R.; Apte, Udayan; Rudnick, David A.

    2014-01-01

    Fibroblast growth factor (FGF) 15 (human homolog, FGF19) is an endocrine FGF highly expressed in the small intestine of mice. Emerging evidence suggests that FGF15 is critical for regulating hepatic functions; however, the role of FGF15 in liver regeneration is unclear. This study assessed whether liver regeneration is altered in FGF15 knockout (KO) mice following 2/3 partial hepatectomy (PHx). The results showed that FGF15 KO mice had marked mortality, with the survival rate influenced by genetic background. Compared with wild-type mice, the KO mice displayed extensive liver necrosis and marked elevation of serum bile acids and bilirubin. Furthermore, hepatocyte proliferation was reduced in the KO mice because of impaired cell cycle progression. After PHx, the KO mice had weaker activation of signaling pathways that are important for liver regeneration, including signal transducer and activator of transcription 3, nuclear factor-κB, and mitogen-activated protein kinase. Examination of the KO mice at early time points after PHx revealed a reduced and/or delayed induction of immediate-early response genes, including growth-control transcription factors that are critical for liver regeneration. In conclusion, the results suggest that FGF15 deficiency severely impairs liver regeneration in mice after PHx. The underlying mechanism is likely the result of disrupted bile acid homeostasis and impaired priming of hepatocyte proliferation. PMID:24699334

  3. Effects of Hypergravity Rearing on Growth Hormone and Insulin-Like Growth Factor in Rat Pups

    NASA Technical Reports Server (NTRS)

    Baer, L. A.; Chowdhury, J. H.; Grindeland, R. E.; Wade, C. E.; Ronca, A. E.

    2003-01-01

    Body weights of rat pups reared during exposure to hypergravity (hg) are significantly reduced relative to 1 g controls. In the present study, we examined in hg-reared rat pups two major contributors to growth and development, namely growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Beginning on Gestational day (G)11 of the rats 22 day pregnancy, rat dams and their litters were continuously exposed to either 1.5-g or 2.0-g. On Postnatal day (P)l0, plasma GH and IGF-1 were analyzed using radioimmunoassay (RIA). Both hormones were significantly elevated in hg pups relative to 1-g control pups. Together, these findings suggest that GH and IGF-1 are not primary determinants of reduced body weights observed in hg-reared pups. The significant elevations in pup GH and IGF-1 may be related to increased physical stimulation in hypergravity.

  4. Human fetal and adult chondrocytes. Effect of insulinlike growth factors I and II, insulin, and growth hormone on clonal growth.

    PubMed Central

    Vetter, U; Zapf, J; Heit, W; Helbing, G; Heinze, E; Froesch, E R; Teller, W M

    1986-01-01

    Clonal proliferation of freshly isolated human fetal chondrocytes and adult chondrocytes in response to human insulinlike growth factors I and II (IGF I, IGF II), human biosynthetic insulin, and human growth hormone (