Sample records for growth factor interaction

  1. Growth factor transgenes interactively regulate articular chondrocytes.

    PubMed

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.

  2. Growth factor delivery: How surface interactions modulate release in vitro and in vivo

    PubMed Central

    King, William J.; Krebsbach, Paul H.

    2013-01-01

    Biomaterial scaffolds have been extensively used to deliver growth factors to induce new bone formation. The pharmacokinetics of growth factor delivery has been a critical regulator of their clinical success. This review will focus on the surface interactions that control the non-covalent incorporation of growth factors into scaffolds and the mechanisms that control growth factor release from clinically relevant biomaterials. We will focus on the delivery of recombinant human bone morphogenetic protein-2 from materials currently used in the clinical practice, but also suggest how general mechanisms that control growth factor incorporation and release delineated with this growth factor could extend to other systems. A better understanding of the changing mechanisms that control growth factor release during the different stages of preclinical development could instruct the development of future scaffolds for currently untreatable injuries and diseases. PMID:22433783

  3. Growth differentiation factor-15 (GDF-15) suppresses in vitro angiogenesis through a novel interaction with connective tissue growth factor (CCN2).

    PubMed

    Whitson, Ramon J; Lucia, Marshall Scott; Lambert, James R

    2013-06-01

    Growth differentiation factor-15 (GDF-15) and the CCN family member, connective tissue growth factor (CCN2), are associated with cardiac disease, inflammation, and cancer. The precise role and signaling mechanism for these factors in normal and diseased tissues remains elusive. Here we demonstrate an interaction between GDF-15 and CCN2 using yeast two-hybrid assays and have mapped the domain of interaction to the von Willebrand factor type C domain of CCN2. Biochemical pull down assays using secreted GDF-15 and His-tagged CCN2 produced in PC-3 prostate cancer cells confirmed a direct interaction between these proteins. To investigate the functional consequences of this interaction, in vitro angiogenesis assays were performed. We demonstrate that GDF-15 blocks CCN2-mediated tube formation in human umbilical vein endothelial (HUVEC) cells. To examine the molecular mechanism whereby GDF-15 inhibits CCN2-mediated angiogenesis, activation of αV β3 integrins and focal adhesion kinase (FAK) was examined. CCN2-mediated FAK activation was inhibited by GDF-15 and was accompanied by a decrease in αV β3 integrin clustering in HUVEC cells. These results demonstrate, for the first time, a novel signaling pathway for GDF-15 through interaction with the matricellular signaling molecule CCN2. Furthermore, antagonism of CCN2 mediated angiogenesis by GDF-15 may provide insight into the functional role of GDF-15 in disease states. Copyright © 2012 Wiley Periodicals, Inc.

  4. Fibroblast growth factor homologous factor 1 interacts with NEMO to regulate NF-κB signaling in neurons.

    PubMed

    König, Hans-Georg; Fenner, Beau J; Byrne, Jennifer C; Schwamborn, Robert F; Bernas, Tytus; Jefferies, Caroline A; Prehn, Jochen H M

    2012-12-15

    Neuronal survival and plasticity critically depend on constitutive activity of the transcription factor nuclear factor-κB (NF-κB). We here describe a role for a small intracellular fibroblast growth factor homologue, the fibroblast growth factor homologous factor 1 (FHF1/FGF12), in the regulation of NF-κB activity in mature neurons. FHFs have previously been described to control neuronal excitability, and mutations in FHF isoforms give rise to a form of progressive spinocerebellar ataxia. Using a protein-array approach, we identified FHF1b as a novel interactor of the canonical NF-κB modulator IKKγ/NEMO. Co-immunoprecipitation, pull-down and GAL4-reporter experiments, as well as proximity ligation assays, confirmed the interaction of FHF1 and NEMO and demonstrated that a major site of interaction occurred within the axon initial segment. Fhf1 gene silencing strongly activated neuronal NF-κB activity and increased neurite lengths, branching patterns and spine counts in mature cortical neurons. The effects of FHF1 on neuronal NF-κB activity and morphology required the presence of NEMO. Our results imply that FHF1 negatively regulates the constitutive NF-κB activity in neurons.

  5. Structural Characterization of the Interaction of the Fibroblast Growth Factor Receptor with a Small Molecule Allosteric Inhibitor.

    PubMed

    Kappert, Franziska; Sreeramulu, Sridhar; Jonker, Hendrik R A; Richter, Christian; Rogov, Vladimir V; Proschak, Ewgenij; Hargittay, Bruno; Saxena, Krishna; Schwalbe, Harald

    2018-06-04

    The interaction of fibroblast growth factors (FGFs) with their fibroblast growth factor receptors (FGFRs) are important in the signaling network of cell growth and development. SSR128129E (SSR), a ligand of small molecular weight with potential anti-cancer properties, acts allosterically on the extracellular domains of FGFRs. Up to now, the structural basis of SSR binding to the D3 domain of FGFR remained elusive. This work reports the structural characterization of the interaction of SSR with one specific receptor, FGFR3, by NMR spectroscopy. This information provides a basis for rational drug design for allosteric FGFR inhibitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Interaction of AIM with insulin-like growth factor-binding protein-4

    PubMed Central

    YOU, QIANG; WU, YAN; YAO, NANNAN; SHEN, GUANNAN; ZHANG, YING; XU, LIANGGUO; LI, GUIYING; JU, CYNTHIA

    2015-01-01

    Apoptosis inhibitor of macrophages (AIM/cluster of differentiation 5 antigen-like/soluble protein α) has been shown to inhibit cellular apoptosis; however, the underlying molecular mechanism has not been elucidated. Using yeast two-hybrid screening, the present study uncovered that AIM binds to insulin-like growth factor binding protein-4 (IGFBP-4). AIM interaction with IGFBP-4, as well as IGFBP-2 and -3, but not with IGFBP-1, -5 and -6, was further confirmed by co-immunoprecipitation (co-IP) using 293 cells. The binding activity and affinity between AIM and IGFBP-4 in vitro were analyzed by co-IP and biolayer interferometry. Serum depletion-induced cellular apoptosis was attenuated by insulin-like growth factor-I (IGF-I), and this effect was abrogated by IGFBP-4. Of note, in the presence of AIM, the inhibitory effect of IGFBP-4 on the anti-apoptosis function of IGF-I was attenuated, possibly through binding of AIM with IGFBP-4. In conclusion, to the best of our knowledge, the present study provides the first evidence that AIM binds to IGFBP-2, -3 and -4. The data suggest that this interaction may contribute to the mechanism of AIM-mediated anti-apoptosis function. PMID:26135353

  7. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors.

    PubMed Central

    Paria, B C; Dey, S K

    1990-01-01

    We have established a model that shows cooperative interaction among preimplantation embryos and the role of growth factors on their development and growth. Two-cell mouse embryos cultured singly in 25-microliters microdrops had inferior development to blastocysts and lower cell numbers per blastocyst compared with those cultured in groups of 5 or 10. The inferior development of singly cultured embryos was markedly improved by addition of epidermal growth factor (EGF) or transforming growth factor alpha or beta 1 (TGF-alpha or TGF-beta 1) to the culture medium. The stage of embryonic development, primarily affected by these treatments, was between eight-cell/morula and blastocyst. Furthermore, blastocysts developed from eight-cell embryos cultured in groups or singly in the presence of EGF showed a higher incidence of zona hatching compared with those cultured singly in the absence of EGF. Detection of EGF receptors on the embryonic cell surface at eight-cell/morula and blastocyst stages suggests beneficial effects of EGF or TGF-alpha on preimplantation embryo development and blastocyst functions. Insulin-like growth factor I (IGF-I) had no influence on embryo development. To further document the cooperative interactions among embryos, the volume of the culture medium was doubled to 50 microliters. This increase in culture volume was even more detrimental to the development of singly cultured embryos. However, this detrimental effect was significantly reversed by EGF and reversed even more markedly by a combination of EGF and TGF-beta 1 but not by TGF-beta 1 alone. Although TGF-beta 1 plus IGF-I caused a modest improvement of embryo development, the response was not as great as shown by EGF alone. Furthermore, IGF-I had no additive effect on EGF-induced embryonic development. The study presents clear evidence that specific growth factors of embryonic and/or reproductive tract origin participate in preimplantation embryo development and blastocyst functions in an

  8. Liposomal gene transfer of keratinocyte growth factor improves wound healing by altering growth factor and collagen expression.

    PubMed

    Pereira, Clifford T; Herndon, David N; Rocker, Roland; Jeschke, Marc G

    2007-05-15

    Growth factors affect the complex cascade of wound healing; however, interaction between different growth factors during dermal and epidermal regeneration are still not entirely defined. In the present study, we thought to determine the interaction between keratinocyte growth factor (KGF) administered as liposomal cDNA with other dermal and epidermal growth factors and collagen synthesis in an acute wound. Rats received an acute wound and were divided into two groups to receive weekly subcutaneous injections of liposomes plus the Lac-Z gene (0.22 microg, vehicle), or liposomes plus the KGF cDNA (2.2 microg) and Lac-Z gene (0.22 microg). Histological and immunohistochemical techniques were used to determine growth factor, collagen expression, and dermal and epidermal structure. KGF cDNA increased insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-3 (IGFBP-3), and fibroblast growth factor (FGF), decreased transforming growth factor-beta (TGF-beta), while it had no effect on platelet-derived growth factor (PDGF) levels in the wound. KGF cDNA significantly increased collagen Type IV at both the wound edge as well as the wound bed, while it had no effect on collagen Type I and III. KGF cDNA increased re-epithelialization, improved dermal regeneration, and increased neovascularization. Exogenous administered KGF cDNA causes increases in IGF-I, IGF-BP3, FGF, and collagen IV and decreases TGF-beta concentration. KGF gene transfer accelerates wound healing without causing an increase in collagen I or III.

  9. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins.

    PubMed

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-10-01

    Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis. Copyright © 2015. Published by Elsevier Ltd.

  10. Aldosterone interaction with epidermal growth factor receptor signaling in MDCK cells.

    PubMed

    Gekle, Michael; Freudinger, Ruth; Mildenberger, Sigrid; Silbernagl, Stefan

    2002-04-01

    Epidermal growth factor (EGF) regulates cell proliferation, differentiation, and ion transport by using extracellular signal-regulated kinase (ERK)1/2 as a downstream signal. Furthermore, the EGF-receptor (EGF-R) is involved in signaling by G protein-coupled receptors, growth hormone, and cytokines by means of transactivation. It has been suggested that steroids interact with peptide hormones, in part, by rapid, potentially nongenomic, mechanisms. Previously, we have shown that aldosterone modulates Na(+)/H(+) exchange in Madin-Darby canine kidney (MDCK) cells by means of ERK1/2 in a way similar to growth factors. Here, we tested the hypothesis that aldosterone uses the EGF-R as a heterologous signal transducer in MDCK cells. Nanomolar concentrations of aldosterone induce a rapid increase in ERK1/2 phosphorylation, cellular Ca(2+) concentration, and Na(+)/H(+) exchange activity similar to increases induced by EGF. Furthermore, aldosterone induced a rapid increase in EGF-R-Tyr phosphorylation, and inhibition of EGF-R kinase abolished aldosterone-induced signaling. Inhibition of ERK1/2 phosphorylation reduced the Ca(2+) response, whereas prevention of Ca(2+) influx did not abolish ERK1/2 phosphorylation. Our data show that aldosterone uses the EGF-R-ERK1/2 signaling cascade to elicit its rapid effects in MDCK cells.

  11. Interaction of AIM with insulin-like growth factor-binding protein-4.

    PubMed

    You, Qiang; Wu, Yan; Yao, Nannan; Shen, Guannan; Zhang, Ying; Xu, Liangguo; Li, Guiying; Ju, Cynthia

    2015-09-01

    Apoptosis inhibitor of macrophages (AIM/cluster of differentiation 5 antigen-like/soluble protein α) has been shown to inhibit cellular apoptosis; however, the underlying molecular mechanism has not been elucidated. Using yeast two‑hybrid screening, the present study uncovered that AIM binds to insulin‑like growth factor binding protein‑4 (IGFBP‑4). AIM interaction with IGFBP‑4, as well as IGFBP‑2 and ‑3, but not with IGFBP‑1, ‑5 and ‑6, was further confirmed by co‑immunoprecipitation (co‑IP) using 293 cells. The binding activity and affinity between AIM and IGFBP‑4 in vitro were analyzed by co‑IP and biolayer interferometry. Serum depletion‑induced cellular apoptosis was attenuated by insulin‑like growth factor‑I (IGF‑I), and this effect was abrogated by IGFBP‑4. Of note, in the presence of AIM, the inhibitory effect of IGFBP‑4 on the anti‑apoptosis function of IGF‑I was attenuated, possibly through binding of AIM with IGFBP‑4. In conclusion, to the best of our knowledge, the present study provides the first evidence that AIM binds to IGFBP‑2, ‑3 and ‑4. The data suggest that this interaction may contribute to the mechanism of AIM-mediated anti-apoptosis function.

  12. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries.

    PubMed

    Billings, Paul C; Pacifici, Maurizio

    2015-01-01

    Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.

  13. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randazzo, P.A.; Jarett, L.

    1990-09-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetalmore » calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.« less

  14. EFFECT OF GROWTH FACTOR-FIBRONECTIN MATRIX INTERACTION ON RAT TYPE II CELL ADHESION AND DNA SYTHESIS

    EPA Science Inventory

    ABSTRACT

    Type II cells attach, migrate and proliferate on a provisional fibronectin-rich matrix during alveolar wall repair after lung injury. The combination of cell-substratum interactions via integrin receptors and exposure to local growth factors are likely to initiat...

  15. Cross-talk between GPER and growth factor signaling.

    PubMed

    Lappano, Rosamaria; De Marco, Paola; De Francesco, Ernestina Marianna; Chimento, Adele; Pezzi, Vincenzo; Maggiolini, Marcello

    2013-09-01

    G protein-coupled receptors (GPCRs) and growth factor receptors mediate multiple physio-pathological responses to a diverse array of extracellular stimuli. In this regard, it has been largely demonstrated that GPCRs and growth factor receptors generate a multifaceted signaling network, which triggers relevant biological effects in normal and cancer cells. For instance, some GPCRs transactivate the epidermal growth factor receptor (EGFR), which stimulates diverse transduction pathways leading to gene expression changes, cell migration, survival and proliferation. Moreover, it has been reported that a functional interaction between growth factor receptors and steroid hormones like estrogens is involved in the growth of many types of tumors as well as in the resistance to endocrine therapy. This review highlights recent findings on the cross-talk between a member of the GPCR family, the G protein-coupled estrogen receptor 1 (GPER, formerly known as GPR30) and two main growth factor receptors like EGFR and insulin-like growth factor-I receptor (IGF-IR). The biological implications of the functional interaction between these important mediators of cell responses particularly in cancer are discussed. This article is part of a Special Issue entitled 'CSR 2013'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  17. Electrostatic Forces as Dominant Interactions Between Proteins and Polyanions: an ESI MS Study of Fibroblast Growth Factor Binding to Heparin Oligomers

    NASA Astrophysics Data System (ADS)

    Minsky, Burcu Baykal; Dubin, Paul L.; Kaltashov, Igor A.

    2017-04-01

    The interactions between fibroblast growth factors (FGFs) and their receptors (FGFRs) are facilitated by heparan sulfate (HS) and heparin (Hp), highly sulfated biological polyelectrolytes. The molecular basis of FGF interactions with these polyelectrolytes is highly complex due to the structural heterogeneity of HS/Hp, and many details still remain elusive, especially the significance of charge density and minimal chain length of HS/Hp in growth factor recognition and multimerization. In this work, we use electrospray ionization mass spectrometry (ESI MS) to investigate the association of relatively homogeneous oligoheparins (octamer, dp8, and decamer, dp10) with acidic fibroblast growth factor (FGF-1). This growth factor forms 1:1, 2:1, and 3:1 protein/heparinoid complexes with both dp8 and dp10, and the fraction of bound protein is highly dependent on protein/heparinoid molar ratio. Multimeric complexes are preferentially formed on the highly sulfated Hp oligomers. Although a variety of oligomers appear to be binding-competent, there is a strong correlation between the affinity and the overall level of sulfation (the highest charge density polyanions binding FGF most strongly via multivalent interactions). These results show that the interactions between FGF-1 and Hp oligomers are primarily directed by electrostatics, and also demonstrate the power of ESI MS as a tool to study multiple binding equilibria between proteins and structurally heterogeneous polyanions.

  18. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  19. Insulin-Like Growth Factor and Epidermal Growth Factor Signaling in Breast Cancer Cell Growth: Focus on Endocrine Resistant Disease

    PubMed Central

    Berdiaki, Aikaterini; Tzardi, Maria

    2015-01-01

    Breast cancer is the most common type of cancer for women worldwide with a lifetime risk amounting to a staggering total of 10%. It is well established that the endogenous synthesis of insulin-like growth factor (IGF) and epidermal growth factor (EGF) polypeptide growth factors are closely correlated to malignant transformation and all the steps of the breast cancer metastatic cascade. Numerous studies have demonstrated that both estrogens and growth factors stimulate the proliferation of steroid-dependent tumor cells, and that the interaction between these signaling pathways occurs at several levels. Importantly, the majority of breast cancer cases are estrogen receptor- (ER-) positive which have a more favorable prognosis and pattern of recurrence with endocrine therapy being the backbone of treatment. Unfortunately, the majority of patients progress to endocrine therapy resistant disease (acquired resistance) whereas a proportion of patients may fail to respond to initial therapy (de novo resistance). The IGF-I and EGF downstream signaling pathways are closely involved in the process of progression to therapy resistant disease. Modifications in the bioavailability of these growth factors contribute critically to disease progression. In the present review therefore, we will discuss in depth how IGF and EGF signaling participate in breast cancer pathogenesis and progression to endocrine resistant disease. PMID:26258011

  20. Protein Kinase A Modulates Transforming Growth Factor-β Signaling through a Direct Interaction with Smad4 Protein*

    PubMed Central

    Yang, Huibin; Li, Gangyong; Wu, Jing-Jiang; Wang, Lidong; Uhler, Michael; Simeone, Diane M.

    2013-01-01

    Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290–300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281–285 and 320–329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo. PMID:23362281

  1. The role of vascular endothelial growth factor in neurodegeneration and cognitive decline: exploring interactions with biomarkers of Alzheimer disease.

    PubMed

    Hohman, Timothy J; Bell, Susan P; Jefferson, Angela L

    2015-05-01

    A subset of older adults present post mortem with Alzheimer disease (AD) pathologic features but without any significant clinical manifestation of dementia. Vascular endothelial growth factor (VEGF) has been implicated in staving off AD-related neurodegeneration. To evaluate whether VEGF levels are associated with brain aging outcomes (hippocampal volume and cognition) and to further evaluate whether VEGF modifies relations between AD biomarkers and brain aging outcomes. Biomarker analysis using neuroimaging and neuropsychological outcomes from the Alzheimer's Disease Neuroimaging Initiative. This prospective longitudinal study across North America included individuals with normal cognition (n = 90), mild cognitive impairment (n = 130), and AD (n = 59) and began in October 2004, with follow-up ongoing. Cerebrospinal fluid VEGF was cross-sectionally related to brain aging outcomes (hippocampal volume, episodic memory, and executive function) using a general linear model and longitudinally using mixed-effects regression. Alzheimer disease biomarker (cerebrospinal fluid β-amyloid 42 and total tau)-by-VEGF interactions evaluated the effect of VEGF on brain aging outcomes in the presence of enhanced AD biomarkers. Vascular endothelial growth factor was associated with baseline hippocampal volume (t277 = 2.62; P = .009), longitudinal hippocampal atrophy (t858 = 2.48; P = .01), and longitudinal decline in memory (t1629 = 4.09; P < .001) and executive function (t1616 = 3.00; P = .003). Vascular endothelial growth factor interacted with tau in predicting longitudinal hippocampal atrophy (t845 = 4.17; P < .001), memory decline (t1610 = 2.49; P = .01), and executive function decline (t1597 = 3.71; P < .001). Vascular endothelial growth factor interacted with β-amyloid 42 in predicting longitudinal memory decline (t1618 = -2.53; P = .01). Elevated cerebrospinal fluid VEGF was associated with more optimal brain aging in vivo. The neuroprotective effect appeared

  2. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    PubMed

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  3. New insights into the molecular interaction of the C-terminal sequence of CXCL4 with fibroblast growth factor-2.

    PubMed

    Ragona, Laura; Tomaselli, Simona; Quemener, Cathy; Zetta, Lucia; Bikfalvi, Andreas

    2009-04-24

    Full-length CXCL4 chemokine and a peptide derived from its carboxyl-terminal domain exhibits significant antiangiogenic and anti-tumor activity in vivo and in vitro by interacting with fibroblast growth factor (FGF). In this study we used NMR spectroscopy to characterize at a molecular level the interactions between CXCL4 (47-70) and FGF-2 identifying the peptide residues mainly involved in the contact area with the growth factor. Altogether NMR data point to a major role of the hydrophobic contributions of the C-terminal region of CXCL4 (47-70) peptide in addition to specific contacts established by the N-terminal region through cysteine side chain. The proposed recognition mode constitutes a rationale for the observed effects of CXCL4 (47-70) on FGF-2 biological activity and lays the basis for developing novel inhibitors of angiogenesis.

  4. Quantification of growth factor signaling and pathway cross talk by live-cell imaging

    PubMed Central

    Gross, Sean M.

    2017-01-01

    Peptide growth factors stimulate cellular responses through activation of their transmembrane receptors. Multiple intracellular signaling cascades are engaged following growth factor–receptor binding, leading to short- and long-term biological effects. Each receptor-activated signaling pathway does not act in isolation but rather interacts at different levels with other pathways to shape signaling networks that are distinctive for each growth factor. To gain insights into the specifics of growth factor-regulated interactions among different signaling cascades, we developed a HeLa cell line stably expressing fluorescent live-cell imaging reporters that are readouts for two major growth factor-stimulated pathways, Ras–Raf–Mek–ERK and phosphatidylinositol (PI) 3-kinase–Akt. Incubation of cells with epidermal growth factor (EGF) resulted in rapid, robust, and sustained ERK signaling but shorter-term activation of Akt. In contrast, hepatocyte growth factor induced sustained Akt signaling but weak and short-lived ERK activity, and insulin-like growth factor-I stimulated strong long-term Akt responses but negligible ERK signaling. To address potential interactions between signaling pathways, we employed specific small-molecule inhibitors. In cells incubated with EGF or platelet-derived growth factor-AA, Raf activation and the subsequent stimulation of ERK reduced Akt signaling, whereas Mek inhibition, which blocked ERK activation, enhanced Akt and turned transient effects into sustained responses. Our results reveal that individual growth factors initiate signaling cascades that vary markedly in strength and duration and demonstrate in living cells the dramatic effects of cross talk from Raf and Mek to PI 3-kinase and Akt. Our data further indicate how specific growth factors can encode distinct cellular behaviors by promoting complex interactions among signaling pathways. PMID:28100485

  5. Extracellular matrix and growth factors in branching morphogenesis

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1993-01-01

    The unifying hypothesis of the NSCORT in gravitational biology postulates that the ECM and growth factors are key interrelated components of a macromolecular regulatory system. The ECM is known to be important in growth and branching morphogenesis of embryonic organs. Growth factors have been detected in the developing embryo, and often the pattern of localization is associated with areas undergoing epithelial-mesenchymal interactions. Causal relationships between these components may be of fundamental importance in control of branching morphogenesis.

  6. Quantification of growth factor signaling and pathway cross talk by live-cell imaging.

    PubMed

    Gross, Sean M; Rotwein, Peter

    2017-03-01

    Peptide growth factors stimulate cellular responses through activation of their transmembrane receptors. Multiple intracellular signaling cascades are engaged following growth factor-receptor binding, leading to short- and long-term biological effects. Each receptor-activated signaling pathway does not act in isolation but rather interacts at different levels with other pathways to shape signaling networks that are distinctive for each growth factor. To gain insights into the specifics of growth factor-regulated interactions among different signaling cascades, we developed a HeLa cell line stably expressing fluorescent live-cell imaging reporters that are readouts for two major growth factor-stimulated pathways, Ras-Raf-Mek-ERK and phosphatidylinositol (PI) 3-kinase-Akt. Incubation of cells with epidermal growth factor (EGF) resulted in rapid, robust, and sustained ERK signaling but shorter-term activation of Akt. In contrast, hepatocyte growth factor induced sustained Akt signaling but weak and short-lived ERK activity, and insulin-like growth factor-I stimulated strong long-term Akt responses but negligible ERK signaling. To address potential interactions between signaling pathways, we employed specific small-molecule inhibitors. In cells incubated with EGF or platelet-derived growth factor-AA, Raf activation and the subsequent stimulation of ERK reduced Akt signaling, whereas Mek inhibition, which blocked ERK activation, enhanced Akt and turned transient effects into sustained responses. Our results reveal that individual growth factors initiate signaling cascades that vary markedly in strength and duration and demonstrate in living cells the dramatic effects of cross talk from Raf and Mek to PI 3-kinase and Akt. Our data further indicate how specific growth factors can encode distinct cellular behaviors by promoting complex interactions among signaling pathways. Copyright © 2017 the American Physiological Society.

  7. Huntingtin interacting protein 1 is a novel brain tumor marker that associates with epidermal growth factor receptor.

    PubMed

    Bradley, Sarah V; Holland, Eric C; Liu, Grace Y; Thomas, Dafydd; Hyun, Teresa S; Ross, Theodora S

    2007-04-15

    Huntingtin interacting protein 1 (HIP1) is a multidomain oncoprotein whose expression correlates with increased epidermal growth factor receptor (EGFR) levels in certain tumors. For example, HIP1-transformed fibroblasts and HIP1-positive breast cancers have elevated EGFR protein levels. The combined association of HIP1 with huntingtin, the protein that is mutated in Huntington's disease, and the known overexpression of EGFR in glial brain tumors prompted us to explore HIP1 expression in a group of patients with different types of brain cancer. We report here that HIP1 is overexpressed with high frequency in brain cancers and that this overexpression correlates with EGFR and platelet-derived growth factor beta receptor expression. Furthermore, serum samples from patients with brain cancer contained anti-HIP1 antibodies more frequently than age-matched brain cancer-free controls. Finally, we report that HIP1 physically associates with EGFR and that this association is independent of the lipid, clathrin, and actin interacting domains of HIP1. These findings suggest that HIP1 may up-regulate or maintain EGFR overexpression in primary brain tumors by directly interacting with the receptor. This novel HIP1-EGFR interaction may work with or independent of HIP1 modulation of EGFR degradation via clathrin-mediated membrane trafficking pathways. Further investigation of HIP1 function in brain cancer biology and validation of its use as a prognostic or predictive brain tumor marker are now warranted.

  8. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    PubMed

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  9. Androgen Stimulates Growth of Mouse Preantral Follicles In Vitro: Interaction With Follicle-Stimulating Hormone and With Growth Factors of the TGFβ Superfamily

    PubMed Central

    Laird, Mhairi; Thomson, Kacie; Fenwick, Mark; Mora, Jocelyn; Hardy, Kate

    2017-01-01

    Androgens are essential for the normal function of mature antral follicles but also have a role in the early stages of follicle development. Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by androgen excess and aberrant follicle development that includes accelerated early follicle growth. We have examined the effects of testosterone and dihydrotestosterone (DHT) on development of isolated mouse preantral follicles in culture with the specific aim of investigating interaction with follicle-stimulating hormone (FSH), the steroidogenic pathway, and growth factors of the TGFβ superfamily that are known to have a role in early follicle development. Both testosterone and DHT stimulated follicle growth and augmented FSH-induced growth and increased the incidence of antrum formation among the granulosa cell layers of these preantral follicles after 72 hours in culture. Effects of both androgens were reversed by the androgen receptor antagonist flutamide. FSH receptor expression was increased in response to both testosterone and DHT, as was that of Star, whereas Cyp11a1 was down-regulated. The key androgen-induced changes in the TGFβ signaling pathway were down-regulation of Amh, Bmp15, and their receptors. Inhibition of Alk6 (Bmpr1b), a putative partner for Amhr2 and Bmpr2, by dorsomorphin resulted in augmentation of androgen-stimulated growth and modification of androgen-induced gene expression. Our findings point to varied effects of androgen on preantral follicle growth and function, including interaction with FSH-activated growth and steroidogenesis, and, importantly, implicate the intrafollicular TGFβ system as a key mediator of androgen action. These findings provide insight into abnormal early follicle development in PCOS. PMID:28324051

  10. Androgen Stimulates Growth of Mouse Preantral Follicles In Vitro: Interaction With Follicle-Stimulating Hormone and With Growth Factors of the TGFβ Superfamily.

    PubMed

    Laird, Mhairi; Thomson, Kacie; Fenwick, Mark; Mora, Jocelyn; Franks, Stephen; Hardy, Kate

    2017-04-01

    Androgens are essential for the normal function of mature antral follicles but also have a role in the early stages of follicle development. Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by androgen excess and aberrant follicle development that includes accelerated early follicle growth. We have examined the effects of testosterone and dihydrotestosterone (DHT) on development of isolated mouse preantral follicles in culture with the specific aim of investigating interaction with follicle-stimulating hormone (FSH), the steroidogenic pathway, and growth factors of the TGFβ superfamily that are known to have a role in early follicle development. Both testosterone and DHT stimulated follicle growth and augmented FSH-induced growth and increased the incidence of antrum formation among the granulosa cell layers of these preantral follicles after 72 hours in culture. Effects of both androgens were reversed by the androgen receptor antagonist flutamide. FSH receptor expression was increased in response to both testosterone and DHT, as was that of Star, whereas Cyp11a1 was down-regulated. The key androgen-induced changes in the TGFβ signaling pathway were down-regulation of Amh, Bmp15, and their receptors. Inhibition of Alk6 (Bmpr1b), a putative partner for Amhr2 and Bmpr2, by dorsomorphin resulted in augmentation of androgen-stimulated growth and modification of androgen-induced gene expression. Our findings point to varied effects of androgen on preantral follicle growth and function, including interaction with FSH-activated growth and steroidogenesis, and, importantly, implicate the intrafollicular TGFβ system as a key mediator of androgen action. These findings provide insight into abnormal early follicle development in PCOS.

  11. Lens Epithelium-derived Growth Factor/p75 Interacts with the Transposase-derived DDE Domain of PogZ*S⃞

    PubMed Central

    Bartholomeeusen, Koen; Christ, Frauke; Hendrix, Jelle; Rain, Jean-Christophe; Emiliani, Stéphane; Benarous, Richard; Debyser, Zeger; Gijsbers, Rik; De Rijck, Jan

    2009-01-01

    Lens epithelium-derived growth factor/p75 (LEDGF/p75) is a prominent cellular interaction partner of human immunodeficiency virus-1 (HIV-1) integrase, tethering the preintegration complex to the host chromosome. In light of the development of LEDGF/p75-integrase interaction inhibitors, it is essential to understand the cell biology of LEDGF/p75. We identified pogZ as new cellular interaction partner of LEDGF/p75. Analogous to lentiviral integrase, pogZ, a domesticated transposase, carries a DDE domain, the major determinant for LEDGF/p75 interaction. Using different in vitro and in vivo approaches, we corroborated the interaction between the C terminus of LEDGF/p75 and the DDE domain of pogZ, revealing an overlap in the binding of pogZ and HIV-1 integrase. Competition experiments showed that integrase is efficient in displacing pogZ from LEDGF/p75. Moreover, pogZ does not seem to play a role as a restriction factor of HIV. The finding that LEDGF/p75 is capable of interacting with a DDE domain protein that is not a lentiviral integrase points to a profound role of LEDGF/p75 in DDE domain protein function. PMID:19244240

  12. Interactions between the vascular endothelial growth factor gene polymorphism and life events in susceptibility to major depressive disorder in a Chinese population.

    PubMed

    Han, Dong; Qiao, Zhengxue; Chen, Lu; Qiu, Xiaohui; Fang, Deyu; Yang, Xiuxian; Ma, Jingsong; Chen, Mingqi; Yang, Jiarun; Wang, Lin; Zhu, Xiongzhao; Zhang, Congpei; Yang, Yanjie; Pan, Hui

    2017-08-01

    Recent studies suggest that vascular endothelial growth factor (VEGF) is involved in the development of major depressive disorder. The aim of this study is to investigate the interaction between vascular endothelial growth factor (VEGF) polymorphism (+405G/C, rs2010963) and negative life events in the pathogenesis of major depressive disorder (MDD). DNA genotyping was performed on peripheral blood leukocytes in 274 patients with MDD and 273 age-and sex-matched controls. The frequency and severity of negative life events were assessed by the Life Events Scale (LES). A logistics method was employed to assess the gene-environment interaction (G×E). Differences in rs2010963 genotype distributions were observed between MDD patients and controls. Significant G×E interactions between allelic variation of rs2010963 and negative life events were observed. Individuals carrying the C alleles were susceptible to MDD only when exposed to high-negative life events. These results indicate that interactions between the VEGF rs2010963 polymorphism and environment increases the risk of developing MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Effect of Desulfation of Chondroitin Sulfate on Interactions with Positively Charged Growth Factors and Upregulation of Cartilaginous Markers in Encapsulated MSCs

    PubMed Central

    Lim, Jeremy J.; Temenoff, Johnna S.

    2013-01-01

    Sulfated glycosaminoglycans (GAGs) are known to interact electrostatically with positively charged growth factors to modulate signaling. Therefore, regulating the degree of sulfation of GAGs may be a promising approach to tailor biomaterial carriers for controlled growth factor delivery and release. For this study, chondroitin sulfate (CS) was first desulfated to form chondroitin, and resulting crosslinked CS and chondroitin hydrogels were examined in vitro for release of positively charged model protein (histone) and for their effect on cartilaginous differentiation of encapsulated human mesenchymal stem cells (MSCs). Desulfation significantly increased the release of histone from chondroitin hydrogels (30.6±2.3 ìg released over 8 days, compared to natively sulfated CS with 20.2±0.8 ìg), suggesting that sulfation alone plays a significant role in modulating protein interactions with GAG hydrogels. MSCs in chondroitin hydrogels significantly upregulated gene expression of collagen II and aggrecan by day 21 in chondrogenic medium (115±100 and 23.1±7.9 fold upregulation of collagen II and aggrecan, respectively), compared to CS and PEG-based swelling controls, indicating that desulfation may actually enhance the response of MSCs to soluble chondrogenic cues, such as TGF-â1. Thus, desulfated chondroitin materials present a promising biomaterial tool to further investigate electrostatic GAG/growth factor interactions, especially for repair of cartilaginous tissues. PMID:23570717

  14. The effect of desulfation of chondroitin sulfate on interactions with positively charged growth factors and upregulation of cartilaginous markers in encapsulated MSCs.

    PubMed

    Lim, Jeremy J; Temenoff, Johnna S

    2013-07-01

    Sulfated glycosaminoglycans (GAGs) are known to interact electrostatically with positively charged growth factors to modulate signaling. Therefore, regulating the degree of sulfation of GAGs may be a promising approach to tailor biomaterial carriers for controlled growth factor delivery and release. For this study, chondroitin sulfate (CS) was first desulfated to form chondroitin, and resulting crosslinked CS and chondroitin hydrogels were examined in vitro for release of positively charged model protein (histone) and for their effect on cartilaginous differentiation of encapsulated human mesenchymal stem cells (MSCs). Desulfation significantly increased the release of histone from chondroitin hydrogels (30.6 ± 2.3 μg released over 8 days, compared to natively sulfated CS with 20.2 ± 0.8 μg), suggesting that sulfation alone plays a significant role in modulating protein interactions with GAG hydrogels. MSCs in chondroitin hydrogels significantly upregulated gene expression of collagen II and aggrecan by day 21 in chondrogenic medium (115 ± 100 and 23.1 ± 7.9 fold upregulation of collagen II and aggrecan, respectively), compared to CS hydrogels and PEG-based swelling controls, indicating that desulfation may actually enhance the response of MSCs to soluble chondrogenic cues, such as TGF-β1. Thus, desulfated chondroitin materials present a promising biomaterial tool to further investigate electrostatic GAG/growth factor interactions, especially for repair of cartilaginous tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Media composition: growth factors.

    PubMed

    Hegde, Aparna; Behr, Barry

    2012-01-01

    Despite the fact that the fundamental principle underlying the most common method of culture media constitution is that of mimicking the natural environment of the preimplantation embryo, one major difference that remains between current embryo culture media and in vivo conditions is the absence of growth factors in vitro. Numerous growth factors are known to be present in the in vivo environment of human and nonhuman preimplantation embryos, often with peak concentrations corresponding to when fertilization and preimplantation embryo growth would occur. Although these growth factors are found in very small concentrations, they have a profound effect on tissue growth and differentiation through attachment to factor-specific receptors on cell surfaces. Receptors for many different growth factors have also been detected in human preimplantation embryos. Preimplantation embryos themselves express many growth factors. The growth factors and receptors are metabolically costly to produce, and thus their presence in the environment of the preimplantation embryo and in the embryo respectively strongly implies that embryos are designed to encounter and respond to the corresponding factors. Studies of embryo coculture also indirectly suggest that growth factors can improve in vitro development. Several animal and human studies attest to a probable beneficial effect of addition of growth factors to culture media. However, there is still ambiguity regarding the exact role of growth factors in embryonic development, the optimal dose of growth factors to be added to culture media, the combinatorial effect and endocrine of growth factors in embryonic development.

  16. Transforming growth factor β: a master regulator of the gut microbiota and immune cell interactions.

    PubMed

    Bauché, David; Marie, Julien C

    2017-04-01

    The relationship between host organisms and their microbiota has co-evolved towards an inter-dependent network of mutualistic interactions. This interplay is particularly well studied in the gastrointestinal tract, where microbiota and host immune cells can modulate each other directly, as well as indirectly, through the production and release of chemical molecules and signals. In this review, we define the functional impact of transforming growth factor-beta (TGF-β) on this complex interplay, especially through its modulation of the activity of local regulatory T cells (Tregs), type 17 helper (Th17) cells, innate lymphoid cells (ILCs) and B cells.

  17. Localisation of stem cell factor, stanniocalcin-1, connective tissue growth factor and heparin-binding epidermal growth factor in the bovine uterus at the time of blastocyst formation.

    PubMed

    Muñoz, M; Martin, D; Carrocera, S; Alonso-Guervos, M; Mora, M I; Corrales, F J; Peynot, N; Giraud-Delville, C; Duranthon, V; Sandra, O; Gómez, E

    2017-10-01

    Early embryonic losses before implantation account for the highest rates of reproductive failure in mammals, in particular when in vitro-produced embryos are transferred. In the present study, we used molecular biology techniques (real-time quantitative polymerase chain reaction), classical immunohistochemical staining coupled with confocal microscopy and proteomic analysis (multiple reaction monitoring and western blot analysis) to investigate the role of four growth factors in embryo-uterine interactions during blastocyst development. Supported by a validated embryo transfer model, the study investigated: (1) the expression of stem cell factor (SCF), stanniocalcin-1 (STC1), connective tissue growth factor (CTGF) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) in bovine uterine fluid; (2) the presence of SCF, STC1, CTGF and HB-EGF mRNA and protein in the bovine endometrium and embryos; and (3) the existence of reciprocal regulation between endometrial and embryonic expression of SCF, STC1, CTGF and HB-EGF. The results suggest that these growth factors most likely play an important role during preimplantation embryo development in cattle. The information obtained from the present study can contribute to improving the performance of in vitro culture technology in cattle and other species.

  18. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  19. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation

    PubMed Central

    Gaviglio, Angela L.; Knelson, Erik H.; Blobe, Gerard C.

    2017-01-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor–like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.—Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. PMID:28174207

  20. Effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro.

    PubMed

    Lee, J S; Kim, J M; Hong, E K; Kim, S-O; Yoo, Y-J; Cha, J-H

    2009-02-01

    inhibition of p38 delayed the process. These results indicate that heparin-binding epidermal growth factor-like growth factor may constitute a critical factor in the wound healing of human periodontal ligament cells by a mechanism that requires the activation of Erk1/2 via specific interaction with epidermal growth factor receptor 1.

  1. Genetic factors in fetal growth restriction and miscarriage.

    PubMed

    Yamada, Hideto; Sata, Fumihiro; Saijo, Yasuaki; Kishi, Reiko; Minakami, Hisanori

    2005-06-01

    Recently, several investigations concerning disadvantageous genetic factors in human reproduction have progressed. Inherited thrombophilia, such as factor V Leiden, prothrombin, and methylenetetrahydrofolate reductase mutations; gene polymorphisms of detoxification enzyme (CYP1A1); growth factors (insulin-like growth factor-I); and hormones such as angiotensinogen and CYP17 are involved in the pathogenesis of fetal growth restriction. The inherited thrombophilia, gene polymorphisms of coagulation and anticoagulation factor such as thrombomodulin, endothelial protein C receptor, plasminogen activator inhibitor 1, and factor XIII; human lymphocyte antigen (HLA-G); detoxification enzymes (glutathione- S-transferase M1); cytokines such as interleukin (IL) -1 and IL-6; hormones (CYP17); vasodilators (nitric oxide synthase 3); and vitamins (transcobalamin) are involved in the pathogenesis of sporadic and recurrent miscarriage. It is likely that a gene polymorphism or mutation susceptible to reproductive failure has a beneficial effect on the process of human reproduction with or without the environmental interaction. The factor V Leiden mutation has genetic advantages that are believed to be an improved implantation rate in in vitro fertilization and a reduction of maternal intrapartum blood loss. It has also been demonstrated that the CYP17 A2 allele has bidirectional effects on human reproduction, including increases in susceptibility to recurrent miscarriage and fetal growth enhancement.

  2. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  3. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.

    PubMed

    Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K

    2017-10-02

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.

  4. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis

    PubMed Central

    Matkar, Pratiek N.; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K.

    2017-01-01

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review. PMID:28974056

  5. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis.

    PubMed

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-Hara, Tomoko; Fujita, Naoya

    2014-08-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the proliferation of osteosarcomas. Co-culture of platelets with MG63 or HOS osteosarcoma cells, which could induce platelet aggregation, enhanced the proliferation of each cell line in vitro. Analysis of phospho-antibody arrays revealed that co-culture of MG63 cells with platelets induced the phosphorylation of platelet derived growth factor receptor (PDGFR) and Akt. The addition of supernatants of osteosarcoma-platelet reactants also increased the growth of MG63 and HOS cells as well as the level of phosphorylated-PDGFR and -Akt. Sunitinib or LY294002, but not erlotinib, significantly inhibited the platelet-induced proliferation of osteosarcoma cells, indicating that PDGF released from platelets plays an important role in the proliferation of osteosarcomas by activating the PDGFR and then Akt. Our results suggest that inhibitors that specifically target osteosarcoma-platelet interactions may eradicate osteosarcomas. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  6. Insulin-like growth factor and fibroblast growth factor expression profiles in growth-restricted fetal sheep pancreas.

    PubMed

    Chen, Xiaochuan; Rozance, Paul J; Hay, William W; Limesand, Sean W

    2012-05-01

    Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.

  7. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata.

    PubMed

    Sozen, Ibrahim; Arici, Aydin

    2002-07-01

    To review the available information regarding the role of cytokines, growth factors, and the extracellular matrix in the pathophysiology of uterine leiomyomata and to integrate this information in a suggested model of disease at the cellular level. A thorough literature and MEDLINE search was conducted to identify the relevant studies in the English literature published between January, 1966 and October, 2001. A model of disease at the cellular level was developed using the most likely cytokines to be involved in the pathogenesis of leiomyomata as determined by our assessment of the available literature. A number of cytokines and growth factors, including transforming growth factor-beta (TGF-beta), epidermal growth factor, monocyte chemotactic protein-1, insulin-like growth factors 1 and 2, prolactin, parathyroid-hormone-related peptide, basic fibroblast growth factor, platelet-derived growth factor, interleukin-8, and endothelin, have been investigated in myometrium and leiomyoma. Among these cytokines, TGF-beta appears to be the only growth factor that has been shown to be overexpressed in leiomyoma vs. myometrium, be hormonally-regulated both in vivo and in vitro, and be both mitogenic and fibrogenic in these tissues. In addition to the cytokines, extracellular matrix components such as collagen, fibronectin, proteoglycans, matrix metalloproteinases, and tissue inhibitors of metalloproteinases seem to play pivotal roles in the pathogenesis of leiomyomata. We believe that, given the extent and depth of the current research on the cellular biology of leiomyomata, the cellular mechanisms responsible in the pathogenesis of leiomyomata will be identified clearly within the foreseeable future. This will enable researchers to develop therapy directed against the molecules and mechanisms at the cellular level.

  8. Interaction of insulin-like growth factor-I and insulin resistance-related genetic variants with lifestyle factors on postmenopausal breast cancer risk.

    PubMed

    Jung, Su Yon; Ho, Gloria; Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Papp, Jeanette; Sobel, Eric; Zhang, Zuo-Feng; Crandall, Carolyn

    2017-07-01

    Genetic variants and traits in metabolic signaling pathways may interact with obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal breast cancer risk, but these inter-related pathways are incompletely understood. We used 75 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/insulin resistance (IR) traits and signaling pathways, and data from 1003 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying via obesity and lifestyle modifiers, we assessed the role of IGF-I/IR traits (fasting IGF-I, IGF-binding protein 3, insulin, glucose, and homeostatic model assessment-insulin resistance) in breast cancer risk as a mediator or influencing factor. Seven SNPs in IGF-I and INS genes were associated with breast cancer risk. These associations differed between non-obese/active and obese/inactive women and between exogenous E non-users and users. The mediation effects of IGF-I/IR traits on the relationship between these SNPs and cancer differed between strata, but only roughly 35% of the cancer risk due to the SNPs was mediated by traits. Similarly, carriers of 20 SNPs in PIK3R1, AKT1/2, and MAPK1 genes (signaling pathways-genetic variants) had different associations with breast cancer between strata, and the proportion of the SNP-cancer relationship explained by traits varied 45-50% between the strata. Our findings suggest that IGF-I/IR genetic variants interact with obesity and lifestyle factors, altering cancer risk partially through pathways other than IGF-I/IR traits. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce breast cancer risk.

  9. The Fibroblast Growth Factor signaling pathway.

    PubMed

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website. © 2015 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.

  10. Transforming properties of the Huntingtin interacting protein 1/ platelet-derived growth factor beta receptor fusion protein.

    PubMed

    Ross, T S; Gilliland, D G

    1999-08-06

    We have previously reported that the Huntingtin interacting protein 1 (HIP1) gene is fused to the platelet-derived growth factor beta receptor (PDGFbetaR) gene in a patient with chronic myelomonocytic leukemia. We now show that HIP1/PDGFbetaR oligomerizes, is constitutively tyrosine-phosphorylated, and transforms the murine hematopoietic cell line, Ba/F3, to interleukin-3-independent growth. A kinase-inactive mutant is neither tyrosine-phosphorylated nor able to transform Ba/F3 cells. Oligomerization and kinase activation required the 55-amino acid carboxyl-terminal TALIN homology region but not the leucine zipper domain. Tyrosine phosphorylation of a 130-kDa protein and STAT5 correlates with transformation in cells expressing HIP1/PDGFbetaR and related mutants. A deletion mutant fusion protein that contains only the TALIN homology region of HIP1 fused to PDGFbetaR is incapable of transforming Ba/F3 cells and does not tyrosine-phosphorylate p130 or STAT5, although it is itself constitutively tyrosine-phosphorylated. We have also analyzed cells expressing Tyr --> Phe mutants of HIP1/PDGFbetaR in the known PDGFbetaR SH2 docking sites and report that none of these sites are necessary for STAT5 activation, p130 phosphorylation, or Ba/F3 transformation. The correlation of factor-independent growth of hematopoietic cells with p130 and STAT5 phosphorylation/activation in both the HIP1/PDGFbetaR Tyr --> Phe and deletion mutational variants suggests that both STAT5 and p130 are important for transformation mediated by HIP1/PDGFbetaR.

  11. Klotho and the Growth Hormone/Insulin-Like Growth Factor 1 Axis: Novel Insights into Complex Interactions.

    PubMed

    Rubinek, T; Modan-Moses, D

    2016-01-01

    The growth hormone (GH)/insulin-like growth factor (IGF)-1 axis is pivotal for many metabolic functions, including proper development and growth of bones, skeletal muscles, and adipose tissue. Defects in the axis' activity during childhood result in growth abnormalities, while increased secretion of GH from the pituitary results in acromegaly. In order to keep narrow physiologic concentration, GH and IGF-1 secretion and activity are tightly regulated by hypothalamic, pituitary, endocrine, paracrine, and autocrine factors. Klotho was first discovered as an aging-suppressor gene. Mice that do not express klotho die prematurely with multiple symptoms of aging, several of them are also characteristic of decreased GH/IGF-1 axis activity. Klotho is highly expressed in the brain, the kidney, and parathyroid and pituitary glands, but can also serve as a circulating hormone by its shedding, forming soluble klotho that can be detected in blood, cerebrospinal fluid, and urine. Several lines of evidence suggest an association between klotho levels and activity of the GH/IGF-1 axis: the GH-secreting cells in the anterior pituitary of klotho-deficient mice are hypotrophic; klotho levels are altered in subjects with pathologies of the GH/IGF-1 axis; and accumulating data indicate that klotho is a direct regulator of GH secretion. Thus, klotho seems to be a new player in the intricate regulation of the GH/IGF-1 axis. © 2016 Elsevier Inc. All rights reserved.

  12. Plasma membrane calcium ATPase isoform 4 inhibits vascular endothelial growth factor-mediated angiogenesis through interaction with calcineurin.

    PubMed

    Baggott, Rhiannon R; Alfranca, Arantzazu; López-Maderuelo, Dolores; Mohamed, Tamer M A; Escolano, Amelia; Oller, Jorge; Ornes, Beatriz C; Kurusamy, Sathishkumar; Rowther, Farjana B; Brown, James E; Oceandy, Delvac; Cartwright, Elizabeth J; Wang, Weiguang; Gómez-del Arco, Pablo; Martínez-Martínez, Sara; Neyses, Ludwig; Redondo, Juan Miguel; Armesilla, Angel Luis

    2014-10-01

    Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis. © 2014 American Heart Association, Inc.

  13. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    NASA Astrophysics Data System (ADS)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  14. Genomic Analysis of Circadian Clock-, Light-, and Growth-Correlated Genes Reveals PHYTOCHROME-INTERACTING FACTOR5 as a Modulator of Auxin Signaling in Arabidopsis1[C][W][OA

    PubMed Central

    Nozue, Kazunari; Harmer, Stacey L.; Maloof, Julin N.

    2011-01-01

    Plants exhibit daily rhythms in their growth, providing an ideal system for the study of interactions between environmental stimuli such as light and internal regulators such as the circadian clock. We previously found that two basic loop-helix-loop transcription factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, integrate light and circadian clock signaling to generate rhythmic plant growth in Arabidopsis (Arabidopsis thaliana). Here, we use expression profiling and real-time growth assays to identify growth regulatory networks downstream of PIF4 and PIF5. Genome-wide analysis of light-, clock-, or growth-correlated genes showed significant overlap between the transcriptomes of clock-, light-, and growth-related pathways. Overrepresentation analysis of growth-correlated genes predicted that the auxin and gibberellic acid (GA) hormone pathways both contribute to diurnal growth control. Indeed, lesions of GA biosynthesis genes retarded rhythmic growth. Surprisingly, GA-responsive genes are not enriched among genes regulated by PIF4 and PIF5, whereas auxin pathway and response genes are. Consistent with this finding, the auxin response is more severely affected than the GA response in pif4 pif5 double mutants and in PIF5-overexpressing lines. We conclude that at least two downstream modules participate in diurnal rhythmic hypocotyl growth: PIF4 and/or PIF5 modulation of auxin-related pathways and PIF-independent regulation of the GA pathway. PMID:21430186

  15. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration.

    PubMed

    Park, Chong Yon; Pierce, Stephanie A; von Drehle, Morgan; Ivey, Kathryn N; Morgan, Jayson A; Blau, Helen M; Srivastava, Deepak

    2010-11-30

    Cardiac and skeletal muscle development and maintenance require complex interactions between DNA-binding proteins and chromatin remodeling factors. We previously reported that Smyd1, a muscle-restricted histone methyltransferase, is essential for cardiogenesis and functions with a network of cardiac regulatory proteins. Here we show that the muscle-specific transcription factor skNAC is the major binding partner for Smyd1 in the developing heart. Targeted deletion of skNAC in mice resulted in partial embryonic lethality by embryonic day 12.5, with ventricular hypoplasia and decreased cardiomyocyte proliferation that were similar but less severe than in Smyd1 mutants. Expression of Irx4, a ventricle-specific transcription factor down-regulated in hearts lacking Smyd1, also depended on the presence of skNAC. Viable skNAC(-/-) adult mice had reduced postnatal skeletal muscle growth and impaired regenerative capacity after cardiotoxin-induced injury. Satellite cells isolated from skNAC(-/-) mice had impaired survival compared with wild-type littermate satellite cells. Our results indicate that skNAC plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration in mice.

  16. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    PubMed

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed. In an effort to functionalize collagen/gelatin-based biomaterials with growth factors, we have designed an adaptor protein corresponding to a collagen-binding domain fused to a coil peptide. In our strategy, this adaptor protein captures growth factors being tagged with the partner coil peptide in a specific, stable and oriented manner. We have found that the tethering of the Epidermal Growth Factor preserved its mitogenic and anti-apoptotic activity. In the case of the basic Fibroblast Growth Factor, the captured growth factor remained bioactive although its

  17. Plant defences limit herbivore population growth by changing predator-prey interactions.

    PubMed

    Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S

    2017-09-13

    Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).

  18. Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer.

    PubMed

    Anan, K; Morisaki, T; Katano, M; Ikubo, A; Kitsuki, H; Uchiyama, A; Kuroki, S; Tanaka, M; Torisu, M

    1996-03-01

    Angiogenesis is a prerequisite for tumor growth and metastasis. Tumor angiogenesis may be mediated by several angiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-alpha, and basic fibroblast growth factor. Differential mRNA expressions of VEGF, PDGF (A chain), transforming growth factor-alpha and basic fibroblast growth factor in 32 primary invasive breast tumors were examined by reverse transcriptase-polymerase chain reaction. We analyzed relationships between mRNA expressions of these angiogenic factors and the degree of angiogenesis, tumor size, and metastasis. Quantification of angiogenesis was achieved by the immunohistochemical staining of endothelial cells with antibody to CD31. VEGF and PDGF-A mRNAs were expressed more frequently in breast tumors than in nontumor breast tissues, whereas no difference was found in expression frequency of either transforming growth factor-alpha or basic fibroblast growth factor mRNA. Vascular counts in tumors correlated with each expression frequency of VEGF and PDGF-A mRNA. PDGF-A mRNA was expressed more frequently in tumors with lymph node metastasis than in those without metastasis. Expression of VEGF and PDGF mRNAs detected by reverse transcriptase-polymerase chain reaction in breast tumors correlates with tumor-related characteristics of angiogenesis and metastatic potential. Analysis of these mRNAs by reverse transcriptase-polymerase chain reaction may be useful for assessing the biologic behavior of a breast tumor before surgical treatment.

  19. The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia.

    PubMed

    Moises, Hans W; Zoega, Tomas; Gottesman, Irving I

    2002-07-03

    A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments.

  20. Fibroblast growth factor receptor signaling crosstalk in skeletogenesis.

    PubMed

    Miraoui, Hichem; Marie, Pierre J

    2010-11-02

    Fibroblast growth factors (FGFs) play important roles in the control of embryonic and postnatal skeletal development by activating signaling through FGF receptors (FGFRs). Germline gain-of-function mutations in FGFR constitutively activate FGFR signaling, causing chondrocyte and osteoblast dysfunctions that result in skeletal dysplasias. Crosstalk between the FGFR pathway and other signaling cascades controls skeletal precursor cell differentiation. Genetic analyses revealed that the interplay of WNT and FGFR1 determines the fate and differentiation of mesenchymal stem cells during mouse craniofacial skeletogenesis. Additionally, interactions between FGFR signaling and other receptor tyrosine kinase networks, such as those mediated by the epidermal growth factor receptor and platelet-derived growth factor receptor α, were associated with excessive osteoblast differentiation and bone formation in the human skeletal dysplasia called craniosynostosis, which is a disorder of skull development. We review the roles of FGFR signaling and its crosstalk with other pathways in controlling skeletal cell fate and discuss how this crosstalk could be pharmacologically targeted to correct the abnormal cell phenotype in skeletal dysplasias caused by aberrant FGFR signaling.

  1. Self-assembling peptide amphiphiles and related methods for growth factor delivery

    DOEpatents

    Stupp, Samuel I [Chicago, IL; Donners, Jack J. J. M.; Silva, Gabriel A [Chicago, IL; Behanna, Heather A [Chicago, IL; Anthony, Shawn G [New Stanton, PA

    2009-06-09

    Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.

  2. Self-assembling peptide amphiphiles and related methods for growth factor delivery

    DOEpatents

    Stupp, Samuel I [Chicago, IL; Donners, Jack J. J. M.; Silva, Gabriel A [Chicago, IL; Behanna, Heather A [Chicago, IL; Anthony, Shawn G [New Stanton, PA

    2012-03-20

    Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.

  3. Self-assembling peptide amphiphiles and related methods for growth factor delivery

    DOEpatents

    Stupp, Samuel I; Donners, Jack J.J.M.; Silva, Gabriel A; Behanna, Heather A; Anthony, Shawn G

    2013-11-12

    Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.

  4. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cucinotta, Francis A

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ)more » pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  5. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Peter; Anderson, Jennifer

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ)more » pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  6. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  7. Unravelling variation in feeding, social interaction and growth patterns among pigs using an agent-based model.

    PubMed

    Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; Bokkers, Eddie A M

    2018-07-01

    Domesticated pigs, Sus scrofa, vary considerably in feeding, social interaction and growth patterns. This variation originates partly from genetic variation that affects physiological factors and partly from behavioural strategies (avoid or approach) in competitive food resource situations. Currently, it is unknown how variation in physiological factors and in behavioural strategies among animals contributes to variation in feeding, social interaction and growth patterns in animals. The aim of this study was to unravel causation of variation in these patterns among pigs. We used an agent-based model to explore the effects of physiological factors and behavioural strategies in pigs on variation in feeding, social interaction and growth patterns. Model results show that variation in feeding, social interaction and growth patterns are caused partly by chance, such as time effects and coincidence of conflicts. Furthermore, results show that seemingly contradictory empirical findings in literature can be explained by variation in pig characteristics (i.e. growth potential, positive feedback, dominance, and coping style). Growth potential mainly affected feeding and growth patterns, whereas positive feedback, dominance and coping style affected feeding patterns, social interaction patterns, as well as growth patterns. Variation in behavioural strategies among pigs can reduce aggression at group level, but also make some pigs more susceptible to social constraints inhibiting them from feeding when they want to, especially low-ranking pigs and pigs with a passive coping style. Variation in feeding patterns, such as feeding rate or meal frequency, can indicate social constraints. Feeding patterns, however, can say something different about social constraints at group versus individual level. A combination of feeding patterns, such as a decreased feed intake, an increased feeding rate, and an increased meal frequency might, therefore, be needed to measure social constraints

  8. Importance of interaction between nerve growth factor and α9β1 integrin in glial tumor angiogenesis

    PubMed Central

    Walsh, Erin M.; Kim, Richard; Del Valle, Luis; Weaver, Michael; Sheffield, Joel; Lazarovici, Philip; Marcinkiewicz, Cezary

    2012-01-01

    NGF is a growth factor for which the role in the promotion of angiogenesis is still not completely understood. We found that NGF promotes the pathological neovascularization process in glioma through a direct interaction with α9β1 integrin, which is up-regulated on microvascular endothelial cells in cancer tissue. We propagated gHMVEC primary cells using a new method of immune-selection, and these cells demonstrated α9β1 integrin-dependent binding of NGF in a cell adhesion assay. Moreover, NGF induced gHMVEC proliferation and chemotaxis inhibited by specific blockers of α9β1 integrin, such as MLD-disintegrins and monoclonal antibody Y9A2. A Matrigel tube formation assay revealed that NGF significantly increased capillary-like growth from gHMVEC to a level comparable to treatment with VEGF. The snake venom disintegrin, VLO5, inhibited the agonistic effect of both growth factors, whereas the effect of Y9A2 was not statistically significant. Angiogenesis exogenously induced by NGF  was also α9β1-integrin dependent in an embryonic quail CAM system. However, angiogenesis pathologically induced by developing glioma in this system was only sensitive for inhibition with MLD-disintegrin, suggesting a more complex effect of cancer cells on the neovascularization process. The anti-angiogenic effect of MLD-disintegrins is probably related to their pro-apoptotic ability induced in activated tumoral endothelial cells. Therefore, the molecular basis of these disintegrins may be useful for developing new angiostatic pharmaceuticals for application in cancer therapy. PMID:22611032

  9. The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia

    PubMed Central

    Moises, Hans W; Zoega, Tomas; Gottesman, Irving I

    2002-01-01

    Background A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. Presentation of the hypothesis Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. Testing the hypothesis Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. Implications of the hypothesis The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments. PMID:12095426

  10. A growth-dependent transcription initiation factor (TIF-IA) interacting with RNA polymerase I regulates mouse ribosomal RNA synthesis.

    PubMed

    Schnapp, A; Pfleiderer, C; Rosenbauer, H; Grummt, I

    1990-09-01

    Control of mouse ribosomal RNA synthesis in response to extracellular signals is mediated by TIF-IA, a regulatory factor whose amount or activity correlates with cell proliferation. Factor TIF-IA interacts with RNA polymerase I (pol I), thus converting it into a transcriptionally active holoenzyme, which is able to initiate specifically at the rDNA promoter in the presence of the other auxiliary transcription initiation factors, designated TIF-IB, TIF-IC and UBF. With regard to several criteria, the growth-dependent factor TIF-IA behaves like a bacterial sigma factor: (i) it associates physically with pol I, (ii) it is required for initiation of transcription, (iii) it is present in limiting amounts and (iv) under certain salt conditions, it is chromatographically separable from the polymerase. In addition, evidence is presented that dephosphorylation of pol I abolishes in vitro transcription initiation from the ribosomal gene promoter without significantly affecting the polymerizing activity of the enzyme at nonspecific templates. The involvement of both a regulatory factor and post-translational modification of the transcribing enzyme provides an efficient and versatile mechanism of rDNA transcription regulation which enables the cell to adapt ribosome synthesis rapidly to a variety of extracellular signals.

  11. A review on the factors affecting mite growth in stored grain commodities.

    PubMed

    Collins, D A

    2012-03-01

    A thorough review of the literature has identified the key factors and interactions that affect the growth of mite pests on stored grain commodities. Although many factors influence mite growth, the change and combinations of the physical conditions (temperature, relative humidity and/or moisture content) during the storage period are likely to have the greatest impact, with biological factors (e.g. predators and commodity) playing an important role. There is limited information on the effects of climate change, light, species interactions, local density dependant factors, spread of mycotoxins and action thresholds for mites. A greater understanding of these factors may identify alternative control techniques. The ability to predict mite population dynamics over a range of environmental conditions, both physical and biological, is essential in providing an early warning of mite infestations, advising when appropriate control measures are required and for evaluating control measures. This information may provide a useful aid in predicting and preventing mite population development as part of a risk based decision support system.

  12. Interactions between the thyroid hormones and the hormones of the growth hormone axis.

    PubMed

    Laron, Zvi

    2003-12-01

    The normal secretion and action of the thyroid hormones and the hormones of the GH/IGF-I (growth hormone/ insulin-like growth factor I) axis are interdependent. Their interactions often differ in man from animal studies in rodents and sheep. Thus neonates with congenital hypothyroidism are of normal length in humans but IUGR (intrauterine growth retardation) in sheep. Postnatally normal GH/IGF-I secretion and action depends on an euthyroid state. Present knowledge on the interactions between the two axes is reviewed in states of hypo- and hyperthyroidism, states of GH/IGF-I deprivation and hypersecretion, as well as the relationship between IGF-I and thyroid cancer. Emphasis is given to data in children and aspects of linear growth and skeletal maturation.

  13. Expression of transforming growth factor alpha and epidermal growth factor receptor messenger RNA in neoplastic and nonneoplastic human kidney tissue.

    PubMed

    Mydlo, J H; Michaeli, J; Cordon-Cardo, C; Goldenberg, A S; Heston, W D; Fair, W R

    1989-06-15

    Using Northern blot analysis, we have demonstrated that mRNA for transforming growth factor alpha (TGF-alpha) was expressed in five malignant kidney tissue specimens but was not detected in their autologous nonneoplastic homologues. In addition, the expression of epidermal growth factor (EGF) receptor mRNA in these malignant tissues was 2- to 3-fold greater than in nontransformed tissues. In two cases examined using immunohistochemistry, we were able to correlate the increased expression of the mRNA with an increase in protein expression. Since TGF-alpha is known to bind to the EGF receptor, the finding of an increased expression of both TGF-alpha and EGF receptor mRNA in kidney tumor tissue suggests that interaction between TGF-alpha and the EGF receptor may play a role in promoting transformation and/or proliferation of kidney neoplasms, perhaps by an autocrine mechanism.

  14. Interactions between insulin-like growth factor-I, estrogen receptor-α (ERα) and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells

    PubMed Central

    Mendoza, Rhone A.; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E2) and insulin-like growth factor-I (IGF-I) is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating non-interfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human growth hormone plus epidermal growth factor, but E2 did not cause increase in the number of the IGF-IR.low cells compared to controls. Proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Further, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. Summary, suppressing the IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate. PMID:20974640

  15. Neonatal hyperthyroidism impairs epinephrine-provoked secretion of nerve growth factor and epidermal growth factor in mouse saliva.

    PubMed

    Lakshmanan, J; Landel, C P

    1986-07-01

    We examined long-term effects of neonatal hyperthyroidism on salivary secretions of nerve growth factor and epidermal growth factor in male and female mice at the age of 31 days. Hyperthyroidism was induced by thyroxine (T4) injections (0.4 microgram/g body weight/day) during days 0-6. Littermate control mice were treated with vehicle. T4 treatment did not alter the amounts of protein secreted into saliva but hormone administration induced alteration in the types of protein secreted. T4 treatment decreased the contents of both nerve growth factor and epidermal growth factor secreted into the saliva. A Sephadex G-200 column chromatographic profile revealed the presence of two distinct nerve growth factor immunoreactive peaks, while epidermal growth factor immunoreactivity predominantly eluted as a single low molecular weight form. T4 treatment did not alter the molecular nature of their secretion, but the treatment decreased their contents. These results indicate an impairment in salivary secretion of nerve growth factor and epidermal growth factor long after T4 treatment has been discontinued.

  16. Protein-protein interactions in the regulation of WRKY transcription factors.

    PubMed

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  17. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletalmore » myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.« less

  18. Fibroblast growth factor receptors in breast cancer.

    PubMed

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  19. An interaction between hepatocyte growth factor and its receptor (c-MET) prolongs the survival of chronic lymphocytic leukemic cells through STAT3 phosphorylation: a potential role of mesenchymal cells in the disease.

    PubMed

    Giannoni, Paolo; Scaglione, Silvia; Quarto, Rodolfo; Narcisi, Roberto; Parodi, Manuela; Balleari, Enrico; Barbieri, Federica; Pattarozzi, Alessandra; Florio, Tullio; Ferrini, Silvano; Corte, Giorgio; de Totero, Daniela

    2011-07-01

    Chronic lymphocytic leukemia cells are characterized by an apparent longevity in vivo which is lost when they are cultured in vitro. Cellular interactions and factors provided by the microenvironment appear essential to cell survival and may protect leukemic cells from the cytotoxicity of conventional therapies. Understanding the cross-talk between leukemic cells and stroma is of interest for identifying signals supporting disease progression and for developing novel therapeutic strategies. Different cell types, sharing a common mesenchymal origin and representative of various bone marrow components, were used to challenge the viability of leukemic cells in co-cultures and in contact-free culture systems. Using a bioinformatic approach we searched for genes shared by lineages prolonging leukemic cell survival and further analyzed their biological role in signal transduction experiments. Human bone marrow stromal cells, fibroblasts, trabecular bone-derived cells and an osteoblast-like cell line strongly enhanced survival of leukemic cells, while endothelial cells and chondrocytes did not. Gene expression profile analysis indicated two soluble factors, hepatocyte growth factor and CXCL12, as potentially involved. We demonstrated that hepatocyte growth factor and CXCL12 are produced only by mesenchymal lineages that sustain the survival of leukemic cells. Indeed chronic lymphocytic leukemic cells express a functional hepatocyte growth factor receptor (c-MET) and hepatocyte growth factor enhanced the viability of these cells through STAT3 phosphorylation, which was blocked by a c-MET tyrosine kinase inhibitor. The role of hepatocyte growth factor was confirmed by its short interfering RNA-mediated knock-down in mesenchymal cells. The finding that hepatocyte growth factor prolongs the survival of chronic lymphocytic leukemic cells is novel and we suggest that the interaction between hepatocyte growth factor-producing mesenchymal and neoplastic cells contributes to

  20. An interaction between hepatocyte growth factor and its receptor (c-MET) prolongs the survival of chronic lymphocytic leukemic cells through STAT3 phosphorylation: a potential role of mesenchymal cells in the disease

    PubMed Central

    Giannoni, Paolo; Scaglione, Silvia; Quarto, Rodolfo; Narcisi, Roberto; Parodi, Manuela; Balleari, Enrico; Barbieri, Federica; Pattarozzi, Alessandra; Florio, Tullio; Ferrini, Silvano; Corte, Giorgio; de Totero, Daniela

    2011-01-01

    Background Chronic lymphocytic leukemia cells are characterized by an apparent longevity in vivo which is lost when they are cultured in vitro. Cellular interactions and factors provided by the microenvironment appear essential to cell survival and may protect leukemic cells from the cytotoxicity of conventional therapies. Understanding the cross-talk between leukemic cells and stroma is of interest for identifying signals supporting disease progression and for developing novel therapeutic strategies. Design and Methods Different cell types, sharing a common mesenchymal origin and representative of various bone marrow components, were used to challenge the viability of leukemic cells in co-cultures and in contact-free culture systems. Using a bioinformatic approach we searched for genes shared by lineages prolonging leukemic cell survival and further analyzed their biological role in signal transduction experiments. Results Human bone marrow stromal cells, fibroblasts, trabecular bone-derived cells and an osteoblast-like cell line strongly enhanced survival of leukemic cells, while endothelial cells and chondrocytes did not. Gene expression profile analysis indicated two soluble factors, hepatocyte growth factor and CXCL12, as potentially involved. We demonstrated that hepatocyte growth factor and CXCL12 are produced only by mesenchymal lineages that sustain the survival of leukemic cells. Indeed chronic lymphocytic leukemic cells express a functional hepatocyte growth factor receptor (c-MET) and hepatocyte growth factor enhanced the viability of these cells through STAT3 phosphorylation, which was blocked by a c-MET tyrosine kinase inhibitor. The role of hepatocyte growth factor was confirmed by its short interfering RNA-mediated knock-down in mesenchymal cells. Conclusions The finding that hepatocyte growth factor prolongs the survival of chronic lymphocytic leukemic cells is novel and we suggest that the interaction between hepatocyte growth factor

  1. Transforming growth factor (TGF. beta. ) decreases the proliferation of human bone marrow fibroblasts by inhibiting the platelet-derived growth factor (PDGF) binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryckaert, M.C.; Tobelem, G.; Lindroth, M.

    1988-12-01

    Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF{beta} were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classesmore » of sites were detected by Scatchard analysis. The stimulation of DNA synthesis of PDGF was quantified by ({sup 3}H)thymidine incorporation. The results suggested that PDGF and TGF{beta} could modulate the growth of bone marrow fibroblasts.« less

  2. Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briquez, Priscilla S.; Hubbell, Jeffrey A.; Martino, Mikaël M.

    2015-08-01

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  3. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  4. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling.

    PubMed

    Izutsu, K; Kurokawa, M; Imai, Y; Maki, K; Mitani, K; Hirai, H

    2001-05-01

    Evi-1 is a zinc finger nuclear protein whose inappropriate expression leads to leukemic transformation of hematopoietic cells in mice and humans. This was previously shown to block the antiproliferative effect of transforming growth factor beta (TGF-beta). Evi-1 represses TGF-beta signaling by direct interaction with Smad3 through its first zinc finger motif. Here, it is demonstrated that Evi-1 represses Smad-induced transcription by recruiting C-terminal binding protein (CtBP) as a corepressor. Evi-1 associates with CtBP1 through one of the consensus binding motifs, and this association is required for efficient inhibition of TGF-beta signaling. A specific inhibitor for histone deacetylase (HDAc) alleviates Evi-1-mediated repression of TGF-beta signaling, suggesting that HDAc is involved in the transcriptional repression by Evi-1. This identifies a novel function of Evi-1 as a member of corepressor complexes and suggests that aberrant recruitment of corepressors is one of the mechanisms for Evi-1-induced leukemogenesis.

  5. Factors That Influence Language Growth.

    ERIC Educational Resources Information Center

    McCarthy, Dorothea, Ed.; And Others

    This booklet contains four articles that discuss factors influencing language growth. The first, "The Child's Equipment for Language Growth" by Charlotte Wells, examines what the child needs for language learning, how the child uses his equipment for language growth, and what school factors facilitate the child's use of his equipment for language…

  6. Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor.

    PubMed

    Eguchi, Daiki; Ikenaga, Naoki; Ohuchida, Kenoki; Kozono, Shingo; Cui, Lin; Fujiwara, Kenji; Fujino, Minoru; Ohtsuka, Takao; Mizumoto, Kazuhiro; Tanaka, Masao

    2013-05-01

    Pancreatic cancer (PC), a hypovascular tumor, thrives under hypoxic conditions. Pancreatic stellate cells (PSCs) promote PC progression by secreting soluble factors, but their functions in hypoxia are poorly understood. This study aimed to clarify the effects of hypoxic conditions on the interaction between PC cells and PSCs. We isolated human PSCs from fresh pancreatic ductal adenocarcinomas and analyzed functional differences in PSCs between normoxia (21% O2) and hypoxia (1% O2), including expression of various factors related to tumor-stromal interactions. We particularly analyzed effects on PC invasiveness of an overexpressed molecule-connective tissue growth factor (CTGF)-in PSCs under hypoxic conditions, using RNA interference techniques. Conditioned media from hypoxic PSCs enhanced PC cell invasiveness more intensely than that from normoxic PSCs (P < 0.01). When co-cultured with PSCs, PC cell invasion was more enhanced under hypoxia than under normoxia (P < 0.05). Among various soluble factors, which were related to invasiveness, CTGF was one of the overexpressed molecules in hypoxic PSCs. A higher level of CTGF expression was also found in supernatant of hypoxic PSCs than in supernatant of normoxic PSCs. PC cell invasiveness was reduced by CTGF knockdown in hypoxic PSCs co-cultured with PC cells (P < 0.05). Hypoxia induces PSCs' secretion of CTGF, leading to enhancement of PC invasiveness. CTGF derived from hypoxia-stimulated PSCs may be a new therapeutic target for pancreatic cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Multiple Interacting Risk Factors: On Methods for Allocating Risk Factor Interactions.

    PubMed

    Price, Bertram; MacNicoll, Michael

    2015-05-01

    A persistent problem in health risk analysis where it is known that a disease may occur as a consequence of multiple risk factors with interactions is allocating the total risk of the disease among the individual risk factors. This problem, referred to here as risk apportionment, arises in various venues, including: (i) public health management, (ii) government programs for compensating injured individuals, and (iii) litigation. Two methods have been described in the risk analysis and epidemiology literature for allocating total risk among individual risk factors. One method uses weights to allocate interactions among the individual risk factors. The other method is based on risk accounting axioms and finding an optimal and unique allocation that satisfies the axioms using a procedure borrowed from game theory. Where relative risk or attributable risk is the risk measure, we find that the game-theory-determined allocation is the same as the allocation where risk factor interactions are apportioned to individual risk factors using equal weights. Therefore, the apportionment problem becomes one of selecting a meaningful set of weights for allocating interactions among the individual risk factors. Equal weights and weights proportional to the risks of the individual risk factors are discussed. © 2015 Society for Risk Analysis.

  8. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    PubMed

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  9. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  10. Growth factors in porcine full and partial thickness burn repair. Differing targets and effects of keratinocyte growth factor, platelet-derived growth factor-BB, epidermal growth factor, and neu differentiation factor.

    PubMed Central

    Danilenko, D. M.; Ring, B. D.; Tarpley, J. E.; Morris, B.; Van, G. Y.; Morawiecki, A.; Callahan, W.; Goldenberg, M.; Hershenson, S.; Pierce, G. F.

    1995-01-01

    The topical application of recombinant growth factors such as epidermal growth factor, platelet-derived growth factor-BB homodimer (rPDGF-BB), keratinocyte growth factor (rKGF), and neu differentiation factor has resulted in significant acceleration of healing in several animal models of wound repair. In this study, we established highly reproducible and quantifiable full and deep partial thickness porcine burn models in which burns were escharectomized 4 or 5 days postburn and covered with an occlusive dressing to replicate the standard treatment in human burn patients. We then applied these growth factors to assess their efficacy on several parameters of wound repair: extracellular matrix and granulation tissue production, percent reepithelialization, and new epithelial area. In full thickness burns, only rPDGF-BB and the combination of rPDGF-BB and rKGF induced significant changes in burn repair. rPDGF-BB induced marked extracellular matrix and granulation tissue production (P = 0.013) such that the burn defect was filled within several days of escharectomy, but had no effect on new epithelial area or reepithelialization. The combination of rPDGF-BB and rKGF in full thickness burns resulted in a highly significant increase in extracellular matrix and granulation tissue area (P = 0.0009) and a significant increase in new epithelial area (P = 0.007), but had no effect on reepithelialization. In deep partial thickness burns, rKGF induced the most consistent changes. Daily application of rKGF induced a highly significant increase in new epithelial area (P < 0.0001) but induced only a modest increase in reepithelialization (83.7% rKGF-treated versus 70.2% control; P = 0.016) 12 days postburn. rKGF also doubled the number of fully reepithelialized burns (P = 0.02) at 13 days postburn, at least partially because of marked stimulation of both epidermal and follicular proliferation as assessed by proliferating cell nuclear antigen expression. In situ hybridization for

  11. Regulation of Transforming Growth Factor β1, Platelet-Derived Growth Factor, and Basic Fibroblast Growth Factor by Silicone Gel Sheeting in Early-Stage Scarring.

    PubMed

    Choi, Jaehoon; Lee, Eun Hee; Park, Sang Woo; Chang, Hak

    2015-01-01

    Hypertrophic scars and keloids are associated with abnormal levels of growth factors. Silicone gel sheets are effective in treating and preventing hypertrophic scars and keloids. There has been no report on the change in growth factors in the scar tissue following the use of silicone gel sheeting for scar prevention. A prospective controlled trial was performed to evaluate whether growth factors are altered by the application of a silicone gel sheet on a fresh surgical scar. Four of seven enrolled patients completed the study. Transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) were investigated immunohistochemically in biopsies taken from five scars at 4 months following surgery. In both the epidermis and the dermis, the expression of TGF-β1 (P=0.042 and P=0.042) and PDGF (P=0.043 and P=0.042) was significantly lower in the case of silicone gel sheet-treated scars than in the case of untreated scars. The expression of bFGF in the dermis was significantly higher in the case of silicone gel sheet-treated scars than in the case of untreated scars (P=0.042), but in the epidermis, the expression of bFGF showed no significant difference between the groups (P=0.655). The levels of TGF-β1, PDGF, and bFGF are altered by the silicone gel sheet treatment, which might be one of the mechanisms of action in scar prevention.

  12. Growth factors, nutrient signaling, and cardiovascular aging.

    PubMed

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D

    2012-04-13

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the majority of the organisms studied. In particular, the enzymes activated by growth hormone, insulin, and insulin-like growth factor-1 in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction, which reduces the level of insulin-like growth factor-1 and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases, and deficiencies in growth hormone signaling and insulin-like growth factor-1 are strongly associated with protection from cancer and diabetes in both mice and humans; however, their role in cardiac function and cardiovascular diseases is controversial. Here, we review the link between growth factors, cardiac function, and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans.

  13. A high ratio of insulin-like growth factor II/insulin-like growth factor binding protein 2 messenger RNA as a marker for anaplasia in meningiomas.

    PubMed

    Nordqvist, A C; Peyrard, M; Pettersson, H; Mathiesen, T; Collins, V P; Dumanski, J P; Schalling, M

    1997-07-01

    Insulin-like growth factors (IGFs) I and II have been implicated as autocrine or paracrine growth promoters. These growth factors bind to specific receptors, and the response is modulated by interaction with IGF-binding proteins (IGFBPs). We observed a strong correlation between anaplastic/atypical histopathology and a high IGF-II/IGFBP-2 mRNA ratio in a set of 68 sporadic meningiomas. A strong correlation was also found between clinical outcome and IGF-II/IGFBP-2 ratio, whereas previously used histochemical markers were less correlated to outcome. We suggest that a high IGF-II/IGFBP-2 mRNA ratio may be a sign of biologically aggressive behavior in meningiomas that can influence treatment strategies. We propose that low IGFBP-2 levels in combination with increased levels of IGF-II would result in more free IGF-II and consequently greater stimulation of proliferation.

  14. Assessing the Factors of Regional Growth Decline of Sugar Maple

    NASA Astrophysics Data System (ADS)

    Bishop, D. A.; Beier, C. M.; Pederson, N.; Lawrence, G. B.; Stella, J. C.; Sullivan, T. J.

    2014-12-01

    Sugar maple (Acer saccharum Marsh) is among the most ecologically, economically and culturally important trees in North America, but has experienced a decline disease across much of its range. We investigated the climatic and edaphic factors associated with A. saccharum growth in the Adirondack Mountains (USA) using a well-replicated tree-ring network incorporating a range of soil fertility (base cation availability). We found that nearly 3 in 4 A. saccharum trees exhibited declining growth rates during the last several decades, regardless of tree age or size. Although diameter growth was consistently higher on base-rich soils, the negative trends in growth were largely consistent across the soil chemistry gradient. Sensitivity of sugar maple growth to climatic variability was overall weaker than expected, but were also non-stationary during the 20th century. We observed increasingly positive responses to late-winter precipitation, increasingly negative responses to growing season temperatures, and strong positive responses to moisture availability during the 1960s drought that became much weaker during the recent pluvial. Further study is needed of these factors and their interactions as potential mechanisms for sugar maple growth decline.

  15. Growth/differentiation factor-11: an evolutionary conserved growth factor in vertebrates.

    PubMed

    Funkenstein, Bruria; Olekh, Elena

    2010-11-01

    Growth and differentiation factor-11 (GDF-11) is a member of the transforming growth factor-β superfamily and is thought to be derived together with myostatin (known also as GDF-8) from an ancestral gene. In the present study, we report the isolation and characterization of GDF-11 homolog from a marine teleost, the gilthead sea bream Sparus aurata, and show that this growth factor is highly conserved throughout vertebrates. Using bioinformatics, we identified GDF-11 in Tetraodon, Takifugu, medaka, and stickleback and found that they are highly conserved at the amino acid sequence as well as gene organization. Moreover, we found conservation of syntenic relationships among vertebrates in the GDF-11 locus. Transcripts for GDF-11 can be found in eggs and early embryos, albeit at low levels, while in post-hatching larvae expression levels are high and decreases as development progresses, suggesting that GDF-11 might have a role during early development of fish as found in tetrapods and zebrafish. Finally, GDF-11 is expressed in various tissues in the adult fish including muscle, brain, and eye.

  16. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    PubMed

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Transcription factor EGR-1 suppresses the growth and transformation of human HT-1080 fibrosarcoma cells by induction of transforming growth factor beta 1.

    PubMed Central

    Liu, C; Adamson, E; Mercola, D

    1996-01-01

    The early growth response 1 (EGR-1) gene product is a transcription factor with role in differentiation and growth. We have previously shown that expression of exogenous EGR-1 in various human tumor cells unexpectedly and markedly reduces growth and tumorigenicity and, conversely, that suppression of endogenous Egr-1 expression by antisense RNA eliminates protein expression, enhances growth, and promotes phenotypic transformation. However, the mechanism of these effects remained unknown. The promoter of human transforming growth factor beta 1 (TGF-beta 1) contains two GC-rich EGR-1 binding sites. We show that expression of EGR-1 in human HT-1080 fibrosarcoma cells uses increased secretion of biologically active TGF-beta 1 in direct proportion (rPearson = 0.96) to the amount of EGR-1 expressed and addition of recombinant human TGF-beta 1 is strongly growth-suppressive for these cells. Addition of monoclonal anti-TGF-beta 1 antibodies to EGR-1-expressing HT-1080 cells completely reverses the growth inhibitory effects of EGR-1. Reporter constructs bearing the EGR-1 binding segment of the TGF-beta 1 promoter was activated 4- to 6-fold relative to a control reporter in either HT-1080 cells that stably expressed or parental cells cotransfected with an EGR-1 expression vector. Expression of delta EGR-1, a mutant that cannot interact with the corepressors, nerve growth factor-activated factor binding proteins NAB1 and NAB2, due to deletion of the repressor domain, exhibited enhanced transactivation of 2- to 3.5-fold over that of wild-type EGR-1 showing that the reporter construct reflected the appropriate in vivo regulatory context. The EGR-1-stimulated transactivation was inhibited by expression of the Wilms tumor suppressor, a known specific DNA-binding competitor. These results indicate that EGR-1 suppresses growth of human HT-1080 fibrosarcoma cells by induction of TGF-beta 1. Images Fig. 1 Fig. 5 PMID:8876223

  18. Insulin-like growth factor-I, physical activity, and control of cellular anabolism.

    PubMed

    Nindl, Bradley C

    2010-01-01

    The underlying mechanisms responsible for mediating the beneficial outcomes of exercise undoubtedly are many, but the insulin-like growth factor-I (IGF-I) system is emerging as an important and central hormonal axis that plays a significant role concerning cellular anabolism. This introductory article summarizes the intent and the content for papers presented as part of a 2008 American College of Sports Medicine national symposium entitled "Insulin-like Growth Factor-I, Physical Activity, and Control of Cellular Anabolism." The individual authors and their papers are as follows: Jan Frystyk authoring "The relationship between exercise and the growth hormone/insulin-like growth factor-I axis," Greg Adams authoring "IGF-I signaling in skeletal muscle and the potential for cytokine interactions," and Brad Nindl authoring "Insulin-like growth factor-I as a biomarker of health, fitness, and training status." These papers focus on 1) different assay methodologies for IGF-I within the paradigm of exercise studies, 2) research demonstrating that intracellular signaling components associated with several proinflammatory cytokines have the potential to interact with anabolic signaling processes in skeletal muscle, and 3) an overview of IGF-I as a biomarker related to exercise training, muscle and bone remodeling, body composition, cognition, and cancer. When summed in total, the contribution that these papers will make will undoubtedly involve bringing attention to the vast regulatory complexity of the IGF-I system and will hopefully convince the reader that the IGF-I system warrants further detailed scientific inquiry to resolve many unanswered questions and paradoxical experimental findings. The IGF-I system remains one of the most intriguing and captivating marvels of human physiology that seems central in mediating numerous adaptations from physical activity.

  19. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE PAGES

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; ...

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  20. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  1. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  2. Insulin-like growth factor I (IGF-1) Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    PubMed

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  3. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.

    PubMed

    Zanou, Nadège; Gailly, Philippe

    2013-11-01

    Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.

  4. A combined model of human erythropoiesis and granulopoiesis under growth factor and chemotherapy treatment

    PubMed Central

    2014-01-01

    Background Haematotoxicity of conventional chemotherapies often results in delays of treatment or reduction of chemotherapy dose. To ameliorate these side-effects, patients are routinely treated with blood transfusions or haematopoietic growth factors such as erythropoietin (EPO) or granulocyte colony-stimulating factor (G-CSF). For the latter ones, pharmaceutical derivatives are available, which differ in absorption kinetics, pharmacokinetic and -dynamic properties. Due to the complex interaction of cytotoxic effects of chemotherapy and the stimulating effects of different growth factor derivatives, optimal treatment is a non-trivial task. In the past, we developed mathematical models of thrombopoiesis, granulopoiesis and erythropoiesis under chemotherapy and growth-factor applications which can be used to perform clinically relevant predictions regarding the feasibility of chemotherapy schedules and cytopenia prophylaxis with haematopoietic growth factors. However, interactions of lineages and growth-factors were ignored so far. Results To close this gap, we constructed a hybrid model of human granulopoiesis and erythropoiesis under conventional chemotherapy, G-CSF and EPO applications. This was achieved by combining our single lineage models of human erythropoiesis and granulopoiesis with a common stem cell model. G-CSF effects on erythropoiesis were also implemented. Pharmacodynamic models are based on ordinary differential equations describing proliferation and maturation of haematopoietic cells. The system is regulated by feedback loops partly mediated by endogenous and exogenous EPO and G-CSF. Chemotherapy is modelled by depletion of cells. Unknown model parameters were determined by fitting the model predictions to time series data of blood counts and cytokine profiles. Data were extracted from literature or received from cooperating clinical study groups. Our model explains dynamics of mature blood cells and cytokines after growth-factor applications in

  5. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  6. Research on growth factors in periodontology.

    PubMed

    Smith, Patricio C; Martínez, Constanza; Cáceres, Mónica; Martínez, Jorge

    2015-02-01

    Growth factors play critical roles in periodontal repair through the regulation of cell behavior. Many of the cell responses regulated by these proteins include cell adhesion, migration, proliferation and differentiation. Periodontal regeneration involves an organized response of different cells, tissues and growth factors implicated in the coordination of these events. However, periodontal tissue reconstruction is an extremely difficult task. Multiple studies have been performed to understand the specific role of growth factors in periodontal wound healing. In the present review we analyze the evidence that supports the roles of growth factors in periodontal wound healing and regeneration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  8. Nuclear actions of insulin-like growth factor binding protein-3.

    PubMed

    Baxter, Robert C

    2015-09-10

    In addition to its actions outside the cell, cellular uptake and nuclear import of insulin-like growth factor binding protein-3 (IGFBP-3) has been recognized for almost two decades, but knowledge of its nuclear actions has been slow to emerge. IGFBP-3 has a functional nuclear localization signal and interacts with the nuclear transport protein importin-β. Within the nucleus IGFBP-3 appears to have a role in transcriptional regulation. It can bind to the nuclear receptor, retinoid X receptor-α and several of its dimerization partners, including retinoic acid receptor, vitamin D receptor (VDR), and peroxisome proliferator-activated receptor-γ (PPARγ). These interactions modulate the functions of these receptors, for example inhibiting VDR-dependent transcription in osteoblasts and PPARγ-dependent transcription in adipocytes. Nuclear IGFBP-3 can be detected by immunohistochemistry in cancer and other tissues, and its presence in the nucleus has been shown in many cell culture studies to be necessary for its pro-apoptotic effect, which may also involve interaction with the nuclear receptor Nur77, and export from the nucleus. IGFBP-3 is p53-inducible and in response to DNA damage, forms a complex with the epidermal growth factor receptor (EGFR), translocating to the nucleus to interact with DNA-dependent protein kinase. Inhibition of EGFR kinase activity or downregulation of IGFBP-3 can inhibit DNA double strand-break repair by nonhomologous end joining. IGFBP-3 thus has the ability to influence many cell functions through its interactions with intranuclear pathways, but the importance of these interactions in vivo, and their potential to be targeted for therapeutic benefit, require further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Nck-2, a Novel Src Homology2/3-containing Adaptor Protein That Interacts with the LIM-only Protein PINCH and Components of Growth Factor Receptor Kinase-signaling Pathways

    PubMed Central

    Tu, Yizeng; Li, Fugang; Wu, Chuanyue

    1998-01-01

    Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways. PMID:9843575

  10. Connective Tissue Growth Factor (CTGF) as a Regulator of Lactogenic Differentiation

    DTIC Science & Technology

    2009-06-09

    1 1.62 Myeloid leukemia factor 1, Mlf1 1.57 ADAMTS-l4 1.55 E2F transcription factor, E2F2 1.44 Tensin 4 -1.5 BCL2/adenovirus E1B interacting... Mlf1 1.57 ADAMTS-l4 1.55 Ras homolog gene family, member B, RhoB 1.48 Cell Differentiation-associated Wingless-type MMTV integration site family...B, relB 1.92 Myeloid leukemia factor 1, Mlf1 1.57 Growth Factor, Catalytic Activity-associated Dual specificity protein phosphatase 8, Dusp8

  11. Control of leptin by metabolic state and its regulatory interactions with pituitary growth hormone and hepatic growth hormone receptors and insulin like growth factors in the tilapia (Oreochromis mossambicus).

    PubMed

    Douros, Jonathan D; Baltzegar, David A; Mankiewicz, Jamie; Taylor, Jordan; Yamaguchi, Yoko; Lerner, Darren T; Seale, Andre P; Grau, E Gordon; Breves, Jason P; Borski, Russell J

    2017-01-01

    Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings

  12. Cross-scale interactions affect tree growth and intrinsic water ...

    EPA Pesticide Factsheets

    1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (13C) to investigate the impacts of thinning across a range of progressively finer spatial scales: site, stand, hillslope position, and neighborhood position. In particular, we focused on the influence of thinning beyond the boundaries of thinned stands to include impacts on downslope and neighboring stands across sites varying in soil moisture. 3. Trees at the wet site responded to thinning with increased growth when compared with trees at the dry site. Additionally, trees in thinned stands at the dry site responded with increased iWUE while trees in thinned stands at the wet site showed no difference in iWUE compared to unthinned stands. 4. We hypothesized that water is not the primary limiting factor for growth at our sites, but that thinning released other resources, such as growing space or nutrients to drive the growth response. At progressively finer spatial scales we found that the responses of trees was not driven by hillslope location (i.e., downslope of thinning) but to changes in local neighborhood tree density. 5. The results of this study demonstrated that water can be viewed as an “agent” that allows us to investigate cross-scale interactions as it links coarse to finer spatial scales and vice ver

  13. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  14. A virally inactivated functional growth factor preparation from human platelet concentrates.

    PubMed

    Su, C-Y; Kuo, Y P; Lin, Y C; Huang, C-T; Tseng, Y H; Burnouf, T

    2009-08-01

    Human platelet growth factors (HPGF) are essential for tissue regeneration and may replace fetal bovine serum (FBS) in cell therapy. No method for the manufacture of standardized virally inactivated HPGF has been developed yet. Platelet concentrates (PC) were subjected to solvent/detergent (S/D) treatment (1% TnBP/1% Triton X-45), oil extraction, hydrophobic interaction chromatography and sterile filtration. Platelet-derived growth factor (PDGF)-AB, -BB and -AA, transforming growth factor-beta1 (TGF-beta1), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and vascular endothelium growth factor (VEGF) were measured by ELISA. Composition in proteins and lipids was determined, protein profiles were obtained by SDS-PAGE, and TnBP and Triton X-45 were assessed by gas chromatography and high-performance liquid chromatography, respectively. Cell growth promoting activity of HPGF was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay using human embryonic kidney (HEK293A) fibroblast and Statens Seruminstitute rabbit corneal (SIRC) epithelial cell lines. The GF preparation contained a mean of 16.66, 2.04, 1.53, 72.19, 0.33, 48.59 and 0.44 ng/ml of PDGF-AB, -BB, -AA, TGF-beta1, EGF, IGF-1 and VEGF, respectively. The protein profile was typical of platelet releasates and had less than 2 p.p.m. of residual S/D agents. MTS assay of HEK293A and SIRC cultures showed that the GF preparation at 10% and 0.1% (v/v), respectively, could successfully replace 10% FBS for cell proliferation. Cell-stimulating activity of HPGF on HEK293A was over twice that of PC releasates. STANDARDIZED and functional virally inactivated HPGF can be prepared from human PC for possible applications in cell therapy and regenerative medicine.

  15. The Influence of Platelet-Derived Growth Factor and Fibroblast Growth Factor 2 on Oligodendrocyte Development and Remyelination

    DTIC Science & Technology

    2004-01-01

    OLIGODENDROCYTE DEVELOPMENT AND REMYELINATION 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Z39-18 ABSTRACT Title: THE INFLUENCE OF PLATELET-DERIVED GROWTH FACTOR AND FIBROBLAST GROWTH FACTOR 2 ON OLIGODENDROCYTE DEVELOPMENT AND...GROWTH FACTOR 2 ON OLIGODENDROCYTE DEVELOPMENT AND REMYELINATION by Joshua C. Murtie Thesis/dissertation submitted to the

  16. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.

  17. Insulin-Like Growth Factor I (IGF-1) Ec/Mechano Growth Factor – A Splice Variant of IGF-1 within the Growth Plate

    PubMed Central

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation. PMID:24146828

  18. The length of the linker between the epidermal growth factor-like domains in factor VIIa is critical for a productive interaction with tissue factor.

    PubMed

    Persson, Egon; Madsen, Jesper J; Olsen, Ole H

    2014-12-01

    Formation of the factor VIIa (FVIIa)-tissue factor (TF) complex triggers the blood coagulation cascade. Using a structure-based rationale, we investigated how the length of the linker region between the two epidermal growth factor (EGF)-like domains in FVIIa influences TF binding and the allosteric activity enhancement, as well as the interplay between the γ-carboxyglutamic acid (Gla)-containing and protease domains. Removal of two residues from the native linker was compatible with normal cofactor binding and accompanying stimulation of the enzymatic activity, as was extension by two (Gly-Ser) residues. In sharp contrast, truncation by three or four residues abolished the TF-mediated stabilization of the active conformation of FVIIa and abrogated TF-induced activity enhancement. In addition, FVIIa variants with short linkers associated 80-fold slower with soluble TF (sTF) as compared with wild-type FVIIa, resulting in a corresponding increase in the equilibrium dissociation constant. Molecular modeling suggested that the shortest FVIIa variants would have to be forced into a tense and energetically unfavorable conformation in order to be able to interact productively with TF, explaining our experimental observations. We also found a correlation between linker length and the residual intrinsic enzymatic activity of Ca(2+)-free FVIIa; stepwise truncation resulting in gradually higher activity with des(83-86)-FVIIa reaching the level of Gla-domainless FVIIa. The linker appears to determine the average distance between the negatively charged Gla domain and a structural element in the protease domain, presumably of opposite charge, and proximity has a negative impact on apo-FVIIa activity. © 2014 The Protein Society.

  19. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    PubMed

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  20. A comprehensive pathway map of epidermal growth factor receptor signaling

    PubMed Central

    Oda, Kanae; Matsuoka, Yukiko; Funahashi, Akira; Kitano, Hiroaki

    2005-01-01

    The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulate growth, survival, proliferation, and differentiation in mammalian cells. Reflecting this importance, it is one of the best-investigated signaling systems, both experimentally and computationally, and several computational models have been developed for dynamic analysis. A map of molecular interactions of the EGFR signaling system is a valuable resource for research in this area. In this paper, we present a comprehensive pathway map of EGFR signaling and other related pathways. The map reveals that the overall architecture of the pathway is a bow-tie (or hourglass) structure with several feedback loops. The map is created using CellDesigner software that enables us to graphically represent interactions using a well-defined and consistent graphical notation, and to store it in Systems Biology Markup Language (SBML). PMID:16729045

  1. The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments.

    PubMed

    Hagerty, Paul; Lee, Ann; Calve, Sarah; Lee, Cassandra A; Vidal, Martin; Baar, Keith

    2012-09-01

    Growth factors play a central role in the development and remodelling of musculoskeletal tissues. To determine which growth factors optimized in vitro ligament formation and mechanics, a Box-Behnken designed array of varying concentrations of growth factors and ascorbic acid were applied to engineered ligaments and the collagen content and mechanics of the grafts were determined. Increasing the amount of transforming growth factor (TGF) β1 and insulin-like growth factor (IGF)-1 led to an additive effect on ligament collagen and maximal tensile load (MTL). In contrast, epidermal growth factor (EGF) had a negative effect on both collagen content and MTL. The predicted optimal growth media (50 μg/ml TGFβ, IGF-1, and GDF-7 and 200 μM ascorbic acid) was then validated in two separate trials: showing a 5.7-fold greater MTL and 5.2-fold more collagen than a minimal media. Notably, the effect of the maximized growth media was scalable such that larger constructs developed the same material properties, but larger MTL. These results show that optimizing the interactions between growth factors and engineered ligament volume results in an engineered ligament of clinically relevant function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  3. Endosomal Interactions during Root Hair Growth.

    PubMed

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2015-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth.

  4. The perlecan-interacting growth factor progranulin regulates ubiquitination, sorting, and lysosomal degradation of sortilin.

    PubMed

    Tanimoto, Ryuta; Palladino, Chiara; Xu, Shi-Qiong; Buraschi, Simone; Neill, Thomas; Gomella, Leonard G; Peiper, Stephen C; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea

    2017-12-01

    Despite extensive clinical and experimental studies over the past decades, the pathogenesis and progression to the castration-resistant stage of prostate cancer remains largely unknown. Progranulin, a secreted growth factor, strongly binds the heparin-sulfate proteoglycan perlecan, and counteracts its biological activity. We established that progranulin acts as an autocrine growth factor and promotes prostate cancer cell motility, invasion, and anchorage-independent growth. Progranulin was overexpressed in prostate cancer tissues vis-à-vis non-neoplastic tissues supporting the hypothesis that progranulin may play a key role in prostate cancer progression. However, progranulin's mode of action is not well understood and proteins regulating progranulin signaling have not been identified. Sortilin, a single-pass type I transmembrane protein of the Vps10 family, binds progranulin in neurons and targets progranulin for lysosomal degradation. Significantly, in DU145 and PC3 cells, we detected very low levels of sortilin associated with high levels of progranulin production and enhanced motility. Restoring sortilin expression decreased progranulin levels, inhibited motility and anchorage-independent growth and destabilized Akt. These results demonstrated a critical role for sortilin in regulating progranulin and suggest that sortilin loss may contribute to prostate cancer progression. Here, we provide the novel observation that progranulin downregulated sortilin protein levels independent of transcription. Progranulin induced sortilin ubiquitination, internalization via clathrin-dependent endocytosis and sorting into early endosomes for lysosomal degradation. Collectively, these results constitute a regulatory feed-back mechanism whereby sortilin downregulation ensures sustained progranulin-mediated oncogenesis. Copyright © 2017. Published by Elsevier B.V.

  5. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins

    PubMed Central

    Sitar, Tomasz; Popowicz, Grzegorz M.; Siwanowicz, Igor; Huber, Robert; Holak, Tad A.

    2006-01-01

    Insulin-like growth factor-binding proteins (IGFBPs) control bioavailability, activity, and distribution of insulin-like growth factor (IGF)1 and -2 through high-affinity IGFBP/IGF complexes. IGF-binding sites are found on N- and C-terminal fragments of IGFBPs, the two conserved domains of IGFBPs. The relative contributions of these domains to IGFBP/IGF complexation has been difficult to analyze, in part, because of the lack of appropriate three-dimensional structures. To analyze the effects of N- and C-terminal domain interactions, we determined several x-ray structures: first, of a ternary complex of N- and C-terminal domain fragments of IGFBP4 and IGF1 and second, of a “hybrid” ternary complex using the C-terminal domain fragment of IGFBP1 instead of IGFBP4. We also solved the binary complex of the N-terminal domains of IGFBP4 and IGF1, again to analyze C- and N-terminal domain interactions by comparison with the ternary complexes. The structures reveal the mechanisms of IGF signaling regulation via IGFBP binding. This finding supports research into the design of IGFBP variants as therapeutic IGF inhibitors for diseases of IGF disregulation. In IGFBP4, residues 1–38 form a rigid disulphide bond ladder-like structure, and the first five N-terminal residues bind to IGF and partially mask IGF residues responsible for the type 1 IGF receptor binding. A high-affinity IGF1-binding site is located in a globular structure between residues 39 and 82. Although the C-terminal domains do not form stable binary complexes with either IGF1 or the N-terminal domain of IGFBP4, in the ternary complex, the C-terminal domain contacts both and contributes to blocking of the IGF1 receptor-binding region of IGF1. PMID:16924115

  6. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less

  7. Inflammatory Mediators and Angiogenic Factors in Choroidal Neovascularization: Pathogenetic Interactions and Therapeutic Implications

    PubMed Central

    Campa, Claudio; Costagliola, Ciro; Incorvaia, Carlo; Sheridan, Carl; Semeraro, Francesco; De Nadai, Katia; Sebastiani, Adolfo; Parmeggiani, Francesco

    2010-01-01

    Choroidal neovascularization (CNV) is a common and severe complication in heterogeneous diseases affecting the posterior segment of the eye, the most frequent being represented by age-related macular degeneration. Although the term may suggest just a vascular pathological condition, CNV is more properly definable as an aberrant tissue invasion of endothelial and inflammatory cells, in which both angiogenesis and inflammation are involved. Experimental and clinical evidences show that vascular endothelial growth factor is a key signal in promoting angiogenesis. However, many other molecules, distinctive of the inflammatory response, act as neovascular activators in CNV. These include fibroblast growth factor, transforming growth factor, tumor necrosis factor, interleukins, and complement. This paper reviews the role of inflammatory mediators and angiogenic factors in the development of CNV, proposing pathogenetic assumptions of mutual interaction. As an extension of this concept, new therapeutic approaches geared to have an effect on both the vascular and the extravascular components of CNV are discussed. PMID:20871825

  8. Fibroblast growth factor and cyclic AMP (cAMP) synergistically activate gene expression at a cAMP response element.

    PubMed Central

    Tan, Y; Low, K G; Boccia, C; Grossman, J; Comb, M J

    1994-01-01

    Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways. Images PMID:7935470

  9. Growth factors, nutrient signaling, and cardiovascular aging

    PubMed Central

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D.

    2012-01-01

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the great majority of the organisms studied. In particular, the enzymes activated by growth hormone (GH), insulin and insulin-like growth factor 1 (IGF-I) in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction (DR), which reduces the level of IGF-I and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases and deficiencies in GH signaling and IGF-I are strongly associated with protection from cancer and diabetes in both mice and humans, but their role in cardiac function and cardiovascular diseases is controversial. Here we review the link between growth factors, cardiac function and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans. PMID:22499903

  10. Consequences of complex environments: Temperature and energy intake interact to influence growth and metabolic rate.

    PubMed

    Stahlschmidt, Zachary R; Jodrey, Alicia D; Luoma, Rachel L

    2015-09-01

    The field of comparative physiology has a rich history of elegantly examining the effects of individual environmental factors on performance traits linked to fitness (e.g., thermal performance curves for locomotion). However, animals live in complex environments wherein multiple environmental factors co-vary. Thus, we investigated the independent and interactive effects of temperature and energy intake on the growth and metabolic rate of juvenile corn snakes (Pantherophis guttatus) in the context of shifts in complex environments. Unlike previous studies that imposed constant or fluctuating temperature regimes, we manipulated the availability of preferred thermal microclimates (control vs. relatively warm regimes) for eight weeks and allowed snakes to behaviorally thermoregulate among microclimates. By also controlling for energy intake, we demonstrate an interactive effect of temperature and energy on growth-relevant temperature shifts had no effect on snakes' growth when energy intake was low and a positive effect on growth when energy intake was high. Thus, acclimation to relatively warm thermal options can result in increased rates of growth when food is abundant in a taxon in which body size confers fitness advantages. Temperature and energy also interactively influenced metabolic rate-snakes in the warmer temperature regime exhibited reduced metabolic rate (O2 consumption rate at 25 °C and 30 °C) if they had relatively high energy intake. Although we advocate for continued investigation into the effects of complex environments on other traits, our results indicate that warming may actually benefit important life history traits in some taxa and that metabolic shifts may underlie thermal acclimation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Role of epidermal growth factor and transforming growth factor α in the developing stomach

    PubMed Central

    Kelly, E; Newell, S; Brownlee, K; Farmery, S; Cullinane, C; Reid, W; Jackson, P; Gray, S; Primrose, J; Lagopoulos, M

    1997-01-01

    AIMS—To determine whether epidermal growth factor (EGF) or the related transforming growth factor α (TGFα) may have a role in the developing human stomach; to substantiate the presence of EGF in human liquor in the non-stressed infant and whether EGF in amniotic fluid is maternally or fetally derived.
METHODS—The temporal expression and localisation of EGF, TGFα, and their receptors during fetal and neonatal life were examined in 20 fetal and five infant stomachs. Simultaneously, samples of amniotic fluid and fetal urine from 10 newborn infants were collected and assayed for EGF by radioimmunoassay.
RESULTS—EGF immunoreactivity was not noted in any of the specimens examined. In contrast, TGFα immunoreactivity was shown in mucous cells from 18 weeks of gestation onwards. EGF receptor immunoreactivity was seen on superficial mucous cells in gastric mucosa from 18 weeks of gestation onwards. The median concentration of EGF was 30 and 8.5 pg/ml in amniotic fluid and fetal urine, respectively, suggesting that EGF is not produced by the fetus.
CONCLUSIONS—This study adds weight to the hypothesis that swallowed EGF, probably produced by the amniotic membranes, and locally produced TGFα, may have a role in the growth and maturation of the human stomach.

 Keywords: epidermal growth factor; transforming growth factor α; EGF receptors; stomach PMID:9175944

  12. When environmental factors become stressors: interactive effects of vermetid gastropods and sedimentation on corals.

    PubMed

    Zill, Julie A; Gil, Michael A; Osenberg, Craig W

    2017-03-01

    Environmental stressors often interact, but most studies of multiple stressors have focused on combinations of abiotic stressors. Here we examined the potential interaction between a biotic stressor, the vermetid snail Ceraesignum maximum , and an abiotic stressor, high sedimentation, on the growth of reef-building corals. In a field experiment, we subjected juvenile massive Porites corals to four treatments: (i) neither stressor, (ii) sedimentation, (iii) vermetids or (iv) both stressors. Unexpectedly, we found no effect of either stressor in isolation, but a significant decrease in coral growth in the presence of both stressors. Additionally, seven times more sediment remained on corals in the presence (versus absence) of vermetids, likely owing to adhesion of sediments to corals via vermetid mucus. Thus, vermetid snails and high sedimentation can interact to drive deleterious effects on reef-building corals. More generally, our study illustrates that environmental factors can combine to have negative interactive effects even when individual effects are not detectable. Such 'ecological surprises' may be easily overlooked, leading to environmental degradation that cannot be anticipated through the study of isolated factors. © 2017 The Author(s).

  13. Synthetic design of growth factor sequestering extracellular matrix mimetic hydrogel for promoting in vivo bone formation.

    PubMed

    Yan, Hong Ji; Casalini, Tommaso; Hulsart-Billström, Gry; Wang, Shujiang; Oommen, Oommen P; Salvalaglio, Matteo; Larsson, Sune; Hilborn, Jöns; Varghese, Oommen P

    2018-04-01

    Synthetic scaffolds that possess an intrinsic capability to protect and sequester sensitive growth factors is a primary requisite for developing successful tissue engineering strategies. Growth factors such as recombinant human bone morphogenetic protein-2 (rhBMP-2) is highly susceptible to premature degradation and to provide a meaningful clinical outcome require high doses that can cause serious side effects. We discovered a unique strategy to stabilize and sequester rhBMP-2 by enhancing its molecular interactions with hyaluronic acid (HA), an extracellular matrix (ECM) component. We found that by tuning the initial protonation state of carboxylic acid residues of HA in a covalently crosslinked hydrogel modulate BMP-2 release at physiological pH by minimizing the electrostatic repulsion and maximizing the Van der Waals interactions. At neutral pH, BMP-2 release is primarily governed by Fickian diffusion, whereas at acidic pH both diffusion and electrostatic interactions between HA and BMP-2 become important as confirmed by molecular dynamics simulations. Our results were also validated in an in vivo rat ectopic model with rhBMP-2 loaded hydrogels, which demonstrated superior bone formation with acidic hydrogel as compared to the neutral counterpart. We believe this study provides new insight on growth factor stabilization and highlights the therapeutic potential of engineered matrices for rhBMP-2 delivery and may help to curtail the adverse side effects associated with the high dose of the growth factor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression.

    PubMed

    Baldwin, Amy; Pirisi, Lucia; Creek, Kim E

    2004-04-01

    Human papillomaviruses (HPVs) are present in virtually all cervical cancers. An important step in the development of malignant disease, including cervical cancer, involves a loss of sensitivity to transforming growth factor beta (TGF-beta). HPV type 16 (HPV16) early gene expression, including that of the E6 and E7 oncoprotein genes, is under the control of the upstream regulatory region (URR), and E6 and E7 expression in HPV16-immortalized human epithelial cells is inhibited at the transcriptional level by TGF-beta. While the URR contains a myriad of transcription factor binding sites, including seven binding sites for nuclear factor I (NFI), the specific sequences within the URR or the transcription factors responsible for TGF-beta modulation of the URR remain unknown. To identify potential transcription factors and binding sites involved in TGF-beta modulation of the URR, we performed DNase I footprint analysis on the HPV16 URR using nuclear extracts from TGF-beta-sensitive HPV16-immortalized human keratinocytes (HKc/HPV16) treated with and without TGF-beta. Differentially protected regions were found to be located around NFI binding sites. Electrophoretic mobility shift assays, using the NFI binding sites as probes, showed decreased binding upon TGF-beta treatment. This decrease in binding was not due to reduced NFI protein or NFI mRNA levels. Mutational analysis of individual and multiple NFI binding sites in the URR defined their role in TGF-beta sensitivity of the promoter. Overexpression of the NFI family members in HKc/HPV16 decreased the ability of TGF-beta to inhibit the URR. Since the oncoprotein Ski has been shown to interact with and increase the transcriptional activity of NFI and since cellular Ski levels are decreased by TGF-beta treatment, we explored the possibility that Ski may provide a link between TGF-beta signaling and NFI activity. Anti-NFI antibodies coimmunoprecipitated endogenous Ski in nuclear extracts from HKc/HPV16, confirming that NFI

  15. Epidermal growth factor-like growth factors prevent apoptosis of alcohol-exposed human placental cytotrophoblast cells.

    PubMed

    Wolff, Garen S; Chiang, Po Jen; Smith, Susan M; Romero, Roberto; Armant, D Randall

    2007-07-01

    Maternal alcohol abuse during pregnancy can produce an array of birth defects comprising fetal alcohol syndrome. A hallmark of fetal alcohol syndrome is intrauterine growth retardation, which is associated with elevated apoptosis of placental cytotrophoblast cells. Using a human first trimester cytotrophoblast cell line, we examined the relationship between exposure to ethanol and cytotrophoblast survival, as well as the ameliorating effects of epidermal growth factor (EGF)-like growth factors produced by human cytotrophoblast cells. After exposure to 0-100 mM ethanol, cell death was quantified by the TUNEL method, and expression of the nuclear proliferation marker, Ki67, was measured by immunohistochemistry. The mode of cell death was determined by assessing annexin V binding, caspase 3 activation, pyknotic nuclear morphology, reduction of TUNEL by caspase inhibition, and cellular release of lactate dehydrogenase. Ethanol significantly reduced proliferation and increased cell death approximately 2.5-fold through the apoptotic pathway within 1-2 h of exposure to 50 mM alcohol. Exposure to 25-50 mM ethanol significantly increased transforming growth factor alpha (TGFA) and heparin-binding EGF-like growth factor (HBEGF), but not EGF or amphiregulin (AREG). When cytotrophoblasts were exposed concurrently to 100 mM ethanol and 1 nM HBEGF or TGFA, the increase in apoptosis was prevented, while EGF ameliorated at 10 nM and AREG was weakly effective. HBEGF survival-promoting activity required ligation of either of its cognate receptors, HER1 or HER4. These findings reveal the potential for ethanol to rapidly induce cytotrophoblast apoptosis. However, survival factor induction could provide cytotrophoblasts with an endogenous cytoprotective mechanism.

  16. FgBud3, a Rho4-Interacting Guanine Nucleotide Exchange Factor, Is Involved in Polarity Growth, Cell Division and Pathogenicity of Fusarium graminearum.

    PubMed

    Zhang, Chengkang; Luo, Zenghong; He, Dongdong; Su, Li; Yin, Hui; Wang, Guo; Liu, Hong; Rensing, Christopher; Wang, Zonghua

    2018-01-01

    Rho GTPases are signaling macromolecules that are associated with developmental progression and pathogenesis of Fusarium graminearum . Generally, enzymatic activities of Rho GTPases are regulated by Rho GTPase guanine nucleotide exchange factors (RhoGEFs). In this study, we identified a putative RhoGEF encoding gene ( FgBUD3 ) in F. graminearum database and proceeded further by using a functional genetic approach to generate FgBUD3 targeted gene deletion mutant. Phenotypic analysis results showed that the deletion of FgBUD3 caused severe reduction in growth of FgBUD3 mutant generated during this study. We also observed that the deletion of FgBUD3 completely abolished sexual reproduction and triggered the production of abnormal asexual spores with nearly no septum in ΔFgbud3 strain. Further results obtained from infection assays conducted during this research revealed that the FgBUD3 defective mutant lost its pathogenicity on wheat and hence, suggests FgBud3 plays an essential role in the pathogenicity of F. graminearum . Additional, results derived from yeast two-hybrid assays revealed that FgBud3 strongly interacted with FgRho4 compared to the interaction with FgRho2, FgRho3, and FgCdc42. Moreover, we found that FgBud3 interacted with both GTP-bound and GDP-bound form of FgRho4. From these results, we subsequently concluded that, the Rho4-interacting GEF protein FgBud3 crucially promotes vegetative growth, asexual and sexual development, cell division and pathogenicity in F. graminearum .

  17. Modeling Vascularized Bone Regeneration Within a Porous Biodegradable CaP Scaffold Loaded with Growth Factors

    PubMed Central

    Sun, X; Kang, Y; Bao, J; Zhang, Y; Yang, Y; Zhou, X

    2013-01-01

    Osteogenetic microenvironment is a complex constitution in which extracellular matrix (ECM) molecules, stem cells and growth factors each interact to direct the coordinate regulation of bone tissue development. Importantly, angiogenesis improvement and revascularization are critical for osteogenesis during bone tissue regeneration processes. In this study, we developed a three-dimensional (3D) multi-scale system model to study cell response to growth factors released from a 3D biodegradable porous calcium phosphate (CaP) scaffold. Our model reconstructed the 3D bone regeneration system and examined the effects of pore size and porosity on bone formation and angiogenesis. The results suggested that scaffold porosity played a more dominant role in affecting bone formation and angiogenesis compared with pore size, while the pore size could be controlled to tailor the growth factor release rate and release fraction. Furthermore, a combination of gradient VEGF with BMP2 and Wnt released from the multi-layer scaffold promoted angiogenesis and bone formation more readily than single growth factors. These results demonstrated that the developed model can be potentially applied to predict vascularized bone regeneration with specific scaffold and growth factors. PMID:23566802

  18. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF).

    PubMed

    Masuki, Hideo; Okudera, Toshimitsu; Watanebe, Taisuke; Suzuki, Masashi; Nishiyama, Kazuhiko; Okudera, Hajime; Nakata, Koh; Uematsu, Kohya; Su, Chen-Yao; Kawase, Tomoyuki

    2016-12-01

    The development of platelet-rich fibrin (PRF) drastically simplified the preparation procedure of platelet-concentrated biomaterials, such as platelet-rich plasma (PRP), and facilitated their clinical application. PRF's clinical effectiveness has often been demonstrated in pre-clinical and clinical studies; however, it is still controversial whether growth factors are significantly concentrated in PRF preparations to facilitate wound healing and tissue regeneration. To address this matter, we performed a comparative study of growth factor contents in PRP and its derivatives, such as advanced PRF (A-PRF) and concentrated growth factors (CGF). PRP and its derivatives were prepared from the same peripheral blood samples collected from healthy donors. A-PRF and CGF preparations were homogenized and centrifuged to produce extracts. Platelet and white blood cell counts in A-PRF and CGF preparations were determined by subtracting those counts in red blood cell fractions, supernatant acellular serum fractions, and A-PRF/CGF exudate fractions from those counts of whole blood samples. Concentrations of growth factors (TGF-β1, PDGF-BB, VEGF) and pro-inflammatory cytokines (IL-1β, IL-6) were determined using ELISA kits. Compared to PRP preparations, both A-PRF and CGF extracts contained compatible or higher levels of platelets and platelet-derived growth factors. In a cell proliferation assay, both A-PRF and CGF extracts significantly stimulated the proliferation of human periosteal cells without significant reduction at higher doses. These data clearly demonstrate that both A-PRF and CGF preparations contain significant amounts of growth factors capable of stimulating periosteal cell proliferation, suggesting that A-PRF and CGF preparations function not only as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application.

  19. Growth factors, muscle function, and doping.

    PubMed

    Goldspink, Geoffrey; Wessner, Barbara; Tschan, Harald; Bachl, Norbert

    2010-03-01

    This article discusses the inevitable use of growth factors for enhancing muscle strength and athletic performance. Much effort has been expended on developing a treatment of muscle wasting associated with a range of diseases and aging. Frailty in the aging population is a major socioeconomic and medical problem. Emerging molecular techniques have made it possible to gain a better understanding of the growth factor genes and how they are activated by physical activity. The ways that misuse of growth factors may be detected and verified in athletes and future challenges for detecting manipulation of signaling pathways are discussed. Copyright 2010. Published by Elsevier Inc.

  20. Growth factors and chronic wound healing: past, present, and future.

    PubMed

    Goldman, Robert

    2004-01-01

    Growth substances (cytokines and growth factors) are soluble signaling proteins affecting the process of normal wound healing. Cytokines govern the inflammatory phase that clears cellular and extracellular matrix debris. Wound repair is controlled by growth factors (platelet-derived growth factor [PDGF], keratinocyte growth factor, and transforming growth factor beta). Endogenous growth factors communicate across the dermal-epidermal interface. PDGF is important for most phases of wound healing. Becaplermin (PDGF-BB), the only growth factor approved by the Food and Drug Administration, requires daily application for neuropathic wound healing. Gene therapy is under development for more efficient growth factor delivery; a single application will induce constitutive growth factor expression for weeks. Based on dramatic preclinical animal studies, a phase 1 clinical trial planned on a PDGF genetic construct appears promising.

  1. Predictive factors for intrauterine growth restriction

    PubMed Central

    Albu, AR; Anca, AF; Horhoianu, VV; Horhoianu, IA

    2014-01-01

    Abstract Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies. Abbreviations: SGA = small for gestational age; IUGR = intrauterine growth restriction; FGR = fetal growth restriction; IUFD = intrauterine fetal demise; HIV = human immunodeficiency virus; PAPP-A = pregnancy associated plasmatic protein A; β-hCG = beta human chorionic gonadotropin; MoM = multiple of median; ADAM-12 = A-disintegrin and metalloprotease 12; PP-13 = placental protein 13; VEGF = vascular endothelial growth factor; PlGF = placental growth factor; sFlt-1 = soluble fms-like tyrosine kinase-1; UAD = uterine arteries Doppler ultrasound; RI = resistence index; PI = pulsatility index; VOCAL = Virtual Organ Computer–Aided Analysis software; VI = vascularization index; FI = flow index; VFI = vascularization flow index; PQ = placental quotient PMID:25408721

  2. Growth factors and growth factor receptors in the hippocampus. Role in plasticity and response to injury.

    PubMed

    Nieto-Sampedro, M; Bovolenta, P

    1990-01-01

    Various growth factors are present in the hippocampal formation and appear responsible for the prominent plasticity of this brain area. Although hormone-like growth-promoting polypeptides are the best known, recent studies emphasize the importance in the growth response of molecules such as laminin proteoglycans, neurotransmitters and growth inhibitors. The progress and problems in the study of these substances are reviewed.

  3. Phosphorus-zinc interactive effects on growth by Selenastrum capricornutum (chlorophyta)

    USGS Publications Warehouse

    Kuwabara, J.S.

    1985-01-01

    Culturing experiments in chemically defined growth media were conducted to observe possible Zn and P interactions on Selenastrum capricornutum Printz growth indexes. Elevated Zn concentrations (7.5 ?? 10-8 and 1.5 ?? 10-7 M [Zn2+]) were highly detrimental to algal growth, affecting lag, exponential, and stationary growth phases. P behaved as a yield-limiting nutrient with maximum cell densities increasing linearly with total P. This yield limitation was intensified at elevated Zn concentrations. Although calculated cellular phosphorus concentrations increased markedly with Zn ion activity, elevated Zn concentrations had no apparent effect on rates of phosphorus uptake estimated for Selenastrum during exponential growth. Results indicated that P-Zn interactions were significant in describing Selenastrum cell yield results and are consistent with previous Zn studies on chlorophytes. These P-Zn interactions and the observed inhibitory growth effects of submicromolar Zn concentrations suggest that in nature an apparent P yield-limiting condition may result from elevated Zn concentrations.

  4. Environment factors influence in vitro interspecific interactions between A. ochraceus and other maize spoilage fungi, growth and ochratoxin production.

    PubMed

    Lee, H B; Magan, N

    1999-01-01

    The effect of water availability (water activity, aw; 0.995-0.90) and temperature (18-30 degrees C) on in vitro interactions between an ochratoxin producing strain of Aspergillus ochraceus and six other spoilage fungi was assessed in dual culture experiments on a maize meal-based agar medium. In primary resource capture of nutrient substrate, A. ochraceus was dominant against many of the interacting species, being able to overgrow and replace A. candidus, and sometimes A. flavus and the Eurotium spp. regardless of aw or temperature. However, with freely available water (0.995 aw) A. alternata and A. niger were dominant, with mutual antagonism between A. ochraceus and A. flavus at 25-30 degrees C. In the driest conditions tested (0.90 aw) there was also mutual antagonism between A. ochraceus and the two Eurotium spp. Overall, under all conditions tested the Index of Dominance for A. ochraceus was much higher than for other competing species combined suggesting that A. ochraceus was a good competitive colonist able to replace a number of other species. However, the growth rate of A. ochraceus was modified and decreased by the interaction with competitors. Interaction between A. ochraceus and species such as A. alternata (18 degrees C/0.995) and Eurotium spp. (0.995-0.95 and 25-30 degrees C) resulted in a significant stimulation of ochratoxin production. The results are discussed in relation to the effect that environmental factors have on the possible competitiveness of A. ochraceus in the maize grain ecosystem and the role of ochratoxin in niche exclusion of competitors.

  5. Engineering growth factors for regenerative medicine applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less

  6. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  7. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo

    NASA Astrophysics Data System (ADS)

    Kim, K. Jin; Li, Bing; Winer, Jane; Armanini, Mark; Gillett, Nancy; Phillips, Heidi S.; Ferrara, Napoleone

    1993-04-01

    THE development of new blood vessels (angiogenesis) is required for many physiological processes including embryogenesis, wound healing and corpus luteum formation1,2. Blood vessel neoformation is also important in the pathogenesis of many disorders1-5, particularly rapid growth and metastasis of solid tumours3-5. There are several potential mediators of tumour angiogenesis, including basic and acidic fibroblast growth factors, tumour necrosis factor-α and transforming factors-α and -β 1,2. But it is unclear whether any of these agents actually mediates angiogenesis and tumour growth in vivo. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and an angiogenesis inducer released by a variety of tumour cells and expressed in human tumours in situ. To test whether VEGF may be a tumour angiogenesis factor in vivo, we injected human rhabdomyosar-coma, glioblastoma multiforme or leiomyosarcoma cell lines into nude mice. We report here that treatment with a monoclonal antibody specific for VEGF inhibited the growth of the tumours, but had no effect on the growth rate of the tumour cells In vitro. The density of vessels was decreased in the antibody-treated tumours. These findings demonstrate that inhibition of the action of an angiogenic factor spontaneously produced by tumour cells may suppress tumour growth in vivo.

  8. Fibroblast growth factor receptor inhibitors.

    PubMed

    Kumar, Suneel B V S; Narasu, Lakshmi; Gundla, Rambabu; Dayam, Raveendra; J A R P, Sarma

    2013-01-01

    Fibroblast growth factor receptors (FGFRs) play an important role in embryonic development, angiogenesis, wound healing, cell proliferation and differentiation. The fibroblast growth factor receptor (FGFR) isoforms have been under intense scrutiny for effective anticancer drug candidates. The fibroblast growth factor (FGF) and its receptor (FGFR) provide another pathway that seems critical to monitoring angiogenesis. Recent findings suggest that FGFR mediates signaling, regulates the PKM2 activity, and plays a crucial role in cancer metabolism. The current review also covers the recent findings on the role of FGFR1 in cancer metabolism. This paper reviews the progress, mechanism, and binding modes of recently known kinase inhibitors such as PD173074, SU series and other inhibitors still under clinical development. Some of the structural classes that will be highlighted in this review include Pyrido[2,3-d]pyrimidines, Indolin- 2-one, Pyrrolo[2,1-f][1,2,4]triazine, Pyrido[2,3-d]pyrimidin-7(8H)-one, and 1,6- Naphthyridin-2(1H)-ones.

  9. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children.

    PubMed

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-11-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene-environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene-environment interactions in children treated with r-hGH.

  10. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children

    PubMed Central

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-01-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene–environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene–environment interactions in children treated with r-hGH. PMID:26503811

  11. Interactive effects of temperature and food availability on the growth of Arctica islandica (Bivalvia) juveniles.

    PubMed

    Ballesta-Artero, Irene; Janssen, Reneé; van der Meer, Jaap; Witbaard, Rob

    2018-02-01

    The interest in Arctica islandica growth biology has recently increased due to the widespread use of its shell as a bioarchive. Although temperature and food availability are considered key factors in its growth, their combined influence has not been studied so far under laboratory conditions. We tested the interactive effect of temperature and food availability on the shell and tissue growth of A. islandica juveniles (9-15 mm in height) in a multi-factorial experiment with four food levels (no food, low, medium, and high) and three different temperatures (3, 8, 13 °C). Shell and tissue growth were observed in all treatments, with significant differences occurring only among food levels (2-way ANOVA; P-value < 0.05). Siphon activity (% open siphons), however, was affected by temperature, food, and the interaction between them (2-way ANOVA; P-value < 0.05). Siphon observations, as indication of feeding activities, played a key role to better understand the growth variation between individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Generation of Diverse Biological Forms through Combinatorial Interactions between Tissue Polarity and Growth

    PubMed Central

    Kennaway, Richard; Coen, Enrico; Green, Amelia; Bangham, Andrew

    2011-01-01

    A major problem in biology is to understand how complex tissue shapes may arise through growth. In many cases this process involves preferential growth along particular orientations raising the question of how these orientations are specified. One view is that orientations are specified through stresses in the tissue (axiality-based system). Another possibility is that orientations can be specified independently of stresses through molecular signalling (polarity-based system). The axiality-based system has recently been explored through computational modelling. Here we develop and apply a polarity-based system which we call the Growing Polarised Tissue (GPT) framework. Tissue is treated as a continuous material within which regionally expressed factors under genetic control may interact and propagate. Polarity is established by signals that propagate through the tissue and is anchored in regions termed tissue polarity organisers that are also under genetic control. Rates of growth parallel or perpendicular to the local polarity may then be specified through a regulatory network. The resulting growth depends on how specified growth patterns interact within the constraints of mechanically connected tissue. This constraint leads to the emergence of features such as curvature that were not directly specified by the regulatory networks. Resultant growth feeds back to influence spatial arrangements and local orientations of tissue, allowing complex shapes to emerge from simple rules. Moreover, asymmetries may emerge through interactions between polarity fields. We illustrate the value of the GPT-framework for understanding morphogenesis by applying it to a growing Snapdragon flower and indicate how the underlying hypotheses may be tested by computational simulation. We propose that combinatorial intractions between orientations and rates of growth, which are a key feature of polarity-based systems, have been exploited during evolution to generate a range of observed

  13. Nuclear Factor YY1 Inhibits Transforming Growth Factor β- and Bone Morphogenetic Protein-Induced Cell Differentiation

    PubMed Central

    Kurisaki, Keiko; Kurisaki, Akira; Valcourt, Ulrich; Terentiev, Alexei A.; Pardali, Katerina; ten Dijke, Peter; Heldin, Carl-Henrik; Ericsson, Johan; Moustakas, Aristidis

    2003-01-01

    Smad proteins transduce transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signals that regulate cell growth and differentiation. We have identified YY1, a transcription factor that positively or negatively regulates transcription of many genes, as a novel Smad-interacting protein. YY1 represses the induction of immediate-early genes to TGF-β and BMP, such as the plasminogen activator inhibitor 1 gene (PAI-1) and the inhibitor of differentiation/inhibitor of DNA binding 1 gene (Id-1). YY1 inhibits binding of Smads to their cognate DNA elements in vitro and blocks Smad recruitment to the Smad-binding element-rich region of the PAI-1 promoter in vivo. YY1 interacts with the conserved N-terminal Mad homology 1 domain of Smad4 and to a lesser extent with Smad1, Smad2, and Smad3. The YY1 zinc finger domain mediates the association with Smads and is necessary for the repressive effect of YY1 on Smad transcriptional activity. Moreover, downregulation of endogenous YY1 by antisense and small interfering RNA strategies results in enhanced transcriptional responses to TGF-β or BMP. Ectopic expression of YY1 inhibits, while knockdown of endogenous YY1 enhances, TGF-β- and BMP-induced cell differentiation. In contrast, overexpression or knockdown of YY1 does not affect growth inhibition induced by TGF-β or BMP. Accordingly, YY1 does not interfere with the regulation of immediate-early genes involved in the TGF-β growth-inhibitory response, the cell cycle inhibitors p15 and p21, and the proto-oncogene c-myc. In conclusion, YY1 represses Smad transcriptional activities in a gene-specific manner and thus regulates cell differentiation induced by TGF-β superfamily pathways. PMID:12808092

  14. Expression of a transmembrane phosphotyrosine phosphatase inhibits cellular response to platelet-derived growth factor and insulin-like growth factor-1.

    PubMed

    Mooney, R A; Freund, G G; Way, B A; Bordwell, K L

    1992-11-25

    Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors.

  15. Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3.

    PubMed

    Kartal, Ömer; Aydınöz, Seçil; Kartal, Ayşe Tuğba; Kelestemur, Taha; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Karademir, Ferhan; Süleymanoğlu, Selami; Kul, Mustafa; Yulug, Burak; Kilic, Ertugrul

    2016-08-01

    Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival.

  16. Effects of Prenatal Multiple Micronutrient Supplementation on Fetal Growth Factors: A Cluster-Randomized, Controlled Trial in Rural Bangladesh

    PubMed Central

    Gernand, Alison D.; Schulze, Kerry J.; Nanayakkara-Bind, Ashika; Arguello, Margia; Shamim, Abu Ahmed; Ali, Hasmot; Wu, Lee; West, Keith P.; Christian, Parul

    2015-01-01

    Prenatal multiple micronutrient (MM) supplementation improves birth weight through increased fetal growth and gestational age, but whether maternal or fetal growth factors are involved is unclear. Our objective was to examine the effect of prenatal MM supplementation on intrauterine growth factors and the associations between growth factors and birth outcomes in a rural setting in Bangladesh. In a double-blind, cluster-randomized, controlled trial of MM vs. iron and folic acid (IFA) supplementation, we measured placental growth hormone (PGH) at 10 weeks and PGH and human placental lactogen (hPL) at 32 weeks gestation in maternal plasma (n = 396) and insulin, insulin-like growth factor-1 (IGF-1), and IGF binding protein-1 (IGFBP-1) in cord plasma (n = 325). Birth size and gestational age were also assessed. Early pregnancy mean (SD) BMI was 19.5 (2.4) kg/m2 and birth weight was 2.68 (0.41) kg. There was no effect of MM on concentrations of maternal hPL or PGH, or cord insulin, IGF-1, or IGFBP-1. However, among pregnancies of female offspring, hPL concentration was higher by 1.1 mg/L in the third trimester (95% CI: 0.2, 2.0 mg/L; p = 0.09 for interaction); and among women with height <145 cm, insulin was higher by 59% (95% CI: 3, 115%; p = 0.05 for interaction) in the MM vs. IFA group. Maternal hPL and cord blood insulin and IGF-1 were positively, and IGFBP-1 was negatively, associated with birth weight z score and other measures of birth size (all p<0.05). IGF-1 was inversely associated with gestational age (p<0.05), but other growth factors were not associated with gestational age or preterm birth. Prenatal MM supplementation had no overall impact on intrauterine growth factors. MM supplementation altered some growth factors differentially by maternal early pregnancy nutritional status and sex of the offspring, but this should be examined in other studies. Trial Registration ClinicalTrials.gov NCT00860470 PMID:26431336

  17. Effects of Prenatal Multiple Micronutrient Supplementation on Fetal Growth Factors: A Cluster-Randomized, Controlled Trial in Rural Bangladesh.

    PubMed

    Gernand, Alison D; Schulze, Kerry J; Nanayakkara-Bind, Ashika; Arguello, Margia; Shamim, Abu Ahmed; Ali, Hasmot; Wu, Lee; West, Keith P; Christian, Parul

    2015-01-01

    Prenatal multiple micronutrient (MM) supplementation improves birth weight through increased fetal growth and gestational age, but whether maternal or fetal growth factors are involved is unclear. Our objective was to examine the effect of prenatal MM supplementation on intrauterine growth factors and the associations between growth factors and birth outcomes in a rural setting in Bangladesh. In a double-blind, cluster-randomized, controlled trial of MM vs. iron and folic acid (IFA) supplementation, we measured placental growth hormone (PGH) at 10 weeks and PGH and human placental lactogen (hPL) at 32 weeks gestation in maternal plasma (n = 396) and insulin, insulin-like growth factor-1 (IGF-1), and IGF binding protein-1 (IGFBP-1) in cord plasma (n = 325). Birth size and gestational age were also assessed. Early pregnancy mean (SD) BMI was 19.5 (2.4) kg/m2 and birth weight was 2.68 (0.41) kg. There was no effect of MM on concentrations of maternal hPL or PGH, or cord insulin, IGF-1, or IGFBP-1. However, among pregnancies of female offspring, hPL concentration was higher by 1.1 mg/L in the third trimester (95% CI: 0.2, 2.0 mg/L; p = 0.09 for interaction); and among women with height <145 cm, insulin was higher by 59% (95% CI: 3, 115%; p = 0.05 for interaction) in the MM vs. IFA group. Maternal hPL and cord blood insulin and IGF-1 were positively, and IGFBP-1 was negatively, associated with birth weight z score and other measures of birth size (all p<0.05). IGF-1 was inversely associated with gestational age (p<0.05), but other growth factors were not associated with gestational age or preterm birth. Prenatal MM supplementation had no overall impact on intrauterine growth factors. MM supplementation altered some growth factors differentially by maternal early pregnancy nutritional status and sex of the offspring, but this should be examined in other studies. ClinicalTrials.gov NCT00860470.

  18. Insulin-like growth factor binding protein-3 (IGFBP-3): Novel ligands mediate unexpected functions.

    PubMed

    Baxter, Robert C

    2013-08-01

    In addition to its important role in the regulation of somatic growth by acting as the major circulating transport protein for the insulin-like growth factors (IGFs), IGF binding protein-3 (IGFBP-3) has a variety of intracellular ligands that point to its function within major signaling pathways. The discovery of its interaction with the retinoid X receptor has led to the elucidation of roles in regulating the function of several nuclear hormone receptors including retinoic acid receptor-α, Nur77 and vitamin D receptor. Its interaction with the nuclear hormone receptor peroxisome proliferator-activated receptor-γ is believed to be involved in regulating adipocyte differentiation, which is also modulated by IGFBP-3 through an interaction with TGFβ/Smad signaling. IGFBP-3 can induce apoptosis alone or in conjunction with other agents, and in different systems can activate caspases -8 and -9. At least two unrelated proteins (LRP1 and TMEM219) have been designated as receptors for IGFBP-3, the latter with a demonstrated role in inducing caspase-8-dependent apoptosis. In contrast, IGFBP-3 also has demonstrated roles in survival-related functions, including the repair of DNA double-strand breaks through interaction with the epidermal growth factor receptor and DNA-dependent protein kinase, and the induction of autophagy through interaction with GRP78. The ability of IGFBP-3 to modulate the balance between pro-apoptotic and pro-survival sphingolipids by regulating sphingosine kinase 1 and sphingomyelinases may be integral to its role at the crossroads between cell death and survival in response to a variety of stimuli. The pleiotropic nature of IGFBP-3 activity supports the idea that IGFBP-3 itself, or pathways with which it interacts, should be investigated as targets of therapy for a variety of diseases.

  19. Obesity and Cancer Metabolism: A Perspective on Interacting Tumor-Intrinsic and Extrinsic Factors.

    PubMed

    Doerstling, Steven S; O'Flanagan, Ciara H; Hursting, Stephen D

    2017-01-01

    Obesity is associated with increased risk and poor prognosis of many types of cancers. Several obesity-related host factors involved in systemic metabolism can influence tumor initiation, progression, and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. Such host factors include systemic metabolic regulators including insulin, insulin-like growth factor 1, adipokines, inflammation-related molecules, and steroid hormones, as well as the cellular and structural components of the tumor microenvironment, particularly adipose tissue. These secreted and structural host factors are extrinsic to, and interact with, the intrinsic metabolic characteristics of cancer cells to influence their growth and spread. This review will focus on the interplay of these tumor cell-intrinsic and extrinsic factors in the context of energy balance, with the objective of identifying new intervention targets for preventing obesity-associated cancer.

  20. Targeted delivery of growth factors in ischemic stroke animal models.

    PubMed

    Rhim, Taiyoun; Lee, Minhyung

    2016-01-01

    Ischemic stroke is caused by reduced blood supply and leads to loss of brain function. The reduced oxygen and nutrient supply stimulates various physiological responses, including induction of growth factors. Growth factors prevent neuronal cell death, promote neovascularization, and induce cell growth. However, the concentration of growth factors is not sufficient to recover brain function after the ischemic damage, suggesting that delivery of growth factors into the ischemic brain may be a useful treatment for ischemic stroke. In this review, various approaches for the delivery of growth factors to ischemic brain tissue are discussed, including local and targeting delivery systems. To develop growth factor therapy for ischemic stroke, important considerations should be taken into account. First, growth factors may have possible side effects. Thus, concentration of growth factors should be restricted to the ischemic tissues by local administration or targeted delivery. Second, the duration of growth factor therapy should be optimized. Growth factor proteins may be degraded too fast to have a high enough therapeutic effect. Therefore, delivery systems for controlled release or gene delivery may be useful. Third, the delivery systems to the brain should be optimized according to the delivery route.

  1. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion

    PubMed Central

    Gorin, Caroline; Rochefort, Gael Y.; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Germain, Stéphane

    2016-01-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. Significance The results from the present study show that fibroblast growth factor-2 (FGF-2) priming is more

  2. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    PubMed

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.

  3. Constructing a blood vessel on the porous scaffold modified with vascular endothelial growth factor and basic fibroblast growth factor

    NASA Astrophysics Data System (ADS)

    Sevostyanova, V. V.; Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Shabaev, A. R.; Senokosova, E. A.; Krivkina, E. O.; Vasyukov, G. Yu.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2016-11-01

    Incorporation of the growth factors into biodegradable polymers is a promising approach for the fabrication of tissue-engineered vascular grafts. Here we blended poly(ɛ-caprolactone) (PCL) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) following incorporation of either vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) and then fabricated electrospun 2 mm diameter vascular grafts. Grafts without the growth factors were used as a control group. Structure of the grafts was assessed utilizing scanning electron microscopy. We further implanted our grafts into rat abdominal aorta for 1 and 3 months with the aim to test endothelialization, cell infiltration, and patency in vivo. Histological and immunofluorescence examination demonstrated enhanced endothelialization and cell infiltration of the grafts with either VEGF or bFGF compared to those without the growth factors. Grafts with VEGF showed higher patency compared to those with bFGF; however, bFGF promoted migration of smooth muscle cells and fibroblasts into the graft. Therefore, we conclude that incorporation of VEGF and bFGF into the inner and medial/outer layer, respectively, can be a promising option for the fabrication of tissue-engineered vascular grafts.

  4. Direct interaction of Ski with either Smad3 or Smad4 is necessary and sufficient for Ski-mediated repression of transforming growth factor-beta signaling.

    PubMed

    Ueki, Nobuhide; Hayman, Michael J

    2003-08-29

    The oncoprotein Ski represses transforming growth factor (TGF)-beta signaling in an N-CoR-independent manner. However, the molecular mechanism(s) underlying this event has not been elucidated. Here, we identify an additional domain in Ski that mediates interaction with Smad3 which is important for this repression. This domain is distinct from the previously reported N-terminal Smad3 binding domain in Ski. Individual alanine substitution of several residues in the domain significantly affected Ski-Smad3 interaction. Furthermore, combined mutations within this domain, together with those in the previously identified Smad3 binding domain, can completely abolish the interaction of Ski with Smad3, while mutation in each domain alone retained partial interaction. By introducing those mutations that abolish direct interaction with Smad3 or Smad4 individually, or in combination, we show that interaction of Ski with either Smad3 or Smad4 is sufficient for Ski-mediated repression of TGF-beta signaling. Furthermore our results clearly demonstrate that Ski does not disrupt Smad3-Smad4 heteromer formation, and recruitment of Ski to the Smad3/4 complex through binding to either Smad3 or Smad4 is both necessary and sufficient for repression.

  5. Insulin-Like Growth Factor-I is a Marker for the Nutritional State

    PubMed Central

    Hawkes, Colin P; Grimberg, Adda

    2017-01-01

    Measurement of the serum concentration of insulin-like growth factor-1 (IGF-I) is generally used as a screening investigation for disorders of the growth hormone (GH)/IGF-I axis in children and adolescents with short stature. IGF-I concentration is sensitive to short-term and chronic alterations in the nutritional state, and the interpretation of IGF-I measurements requires knowledge of the child’s nutritional status. In this review, we summarize the effects of nutrition on the GH/IGF-I axis, and review the clinical implications of these interactions throughout childhood, both in under-nutrition and over-nutrition. PMID:26841638

  6. Non-coding Double-stranded RNA and Antimicrobial Peptide LL-37 Induce Growth Factor Expression from Keratinocytes and Endothelial Cells*

    PubMed Central

    Adase, Christopher A.; Borkowski, Andrew W.; Zhang, Ling-juan; Williams, Michael R.; Sato, Emi; Sanford, James A.

    2016-01-01

    A critical function for skin is that when damaged it must simultaneously identify the nature of the injury, repair barrier function, and limit the intrusion of pathogenic organisms. These needs are carried out through the detection of damage-associated molecular patterns (DAMPs) and a response that includes secretion of cytokines, chemokines, growth factors, and antimicrobial peptides (AMPs). In this study, we analyzed how non-coding double-stranded RNA (dsRNAs) act as a DAMP in the skin and how the human cathelicidin AMP LL-37 might influence growth factor production in response to this DAMP. dsRNA alone significantly increased the expression of multiple growth factors in keratinocytes, endothelial cells, and fibroblasts. Furthermore, RNA sequencing transcriptome analysis found that multiple growth factors increase when cells are exposed to both LL-37 and dsRNA, a condition that mimics normal wounding. Quantitative PCR and/or ELISA validated that growth factors expressed by keratinocytes in these conditions included, but were not limited to, basic fibroblast growth factor (FGF2), heparin-binding EGF-like growth factor (HBEGF), vascular endothelial growth factor C (VEGFC), betacellulin (BTC), EGF, epiregulin (EREG), and other members of the transforming growth factor β superfamily. These results identify a novel role for DAMPs and AMPs in the stimulation of repair and highlight the complex interactions involved in the wound environment. PMID:27048655

  7. LC3-mediated fibronectin mRNA translation induces fibrosarcoma growth by increasing connective tissue growth factor

    PubMed Central

    Ying, Lihua; Lau, Agatha; Alvira, Cristina M.; West, Robert; Cann, Gordon M.; Zhou, Bin; Kinnear, Caroline; Jan, Eric; Sarnow, Peter; Van de Rijn, Matt; Rabinovitch, Marlene

    2009-01-01

    Summary Previously, we related fibronectin (Fn1) mRNA translation to an interaction between an AU-rich element in the Fn1 3′ UTR and light chain 3 (LC3) of microtubule-associated proteins 1A and 1B. Since human fibrosarcoma (HT1080) cells produce little fibronectin and LC3, we used these cells to investigate how LC3-mediated Fn1 mRNA translation might alter tumor growth. Transfection of HT1080 cells with LC3 enhanced fibronectin mRNA translation. Using polysome analysis and RNA-binding assays, we show that elevated levels of translation depend on an interaction between a triple arginine motif in LC3 and the AU-rich element in Fn1 mRNA. Wild-type but not mutant LC3 accelerated HT1080 cell growth in culture and when implanted in SCID mice. Comparison of WT LC3 with vector-transfected HT1080 cells revealed increased fibronectin-dependent proliferation, adhesion and invasion. Microarray analysis of genes differentially expressed in WT and vector-transfected control cells indicated enhanced expression of connective tissue growth factor (CTGF). Using siRNA, we show that enhanced expression of CTGF is fibronectin dependent and that LC3-mediated adhesion, invasion and proliferation are CTGF dependent. Expression profiling of soft tissue tumors revealed increased expression of both LC3 and CTGF in some locally invasive tumor types. PMID:19366727

  8. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  9. Transforming growth factor beta-3 and environmental factors and cleft lip with/without cleft palate.

    PubMed

    Guo, Zeqiang; Huang, Chengle; Ding, Kaihong; Lin, Jianyan; Gong, Binzhong

    2010-07-01

    To identify the interactions among two loci (C641A and G15572-) of transforming growth factor beta 3 (TGFbeta3), and exposures in pregnancy with cleft lip with/without cleft palate (CL/P), a hospital-based case-control study was conducted. Associations among offspring polymorphisms of TGFbeta3 C641A and G15572-, paternal smoking, paternal high-risk drinking, maternal passive smoking, and maternal multivitamin supplement with CL/P were analyzed by logistic regression analysis, and the results showed that maternal passive smoking exposures and maternal multivitamin use were associated with the risk of CL/P but offspring polymorphisms of TGFbeta3 C641A and G15572-, paternal smoking, and paternal high-risk drinking were not. Interactions among these variables were analyzed using the multifactor dimensionality reduction method, and the results showed that the two-factor model, including maternal passive smoking and TGFbeta3 C641A, among all models evaluated had the best ability to predict CL/P risk with a maximum cross-validation consistency (9/10) and a maximum average testing accuracy (0.5892; p = 0.0010). These findings suggested that maternal passive smoking exposure is a risk factor for CL/P, whereas maternal multivitamin supplement is a protective factor. The polymorphism of TGFbeta3 C641A participates in interaction effect for CL/P with environmental exposures, although the polymorphism was not associated with CL/P in single-locus analysis, and synergistic effect of TGFbeta3 C641A and maternal passive smoking could provide a new tool for identifying high-risk individuals of CL/P and also an additional evidence that CL/P is determined by both genetic and environmental factors.

  10. Growth Factor Signaling and Memory Formation: Temporal and Spatial Integration of a Molecular Network

    ERIC Educational Resources Information Center

    Kopec, Ashley M.; Carew, Thomas J.

    2013-01-01

    Growth factor (GF) signaling is critically important for developmental plasticity. It also plays a crucial role in adult plasticity, such as that required for memory formation. Although different GFs interact with receptors containing distinct types of kinase domains, they typically signal through converging intracellular cascades (e.g.,…

  11. Delivery of growth factors for tissue regeneration and wound healing.

    PubMed

    Koria, Piyush

    2012-06-01

    Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.

  12. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth Inhibitor...9 Fibroblast Growth Factor -2: an Epithelial Ductal Cell Growth Inhibitor that Drops Out in Breast Cancer

  13. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    PubMed Central

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  14. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    PubMed Central

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-01-01

    Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177

  15. Interaction of recombinant human epidermal growth factor with phospholipid vesicles. A steady-state and time-resolved fluorescence study of the bis-tryptophan sequence (Trp49-Trp50).

    PubMed

    Li De La Sierra, I M; Vincent, M; Padron, G; Gallay, J

    1992-01-01

    The interaction of recombinant human epidermal growth factor with small unilamellar phospholipid vesicles was studied by steady-state and time-resolved fluorescence of the bis-tryptophan sequence (Trp49-Trp50). Steady-state anisotropy measurements demonstrate that strong binding occurred with small unilamellar vesicles made up of acidic phospholipids at acidic pH only (pH < or = 4.7). An apparent stoichiometry for 1,2-dimyristoyl-sn-phosphoglycerol of about 12 phospholipid molecules per molecule of human epidermal growth factor was estimated. The binding appears to be more efficient at temperatures above the gel to liquid-crystalline phase transition. The conformation and the environment of the Trp-Trp sequence are not greatly modified after binding, as judged from the invariance of the excited state lifetime distribution and from that of the fast processes affecting the anisotropy decay. This suggests that the Trp-Trp sequence is not embedded within the bilayer, in contrast to the situation in surfactant micelles (Mayo et al. 1987; Kohda and Inigaki 1992).

  16. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    PubMed Central

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  17. Endorsement of Growth Factors in Experiential Training Groups

    ERIC Educational Resources Information Center

    Kiweewa, John; Gilbride, Dennis; Luke, Melissa; Seward, Derek

    2013-01-01

    The purpose of this study was to identify student growth factors during a semester long Master's level group counseling class. Results indicated that 12 growth factors accounted for 86% of the total number of critical incidents that participants reported as influencing their personal growth and awareness during the group experience. Two other…

  18. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  19. Nuclear magnetic resonance and restrained molecular dynamics studies of the interaction of an epidermal growth factor-derived peptide with protein tyrosine phosphatase 1B.

    PubMed

    Glover, N R; Tracey, A S

    1999-04-20

    The epidermal growth factor-derived (EGFR988) fluorophosphonate peptide, DADE(F2Pmp)L, is a potent (30 pM) inhibitor of the protein tyrosine phosphatase PTP1B. Nuclear magnetic resonance (NMR) transferred nuclear Overhauser effect (nOe) experiments have been used to determine the conformation of DADE(F2Pmp)L while bound in the active site of PTP1B. When bound, the peptide adopts an extended beta-strand conformation. Molecular modeling and molecular dynamics simulations allowed the elucidation of the sources of many of the interactions leading to binding of this inhibitor. Electrostatic, hydrophobic, and hydrogen-bonding interactions were all found to contribute significantly to its binding. However, despite the overall tight binding of this inhibitor, the N-terminal and adjacent residue of the peptide were virtually unrestrained in their motion. The major contributions to binding arose from hydrophobic interactions at the leucine and at the aromatic center, hydrogen bonding to the pro-R fluorine of the fluorophosphonomethyl group, and electrostatic interactions involving the carboxylate functionalities of the aspartate and glutamate residues. These latter two residues were found to form tight contacts with surface recognition elements (arginine and lysine) situated near the active-site cleft.

  20. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2011-10-01

    fibroblast   growth   factor   receptors  and  their  prognostic...AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth

  1. Therapeutic angiogenesis: angiogenic growth factors for ischemic heart disease.

    PubMed

    Henning, Robert J

    2016-09-01

    Stem cells encode vascular endothelial growth factors (VEGFs), fibroblastic growth factors (FGFs), stem cell factor, stromal cell-derived factor, platelet growth factor and angiopoietin that can contribute to myocardial vascularization. VEGFs and FGFs are the most investigated growth factors. VEGFs regulate angiogenesis and vasculogenesis. FGFs stimulate vessel cell proliferation and differentiation and are regulators of endothelial cell migration, proliferation and survival. Clinical trials of VEGF or FGF for myocardial angiogenesis have produced disparate results. The efficacy of therapeutic angiogenesis can be improved by: (1) identifying the most optimal patients; (2) increased knowledge of angiogenic factor pharmacokinetics and proper dose; (3) prolonging contact of angiogenic factors with the myocardium; (4) increasing the efficiency of VEGF or FGF gene transduction; and (5) utilizing PET or MRI to measure myocardial perfusion and perfusion reserve.

  2. Clinical Application of Growth Factors and Cytokines in Wound Healing

    PubMed Central

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  3. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context*

    PubMed Central

    Hang, Ta-Chun; Tedford, Nathan C.; Reddy, Raven J.; Rimchala, Tharathorn; Wells, Alan; White, Forest M.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2013-01-01

    The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment. PMID:24023389

  4. Integrin-Mediated Transforming Growth Factor-β Activation Regulates Homeostasis of the Pulmonary Epithelial-Mesenchymal Trophic Unit

    PubMed Central

    Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L.

    2006-01-01

    Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-β is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, αvβ6 and αvβ8, are responsible for almost all of the TGF-β activation in the EMTU. Both αvβ8 and αvβ6 contribute to fetal tracheal epithelial activation of TGF-β, whereas only αvβ8 contributes to fetal tracheal fibroblast activation of TGF-β. Interestingly, fetal tracheal epithelial αvβ8-mediated TGF-β activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in αvβ8-mediated activation of TGF-β. Autocrine αvβ8-mediated TGF-β activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-β within the EMTU. PMID:16877343

  5. Integrin-mediated transforming growth factor-beta activation regulates homeostasis of the pulmonary epithelial-mesenchymal trophic unit.

    PubMed

    Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L

    2006-08-01

    Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-beta is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, alpha(v)beta(6) and alpha(v)beta(8), are responsible for almost all of the TGF-beta activation in the EMTU. Both alpha(v)beta(8) and alpha(v)beta(6) contribute to fetal tracheal epithelial activation of TGF-beta, whereas only alpha(v)beta(8) contributes to fetal tracheal fibroblast activation of TGF-beta. Interestingly, fetal tracheal epithelial alpha(v)beta(8)-mediated TGF-beta activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in alpha(v)beta(8)-mediated activation of TGF-beta. Autocrine alpha(v)beta(8)-mediated TGF-beta activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-beta within the EMTU.

  6. Interaction between the estrogen receptor and fibroblast growth factor receptor pathways in non-small cell lung cancer.

    PubMed

    Siegfried, Jill M; Farooqui, Mariya; Rothenberger, Natalie J; Dacic, Sanja; Stabile, Laura P

    2017-04-11

    The estrogen receptor (ER) promotes non-small cell lung cancer (NSCLC) proliferation. Since fibroblast growth factors (FGFs) are known regulators of stem cell markers in ER positive breast cancer, we investigated whether a link between the ER, FGFs, and stem cell markers exists in NSCLC. In lung preneoplasias and adenomas of tobacco carcinogen exposed mice, the anti-estrogen fulvestrant and/or the aromatase inhibitor anastrozole blocked FGF2 and FGF9 secretion, and reduced expression of the stem cell markers SOX2 and nanog. Mice administered β-estradiol during carcinogen exposure showed increased FGF2, FGF9, SOX2, and Nanog expression in airway preneoplasias. In normal FGFR1 copy number NSCLC cell lines, multiple FGFR receptors were expressed and secreted several FGFs. β-estradiol caused enhanced FGF2 release, which was blocked by fulvestrant. Upon co-inhibition of ER and FGFRs using fulvestrant and the pan-FGFR inhibitor AZD4547, phosphorylation of FRS2, the FGFR docking protein, was maximally reduced, and enhanced anti-proliferative effects were observed. Combined AZD4547 and fulvestrant enhanced lung tumor xenograft growth inhibition and decreased Ki67 and stem cell marker expression. To verify a link between ERβ, the predominant ER in NSCLC, and FGFR signaling in patient tumors, mRNA analysis was performed comparing high versus low ERβ expressing tumors. The top differentially expressed genes in high ERβ tumors involved FGF signaling and human embryonic stem cell pluripotency. These results suggest interaction between the ER and FGFR pathways in NSCLC promotes a stem-like state. Combined FGFR and ER inhibition may increase the efficacy of FGFR inhibitors for NSCLC patients lacking FGFR genetic alterations.

  7. Inhibition of epidermal growth factor receptor by ferulic acid and 4-vinylguaiacol in human breast cancer cells.

    PubMed

    Sudhagar, S; Sathya, S; Anuradha, R; Gokulapriya, G; Geetharani, Y; Lakshmi, B S

    2018-02-01

    To examine the potential of ferulic acid and 4-vinylguaiacol for inhibiting epidermal growth factor receptor (EGFR) in human breast cancer cells in vitro. Ferulic acid and 4-vinylguaiacol limit the EGF (epidermal growth factor)-induced breast cancer proliferation and new DNA synthesis. Western blot analysis revealed both ferulic acid and 4-vinylguaiacol exhibit sustained inhibition of EGFR activation through down-regulation of Tyr 1068 autophosphorylation. Molecular docking analysis shows ferulic acid forming hydrogen bond interaction with Lys 745 and Met 793 whereas, 4-vinylguaiacol forms two hydrogen bonds with Phe 856 and exhibits stronger hydrophobic interactions with multiple amino acid residues at the EGFR kinase domain. Ferulic acid and 4-vinylguaiacol could serve as a potential structure for the development of new small molecule therapeutics against EGFR.

  8. Advances in pubertal growth and factors influencing it: Can we increase pubertal growth?

    PubMed Central

    Soliman, Ashraf; De Sanctis, Vincenzo; Elalaily, Rania; Bedair, Said

    2014-01-01

    Puberty is a period of development characterized by partially concurrent changes which includes growth acceleration, alteration in body composition and appearance of secondary sex characteristics. Puberty is characterized by an acceleration and then deceleration in skeletal growth. The initiation, duration and amount of growth vary considerably during the growth spurt. Pubertal growth and biological maturation are dynamic processes regulated by a variety of genetic and environmental factors. Changes in skeletal maturation and bone mineral accretion concomitant with the stage of pubertal development constitute essential components in the evaluation of growth during this pubertal period. Genetic, endocrine and nutritional factors and ethnicity contribute variably to the amount of growth gained during this important period of rapid changes. Many studies investigated the possibility of increasing pubertal growth to gain taller final adult height in adolescents with idiopathic short stature (ISS). The pattern of pubertal growth, its relation to sex maturity rating and factors affecting them has been addressed in this review. The results of different trials to increase final adult height of adolescents using different hormones have been summarized. These data enables Endocrinologists to give in-depth explanations to patients and families about the efficacy and clinical significance as well as the safety of using these therapies in the treatment of adolescents with ISS. PMID:25538878

  9. Identification of Keratinocyte Growth Factor as a Target of microRNA-155 in Lung Fibroblasts: Implication in Epithelial-Mesenchymal Interactions

    PubMed Central

    Chevalier, Benoit; Puisségur, Marie-Pierre; Lebrigand, Kevin; Robbe-Sermesant, Karine; Bertero, Thomas; Lino Cardenas, Christian L.; Courcot, Elisabeth; Rios, Géraldine; Fourre, Sandra; Lo-Guidice, Jean-Marc; Marcet, Brice; Cardinaud, Bruno; Barbry, Pascal; Mari, Bernard

    2009-01-01

    Background Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-α, IL-1β and TGF-β. Methodology/Principal Findings MiR-155 was significantly induced by inflammatory cytokines TNF-α and IL-1β while it was down-regulated by TGF-β. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to “cell to cell signalling”, “cell morphology” and “cellular movement”. This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3′-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3′-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3′-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. Conclusions/Significance Our results strongly suggest a physiological function of miR-155 in

  10. Intracellular processing of epidermal growth factor. I. Acidification of 125I-epidermal growth factor in intracellular organelles.

    PubMed

    Matrisian, L M; Planck, S R; Magun, B E

    1984-03-10

    We previously reported that 125I-labeled epidermal growth factor is processed intracellularly to acidic macromolecules in Rat-1 fibroblasts. The present study defines the precursor-product relationship and localization of the processing steps to subcellular organelles by the use of a single isoelectric species of 125I-epidermal growth factor and Percoll gradient fractionation. The native pI 4.55 125I-epidermal growth factor was rapidly processed to a pI 4.2 species on or near the cell surface and in organelles corresponding to clathrin-coated vesicles, Golgi, and endoplasmic reticulum. This species was then processed to a pI 4.35 species in similar organelles. The pI 4.2 and 4.35 species were converted to a pI 4.0 species in dense, lysosome-like organelles. This species was ultimately degraded and exocytosed from the cell as low molecular weight products.

  11. Insulin-like growth factor-I and growth differentiation factor-5 promote the formation of tissue-engineered human nasal septal cartilage.

    PubMed

    Alexander, Thomas H; Sage, August B; Chen, Albert C; Schumacher, Barbara L; Shelton, Elliot; Masuda, Koichi; Sah, Robert L; Watson, Deborah

    2010-10-01

    Tissue engineering of human nasal septal chondrocytes offers the potential to create large quantities of autologous material for use in reconstructive surgery of the head and neck. Culture with recombinant human growth factors may improve the biochemical and biomechanical properties of engineered tissue. The objectives of this study were to (1) perform a high-throughput screen to assess multiple combinations of growth factors and (2) perform more detailed testing of candidates identified in part I. In part I, human nasal septal chondrocytes from three donors were expanded in monolayer with pooled human serum (HS). Cells were then embedded in alginate beads for 2 weeks of culture in medium supplemented with 2% or 10% HS and 1 of 90 different growth factor combinations. Combinations of insulin-like growth factor-I (IGF-1), bone morphogenetic protein (BMP)-2, BMP-7, BMP-13, growth differentiation factor-5 (GDF-5), transforming growth factor β (TGFβ)-2, insulin, and dexamethasone were evaluated. Glycosaminoglycan (GAG) accumulation was measured. A combination of IGF-1 and GDF-5 was selected for further testing based on the results of part I. Chondrocytes from four donors underwent expansion followed by three-dimensional alginate culture for 2 weeks in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5. Chondrocytes and their associated matrix were then recovered and cultured for 4 weeks in 12 mm transwells in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5 (the same medium used for alginate culture). Biochemical and biomechanical properties of the neocartilage were measured. In part I, GAG accumulation was highest for growth factor combinations including both IGF-1 and GDF-5. In part II, the addition of IGF-1 and GDF-5 to 2% HS resulted in a 12-fold increase in construct thickness compared with 2% HS alone (p < 0.0001). GAG and type II collagen accumulation was significantly higher with IGF-1 and GDF-5. Confined compression

  12. Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3.

    PubMed

    Higashi, Kiyoshi; Inagaki, Yutaka; Fujimori, Ko; Nakao, Atsuhito; Kaneko, Hideo; Nakatsuka, Iwao

    2003-10-31

    Transforming growth factor-beta (TGF-beta) and interferon-gamma (IFN-gamma) exert antagonistic effects on collagen synthesis in human dermal fibroblasts. We have recently shown that Y box-binding protein YB-1 mediates the inhibitory effects of IFN-gamma on alpha2(I) procollagen gene (COL1A2) transcription through the IFN-gamma response element located between -161 and -150. Here we report that YB-1 counter-represses TGF-beta-stimulated COL1A2 transcription by interfering with Smad3 bound to the upstream sequence around -265 and subsequently by interrupting the Smad3-p300 interaction. Western blot and immunofluorescence analyses using inhibitors for Janus kinases or casein kinase II suggested that the casein kinase II-dependent signaling pathway mediates IFN-gamma-induced nuclear translocation of YB-1. Down-regulation of endogenous YB-1 expression by double-stranded YB-1-specific RNA abrogated the transcriptional repression of COL1A2 by IFN-gamma in the absence and presence of TGF-beta. In transient transfection assays, overexpression of YB-1 in human dermal fibroblasts exhibited antagonistic actions against TGF-beta and Smad3. Physical interaction between Smad3 and YB-1 was demonstrated by immunoprecipitation-Western blot analyses, and electrophoretic mobility shift assays using the recombinant Smad3 and YB-1 proteins indicated that YB-1 forms a complex with Smad3 bound to the Smad-binding element. Glutathione S-transferase pull-down assays showed that YB-1 binds to the MH1 domain of Smad3, whereas the central and carboxyl-terminal regions of YB-1 were required for its interaction with Smad3. YB-1 also interferes with the Smad3-p300 interaction by its preferential binding to p300. Altogether, the results provide a novel insight into the mechanism by which IFN-gamma/YB-1 counteracts TGF-beta/Smad3. They also indicate that IFN-gamma/YB-1 inhibits COL1A2 transcription by dual actions: via the IFN-gamma response element and through a cross-talk with the TGF

  13. Synchronization of developmental processes and defense signaling by growth regulating transcription factors.

    PubMed

    Liu, Jinyi; Rice, J Hollis; Chen, Nana; Baum, Thomas J; Hewezi, Tarek

    2014-01-01

    Growth regulating factors (GRFs) are a conserved class of transcription factor in seed plants. GRFs are involved in various aspects of tissue differentiation and organ development. The implication of GRFs in biotic stress response has also been recently reported, suggesting a role of these transcription factors in coordinating the interaction between developmental processes and defense dynamics. However, the molecular mechanisms by which GRFs mediate the overlaps between defense signaling and developmental pathways are elusive. Here, we report large scale identification of putative target candidates of Arabidopsis GRF1 and GRF3 by comparing mRNA profiles of the grf1/grf2/grf3 triple mutant and those of the transgenic plants overexpressing miR396-resistant version of GRF1 or GRF3. We identified 1,098 and 600 genes as putative targets of GRF1 and GRF3, respectively. Functional classification of the potential target candidates revealed that GRF1 and GRF3 contribute to the regulation of various biological processes associated with defense response and disease resistance. GRF1 and GRF3 participate specifically in the regulation of defense-related transcription factors, cell-wall modifications, cytokinin biosynthesis and signaling, and secondary metabolites accumulation. GRF1 and GRF3 seem to fine-tune the crosstalk between miRNA signaling networks by regulating the expression of several miRNA target genes. In addition, our data suggest that GRF1 and GRF3 may function as negative regulators of gene expression through their association with other transcription factors. Collectively, our data provide new insights into how GRF1 and GRF3 might coordinate the interactions between defense signaling and plant growth and developmental pathways.

  14. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    PubMed Central

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  15. The future of recombinant growth factors in wound healing.

    PubMed

    Robson, M C; Mustoe, T A; Hunt, T K

    1998-08-01

    For more than a decade, clinical trials have been conducted of the application of topical exogenous recombinant growth factors in attempts to accelerate the healing of chronic wounds. Although the results of some of these trials have been encouraging, overall the results have been somewhat discouraging. Much of the difficulty lies in the paucity of carefully controlled clinical trials of wound healing. Since wound healing is a complex process that can be influenced, both positively and negatively, by many factors, designing these trials has proved difficult. To date, only a single recombinant growth factor-recombinant human platelet-derived growth factor-BB (rhPDGF-BB)- has been approved by the US Food and Drug Administration; and that only for use in diabetic foot ulcers. It is unlikely, however, that a single growth factor will be able to resolve all issues of repair or strengthen all vulnerabilities of chronic wounds. Our expectation, therefore, is that growth factors, cytokines, and other biologic agents will be used more specifically in the future, for example, by targeting growth factor therapy at those specific components or processes that a given wound uses to heal.

  16. Structural Model for the Interaction of a Designed Ankyrin Repeat Protein with the Human Epidermal Growth Factor Receptor 2

    PubMed Central

    Epa, V. Chandana; Dolezal, Olan; Doughty, Larissa; Xiao, Xiaowen; Jost, Christian; Plückthun, Andreas; Adams, Timothy E.

    2013-01-01

    Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2). HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84–1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions. PMID:23527120

  17. Synergy between growth factors and transmitters required for catecholamine differentiation in brain neurons.

    PubMed

    Du, X; Iacovitti, L

    1995-07-01

    The phenotypically plastic neurons of the embryonic mouse striatum were used to explore mechanisms of catecholamine differentiation in culture. De novo transcription and translation of the CA biosynthetic enzyme, tyrosine hydroxylase (TH), was induced in striatal neurons exposed, simultaneously or sequentially, to the growth factor, acidic fibroblast growth factor (aFGF) and a catecholamine. Although dopamine was the most potent aFGF partner (ED50 = 4 microM), a number of substances, including dopamine (D1) receptor agonists, beta-adrenoceptor agonists, and dopamine uptake inhibitors also trigger TH induction when accompanied by aFGF. However, since none of the receptor antagonists nor transport blockers tested could inhibit dopamine's action, the mechanism remains obscure. Structure-activity analysis suggests that effective aFGF partners all contain an amine group separated from a catechol nucleus by two carbons. Thus, TH expression can be novelly induced by the synergistic interaction of aFGF, and to a lesser extent basic FGF, and a variety of CA-containing partner molecules. We speculate that a similar association between growth factor and transmitter may be required in development for the differentiation of a CA phenotype in brain neurons.

  18. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.

    PubMed

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-12-08

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    NASA Astrophysics Data System (ADS)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  20. The role of growth factors in embryonic induction in Xenopus laevis.

    PubMed

    Dawid, I B; Taira, M; Good, P J; Rebagliati, M R

    1992-06-01

    Establishment of the body pattern in all animals, and especially in vertebrate embryos, depends on cell interactions. During the cleavage and blastula stages in amphibians, signal(s) from the vegetal region induce the equatorial region to become mesoderm. Two types of peptide growth factors have been shown by explant culture experiments to be active in mesoderm induction. First, there are several isoforms of fibroblast growth factor (FGF), including aFGF, bFGF, and hst/kFGF. FGF induces ventral, but not the most dorsal, levels of mesodermal tissue; bFGF and its mRNA, and an FGF receptor and its mRNA, are present in the embryo. Thus, FGF probably has a role in mesoderm induction, but is unlikely to be the sole inducing agent in vivo. Second, members of the transforming growth factor-beta (TGF-beta) family. TGF-beta 2 and TGF-beta 3 are active in induction, but the most powerful inducing factors are the distant relatives of TGF-beta named activin A and activin B, which are capable of inducing all types of mesoderm. An important question relates to the establishment of polarity during the induction of mesoderm. While all regions of the animal hemisphere of frog embryos are competent to respond to activins by mesoderm differentiation, only explants that include cells close to the equator form structures with some organization along dorsoventral and anteroposterior axes. These observations suggest that cells in the blastula animal hemisphere are already polarized to some extent, although inducers are required to make this polarity explicit.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Temporal expression of growth factors triggered by epiregulin regulates inflammation development.

    PubMed

    Harada, Masaya; Kamimura, Daisuke; Arima, Yasunobu; Kohsaka, Hitoshi; Nakatsuji, Yuji; Nishida, Makoto; Atsumi, Toru; Meng, Jie; Bando, Hidenori; Singh, Rajeev; Sabharwal, Lavannya; Jiang, Jing-Jing; Kumai, Noriko; Miyasaka, Nobuyuki; Sakoda, Saburo; Yamauchi-Takihara, Keiko; Ogura, Hideki; Hirano, Toshio; Murakami, Masaaki

    2015-02-01

    In this study, we investigated the relationship between several growth factors and inflammation development. Serum concentrations of epiregulin, amphiregulin, betacellulin, TGF-α, fibroblast growth factor 2, placental growth factor (PLGF), and tenascin C were increased in rheumatoid arthritis patients. Furthermore, local blockades of these growth factors suppressed the development of cytokine-induced arthritis in mice by inhibiting chemokine and IL-6 expressions. We found that epiregulin expression was early and followed by the induction of other growth factors at different sites of the joints. The same growth factors then regulated the expression of epiregulin at later time points of the arthritis. These growth factors were increased in patients suffering from multiple sclerosis (MS) and also played a role in the development of an MS model, experimental autoimmune encephalomyelitis. The results suggest that the temporal expression of growth factors is involved in the inflammation development seen in several diseases, including rheumatoid arthritis and MS. Therefore, various growth factor pathways might be good therapeutic targets for various inflammatory diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  2. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins.

    PubMed

    Seong, Hyun-A; Jung, Haiyoung; Kim, Kyong-Tai; Ha, Hyunjung

    2007-04-20

    We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.

  3. Genetic variants and traits related to insulin-like growth factor-I and insulin resistance and their interaction with lifestyles on postmenopausal colorectal cancer risk

    PubMed Central

    Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Zhang, Zuo-Feng; Ho, Gloria; Crandall, Carolyn

    2017-01-01

    Genetic variants and traits in metabolic signaling pathways may interact with lifestyle factors such as obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal colorectal cancer (CRC) risk, but these interrelated pathways are not fully understood. In this case-cohort study, we examined 33 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/ insulin resistance (IR) traits and signaling pathways, using data from 704 postmenopausal women in Women’s Health Initiative Observation ancillary studies. Stratifying by the lifestyle modifiers, we assessed the effects of IGF-I/IR traits (fasting total and free IGF-I, IGF binding protein-3, insulin, glucose, and homeostatic model assessment–insulin resistance) on CRC risk as a mediator or influencing factor. Six SNPs in the INS, IGF-I, and IGFBP3 genes were associated with CRC risk, and those associations differed between non-obese/active and obese/inactive women and between E nonusers and users. Roughly 30% of the cancer risk due to the SNP was mediated by IGF-I/IR traits. Likewise, carriers of 11 SNPs in the IRS1 and AKT1/2 genes (signaling pathway–related genetic variants) had different associations with CRC risk between strata, and the proportion of the SNP–cancer association explained by traits varied from 30% to 50%. Our findings suggest that IGF-I/IR genetic variants interact with obesity, physical activity, and exogenous E, altering postmenopausal CRC risk, through IGF-I/IR traits, but also through different pathways. Unraveling gene–phenotype–lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce CRC risk. PMID:29023587

  4. Neural retina of chick embryo in organ culture: effects of blockade of growth factors by suramin.

    PubMed

    Cirillo, A; Chifflet, S; Villar, B

    2001-06-01

    The neural retina is a highly organized organ whose final histoarchitecture depends on the presence of diverse growth factors and on their interactions with extracellular matrix components. However, the role of growth factors on retinal development is not fully understood. Suramin has been shown to produce diverse cellular effects via the simultaneous block of the action of several growth factors. We have therefore studied the effects of suramin on organotypic culture of chick embryo neural retina in order to gain further insights into the participation of growth factors in neural retinal development. Neural retina was incubated for 24 h with suramin at 50-200 microM and then processed to determine cell proliferation, nuclear morphology, and actin distribution. Suramin provoked extensive morphological changes revealed by a decrease in BrdU incorporation, alterations in cellular organization, and disruption of the outer limiting membrane, with the emergence of cellular elements through it. All of these effects were dose-dependent and markedly attenuated by the simultaneous presence of suramin and fibroblast growth factor 2 (FGF-2) in the culture medium. These findings indicate that suramin induces pleiotropic effects on the histoarchitecture of the chicken neural retina in organ culture and suggest that FGF-2 is one of the biological modulators involved in the maintenance of the structural organization of the chicken neural retina.

  5. A role of placental growth factor in hair growth.

    PubMed

    Yoon, Sun-Young; Yoon, Ji-Seon; Jo, Seong Jin; Shin, Chang Yup; Shin, Jong-Yeon; Kim, Jong-Il; Kwon, Ohsang; Kim, Kyu Han

    2014-05-01

    The dermal papilla (DP) comprises specialized mesenchymal cells at the bottom of the hair follicle and plays a pivotal role in hair formation, anagen induction and the hair cycle. In this study, DPs were isolated from human hair follicles and serially subcultured. From each subculture at passages 1, 3, and 5 (n=4), we compared gene expression profiles using mRNA sequencing. Among the growth factors that were down-regulated in later passages of human DP cells (hDPCs), placental growth factor (PlGF) was selected. To elucidate the effect of PlGF on hair growth. We evaluated the effect of PlGF on hDPCs and on ex vivo hair organ culture. We investigated the effect of PlGF on an in vivo model of depilation-induced hair regeneration. We confirmed that the mRNA and protein expression levels of PlGF significantly decreased following subculture of the cells. It was shown that PlGF enhanced hair shaft elongation in ex vivo hair organ culture. Furthermore, PlGF significantly accelerated hair follicle growth and markedly prolonged anagen hair growth in an in vivo model of depilation-induced hair regeneration. PlGF prevented cell death by increasing the levels of phosphorylated extracellular signal-regulated kinase (ERK) and cyclin D1 and promoted survival by up-regulation of phosphorylated Akt and Bcl2, as determined by Western blotting. Our results suggest that PlGF plays a role in the promotion of hair growth and therefore may serve as an additional therapeutic target for the treatment of alopecia. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    PubMed

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  7. Fibroblast growth factor receptors, developmental corruption and malignant disease.

    PubMed

    Kelleher, Fergal C; O'Sullivan, Hazel; Smyth, Elizabeth; McDermott, Ray; Viterbo, Antonella

    2013-10-01

    Fibroblast growth factors (FGF) are a family of ligands that bind to four different types of cell surface receptor entitled, FGFR1, FGFR2, FGFR3 and FGFR4. These receptors differ in their ligand binding affinity and tissue distribution. The prototypical receptor structure is that of an extracellular region comprising three immunoglobulin (Ig)-like domains, a hydrophobic transmembrane segment and a split intracellular tyrosine kinase domain. Alternative gene splicing affecting the extracellular third Ig loop also creates different receptor isoforms entitled FGFRIIIb and FGFRIIIc. Somatic fibroblast growth factor receptor (FGFR) mutations are implicated in different types of cancer and germline FGFR mutations occur in developmental syndromes particularly those in which craniosynostosis is a feature. The mutations found in both conditions are often identical. Many somatic FGFR mutations in cancer are gain-of-function mutations of established preclinical oncogenic potential. Gene amplification can also occur with 19-22% of squamous cell lung cancers for example having amplification of FGFR1. Ontologic comparators can be informative such as aberrant spermatogenesis being implicated in both spermatocytic seminomas and Apert syndrome. The former arises from somatic FGFR3 mutations and Apert syndrome arises from germline FGFR2 mutations. Finally, therapeutics directed at inhibiting the FGF/FGFR interaction are a promising subject for clinical trials.

  8. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  9. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  10. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  11. Growth factors in urologic tissues: detection, characterization, and clinical applications.

    PubMed

    Mydlo, J H; Macchia, R J

    1992-12-01

    During the last two decades, enormous strides have been made in understanding cellular and molecular biology. The direction of treatment of many neoplasms and other diseases are starting at the microscopic level. Growth factors are polypeptides that play a part in the development and maintenance of living tissues. We, as well as others, have investigated the role that growth factors play particularly in urologic tissues, both benign and malignant. We review several well-known growth factors and their function in prostate, kidney, and bladder tissues, as well as their functions in other regulating processes of the human body, and also the use of growth factors as tumor markers, and antibodies to growth factors as possible treatment of disease.

  12. The interaction between thermodynamic stability and buried free cysteines in regulating the functional half-life of fibroblast growth factor-1.

    PubMed

    Lee, Jihun; Blaber, Michael

    2009-10-16

    Protein biopharmaceuticals are an important and growing area of human therapeutics; however, the intrinsic property of proteins to adopt alternative conformations (such as during protein unfolding and aggregation) presents numerous challenges, limiting their effective application as biopharmaceuticals. Using fibroblast growth factor-1 as model system, we describe a cooperative interaction between the intrinsic property of thermostability and the reactivity of buried free-cysteine residues that can substantially modulate protein functional half-life. A mutational strategy that combines elimination of buried free cysteines and secondary mutations that enhance thermostability to achieve a substantial gain in functional half-life is described. Furthermore, the implementation of this design strategy utilizing stabilizing mutations within the core region resulted in a mutant protein that is essentially indistinguishable from wild type as regard protein surface and solvent structure, thus minimizing the immunogenic potential of the mutations. This design strategy should be generally applicable to soluble globular proteins containing buried free-cysteine residues.

  13. Parasympathetic, sympathetic, and sensory interactions in the iris: nerve growth factor regulates cholinergic ciliary ganglion innervation in vivo.

    PubMed

    Kessler, J A

    1985-10-01

    Interactions between peptidergic sensory nerves, noradrenergic sympathetic nerves, and cholinergic parasympathetic fibers were examined in the rat iris. The putative peptide neurotransmitter, substance P (SP), was used as an index of the trigeminal sensory innervation, tyrosine hydroxylase (TH) activity served to monitor the sympathetic fibers, and choline acetyltransferase (CAT) activity was used as an index of the parasympathetic innervation. Destruction of the sympathetic innervation by neonatal administration of 6-hydroxydopamine resulted in increased SP development and a smaller increase in CAT activity in the iris. Moreover, trigeminal ablation resulted in an increase in both TH and CAT activities. Finally, ciliary ganglionectomy resulted in increased SP and a smaller increase in TH activity in the iris. Administration of nerve growth factor (NGF) into the anterior chamber substantially increased both SP and TH activity in the iris and also increased CAT activity to a lesser extent. Moreover, administration of anti-NGF into the anterior chamber prevented both the sympathectomy-induced increases in SP and CAT, and the increases in TH and CAT activities after trigeminal ablation, suggesting that NGF mediated these increases. These observations suggest that the sympathetic, sensory, and parasympathetic innervations of the iris interact by altering availability of NGF elaborated by the iris. Regulation of iris CAT activity was examined in greater detail. Injection of the cholinergic toxin, AF64A, into the anterior chamber concurrently with ablation of the sympathetic and sensory innervations paradoxically increased CAT activity, whereas AF64A alone decreased CAT activity.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Comparisons of the effects of TCDD and hydrocortisone on growth factor expression provide insight into their interaction in the embryonic mouse palate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, B.D.; Harris, M.W.; Birnbaum, L.S.

    Cleft palate (CP) can be induced in embryonic mice by a wide range of compounds, including glucocorticoids and 2,3,7,8-tyetrachlorodibenzo-p-dioxin (TCDD). Hydrocortisone (HC), a glucocorticoid, retards embryonic growth producing small palatal shelves, while TCDD exposure blocks the fusion of normally sized shelves. TCDD induction of CP involves altered differentiation of the medial epithelial cells. Recent studies indicate that growth factors such as EGF, TGF-alpha, TGF-beta1, and TGF-beta2 are involved in palatogenesis, regulating proliferation, differentiation, and extracellular matrix production. A synergism has been observed between HC and TCDD in which doses too low to induce CP alone are able to produce >90%more » incidence when coadministered. In the present study a standard teratology protocol was performed in C57BL/6N mice to examine the synergism at doses lower than those previously published. Data from the study indicate synergistic interactions at doses as low as 3 micrograms TCDD/kg + 1 mg HC/kg. This extreme sensitivity suggests the involvement of a receptor-mediated mechanism possibly resulting in altered regulation of gene expression. (Copyright (c) 1992 Wiley-Liss, Inc.)« less

  15. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    PubMed Central

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  16. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells.

    PubMed

    Choi, Nahyun; Shin, Soyoung; Song, Sun U; Sung, Jong-Hyuk

    2018-02-28

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  17. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8.

    PubMed

    Auciello, Giulio; Cunningham, Debbie L; Tatar, Tulin; Heath, John K; Rappoport, Joshua Z

    2013-01-15

    Fibroblast growth factor receptors (FGFRs) mediate a wide spectrum of cellular responses that are crucial for development and wound healing. However, aberrant FGFR activity leads to cancer. Activated growth factor receptors undergo stimulated endocytosis, but can continue to signal along the endocytic pathway. Endocytic trafficking controls the duration and intensity of signalling, and growth factor receptor signalling can lead to modifications of trafficking pathways. We have developed live-cell imaging methods for studying FGFR dynamics to investigate mechanisms that coordinate the interplay between receptor trafficking and signal transduction. Activated FGFR enters the cell following recruitment to pre-formed clathrin-coated pits (CCPs). However, FGFR activation stimulates clathrin-mediated endocytosis; FGF treatment increases the number of CCPs, including those undergoing endocytosis, and this effect is mediated by Src and its phosphorylation target Eps8. Eps8 interacts with the clathrin-mediated endocytosis machinery and depletion of Eps8 inhibits FGFR trafficking and immediate Erk signalling. Once internalized, FGFR passes through peripheral early endosomes en route to recycling and degredative compartments, through an Src- and Eps8-dependent mechanism. Thus Eps8 functions as a key coordinator in the interplay between FGFR signalling and trafficking. This work provides the first detailed mechanistic analysis of growth factor receptor clustering at the cell surface through signal transduction and endocytic trafficking. As we have characterised the Src target Eps8 as a key regulator of FGFR signalling and trafficking, and identified the early endocytic system as the site of Eps8-mediated effects, this work provides novel mechanistic insight into the reciprocal regulation of growth factor receptor signalling and trafficking.

  18. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    PubMed

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  19. Localisation in a Growth Model with Interaction

    NASA Astrophysics Data System (ADS)

    Costa, M.; Menshikov, M.; Shcherbakov, V.; Vachkovskaia, M.

    2018-05-01

    This paper concerns the long term behaviour of a growth model describing a random sequential allocation of particles on a finite cycle graph. The model can be regarded as a reinforced urn model with graph-based interaction. It is motivated by cooperative sequential adsorption, where adsorption rates at a site depend on the configuration of existing particles in the neighbourhood of that site. Our main result is that, with probability one, the growth process will eventually localise either at a single site, or at a pair of neighbouring sites.

  20. Localisation in a Growth Model with Interaction

    NASA Astrophysics Data System (ADS)

    Costa, M.; Menshikov, M.; Shcherbakov, V.; Vachkovskaia, M.

    2018-06-01

    This paper concerns the long term behaviour of a growth model describing a random sequential allocation of particles on a finite cycle graph. The model can be regarded as a reinforced urn model with graph-based interaction. It is motivated by cooperative sequential adsorption, where adsorption rates at a site depend on the configuration of existing particles in the neighbourhood of that site. Our main result is that, with probability one, the growth process will eventually localise either at a single site, or at a pair of neighbouring sites.

  1. Expression, purification, and characterization of recombinant human and murine milk fat globule-epidermal growth factor-factor 8.

    PubMed

    Castellanos, Erick R; Ciferri, Claudio; Phung, Wilson; Sandoval, Wendy; Matsumoto, Marissa L

    2016-08-01

    Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), as its name suggests, is a major glycoprotein component of milk fat globules secreted by the mammary epithelium. Although its role in milk fat production is unclear, MFG-E8 has been shown to act as a bridge linking apoptotic cells to phagocytes for removal of these dying cells. MFG-E8 is capable of bridging these two very different cell types via interactions through both its epidermal growth factor (EGF)-like domain(s) and its lectin-type C domains. The EGF-like domain interacts with αVβ3 and αVβ5 integrins on the surface of phagocytes, whereas the C domains bind phosphatidylserine found on the surface of apoptotic cells. In an attempt to purify full-length, recombinant MFG-E8 expressed in either insect cells or CHO cells, we find that it is highly aggregated. Systematic truncation of the domain architecture of MFG-E8 indicates that the C domains are mainly responsible for the aggregation propensity. Addition of Triton X-100 to the conditioned cell culture media allowed partial recovery of non-aggregated, full-length MFG-E8. A more comprehensive detergent screen identified CHAPS as a stabilizer of MFG-E8 and allowed purification of a significant portion of non-aggregated, full-length protein. The CHAPS-stabilized recombinant MFG-E8 retained its natural ability to bind both αVβ3 and αVβ5 integrins and phosphatidylserine suggesting that it is properly folded and active. Herein we describe an efficient purification method for production of non-aggregated, full-length MFG-E8. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. NMR study of the transforming growth factor-alpha (TGF-alpha)-epidermal growth factor receptor complex. Visualization of human TGF-alpha binding determinants through nuclear Overhauser enhancement analysis.

    PubMed

    McInnes, C; Hoyt, D W; Harkins, R N; Pagila, R N; Debanne, M T; O'Connor-McCourt, M; Sykes, B D

    1996-12-13

    The study of human transforming growth factor-alpha (TGF-alpha) in complex with the epidermal growth factor (EGF) receptor extracellular domain has been undertaken in order to generate information on the interactions of these molecules. Analysis of 1H NMR transferred nuclear Overhauser enhancement data for titration of the ligand with the receptor has yielded specific data on the residues of the growth factor involved in contact with the larger protein. Significant increases and decreases in nuclear Overhauser enhancement cross-peak intensity occur upon complexation, and interpretation of these changes indicates that residues of the A- and C-loops of TGF-alpha form the major binding interface, while the B-loop provides a structural scaffold for this site. These results corroborate the conclusions from NMR relaxation studies (Hoyt, D. W., Harkins, R. N., Debanne, M. T., O'Connor-McCourt, M., and Sykes, B. D. (1994) Biochemistry 33, 15283-15292), which suggest that the C-terminal residues of the polypeptide are immobilized upon receptor binding, while the N terminus of the molecule retains considerable flexibility, and are consistent with structure-function studies of the TGF-alpha/EGF system indicating a multidomain binding model. These results give a visualization, for the first time, of native TGF-alpha in complex with the EGF receptor and generate a picture of the ligand-binding site based upon the intact molecule. This will undoubtedly be of utility in the structure-based design of TGF-alpha/EGF agonists and/or antagonists.

  3. Controlled growth factor release from synthetic extracellular matrices

    NASA Astrophysics Data System (ADS)

    Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.

    2000-12-01

    Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.

  4. Structural analysis of the human fibroblast growth factor receptor 4 kinase.

    PubMed

    Lesca, E; Lammens, A; Huber, R; Augustin, M

    2014-11-11

    The family of fibroblast growth factor receptors (FGFRs) plays an important and well-characterized role in a variety of pathological disorders. FGFR4 is involved in myogenesis and muscle regeneration. Mutations affecting the kinase domain of FGFR4 may cause cancer, for example, breast cancer or rhabdomyosarcoma. Whereas FGFR1-FGFR3 have been structurally characterized, the structure of the FGFR4 kinase domain has not yet been reported. In this study, we present four structures of the kinase domain of FGFR4, in its apo-form and in complex with different types of small-molecule inhibitors. The two apo-FGFR4 kinase domain structures show an activation segment similar in conformation to an autoinhibitory segment observed in the hepatocyte growth factor receptor kinase but different from the known structures of other FGFR kinases. The structures of FGFR4 in complex with the type I inhibitor Dovitinib and the type II inhibitor Ponatinib reveal the molecular interactions with different types of kinase inhibitors and may assist in the design and development of FGFR4 inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Transforming growth factor-alpha short-circuits downregulation of the epidermal growth factor receptor.

    PubMed

    Ouyang, X; Gulliford, T; Huang, G; Epstein, R J

    1999-04-01

    Transforming growth factor-alpha (TGFalpha) is an epidermal growth factor receptor (EGFR) ligand which is distinguished from EGF by its acid-labile structure and potent transforming function. We recently reported that TGFalpha induces less efficient EGFR heterodimerization and downregulation than does EGF (Gulliford et al., 1997, Oncogene, 15:2219-2223). Here we use isoform-specific EGFR and ErbB2 antibodies to show that the duration of EGFR signalling induced by a single TGFalpha exposure is less than that induced by equimolar EGF. The protein trafficking inhibitor brefeldin A (BFA) reduces the duration of EGF signalling to an extent similar to that seen with TGFalpha alone; the effects of TGFalpha and BFA on EGFR degradation are opposite, however, with TGFalpha sparing EGFR from downregulation but BFA accelerating EGF-dependent receptor loss. This suggests that BFA blocks EGFR recycling and thus shortens EGF-dependent receptor signalling, whereas TGFalpha shortens receptor signalling and thus blocks EGFR downregulation. Consistent with this, repeated application of TGFalpha is accompanied by prolonged EGFR expression and signalling, whereas similar application of EGF causes receptor downregulation and signal termination. These findings indicate that constitutive secretion of pH-labile TGFalpha may perpetuate EGFR signalling by permitting early oligomer dissociation and dephosphorylation within acidic endosomes, thereby extinguishing a phosphotyrosine-based downregulation signal and creating an irreversible autocrine growth loop.

  6. Plasticity in interactions of fibroblast growth factor 1 (FGF1) N terminus with FGF receptors underlies promiscuity of FGF1.

    PubMed

    Beenken, Andrew; Eliseenkova, Anna V; Ibrahimi, Omar A; Olsen, Shaun K; Mohammadi, Moosa

    2012-01-27

    Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1-3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the "universal FGFR ligand" because it overrides this specificity barrier. To elucidate the molecular basis for FGF1 cross-reactivity with the "b" and "c" splice isoforms of FGFRs, we determined the first crystal structure of FGF1 in complex with an FGFRb isoform, FGFR2b, at 2.1 Å resolution. Comparison of the FGF1-FGFR2b structure with the three previously published FGF1-FGFRc structures reveals that plasticity in the interactions of the N-terminal region of FGF1 with FGFR D3 is the main determinant of FGF1 cross-reactivity with both isoforms of FGFRs. In support of our structural data, we demonstrate that substitution of three N-terminal residues (Gly-19, His-25, and Phe-26) of FGF2 (a ligand that does not bind FGFR2b) for the corresponding residues of FGF1 (Phe-16, Asn-22, and Tyr-23) enables the FGF2 triple mutant to bind and activate FGFR2b. These findings taken together with our previous structural data on receptor binding specificity of FGF2, FGF8, and FGF10 conclusively show that sequence divergence at the N termini of FGFs is the primary regulator of the receptor binding specificity and promiscuity of FGFs.

  7. Growth and Interaction of Colloid Nuclei

    NASA Astrophysics Data System (ADS)

    Lam, Michael-Angelo; Khusid, Boris; Meyer, William; Kondic, Lou

    2017-11-01

    We study evolution of colloid systems under zero-gravity conditions. In particular, we focus on the regime where there is a coexistence between a liquid and a solid state. Under zero gravity, the dominating process in the bulk of the fluid phase and the solid phase is diffusion. At the moving solid/liquid interface, osmotic pressure is balanced by surface tension, as well as balancing fluxes (conservation of mass) with the kinematics of nuclei growth (Wilson-Frenkel law). Due to the highly nonlinear boundary condition at the moving boundary, care has to be taken when performing numerical simulations. In this work, we present a nonlinear model for colloid nuclei growth. Numerical simulations using a finite volume method are compared with asymptotic analysis of the governing equation and experimental results for nuclei growth. Novel component in our numerical simulations is the inclusion of nonlinear (collective) diffusion terms that depend on the chemical potentials of the colloid in the solid and fluid phase. The results include growth and dissolution of a single colloidal nucleus, as well as evolution of multiple interacting nuclei. Supported by NASA Grant No. NNX16AQ79G.

  8. Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application

    PubMed Central

    Wu, Chengtie; Chang, Jiang

    2012-01-01

    The impact of bone diseases and trauma in the whole world has increased significantly in the past decades. Bioactive glasses are regarded as an important bone regeneration material owing to their generally excellent osteoconductivity and osteostimulativity. A new class of bioactive glass, referred to as mesoporous bioglass (MBG), was developed 7 years ago, which possess a highly ordered mesoporous channel structure and a highly specific surface area. The study of MBG for drug/growth factor delivery and bone tissue engineering has grown significantly in the past several years. In this article, we review the recent advances of MBG materials, including the preparation of different forms of MBG, composition–structure relationship, efficient drug/growth factor delivery and bone tissue engineering application. By summarizing our recent research, the interaction of MBG scaffolds with bone-forming cells, the effect of drug/growth factor delivery on proliferation and differentiation of tissue cells and the in vivo osteogenesis of MBG scaffolds are highlighted. The advantages and limitations of MBG for drug delivery and bone tissue engineering have been compared with microsize bioactive glasses and nanosize bioactive glasses. The future perspective of MBG is discussed for bone regeneration application by combining drug delivery with bone tissue engineering and investigating the in vivo osteogenesis mechanism in large animal models. PMID:23741607

  9. Growth and Growth hormone - Insulin Like Growth Factor -I (GH-IGF-I) Axis in Chronic Anemias.

    PubMed

    Soliman, Ashraf T; De Sanctis, Vincenzo; Yassin, Mohamed; Adel, Ashraf

    2017-04-28

    Anaemia is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development. It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. Iron deficiency anaemia (IDA) was considered to be among the most important contributing factors to the global burden of disease. Prolonged and/or chronic anemia has a negative effect on linear growth especially during the rapid phases (infancy and puberty). Additionally infants with chronic IDA have delayed cognitive, motor, and affective development that may be long-lasting. In view of the significant impact of chronic anemias on growth, pediatricians endocrinologists and hematologists should advocate primary prevention and screening for growth disturbance in these forms of anemias. The extent of the negative effect of different forms of chronic anemias on linear growth and its possible reversibilty is addressed in this review. The possible mechanisms that may impair growth in the different forms of anemias are addressed with special attention to their effect on the growth hormone (GH) - insulin like growth factor -I (IGF-I).

  10. Fibroblast Growth Factors Stimulate Hair Growth through β-Catenin and Shh Expression in C57BL/6 Mice

    PubMed Central

    Lin, Wei-hong; Xiang, Li-Jun; Shi, Hong-Xue; Zhang, Jian; Jiang, Li-ping; Cai, Ping-tao; Lin, Zhen-Lang; Lin, Bei-Bei; Huang, Yan; Zhang, Hai-Lin; Fu, Xiao-Bing; Guo, Ding-Jiong; Li, Xiao-Kun; Wang, Xiao-Jie; Xiao, Jian

    2015-01-01

    Growth factors are involved in the regulation of hair morphogenesis and cycle hair growth. The present study sought to investigate the hair growth promoting activities of three approved growth factor drugs, fibroblast growth factor 10 (FGF-10), acidic fibroblast growth factor (FGF-1), and basic fibroblast growth factor (FGF-2), and the mechanism of action. We observed that FGFs promoted hair growth by inducing the anagen phase in telogenic C57BL/6 mice. Specifically, the histomorphometric analysis data indicates that topical application of FGFs induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to the control group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Sonic hedgehog (Shh) in hair follicles of the FGFs-treated group. These results suggest that FGFs promote hair growth by inducing the anagen phase in resting hair follicles and might be a potential hair growth-promoting agent. PMID:25685806

  11. Effect of growth factors on hyaluronan production by canine vocal fold fibroblasts.

    PubMed

    Hirano, Shigeru; Bless, Diane M; Heisey, Dennis; Ford, Charles N

    2003-07-01

    Hyaluronan (HYA) is considered to be a crucial factor in scarless wound healing and in maintaining tissue viscosity of the vocal fold lamina propria. In this study focusing on the effects of growth factors, we examined how HYA is produced and controlled in canine cultured vocal fold fibroblasts. Fibroblasts were taken from the lamina propria of the vocal folds of 8 dogs and cultured with and without growth factors. The production of HYA in the supernatant culture was quantitatively examined by enzyme-linked immunosorbent assay. Hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, and transforming growth factor beta1 all stimulated HYA synthesis from vocal fold fibroblasts. These effects differed with the concentration of growth factors and the incubation period. We also examined how frequently the growth factors had to be administered in order to maintain appropriate levels of HYA. A single administration was sufficient to maintain appropriate HYA levels for at least 7 days. The present studies have demonstrated positive effects of growth factors in stimulating HYA production. Further in vivo study is needed to clarify the usefulness of these growth factors in the management of vocal fold scarring.

  12. miR-24 and miR-122 Negatively Regulate the Transforming Growth Factor-β/Smad Signaling Pathway in Skeletal Muscle Fibrosis.

    PubMed

    Sun, Yaying; Wang, Hui; Li, Yan; Liu, Shaohua; Chen, Jiwu; Ying, Hao

    2018-06-01

    Fibrosis is common after skeletal muscle injury, undermining tissue regeneration and function. The mechanism underlying skeletal muscle fibrosis remains unveiled. Transforming growth factor-β/Smad signaling pathway is supposed to play a pivotal role. However, how microRNAs interact with transforming growth factor-β/Smad-related muscle fibrosis remains unclear. We showed that microRNA (miR)-24-3p and miR-122-5p declined in skeletal muscle fibrosis, which was a consequence of transforming growth factor-β. Upregulating Smad4 suppressed two microRNAs, whereas inhibiting Smad4 elevated microRNAs. Luciferase reporter assay and chromatin immunoprecipitation confirmed that Smad4 directly inhibited two microRNAs. On the other hand, overexpression of these two miRs retarded fibrotic process. We further identified that Smad2 was a direct target of miR-24-3p, whereas miR-122-5p targeted transforming growth factor-β receptor-II. Both targets were important participants in transforming growth factor-β/Smad signaling. Taken together, a positive feedback loop in transforming growth factor-β/Smad4 signaling pathway in skeletal muscle fibrosis was identified. Transforming growth factor-β/Smad axis could be downregulated by microRNAs. This effect, however, was suppressed by Smad4, the downstream of transforming growth factor-β. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Galvez-Contreras, Alma Y.; Campos-Ordonez, Tania; Gonzalez-Castaneda, Rocio E.; Gonzalez-Perez, Oscar

    2017-01-01

    Growth factors (GFs) are cytokines that regulate the neural development. Recent evidence indicates that alterations in the expression level of GFs during embryogenesis are linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). In this concise review, we summarize the current evidence that supports the role of brain-derived neurotrophic factor, insulin-like growth factor 2, hepatocyte growth factor (HGF), glial-derived neurotrophic factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as clinical markers for diagnosis and prognosis of these neurodevelopmental disorders. PMID:28751869

  14. Epidermal growth factor in alkali-burned corneal epithelial wound healing.

    PubMed

    Singh, G; Foster, C S

    1987-06-15

    We conducted a double-masked study to evaluate the effect of epidermal growth factor on epithelial wound healing and recurrent erosions in alkali-burned rabbit corneas. Epithelial wounds 10 mm in diameter healed completely under the influence of topical epidermal growth factor, whereas the control corneas did not resurface in the center. On reversal of treatment, the previously nonhealing epithelial defects healed when treated with topical epidermal growth factor eyedrops. Conversely, the epidermal growth factor-treated and resurfaced corneas developed epithelial defects when treatment was discontinued. Histopathologic examination disclosed hyperplastic epithelium growing over the damaged stroma laden with polymorphonuclear leukocytes when treated with epidermal growth factor eyedrops, but it did not adhere to the underlying tissue. Hydropic changes were seen intracellularly as well as between the epithelial cells and the stroma.

  15. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2more » hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.« less

  16. Predictive factors for intrauterine growth restriction.

    PubMed

    Albu, A R; Anca, A F; Horhoianu, V V; Horhoianu, I A

    2014-06-15

    Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies.

  17. Ocular Angiogenesis: Vascular Endothelial Growth Factor and Other Factors.

    PubMed

    Rubio, Roman G; Adamis, Anthony P

    2016-01-01

    Systematic study of the mechanisms underlying pathological ocular neovascularization has yielded a wealth of knowledge about pro- and anti-angiogenic factors that modulate diseases such as neovascular age-related macular degeneration. The evidence implicating vascular endothelial growth factor (VEGF) in particular has led to the development of a number of approved anti-VEGF therapies. Additional proangiogenic targets that have emerged as potential mediators of ocular neovascularization include hypoxia-inducible factor-1, angiopoietin-2, platelet-derived growth factor-B and components of the alternative complement pathway. As for VEGF, knowledge of these factors has led to a product pipeline of many more novel agents that are in various stages of clinical development in the setting of ocular neovascularization. These agents are represented by a range of drug classes and, in addition to novel small- and large-molecule VEGF inhibitors, include gene therapies, small interfering RNA agents and tyrosine kinase inhibitors. In addition, combination therapy is beginning to emerge as a strategy to improve the efficacy of individual therapies. Thus, a variety of agents, whether administered alone or as adjunctive therapy with agents targeting VEGF, offer the promise of expanding the range of treatments for ocular neovascular diseases. © 2016 S. Karger AG, Basel.

  18. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1

    PubMed Central

    Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J. Preben; Andreasen, Peter A.; Jensen, Jan K.

    2016-01-01

    Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). PMID:27189939

  19. Cell-extracellular matrix interactions can regulate the switch between growth and differentiation in rat hepatocytes: reciprocal expression of C/EBP alpha and immediate-early growth response transcription factors.

    PubMed Central

    Rana, B; Mischoulon, D; Xie, Y; Bucher, N L; Farmer, S R

    1994-01-01

    Previous investigations have shown that culture of freshly isolated hepatocytes under conventional conditions, i.e., on dried rat tail collagen in the presence of growth factors, facilitates cell growth but also causes an extensive down-regulation of most liver-specific functions. This dedifferentiation process can be prevented if the cells are cultured on a reconstituted basement membrane gel matrix derived from the Englebreth-Holm-Swarm mouse sarcoma tumor (EHS gel). To gain insight into the mechanisms regulating this response to extracellular matrix, we are analyzing the activities of two families of transcription factors, C/EBP and AP-1, which control the transcription of hepatic and growth-responsive genes, respectively. We demonstrate that isolation of hepatocytes from the normal quiescent rat liver by collagenase perfusion activates the immediate-early growth response program, as indicated by increased expression of c-jun, junB, c-fos, and c-myc mRNAs. Adhesion of these activated cells to dried rat tail collagen augments the elevated levels of these mRNAs for the initial 1 to 2 h postplating; junB and c-myc mRNA levels then drop steeply, with junB returning to normal quiescence and the c-myc level remaining slightly elevated during the 3-day culture period. Levels of c-jun mRNA and AP-1 DNA binding activity, however, remain elevated from the outset, while C/EBP alpha mRNA expression is down-regulated, resulting in a decrease in the steady-state levels of the 42- and 30-kDa C/EBP alpha polypeptides and C/EBP alpha DNA binding activity. In contrast, C/EBP beta mRNA production remains at near-normal hepatic levels for 5 to 8 days of culture, although its DNA binding activity decreases severalfold during this time. Adhesion of hepatocytes to the EHS gel for the same period of time dramatically alters this program: it arrests growth and inhibits AP-1 DNA binding activity and the expression of c-jun, junB, and c-myc mRNAs, but, in addition, it restores C/EBP alpha

  20. Neonatal antecedents for cerebral palsy in extremely preterm babies and interaction with maternal factors.

    PubMed

    Tran, Uyen; Gray, Peter H; O'Callaghan, Michael J

    2005-06-01

    Preterm delivery is associated with an increased risk of cerebral palsy (CP). The greatest risk is for infants born <28 weeks' gestation. To identify significant neonatal risk factors for CP and explore the interactions between antenatal and neonatal risk factors, among extremely preterm infants of 27 weeks' gestation or less. Nested case control design. Infants born between 1989 and 1996, at 24-27 weeks' gestation, were evaluated: 30 with CP at 2 years corrected age and 120 control infants matched for gestation age. Neonatal variables were compared using matched analyses with the interaction between antenatal and neonatal factors being examined using logistic regression analyses. Risk factors for CP on matched analyses included patent ductus arteriosus requiring surgical ligation, peri-intraventricular haemorrhage, moderate to severe ventricular dilatation, periventricular leukomalacia (PVL) and need for home oxygen. Independent neonatal predictors were ventricular dilatation (OR 7.3; 95% CI 1.6, 32.3), PVL (OR 29.8; 95% CI 5.6, 159.1) and home oxygen use (OR 3.4; 95% CI 1.2, 9.4). No interaction terms in the logistic models were significant between the previously identified pregnancy risk factors of absence of antenatal steroids and intrauterine growth restriction and the neonatal risk factors. PVL is the most powerful independent predictor of CP in extremely preterm infants of 27 weeks' gestation or less and appears to be uninfluenced by antenatal factors.

  1. Bone-Derived Growth Factors

    PubMed Central

    Capanna, R.; Campanacci, D.A.; De Biase, P.; Cuomo, P.; Lorenzoni, A.

    2010-01-01

    Bone regeneration is based on the synergy between osteconduction, osteoinduction and osteogenesis. In recent years, we have witnessed the birth and development of numerous osteoconductive substrates, created with the intention of replacing bone grafts, both autologous and homologous. Recently, attention has shifted to osteogenesis, in other words, to the study of mesenchymal cells and their differentiation into osteoblastic cell lines that can be cultured in vitro (as already seen with chondroblasts). Osteoinduction, too, has been shown to be equally important, ever since Urist’s 1967 study which drew attention to the demineralised bone matrix and its properties. The following twenty years led to the definition of bone morphogenetic protein (BMP) and finally to the marketing of the first ostegenic protein (OP-1) obtained by means of the gene recombination technique. The BMPs produced using this technique that, so far, have been shown to be most active are BMP-2 (Infuse) and BMP-7 (Osigraft). The BMPs are not the only molecules with osteoinductive capacity. Other molecules capable of influencing bone regeneration are: platelet-derived growth factors (PDGFs), the transforming growth factor-beta (TGF-β) family, insulin-like growth factor (IGF-I) and the acidic and basic fibroblast growth factors (FGFs). All these growth factors act in synergy with the BMPs, modulating their action and exerting an inductive and proliferative action on the cell lines responsible for regenerating the bone matrix. The literature has been literally invaded by studies, both experimental and preclinical, on these proteins (Termaat, 2005), and they have provided ample demonstration that the BMPs are effective in improving healing of fractures, pseudoarthrosis and spinal fusions. Important advantages of BMPs are the complete absence of risk of transmissible disease, given that they are produced using recombination technology; their purity, and thus absence of an immune response (although

  2. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  3. Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides

    PubMed Central

    Zhao, Wenjing; McCallum, Scott A.; Xiao, Zhongping; Zhang, Fuming; Linhardt, Robert J.

    2011-01-01

    Heparin and heparan sulphate (HS) exert their wide range of biological activities by interacting with extracellular protein ligands. Among these important protein ligands are various angiogenic growth factors and cytokines. HS-binding to vascular endothelial growth factor (VEGF) regulates multiple aspects of vascular development and function through its specific interaction with HS. Many studies have focused on HS-derived or HS-mimicking structures for the characterization of VEGF165 interaction with HS. Using a heparinase 1-prepared small library of heparin-derived oligosaccharides ranging from hexasaccharide to octadecasaccharide, we systematically investigated the heparin-specific structural features required for VEGF binding. We report the apparent affinities for the association between the heparin-derived oligosaccharides with both VEGF165 and VEGF55, a peptide construct encompassing exclusively the heparin-binding domain of VEGF165. An octasaccharide was the minimum size of oligosaccharide within the library to efficiently bind to both forms of VEGF and that a tetradecasaccharide displayed an effective binding affinity to VEGF165 comparable to unfractionated heparin. The range of relative apparent binding affinities among VEGF and the panel of heparin-derived oligosaccharides demonstrate that VEGF binding affinity likely depends on the specific structural features of these oligosaccharides including their degree of sulphation and sugar ring stereochemistry and conformation. Notably, the unique 3-O-sulpho group found within the specific antithrombin binding site of heparin is not required for VEGF165 binding. These findings afford new insight into the inherent kinetics and affinities for VEGF association with heparin and heparin-derived oligosaccharides with key residue specific modifications and may potentially benefit the future design of oligosaccharide-based anti-angiogenesis drugs. PMID:21658003

  4. Potential role of fibroblast growth factor in enhancement of fracture healing.

    PubMed

    Radomsky, M L; Thompson, A Y; Spiro, R C; Poser, J W

    1998-10-01

    Fibroblast growth factors are present in significant amounts in bone and several studies have suggested that they may be involved in normal fracture healing. It is well established that fibroblast growth factors have mitogenic and angiogenic activity on mesoderm and neuroectoderm derived cells. Of particular interest as a member of the fibroblast growth factor family, basic fibroblast growth factor stimulates mitogenesis, chemotaxis, differentiation, and angiogenesis. It also plays an important role in the development of vascular, nervous, and skeletal systems, promotes the maintenance and survival of certain tissues, and stimulates wound healing and tissue repair. Animal studies have shown that the direct injection of fibroblast growth factor into fresh fractures stimulates callus formation, which provides mechanical stability to the fracture, accelerates healing, and restores competence. The matrix used to present the fibroblast growth factor at the fracture site plays a critical role in the effectiveness of the treatment. The evaluation of injectable basic fibroblast growth factor in a sodium hyaluronate gel for its effectiveness in stimulating fracture healing is described. When applied directly into a freshly created fracture in the rabbit fibula, a single injection of the basic fibroblast growth factor and hyaluronan results in the stimulation of callus formation, increased bone formation, and earlier restoration of mechanical strength at the fracture site. The hyaluronan gel serves as a reservoir that sequesters the basic fibroblast growth factor at the injection site for the length of time necessary to create an environment conducive to fracture healing. It is concluded that basic fibroblast growth factor and sodium hyaluronate act synergistically to accelerate fracture healing and that the combination is suitable for clinical evaluation as a therapy in fracture treatment.

  5. Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.

    PubMed

    Kim, Ji Hyeon; Sim, Jiyeon; Kim, Hyun-Jung

    2018-04-11

    Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

  6. Dihydrotestosterone inhibits hair growth in mice by inhibiting insulin-like growth factor-I production in dermal papillae.

    PubMed

    Zhao, Juan; Harada, Naoaki; Okajima, Kenji

    2011-10-01

    We demonstrated that insulin-like growth factor-I (IGF-I) production in dermal papillae was increased and hair growth was promoted after sensory neuron stimulation in mice. Although the androgen metabolite dihydrotestosterone (DHT) inhibits hair growth by negatively modulating growth-regulatory effects of dermal papillae, relationship between androgen metabolism and IGF-I production in dermal papillae is not fully understood. We examined whether DHT inhibits IGF-I production by inhibiting sensory neuron stimulation, thereby preventing hair growth in mice. Effect of DHT on sensory neuron stimulation was examined using cultured dorsal root ganglion (DRG) neurons isolated from mice. DHT inhibits calcitonin gene-related peptide (CGRP) release from cultured DRG neurons. The non-steroidal androgen-receptor antagonist flutamide reversed DHT-induced inhibition of CGRP release. Dermal levels of IGF-I and IGF-I mRNA, and the number of IGF-I-positive fibroblasts around hair follicles were increased at 6h after CGRP administration. DHT administration for 3weeks decreased dermal levels of CGRP, IGF-I, and IGF-I mRNA in mice. Immunohistochemical expression of IGF-I and the number of proliferating cells in hair follicles were decreased and hair re-growth was inhibited in animals administered DHT. Co-administration of flutamide and CGRP reversed these changes induced by DHT administration. These observations suggest that DHT may decrease IGF-I production in dermal papillae by inhibiting sensory neuron stimulation through interaction with the androgen receptor, thereby inhibiting hair growth in mice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications

    PubMed Central

    Ciarmela, Pasquapina; Islam, Md. Soriful; Reis, Fernando M.; Gray, Peter C.; Bloise, Enrrico; Petraglia, Felice; Vale, Wylie; Castellucci, Mario

    2011-01-01

    BACKGROUND Growth factors are proteins secreted by a number of cell types that are capable of modulating cellular growth, proliferation and cellular differentiation. It is well accepted that uterine cellular events such as proliferation and differentiation are regulated by sex steroids and their actions in target tissues are mediated by local production of growth factors acting through paracrine and/or autocrine mechanisms. Myometrial mass is ultimately modified in pregnancy as well as in tumour conditions such as leiomyoma and leiomyosarcoma. Leiomyomas, also known as fibroids, are benign tumours of the uterus, considered to be one of the most frequent causes of infertility in reproductive years in women. METHODS For this review, we searched the database MEDLINE and Google Scholar for articles with content related to growth factors acting on myometrium; the findings are hereby reviewed and discussed. RESULTS Different growth factors such as epidermal growth factor (EGF), transforming growth factor-α (TGF-α), heparin-binding EGF (HB-EGF), acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF) and TGF-β perform actions in myometrium and in leiomyomas. In addition to these growth factors, activin and myostatin have been recently identified in myometrium and leiomyoma. CONCLUSIONS Growth factors play an important role in the mechanisms involved in myometrial patho-physiology. PMID:21788281

  8. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1: FUNCTIONAL INTERACTIONS BETWEEN THE KUNITZ-TYPE INHIBITOR DOMAIN-1 AND THE NEIGHBORING POLYCYSTIC KIDNEY DISEASE-LIKE DOMAIN.

    PubMed

    Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J Preben; Andreasen, Peter A; Jensen, Jan K

    2016-07-01

    Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Unliganded fibroblast growth factor receptor 1 forms density-independent dimers.

    PubMed

    Comps-Agrar, Laëtitia; Dunshee, Diana Ronai; Eaton, Dan L; Sonoda, Junichiro

    2015-10-02

    Fibroblast growth factors receptors (FGFRs) are thought to initiate intracellular signaling cascades upon ligand-induced dimerization of the extracellular domain. Although the existence of unliganded FGFR1 dimers on the surface of living cells has been proposed, this notion remains rather controversial. Here, we employed time-resolved Förster resonance energy transfer combined with SNAP- and ACP-tag labeling in COS7 cells to monitor dimerization of full-length FGFR1 at the cell-surface with or without the coreceptor βKlotho. Using this approach we observed homodimerization of unliganded FGFR1 that is independent of its surface density. The homo-interaction signal observed for FGFR1 was indeed as robust as that obtained for epidermal growth factor receptor (EGFR) and was further increased by the addition of activating ligands or pathogenic mutations. Mutational analysis indicated that the kinase and the transmembrane domains, rather than the extracellular domain, mediate the ligand-independent FGFR1 dimerization. In addition, we observed a formation of a higher order ligand-independent complex by the c-spliced isoform of FGFR1 and βKlotho. Collectively, our approach provides novel insights into the assembly and dynamics of the full-length FGFRs on the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Direct interaction between surface β1,4-galactosyltransferase 1 and epidermal growth factor receptor (EGFR) inhibits EGFR activation in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wenqing; Weng, Shuqiang; Zhang, Si

    2013-05-10

    Highlights: •β1,4GT1 interacts with EGFR both in vitro and in vivo. •β1,4GT1 co-localizes with EGFR on the cell surface. •β1,4GT1 inhibits {sup 125}I-EGF binding to EGFR. •β1,4GT1 inhibits EGF induced EGFR dimerization and phosphorylation. -- Abstract: Our previous studies showed that cell surface β1,4-galactosyltransferase 1 (β1,4GT1) negatively regulated cell survival through inhibition and modulation of the epidermal growth factor receptor (EGFR) signaling pathway in human hepatocellular carcinoma (HCC) SMMC-7721 cells. However, the underlying mechanism remains unclear. Here we demonstrated that β1,4-galactosyltransferase 1 (β1,4GT1) interacted with EGFR in vitro by GST pull-down analysis. Furthermore, we demonstrated that β1,4GT1 bound to EGFRmore » in vivo by co-immunoprecipitation and determined the co-localization of β1,4GT1 and EGFR on the cell surface via confocal laser scanning microscopy analysis. Finally, using {sup 125}I-EGF binding experiments and Western blot analysis, we found that overexpression of β1,4GT1 inhibited {sup 125}I-EGF binding to EGFR, and consequently reduced the levels of EGFR dimerization and phosphorylation. In contrast, RNAi-mediated knockdown of β1,4GT1 increased the levels of EGFR dimerization and phosphorylation. These data suggest that cell surface β1,4GT1 interacts with EGFR and inhibits EGFR activation.« less

  11. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  12. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects

    PubMed Central

    Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, Xinying

    2013-01-01

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. PMID:25206635

  13. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2010-10-01

    AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2009 – 14 September 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth ...8 Appendices…………………………………………………………………………… 8 Supporting Data……………………………………………………………………... 8 Fibroblast Growth Factor -2: an

  14. Fibroblast growth factor signaling in skeletal development and disease

    PubMed Central

    Ornitz, David M.; Marie, Pierre J.

    2015-01-01

    Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored. PMID:26220993

  15. Modelling the interaction between flooding events and economic growth

    NASA Astrophysics Data System (ADS)

    Grames, J.; Prskawetz, A.; Grass, D.; Blöschl, G.

    2015-06-01

    Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014). These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.

  16. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    PubMed

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  17. Gelatin Methacrylate Microspheres for Growth Factor Controlled Release

    PubMed Central

    Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.

    2014-01-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489

  18. Quinones are growth factors for the human gut microbiota.

    PubMed

    Fenn, Kathrin; Strandwitz, Philip; Stewart, Eric J; Dimise, Eric; Rubin, Sarah; Gurubacharya, Shreya; Clardy, Jon; Lewis, Kim

    2017-12-20

    The human gut microbiome has been linked to numerous components of health and disease. However, approximately 25% of the bacterial species in the gut remain uncultured, which limits our ability to properly understand, and exploit, the human microbiome. Previously, we found that growing environmental bacteria in situ in a diffusion chamber enables growth of uncultured species, suggesting the existence of growth factors in the natural environment not found in traditional cultivation media. One source of growth factors proved to be neighboring bacteria, and by using co-culture, we isolated previously uncultured organisms from the marine environment and identified siderophores as a major class of bacterial growth factors. Here, we employ similar co-culture techniques to grow bacteria from the human gut microbiome and identify novel growth factors. By testing dependence of slow-growing colonies on faster-growing neighboring bacteria in a co-culture assay, eight taxonomically diverse pairs of bacteria were identified, in which an "induced" isolate formed a gradient of growth around a cultivatable "helper." This set included two novel species Faecalibacterium sp. KLE1255-belonging to the anti-inflammatory Faecalibacterium genus-and Sutterella sp. KLE1607. While multiple helper strains were identified, Escherichia coli was also capable of promoting growth of all induced isolates. Screening a knockout library of E. coli showed that a menaquinone biosynthesis pathway was required for growth induction of Faecalibacterium sp. KLE1255 and other induced isolates. Purified menaquinones induced growth of 7/8 of the isolated strains, quinone specificity profiles for individual bacteria were identified, and genome analysis suggests an incomplete menaquinone biosynthetic capability yet the presence of anaerobic terminal reductases in the induced strains, indicating an ability to respire anaerobically. Our data show that menaquinones are a major class of growth factors for bacteria

  19. Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors.

    PubMed

    Galimi, F; Bagnara, G P; Bonsi, L; Cottone, E; Follenzi, A; Simeone, A; Comoglio, P M

    1994-12-01

    Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c-MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU-GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment.

  20. Alk5-Mediated Transforming Growth Factor β Signaling Acts Upstream of Fibroblast Growth Factor 10 To Regulate the Proliferation and Maintenance of Dental Epithelial Stem Cells▿

    PubMed Central

    Zhao, Hu; Li, Sha; Han, Dong; Kaartinen, Vesa; Chai, Yang

    2011-01-01

    Mouse incisors grow continuously throughout life. This growth is supported by the division of dental epithelial stem cells that reside in the cervical loop region. Little is known about the maintenance and regulatory mechanisms of dental epithelial stem cells. In the present study, we investigated how transforming growth factor β (TGF-β) signaling-mediated mesenchymal-epithelial cell interactions control dental epithelial stem cells. We designed two approaches using incisor organ culture and bromodeoxyuridine (BrdU) pulse-chase experiments to identify and evaluate stem cell functions. We show that the loss of the TGF-β type I receptor (Alk5) in the cranial neural crest-derived dental mesenchyme severely affects the proliferation of TA (transit-amplifying) cells and the maintenance of dental epithelial stem cells. Incisors of Wnt1-Cre; Alk5fl/fl mice lost their ability to continue to grow in vitro. The number of BrdU label-retaining cells (LRCs) was dramatically reduced in Alk5 mutant mice. Fgf10, Fgf3, and Fgf9 signals in the dental mesenchyme were downregulated in Wnt1-Cre; Alk5fl/fl incisors. Strikingly, the addition of exogenous fibroblast growth factor 10 (FGF10) into cultured incisors rescued dental epithelial stem cells in Wnt1-Cre; Alk5fl/fl mice. Therefore, we propose that Alk5 functions upstream of Fgf10 to regulate TA cell proliferation and stem cell maintenance and that this signaling mechanism is crucial for stem cell-mediated tooth regeneration. PMID:21402782

  1. Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration.

    PubMed

    de Vries, Jorad; Evers, Jochem B; Poelman, Erik H

    2017-04-01

    Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate and balance growth and defence, the complex dynamics in plant-plant competition and plant-herbivore interactions needs to be considered. Induced growth-defence responses affect plant competition and herbivore colonisation in space and time, which has consequences for the adaptive value of these responses. Assessing these complex interactions strongly benefits from advanced modelling tools that can model multitrophic interactions in space and time. Such an exercise will allow a critical re-evaluation why and how plants integrate defence and competition for light. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Growth factor-functionalized silk membranes support wound healing in vitro.

    PubMed

    Bienert, M; Hoss, M; Bartneck, M; Weinandy, S; Böbel, M; Jockenhövel, S; Knüchel, R; Pottbacker, K; Wöltje, M; Jahnen-Dechent, W; Neuss, S

    2017-08-16

    Chronic wounds represent a serious problem in daily medical routine requiring improved wound care. Silk of the domesticated silkworm (Bombyx mori) has been used to form a variety of biomaterials for medical applications. We genetically engineered B. mori to produce silk functionalized with growth factors to promote wound healing in vitro. In this study FGF-, EGF-, KGF-, PDGF- or VEGF-functionalized silk membranes were compared to native B. mori silk membranes without growth factors for their ability to support wound healing in vitro. All silk membranes were cytocompatible and supported macrophage secretion of neutrophil recruiting factor CXCL1 and monocyte chemoattractant protein 1 (MCP-1). VEGF-functionalized silk significantly outperformed other growth factor-functionalized silk membranes, but not native silk in angiogenesis assays. In addition, EGF- and VEGF-functionalized silk membranes slightly enhanced macrophage adhesion compared to silk without growth factors. In wound healing assays in vitro (reduction of wound lesion), dermal equivalents showed a higher wound healing capacity when covered with EGF-, FGF- or VEGF-functionalized silk membranes compared to native, KGF- or PDGF-functionalized silk membranes. Keratinocyte migration and growth is overstimulated by KGF- and VEGF-functionalized silk membranes. In conclusion, growth factor-functionalized silk membranes prepared from genetically engineered silk worm glands are promising wound dressings for future wound healing therapies.

  3. Therapeutic modulation of growth factors and cytokines in regenerative medicine.

    PubMed

    Ioannidou, Effie

    2006-01-01

    Regeneration that takes place in the human body is limited throughout life. Therefore, when organs are irreparably damaged, they are usually replaced with an artificial device or donor organ. The term "regenerative medicine" covers the restoration or replacement of cells, tissues, and organs. Stem cells play a major role in regenerative medicine by providing the way to repopulate organs damaged by disease. Stem cells have the ability to self renew and to regenerate cells of diverse lineages within the tissue in which they reside. Stem cells could originate from embryos or adult tissues. Growth factors are proteins that may act locally or systemically to affect the growth of cells in several ways. Various cell activities, including division, are influenced by growth factors. Cytokines are a family of low-molecular-weight proteins that are produced by numerous cell types and are responsible for regulating the immune response, inflammation, tissue remodeling and cellular differentiation. Target cells of growth factors and cytokines are mesenchymal, epithelial and endothelial cells. These molecules frequently have overlapping activities and can act in an autocrine or paracrine fashion. A complex network of growth factors and cytokines guides cellular differentiation and regeneration in all organs and tissues. The aim of this paper is to review the role of growth factors and cytokines in different organs or systems and explore their therapeutic application in regenerative medicine. The role of stem cells combined with growth factors and cytokines in the regeneration of vascular and hematopoietic, neural, skeletal, pancreatic, periodontal, and mucosal tissue is reviewed. There is evidence that supports the use of growth factors and cytokines in the treatment of neurological diseases, diabetes, cardiovascular disease, periodontal disease, cancer and its complication, oral mucositis. After solving the ethical issues and establishing clear and reasonable regulations

  4. [Effect of cryotherapy over the expression of vascular endothelial growth factor and pigment epithelium-derived factor].

    PubMed

    Toscano-Garibay, Julia Dolores; Quiroz-Mercado, Hugo; Espitia-Pinzón, Clara; Gil-Carrasco, Félix; Flores-Estrada, José Javier

    2014-01-01

    Cryotherapy is a no invasive technique that uses intense cold to freeze and destroy cancer tissues. There are no descriptions of its effects over the expression of vascular endothelial growth factor and pigment epithelium-derived factor. Experimental study in cryogenic spot were applied in the right sclera of twelve pigs for ten minutes. Other 3 pigs were used as normal controls. Animals were sacrificed at 7, 14 and 21 and the tissues of choriodes and retina were dissected in areas of approximately 1 cm2 surrounding cryogenic spots. Expression levels of vascular endothelial growth factor and pigment epithelium-derived factor were determined analyzed using polymerase chain reaction coupled to reverse-transcription. Vascular endothelial growth factor was significantly downregulated (24%, p< 0.05) seven days post-treatment meanwhile pigment epithelium-derived factor levels increased 44.8% (p< 0.05) as compared to normal controls (untreated). Both vascular endothelial growth factor and pigment epithelium-derived factor levels remain the same until day 14 but returned to basal expression at day 21. This work expose the relation of cryotherapy with the expression of two factors related to angiogenesis. RESULTS showed significant changes on the expression of vascular endothelial growth factor and pigment epithelium-derived factor illustrating that both proteins are regulated in response to cryogenic treatment in relatively short periods (21 days).

  5. Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development.

    PubMed

    Mimida, Naozumi; Kidou, Shin-Ichiro; Iwanami, Hiroshi; Moriya, Shigeki; Abe, Kazuyuki; Voogd, Charlotte; Varkonyi-Gasic, Erika; Kotoda, Nobuhiro

    2011-05-01

    Understanding the flowering process in apple (Malus × domestica Borkh.) is essential for developing methods to shorten the breeding period and regulate fruit yield. It is known that FLOWERING LOCUS T (FT) acts as a transmissible floral inducer in the Arabidopsis flowering network system. To clarify the molecular network of two apple FT orthologues, MdFT1 and MdFT2, we performed a yeast two-hybrid screen to identify proteins that interact with MdFT1. We identified several transcription factors, including two members of the TCP (TEOSINTE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL FACTORs) family, designated MdTCP2 and MdTCP4, and an Arabidopsis thaliana VOZ1 (Vascular plant One Zinc finger protein1)-like protein, designated MdVOZ1. MdTCP2 and MdVOZ1 also interacted with MdFT2 in yeast. The expression domain of MdTCP2 and MdVOZ1 partially overlapped with that of MdFT1 and MdFT2, most strikingly in apple fruit tissue, further suggesting a potential interaction in vivo. Constitutive expression of MdTCP2, MdTCP4 and MdVOZ1 in Arabidopsis affected plant size, leaf morphology and the formation of leaf primordia on the adaxial side of cotyledons. On the other hand, chimeric MdTCP2, MdTCP4 and MdVOZ1 repressors that included the ethylene-responsive transcription factors (ERF)-associated amphiphilic repression (EAR) domain motif influenced reproduction and inflorescence architecture in transgenic Arabidopsis. These results suggest that MdFT1 and/or MdFT2 might be involved in the regulation of cellular proliferation and the formation of new tissues and that they might affect leaf and fruit development by interacting with TCP- and VOZ-family proteins. DDBJ accession nos. AB531019 (MdTCP2a mRNA), AB531020 (MdTCP2b mRNA), AB531021 (MdTCP4a mRNA), AB531022 (MdTCP4b mRNA) and AB531023 (MdVOZ1a mRNA). © The Author 2011. Published by Oxford University Press. All rights reserved.

  6. EGFR ligands drive multipotential stromal cells to produce multiple growth factors and cytokines via early growth response-1.

    PubMed

    Kerpedjieva, Svetoslava S; Kim, Duk Soo; Barbeau, Dominique J; Tamama, Kenichi

    2012-09-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)-EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase-extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands.

  7. Keratinocyte growth factor is a growth factor for mammary epithelium in vivo. The mammary epithelium of lactating rats is resistant to the proliferative action of keratinocyte growth factor.

    PubMed Central

    Ulich, T. R.; Yi, E. S.; Cardiff, R.; Yin, S.; Bikhazi, N.; Biltz, R.; Morris, C. F.; Pierce, G. F.

    1994-01-01

    Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. KGF is secreted by stromal cells and affects epithelial but not mesenchymal cell proliferation. KGF injected intravenously was found to cause dramatic proliferation of mammary epithelium in the mammary glands of rats. KGF causes ductal neogenesis and intraductal epithelial hyperplasia but not lobular differentiation in nulliparous female rats. KGF causes ductal and lobular epithelial hyperplasia in male rats. KGF causes proliferation of ductal and acinar cells in the mammary glands of pregnant rats. On the other hand, the ductal epithelium of lactating postpartum rats is resistant to the proliferative action of KGF. The mammary glands of lactating rats did not express less KGF receptor mRNA than the glands of pregnant rats, suggesting that the resistance of the ductal epithelium to KGF during lactation is not related to KGF receptor mRNA down-regulation. The mammary glands of both pregnant and postpartum lactating rats express KGF mRNA with more KGF present in the glands of lactating rats. In conclusion, the KGF and KGF receptor genes are expressed in rat mammary glands and recombinant KGF is a potent growth factor for mammary epithelium. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8178937

  8. Cloning of a cancer cell-producing hepatocyte growth factor, vascular endothelial growth factor, and interleukin-8 from gastric cancer cells.

    PubMed

    Iwai, Mineko; Matsuda, Masahiko; Iwai, Yoshiaki

    2003-01-01

    A cell colony (IM95m) that produces hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) was cloned from gastric cancer cells (IM95 cell line). In culture medium, the highest levels of HGF, VEGF, and IL-8 were about 1.1, 0.9, and 0.17 ng/ml culture medium at 3 d from 10(5) cells. IM95m may be useful in elucidating the role of tumor cells in angiogenesis.

  9. c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-beta signaling in diffuse-type gastric carcinoma.

    PubMed

    Kiyono, Kunihiko; Suzuki, Hiroshi I; Morishita, Yasuyuki; Komuro, Akiyoshi; Iwata, Caname; Yashiro, Masakazu; Hirakawa, Kosei; Kano, Mitsunobu R; Miyazono, Kohei

    2009-10-01

    c-Ski, originally identified as a proto-oncogene product, is an important negative regulator of transforming growth factor (TGF)-beta family signaling through interaction with Smad2, Smad3, and Smad4. High expression of c-Ski has been found in some cancers, including gastric cancer. We previously showed that disruption of TGF-beta signaling by dominant-negative TGF-beta type II receptor in a diffuse-type gastric carcinoma model accelerated tumor growth through induction of tumor angiogenesis by decreased expression of the anti-angiogenic factor thrombospondin (TSP)-1. Here, we examined the function of c-Ski in human diffuse-type gastric carcinoma OCUM-2MLN cells. Overexpression of c-Ski inhibited TGF-beta signaling in OCUM-2MLN cells. Interestingly, c-Ski overexpression resulted in extensive acceleration of the growth of subcutaneous xenografts in BALB/c nu/nu female mice (6 weeks of age). Similar to tumors expressing dominant-negative TGF-beta type II receptor, histochemical studies revealed less fibrosis and increased angiogenesis in xenografted tumors expressing c-Ski compared to control tumors. Induction of TSP-1 mRNA by TGF-beta was attenuated by c-Ski in vitro, and expression of TSP-1 mRNA was decreased in tumors expressing c-Ski in vivo. These findings suggest that c-Ski overexpression promotes the growth of diffuse-type gastric carcinoma through induction of angiogenesis.

  10. Impaired growth in Rabson-Mendenhall syndrome: lack of effect of growth hormone and insulin-like growth factor-I.

    PubMed

    Longo, N; Singh, R; Griffin, L D; Langley, S D; Parks, J S; Elsas, L J

    1994-09-01

    Mutations in the insulin receptor gene cause the severe insulin-resistant syndromes leprechaunism and Rabson-Mendenhall syndrome. There is no accepted therapy for these inherited conditions. Here we report the results of recombinant human GH (rhGH) and recombinant human insulin-like growth factor-I (rhIGF-I) treatment of a male patient, Atl-2, with Rabson-Mendenhall syndrome. The patient was small for gestational age, had premature dentition, absence of sc fat, acanthosis nigricans, fasting hypoglycemia and postprandial hyperglycemia, and extremely high concentrations of circulating insulin (up to 8500 microU/mL). Fibroblasts and lymphoblasts established from this patient had reduced insulin binding, which was 20-30% of the control value. Binding of epidermal growth factor, IGF-I, and GH to the patient's fibroblasts was normal. The growth of fibroblasts cultured from patient Atl-2 in vitro was intermediate between that of fibroblasts from patients with leprechaunism and control values. The patient's growth curve in vivo was far below the fifth percentile despite adequate nutrition. To stimulate growth, therapy with rhGH was initiated, the rationale being to stimulate hepatic IGF-I production and IGF-I receptor signaling, and bypass the inherited block in insulin receptor signaling. Therapy with rhGH (up to 0.5 mg/kg.week) did not improve growth and failed to increase the levels of circulating IGF-I and IGF-binding protein-3 over a 14-month period. As rhGH could not stimulate growth, rhIGF-I (up to 100 micrograms/kg.day) was given by daily sc injection. No increase in growth velocity was observed over a 14-month period. These results indicate that both GH and IGF-I fail to correct growth in a patient with severe inherited insulin resistance. The lack of efficacy of IGF-I treatment may be related to multiple factors, such as the poor metabolic state of the patient, the deficiency of serum carrier protein for IGF-I, an increased clearance of the growth factor, IGF

  11. The Interaction of Learning Disability Status and Student Demographic Characteristics on Mathematics Growth.

    PubMed

    Stevens, Joseph J; Schulte, Ann C

    This study examined mathematics achievement growth of students without disabilities (SWoD) and students with learning disabilities (LD) and tested whether growth and LD status interacted with student demographic characteristics. Growth was estimated in a statewide sample of 79,554 students over Grades 3 to 7. The LD group was significantly lower in achievement in each grade and had less growth than the SWoD group. We also found that student demographic characteristics were significantly related to mathematics growth, but only three demographic characteristics were statistically significant as interactions. We found that LD-SWoD differences at Grade 3 were moderated by student sex, while Black race/ethnicity and free or reduced lunch (FRL) status moderated LD-SWoD differences at all grades. These results provide practitioners and policy makers with more specific information about which particular LD students show faster or slower growth in mathematics. Our results show that simply including predictors in a regression equation may produce different results than direct testing of interactions and achievement gaps may be larger for some LD subgroups of students than previously reported.

  12. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment.

    PubMed

    Bierie, Brian; Stover, Daniel G; Abel, Ty W; Chytil, Anna; Gorska, Agnieszka E; Aakre, Mary; Forrester, Elizabeth; Yang, Li; Wagner, Kay-Uwe; Moses, Harold L

    2008-03-15

    Transforming growth factor (TGF)-beta signaling has been associated with early tumor suppression and late tumor progression; however, many of the mechanisms that mediate these processes are not known. Using Cre/LoxP technology, with the whey acidic protein promoter driving transgenic expression of Cre recombinase (WAP-Cre), we have now ablated the type II TGF-beta receptor (T beta RII) expression specifically within mouse mammary alveolar progenitors. Transgenic expression of the polyoma virus middle T antigen, under control of the mouse mammary tumor virus enhancer/promoter, was used to produce mammary tumors in the absence or presence of Cre (T beta RII((fl/fl);PY) and T beta RII((fl/fl);PY;WC), respectively). The loss of TGF-beta signaling significantly decreased tumor latency and increased the rate of pulmonary metastasis. The loss of TGF-beta signaling was significantly correlated with increased tumor size and enhanced carcinoma cell survival. In addition, we observed significant differences in stromal fibrovascular abundance and composition accompanied by increased recruitment of F4/80(+) cell populations in T beta RII((fl/fl);PY;WC) mice when compared with T beta RII((fl/fl);PY) controls. The recruitment of F4/80(+) cells correlated with increased expression of known inflammatory genes including Cxcl1, Cxcl5, and Ptgs2 (cyclooxygenase-2). Notably, we also identified an enriched K5(+) dNp63(+) cell population in primary T beta RII((fl/fl);PY;WC) tumors and corresponding pulmonary metastases, suggesting that loss of TGF-beta signaling in this subset of carcinoma cells can contribute to metastasis. Together, our current results indicate that loss of TGF-beta signaling in mammary alveolar progenitors may affect tumor initiation, progression, and metastasis through regulation of both intrinsic cell signaling and adjacent stromal-epithelial interactions in vivo.

  13. Fell-Muir lecture: connective tissue growth factor (CCN2) – a pernicious and pleiotropic player in the development of kidney fibrosis

    PubMed Central

    Mason, Roger M

    2013-01-01

    Connective tissue growth factor (CTGF, CCN2) is a member of the CCN family of matricellular proteins. It interacts with many other proteins, including plasma membrane proteins, modulating cell function. It is expressed at low levels in normal adult kidney cells but is increased in kidney diseases, playing important roles in inflammation and in the development of glomerular and interstitial fibrosis in chronic disease. This review reports the evidence for its expression in human and animal models of chronic kidney disease and summarizes data showing that anti-CTGF therapy can successfully attenuate fibrotic changes in several such models, suggesting that therapies targeting CTGF and events downstream of it in renal cells may be useful for the treatment of human kidney fibrosis. Connective tissue growth factor stimulates the development of fibrosis in the kidney in many ways including activating cells to increase extracellular matrix synthesis, inducing cell cycle arrest and hypertrophy, and prolonging survival of activated cells. The relationship between CTGF and the pro-fibrotic factor TGFβ is examined and mechanisms by which CTGF promotes signalling by the latter are discussed. No specific cellular receptors for CTGF have been discovered but it interacts with and activates several plasma membrane proteins including low-density lipoprotein receptor-related protein (LRP)-1, LRP-6, tropomyosin-related kinase A, integrins and heparan sulphate proteoglycans. Intracellular signalling and downstream events triggered by such interactions are reviewed. Finally, the relationships between CTGF and several anti-fibrotic factors, such as bone morphogenetic factor-4 (BMP4), BMP7, hepatocyte growth factor, CCN3 and Oncostatin M, are discussed. These may determine whether injured tissue heals or progresses to fibrosis. PMID:23110747

  14. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    PubMed

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  15. Hierarchy of stroma-derived factors in supporting growth of stroma-dependent hemopoietic cells: membrane-bound SCF is sufficient to confer stroma competence to epithelial cells.

    PubMed

    Friel, Jutta; Itoh, Katsuhiko; Bergholz, Ulla; Jücker, Manfred; Stocking, Carol; Harrison, Paul; Ostertag, Wolfram

    2002-03-01

    Hemopoiesis takes place in a microenvironment where hemopoietic cells are closely associated with stroma by various interactions. Stroma coregulates the proliferation and differentiation of hemopoietic cells. Stroma-hemopoietic-cell contact can be supported by locally produced membrane associated growth factors. The stroma derived growth factor, stem cell factor (SCF) is important in hemopoiesis. We examined the different biological interactions of membrane bound and soluble SCF with human hemopoietic cells expressing the SCF receptor, c-kit. To analyze the function of the SCF isoforms in inducing the proliferation of hemopoietic TF1 or Cord blood (CB) CD34+ cells we used stroma cell lines that differ in their presentation of no SCF, membrane SCF, or soluble SCF. We established a new coculture system using an epithelial cell line that excludes potential interfering effects with other known stroma encoded hemopoietic growth factors. We show that soluble SCF, in absence of membrane-bound SCF, inhibits long term clonal growth of primary or established CD34+ hemopoietic cells, whereas membrane-inserted SCF "dominantly" induces long term proliferation of these cells. We demonstrate a hierarchy of these SCF isoforms in the interaction of stroma with hemopoietic TF1 cells. Membrane-bound SCF is "dominant" over soluble SCF, whereas soluble SCF acts epistatically in interacting with hemopoietic cells compared with other stroma derived factors present in SCF deficient stroma. A hierarchy of stroma cell lines can be arranged according to their presentation of membrane SCF or soluble SCF. In our model system, membrane-bound SCF expression is sufficient to confer stroma properties to an epithelial cell line but soluble SCF does not.

  16. Redox-regulated growth factor survival signaling.

    PubMed

    Woolley, John F; Corcoran, Aoife; Groeger, Gillian; Landry, William D; Cotter, Thomas G

    2013-11-20

    Once the thought of as unwanted byproducts of cellular respiration in eukaryotes, reactive oxygen species (ROS) have been shown to facilitate essential physiological roles. It is now understood that ROS are critical mediators of intracellular signaling. Control of signal transduction downstream of growth factor receptors by ROS is a complex process whose details are only recently coming to light. Indeed, recent evidence points to control of signal propagation by ROS at multiple levels in the typical cascade. Growth factor stimulation activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Noxs) at the membrane, producing superoxide in the extracellular matrix, which is catalyzed to the membrane-permeable hydrogen peroxide (H2O2) that mediates intracellular signaling events. The potential for H2O2, however, to disrupt cellular functions by damaging proteins and nucleic acids demands that its levels are kept in check by receptor-associated peroxiredoxins. This interplay of Nox and peroxiredoxin activity moderates levels of H2O2 sufficiently to modify signaling partners locally. Among the best studied of these partners are redox-controlled phosphatases that are inactivated by H2O2. Phosphatases regulate signal propagation downstream of receptors, and thus their inactivation allows a further level of control. Transmission of information further downstream to targets such as transcription factors, themselves regulated by ROS, completes this pathway. Thus, signal propagation or attenuation can be dictated by ROS at multiple points. Given the complex nature of these processes, we envisage the emerging trends in the field of redox signaling in the context of growth factor stimulation.

  17. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  18. Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor beta signaling through interaction with CREB-binding protein/p300.

    PubMed

    Mori, N; Morishita, M; Tsukazaki, T; Giam, C Z; Kumatori, A; Tanaka, Y; Yamamoto, N

    2001-04-01

    Human T-cell leukemia virus type I (HTLV-I) Tax is a potent transcriptional regulator that can activate or repress specific cellular genes and that has been proposed to contribute to leukemogenesis in adult T-cell leukemia. Previously, HTLV-I- infected T-cell clones were found to be resistant to growth inhibition by transforming growth factor (TGF)-beta. Here it is shown that Tax can perturb Smad-dependent TGF-beta signaling even though no direct interaction of Tax and Smad proteins could be detected. Importantly, a mutant Tax of CREB-binding protein (CBP)/p300 binding site, could not repress the Smad transactivation function, suggesting that the CBP/p300 binding domain of Tax is essential for the suppression of Smad function. Because both Tax and Smad are known to interact with CBP/p300 for the potentiation of their transcriptional activities, the effect of CBP/p300 on suppression of Smad-mediated transactivation by Tax was examined. Overexpression of CBP/p300 reversed Tax-mediated inhibition of Smad transactivation. Furthermore, Smad could repress Tax transcriptional activation, indicating reciprocal repression between Tax and Smad. These results suggest that Tax interferes with the recruitment of CBP/p300 into transcription initiation complexes on TGF-beta-responsive elements through its binding to CBP/p300. The novel function of Tax as a repressor of TGF-beta signaling may contribute to HTLV-I leukemogenesis. (Blood. 2001;97:2137-2144)

  19. EGFR Ligands Drive Multipotential Stromal Cells to Produce Multiple Growth Factors and Cytokines via Early Growth Response-1

    PubMed Central

    Kerpedjieva, Svetoslava S.; Kim, Duk Soo; Barbeau, Dominique J.

    2012-01-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)–EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase–extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands. PMID:22316125

  20. Isolation of a cDNA for a Growth Factor of Vascular Endothelial Cells from Human Lung Cancer Cells: Its Identity with Insulin‐like Growth Factor II

    PubMed Central

    Hagiwara, Koichi; Kobayashi, Tatsuo; Tobita, Masato; Kikyo, Nobuaki; Yazaki, Yoshio

    1995-01-01

    We have found growth‐promoting activity for vascular endothelial cells in the conditioned medium of a human lung cancer cell line, T3M‐11. Purification and characterization of the growth‐promoting activity have been carried out using ammonium sulfate precipitation and gel‐exclusion chromatography. The activity migrated as a single peak just after ribonuclease. It did not bind to a heparin affinity column. These results suggest that the activity is not a heparin‐binding growth factor (including fibroblast growth factors) or a vascular endothelial growth factor. To identify the molecule exhibiting the growth‐promoting activity, a cDNA encoding the growth factor was isolated through functional expression cloning in COS‐1 cells from a cDNA library prepared from T3M‐11 cells. The nucleotide sequence encoded by the cDNA proved to be identical with that of insulin‐like growth factor II. PMID:7730145

  1. Insulin-like growth factor-I receptor activity is essential for Kaposi's sarcoma growth and survival.

    PubMed

    Catrina, S-B; Lewitt, M; Massambu, C; Dricu, A; Grünler, J; Axelson, M; Biberfeld, P; Brismar, K

    2005-04-25

    Kaposi's sarcoma (KS) is a highly vascular tumour and is the most common neoplasm associated with human immunodeficiency virus (HIV-1) infection. Growth factors, in particular vascular endothelial growth factor (VEGF), have been shown to play an important role in its development. The role of insulin-like growth factors (IGFs) in the pathophysiology of different tumours led us to evaluate the role of IGF system in KS. The IGF-I receptors (IGF-IR) were identified by immunohistochemistry in biopsies taken from patients with different AIDS/HIV-related KS stages and on KSIMM cells (an established KS-derived cell line). Insulin-like growth factor-I is a growth factor for KSIMM cells with a maximum increase of 3H-thymidine incorporation of 130 +/- 27.6% (P < 0.05) similar to that induced by VEGF and with which it is additive (281 +/- 13%) (P < 0.05). Moreover, specific blockade of the receptor (either by alpha IR3 antibody or by picropodophyllin, a recently described selective IGF-IR tyrosine phosphorylation inhibitor) induced KSIMM apoptosis, suggesting that IGF-IR agonists (IGF-I and -II) mediate antiapoptotic signals for these cells. We were able to identify an autocrine loop essential for KSIMM cell survival in which IGF-II is the IGF-IR agonist secreted by the cells. In conclusion, IGF-I pathway inhibition is a promising therapeutical approach for KS tumours.

  2. G Protein-regulated inducer of neurite outgrowth (GRIN) modulates Sprouty protein repression of mitogen-activated protein kinase (MAPK) activation by growth factor stimulation.

    PubMed

    Hwangpo, Tracy Anh; Jordan, J Dedrick; Premsrirut, Prem K; Jayamaran, Gomathi; Licht, Jonathan D; Iyengar, Ravi; Neves, Susana R

    2012-04-20

    Gα(o/i) interacts directly with GRIN (G protein-regulated inducer of neurite outgrowth). Using the yeast two-hybrid system, we identified Sprouty2 as an interacting partner of GRIN. Gα(o) and Sprouty2 bind to overlapping regions of GRIN, thus competing for GRIN binding. Imaging experiments demonstrated that Gα(o) expression promoted GRIN translocation to the plasma membrane, whereas Sprouty2 expression failed to do so. Given the role of Sprouty2 in the regulation of growth factor-mediated MAPK activation, we examined the contribution of the GRIN-Sprouty2 interaction to CB1 cannabinoid receptor regulation of FGF receptor signaling. In Neuro-2A cells, a system that expresses all of the components endogenously, modulation of GRIN levels led to regulation of MAPK activation. Overexpression of GRIN potentiated FGF activation of MAPK and decreased tyrosine phosphorylation of Sprouty2. Pretreatment with G(o/i)-coupled CB1 receptor agonist attenuated subsequent FGF activation of MAPK. Decreased expression of GRIN both diminished FGF activation of MAPK and blocked CB1R attenuation of MAPK activation. These observations indicate that Gα(o) interacts with GRIN and outcompetes GRIN from bound Sprouty. Free Sprouty then in turn inhibits growth factor signaling. Thus, here we present a novel mechanism of how G(o/i)-coupled receptors can inhibit growth factor signaling to MAPK.

  3. What Makes Sports Fans Interactive? Identifying Factors Affecting Chat Interactions in Online Sports Viewing

    PubMed Central

    Yeo, Jaeryong; Lee, Juyeong

    2016-01-01

    Sports fans are able to watch games from many locations using TV services while interacting with other fans online. In this paper, we identify the factors that affect sports viewers’ online interactions. Using a large-scale dataset of more than 25 million chat messages from a popular social TV site for baseball, we extract various game-related factors, and investigate the relationships between these factors and fans’ interactions using a series of multiple regression analyses. As a result, we identify several factors that are significantly related to viewer interactions. In addition, we determine that the influence of these factors varies according to the user group; i.e., active vs. less active users, and loyal vs. non-loyal users. PMID:26849568

  4. Lifshitz interaction can promote ice growth at water-silica interfaces

    NASA Astrophysics Data System (ADS)

    Boström, Mathias; Malyi, Oleksandr I.; Parashar, Prachi; Shajesh, K. V.; Thiyam, Priyadarshini; Milton, Kimball A.; Persson, Clas; Parsons, Drew F.; Brevik, Iver

    2017-04-01

    At air-water interfaces, the Lifshitz interaction by itself does not promote ice growth. On the contrary, we find that the Lifshitz force promotes the growth of an ice film, up to 1-8 nm thickness, near silica-water interfaces at the triple point of water. This is achieved in a system where the combined effect of the retardation and the zero frequency mode influences the short-range interactions at low temperatures, contrary to common understanding. Cancellation between the positive and negative contributions in the Lifshitz spectral function is reversed in silica with high porosity. Our results provide a model for how water freezes on glass and other surfaces.

  5. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix

    PubMed Central

    1989-01-01

    The angiogenic factor, basic fibroblast growth factor (FGF), either stimulates endothelial cell growth or promotes capillary differentiation depending upon the microenvironment in which it acts. Analysis of various in vitro models of spontaneous angiogenesis, in combination with time-lapse cinematography, demonstrated that capillary tube formation was greatly facilitated by promoting multicellular retraction and cell elevation above the surface of the rigid culture dish or by culturing endothelial cells on malleable extracellular matrix (ECM) substrata. These observations suggested to us that mechanical (i.e., tension-dependent) interactions between endothelial cells and ECM may serve to regulate capillary development. To test this hypothesis, FGF-stimulated endothelial cells were grown in chemically defined medium on bacteriological (nonadhesive) dishes that were precoated with different densities of fibronectin. Extensive cell spreading and growth were promoted by fibronectin coating densities that were highly adhesive (greater than 500 ng/cm2), whereas cell rounding, detachment, and loss of viability were observed on dishes coated with low fibronectin concentrations (less than 100 ng/cm2). Intermediate fibronectin coating densities (100-500 ng/cm2) promoted cell extension, but they could not completely resist cell tractional forces. Partial retraction of multicellular aggregates resulted in cell shortening, cessation of growth, and formation of branching tubular networks within 24-48 h. Multicellular retraction and subsequent tube formation also could be elicited on highly adhesive dishes by overcoming the mechanical resistance of the substratum using higher cell plating numbers. Dishes coated with varying concentrations of type IV collagen or gelatin produced similar results. These results suggest that ECM components may act locally to regulate the growth and pattern- regulating actions of soluble FGF based upon their ability to resist cell-generated mechanical

  6. The Effects of Hematopoietic Growth Factors on Neurite Outgrowth

    PubMed Central

    Su, Ye; Cui, Lili; Piao, Chunshu; Li, Bin; Zhao, Li-Ru

    2013-01-01

    Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are initially discovered as the essential hematopoietic growth factors regulating bone marrow stem cell proliferation and differentiation, and SCF in combination with G-CSF (SCF+G-CSF) has synergistic effects on bone marrow stem cell mobilization. In this study we have determined the effect of SCF and G-CSF on neurite outgrowth in rat cortical neurons. Using molecular and cellular biology and live cell imaging approaches, we have revealed that receptors for SCF and G-CSF are expressed on the growth core of cortical neurons, and that SCF+G-CSF synergistically enhances neurite extension through PI3K/AKT and NFκB signaling pathways. Moreover, SCF+G-CSF induces much greater NFκB activation, NFκB transcriptional binding and brain-derived neurotrophic factor (BDNF) production than SCF or G-CSF alone. In addition, we have also observed that BDNF, the target gene of NFκB, is required for SCF+G-CSF-induced neurite outgrowth. These data suggest that SCF+G-CSF has synergistic effects to promote neurite growth. This study provides new insights into the contribution of hematopoietic growth factors in neuronal plasticity. PMID:24116056

  7. Normal growth and development in the absence of hepatic insulin-like growth factor I

    PubMed Central

    Yakar, Shoshana; Liu, Jun-Li; Stannard, Bethel; Butler, Andrew; Accili, Domenici; Sauer, Brian; LeRoith, Derek

    1999-01-01

    The somatomedin hypothesis proposed that insulin-like growth factor I (IGF-I) was a hepatically derived circulating mediator of growth hormone and is a crucial factor for postnatal growth and development. To reassess this hypothesis, we have used the Cre/loxP recombination system to delete the igf1 gene exclusively in the liver. igf1 gene deletion in the liver abrogated expression of igf1 mRNA and caused a dramatic reduction in circulating IGF-I levels. However, growth as determined by body weight, body length, and femoral length did not differ from wild-type littermates. Although our model proves that hepatic IGF-I is indeed the major contributor to circulating IGF-I levels in mice it challenges the concept that circulating IGF-I is crucial for normal postnatal growth. Rather, our model provides direct evidence for the importance of the autocrine/paracrine role of IGF-I. PMID:10377413

  8. Fibroblast growth factor signaling in skeletal development and disease.

    PubMed

    Ornitz, David M; Marie, Pierre J

    2015-07-15

    Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored. © 2015 Ornitz and Marie; Published by Cold Spring Harbor Laboratory Press.

  9. Insulin-like growth factor 1 (IGF-1): a growth hormone

    PubMed Central

    Laron, Z

    2001-01-01

    Aim—To contribute to the debate about whether growth hormone (GH) and insulin-like growth factor 1 (IGF-1) act independently on the growth process. Methods—To describe growth in human and animal models of isolated IGF-1 deficiency (IGHD), such as in Laron syndrome (LS; primary IGF-1 deficiency and GH resistance) and IGF-1 gene or GH receptor gene knockout (KO) mice. Results—Since the description of LS in 1966, 51 patients were followed, many since infancy. Newborns with LS are shorter (42–47 cm) than healthy babies (49–52 cm), suggesting that IGF-1 has some influence on intrauterine growth. Newborn mice with IGF-1 gene KO are 30% smaller. The postnatal growth rate of patients with LS is very slow, the distance from the lowest normal centile increasing progressively. If untreated, the final height is 100–136 cm for female and 109–138 cm for male patients. They have acromicia, organomicria including the brain, heart, gonads, genitalia, and retardation of skeletal maturation. The availability of biosynthetic IGF-1 since 1988 has enabled it to be administered to children with LS. It accelerated linear growth rates to 8–9 cm in the first year of treatment, compared with 10–12 cm/year during GH treatment of IGHD. The growth rate in following years was 5–6.5 cm/year. Conclusion—IGF-1 is an important growth hormone, mediating the protein anabolic and linear growth promoting effect of pituitary GH. It has a GH independent growth stimulating effect, which with respect to cartilage cells is possibly optimised by the synergistic action with GH. PMID:11577173

  10. Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor

    PubMed Central

    Marcellini, Marcella; De Luca, Naomi; Riccioni, Teresa; Ciucci, Alessandro; Orecchia, Angela; Lacal, Pedro Miguel; Ruffini, Federica; Pesce, Maurizio; Cianfarani, Francesca; Zambruno, Giovanna; Orlandi, Augusto; Failla, Cristina Maria

    2006-01-01

    Placenta growth factor (PlGF), a member of the vascular endothelial growth factor family, plays an important role in adult pathological angiogenesis. To further investigate PlGF functions in tumor growth and metastasis formation, we used transgenic mice overexpressing PlGF in the skin under the control of the keratin 14 promoter. These animals showed a hypervascularized phenotype of the skin and increased levels of circulating PlGF with respect to their wild-type littermates. Transgenic mice and controls were inoculated intradermally with B16-BL6 melanoma cells. The tumor growth rate was fivefold increased in transgenic animals compared to wild-type mice, in the presence of a similar percentage of tumor necrotic tissue. Tumor vessel area was increased in transgenic mice as compared to controls. Augmented mobilization of endothelial and hematopoietic stem cells from the bone marrow was observed in transgenic animals, possibly contributing to tumor vascularization. The number and size of pulmonary metastases were significantly higher in transgenic mice compared to wild-type littermates. Finally, PlGF promoted tumor cell invasion of the extracellular matrix and increased the activity of selected matrix metalloproteinases. These findings indicate that PlGF, in addition to enhancing tumor angiogenesis and favoring tumor growth, may directly influence melanoma dissemination. PMID:16877362

  11. Regulation of cell growth by redox-mediated extracellular proteolysis of platelet-derived growth factor receptor beta.

    PubMed

    Okuyama, H; Shimahara, Y; Kawada, N; Seki, S; Kristensen, D B; Yoshizato, K; Uyama, N; Yamaoka, Y

    2001-07-27

    Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.

  12. Autocrine expression of the epidermal growth factor receptor ligand heparin-binding EGF-like growth factor in cervical cancer.

    PubMed

    Schrevel, Marlies; Osse, E Michelle; Prins, Frans A; Trimbos, J Baptist M Z; Fleuren, Gert Jan; Gorter, Arko; Jordanova, Ekaterina S

    2017-06-01

    In cervical cancer, the epidermal growth factor receptor (EGFR) is overexpressed in 70-90% of the cases and has been associated with poor prognosis. EGFR-based therapy is currently being explored in cervical cancer. We investigated which EGFR ligand is primarily expressed in cervical cancer and which cell type functions as the major source of this ligand. We hypothesized that macrophages are the main source of EGFR ligands and that a paracrine loop between tumor cells and macrophages is responsible for ligand expression. mRNA expression analysis was performed on 32 cervical cancer cases to determine the expression of the EGFR ligands amphiregulin, β-cellulin, epidermal growth factor (EGF), epiregulin, heparin-binding EGF-like growth factor (HB‑EGF) and transforming growth factor α (TGFα). Subsequently, protein expression was determined immunohistochemically on 36 additional cases. To assess whether macrophages are the major source of EGFR ligands, immunohistochemical double staining was performed on four representative tissue slides. Expression of the chemokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and C-C motif ligand 2 (CCL2) was determined by mRNA in situ hybridization. Of the known EGFR ligands, HB‑EGF had the highest mRNA expression and HB‑EGF and EGFR protein expression were highly correlated. Tumor specimens with high EGFR expression showed higher numbers of macrophages, and higher expression of GM-CSF and CCL2, but only a small subset (9%) of macrophages was found to be HB‑EGF-positive. Strikingly, 78% of cervical cancer specimens were found to express HB‑EGF. Standardized assessment of staining intensity, using spectral imaging analysis, showed that HB‑EGF expression was higher in the tumor compartment than in the stromal compartment. These results suggest that HB‑EGF is an important EGFR ligand in cervical cancer and that cervical cancer cells are the predominant source of HB‑EGF. Therefore, we propose an autocrine

  13. Physical and Functional Interaction between the Eukaryotic Orthologs of Prokaryotic Translation Initiation Factors IF1 and IF2

    PubMed Central

    Choi, Sang Ki; Olsen, DeAnne S.; Roll-Mecak, Antonina; Martung, Agnes; Remo, Keith L.; Burley, Stephen K.; Hinnebusch, Alan G.; Dever, Thomas E.

    2000-01-01

    To initiate protein synthesis, a ribosome with bound initiator methionyl-tRNA must be assembled at the start codon of an mRNA. This process requires the coordinated activities of three translation initiation factors (IF) in prokaryotes and at least 12 translation initiation factors in eukaryotes (eIF). The factors eIF1A and eIF5B from eukaryotes show extensive amino acid sequence similarity to the factors IF1 and IF2 from prokaryotes. By a combination of two-hybrid, coimmunoprecipitation, and in vitro binding assays eIF1A and eIF5B were found to interact directly, and the eIF1A binding site was mapped to the C-terminal region of eIF5B. This portion of eIF5B was found to be critical for growth in vivo and for translation in vitro. Overexpression of eIF1A exacerbated the slow-growth phenotype of yeast strains expressing C-terminally truncated eIF5B. These findings indicate that the physical interaction between the evolutionarily conserved factors eIF1A and eIF5B plays an important role in translation initiation, perhaps to direct or stabilize the binding of methionyl-tRNA to the ribosomal P site. PMID:10982835

  14. Mitochondrial respiratory control is lost during growth factor deprivation.

    PubMed

    Gottlieb, Eyal; Armour, Sean M; Thompson, Craig B

    2002-10-01

    The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-x(L), restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control.

  15. Mitochondrial respiratory control is lost during growth factor deprivation

    PubMed Central

    Gottlieb, Eyal; Armour, Sean M.; Thompson, Craig B.

    2002-01-01

    The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-xL, restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control. PMID:12228733

  16. Intestinal hormones and growth factors: Effects on the small intestine

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2009-01-01

    There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In partI, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids. PMID:19152442

  17. E2F1 transcription factor and its impact on growth factor and cytokine signaling.

    PubMed

    Ertosun, Mustafa Gokhan; Hapil, Fatma Zehra; Osman Nidai, Ozes

    2016-10-01

    E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor.

    PubMed

    Barrow, Alexander D; Edeling, Melissa A; Trifonov, Vladimir; Luo, Jingqin; Goyal, Piyush; Bohl, Benjamin; Bando, Jennifer K; Kim, Albert H; Walker, John; Andahazy, Mary; Bugatti, Mattia; Melocchi, Laura; Vermi, William; Fremont, Daved H; Cox, Sarah; Cella, Marina; Schmedt, Christian; Colonna, Marco

    2018-01-25

    Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Skeletal Effects of Growth Hormone and Insulin-like Growth Factor-I Therapy

    PubMed Central

    Lindsey, Richard C.; Mohan, Subburaman

    2015-01-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965

  20. Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor

    NASA Technical Reports Server (NTRS)

    Ellis, S.

    1981-01-01

    The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.

  1. Essential roles of Gab1 tyrosine phosphorylation in growth factor-mediated signaling and angiogenesis.

    PubMed

    Wang, Weiye; Xu, Suowen; Yin, Meimei; Jin, Zheng Gen

    2015-02-15

    Growth factors and their downstream receptor tyrosine kinases (RTKs) mediate a number of biological processes controlling cell function. Adaptor (docking) proteins, which consist exclusively of domains and motifs that mediate molecular interactions, link receptor activation to downstream effectors. Recent studies have revealed that Grb2-associated-binders (Gab) family members (including Gab1, Gab2, and Gab3), when phosphorylated on tyrosine residues, provide binding sites for multiple effector proteins, such as Src homology-2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) and phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, thereby playing important roles in transducing RTKs-mediated signals into pathways with diversified biological functions. Here, we provide an up-to-date overview on the domain structure and biological functions of Gab1, the most intensively studied Gab family protein, in growth factor signaling and biological functions, with a special focus on angiogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Intracellular signaling pathways required for rat vascular smooth muscle cell migration. Interactions between basic fibroblast growth factor and platelet-derived growth factor.

    PubMed Central

    Bilato, C; Pauly, R R; Melillo, G; Monticone, R; Gorelick-Feldman, D; Gluzband, Y A; Sollott, S J; Ziman, B; Lakatta, E G; Crow, M T

    1995-01-01

    Intracellular signaling pathways activated by both PDGF and basic fibroblast growth factor (bFGF) have been implicated in the migration of vascular smooth muscle cells (VSMC), a key step in the pathogenesis of many vascular diseases. We demonstrate here that, while bFGF is a weak chemoattractant for VSMCs, it is required for the PDGF-directed migration of VSMCs and the activation of calcium/calmodulin-dependent protein kinase II (CamKinase II), an intracellular event that we have previously shown to be important in the regulation of VSMC migration. Neutralizing antibodies to bFGF caused a dramatic reduction in the size of the intracellular calcium transient normally seen after PDGF stimulation and inhibited both PDGF-directed VSMC migration and CamKinase II activation. Partially restoring the calcium transient with ionomycin restored migration and CamKinase II activation as did the forced expression of a mutant CamKinase II that had been "locked" in the active state by site-directed mutagenesis. These results suggest that bFGF links PDGF receptor stimulation to changes in intracellular calcium and CamKinase II activation, reinforcing the central role played by CamKinase II in regulating VSMC migration. Images PMID:7560082

  3. Factors driving mortality and growth at treeline: a 30-year experiment of 92 000 conifers.

    PubMed

    Barbeito, Ignacio; Dawes, Melissa A; Rixen, Christian; Senn, Josef; Bebi, Peter

    2012-02-01

    Understanding the interplay between environmental factors contributing to treeline formation and how these factors influence different life stages remains a major research challenge. We used an afforestation experiment including 92 000 trees to investigate the spatial and temporal dynamics of tree mortality and growth at treeline in the Swiss Alps. Seedlings of three high-elevation conifer species (Larix decidua, Pinus mugo ssp. uncinata, and Pinus cembra) were systematically planted along an altitudinal gradient at and above the current treeline (2075 to 2230 m above sea level [a.s.l.]) in 1975 and closely monitored during the following 30 years. We used decision-tree models and generalized additive models to identify patterns in mortality and growth along gradients in elevation, snow duration, wind speed, and solar radiation, and to quantify interactions between the different variables. For all three species, snowmelt date was always the most important environmental factor influencing mortality, and elevation was always the most important factor for growth over the entire period studied. Individuals of all species survived at the highest point of the afforestation for more than 30 years, although mortality was greater above 2160 m a.s.l., 50-100 m above the current treeline. Optimal conditions for height growth differed from those for survival in all three species: early snowmelt (ca. day of year 125-140 [where day 1 is 1 January]) yielded lowest mortality rates, but relatively later snowmelt (ca. day 145-150) yielded highest growth rates. Although snowmelt and elevation were important throughout all life stages of the trees, the importance of radiation decreased over time and that of wind speed increased. Our findings provide experimental evidence that tree survival and height growth require different environmental conditions and that even small changes in the duration of snow cover, in addition to changes in temperature, can strongly impact tree survival and

  4. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    PubMed Central

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  5. Effects of fertilizer-nutrient interactions on red oak seedling growth

    Treesearch

    L.R. Auchmoody; L.R. Auchmoody

    1972-01-01

    Growth of red oak seedlings was examined in relationship to various levels of nitrogen (N), phosphorus (P), and potassium (K) supplied singly and in all combinations to forest soils from the Barbour series. Results showed that seedling growth was significantly affected by NxP and NxPxK interactions; and that, without nitrogen, P and K alone or in combination with each...

  6. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    PubMed

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  7. Prostaglandin E(2) and insulin-like growth factor I interact to enhance proliferation of theca externa cells from chicken prehierarchical follicles.

    PubMed

    Jia, Yudong; Lin, Jinxing; Mi, Yuling; Zhang, Caiqiao

    2013-10-01

    The interactive effect of insulin-like growth factor I (IGF-I) and prostaglandin E2 (PGE2) on the proliferation of theca externa cells (TECs) was investigated in the prehierarchical small yellow follicles of laying hens. IGF-I manifested a proliferating effect like PGE2 on TECs, but this stimulating effect was restrained by AG1024 (IGF-IR inhibitor), KP372-1 (PKB/AKT inhibitor) or NS398 (COX-2 inhibitor). AG1024, KP372-1 or NS398 abolished IGF-I-stimulated COX-2 expression and PGE2 production. Meanwhile, KP372-1, NS398 or AG1024 depressed the PGE2-stimulated expression of COX-2 and IGF-IR mRNA. Therefore, the IGF-I receptor pathway up-regulates COX-2 expression and PGE2 synthesis via PKB signaling cascade, and then PGE2 stimulates IGF-IR mRNA expression to promote TEC proliferation in an autocrine pattern. Overall, the reciprocal stimulation of intracellular PGE2 and IGF-I may enhance TEC proliferation and facilitate the development of chicken prehierarchical follicles. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Nerve growth factor effect on human primary fibroblastic-keratocytes: possible mechanism during corneal healing.

    PubMed

    Micera, Alessandra; Lambiase, Alessandro; Puxeddu, Ilaria; Aloe, Luigi; Stampachiacchiere, Barbara; Levi-Schaffer, Francesca; Bonini, Sergio; Bonini, Stefano

    2006-10-01

    In response to corneal injury, cytokines and growth factors play a crucial role by influencing epithelial-stromal interaction during the healing and reparative processes which may resolve in tissue remodeling and fibrosis. While transforming growth factor-beta1 (TGF-beta1) is considered the main profibrogenic modulator of these process, recently the nerve growth factor (NGF) appears as a pleiotropic modulator of wound-healing and inflammatory responses. Interestingly in the cornea, where NGF, trkA(NGFR) and p75(NTR) are expressed by epithelial cells and keratocytes, the NGF eye-drop induces the healing of neurotrophic or autoimmune corneal ulcers. During corneal healing, quiescent keratocytes are replaced by active fibroblast-like keratocytes/myofibroblasts. While the NGF effect on epithelial cells has been investigated, no data are reported for NGF effects on fibroblastic-keratocytes, during corneal healing. NGF, trkA(NGFR) and p75(NTR) were found expressed by fibroblastic-keratocytes. NGF was able to induce fibroblastic-keratocyte differentiation into myofibroblasts, migration, Metalloproteinase-9 expression/activity and contraction of a 3D collagen gel, without affecting their proliferation and collagen production. These data also show a two-directional control of fibroblastic-keratocytes by NGF and TGF-beta1. To sum up, the findings of this study indicate that NGF can modulate some functional activities of fibroblastic-keratocytes, thus substantiating the healing effects of NGF on corneal wound-healing.

  9. DIRECT MODULATION OF THE PROTEIN KINASE A CATALYTIC SUBUNIT α BY GROWTH FACTOR RECEPTOR TYROSINE KINASES

    PubMed Central

    Caldwell, George B.; Howe, Alan K.; Nickl, Christian K.; Dostmann, Wolfgang R.; Ballif, Bryan A.; Deming, Paula B.

    2011-01-01

    The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The Km for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF and FGF2 and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechansim for regulating PKA activity. PMID:21866565

  10. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    PubMed

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  11. PreImplantation factor (PIF*) promotes embryotrophic and neuroprotective decidual genes: effect negated by epidermal growth factor.

    PubMed

    Duzyj, Christina M; Paidas, Michael J; Jebailey, Lellean; Huang, Jing Shun; Barnea, Eytan R

    2014-01-01

    Intimate embryo-maternal interaction is paramount for pregnancy success post-implantation. The embryo follows a specific developmental timeline starting with neural system, dependent on endogenous and decidual factors. Beyond altered genetics/epigenetics, post-natal diseases may initiate at prenatal/neonatal, post-natal period, or through a continuum. Preimplantation factor (PIF) secreted by viable embryos promotes implantation and trophoblast invasion. Synthetic PIF reverses neuroinflammation in non-pregnant models. PIF targets embryo proteins that protect against oxidative stress and protein misfolding. We report of PIF's embryotrophic role and potential to prevent developmental disorders by regulating uterine milieu at implantation and first trimester. PIF's effect on human implantation (human endometrial stromal cells (HESC)) and first-trimester decidua cultures (FTDC) was examined, by global gene expression (Affymetrix), disease-biomarkers ranking (GeneGo), neuro-specific genes (Ingenuity) and proteins (mass-spectrometry). PIF co-cultured epidermal growth factor (EGF) in both HESC and FTDC (Affymetrix) was evaluated. In HESC, PIF promotes neural differentiation and transmission genes (TLX2, EPHA10) while inhibiting retinoic acid receptor gene, which arrests growth. PIF promotes axon guidance and downregulates EGF-dependent neuroregulin signaling. In FTDC, PIF promotes bone morphogenetic protein pathway (SMAD1, 53-fold) and axonal guidance genes (EPH5) while inhibiting PPP2R2C, negative cell-growth regulator, involved in Alzheimer's and amyotrophic lateral sclerosis. In HESC, PIF affects angiotensin via beta-arrestin, transforming growth factor-beta (TGF-β), notch, BMP, and wingless-int (WNT) signaling pathways that promote neurogenesis involved in childhood neurodevelopmental diseases-autism and also affected epithelial-mesenchymal transition involved in neuromuscular disorders. In FTDC, PIF upregulates neural development and hormone signaling, while

  12. PreImplantation factor (PIF*) promotes embryotrophic and neuroprotective decidual genes: effect negated by epidermal growth factor

    PubMed Central

    2014-01-01

    Background Intimate embryo-maternal interaction is paramount for pregnancy success post-implantation. The embryo follows a specific developmental timeline starting with neural system, dependent on endogenous and decidual factors. Beyond altered genetics/epigenetics, post-natal diseases may initiate at prenatal/neonatal, post-natal period, or through a continuum. Preimplantation factor (PIF) secreted by viable embryos promotes implantation and trophoblast invasion. Synthetic PIF reverses neuroinflammation in non-pregnant models. PIF targets embryo proteins that protect against oxidative stress and protein misfolding. We report of PIF’s embryotrophic role and potential to prevent developmental disorders by regulating uterine milieu at implantation and first trimester. Methods PIF’s effect on human implantation (human endometrial stromal cells (HESC)) and first-trimester decidua cultures (FTDC) was examined, by global gene expression (Affymetrix), disease-biomarkers ranking (GeneGo), neuro-specific genes (Ingenuity) and proteins (mass-spectrometry). PIF co-cultured epidermal growth factor (EGF) in both HESC and FTDC (Affymetrix) was evaluated. Results In HESC, PIF promotes neural differentiation and transmission genes (TLX2, EPHA10) while inhibiting retinoic acid receptor gene, which arrests growth. PIF promotes axon guidance and downregulates EGF-dependent neuroregulin signaling. In FTDC, PIF promotes bone morphogenetic protein pathway (SMAD1, 53-fold) and axonal guidance genes (EPH5) while inhibiting PPP2R2C, negative cell-growth regulator, involved in Alzheimer’s and amyotrophic lateral sclerosis. In HESC, PIF affects angiotensin via beta-arrestin, transforming growth factor-beta (TGF-β), notch, BMP, and wingless-int (WNT) signaling pathways that promote neurogenesis involved in childhood neurodevelopmental diseases—autism and also affected epithelial-mesenchymal transition involved in neuromuscular disorders. In FTDC, PIF upregulates neural development

  13. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  14. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    PubMed

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  15. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development.

    PubMed

    Walker, Kenneth A; Sims-Lucas, Sunder; Bates, Carlton M

    2016-06-01

    Fibroblast growth factor receptors (FGFRs) and FGF ligands are highly expressed in the developing kidney and lower urinary tract. Several classic studies showed many effects of exogenous FGF ligands on embryonic renal tissues in vitro and in vivo. Another older landmark publication showed that mice with a dominant negative Fgfr fragment had severe renal dysplasia. Together, these studies revealed the importance of FGFR signaling in kidney and lower urinary tract development. With the advent of modern gene targeting techniques, including conditional knockout approaches, several publications have revealed critical roles for FGFR signaling in many lineages of the kidney and lower urinary tract at different stages of development. FGFR signaling has been shown to be critical for early metanephric mesenchymal patterning, Wolffian duct patterning including induction of the ureteric bud, ureteric bud branching morphogenesis, nephron progenitor survival and nephrogenesis, and bladder mesenchyme patterning. FGFRs pattern these tissues by interacting with many other growth factor signaling pathways. Moreover, the many genetic Fgfr and Fgf animal models have structural defects mimicking numerous congenital anomalies of the kidney and urinary tract seen in humans. Finally, many studies have shown how FGFR signaling is critical for kidney and lower urinary tract patterning in humans.

  16. Growth Hormone and Insulin-Like Growth Factor-1.

    PubMed

    Nicholls, Adam R; Holt, Richard I G

    2016-01-01

    Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. © 2016 S. Karger AG, Basel.

  17. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. © 2016 American Heart Association, Inc.

  18. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    PubMed

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. ©AlphaMed Press.

  19. Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor.

    PubMed

    Gilmore, Andrew P; Valentijn, Anthony J; Wang, Pengbo; Ranger, Ann M; Bundred, Nigel; O'Hare, Michael J; Wakeling, Alan; Korsmeyer, Stanley J; Streuli, Charles H

    2002-08-02

    Novel cancer chemotherapeutics are required to induce apoptosis by activating pro-apoptotic proteins. Both epidermal growth factor (EGF) and insulin-like growth factor (IGF) provide potent survival stimuli in many epithelia, and activation of their receptors is commonly observed in solid human tumors. Here we demonstrate that blockade of the EGF receptor by a new drug in phase III clinical trails for cancer, ZD1839, potently induces apoptosis in mammary epithelial cell lines and primary cultures, as well as in a primary pleural effusion from a breast cancer patient. We identified the mechanism of apoptosis induction by ZD1839. We showed that it prevents cell survival by activating the pro-apoptotic protein BAD. Moreover, we demonstrate that IGF transactivates the EGF receptor and that ZD1839 blocks IGF-mediated phosphorylation of MAPK and BAD. Many cancer therapies kill tumor cells by inducing apoptosis as a consequence of targeting DNA; however, the threshold at which apoptosis can be triggered through DNA damage is often different from that in normal cells. Our results indicate that by targeting a growth factor-mediated survival signaling pathway, BAD phosphorylation can be manipulated therapeutically to induce apoptosis.

  20. Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis

    PubMed Central

    Echave, Pedro; Machado-da-Silva, Gisela; Arkell, Rebecca S.; Duchen, Michael R.; Jacobson, Jake; Mitter, Richard; Lloyd, Alison C.

    2009-01-01

    Summary Cells generate new organelles when stimulated by extracellular factors to grow and divide; however, little is known about how growth and mitogenic signalling pathways regulate organelle biogenesis. Using mitochondria as a model organelle, we have investigated this problem in primary Schwann cells, for which distinct factors act solely as mitogens (neuregulin) or as promoters of cell growth (insulin-like growth factor 1; IGF1). We find that neuregulin and IGF1 act synergistically to increase mitochondrial biogenesis and mitochondrial DNA replication, resulting in increased mitochondrial density in these cells. Moreover, constitutive oncogenic Ras signalling results in a further increase in mitochondrial density. This synergistic effect is seen at the global transcriptional level, requires both the ERK and phosphoinositide 3-kinase (PI3K) signalling pathways and is mediated by the transcription factor ERRα. Interestingly, the effect is independent of Akt-TOR signalling, a major regulator of cell growth in these cells. This separation of the pathways that drive mitochondrial biogenesis and cell growth provides a mechanism for the modulation of mitochondrial density according to the metabolic requirements of the cell. PMID:19920079

  1. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  2. Nerve Growth Factor Expression Is Not Associated with Perineural Invasion in Extrahepatic Cholangiocarcinoma.

    PubMed

    Urabe, Kazuhide; Murakami, Yoshiaki; Kondo, Naru; Uemura, Kenichiro; Hashimoto, Yasushi; Nakagawa, Naoya; Sasaki, Hayato; Hiyama, Eiso; Takahashi, Shinya; Sueda, Taijiro

    2016-03-01

    Although the presence of perineural invasion has been recognized as a poor prognostic factor in extrahepatic cholangiocarcinoma, the molecular mechanisms of perineural invasion in extrahepatic cholangiocarcinoma remain unclear. Nerve growth factor has been reported to be a candidate predictive biomarker of perineural invasion in some cancers. To investigate the impact of intratumoral nerve growth factor expression in resected extrahepatic cholangiocarcinoma on survival. Intratumoral nerve growth factor expression was investigated immunohistochemically in 112 patients with resected extrahepatic cholangiocarcinoma. Associations between nerve growth factor expression and clinicopathological factors were statistically evaluated, and risk factors for poor survival were analyzed using univariate and multivariate analyses. High and low nerve growth factor expression was observed in 62 (55%) and 50 (45%) patients, respectively. For all 112 patients, no significant correlation was found between nerve growth factor expression and presence of perineural invasion (P = 0.942). Moreover, nerve growth factor expression was not associated with recurrence-free survival (P = 0.861) and overall survival (P = 0.973). In multivariate analysis, lymph node metastasis (P = 0.004) was identified as an independent risk factor for early recurrence and the presence of perineural invasion (P = 0.002) and lymph node metastasis (P < 0.001) was identified as independent risk factors for poor survival. Intratumoral nerve growth factor expression is not associated with perineural invasion or recurrence-free and overall survival in patients with resected extrahepatic cholangiocarcinoma.

  3. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  4. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    PubMed

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  5. Hoxa5 overexpression correlates with IGFBP1 upregulation and postnatal dwarfism: evidence for an interaction between Hoxa5 and Forkhead box transcription factors.

    PubMed

    Foucher, Isabelle; Volovitch, Michel; Frain, Monique; Kim, J Julie; Souberbielle, Jean-Claude; Gan, Lixia; Unterman, Terry G; Prochiantz, Alain; Trembleau, Alain

    2002-09-01

    Transgenic mice expressing the homeobox gene Hoxa5 under the control of Hoxb2 regulatory elements present a growth arrest during weeks two and three of postnatal development, resulting in proportionate dwarfism. These mice present a liver phenotype illustrated by a 12-fold increase in liver insulin-like growth factor binding protein 1 (IGFBP1) mRNA and a 50% decrease in liver insulin-like growth factor 1 (IGF1) mRNA correlated with a 50% decrease in circulating IGF1. We show that the Hoxa5 transgene is expressed in the liver of these mice, leading to an overexpression of total (endogenous plus transgene) Hoxa5 mRNA in this tissue. We have used several cell lines to investigate a possible physiological interaction of Hoxa5 with the main regulator of IGFBP1 promoter activity, the Forkhead box transcription factor FKHR. In HepG2 cells, Hoxa5 has little effect by itself but inhibits the FKHR-dependent activation of the IGFBP1 promoter. In HuF cells, Hoxa5 cooperates with FKHR to dramatically enhance IGFBP1 promoter activity. This context-dependent physiological interaction probably corresponds to the existence of a direct interaction between Hoxa5 and FKHR and FoxA2/HNF3beta, as demonstrated by pull-down experiments achieved either in vitro or after cellular co-expression. In conclusion, we propose that the impaired growth observed in this transgenic line relates to a liver phenotype best explained by a direct interaction between Hoxa5 and liver-specific Forkhead box transcription factors, in particular FKHR but also Foxa2/HNF3beta. Because Hoxa5 and homeogenes of the same paralog group are normally expressed in the liver, the present results raise the possibility that homeoproteins, in addition to their established role during early development, regulate systemic physiological functions.

  6. Sequential growth factor application in bone marrow stromal cell ligament engineering.

    PubMed

    Moreau, Jodie E; Chen, Jingsong; Horan, Rebecca L; Kaplan, David L; Altman, Gregory H

    2005-01-01

    In vitro bone marrow stromal cell (BMSC) growth may be enhanced through culture medium supplementation, mimicking the biochemical environment in which cells optimally proliferate and differentiate. We hypothesize that the sequential administration of growth factors to first proliferate and then differentiate BMSCs cultured on silk fiber matrices will support the enhanced development of ligament tissue in vitro. Confluent second passage (P2) BMSCs obtained from purified bone marrow aspirates were seeded on RGD-modified silk matrices. Seeded matrices were divided into three groups for 5 days of static culture, with medium supplement of basic fibroblast growth factor (B) (1 ng/mL), epidermal growth factor (E; 1 ng/mL), or growth factor-free control (C). After day 5, medium supplementation was changed to transforming growth factor-beta1 (T; 5 ng/mL) or C for an additional 9 days of culture. Real-time RT-PCR, SEM, MTT, histology, and ELISA for collagen type I of all sample groups were performed. Results indicated that BT supported the greatest cell ingrowth after 14 days of culture in addition to the greatest cumulative collagen type I expression measured by ELISA. Sequential growth factor application promoted significant increases in collagen type I transcript expression from day 5 of culture to day 14, for five of six groups tested. All T-supplemented samples surpassed their respective control samples in both cell ingrowth and collagen deposition. All samples supported spindle-shaped, fibroblast cell morphology, aligning with the direction of silk fibers. These findings indicate significant in vitro ligament development after only 14 days of culture when using a sequential growth factor approach.

  7. Hyaluronan Tumor Cell Interactions in Prostate Cancer Growth and Survival

    DTIC Science & Technology

    2009-12-01

    is a high molecular weight polyanionic polysaccharide that is increased in more advanced prostate cancers. Tumor cell interaction with this... polysaccharide by specific receptors CD44 and RHAMM promote tumor growth, survival and invasion. Work during the last funding period have further defined the... polysaccharide to its cognate receptors. These peptides inhibit tumor growth both in vitro and in vivo and the residues important for the activity

  8. Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria.

    PubMed

    Ibort, Pablo; Molina, Sonia; Núñez, Rafael; Zamarreño, Ángel María; García-Mina, José María; Ruiz-Lozano, Juan Manuel; Orozco-Mosqueda, Maria Del Carmen; Glick, Bernard R; Aroca, Ricardo

    2017-07-01

    Plant growth-promoting bacteria (PGPB) are soil micro-organisms able to interact with plants and stimulate their growth, positively affecting plant physiology and development. Although ethylene plays a key role in plant growth, little is known about the involvement of ethylene sensitivity in bacterial inoculation effects on plant physiology. Thus, the present study was pursued to establish whether ethylene perception is critical for plant-bacteria interaction and growth induction by two different PGPB strains, and to assess the physiological effects of these strains in juvenile and mature tomato ( Solanum lycopersicum ) plants. An experiment was performed with the ethylene-insensitive tomato never ripe and its isogenic wild-type line in which these two strains were inoculated with either Bacillus megaterium or Enterobacter sp. C7. Plants were grown until juvenile and mature stages, when biomass, stomatal conductance, photosynthesis as well as nutritional, hormonal and metabolic statuses were analysed. Bacillus megaterium promoted growth only in mature wild type plants. However, Enterobacter C7 PGPB activity affected both wild-type and never ripe plants. Furthermore, PGPB inoculation affected physiological parameters and root metabolite levels in juvenile plants; meanwhile plant nutrition was highly dependent on ethylene sensitivity and was altered at the mature stage. Bacillus megaterium inoculation improved carbon assimilation in wild-type plants. However, insensitivity to ethylene compromised B. megaterium PGPB activity, affecting photosynthetic efficiency, plant nutrition and the root sugar content. Nevertheless, Enterobacter C7 inoculation modified the root amino acid content in addition to stomatal conductance and plant nutrition. Insensitivity to ethylene severely impaired B. megaterium interaction with tomato plants, resulting in physiological modifications and loss of PGPB activity. In contrast, Enterobacter C7 inoculation stimulated growth independently of

  9. Spatial variation in abiotic and biotic factors in a floodplain determine anuran body size and growth rate at metamorphosis.

    PubMed

    Indermaur, Lukas; Schmidt, Benedikt R; Tockner, Klement; Schaub, Michael

    2010-07-01

    Body size at metamorphosis is a critical trait in the life history of amphibians. Despite the wide-spread use of amphibians as experimental model organisms, there is a limited understanding of how multiple abiotic and biotic factors affect the variation in metamorphic traits under natural conditions. The aim of our study was to quantify the effects of abiotic and biotic factors on spatial variation in the body size of tadpoles and size at metamorphosis of the European common toad (Bufo b. spinosus). Our study population was distributed over the riverbed (active tract) and the fringing riparian forest of a natural floodplain. The riverbed had warm ponds with variable hydroperiod and few predators, whereas the forest had ponds with the opposite characteristics. Spatial variation in body size at metamorphosis was governed by the interactive effects of abiotic and biotic factors. The particular form of the interaction between water temperature and intraspecific tadpole density suggests that abiotic factors laid the foundation for biotic factors: intraspecific density decreased growth only at high temperature. Predation and intraspecific density jointly reduced metamorphic size. Interspecific density had a negligible affect on body size at metamorphosis, suggesting weak inter-anuran interactions in the larval stage. Population density at metamorphosis was about one to two orders of magnitudes higher in the riverbed ponds than in the forest ponds, mainly because of lower tadpole mortality. Based on our results, we conclude that ponds in the riverbed appear to play a pivotal role for the population because tadpole growth and survival is best in this habitat.

  10. Activin-A, transforming growth factor-beta, and myostatin signaling pathway in experimental dilated cardiomyopathy.

    PubMed

    Mahmoudabady, Maryam; Mathieu, Myrielle; Dewachter, Laurence; Hadad, Ielham; Ray, Lynn; Jespers, Pascale; Brimioulle, Serge; Naeije, Robert; McEntee, Kathleen

    2008-10-01

    The pathogenic mechanisms of dilated cardiomyopathy are still uncertain. A number of cytokines and growth factors participate in the remodeling process of the disease. We investigated the cardiac myostatin, transforming growth factor (TGF)beta, and activin-A/Smad growth inhibitory signaling pathway in experimental dilated cardiomyopathy. Transvenous endomyocardial biopsies of the interventricular septum were taken weekly in 15 beagle dogs during the development of heart failure (HF) induced by rapid pacing over a period of 7 weeks. Genes involved in the myostatin-TGFbeta-activin-A/Smad signaling pathway and the cardiac hypertrophic process were quantified by real-time quantitative polymerase chain reaction. Left ventricular volume, function, and mass were evaluated by echocardiography. Overpacing was associated with increased left ventricular volumes and decreased ejection fraction, whereas the left ventricular mass remained unchanged. TGFbeta was increased in moderate HF. Activin-A mRNA expression was 4-fold higher in overt congestive HF than at baseline. A 2-fold decrease of activin type II receptors and activin receptor interacting protein 2 gene expressions were observed, as well as a transient decrease of follistatin. Activin type I receptors, activin receptor interacting protein 1, follistatin-related gene, and myostatin remained unchanged. The inhibitory Smad 7, a negative feedback loop regulator of the Smad pathway, was overexpressed in severe HF. Gene expression of the cyclin-dependent kinase inhibitor p21, a direct target gene of the Smad pathway, was 8-fold up-regulated in HF, whereas cyclin D1 was down-regulated. We conclude that tachycardia-induced dilated cardiomyopathy is characterized by gene overexpression of the TGFbeta-activin-A/Smad signaling pathway and their target gene p21 and by the absence of ventricular hypertrophy.

  11. Effects of Growth Factors on Dental Stem/ProgenitorCells

    PubMed Central

    Kim, Sahng G.; Solomon, Charles; Zheng, Ying; Suzuki, Takahiro; Mo, Chen; Song, Songhee; Jiang, Nan; Cho, Shoko; Zhou, Jian; Mao, Jeremy J.

    2014-01-01

    Synopsis The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. Structural restoration is also important but is likely secondary to vitality and functions. Myriads growth factors regulate multiple cellular functions including migration, proliferation, differentiation and apoptosis of several cell types that are intimately involved in dentin-pulp regeneration: odontoblasts, interstitial fibroblasts, vascular-endothelial cells and sprouting nerve fibers. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes our knowledge on a multitude of growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration. PMID:22835538

  12. Neuronal expression of fibroblast growth factor receptors in zebrafish.

    PubMed

    Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah

    2013-12-01

    Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Transformation-specific interaction of the bovine papillomavirus E5 oncoprotein with the platelet-derived growth factor receptor transmembrane domain and the epidermal growth factor receptor cytoplasmic domain.

    PubMed Central

    Cohen, B D; Goldstein, D J; Rutledge, L; Vass, W C; Lowy, D R; Schlegel, R; Schiller, J T

    1993-01-01

    The bovine papillomavirus E5 transforming protein appears to activate both the epidermal growth factor receptor (EGF-R) and the platelet-derived growth factor receptor (PDGF-R) by a ligand-independent mechanism. To further investigate the ability of E5 to activate receptors of different classes and to determine whether this stimulation occurs through the extracellular domain required for ligand activation, we constructed chimeric genes encoding PDGF-R and EGF-R by interchanging the extracellular, membrane, and cytoplasmic coding domains. Chimeras were transfected into NIH 3T3 and CHO(LR73) cells. All chimeras expressed stable protein which, upon addition of the appropriate ligand, could be activated as assayed by tyrosine autophosphorylation and biological transformation. Cotransfection of E5 with the wild-type and chimeric receptors resulted in the ligand-independent activation of receptors, provided that a receptor contained either the transmembrane domain of the PDGF-R or the cytoplasmic domain of the EGF-R. Chimeric receptors that contained both of these domains exhibited the highest level of E5-induced biochemical and biological stimulation. These results imply that E5 activates the PDGF-R and EGR-R by two distinct mechanisms, neither of which specifically involves the extracellular domain of the receptor. Consistent with the biochemical and biological activation data, coimmunoprecipitation studies demonstrated that E5 formed a complex with any chimera that contained a PDGF-R transmembrane domain or an EGF-R cytoplasmic domain, with those chimeras containing both domains demonstrating the greatest efficiency of complex formation. These results suggest that although different domains of the PDGF-R and EGF-R are required for E5 activation, both receptors are activated directly by formation of an E5-containing complex. Images PMID:8394451

  14. Increased Serum Levels of Epidermal Growth Factor in Children with Autism

    ERIC Educational Resources Information Center

    Iseri, Elvan; Guney, Esra; Ceylan, Mehmet F.; Yucel, Aysegul; Aral, Arzu; Bodur, Sahin; Sener, Sahnur

    2011-01-01

    The etiology of autism is unclear, however autism is considered as a multifactorial disorder that is influenced by neurological, environmental, immunological and genetic factors. Growth factors, including epidermal growth factor (EGF), play an important role in the celluler proliferation and the differentiation of the central and peripheral…

  15. Interacting TCP and NLP transcription factors control plant responses to nitrate availability.

    PubMed

    Guan, Peizhu; Ripoll, Juan-José; Wang, Renhou; Vuong, Lam; Bailey-Steinitz, Lindsay J; Ye, Dening; Crawford, Nigel M

    2017-02-28

    Plants have evolved adaptive strategies that involve transcriptional networks to cope with and survive environmental challenges. Key transcriptional regulators that mediate responses to environmental fluctuations in nitrate have been identified; however, little is known about how these regulators interact to orchestrate nitrogen (N) responses and cell-cycle regulation. Here we report that teosinte branched1/cycloidea/proliferating cell factor1-20 (TCP20) and NIN-like protein (NLP) transcription factors NLP6 and NLP7, which act as activators of nitrate assimilatory genes, bind to adjacent sites in the upstream promoter region of the nitrate reductase gene, NIA1 , and physically interact under continuous nitrate and N-starvation conditions. Regions of these proteins necessary for these interactions were found to include the type I/II Phox and Bem1p (PB1) domains of NLP6&7, a protein-interaction module conserved in animals for nutrient signaling, and the histidine- and glutamine-rich domain of TCP20, which is conserved across plant species. Under N starvation, TCP20-NLP6&7 heterodimers accumulate in the nucleus, and this coincides with TCP20 and NLP6&7-dependent up-regulation of nitrate assimilation and signaling genes and down-regulation of the G 2 /M cell-cycle marker gene, CYCB1;1 TCP20 and NLP6&7 also support root meristem growth under N starvation. These findings provide insights into how plants coordinate responses to nitrate availability, linking nitrate assimilation and signaling with cell-cycle progression.

  16. Growth factors in the anterior segment: role in tissue maintenance, wound healing and ocular pathology.

    PubMed

    Klenkler, Bettina; Sheardown, Heather

    2004-11-01

    A number of growth factors and their associated receptors, including epidermal growth factor, transforming growth factor-beta, keratinocyte growth factor, hepatocyte growth factor, fibroblast growth factor and platelet-derived growth factor have been detected in the anterior segment of the eye. On binding to cellular receptors, these factors activate signalling cascades, which regulate functions including mitosis, differentiation, motility and apoptosis. Production of growth factors by corneal cells and their presence in the tear fluid and aqueous humour is essential for maintenance and renewal of normal tissue in the anterior eye and the prevention of undesirable immune or angiogenic reactions. Growth factors also play a vital role in corneal wound healing, mediating the proliferation of epithelial and stromal tissue and affecting the remodelling of the extracellular matrix (ECM). These functions depend on a complex interplay between growth factors of different types, the ECM, and regulatory mechanisms of the affected cells. Imbalances may lead to deficient wound healing and various ocular pathologies, including edema, neovascularization and glaucoma. Growth factors may be targeted in therapeutic ophthalmic applications, through exogenous application or selective inhibition, and may be used to elicit specific cellular responses to ophthalmic materials. A thorough understanding of the mechanism and function of growth factors and their actions in the complex environment of the anterior eye is required for these purposes. Growth factors, their function and mechanisms of action as well as the interplay between different growth factors based on recent in vitro and in vivo studies are presented.

  17. Colocalization of insulin-like growth factor-binding protein with insulin-like growth factor I.

    PubMed

    Kobayashi, S; Clemmons, D R; Venkatachalam, M A

    1991-07-01

    We report the localization of insulin-like growth factor I (IGF-I) and a 25-kDa form of insulin-like growth factor-binding protein (IGF-BP-1) in adult rat kidney. The antigens were localized using a rabbit anti-human IGF-I antibody, and a rabbit anti-human IGF-BP-1 antibody raised against human 25-kDa IGF-BP-1 purified from amniotic fluid. Immunohistochemistry by the avidin-biotin peroxidase conjugate technique showed that both peptides are located in the same nephron segments, in the same cell types. The most intense staining was in papillary collecting ducts. There was moderate staining also in cortical collecting ducts and medullary thick ascending limbs of Henle's loop. In collecting ducts the antigens were shown to be present in principal cells but not in intercalated cells. In distal convoluted tubules, cortical thick ascending limbs, and in structures presumptively identified as thin limbs of Henle's loops there was only modest staining. The macula densa, however, lacked immunoreactivity. Colocalization of IGF-I and IGF-BP-1 in the same cells supports the notion, derived from studies on cultured cells, that the actions of IGF-I may be modified by IGF-BPs that are present in the same location.

  18. Nanodiamond-based injectable hydrogel for sustained growth factor release: Preparation, characterization and in vitro analysis.

    PubMed

    Pacelli, Settimio; Acosta, Francisca; Chakravarti, Aparna R; Samanta, Saheli G; Whitlow, Jonathan; Modaresi, Saman; Ahmed, Rafeeq P H; Rajasingh, Johnson; Paul, Arghya

    2017-08-01

    Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network

  19. Directed random walks and constraint programming reveal active pathways in hepatocyte growth factor signaling.

    PubMed

    Kittas, Aristotelis; Delobelle, Aurélien; Schmitt, Sabrina; Breuhahn, Kai; Guziolowski, Carito; Grabe, Niels

    2016-01-01

    An effective means to analyze mRNA expression data is to take advantage of established knowledge from pathway databases, using methods such as pathway-enrichment analyses. However, pathway databases are not case-specific and expression data could be used to infer gene-regulation patterns in the context of specific pathways. In addition, canonical pathways may not always describe the signaling mechanisms properly, because interactions can frequently occur between genes in different pathways. Relatively few methods have been proposed to date for generating and analyzing such networks, preserving the causality between gene interactions and reasoning over the qualitative logic of regulatory effects. We present an algorithm (MCWalk) integrated with a logic programming approach, to discover subgraphs in large-scale signaling networks by random walks in a fully automated pipeline. As an exemplary application, we uncover the signal transduction mechanisms in a gene interaction network describing hepatocyte growth factor-stimulated cell migration and proliferation from gene-expression measured with microarray and RT-qPCR using in-house perturbation experiments in a keratinocyte-fibroblast co-culture. The resulting subgraphs illustrate possible associations of hepatocyte growth factor receptor c-Met nodes, differentially expressed genes and cellular states. Using perturbation experiments and Answer Set programming, we are able to select those which are more consistent with the experimental data. We discover key regulator nodes by measuring the frequency with which they are traversed when connecting signaling between receptors and significantly regulated genes and predict their expression-shift consistently with the measured data. The Java implementation of MCWalk is publicly available under the MIT license at: https://bitbucket.org/akittas/biosubg. © 2015 FEBS.

  20. Vascular endothelial growth factor c/vascular endothelial growth factor receptor 3 signaling regulates chemokine gradients and lymphocyte migration from tissues to lymphatics.

    PubMed

    Iwami, Daiki; Brinkman, C Colin; Bromberg, Jonathan S

    2015-04-01

    Circulation of leukocytes via blood, tissue and lymph is integral to adaptive immunity. Afferent lymphatics form CCL21 gradients to guide dendritic cells and T cells to lymphatics and then to draining lymph nodes (dLN). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 (VEGFR-3) are the major lymphatic growth factor and receptor. We hypothesized these molecules also regulate chemokine gradients and lymphatic migration. CD4 T cells were injected into the foot pad or ear pinnae, and migration to afferent lymphatics and dLN quantified by flow cytometry or whole mount immunohistochemistry. Vascular endothelial growth factor receptor 3 or its signaling or downstream actions were modified with blocking monoclonal antibodies (mAbs) or other reagents. Anti-VEGFR-3 prevented migration of CD4 T cells into lymphatic lumen and significantly decreased the number that migrated to dLN. Anti-VEGFR-3 abolished CCL21 gradients around lymphatics, although CCL21 production was not inhibited. Heparan sulfate (HS), critical to establish CCL21 gradients, was down-regulated around lymphatics by anti-VEGFR-3 and this was dependent on heparanase-mediated degradation. Moreover, a Phosphoinositide 3-kinase (PI3K)α inhibitor disrupted HS and CCL21 gradients, whereas a PI3K activator prevented the effects of anti-VEGFR-3. During contact hypersensitivity, VEGFR-3, CCL21, and HS expression were all attenuated, and anti-heparanase or PI3K activator reversed these effects. Vascular endothelial growth factor C/VEGFR-3 signaling through PI3Kα regulates the activity of heparanase, which modifies HS and CCL21 gradients around lymphatics. The functional and physical linkages of these molecules regulate lymphatic migration from tissues to dLN. These represent new therapeutic targets to influence immunity and inflammation.

  1. Expression of epidermal growth factor receptor and vascular endothelial growth factor in malignant canine epithelial nasal tumours.

    PubMed

    Shiomitsu, K; Johnson, C L; Malarkey, D E; Pruitt, A F; Thrall, D E

    2009-06-01

    Epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) signalling pathways play a role in carcinogenesis. Inhibition of EGF receptor (EGFR) and of VEGF is effective in increasing the radiation responsiveness of neoplastic cells both in vitro and in human trials. In this study, immunohistochemical evaluation was employed to determine and characterize the potential protein expression levels and patterns of EGFR and VEGF in a variety of canine malignant epithelial nasal tumours. Of 24 malignant canine nasal tumours, 13 (54.2%) were positive for EGFR staining and 22 (91.7%) were positive for VEGF staining. The intensity and percentage of immunohistochemically positive neoplastic cells for EGFR varied. These findings indicate that EGFR and VEGF proteins were present in some malignant epithelial nasal tumours in the dogs, and therefore, it may be beneficial to treat canine patients with tumours that overexpress EGFR and VEGF with specific inhibitors in conjunction with radiation.

  2. The use of autologous blood-derived growth factors in bone regeneration

    PubMed Central

    Civinini, Roberto; Macera, Armando; Nistri, Lorenzo; Redl, Birgit; Innocenti, Massimo

    2011-01-01

    Platelet-rich plasma (PRP) is defined as a portion of the plasma fraction of autologous blood having platelet concentrations above baseline. When activated the platelets release growth factors that play an essential role in bone healing such as Platelet-derived Growth Factor, Transforming Growth Factor-β, Vascular Endothelial Growth Factor and others. Multiple basic science and in vivo animal studies agree that PRP has a role in the stimulation of the healing cascade in ligament, tendon, muscle cartilage and in bone regeneration in the last years PRP had a widespread diffusion in the treatment of soft tissue and bone healing. The purpose of this review is to describe the biological properties of platelets and its factors, the methods used for producing PRP, to provide a background on the underlying basic science and an overview of evidence based medicine on clinical application of PRP in bone healing. PMID:22461800

  3. Effective Factors in Interactions within Japanese EFL Classrooms

    ERIC Educational Resources Information Center

    Maftoon, Parviz; Ziafar, Meisam

    2013-01-01

    Classroom interactional patterns depend on some contextual, cultural and local factors in addition to the methodologies employed in the classroom. In order to delineate such factors, the focus of classroom interaction research needs to shift from the observables to the unobservables like teachers' and learners' psychological states and cultural…

  4. Multivalent conjugates of basic fibroblast growth factor enhance in vitro proliferation and migration of endothelial cells.

    PubMed

    Zbinden, Aline; Browne, Shane; Altiok, Eda I; Svedlund, Felicia L; Jackson, Wesley M; Healy, Kevin E

    2018-05-01

    Growth factors hold great promise for regenerative therapies. However, their clinical use has been halted by poor efficacy and rapid clearance from tissue, necessitating the delivery of extremely high doses to achieve clinical effectiveness which has raised safety concerns. Thus, strategies to either enhance growth factor activity at low doses or to increase their residence time within target tissues are necessary for clinical success. In this study, we generated multivalent conjugates (MVCs) of basic fibroblast growth factor (bFGF), a key growth factor involved in angiogenesis and wound healing, to hyaluronic acid (HyA) polymer chains. Multivalent bFGF conjugates (mvbFGF) were fabricated with minimal non-specific interaction observed between bFGF and the HyA chain. The hydrodynamic radii of mvbFGF ranged from ∼50 to ∼75 nm for conjugation ratios of bFGF to HyA chains at low (10 : 1) and high (30 : 1) feed ratios, respectively. The mvbFGF demonstrated enhanced bioactivity compared to unconjugated bFGF in assays of cell proliferation and migration, processes critical to angiogenesis and tissue regeneration. The 30 : 1 mvbFGF outperformed the 10 : 1 conjugate, which could be due to either FGF receptor clustering or interference with receptor mediated internalization and signal deactivation. This study simultaneously investigated the role of both protein to polymer ratio and multivalent conjugate size on their bioactivity, and determined that increasing the protein-to-polymer ratio and conjugate size resulted in greater cell bioactivity.

  5. Dual growth factor-immobilized asymmetrically porous membrane for bone-to-tendon interface regeneration on rat patellar tendon avulsion model.

    PubMed

    Kim, Joong-Hyun; Oh, Se Heang; Min, Hyun Ki; Lee, Jin Ho

    2018-01-01

    Insufficient repair of the bone-to-tendon interface (BTI) with structural/compositional gradients has been a significant challenge in orthopedics. In this study, dual growth factor (platelet-derived growth factor-BB [PDGF-BB] and bone morphogenetic protein-2 [BMP-2])-immobilized polycaprolactone (PCL)/Pluronic F127 asymmetrically porous membrane was fabricated to estimate its feasibility as a potential strategy for effective regeneration of BTI injury. The growth factors immobilized (via heparin-intermediated interactions) on the membrane were continuously released for up to ∼80% of the initial loading amount after 5 weeks without a significant initial burst. From the in vivo animal study using a rat patellar tendon avulsion model, it was observed that the PDGF-BB/BMP-2-immobilized membrane accelerates the regeneration of the BTI injury, probably because of the continuous release of both growth factors (biological stimuli) and their complementary effect to create a multiphasic structure (bone, fibrocartilage, and tendon) like a native structure, as well as the role of the asymmetrically porous membrane as a physical barrier (nanopore side; prevention of fibrous tissue invasion into the defect site) and scaffold (micropore side; guidance for tissue regeneration). © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 115-125, 2018. © 2017 Wiley Periodicals, Inc.

  6. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development.

    PubMed

    Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina

    2017-04-01

    Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O 2 , 6 h; postnatal day 7 , P7) at P14. Exposure to hypoxia led to reduced body weight ( P < 0.001) and length ( P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH ( P < 0.01) and IGF-1 ( P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain. Copyright © 2017 the American Physiological Society.

  7. Assessment of Growth Factors Secreted by Human Breastmilk Mesenchymal Stem Cells.

    PubMed

    Kaingade, Pankaj Mahipatrao; Somasundaram, Indumathi; Nikam, Amar Babaso; Sarang, Shabari Amit; Patel, Jagdish Shantilal

    2016-01-01

    Human breastmilk is a dynamic, multifaceted biological fluid containing nutrients, bioactive substances, and growth factors. It is effective in supporting growth and development of an infant. As breastmilk has been found to possess mesenchymal stem cells, the importance of the components of breastmilk and their physiological roles is increasing day by day. The present study was intended to identify the secretions of growth factors, mainly vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), from human breastmilk mesenchymal stem cells under basal conditions of in vitro cell culture using synthetic media and human cord serum. The growth factors were analyzed with the enzyme-linked immunosorbent assay technique. The cultured mesenchymal stem cells of breastmilk without serum revealed significant differences in secretions of the VEGF and HGF growth factors (8.55 ± 2.26402 pg/mL and 230.8 ± 45.9861 pg/mL, respectively) compared with mesenchymal stem cells of breastmilk with serum (21.31 ± 4.69 pg/mL and 2,404.42 ± 481.593 pg/mL, respectively). Results obtained from our study demonstrate that both VEGF and HGF are secreted in vitro by human breastmilk mesenchymal stem cells. The roles of VEGF and HGF in surfactant secretion, pulmonary maturation, and neonatal maturity have been well established. Thus, we emphasize that breastmilk-derived MSCs could be a potent therapeutic source in treating neonatal diseases. Besides, due to its immense potency, the study also emphasizes the importance of breastfeeding, which is promoted by organizations like the World Heatlh Organization and UNICEF.

  8. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.

    PubMed

    Floren, Michael; Bonani, Walter; Dharmarajan, Anirudh; Motta, Antonella; Migliaresi, Claudio; Tan, Wei

    2016-02-01

    Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we

  9. The Effects of Autocorrelation on the Curve-of-Factors Growth Model

    ERIC Educational Resources Information Center

    Murphy, Daniel L.; Beretvas, S. Natasha; Pituch, Keenan A.

    2011-01-01

    This simulation study examined the performance of the curve-of-factors model (COFM) when autocorrelation and growth processes were present in the first-level factor structure. In addition to the standard curve-of factors growth model, 2 new models were examined: one COFM that included a first-order autoregressive autocorrelation parameter, and a…

  10. Epidermal growth factor impairs palatal shelf adhesion and fusion in the Tgf-β 3 null mutant.

    PubMed

    Barrio, M Carmen; Del Río, Aurora; Murillo, Jorge; Maldonado, Estela; López-Gordillo, Yamila; Paradas-Lara, Irene; Hernandes, Luzmarina; Catón, Javier; Martínez-Álvarez, Concepción

    2014-01-01

    The cleft palate presented by transforming growth factor-β3 (Tgf-β3) null mutant mice is caused by altered palatal shelf adhesion, cell proliferation, epithelial-to-mesenchymal transformation and cell death. The expression of epidermal growth factor (EGF), transforming growth factor-β1 (Tgf-β1) and muscle segment homeobox-1 (Msx-1) is modified in the palates of these knockout mice, and the cell proliferation defect is caused by the change in EGF expression. In this study, we aimed to determine whether this change in EGF expression has any effect on the other mechanisms altered in Tgf-β3 knockout mouse palates. We tested the effect of inhibiting EGF activity in vitro in the knockout palates via the addition of Tyrphostin AG 1478. We also investigated possible interactions between EGF, Tgf-β1 and Msx-1 in Tgf-β3 null mouse palate cultures. The results show that the inhibition of EGF activity in Tgf-β3 null mouse palate cultures improves palatal shelf adhesion and fusion, with a particular effect on cell death, and restores the normal distribution pattern of Msx-1 in the palatal mesenchyme. Inhibition of TGF-β1 does not affect either EGF or Msx-1 expression. © 2014 S. Karger AG, Basel.

  11. Release of Growth Factors into Root Canal by Irrigations in Regenerative Endodontics.

    PubMed

    Zeng, Qian; Nguyen, Sean; Zhang, Hongming; Chebrolu, Hari Priya; Alzebdeh, Dalia; Badi, Mustafa A; Kim, Jong Ryul; Ling, Junqi; Yang, Maobin

    2016-12-01

    The aim of this study was to investigate the release of growth factors into root canal space after the irrigation procedure of regenerative endodontic procedure. Sixty standardized root segments were prepared from extracted single-root teeth. Nail varnish was applied to all surfaces except the root canal surface. Root segments were irrigated with 1.5% NaOCl + 17% EDTA, 2.5% NaOCl + 17% EDTA, 17% EDTA, or deionized water. The profile of growth factors that were released after irrigation was studied by growth factor array. Enzyme-linked immunosorbent assay was used to validate the release of transforming growth factor (TGF)-β1 and basic fibroblast growth factor (bFGF) at 4 hours, 1 day, and 3 days after irrigation. The final concentrations were calculated on the basis of the root canal volume measured by cone-beam computed tomography. Dental pulp stem cell migration on growth factors released from root segments was measured by using Transwell assay. Total of 11 of 41 growth factors were detected by growth factors array. Enzyme-linked immunosorbent assay showed that TGF-β1 was released in all irrigation groups. Compared with the group with 17% EDTA (6.92 ± 4.49 ng/mL), the groups with 1.5% NaOCl + 17% EDTA and 2.5% NaOCl + 17% EDTA had significantly higher release of TGF-β1 (69.04 ± 30.41 ng/mL and 59.26 ± 3.37 ng/mL, respectively), with a peak release at day 1. The release of bFGF was detected at a low level in all groups (0 ng/mL to 0.43 ± 0.22 ng/mL). Migration assay showed the growth factors released from root segments induced dental pulp stem cell migration. The root segment model in present study simulated clinical scenario and indicated that the current irrigation protocol released a significant amount of TGF-β1 but not bFGF. The growth factors released into root canal space induced dental pulp stem cell migration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. The role of FGF2 in migration and tubulogenesis of endothelial progenitor cells in relation to pro-angiogenic growth factor production.

    PubMed

    Litwin, Monika; Radwańska, Agata; Paprocka, Maria; Kieda, Claudine; Dobosz, Tadeusz; Witkiewicz, Wojciech; Baczyńska, Dagmara

    2015-12-01

    In recent years, special attention has been paid to finding new pro-angiogenic factors which could be used in gene therapy of vascular diseases such as critical limb ischaemia (CLI). Angiogenesis, the formation of new blood vessels, is a complex process dependent on different cytokines, matrix proteins, growth factors and other pro- or anti-angiogenic stimuli. Numerous lines of evidence suggest that key mediators of angiogenesis, vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) together with fibroblast growth factor2 (FGF2) are involved in regulation of the normal and pathological process of angiogenesis. However, less information is available on the complex interactions between these and other angiogenic factors. The aim of this study was to characterise the effect of fibroblast growth factor2 on biological properties of human endothelial progenitor cells with respect to the expression level of other regulatory cytokines. Ectopic expression of FGF2 in EP cells stimulates their pro-angiogenic behaviour, leading to increased proliferation, migration and tube formation abilities. Moreover, we show that the expression profile of VEGF and other pro-angiogenic cytokines, such as HGF, MCP2, and interleukins, is affected differently by FGF2 in EPC. In conclusion, we provide evidence that FGF2 directly affects not only the biological properties of EP cells but also the expression pattern and secretion of numerous chemocytokines. Our results suggest that FGF2 could be applied in therapeutic approaches for CLI and other ischaemic diseases of the vascular system in vivo.

  13. Activated carbon decreases invasive plant growth by mediating plant–microbe interactions

    PubMed Central

    Nolan, Nicole E.; Kulmatiski, Andrew; Beard, Karen H.; Norton, Jeanette M.

    2015-01-01

    There is growing appreciation for the idea that plant–soil interactions (e.g. allelopathy and plant–microbe feedbacks) may explain the success of some non-native plants. Where this is the case, native plant restoration may require management tools that change plant–soil interactions. Activated carbon (AC) is one such potential tool. Previous research has shown the potential for high concentrations of AC to restore native plant growth to areas dominated by non-natives on a small scale (1 m × 1 m plots). Here we (i) test the efficacy of different AC concentrations at a larger scale (15 m × 15 m plots), (ii) measure microbial responses to AC treatment and (iii) use a greenhouse experiment to identify the primary mechanism, allelopathy versus microbial changes, through which AC impacts native and non-native plant growth. Three years after large-scale applications, AC treatments decreased non-native plant cover and increased the ratio of native to non-native species cover, particularly at concentrations >400 g m−2. Activated carbon similarly decreased non-native plant growth in the greenhouse. This effect, however, was only observed in live soils, suggesting that AC effects were microbially mediated and not caused by direct allelopathy. Bacterial community analysis of field soils indicated that AC increased the relative abundance of an unidentified bacterium and an Actinomycetales and decreased the relative abundance of a Flavobacterium, suggesting that these organisms may play a role in AC effects on plant growth. Results support the idea that manipulations of plant–microbe interactions may provide novel and effective ways of directing plant growth and community development (e.g. native plant restoration). PMID:25387751

  14. Low dose radiation interactions with the transformation growth factor (TFG)-beta pathway

    NASA Astrophysics Data System (ADS)

    Maslowski, Amy Jesse

    A major limiting factor for long-term, deep-space missions is the radiation dose to astronauts. Because the dose to the astronauts is a mixed field of low- and high-LET radiation, there is a need to understand the effects of both radiation types on whole tissue; however, there are limited published data on the effects of high-LET (linear-energy-transfer) radiation on tissue. Thus, we designed a perfusion chamber system for rat trachea in order to mimic in vivo respiratory tissue. We successfully maintained the perfused tracheal tissue ex vivo in a healthy and viable condition for up to three days. In addition, this project studied the effects of high-LET Fe particles on the overall transformation growth factor (TGF)-beta response after TGF-beta inactivation and compared the results to the TGF-beta response post x-ray irradiation. It was found that a TGF-beta response could be measured in the perfused tracheal tissue, for x-ray and Fe particle irradiations, despite the high autofluorescent background intrinsic to tissue. However, after comparing the TGF-beta response of x-ray irradiation to High-Z-High-energy (HZE) irradiation, there was not a significant difference in radiation types. The TGF-beta response in x-ray and HZE irradiated perfusion chambers was also measured over time post irradiation. It was found that for 6 hour and 8 hour post irradiation, the TGF-beta response was higher for lower doses of radiation than for higher doses. This is in contrast to the 0 hour fixation which found the TGF-beta response to increase with increased dose. The inverse relationship found for 6 hour and 8 hour fixation times may indicate a threshold response for TGF-beta response; i.e., for low doses, a threshold of dose must be reached for an immediate TGF-beta response, otherwise the tissue responds more slowly to the irradiation damage. This result was unexpected and will require further investigation to determine if the threshold can be determined for the 250 kVp x-rays and

  15. Gab-family adapter molecules in signal transduction of cytokine and growth factor receptors, and T and B cell antigen receptors.

    PubMed

    Hibi, M; Hirano, T

    2000-04-01

    Gab1 and Gab2 (Grb2 associated binder 1 and 2) are scaffolding adapter molecules that display sequence similarity with Drosophila DOS (daughter of sevenless), which is a potential substrate for the protein tyrosine phosphatase, Corkscrew, Both Gab1 and Gab2, like DOS, have a pleckstrin homology domain and potential binding sites for SH2 and SH3 domains. Gab1 and Gab2 are phosphorylated on tyrosine upon the stimulation of various cytokines, growth factors, and antigen receptors, and interact with signaling molecules, such as Grb2, SHP-2, and PI-3 kinase. Overexpression of Gab1 or Gab2 mimics or enhances growth factor or cytokine-mediated biological processes and activates ERK MAP kinase. These data imply that Gab1 and Gab2 act downstream of a broad range of cytokine and growth factor receptors, as well as T and B antigen receptors, and link these receptors to ERK MAP kinase and biological actions.

  16. He bubble growth and interaction in W nano-tendrils

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Krasheninnikov, S. I.

    2015-11-01

    Tungsten plasma-facing components (PFCs) in fusion devices are exposed to variety of extreme plasma conditions, which can lead to alteration of tungsten micro-structure and degradation of the PFCs. In particular, it is known that filamentary nano-structures called fuzz can grow on helium plasma exposed tungsten surfaces. However, mechanism of the fuzz growth is still not fully understood. Existing experimental observations indicate that formation of helium nano-bubbles in tungsten plays essential role in fuzz formation and growth. In this work we investigate mechanisms of growth and interaction of helium bubbles in fuzz-like nano-tendrils using molecular dynamics simulations with LAMMPS code. We show that growth of the bubbles has anisotropic character producing complex stress field in the nano-tendrils with distinct compression and tension regions. We found that formation of large inter-bubble tension regions can cause lateral stretching and bending of the tendrils that consequently lead to their elongation and thinning at the stretching sites. The rate of nano-tendril growth due to the described mechanism is also evaluated from the simulations.

  17. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development

    PubMed Central

    Walker, Kenneth A; Sims-Lucas, Sunder; Bates, Carlton M.

    2015-01-01

    Fibroblast growth factor receptors (FGFRs) and FGF ligands are highly expressed in the developing kidney and lower urinary tract. Several classic studies showed many effects of exogenous FGF ligands on embryonic renal tissues in vitro and in vivo. Another older landmark publication showed that mice with a dominant negative Fgfr fragment had severe renal dysplasia. Together these studies revealed the importance of FGFR signaling in kidney and lower urinary tract development. With the advent of modern gene targeting techniques, including conditional knockout approaches, several publications have revealed critical roles for FGFR signaling in many lineages of the kidney and lower urinary tract at different stages of development. FGFR signaling has been shown to be critical for early metanephric mesenchymal patterning, Wolffian duct patterning including induction of the ureteric bud, ureteric bud branching morphogenesis, nephron progenitor survival and nephrogenesis, and bladder mesenchyme patterning. FGFRs pattern these tissues by interacting with many other growth factor signaling pathways. Moreover, the many genetic Fgfr and Fgf animal models have structural defects mimicking numerous congenital anomalies of the kidney and urinary tract seen in humans. Finally, many studies have shown how FGFR signaling is critical for kidney and lower urinary tract patterning in humans. PMID:26293980

  18. Protein partners in the life history of activated fibroblast growth factor receptors.

    PubMed

    Vecchione, Anna; Cooper, Helen J; Trim, Kimberley J; Akbarzadeh, Shiva; Heath, John K; Wheldon, Lee M

    2007-12-01

    Fibroblast growth factor receptors (FGFRs) are a family of four transmembrane (TM) receptor tyrosine kinases (RTKs) which bind to a large family of fibroblast growth factor (FGF) ligands with varying affinity and specificity. FGFR signaling regulates many physiological and pathological processes in development and tissue homeostasis. Understanding FGFR signaling processes requires the identification of partner proteins which regulate receptor function and biological outputs. In this study, we employ an epitope-tagged, covalently dimerized, and constitutively activated form of FGFR1 to identify potential protein partners by MS. By this approach, we sample candidate FGFR effectors throughout the life history of the receptor. Functional classification of the partners identified revealed specific subclasses involved in protein biosynthesis and folding; structural and regulatory components of the cytoskeleton; known signaling effectors and small GTPases implicated in endocytosis and vesicular trafficking. The kinase dependency of the interaction was determined for a subset of previously unrecognized partners by coimmunoprecipitation, Western blotting, and immunocytochemistry. From this group, the small GTPase Rab5 was selected for functional interrogation. We show that short hairpin (sh) RNA-mediated depletion of Rab5 attenuates the activation of the extracellular-regulated kinase (ERK) 1/2 pathway by FGFR signaling. The strategic approach adopted in this study has revealed bona fide novel effectors of the FGFR signaling pathway.

  19. Neurotrophic factors switch between two signaling pathways that trigger axonal growth.

    PubMed

    Paveliev, Mikhail; Lume, Maria; Velthut, Agne; Phillips, Matthew; Arumäe, Urmas; Saarma, Mart

    2007-08-01

    Integration of multiple inputs from the extracellular environment, such as extracellular matrix molecules and growth factors, is a crucial process for cell function and information processing in multicellular organisms. Here we demonstrate that co-stimulation of dorsal root ganglion neurons with neurotrophic factors (NTFs) - glial-cell-line-derived neurotrophic factor, neurturin or nerve growth factor - and laminin leads to axonal growth that requires activation of Src family kinases (SFKs). A different, SFK-independent signaling pathway evokes axonal growth on laminin in the absence of the NTFs. By contrast, axonal branching is regulated by SFKs both in the presence and in the absence of NGF. We propose and experimentally verify a Boolean model of the signaling network triggered by NTFs and laminin. Our results demonstrate that NTFs provide an environmental cue that triggers a switch between separate pathways in the cell signaling network.

  20. Interleukin-Driven Insulin-Like Growth Factor Promotes Prostatic Inflammatory Hyperplasia

    PubMed Central

    Hahn, Alana M.; Myers, Jason D.; McFarland, Eliza K.; Lee, Sanghee

    2014-01-01

    Prostatic inflammation is of considerable importance to urologic research because of its association with benign prostatic hyperplasia and prostate cancer. However, the mechanisms by which inflammation leads to proliferation and growth remain obscure. Here, we show that insulin-like growth factors (IGFs), previously known as critical developmental growth factors during prostate organogenesis, are induced by inflammation as part of the proliferative recovery to inflammation. Using genetic models and in vivo IGF receptor blockade, we demonstrate that the hyperplastic response to inflammation depends on interleukin-1–driven IGF signaling. We show that human prostatic hyperplasia is associated with IGF pathway activation specifically localized to foci of inflammation. This demonstrates that mechanisms of inflammation-induced epithelial proliferation and hyperplasia involve the induction of developmental growth factors, further establishing a link between inflammatory and developmental signals and providing a mechanistic basis for the management of proliferative diseases by IGF pathway modulation. PMID:25292180

  1. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses

    PubMed Central

    Audet, Marie-Claude; Anisman, Hymie

    2013-01-01

    The development of depressive disorders had long been attributed to monoamine variations, and pharmacological treatment strategies likewise focused on methods of altering monoamine availability. However, the limited success achieved by treatments that altered these processes spurred the search for alternative mechanisms and treatments. Here we provide a brief overview concerning a possible role for pro-inflammatory cytokines and growth factors in major depression, as well as the possibility of targeting these factors in treating this disorder. The data suggest that focusing on one or another cytokine or growth factor might be counterproductive, especially as these factors may act sequentially or in parallel in affecting depressive disorders. It is also suggested that cytokines and growth factors might be useful biomarkers for individualized treatments of depressive illnesses. PMID:23675319

  2. Neuritogenic and neuroprotective properties of peptide agonists of the fibroblast growth factor receptor.

    PubMed

    Li, Shizhong; Bock, Elisabeth; Berezin, Vladimir

    2010-05-26

    Fibroblast growth factor receptors (FGFRs) interact with their cognate ligands, FGFs, and with a number of cell adhesion molecules (CAMs), such as the neural cell adhesion molecule (NCAM), mediating a wide range of events during the development and maintenance of the nervous system. Determination of protein structure, in silico modeling and biological studies have recently resulted in the identification of FGFR binding peptides derived from various FGFs and NCAM mimicking the effects of these molecules with regard to their neuritogenic and neuroprotective properties. This review focuses on recently developed functional peptide agonists of FGFR with possible therapeutic potential.

  3. SHOX interacts with the chondrogenic transcription factors SOX5 and SOX6 to activate the aggrecan enhancer.

    PubMed

    Aza-Carmona, Miriam; Shears, Debbie J; Yuste-Checa, Patricia; Barca-Tierno, Verónica; Hisado-Oliva, Alfonso; Belinchón, Alberta; Benito-Sanz, Sara; Rodríguez, J Ignacio; Argente, Jesús; Campos-Barros, Angel; Scambler, Peter J; Heath, Karen E

    2011-04-15

    SHOX (short stature homeobox-containing gene) encodes a transcription factor implicated in skeletal development. SHOX haploinsufficiency has been demonstrated in Leri-Weill dyschondrosteosis (LWD), a skeletal dysplasia associated with disproportionate short stature, as well as in a variable proportion of cases with idiopathic short stature (ISS). In order to gain insight into the SHOX signalling pathways, we performed a yeast two-hybrid screen to identify SHOX-interacting proteins. Two transcription factors, SOX5 and SOX6, were identified. Co-immunoprecipitation assays confirmed the existence of the SHOX-SOX5 and SHOX-SOX6 interactions in human cells, whereas immunohistochemical studies demonstrated the coexpression of these proteins in 18- and 32-week human fetal growth plates. The SHOX homeodomain and the SOX6 HMG domain were shown to be implicated in the SHOX-SOX6 interaction. Moreover, different SHOX missense mutations, identified in LWD and ISS patients, disrupted this interaction. The physiological importance of these interactions was investigated by studying the effect of SHOX on a transcriptional target of the SOX trio, Agc1, which encodes one of the main components of cartilage, aggrecan. Our results show that SHOX cooperates with SOX5/SOX6 and SOX9 in the activation of the upstream Agc1 enhancer and that SHOX mutations affect this activation. In conclusion, we have identified SOX5 and SOX6 as the first two SHOX-interacting proteins and have shown that this interaction regulates aggrecan expression, an essential factor in chondrogenesis and skeletal development.

  4. Role of Gab1 in Heart, Placenta, and Skin Development and Growth Factor- and Cytokine-Induced Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Activation

    PubMed Central

    Itoh, Motoyuki; Yoshida, Yuichi; Nishida, Keigo; Narimatsu, Masahiro; Hibi, Masahiko; Hirano, Toshio

    2000-01-01

    Gab1 is a member of the Gab/DOS (Daughter of Sevenless) family of adapter molecules, which contain a pleckstrin homology (PH) domain and potential binding sites for SH2 and SH3 domains. Gab1 is tyrosine phosphorylated upon stimulation of various cytokines, growth factors, and antigen receptors in cell lines and interacts with signaling molecules, such as SHP-2 and phosphatidylinositol 3-kinase, although its biological roles have not yet been established. To reveal the functions of Gab1 in vivo, we generated mice lacking Gab1 by gene targeting. Gab1-deficient embryos died in utero and displayed developmental defects in the heart, placenta, and skin, which were similar to phenotypes observed in mice lacking signals of the hepatocyte growth factor/scatter factor, platelet-derived growth factor, and epidermal growth factor pathways. Consistent with these observations, extracellular signal-regulated kinase mitogen-activated protein (ERK MAP) kinases were activated at much lower levels in cells from Gab1-deficient embryos in response to these growth factors or to stimulation of the cytokine receptor gp130. These results indicate that Gab1 is a common player in a broad range of growth factor and cytokine signaling pathways linking ERK MAP kinase activation. PMID:10779359

  5. Crystal Structure of the Ternary Complex of a NaV C-Terminal Domain, a Fibroblast Growth Factor Homologous Factor, and Calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chaojian; Chung, Ben C.; Yan, Haidun

    2012-11-13

    Voltage-gated Na{sup +} (Na{sub V}) channels initiate neuronal action potentials. Na{sub V} channels are composed of a transmembrane domain responsible for voltage-dependent Na{sup +} conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs) and calmodulin (CaM). Most ion channel structural studies have focused on mechanisms of permeation and voltage-dependent gating but less is known about how intracellular domains modulate channel function. Here we report the crystal structure of the ternary complex of a human NaV CTD, an FHF, and Ca{sup 2+}-free CaM at 2.2 {angstrom}.more » Combined with functional experiments based on structural insights, we present a platform for understanding the roles of these auxiliary proteins in NaV channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity of individual NaV CTD isoforms for distinctive FHFs.« less

  6. Effects of the Insulin-like Growth Factor Pathway on the Regulation of Mammary Gland Development.

    PubMed

    Ha, Woo Tae; Jeong, Ha Yeon; Lee, Seung Yoon; Song, Hyuk

    2016-09-01

    The insulin-like growth factor (IGF) pathway is a key signal transduction pathway involved in cell proliferation, migration, and apoptosis. In dairy cows, IGF family proteins and binding receptors, including their intracellular binding partners, regulate mammary gland development. IGFs and IGF receptor interactions in mammary glands influence the early stages of mammogenesis, i.e., mammary ductal genesis until puberty. The IGF pathway includes three major components, IGFs (such as IGF-I, IGF-II, and insulin), their specific receptors, and their high-affinity binding partners (IGF binding proteins [IGFBPs]; i.e., IGFBP1-6), including specific proteases for each IGFBP. Additionally, IGFs and IGFBP interactions are critical for the bioactivities of various intracellular mechanisms, including cell proliferation, migration, and apoptosis. Notably, the interactions between IGFs and IGFBPs in the IGF pathway have been difficult to characterize during specific stages of bovine mammary gland development. In this review, we aim to describe the role of the interaction between IGFs and IGFBPs in overall mammary gland development in dairy cows.

  7. Global Quantitative Modeling of Chromatin Factor Interactions

    PubMed Central

    Zhou, Jian; Troyanskaya, Olga G.

    2014-01-01

    Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896

  8. Targeting the fibroblast growth factor receptors for the treatment of cancer.

    PubMed

    Lemieux, Steven M; Hadden, M Kyle

    2013-06-01

    Receptor tyrosine kinases (RTKs) are transmembrane proteins that play a critical role in stimulating signal transduction cascades to influence cell proliferation, growth, and differentiation and they have also been shown to promote angiogenesis when they are up-regulated or mutated. For this reason, their dysfunction has been implicated in the development of human cancer. Over the past decade, much attention has been devoted to developing inhibitors and antibodies against several classes of RTKs, including vascular endothelial growth factor receptors (VEGFRs), epidermal growth factor receptors (EGFRs), and platelet-derived growth factor receptors (PDGFRs). More recently, interest in the fibroblast growth factor receptor (FGFR) class of RTKs as a drug target for the treatment of cancer has emerged. Signaling through FGFRs is critical for normal cellular function and their dysregulation has been linked to various malignancies such as breast and prostate cancer. This review will focus on the current state of both small molecules and antibodies as FGFR inhibitors to provide insight into their development and future potential as anti-cancer agents.

  9. Concentration of platelets and growth factors in platelet-rich plasma from Goettingen minipigs.

    PubMed

    Jungbluth, Pascal; Grassmann, Jan-Peter; Thelen, Simon; Wild, Michael; Sager, Martin; Windolf, Joachim; Hakimi, Mohssen

    2014-01-01

    In minipigs little is known about the concentration of growth factors in plasma, despite their major role in several patho-physiological processes such as healing of fractures. This prompted us to study the concentration of platelets and selected growth factors in plasma and platelet-rich plasma (PRP) preparation of sixteen Goettingen minipigs. Platelet concentrations increased significantly in PRP in comparison to native blood plasma. Generally, significant increase in the concentration of all growth factors tested was observed in the PRP in comparison to the corresponding plasma or serum. Five of the plasma samples examined contained detectable levels of bone morphogenic protein 2 (BMP-2) whereas eleven of the plasma or serum samples contained minimal amounts of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-bb) respectively. On the other hand variable concentrations of bone morphogenic protein 7 (BMP-7) and transforming growth factor β1 (TGF-β1) were measured in all plasma samples. In contrast, all PRP samples contained significantly increased amounts of growth factors. The level of BMP-2, BMP-7, TGF-β1, VEGF and PDGF-bb increased by 17.6, 1.5, 7.1, 7.2 and 103.3 fold, in comparison to the corresponding non-enriched preparations. Moreover significant positive correlations were found between platelet count and the concentrations of BMP-2 (r=0.62, p<0.001), TGF-β1 (r=0.85, p<0.001), VEGF (r=0.46, p<0.01) and PDGF-bb (r=0.9, p<0.001). Our results demonstrate that selected growth factors are present in the platelet-rich plasma of minipigs which might thus serve as a source of autologous growth factors.

  10. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis

    PubMed Central

    Phuc, Le Thi Minh; Taniguchi, Akiyoshi

    2017-01-01

    The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF–EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications. PMID:28629179

  11. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.

    PubMed

    Phuc, Le Thi Minh; Taniguchi, Akiyoshi

    2017-06-19

    The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF-EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  12. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury

    PubMed Central

    Genis, Laura; Dávila, David; Fernandez, Silvia; Pozo-Rodrigálvarez, Andrea; Martínez-Murillo, Ricardo; Torres-Aleman, Ignacio

    2014-01-01

    Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I) in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. We found that IGF-I directly protects astrocytes against oxidative stress (H 2O 2). Indeed, in astrocytes but not in neurons, IGF-I decreases the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H 2O 2 such as stem cell factor (SCF) to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging. PMID:24715976

  13. [Therapeutic use of hematopoietic growth factors. II. GM-CSF and G-CSF].

    PubMed

    Royer, B; Arock, M

    1998-01-01

    The second part of this review on haematopoietic growth factors is focused on the therapeutic use of GM-CSF and G-CSF. Such therapeutic applications have raised very great hopes for clinical haematology. However, it should not be forgotten that these haematopoietic growth factors, which are very costly, are powerful two-edged weapons capable of triggering a cascade of reactions, and have a field of activity that often goes beyond the single highly specific property which it is hoped they possess. The risks and costs of their use are currently being evaluated. Waited developments concerning these molecules focus on three axes: a best use of factors already commercialized, especially concerning adaptation of posologies and new indications, the development of hybrid molecules from already known haematopoietic growth factors, possessing the advantages of respective factors, but not their disadvantages, the discovery of new haematopoietic growth factors with potential therapeutic application.

  14. Ultrastructure and growth factor content of equine platelet-rich fibrin gels.

    PubMed

    Textor, Jamie A; Murphy, Kaitlin C; Leach, J Kent; Tablin, Fern

    2014-04-01

    To compare fiber diameter, pore area, compressive stiffness, gelation properties, and selected growth factor content of platelet-rich fibrin gels (PRFGs) and conventional fibrin gels (FGs). PRFGs and conventional FGs prepared from the blood of 10 healthy horses. Autologous fibrinogen was used to form conventional FGs. The PRFGs were formed from autologous platelet-rich plasma of various platelet concentrations (100 × 10³ platelets/μL, 250 × 10³ platelets/μL, 500 × 10³ platelets/μL, and 1,000 × 10³ platelets/μL). All gels contained an identical fibrinogen concentration (20 mg/mL). Fiber diameter and pore area were evaluated with scanning electron microscopy. Maximum gelation rate was assessed with spectrophotometry, and gel stiffness was determined by measuring the compressive modulus. Gel weights were measured serially over 14 days as an index of contraction (volume loss). Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were quantified with ELISAs. Fiber diameters were significantly larger and mean pore areas were significantly smaller in PRFGs than in conventional FGs. Gel weight decreased significantly over time, differed significantly between PRFGs and conventional FGs, and was significantly correlated with platelet concentration. Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were highest in gels and releasates derived from 1,000 × 10³ platelets/μL. The inclusion of platelets in FGs altered the architecture and increased the growth factor content of the resulting scaffold. Platelets may represent a useful means of modifying these gels for applications in veterinary and human regenerative medicine.

  15. Minimally invasive esthetic ridge preservation with growth-factor enhanced bone matrix.

    PubMed

    Nevins, Marc L; Said, Sherif

    2017-12-28

    Extraction socket preservation procedures are critical to successful esthetic implant therapy. Conventional surgical approaches are technique sensitive and often result in alteration of the soft tissue architecture, which then requires additional corrective surgical procedures. This case series report presents the ability of flapless surgical techniques combined with a growth factor-enhanced bone matrix to provide esthetic ridge preservation at the time of extraction for compromised sockets. When considering esthetic dental implant therapy, preservation, or further enhancement of the available tissue support at the time of tooth extraction may provide an improved esthetic outcome with reduced postoperative sequelae and decreased treatment duration. Advances in minimally invasive surgical techniques combined with recombinant growth factor technology offer an alternative for bone reconstruction while maintaining the gingival architecture for enhanced esthetic outcome. The combination of freeze-dried bone allograft (FDBA) and rhPDGF-BB (platelet-derived growth factor-BB) provides a growth-factor enhanced matrix to induce bone and soft tissue healing. The use of a growth-factor enhanced matrix is an option for minimally invasive ridge preservation procedures for sites with advanced bone loss. Further studies including randomized clinical trials are needed to better understand the extent and limits of these procedures. The use of minimally invasive techniques with growth factors for esthetic ridge preservation reduces patient morbidity associated with more invasive approaches and increases the predictability for enhanced patient outcomes. By reducing the need for autogenous bone grafts the use of this technology is favorable for patient acceptance and ease of treatment process for esthetic dental implant therapy. © 2017 Wiley Periodicals, Inc.

  16. Assessment of the interactions between economic growth and industrial wastewater discharges using co-integration analysis: a case study for China's Hunan Province.

    PubMed

    Xiao, Qiang; Gao, Yang; Hu, Dan; Tan, Hong; Wang, Tianxiang

    2011-07-01

    We have investigated the interactions between economic growth and industrial wastewater discharge from 1978 to 2007 in China's Hunan Province using co-integration theory and an error-correction model. Two main economic growth indicators and four representative industrial wastewater pollutants were selected to demonstrate the interaction mechanism. We found a long-term equilibrium relationship between economic growth and the discharge of industrial pollutants in wastewater between 1978 and 2007 in Hunan Province. The error-correction mechanism prevented the variable expansion for long-term relationship at quantity and scale, and the size of the error-correction parameters reflected short-term adjustments that deviate from the long-term equilibrium. When economic growth changes within a short term, the discharge of pollutants will constrain growth because the values of the parameters in the short-term equation are smaller than those in the long-term co-integrated regression equation, indicating that a remarkable long-term influence of economic growth on the discharge of industrial wastewater pollutants and that increasing pollutant discharge constrained economic growth. Economic growth is the main driving factor that affects the discharge of industrial wastewater pollutants in Hunan Province. On the other hand, the discharge constrains economic growth by producing external pressure on growth, although this feedback mechanism has a lag effect. Economic growth plays an important role in explaining the predicted decomposition of the variance in the discharge of industrial wastewater pollutants, but this discharge contributes less to predictions of the variations in economic growth.

  17. Interspecific variation in growth responses to climate and competition of five eastern tree species.

    PubMed

    Rollinson, Christine R; Kaye, Margot W; Canham, Charles D

    2016-04-01

    Climate and competition are often presented from two opposing views of the dominant driver of individual tree growth and species distribution in temperate forests, such as those in the eastern United States. Previous studies have provided abundant evidence indicating that both factors influence tree growth, and we argue that these effects are not independent of one another and rather that interactions between climate, competition, and size best describe tree growth. To illustrate this point, we describe the growth responses of five common eastern tree species to interacting effects of temperature, precipitation, competition, and individual size using maximum likelihood estimation. Models that explicitly include interactions among these four factors explained over half of the variance in annual growth for four out of five species using annual climate. Expanding temperature and precipitation analyses to include seasonal interactions resulted in slightly improved models with a mean R2 of 0.61 (SD 0.10). Growth responses to individual factors as well their interactions varied greatly among species. For example, growth sensitivity to temperature for Quercus rubra increased with maximum annual precipitation, but other species showed no change in sensitivity or slightly reduced annual growth. Our results also indicate that three-way interactions among individual stem size, competition, and temperature may determine which of the five co-occurring species in our study could have the highest growth rate in a given year. Continued consideration and quantification of interactions among climate, competition, and individual-based characteristics are likely to increase understanding of key biological processes such as tree growth. Greater parameterization of interactions between traditionally segregated factors such as climate and competition may also help build a framework to reconcile drivers of individual-based processes such as growth with larger-scale patterns of species

  18. Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer.

    PubMed

    Baker, Cheryl H; Solorzano, Carmen C; Fidler, Isaiah J

    2002-04-01

    We determined whether concurrent blockage of vascular endothelial growth factor (VEGF) receptor and epidermal growth factor (EGF) receptor signaling by two novel tyrosine kinase inhibitors, PTK 787 and PKI 166, respectively, can inhibit angiogenesis and, hence, the growth and metastasis of human pancreatic carcinoma in nude mice. Highly metastatic human pancreatic carcinoma L3.6pl cells were injected into the pancreas of nude mice. Seven days later, groups of mice began receiving oral doses of PTK 787 and PKI 166 three times weekly. Some groups of mice also received i.p. injections of gemcitabine twice a week. The mice were necropsied when the control mice became moribund. Treatment with PTK 787 and PKI 166, with gemcitabine alone, or with the combination of PTK 787, PKI 166, and gemcitabine produced 69, 50, and 97% reduction in the volume of pancreatic tumors, respectively. Administration of protein tyrosine kinase inhibitors and gemcitabine also significantly decreased the incidence of lymph node and liver metastasis. The therapeutic efficacy directly correlated with a decrease in circulating proangiogenic molecules (VEGF, interleukin-8), a decrease in microvessel density, a decrease in proliferating cell nuclear antigen staining, and an increase in apoptosis of tumor cells and endothelial cells. Therapies produced by combining gemcitabine with either PKI 166 or PTK 787 were similar to those produced by combining gemcitabine with both PKI 166 and PTK 787. These results suggest that blockade of either epidermal growth factor receptor or VEGF receptor signaling combined with chemotherapy provides an effective approach to the therapy of pancreatic cancer.

  19. A multiphase model for chemically- and mechanically- induced cell differentiation in a hollow fibre membrane bioreactor: minimising growth factor consumption.

    PubMed

    Pearson, Natalie C; Oliver, James M; Shipley, Rebecca J; Waters, Sarah L

    2016-06-01

    We present a simplified two-dimensional model of fluid flow, solute transport, and cell distribution in a hollow fibre membrane bioreactor. We consider two cell populations, one undifferentiated and one differentiated, with differentiation stimulated either by growth factor alone, or by both growth factor and fluid shear stress. Two experimental configurations are considered, a 3-layer model in which the cells are seeded in a scaffold throughout the extracapillary space (ECS), and a 4-layer model in which the cell-scaffold construct occupies a layer surrounding the outside of the hollow fibre, only partially filling the ECS. Above this is a region of free-flowing fluid, referred to as the upper fluid layer. Following previous models by the authors (Pearson et al. in Math Med Biol, 2013, Biomech Model Mechanbiol 1-16, 2014a, we employ porous mixture theory to model the dynamics of, and interactions between, the cells, scaffold, and fluid in the cell-scaffold construct. We use this model to determine operating conditions (experiment end time, growth factor inlet concentration, and inlet fluid fluxes) which result in a required percentage of differentiated cells, as well as maximising the differentiated cell yield and minimising the consumption of expensive growth factor.

  20. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    PubMed

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  1. Sustained release of nerve growth factor from biodegradable polymer microspheres.

    PubMed

    Camarata, P J; Suryanarayanan, R; Turner, D A; Parker, R G; Ebner, T J

    1992-03-01

    Although grafted adrenal medullary tissue to the striatum has been used both experimentally and clinically in parkinsonism, there is a definite need to augment long-term survival. Infusion of nerve growth factor (NGF) or implantation of NGF-rich tissue into the area of the graft prolongs survival and induces differentiation into neural-like cells. To provide for prolonged, site-specific delivery of this growth factor to the grafted tissue in a convenient manner, we fabricated biodegradable polymer microspheres of poly(L-lactide)co-glycolide (70:30) containing NGF. Biologically active NGF was released from the microspheres, as assayed by neurite outgrowth in a dorsal root ganglion tissue culture system. Anti-NGF could block this outgrowth. An enzyme-linked immunosorbent assay detected NGF still being released in vitro for longer than 5 weeks. In vivo immunohistochemical studies showed release over a 4.5-week period. This technique should prove useful for incorporating NGF and other growth factors into polymers and delivering proteins and other macromolecules intracerebrally over a prolonged time period. These growth factor-containing polymer microspheres can be used in work aimed at prolonging graft survival, treating experimental Alzheimer's disease, and augmenting peripheral nerve regeneration.

  2. Concentrated Growth Factor Enhanced Fat Graft Survival: A Comparative Study.

    PubMed

    Hu, Yun; Jiang, Yichen; Wang, Muyao; Tian, Weidong; Wang, Hang

    2018-06-08

    Concentrated growth factors (CGFs) belong to a new generation biomaterials that concentrate large number of growth factors and CD34 stem cells in small volume of plasma. The purpose of this study was to evaluate the impact of the new technique, CGF, on fat graft survival, which compared with platelet-rich plasma (PRP) and platelet-rich fibrin (PRF). Nude mice received fat graft were divided into PRP group, PRF group, CGF group, and saline. The grafts were volumetrically and histologically evaluated at 4, 8, and 12 weeks after fat grafting. In vitro growth factor levels in PRP, PRF, and CGF were compared using enzyme-linked immunoassay method. Cell count and real-time polymerase chain reaction were used to evaluate the impact of CGF in medium on human adipose-derived stem cell (hADSC) proliferation and vascular differentiation, respectively. Fat graft weight was significantly higher in the CGF group than those in the other groups, and histologic evaluation revealed greater vascularity, fewer cysts, and less fibrosis. Adding CGF to the medium maximally promoted hADSC proliferation and expressing vascular endothelial growth factor and PECAM-1. In this preliminary study, CGF treatment improved the survival and quality of fat grafts.

  3. Platelet-derived growth factor-dependent association of the GTPase-activating protein of Ras and Src.

    PubMed Central

    Schlesinger, T K; Demali, K A; Johnson, G L; Kazlauskas, A

    1999-01-01

    Here we report that the platelet-derived growth factor beta receptor (betaPDGFR) is not the only tyrosine kinase able to associate with the GTPase-activating protein of Ras (RasGAP). The interaction of non-betaPDGFR kinase(s) with RasGAP was dependent on stimulation with platelet-derived growth factor (PDGF) and seemed to require tyrosine phosphorylation of RasGAP. Because the tyrosine phosphorylation site of RasGAP is in a sequence context that is favoured by the Src homology 2 ('SH2') domain of Src family members, we tested the possibility that Src was the kinase that associated with RasGAP. Indeed, Src interacted with phosphorylated RasGAP fusion proteins; immunodepletion of Src markedly decreased the recovery of the RasGAP-associated kinase activity. Thus PDGF-dependent tyrosine phosphorylation of RasGAP results in the formation of a complex between RasGAP and Src. To begin to address the relevance of these observations, we focused on the consequences of the interaction of Src and RasGAP. We found that a receptor mutant that did not activate Src was unable to efficiently mediate the tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Taken together, these observations support the following hypothesis. When RasGAP is recruited to the betaPDGFR, it is phosphorylated and associates with Src. Once bound to RasGAP, Src is no longer able to promote the phosphorylation of PLCgamma. This hypothesis offers a mechanistic explanation for our previously published findings that the recruitment of RasGAP to the betaPDGFR attenuates the tyrosine phosphorylation of PLCgamma. Finally, these findings suggest a novel way in which RasGAP negatively regulates signal relay by the betaPDGFR. PMID:10567236

  4. Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin.

    PubMed

    Tureckova, J; Wilson, E M; Cappalonga, J L; Rotwein, P

    2001-10-19

    The differentiation and maturation of skeletal muscle require interactions between signaling pathways activated by hormones and growth factors and an intrinsic regulatory network controlled by myogenic transcription factors. Insulin-like growth factors (IGFs) play key roles in muscle development in the embryo and in regeneration in the adult. To study mechanisms of IGF action in muscle, we developed a myogenic cell line that overexpresses IGF-binding protein-5. C2BP5 cells remain quiescent in low serum differentiation medium until the addition of IGF-I. Here we use this cell line to identify signaling pathways controlling IGF-mediated differentiation. Induction of myogenin by IGF-I and myotube formation were prevented by the phosphatidylinositol (PI) 3-kinase inhibitor, LY294002, even when included 2 days after growth factor addition, whereas expression of active PI 3-kinase could promote differentiation in the absence of IGF-I. Differentiation also was induced by myogenin but was blocked by LY294002. The differentiation-promoting effects of IGF-I were mimicked by a modified membrane-targeted inducible Akt-1 (iAkt), and iAkt was able to stimulate differentiation of C2 myoblasts and primary mouse myoblasts incubated with otherwise inhibitory concentrations of LY294002. These results show that an IGF-regulated PI 3-kinase-Akt pathway controls muscle differentiation by mechanisms acting both upstream and downstream of myogenin.

  5. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression.

    PubMed

    Stephen, Tom L; Rutkowski, Melanie R; Allegrezza, Michael J; Perales-Puchalt, Alfredo; Tesone, Amelia J; Svoronos, Nikolaos; Nguyen, Jenny M; Sarmin, Fahmida; Borowsky, Mark E; Tchou, Julia; Conejo-Garcia, Jose R

    2014-09-18

    Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A potential oncogenic activity of platelet-derived growth factor d in prostate cancer progression.

    PubMed

    Ustach, Carolyn V; Taube, Marcus E; Hurst, Newton J; Bhagat, Sunita; Bonfil, R Daniel; Cher, Michael L; Schuger, Lucia; Kim, Hyeong-Reh Choi

    2004-03-01

    The platelet-derived growth factor (PDGF) proteins are potent stimulators of cell proliferation/transformation and play a major role in cell-cell communication. For over two decades, PDGFs were thought to exist as three dimeric polypeptides (the homodimers AA and BB and the heterodimer AB). Recently, however, the PDGF C and D chains were discovered in a BLAST search of the expressed sequence tag databases. The PDGF CC and DD dimers have a unique two-domain structure with an NH(2)-terminal CUB (compliment subcomponents C1r/C1s, Uegf, and Bmp1) domain and a COOH-terminal PDGF/vascular endothelial growth factor domain. Whereas secreted PDGF AA, BB, and AB readily activate their cell surface receptors, it was suggested that extracellular proteolytic removal of the CUB domain is required for the PDGF/vascular endothelial growth factor domain of PDGF CC and DD to activate PDGF receptors. In the present study, we examined the processing of latent PDGF D into its active form and the effects of PDGF D expression on prostate cancer progression. We show that LNCaP cells auto-activate latent PDGF DD into the active PDGF domain, which can induce phosphorylation of the beta-PDGF receptor and stimulates LNCaP cell proliferation in an autocrine manner. Additionally, LNCaP-PDGF D-conditioned medium induces migration of the prostate fibroblast cell line 1532-FTX, indicating LNCaP-processed PDGF DD is active in a paracrine manner as well. In a severe combined immunodeficient mouse model, PDGF DD expression accelerates early onset of prostate tumor growth and drastically enhances prostate carcinoma cell interaction with surrounding stromal cells. These demonstrate a potential oncogenic activity of PDGF DD in the development and/or progression of prostate cancer.

  7. A Potential Oncogenic Activity of Platelet-Derived Growth Factor D in Prostate Cancer Progression

    PubMed Central

    Ustach, Carolyn V.; Taube, Marcus E.; Hurst, Newton J.; Bhagat, Sunita; Bonfil, R. Daniel; Cher, Michael L.; Schuger, Lucia; Kim, Hyeong-Reh Choi

    2014-01-01

    The platelet-derived growth factor (PDGF) proteins are potent stimulators of cell proliferation/transformation and play a major role in cell-cell communication. For over two decades, PDGFs were thought to exist as three dimeric polypeptides (the homodimers AA and BB and the heterodimer AB). Recently, however, the PDGF C and D chains were discovered in a BLAST search of the expressed sequence tag databases. The PDGF CC and DD dimers have a unique two-domain structure with an NH2-terminal CUB (compliment subcomponents C1r/C1s, Uegf, and Bmp1) domain and a COOH-terminal PDGF/vascular endothelial growth factor domain. Whereas secreted PDGF AA, BB, and AB readily activate their cell surface receptors, it was suggested that extracellular proteolytic removal of the CUB domain is required for the PDGF/vascular endothelial growth factor domain of PDGF CC and DD to activate PDGF receptors. In the present study, we examined the processing of latent PDGF D into its active form and the effects of PDGF D expression on prostate cancer progression. We show that LNCaP cells auto-activate latent PDGF DD into the active PDGF domain, which can induce phosphorylation of the β-PDGF receptor and stimulates LNCaP cell proliferation in an autocrine manner. Additionally, LNCaP-PDGF D-conditioned medium induces migration of the prostate fibroblast cell line 1532-FTX, indicating LNCaP-processed PDGF DD is active in a paracrine manner as well. In a severe combined immunodeficient mouse model, PDGF DD expression accelerates early onset of prostate tumor growth and drastically enhances prostate carcinoma cell interaction with surrounding stromal cells. These demonstrate a potential oncogenic activity of PDGF DD in the development and/or progression of prostate cancer. PMID:14996732

  8. Platelet Activating Factor: A Growth Factor for Breast Cancer

    DTIC Science & Technology

    2006-09-01

    synthase (ADS) increases ether lipid content, growth and PAF synthesis in MCF-7 cells. 4. Eicosapentaenoic acid (EPA) inhibits the synthesis of PAF...Schmitt, J. D., Bullock, B. C. Wykle, R. L. Reacylation of platelet activating factor with eicosapentaenoic acid in fish-oil-enriched monkey...breast cancer. Recent studies have shown that the ratio of two families of essential fatty acids is important in regulating many cellular processes

  9. Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...2009 4. TITLE AND SUBTITLE Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development 5a. CONTRACT NUMBER and Tumorigenesis...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS Fibroblast Growth Factor Binding Protein-1

  10. ROLES OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF-A) IN MEDIATION OF DIOXIN (TCDD)-INDUCED DELAYS IN DEVELOPMENT OF THE MOUSE MAMMARY GLAND

    EPA Science Inventory

    Roles of Epidermal Growth Factor (EGF) and Transforming Growth Factor-alpha (TGF-a) in Mediation of Dioxin (TCDD)-Induced Delays in Development of the Mouse Mammary Gland.
    Suzanne E. Fenton, Barbara Abbott, Lamont Bryant, and Angela Buckalew. U.S. EPA, NHEERL, Reproductive Tox...

  11. Novel Growth Factor as Prognostic Marker for Estrogen-Independence in Breast Cancer

    DTIC Science & Technology

    2002-08-01

    factor (PCDGF, also known as progranulin ) is a novel autocrine growth factor shown to be overexpressed and to be mitogenic in human breast cancer cell...kDa glycoprotein originally purified from the highly tumorigenic mouse teratoma-derived cell line PC (1, 2). PCDGF (also known as progranulin ) is the...requirement for the insulin-like growth factor 1 receptor for growth in vitro. J Biol Chem, 273: 20078-20083, 1998. 6. He, Z. and Bateman, A. Progranulin gene

  12. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacymore » and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.« less

  13. Plant-Produced Human Recombinant Erythropoietic Growth Factors Support Erythroid Differentiation In Vitro

    PubMed Central

    Musiychuk, Konstantin; Sivalenka, Rajarajeswari; Jaje, Jennifer; Bi, Hong; Flores, Rosemary; Shaw, Brenden; Jones, R. Mark; Golovina, Tatiana; Schnipper, Jacob; Khandker, Luipa; Sun, Ruiqiang; Li, Chang; Kang, Lin; Voskinarian-Berse, Vanessa; Zhang, Xiaokui; Streatfield, Stephen; Hambor, John; Abbot, Stewart

    2013-01-01

    Clinically available red blood cells (RBCs) for transfusions are at high demand, but in vitro generation of RBCs from hematopoietic stem cells requires significant quantities of growth factors. Here, we describe the production of four human growth factors: erythropoietin (EPO), stem cell factor (SCF), interleukin 3 (IL-3), and insulin-like growth factor-1 (IGF-1), either as non-fused proteins or as fusions with a carrier molecule (lichenase), in plants, using a Tobacco mosaic virus vector-based transient expression system. All growth factors were purified and their identity was confirmed by western blotting and peptide mapping. The potency of these plant-produced cytokines was assessed using TF1 cell (responsive to EPO, IL-3 and SCF) or MCF-7 cell (responsive to IGF-1) proliferation assays. The biological activity estimated here for the cytokines produced in plants was slightly lower or within the range cited in commercial sources and published literature. By comparing EC50 values of plant-produced cytokines with standards, we have demonstrated that all four plant-produced growth factors stimulated the expansion of umbilical cord blood-derived CD34+ cells and their differentiation toward erythropoietic precursors with the same potency as commercially available growth factors. To the best of our knowledge, this is the first report on the generation of all key bioactive cytokines required for the erythroid development in a cost-effective manner using a plant-based expression system. PMID:23517237

  14. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor.

    PubMed

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-08-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone-related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.-Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. © FASEB.

  15. Gene therapy with growth factors for periodontal tissue engineering–A review

    PubMed Central

    Gupta, Shipra; Mahendra, Aneet

    2012-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. A challenge faced by periodontal therapy is the predictable regeneration of periodontal tissues lost as a consequence of disease. Growth factors are critical to the development, maturation, maintenance and repair of oral tissues as they establish an extra-cellular environment that is conducive to cell and tissue growth. Tissue engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. The aim of this paper is to review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Various such materials have been formulated into devices that can be used as vehicles for delivery of cells, growth factors and DNA. Different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral and tooth supporting structure. Key words: Periodontal disease, gene therapy, regeneration, tissue repair, growth factors, tissue engineering. PMID:22143705

  16. A novel mechanism of vascular endothelial growth factor, leptin and transforming growth factor-beta2 sequestration in a subpopulation of human ovarian follicle cells.

    PubMed

    Antczak, M; Van Blerkom, J; Clark, A

    1997-10-01

    This study describes the occurrence of a highly specialized subpopulation of granulosa and cumulus oophorus cells that accumulate and sequester specific growth factors by a novel mechanism. These cells are characterized by multiple balloon-like processes tethered to the cell by means of a slender stalk of plasma membrane. Time-lapse analyses demonstrate that these tethered structures (TS) form in minutes and frequently detach from the cell with the bulbous portion remaining motile on the cell surface. Serial section reconstruction of transmission electron microscopic images shows a specific and stable intracellular organization in which an apparent secretory compartment composed of densely packed vacuoles, vesicles, and cisternae is separated by a thick filamentous network from a nuclear compartment containing mitochondria, polyribosomes, lipid inclusions, and rough-surfaced endoplasmic reticulum. Immunofluorescent analysis performed during the formation of these structures showed a progressive accumulation of vascular endothelial growth factor, leptin, and transforming growth factor-beta2 in the bulbous region. TS were identified in newly aspirated masses of granulosa and cumulus oophorus, and their production persists for months in culture. Observations of TS-forming cells made over several days of culture indicates that their production is episodic and factor release from these cells may be pulsatile. The findings suggest that a novel method of growth factor storage and release by an apparent apocrine-like mechanism occurs in the human ovarian follicle. The results are discussed with respect to possible roles in pre- and post-ovulatory follicular development.

  17. Effects of radiation on the epidermal growth factor receptor pathway in the heart

    PubMed Central

    Sridharan, Vijayalakshmi; Sharma, Sunil K.; Moros, Eduardo G.; Corry, Peter M.; Tripathi, Preeti; Lieblong, Benjamin J.; Guha, Chandan; Hauer-Jensen, Martin; Boerma, Marjan

    2013-01-01

    Purpose Radiation-induced heart disease (RIHD) is a serious side effect of thoracic radiotherapy. The epidermal growth factor receptor (EGFR) pathway is essential for the function and survival of cardiomyocytes. Hence, agents that target the EGFR pathway are cardiotoxic. Tocotrienols protect from radiation injury, but may also enhance the therapeutic effects of EGFR pathway inhibitors in cancer treatment. This study investigates the effects of local irradiation on the EGFR pathway in the heart and tests whether tocotrienols may modify radiation-induced changes in this pathway. Methods Male Sprague-Dawley rats received image-guided localized heart irradiation with 21 Gy. Twenty four hours before irradiation, rats received a single dose of tocotrienol-enriched formulation or vehicle by oral gavage. At time points from 2 hours to 9 months after irradiation, left ventricular expression of EGFR pathway mediators was studied. Results Irradiation caused a decrease in the expression of epidermal growth factor (EGF) and neuregulin-1 (Nrg-1) mRNA from 6 hours up to 10 weeks, followed by an upregulation of these ligands and the receptor erythroblastic leukemia viral oncogene homolog (ErbB)4 at 6 months. In addition, the upregulation of Nrg-1 was statistically significant up to 9 months after irradiation. A long-term upregulation of ErbB2 protein did not coincide with changes in transcription or post-translational interaction with the chaperone heat shock protein 90 (HSP90). Pretreatment with tocotrienols prevented radiation-induced changes at 2 weeks. Conclusions Local heart irradiation causes long-term changes in the EGFR pathway. Studies have to address how radiation may interact with cardiotoxic effects of EGFR inhibitors. PMID:23488537

  18. Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer.

    PubMed

    Brown, Wells S; Tan, Li; Smith, Andrew; Gray, Nathanael S; Wendt, Michael K

    2016-09-01

    Therapeutic targeting of late-stage breast cancer is limited by an inadequate understanding of how tumor cell signaling evolves during metastatic progression and by the currently available small molecule inhibitors capable of targeting these processes. Herein, we demonstrate that both β3 integrin and fibroblast growth factor receptor-1 (FGFR1) are part of an epithelial-mesenchymal transition (EMT) program that is required to facilitate metastatic outgrowth in response to fibroblast growth factor-2 (FGF2). Mechanistically, β3 integrin physically disrupts an interaction between FGFR1 and E-cadherin, leading to a dramatic redistribution of FGFR1 subcellular localization, enhanced FGF2 signaling and increased three-dimensional (3D) outgrowth of metastatic breast cancer cells. This ability of β3 integrin to drive FGFR signaling requires the enzymatic activity of focal adhesion kinase (FAK). Consistent with these mechanistic data, we demonstrate that FGFR, β3 integrin, and FAK constitute a molecular signature capable of predicting decreased survival of patients with the basal-like subtype of breast cancer. Importantly, covalent targeting of a conserved cysteine in the P-loop of FGFR1-4 with our newly developed small molecule, FIIN-4, more effectively blocks 3D metastatic outgrowth as compared with currently available FGFR inhibitors. In vivo application of FIIN-4 potently inhibited the growth of metastatic, patient-derived breast cancer xenografts and murine-derived metastases growing within the pulmonary microenvironment. Overall, the current studies demonstrate that FGFR1 works in concert with other EMT effector molecules to drive aberrant downstream signaling, and that these events can be effectively targeted using our novel therapeutics for the treatment of the most aggressive forms of breast cancer. Mol Cancer Ther; 15(9); 2096-106. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. FGF19 functions as autocrine growth factor for hepatoblastoma

    PubMed Central

    Elzi, David J.; Song, Meihua; Blackman, Barron; Weintraub, Susan T.; López-Terrada, Dolores; Chen, Yidong; Tomlinson, Gail E.; Shiio, Yuzuru

    2016-01-01

    Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain insight into cytokine signaling in hepatoblastoma, we employed mass spectrometry to analyze the proteins secreted from Hep293TT hepatoblastoma cell line we established and identified the specific secretion of fibroblast growth factor 19 (FGF19), a growth factor for liver cells. We determined that silencing FGF19 by shRNAs or neutralizing secreted FGF19 by anti-FGF19 antibody inhibits the proliferation of hepatoblastoma cells. Furthermore, blocking FGF19 signaling by an FGF receptor kinase inhibitor suppressed hepatoblastoma growth. RNA expression analysis in hepatoblastoma tumors revealed that the high expression of FGF19 signaling pathway components as well as the low expression of FGF19 signaling repression targets correlates with the aggressiveness of the tumors. These results suggest the role of FGF19 as autocrine growth factor for hepatoblastoma. PMID:27382436

  20. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

    PubMed

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.

  1. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    PubMed Central

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  2. Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma

    PubMed Central

    Snuderl, Matija; Batista, Ana; Kirkpatrick, Nathaniel D.; de Almodovar, Carmen Ruiz; Riedemann, Lars; Walsh, Elisa C.; Anolik, Rachel; Huang, Yuhui; Martin, John D.; Kamoun, Walid; Knevels, Ellen; Schmidt, Thomas; Farrar, Christian T.; Vakoc, Benjamin J.; Mohan, Nishant; Chung, Euiheon; Roberge, Sylvie; Peterson, Teresa; Bais, Carlos; Zhelyazkova, Boryana H.; Yip, Stephen; Hasselblatt, Martin; Rossig, Claudia; Niemeyer, Elisabeth; Ferrara, Napoleone; Klagsbrun, Michael; Duda, Dan G.; Fukumura, Dai; Xu, Lei; Carmeliet, Peter; Jain, Rakesh K.

    2013-01-01

    SUMMARY Medulloblastoma is the most common pediatric malignant brain tumor. Although current therapies improve survival, these regimens are highly toxic and associated with significant morbidity. Here, we report that placental growth factor (PlGF) is expressed in the majority of medulloblastomas independent of their subtype. Moreover, high expression of PlGF receptor neuropilin 1 (Nrp1) correlates with poor overall survival in patients. We demonstrate that PlGF and Nrp1 are required for the growth and spread of medulloblastoma: PlGF/Nrp1 blockade results in direct antitumor effects in vivo, resulting in medulloblastoma regression, decreased metastases, and increased mouse survival. We reveal that PlGF is produced in the cerebellar stroma via tumor-derived Sonic hedgehog (Shh) and show that PlGF acts through Nrp1—and not vascular endothelial growth factor receptor 1 (VEGFR1)—to promote tumor cell survival. This critical tumor-stroma interaction—mediated by Shh, PlGF, and Nrp1 across medulloblastoma subtypes—supports the development of therapies targeting PlGF/Nrp1 pathway. PMID:23452854

  3. Origin of platelet-derived growth factor in megakaryocytes in guinea pigs.

    PubMed Central

    Chernoff, A; Levine, R F; Goodman, D S

    1980-01-01

    Growth factor activity, as determined by the stimulation of [3H]thymidine incorporation into the DNA of quiescent 3T3 cells in culture, was found in lysates of guinea pig platelets and megakaryocytes. Quantitative dilution studies demonstrated that, of the cells present in the guinea pig bone marrow, only the megakaryocyte possessed quantitatively significant growth factor activity. The amount of activity present in one megakaryocyte was equivalent to that present in 1,000-5,000 platelets, a value approximately comparable to the number of platelets shed from a single megakaryocyte. It is suggested that guinea pig platelet-derived growth factor has its origin in the megakaryocyte. PMID:7358851

  4. A gravimetric analysis of protein-oligosaccharide interactions.

    PubMed

    Rudd, T; Gallagher, J T; Ron, D; Nichols, R J; Fernig, D G

    2003-04-01

    Interactions between an immobilized, heparin-derived octasaccharide and growth factors have been observed using a quartz crystal microbalance-dissipation (QCM-D). This device can measure the amount of growth factors binding to the octasaccharide surface and also the change of dissipation of the surface. Dissipation is a measure of how the adhered material 'damps' the surface vibrations. The octasaccharides were anchored through their reducing ends by the intermediary of the alkanethiol molecule, which covalently binds to the crystal surface through the thiol group. As expected, heparin sulphate binding growth factors bound to the octasaccharide, but the change in mass of growth factor bound per unit change in dissipation is different for the different growth factors. Suggesting that the structures of the various growth factor-octasaccharide complexes are different, therefore, indicates that the change in dissipation can give insights into the structure, orientation and packing of the oligosaccharide-growth factor complexes.

  5. Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis

    DTIC Science & Technology

    2008-10-01

    AD_________________ AWARD NUMBER: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis 5b. GRANT NUMBER W81XWH-06-1-0763 5c. PROGRAM...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fibroblast growth factors (FGFs) are vital modulators of development as well as

  6. On the dimensionality of the stress-related growth scale: one, three, or seven factors?

    PubMed

    Roesch, Scott C; Rowley, Anthony A; Vaughn, Allison A

    2004-06-01

    We examined the factorial validity and dimensionality of the Stress-Related Growth Scale (SRGS; Park, Cohen, & Murch, 1996) using a large multiethnic sample (n = 1,070). Exploratory and confirmatory factor analyses suggested that a multidimensional representation of the SRGS fit better than a unidimensional representation. Specifically, we cross-validated both a 3-factor model and a 7-factor model using confirmatory factor analysis and were shown to be invariant across gender and ethnic groups. The 3-factor model was represented by global dimensions of growth that included rational/mature thinking, affective/emotional growth, and religious/spiritual growth. We replicated the 7-factor model of Armeli, Gunthert, and Cohen (2001) and it represented more specific components of growth such as Self-Understanding and Treatment of Others. However, some factors of the 7-factor model had questionable internal consistency and were strongly intercorrelated, suggesting redundancy. The findings support the notion that the factor structure of both the original 1-factor and revised 7-factor models are unstable and that the 3-factor model developed in this research has more reliable psychometric properties and structure.

  7. 1,4-Bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene, a small molecule, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular Lens epithelium-derived growth factor.

    PubMed

    Gu, Wan-gang; Ip, Denis Tsz-Ming; Liu, Si-jie; Chan, Joseph H; Wang, Yan; Zhang, Xuan; Zheng, Yong-tang; Wan, David Chi-Cheong

    2014-04-25

    Translocation of viral integrase (IN) into the nucleus is a critical precondition of integration during the life cycle of HIV, a causative agent of Acquired Immunodeficiency Syndromes (AIDS). As the first discovered cellular factor to interact with IN, Lens epithelium-derived growth factor (LEDGF/p75) plays an important role in the process of integration. Disruption of the LEDGF/p75-IN interaction has provided a great interest for anti-HIV agent discovery. In this work, we reported that one small molecular compound, 1,4-bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene(Compound 15), potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution at 1 μM. The putative binding mode of Compound 15 was constructed by a molecular docking simulation to provide structural insights into the ligand-binding mechanism. Compound 15 suppressed viral replication by measuring p24 antigen production in HIV-1IIIB acute infected C8166 cells with EC50 value of 11.19 μM. Compound 15 might supply useful structural information for further anti-HIV agent discovery. Copyright © 2014. Published by Elsevier Ireland Ltd.

  8. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors.

    PubMed

    Cortés-Flores, Jorge; Hernández-Esquivel, Karen Beatriz; González-Rodríguez, Antonio; Ibarra-Manríquez, Guillermo

    2017-01-01

    Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community. © 2017 Botanical Society of America.

  9. Ecological factors influencing growth of the endangered Hawaiian fern Marsilea villosa (Marsileaceae) and implications for conservation management.

    PubMed

    Chau, Marian M; Reyes, Whitney R; Ranker, Tom A

    2013-08-01

    Conserving endangered plants is a complex task, and practitioners must often use a "triage" approach, addressing only immediate needs. Ecologists can improve this process by conducting sound science upon which to base management. Marsilea villosa is an endangered, endemic Hawaiian fern with seven remaining populations in ephemerally flooding drylands. Among its uncommon traits are long-lived sporocarps, requiring flood and drought to complete its sexual life cycle, and extensive vegetative growth. We conducted a 3-yr ecological field study, measuring percent cover of M. villosa and associated species, flooding depth, and canopy cover, to identify ecological factors with the greatest impact on M. villosa growth. Maximum flooding depth and canopy cover had strong positive relationships with M. villosa growth, and all plots with >50% threshold of either variable reached 100% cover of M. villosa by the end of the study. Interaction effects explained nuances of these relationships, including synergy between the two variables. Percent cover of nonnative functional groups (graminoids and nongraminoids) each had negative relationships with M. villosa growth, but interactions showed that nongraminoid cover was driven by particular species, and that time since flooding had greater influence on M. villosa growth than graminoid cover. We recommend planting reintroduced populations in flood-prone areas with moderate shade, experimental outplanting of native plants with M. villosa, and management of graminoids as a functional group, while nongraminoid management should be species-specific. These practices will promote self-sustaining populations and reduce the need for labor-intensive management.

  10. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-06

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.

  11. Growth factor delivery for oral and periodontal tissue engineering

    PubMed Central

    Kaigler, Darnell; Cirelli, Joni A; Giannobile, William V

    2008-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. Growth factors are critical to the development, maturation, maintenance and repair of craniofacial tissues, as they establish an extracellular environment that is conducive to cell and tissue growth. Tissue-engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. These materials have been constructed into devices that can be used as vehicles for delivery of cells, growth factors and DNA. In this review, different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral- and tooth-supporting structures, namely the periodontium and alveolar bone. PMID:16948560

  12. Structural basis for activation of trimeric Gi proteins by multiple growth factor receptors via GIV/Girdin

    PubMed Central

    Lin, Changsheng; Ear, Jason; Midde, Krishna; Lopez-Sanchez, Inmaculada; Aznar, Nicolas; Garcia-Marcos, Mikel; Kufareva, Irina; Abagyan, Ruben; Ghosh, Pradipta

    2014-01-01

    A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein–protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein–protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV—Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs. PMID:25187647

  13. Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering.

    PubMed

    Chen, Guobao; Lv, Yonggang

    2015-01-01

    Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.

  14. Casein kinase 2 and the cell response to growth factors.

    PubMed

    Filhol-Cochet, O; Loue-Mackenbach, P; Cochet, C; Chambaz, E M

    1994-01-01

    Different approaches have been followed with the aim of delineating a possible role of casein kinase 2 (CK2) in the mitogenic signalling in response to cell growth factors. (a) Immunocytochemical detection of CK2 showed that while the kinase is evenly distributed throughout cycle arrested cells, it becomes preferentially associated with the nuclear compartment in activity growing cells; (b) CK2 biosynthesis is activated as an early response of quiescent cells to growth factors. The newly synthesized CK2 steadily accumulates as the cells progress through the G1 phase. This growth factor-induced CK2 biosynthesis involves in parallel the two alpha and beta subunits of the kinase, with no detectable preferential subcellular localization of the newly synthesized enzyme; and (c) In addition to substrate phosphorylation, CK2 may form molecular complexes with cell components of functional significance. Such is the case with the protein p53, a major negative regulator of the cell cycle. CK2 forms a high affinity association (Kd 70 nM) with p53, through its beta subunit. The complex dissociates in the presence of adenosine triphosphate (ATP). These observations suggest that CK2 and p53 may play a coordinated regulatory role in the cell response to growth factors.

  15. The role of endocytic Rab GTPases in regulation of growth factor signaling and the migration and invasion of tumor cells

    PubMed Central

    Porther, N; Barbieri, MA

    2015-01-01

    Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. It is a multistep process that encompasses the modulation of membrane permeability and invasion, cell spreading, cell migration and proliferation of the extracellular matrix, increase in cell adhesion molecules and interaction, decrease in cell attachment and induced survival signals and propagation of nutrient supplies (blood vessels). In cancer, a solid tumor cannot expand and spread without a series of synchronized events. Changes in cell adhesion receptor molecules (e.g., integrins, cadherin-catenins) and protease expressions have been linked to tumor invasion and metastasis. It has also been determined that ligand-growth factor receptor interactions have been associated with cancer development and metastasis via the endocytic pathway. Specifically, growth factors, which include IGF-1 and IGF-2 therapy, have been associated with most if not all of the features of metastasis. In this review, we will revisit some of the key findings on perhaps one of the most important hallmarks of cancer metastasis: cell migration and cell invasion and the role of the endocytic pathway in mediating this phenomenon PMID:26317377

  16. Serum placental growth factor, vascular endothelial growth factor, soluble vascular endothelial growth factor receptor-1 and -2 levels in periodontal disease, and adverse pregnancy outcomes.

    PubMed

    Sert, Tuba; Kırzıoğlu, F Yeşim; Fentoğlu, Ozlem; Aylak, Firdevs; Mungan, Tamer

    2011-12-01

    The aim of this study is the evaluation of levels of serum interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and soluble VEGF receptor (sVEGFR)-1 and -2 in the association between periodontal disease and adverse pregnancy outcomes. One hundred and nine mothers, who recently gave birth, and 51 women who were not recently pregnant, aged 18 to 35 years, were included in this study. The mothers were classified as term birth, preterm birth (PTB), and preterm low birth weight (PLBW) in respect to their gestational age and baby's birth weight. The birth mothers were grouped as having gingivitis or periodontitis. The non-pregnant group also included periodontally healthy patients. Venous blood samples were collected to evaluate serum IL-1β, IL-6, IL-10, TNF-α, VEGF, PIGF, and sVEGFR-1 and -2 levels. Mother's weight, education, and income level were significantly associated with pregnancy outcomes. Serum levels of IL-1β, TNF-α, IL-6, VEGF, and sVEGFR-1 and -2 showed an increase in significance when related to pregnancy. Whereas in the PLBW group IL-1β, VEGF, and sVEGFR-2 levels were increased, in the PTB group sVEGFR-1 levels were increased. Additionally, the patients in the PLBW group with periodontitis had higher serum levels of IL-1β, VEGF, sVEGFR-2, and IL-1β/IL-10. The serum levels of IL-1β, VEGF, and sVEGFR-1 and -2 may have a potential effect on the mechanism of the association between periodontal disease and adverse pregnancy outcomes.

  17. Aridity weakens population-level effects of multiple species interactions on Hibiscus meyeri.

    PubMed

    Louthan, Allison M; Pringle, Robert M; Goheen, Jacob R; Palmer, Todd M; Morris, William F; Doak, Daniel F

    2018-01-16

    Predicting how species' abundances and ranges will shift in response to climate change requires a mechanistic understanding of how multiple factors interact to limit population growth. Both abiotic stress and species interactions can limit populations and potentially set range boundaries, but we have a poor understanding of when and where each is most critical. A commonly cited hypothesis, first proposed by Darwin, posits that abiotic factors (e.g., temperature, precipitation) are stronger determinants of range boundaries in apparently abiotically stressful areas ("stress" indicates abiotic factors that reduce population growth), including desert, polar, or high-elevation environments, whereas species interactions (e.g., herbivory, competition) play a stronger role in apparently less stressful environments. We tested a core tenet of this hypothesis-that population growth rate is more strongly affected by species interactions in less stressful areas-using experimental manipulations of species interactions affecting a common herbaceous plant, Hibiscus meyeri (Malvaceae), across an aridity gradient in a semiarid African savanna. Population growth was more strongly affected by four distinct species interactions (competition with herbaceous and shrubby neighbors, herbivory, and pollination) in less stressful mesic areas than in more stressful arid sites. However, contrary to common assumptions, this effect did not arise because of greater density or diversity of interacting species in less stressful areas, but rather because aridity reduced sensitivity of population growth to these interactions. Our work supports classic predictions about the relative strength of factors regulating population growth across stress gradients, but suggests that this pattern results from a previously unappreciated mechanism that may apply to many species worldwide.

  18. UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels1[OPEN

    PubMed Central

    Fina, Julieta; AbdElgawad, Hamada; Prinsen, Els

    2017-01-01

    Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family. PMID:28400494

  19. [Fibroblast growth factors and their effects in pancreas organogenesis].

    PubMed

    Gnatenko, D A; Kopantzev, E P; Sverdlov, E D

    2017-05-01

    Fibroblast growth factors (FGF) - growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we will summarize current information about the involvement of FGFs in the pancreas organogenesis. Pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue. This orchestrates the activation of various regulator genes at specific stages, determining the specification of progenitor cells. Alterations in FGF/FGFR signaling pathway during this process lead to incorrect activation of the master genes, which leads to different pathologies during pancreas development. Understanding the full picture about role of FGF factors in pancreas development will make it possible to more accurately understand their role in other pathologies of this organ, including carcinogenesis.

  20. Quantification of various growth factors in different demineralized bone matrix preparations.

    PubMed

    Wildemann, B; Kadow-Romacker, A; Haas, N P; Schmidmaier, G

    2007-05-01

    Besides autografts, allografts, and synthetic materials, demineralized bone matrix (DBM) is used for bone defect filling and treatment of non-unions. Different DBM formulations are introduced in clinic since years. However, little is known about the presents and quantities of growth factors in DBM. Aim of the present study was the quantification of eight growth factors important for bone healing in three different "off the shelf" DBM formulations, which are already in human use: DBX putty, Grafton DBM putty, and AlloMatrix putty. All three DBM formulations are produced from human donor tissue but they differ in the substitutes added. From each of the three products 10 different lots were analyzed. Protein was extracted from the samples with Guanidine HCL/EDTA method and human ELISA kits were used for growth factor quantification. Differences between the three different products were seen in total protein contend and the absolute growth factor values but also a large variability between the different lots was found. The order of the growth factors, however, is almost comparable between the materials. In the three investigated materials FGF basic and BMP-4 were not detectable in any analyzed sample. BMP-2 revealed the highest concentration extractable from the samples with approximately 3.6 microg/g tissue without a significant difference between the three DBM formulations. In DBX putty significantly more TGF-beta1 and FGFa were measurable compared to the two other DBMs. IGF-I revealed the significantly highest value in the AlloMatrix and PDGF in Grafton. No differences were accessed for VEGF. Due to the differences in the growth factor concentration between the individual samples, independently from the product formulation, further analyzes are required to optimize the clinical outcome of the used demineralized bone matrix. Copyright 2006 Wiley Periodicals, Inc.

  1. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    PubMed

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesano, Roberto; Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hithertomore » unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.« less

  3. Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system.

    PubMed

    Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A

    2004-08-01

    In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.

  4. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil

    PubMed Central

    Zou, Yanjiao; Aggarwal, Mini; Zheng, Wen-Guang; Wu, Hen-Ming; Cheung, Alice Y.

    2011-01-01

    Background RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. Scope We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). Significance The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber. PMID:22476487

  5. R7 Photoreceptor Axon Growth Is Temporally Controlled by the Transcription Factor Ttk69, Which Inhibits Growth in Part by Promoting Transforming Growth Factor-β/Activin Signaling

    PubMed Central

    Kniss, Jonathan S.; Holbrook, Scott

    2013-01-01

    Work on axon growth has classically focused on understanding how extrinsic cues control growth cone dynamics independent of the cell body. However, more recently, neuron-intrinsic transcription factors have been shown to influence both normal and regenerative axon growth, suggesting that understanding their mechanism of action is of clinical importance. We are studying axon targeting in the Drosophila visual system and here show that the BTB/POZ zinc-finger transcription factor Tramtrack69 (Ttk69) plays an instructive role in inhibiting the growth of R7 photoreceptor axon terminals. Although ttk69 mutant R7 axons project to the correct medullar target layer, M6, their terminals fail to remain retinotopically restricted and instead grow laterally within M6. This overgrowth is not caused by an inability to be repelled by neighboring R7 axons or by an inability to recognize and initiate synapse formation with postsynaptic targets. The overgrowth is progressive and occurs even if contact between ttk69 mutant R7 axons and their normal target layer is disrupted. Ttk69 is first expressed in wild-type R7s after their axons have reached the medulla; ttk69 mutant R7 axon terminal overgrowth begins shortly after this time point. We find that expressing Ttk69 prematurely in R7s collapses their growth cones and disrupts axon extension, indicating that Ttk69 plays an instructive role in this process. A TGF-β/Activin pathway was shown previously to inhibit R7 axon terminal growth. We find that Ttk69 is required for normal activation of this pathway but that Ttk69 likely also inhibits R7 axon growth by a TGF-β/Activin-independent mechanism. PMID:23345225

  6. TIF-IA, the factor mediating growth-dependent control of ribosomal RNA synthesis, is the mammalian homolog of yeast Rrn3p.

    PubMed

    Bodem, J; Dobreva, G; Hoffmann-Rohrer, U; Iben, S; Zentgraf, H; Delius, H; Vingron, M; Grummt, I

    2000-08-01

    Cells carefully modulate the rate of rRNA transcription in order to prevent an overinvestment in ribosome synthesis under less favorable nutritional conditions. In mammals, growth-dependent regulation of RNA polymerase I (Pol I) transcription is mediated by TIF-IA, an essential initiation factor that is active in extracts from growing but not starved or cycloheximide-treated mammalian cells. Here we report the molecular cloning and functional characterization of recombinant TIF-IA, which turns out to be the mammalian homolog of the yeast factor Rrn3p. We demonstrate that TIF-IA interacts with Pol I in the absence of template DNA, augments Pol I transcription in vivo and rescues transcription in extracts from growth-arrested cells in vitro.

  7. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors.

    PubMed

    Chang, Hsun-Ming; Qiao, Jie; Leung, Peter C K

    2016-12-01

    Initially identified for their capability to induce heterotopic bone formation, bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor β superfamily. Using cellular and molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as potent regulators of ovarian follicular function. The bi-directional communication of oocytes and the surrounding somatic cells is mandatory for normal follicle development and oocyte maturation. This review summarizes the current knowledge on the physiological role and molecular determinants of these ovarian regulatory factors within the human germline-somatic regulatory loop. The regulation of ovarian function remains poorly characterized in humans because, while the fundamental process of follicular development and oocyte maturation is highly similar across species, most information on the regulation of ovarian function is obtained from studies using rodent models. Thus, this review focuses on the studies that used human biological materials to gain knowledge about human ovarian biology and disorders and to develop strategies for preventing, diagnosing and treating these abnormalities. Relevant English-language publications describing the roles of BMPs or growth differentiation factors (GDFs) in human ovarian biology and phenotypes were comprehensively searched using PubMed and the Google Scholar database. The publications included those published since the initial identification of BMPs in the mammalian ovary in 1999 through July 2016. Studies using human biological materials have revealed the expression of BMPs, GDFs and their putative receptors as well as their molecular signaling in the fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells) of the ovarian follicles throughout follicle development. With the availability of recombinant human BMPs/GDFs and the development of immortalized human cell lines, functional studies

  8. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    PubMed

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The growth hormone–insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders

    PubMed Central

    Blum, Werner F; Alherbish, Abdullah; Alsagheir, Afaf; El Awwa, Ahmed; Kaplan, Walid; Koledova, Ekaterina; Savage, Martin O

    2018-01-01

    The growth hormone (GH)–insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGF-binding protein (IGFBP)-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management. PMID:29724795

  10. The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders.

    PubMed

    Blum, Werner; Alherbish, Abdullah; Alsagheir, Afaf; El Awwa, Ahmed; Kaplan, Walid; Koledova, Ekaterina; Savage, Martin O

    2018-05-03

    The growth hormone (GH)-insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGFBP-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management.

  11. Tissular growth factors profile after teduglutide administration on an animal model of intestinal anastomosis.

    PubMed

    Costa, Beatriz Pinto; Gonçalves, Ana Cristina; Abrantes, Ana Margarida; Alves, Raquel; Matafome, Paulo; Seiça, Raquel; Sarmento-Ribeiro, Ana Bela; Botelho, Maria Filomena; Castro-Sousa, Francisco

    2018-01-16

    Teduglutide is an enterotrophic analogue of glucagon-like peptide-2, with an indirect and poorly understood mechanism of action, approved for the rehabilitation of short-bowel syndrome. This study aims to analyze the response of tissue growth factors to surgical injury and teduglutide administration on an animal model of intestinal anastomosis. Wistar rats (n = 59) were distributed into four groups: "ileal resection" or "laparotomy", each one subdivided into "postoperative teduglutide administration" or "no treatment"; and sacrificed at the third or the seventh day, with ileal sample harvesting. Gene expression of insulin-like growth factor 1 (Igf1), vascular endothelial growth factor a (Vegfa), transforming growth factor β1 (Tgfβ1), connective tissue growth factor (Ctgf), fibroblast growth factor 2 (Fgf2), fibroblast growth factor 7 (Fgf7), epidermal growth factor (Egf), heparin-binding epidermal-like growth factor (Hbegf), platelet-derived growth factor b (Pdgfb) and glucagon-like peptide 2 receptor (Glp2r)was studied by real-time polymerase chain reaction. Upregulation of Fgf7, Fgf2, Egf, Vegfaand Glp2rat the third day and of Pdgfat the seventh day was verified in the perianastomotic segment. Teduglutide administration was associated with higher fold-change of relative gene expression of Vegfa(3.6 ± 1.3 vs.1.9 ± 2.0, p = 0.0001), Hbegf(2.2 ± 2.3 vs. 1.1 ± 0.9, p = 0.001), Igf1(1.6 ± 7.6 vs. 0.9 ± 0.7, p = 0.002) and Ctgf(1.1 ± 2.1 vs. 0.6 ± 2.0, p = 0.013); and lower fold-change of Tgfβ1, Fgf7and Glp2r. Those results underscore the recognized role of Igf1and Hbegfas molecular mediators of the effects of teduglutide and suggest that other humoral factors, like Vegfand Ctgf, may also be relevant in the perioperative context. Induction of Vegfa, Igf1and Ctgfgene expressions might indicate a favorable influence of teduglutide on the intestinal anastomotic healing.

  12. Effects of different growth factors and carriers on bone regeneration: a systematic review.

    PubMed

    Khojasteh, Arash; Behnia, Hossein; Naghdi, Navid; Esmaeelinejad, Mohammad; Alikhassy, Zahra; Stevens, Mark

    2013-12-01

    The application and subsequent investigations in the use of varied osteogenic growth factors in bone regeneration procedures have grown dramatically over the past several years. Owing to this rapid gain in popularity and documentation, a review was undertaken to evaluate the in vivo effects of growth factors on bone regeneration. Using related key words, electronic databases (Medline, Embase, and Cochrane) were searched for articles published from 1999 to April 2010 to find growth factor application in bone regeneration in human or animal models. A total of 63 articles were matched with the inclusion criteria of this study. Bone morphogenetic protein 2 (BMP-2) was the most studied growth factor. Carriers for the delivery, experimental sites, and methods of evaluation were different, and therefore articles did not come to a general agreement. Within the limitations of this review, BMP-2 may be an appropriate growth factor for osteogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh

    PubMed Central

    Niu, Yaofang; Jin, Gulei; Li, Xin; Tang, Caixian; Zhang, Yongsong; Liang, Yongchao; Yu, Jingquan

    2015-01-01

    A balanced supply of essential nutrients is an important factor influencing root architecture in many plants, yet data related to the interactive effects of two nutrients on root growth are limited. Here, we investigated the interactive effect between phosphorus (P) and magnesium (Mg) on root growth of Arabidopsis grown in pH-buffered agar medium at different P and Mg levels. The results showed that elongation and deviation of primary roots were directly correlated with the amount of P added to the medium but could be modified by the Mg level, which was related to the root meristem activity and stem-cell division. High P enhanced while low P decreased the tip-focused fluorescence signal of auxin biosynthesis, transport, and redistribution during elongation of primary roots; these effects were greater under low Mg than under high Mg. The altered root growth in response to P and Mg supply was correlated with AUX1, PIN2, and PIN3 mRNA abundance and expression and the accumulation of the protein. Application of either auxin influx inhibitor or efflux inhibitor inhibited the elongation and increased the deviation angle of primary roots, and decreased auxin level in root tips. Furthermore, the auxin-transport mutants aux1-22 and eir1-1 displayed reduced root growth and increased the deviation angle. Our data suggest a profound effect of the combined supply of P and Mg on the development of root morphology in Arabidopsis through auxin signals that modulate the elongation and directional growth of primary root and the expression of root differentiation and development genes. PMID:25922494

  14. Mesenchymal Stem Cells Suppress Chronic Rejection in Heterotopic Small Intestine Transplant Rat Models Via Inhibition of CD68, Transforming Growth Factor- β1, and Platelet-Derived Growth Factor Expression.

    PubMed

    Li, Fuxin; Cao, Jisen; Zhao, Zhicheng; Li, Chuan; Qi, Feng; Liu, Tong

    2017-04-01

    Mesenchymal stem cells are easy to obtain and expand, with characteristics of low immunogenicity and strong tissue repair capacity. In this study, our aim was to investigate the role of mesenchymal stem cells in chronic immune rejection of heterotopic small intestine transplant in rats. After successfully constructing a rat chronic immune rejection model of heterotopic small intestine transplant, we infused mesenchymal stem cells into the animal recipients. We observed mesenchymal stem cell location in the recipients, recipient survival, pathology changes, and the expression of CD68, transforming growth factor β1, and platelet-derived growth factor C in the donor intestine. Mesenchymal stem cells inhibited the lymphocyte proliferation caused by concanavalin A in vitro. After stem cells were infused into recipients, they were mainly located in the donor intestine, as well as in the spleen and thymus. Recovery after transplant and pathology changes of the donor intestine in rats with stem cell infusion were better than in the control group; however, we observed no differences in survival time, accompanied by downregulated expression of CD68, transforming growth factor β1, and platelet-derived growth factor C. Mesenchymal stem cells, to a certain extent, could inhibit the process of chronic rejection. The mechanisms may include the inhibited function of these cells on lymphocyte proliferation, reduced infiltration of macrophages, and reduced expression of transforming growth factor β1 and platelet-derived growth factor C.

  15. Insulin-like growth factors and insulin: at the crossroad between tumor development and longevity.

    PubMed

    Novosyadlyy, Ruslan; Leroith, Derek

    2012-06-01

    Numerous lines of evidence indicate that insulin-like growth factor signaling plays an important role in the regulation of life span and tumor development. In the present paper, the role of individual components of insulin-like growth factor signaling in aging and tumor development has been extensively analyzed. The molecular mechanisms underlying aging and tumor development are frequently overlapping. Although the link between reduced insulin-like growth factor signaling and suppressed tumor growth and development is well established, it remains unclear whether extended life span results from direct suppression of insulin-like growth factor signaling or this effect is caused by indirect mechanisms such as improved insulin sensitivity.

  16. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release

    PubMed Central

    Suárez-González, Darilis; Barnhart, Kara; Migneco, Francesco; Flanagan, Colleen; Hollister, Scott J.; Murphy, William L.

    2011-01-01

    In this study, we have developed mineral coatings on polycaprolactone scaffolds to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue in coatings formed in all HCO3 concentrations. Mineral coatings with increased HCO3 substitution showed more rapid dissolution kinetics in an environment deficient in calcium and phosphate but showed re-precipitation in an environment with the aforementioned ions. The mineral coating provided an effective mechanism for growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral mineral-coated PCL scaffolds. We also demonstrated sustained release of all growth factors with release kinetics that were strongly dependent in the solubility of the mineral coating. PMID:22014948

  17. Switchgrass growth and pine-switchgrass interactions in established intercropping systems

    DOE PAGES

    Tian, Shiying; Cacho, Julian F.; Youssef, Mohamed A.; ...

    2016-06-22

    Intercropping switchgrass ( Panicum virgatum L.) with loblolly pine ( Pinus taeda L.) has been proposed for producing bioenergy feedstock in the southeastern United States. This study investigated switchgrass growth and pine–switchgrass interactions at two established experimental fields (7-year-old Lenoir site and 5-year-old Carteret site) located on the coastal plain of eastern United States. Position effects (edge and center of switchgrass alley in intercropping plots) and treatment effects (intercropping vs. grass-only) on above ground switchgrass growth were evaluated. Interspecific interactions with respect to capturing resources (light, soil water, and nitrogen) were investigated by measuring photosynthetically active radiation (PAR) above grassmore » canopy, soil moisture, and soil mineral nitrogen contents. Switchgrass growth was significantly (P = 0.001) affected by treatments in Lenoir and by position (P < 0.0001) in both study sites. Relative to the center, PAR above grass canopy at edge in both sites was about 48% less during the growing season. Soil water content during the growing season at the edge of grass alley was significantly (P = 0.0001) lower by 23% than at the center in Lenoir, while no significant (P = 0.42) difference was observed in Carteret, in spite of more grass growth at center at both sites. Soil mineral nitrogen content at the center of intercropping plots in Lenoir (no fertilization during 2015) was significantly (P < 0.07) lower than at the edge during the peak of growing season (June, July, and August), but not during early and late parts of growing season (May, September, and November). Position effects on soil water and mineral nitrogen were less evident under conditions with higher external inputs (rainfall and fertilization) and lower plant uptake during nongrowing seasons. Here, results from this study contributed to a better understanding of above- and belowground pine–switchgrass interactions which is necessary to

  18. Potassium Inhibits Dietary Salt-Induced Transforming Growth Factor-β Production

    PubMed Central

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W.

    2009-01-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-β, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-β. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-β demonstrated increased (35.2%) amounts of active TGF-β in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-β but did not affect production of TGF-β by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the α subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-β but did not alter TGF-β production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-β in animals receiving the high-salt diet but did not change urinary active TGF-β in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake. PMID:19738156

  19. L-ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains differentiation potential in bone marrow-derived mesenchymal stem cells through expression of hepatocyte growth factor.

    PubMed

    Bae, Sung Hae; Ryu, Hoon; Rhee, Ki-Jong; Oh, Ji-Eun; Baik, Soon Koo; Shim, Kwang Yong; Kong, Jee Hyun; Hyun, Shin Young; Pack, Hyun Sung; Im, Changjo; Shin, Ha Cheol; Kim, Yong Man; Kim, Hyun Soo; Eom, Young Woo; Lee, Jong In

    2015-04-01

    l-ascorbic acid 2-phosphate (Asc-2P) acts as an antioxidant and a stimulator of hepatocyte growth factor (HGF) production. Previously, we reported that depletion of growth factors such as fibroblast growth factor (FGF)-2, epidermal growth factor (EGF), FGF-4 and HGF during serial passage could induce autophagy, senescence and down-regulation of stemness (proliferation via FGF-2/-4 and differentiation via HGF). In this study, we investigated the proliferation and differentiation potential of BMSCs by FGF-2 and Asc-2P. Co-treatment with FGF-2 and Asc-2P induced optimal proliferation of BMSCs and increased the accumulation rate of BMSC numbers during a 2-month culture period. Moreover, differentiation potential was maintained by co-treatment with FGF-2 and Asc-2P via HGF expression. Adipogenic differentiation potential by FGF-2 and Asc-2P was dramatically suppressed by c-Met inhibitors (SU11274). These data suggest that co-treatment with FGF-2 and Asc-2P would be beneficial in obtaining BMSCs that possess "stemness" during long-term culture.

  20. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 cotreatment versus insulin-like growth factor-I alone in two brothers with growth hormone insensitivity syndrome: effects on insulin sensitivity, body composition and linear growth.

    PubMed

    Ekström, Klas; Carlsson-Skwirut, Christine; Ritzén, E Martin; Bang, Peter

    2011-01-01

    Growth hormone insensitivity syndrome (GHIS) is caused by a defective growth hormone receptor (GHR) and is associated with insulin-like growth factor-I (IGF-I) deficiency, severely short stature and, from adolescence, fasting hyperglycemia and obesity. We studied the effects of treatment with IGF-I in either a 1:1 molar complex with IGFBP-3 (IGF-I/BP-3-Tx) or with IGF-I alone (IGF-I-Tx) on metabolism and linear growth. Two brothers, compound heterozygous for a GHR gene defect, were studied. After 8 months without treatment, we examined the short- and long-term effects of IGF-I/BP-3-Tx and, subsequently, IGF-I-Tx on 12-hour overnight levels of IGF-I, GH, insulin, IGFBP-1, insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by dual-energy X-ray absorptiometry and linear growth. Mean overnight levels of insulin decreased and IGFBP-1, a measure of hepatic insulin sensitivity, increased on both regimens, but was more pronounced on IGF-I-Tx. Insulin sensitivity by clamp showed no consistent changes. Lean body mass increased and abdominal fat mass decreased in both subjects on IGF-I-Tx. However, the changes were inconsistent during IGF-I/BP-3-Tx. Height velocity was low without treatment, increased slightly on IGF-I/BP-3-Tx and doubled on IGF-I-Tx. Both modalities of IGF-I improved determinants of hepatic insulin sensitivity, body composition and linear growth rate; however, IGF-I alone seemed to be more efficient. Copyright © 2011 S. Karger AG, Basel.

  1. Haplotypes of heparin-binding epidermal-growth-factor-like growth factor gene are associated with pre-eclampsia.

    PubMed

    Harendra, Galhenagey Gayani; Jayasekara, Rohan W; Dissanayake, Vajira H W

    2012-01-01

    Heparin-binding epidermal-growth-factor-like growth factor (HBEGF) plays an important role in placentation, including impaired placentation, the primary defect seen in pre-eclampsia. We carried out a case-control disease-association study to examine the association of single nucleotide polymorphisms (SNP) in the HBEGF gene and haplotypes defined by them with pre-eclampsia in a Sinhalese population in Sri Lanka. A total of 175 women with pre-eclampsia and 171 matched normotensive controls were genotyped for six SNP selected in silico as having putative functional effects using mass array Sequenom iplex methodology and a newly designed polymerase chain reaction-restriction fragment length polymorphism assay. The individual SNP were not associated with pre-eclampsia. The haplotypes defined by them, however, showed both predisposing (rs13385T,rs2074613G,rs2237076G,rs2074611C,rs4150196A,rs1862176A; odds ratio,1.65; 95% confidence interval1.04-2.60; P=0.032) and protective (rs13385C,rs2074613G,rs2237076A,rs2074611C,rs4150196A,rs1862176A; odds ratio,0.20; 95% confidence interval, 0.04-0.89; P=0.034) effects. These results confirm that polymorphisms in the HGEGF gene are associated with pre-eclampsia. The haplotypes are likely to exert their effects through the numerous transcription regulation factors binding to the polymorphic sites, namely GATA-1, GATA-3, MZF-1 and AML-1a. © 2011 The Authors. Journal of Obstetrics and Gynaecology Research © 2011 Japan Society of Obstetrics and Gynecology.

  2. Physician-Industry Interactions and Anti-Vascular Endothelial Growth Factor Use Among US Ophthalmologists.

    PubMed

    Taylor, Stanford C; Huecker, Julia B; Gordon, Mae O; Vollman, David E; Apte, Rajendra S

    2016-08-01

    The publication of the US Physician Payments Sunshine Act provides insight into the financial relationship between physicians and the pharmaceutical industry. This added transparency creates new opportunities of using objective data to better understand prior research that implicates pharmaceutical promotions as an important factor in a physician's decision-making process. To assess the association between reported industry payments and physician-prescribing habits by comparing the use of anti-vascular endothelial growth factor (VEGF) intravitreal injections by US ophthalmologists to the industry payments these same physicians received. This study reviews data from the Centers for Medicare & Medicaid Services (CMS) 2013 Medicare Provider Utilization and Payment Data: Physician and Other Supplier Public Use File and the CMS-sponsored August through December 2013 Open Payments program (Physician Payments Sunshine Act). Ophthalmologists who prescribe anti-VEGF injections for all indications were analyzed. Association between industry payments reportedly received and the number and type of anti-VEGF injections administered. A total of 3011 US ophthalmologists were reimbursed by CMS for 2.2 million anti-VEGF injections in 2013. Of these physicians, 38.0% reportedly received $1.3 million in industry payments for ranibizumab and aflibercept. Analysis revealed positive associations between increasing numbers of reported industry payments and total injection use (r = 0.24; 95% CI, 0.22-0.26; P < .001), aflibercept and ranibizumab injection use (r = 0.32; 95% CI, 0.29-0.34; P < .001), and percentage of injections per physician that were aflibercept or ranibizumab (r = 0.27; 95% CI, 0.25-0.29; P < .001). A smaller association was noted between greater number of industry payments and bevacizumab injection use (r = 0.07; 95% CI, 0.04-0.09; P < .001). Similar associations were found between the total dollars of reported industry payments received

  3. Different Effects of Human Umbilical Cord Mesenchymal Stem Cells on Glioblastoma Stem Cells by Direct Cell Interaction or Via Released Soluble Factors.

    PubMed

    Bajetto, Adriana; Pattarozzi, Alessandra; Corsaro, Alessandro; Barbieri, Federica; Daga, Antonio; Bosio, Alessia; Gatti, Monica; Pisaturo, Valerio; Sirito, Rodolfo; Florio, Tullio

    2017-01-01

    Glioblastoma (GBM), the most common primary brain tumor in adults, is an aggressive, fast-growing and highly vascularized tumor, characterized by extensive invasiveness and local recurrence. In GBM and other malignancies, cancer stem cells (CSCs) are believed to drive invasive tumor growth and recurrence, being responsible for radio- and chemo-therapy resistance. Mesenchymal stem cells (MSCs) are multipotent progenitors that exhibit tropism for tumor microenvironment mediated by cytokines, chemokines and growth factors. Initial studies proposed that MSCs might exert inhibitory effects on tumor development, although, to date, contrasting evidence has been provided. Different studies reported either MSC anti-tumor activity or their support to tumor growth. Here, we examined the effects of umbilical cord (UC)-MSCs on in vitro GBM-derived CSC growth, by direct cell-to-cell interaction or indirect modulation, via the release of soluble factors. We demonstrate that UC-MSCs and CSCs exhibit reciprocal tropism when co-cultured as 3D spheroids and their direct cell interaction reduces the proliferation of both cell types. Contrasting effects were obtained by UC-MSC released factors: CSCs, cultured in the presence of conditioned medium (CM) collected from UC-MSCs, increased proliferation rate through transient ERK1/2 and Akt phosphorylation/activation. Analysis of the profile of the cytokines released by UC-MSCs in the CM revealed a strong production of molecules involved in inflammation, angiogenesis, cell migration and proliferation, such as IL-8, GRO, ENA-78 and IL-6. Since CXC chemokine receptor 2 (CXCR2), a receptor shared by several of these ligands, is expressed in GBM CSCs, we evaluated its involvement in CSC proliferation induced by UC-MSC-CM. Using the CXCR2 antagonist SB225002, we observed a partial but statistically significant inhibition of CSC proliferation and migration induced by the UC-MSC-released cytokines. Conversely, CXCR2 blockade did not reduce the

  4. Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses

    PubMed Central

    Chen, Jiani; Nolan, Trevor M.; Zhang, Mingcai; Tong, Hongning; Xin, Peiyong; Chu, Jinfang; Li, Zhaohu

    2017-01-01

    Plant steroid hormones, brassinosteroids (BRs), play important roles in growth and development. BR signaling controls the activities of BRASSINOSTERIOD INSENSITIVE1-EMS-SUPPRESSOR1/BRASSINAZOLE-RESISTANT1 (BES1/BZR1) family transcription factors. Besides the role in promoting growth, BRs are also implicated in plant responses to drought stress. However, the molecular mechanisms by which BRs regulate drought response have just begun to be revealed. The functions of WRKY transcription factors in BR-regulated plant growth have not been established, although their roles in stress responses are well documented. Here, we found that three Arabidopsis thaliana group III WRKY transcription factors, WRKY46, WRKY54, and WRKY70, are involved in both BR-regulated plant growth and drought response as the wrky46 wrky54 wrky70 triple mutant has defects in BR-regulated growth and is more tolerant to drought stress. RNA-sequencing analysis revealed global roles of WRKY46, WRKY54, and WRKY70 in promoting BR-mediated gene expression and inhibiting drought responsive genes. WRKY54 directly interacts with BES1 to cooperatively regulate the expression of target genes. In addition, WRKY54 is phosphorylated and destabilized by GSK3-like kinase BR-INSENSITIVE2, a negative regulator in the BR pathway. Our results therefore establish WRKY46/54/70 as important signaling components that are positively involved in BR-regulated growth and negatively involved in drought responses. PMID:28576847

  5. An examination of social interaction profiles based on the factors measured by the screen for social interaction.

    PubMed

    Mahoney, Emery B; Breitborde, Nicholas J K; Leone, Sarah L; Ghuman, Jaswinder Kaur

    2014-10-01

    Deficits in the capacity to engage in social interactions are a core deficit associated with Autistic Disorder (AD) and Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS). These deficits emerge at a young age, making screening for social interaction deficits and interventions targeted at improving capacity in this area important for early identification and intervention. Screening and early intervention efforts are particularly important given the poor short and long term outcomes for children with Autism Spectrum Disorders (ASDs) who experience social interaction deficits. The Screen for Social Interaction (SSI) is a well-validated screening measure that examines a child's capacity for social interaction using a developmental approach. The present study identified four underlying factors measured by the SSI, namely, Connection with Caregiver, Interaction/Imagination, Social Approach/Interest, and Agreeable Nature. The resulting factors were utilized to compare social interaction profiles across groups of children with AD, PDD-NOS, children with non-ASD developmental and/or psychiatric conditions and typically developing children. The results indicate that children with AD and those with PDD-NOS had similar social interaction profiles, but were able to be distinguished from typically developing children on every factor and were able to be distinguished from children with non-ASD psychiatric conditions on every factor except the Connection with Caregiver factor. In addition, children with non-ASD developmental and/or psychiatric conditions could be distinguished from typically developing children on the Connection with Caregiver factor and the Social Approach/Interest factor. These findings have implications for screening and intervention for children with ASDs and non-ASD psychiatric conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives.

    PubMed

    Chen, Fa-Ming; Shelton, Richard M; Jin, Yan; Chapple, Iain L C

    2009-05-01

    Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. Localized delivery of growth factors to the periodontium is an emerging and versatile therapeutic approach, with the potential to become a powerful tool in future regenerative periodontal therapy. Optimized delivery regimes and well-defined release kinetics appear to be logical prerequisites for safe and efficacious clinical application of growth factors and to avoid unwanted side effects and toxicity. While adequate concentrations of growth factor(s) need to be appropriately localized, delivery vehicles are also expected to possess properties such as protein protection, precision in controlled release, biocompatibility and biodegradability, self-regulated therapeutic activity, potential for multiple delivery, and good cell/tissue penetration. Here, current knowledge, recent advances, and future possibilities of growth factor delivery strategies are outlined for periodontal regeneration. First, the role of those growth factors that have been implicated in the periodontal healing/regeneration process, general requirements for their delivery, and the different material types available are described. A detailed discussion follows of current strategies for the selection of devices for localized growth factor delivery, with particular emphasis placed upon their advantages and disadvantages and future prospects for ongoing studies in reconstructing the tooth supporting apparatus.

  7. CHMP6 and VPS4A mediate recycling of Ras to the plasma membrane to promote growth factor signaling

    PubMed Central

    Zheng, Ze-Yi; Cheng, Chiang-Min; Fu, Xin-Rong; Chen, Liuh-Yow; Xu, Lizhong; Terrillon, Sonia; Wong, Stephen T.; Bar-Sagi, Dafna; Songyang, Zhou; Chang, Eric C.

    2011-01-01

    While Ras is well-known to function on the plasma membrane (PM) to mediate growth factor signaling, increasing evidence suggests that Ras has complex roles in the cytoplasm. To uncover these roles, we screened a cDNA library and isolated H-Ras-binding proteins that also influence Ras functions. Many isolated proteins regulate trafficking involving endosomes; CHMP6/VPS20 and VPS4A, which interact with ESCRT-III, were chosen for further study. We showed that the binding is direct and occurs in endosomes. Furthermore, the binding is most efficient when H-Ras has a functional effector-binding-loop and is GTP-bound and ubiquitylated. CHMP6 and VPS4A also bound N-Ras, but not K-Ras. Repressing CHMP6 and VPS4A blocked Ras-induced transformation, which correlated with inefficient Ras localization to the PM as measured by cell fractionation and photobleaching. Moreover, silencing CHMP6 and VPS4A also blocked EGFR recycling. These data suggest that Ras interacts with key ESCRT-III components to promote recycling of itself and EGFR back to the PM to create a positive feedback loop to enhance growth factor signaling. PMID:22231449

  8. Neurodevelopmental effects of insulin-like growth factor signaling

    PubMed Central

    O’Kusky, John; Ye, Ping

    2012-01-01

    Insulin-like growth factor (IGF) signaling greatly impacts the development and growth of the central nervous system (CNS). IGF-I and IGF-II, two ligands of the IGF system, exert a wide variety of actions both during development and in adulthood, promoting the survival and proliferation of neural cells. The IGFs also influence the growth and maturation of neural cells, augmenting dendritic growth and spine formation, axon outgrowth, synaptogenesis, and myelination. Specific IGF actions, however, likely depend on cell type, developmental stage, and local microenvironmental milieu within the brain. Emerging research also indicates that alterations in IGF signaling likely contribute to the pathogenesis of some neurological disorders. This review summarizes experimental studies and shed light on the critical roles of IGF signaling, as well as its mechanisms, during CNS development. PMID:22710100

  9. The importance of neuronal growth factors in the ovary.

    PubMed

    Streiter, S; Fisch, B; Sabbah, B; Ao, A; Abir, R

    2016-01-01

    The neurotrophin family consists of nerve growth factor (NGF), neurotrophin 3 (NT3) and neurotrophin 4/5 (NT4/5), in addition to brain-derived neurotrophic factor (BDNF) and the neuronal growth factors, glial cell line-derived neurotrophic factor (GDNF) and vasointestinal peptide (VIP). Although there are a few literature reviews, mainly of animal studies, on the importance of neurotrophins in the ovary, we aimed to provide a complete review of neurotrophins as well as neuronal growth factors and their important roles in normal and pathological processes in the ovary. Follicular assembly is probably stimulated by complementary effects of NGF, NT4/5 and BDNF and their receptors. The neurotrophins, GDNF and VIP and their receptors have all been identified in preantral and antral follicles of mammalian species, including humans. Transgenic mice with mutations in the genes encoding for Ngf, Nt4/5 and Bdnf and their tropomyosin-related kinase β receptor showed a reduction in preantral follicles and an abnormal ovarian morphology, whereas NGF, NT3, GDNF and VIP increased the in vitro activation of primordial follicles in rats and goats. Additionally, NGF, NT3 and GDNF promoted follicular cell proliferation; NGF, BDNF and VIP were shown to be involved in ovulation; VIP inhibited follicular apoptosis; NT4/5, BDNF and GDNF promoted oocyte maturation and NGF, NT3 and VIP stimulated steroidogenesis. NGF may also exert a stimulatory effect in ovarian cancer and polycystic ovarian syndrome (PCOS). Low levels of NGF and BDNF in follicular fluid may be associated with diminished ovarian reserve and high levels with endometriosis. More knowledge of the roles of neuronal growth factors in the ovary has important implications for the development of new therapeutic drugs (such as anti-NGF agents) for ovarian cancer and PCOS as well as various infertility problems, warranting further research. © The Author 2015. Published by Oxford University Press on behalf of the European Society

  10. Brassinosteroid-Induced Transcriptional Repression and Dephosphorylation-Dependent Protein Degradation Negatively Regulate BIN2-Interacting AIF2 (a BR Signaling-Negative Regulator) bHLH Transcription Factor.

    PubMed

    Kim, Yoon; Song, Ji-Hye; Park, Seon-U; Jeong, You-Seung; Kim, Soo-Hwan

    2017-02-01

    Brassinosteroids (BRs) are plant polyhydroxy-steroids that play important roles in plant growth and development via extensive signal integration through direct interactions between regulatory components of different signaling pathways. Recent studies have shown that diverse helix-loop-helix/basic helix-loop-helix (HLH/bHLH) family proteins are actively involved in control of BR signaling pathways and interact with other signaling pathways. In this study, we show that ATBS1-INTERACTING FACTOR 2 (AIF2), a nuclear-localized atypical bHLH transcription factor, specifically interacts with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) among other BR signaling molecules. Overexpression of AIF2 down-regulated transcript expression of growth-promoting genes, thus resulting in retardation of growth. AIF2 renders plants hyposensitive to BR-induced root growth inhibition, but shows little effects on BR-promoted hypocotyl elongation. Notably, AIF2 was dephosphorylated by BR, and the dephosphorylated AIF2 was subject to proteasome-mediated degradation. AIF2 degradation was greatly induced by BR and ABA, but relatively slightly by other hormones such as auxin, gibberellin, cytokinin and ethylene. Moreover, AIF2 transcription was significantly suppressed by a BRI1/BZR1-mediated BR signaling pathway through a direct binding of BRASSINAZOLE RESISTANT 1 (BZR1) to the BR response element (BRRE) region of the AIF2 promoter. In conclusion, our study suggests that BIN2-driven AIF2 phosphorylation could augment the BIN2/AIF2-mediated negative circuit of BR signaling pathways, and the BR-induced transcriptional repression and protein degradation negatively regulate AIF2 transcription factor, reinforcing the BZR1/BES1-mediated positive BR signaling pathway. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Ubc13 and COOH Terminus of Hsp70-interacting Protein (CHIP) Are Required for Growth Hormone Receptor Endocytosis*

    PubMed Central

    Slotman, Johan A.; da Silva Almeida, Ana C.; Hassink, Gerco C.; van de Ven, Robert H. A.; van Kerkhof, Peter; Kuiken, Hendrik J.; Strous, Ger J.

    2012-01-01

    Growth hormone receptor (GHR) endocytosis is a highly regulated process that depends on the binding and activity of the multimeric ubiquitin ligase, SCFβTrCP (Skp Cullin F-box). Despite a specific interaction between β-transducin repeat-containing protein (βTrCP) and the GHR, and a strict requirement for ubiquitination activity, the receptor is not an obligatory target for SCFβTrCP-directed Lys48 polyubiquitination. We now show that also Lys63-linked ubiquitin chain formation is required for GHR endocytosis. We identified both the ubiquitin-conjugating enzyme Ubc13 and the ubiquitin ligase COOH terminus of Hsp70 interacting protein (CHIP) as being connected to this process. Ubc13 activity and its interaction with CHIP precede endocytosis of GHR. In addition to βTrCP, CHIP interacts specifically with the cytosolic tails of the dimeric GHR, identifying both Ubc13 and CHIP as novel factors in the regulation of cell surface availability of GHR. PMID:22433856

  12. Does L-arginine induce intestinal adaptation by epithelial growth factor?

    PubMed

    Camli, Alparslan; Barlas, Meral; Yagmurlu, Aydin

    2005-01-01

    To evaluate whether L-Arginine has an effect on endogenous epidermal growth factor secretion and intestinal adaptation in massive small bowel resection an experimental study was performed. Fourteen albino Wistar rats weighing 250-300 g were used for the study. After performing 50% small bowel resection and anastomosis the rats were randomly divided into two groups. The first group received 500 mg/kg/day of L-Arginine intraperitoneally for 14 days just after the surgical procedure. The control group received isotonic saline instead. Body weight measurement was preformed daily. At the end of the second postoperative week all rats underwent relaparotomy. Small bowel was resected for histopathological examination. Levels of epidermal growth factor were measured by enzyme-linked immunosorbent assay in serum, saliva, and urine at the end of second postoperative week in both groups. The weight gain was higher in the L-Arginine treated group (P < 0.05). Serum, saliva and urinary epidermal growth factor levels were significantly higher at the end of the second week compared to the control group (P < 0.05). The villus height was higher on histopathological examination in L-Arginine treated group compared to the control group (P < 0.05). L-Arginine resulted in a better intestinal adaptation after massive bowel resection. The high levels of epidermal growth factor in body fluids of L-Arginine treated rats could be the explanation for this effect.

  13. Extrinsic Factors Influencing Fetal Deformations and Intrauterine Growth Restriction

    PubMed Central

    Moh, Wendy; Graham, John M.; Wadhawan, Isha; Sanchez-Lara, Pedro A.

    2012-01-01

    The causes of intrauterine growth restriction (IUGR) are multifactorial with both intrinsic and extrinsic influences. While many studies focus on the intrinsic pathological causes, the possible long-term consequences resulting from extrinsic intrauterine physiological constraints merit additional consideration and further investigation. Infants with IUGR can exhibit early symmetric or late asymmetric growth abnormality patterns depending on the fetal stage of development, of which the latter is most common occurring in 70–80% of growth-restricted infants. Deformation is the consequence of extrinsic biomechanical factors interfering with normal growth, functioning, or positioning of the fetus in utero, typically arising during late gestation. Biomechanical forces play a critical role in the normal morphogenesis of most tissues. The magnitude and direction of force impact the form of the developing fetus, with a specific tissue response depending on its pliability and stage of development. Major uterine constraining factors include primigravida, small maternal size, uterine malformation, uterine fibromata, early pelvic engagement of the fetal head, aberrant fetal position, oligohydramnios, and multifetal gestation. Corrective mechanical forces similar to those that gave rise to the deformation to reshape the deformed structures are often used and should take advantage of the rapid postnatal growth to correct form. PMID:22888434

  14. Expression of Epidermal Growth Factor Receptor and Transforming Growth Factor Alpha in Cancer Bladder: Schistosomal and Non-Schistosomal

    PubMed Central

    Badawy, Afkar A.; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Helal, Noha S.; Kamel, Amira

    2017-01-01

    Introduction Overexpression of epidermal growth factor receptor (EGFR) has been described in several solid tumors including bladder cancer. Transforming growth factor alpha (TGFα) is frequently deregulated in neoplastic cells and plays a role in the development of bladder cancer. TGFα-EGFR ligand-receptor combination constitutes an important event in multistep tumorigenesis. Methods This study was done on 30 bladder biopsies from patients with urothelial carcinoma, 15 with squamous cell carcinoma, 10 with cystitis and 5 normal control bladder specimens. All were immuohistochemically stained with EGFR and TGFα antibodies. Results EGFR and TGFα were over-expressed in higher grades and late stages of bladder cancer. Moreover, they show higher expression in squamous cell carcinoma compared to urothelial carcinoma and in schistosomal associated lesions than in non-schistosomal associated lesions. Conclusion EGFR and TGFα could be used as prognostic predictors in early stage and grade of bladder cancer cases, especially those with schistosomal association. In addition they can help in selecting patients who can get benefit from anti-EGFR molecular targeted therapy. PMID:28413380

  15. Growth and Development of Dentofacial Complex influenced by Genetic and Environmental Factors using Monozygotic Twins.

    PubMed

    Manjusha, K K; Jyothindrakumar, K; Nishad, A; Manoj, K Madhav

    2017-09-01

    The purpose of this study was to determine the possible effects of genetic and environmental factors on dentofacial complex using monozygotic twins. The study sample was made of 21 pairs of monozygotic twins (14 female pairs and seven male pairs) between 10 and 25 years. Pretreatment lateral cephalo-grams were used which were traced and digitized, and various landmarks to determine the anteroposterior and vertical proportions were marked. Samples were divided into two groups. The correlation between groups was found by calculating Pearson's product moment correlation coefficients. The range of the correlation coefficient was from 0.705 to 0.952. Gonial angle showed the highest correlation coefficient (0.952), while saddle angle showed the lowest correlation coefficient (0.705). The growth and development of craniofacial complex is under mutifactorial control. However, genetic influences do tend to play a dominant role. By studying identical twins, we can study about the interaction of the environment with the genes and how it affects the growth and development of the body in general and dentofacial complex in particular. By utilizing twin studies, we can identify whether a particular trait, disease, or disorder is influenced more strongly by genetics or by the environment. Success of orthodontic treatment depends on a proper diagnosis of the problem including its etiological factors. Genetic studies let the orthodontists to understand the effects of genetic and environmental factors in the growth and development of dentofacial complex better and allows to prevent or treat malocclusions and skeletal anomalies in better ways.

  16. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor

    PubMed Central

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-01-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243

  17. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  18. GP88 (PC-Cell Derived Growth Factor, progranulin) stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells

    PubMed Central

    2011-01-01

    Background Aromatase inhibitors (AI) that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+) breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88), also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER+ breast cancer cells Methods We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined. Results GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole. Conclusion Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER+ breast cancer. PMID:21658239

  19. Ensemble docking to difficult targets in early-stage drug discovery: Methodology and application to fibroblast growth factor 23.

    PubMed

    Velazquez, Hector A; Riccardi, Demian; Xiao, Zhousheng; Quarles, Leigh Darryl; Yates, Charless Ryan; Baudry, Jerome; Smith, Jeremy C

    2018-02-01

    Ensemble docking is now commonly used in early-stage in silico drug discovery and can be used to attack difficult problems such as finding lead compounds which can disrupt protein-protein interactions. We give an example of this methodology here, as applied to fibroblast growth factor 23 (FGF23), a protein hormone that is responsible for regulating phosphate homeostasis. The first small-molecule antagonists of FGF23 were recently discovered by combining ensemble docking with extensive experimental target validation data (Science Signaling, 9, 2016, ra113). Here, we provide a detailed account of how ensemble-based high-throughput virtual screening was used to identify the antagonist compounds discovered in reference (Science Signaling, 9, 2016, ra113). Moreover, we perform further calculations, redocking those antagonist compounds identified in reference (Science Signaling, 9, 2016, ra113) that performed well on drug-likeness filters, to predict possible binding regions. These predicted binding modes are rescored with the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) approach to calculate the most likely binding site. Our findings suggest that the antagonist compounds antagonize FGF23 through the disruption of protein-protein interactions between FGF23 and fibroblast growth factor receptor (FGFR). © 2017 John Wiley & Sons A/S.

  20. Hematopoietic growth factors and human acute leukemia.

    PubMed

    Löwenberg, B; Touw, I

    1988-10-22

    The study of myelopoietic maturation arrest in acute myeloblastic leukemia (AML) has been eased by availability of the human recombinant hemopoietic growth factors, macrophage colony stimulating factor (M-CSF), granulocyte-(G-CSF), granulocyte-macrophage-(GM-CSF) and multilineage stimulating factor (IL-3). Nonphysiological expansion of the leukemic population is not due to escape from control by these factors. Proliferation in vitro of AML cells is dependent on the presence of one or several factors in most cases. The pattern of factor-dependency does not correlate with morphological criteria in individual cases, and may thus offer a new tool for classification of AML. Overproduction of undifferentiated cells is not due to abnormal expression of receptors for the stimulating factors acting at an immature level. Rather, autocrine secretion of early acting lymphokines maintains proliferation of the leukemic clone. When looking at causes of leukemic dysregulation, yet undefined inhibitors of differentiation probably are of equal importance as dysequilibrated stimulation by lymphokines.

  1. The effect of pasteurization on transforming growth factor alpha and transforming growth factor beta 2 concentrations in human milk.

    PubMed

    McPherson, R J; Wagner, C L

    2001-01-01

    Transforming growth factor alpha (TGF-alpha) and beta 2 (TGF-beta2) are present in human milk and are involved in growth differentiation and repair of neonatal intestinal epithelia. Heat treatment at 56 degrees C has been shown effective for providing safe banked donor milk, with good retention of other biologically active factors. The purpose of our study was to determine the effect of heat sterilization on TGF-alpha and TGF-beta2 concentrations in human milk. Twenty milk samples were collected from 20 lactating mothers in polypropylene containers and frozen at -20 degrees C for transport or storage. Before heat treatment by holder pasteurization, the frozen milk was thawed and divided into 1-mL aliquots. All samples were heated in an accurately regulated water bath until a holding temperature was achieved, then held for 30 minutes using constant agitation. Holding temperature ranged from 56.5 degrees C to 56.9 degrees C. The milk was then stored at 4 degrees C overnight for analysis the following day. The concentration of TGF-alpha was measured by radioimmunoassay. Mean concentration +/- SD of TGF-alpha in raw milk samples was 119+/-50 pg/mL, range 57 to 234. The mean concentration +/- SD of TGF-alpha in heat treated samples was 113+/-50 pg/mL, range 51 to 227. TGF-alpha concentration was minimally affected by pasteurization, with an overall loss of 6.1%. Of 19 samples, 4 had increased and 15 had decreased concentrations after pasteurization (mean percent SEM: 94%+/-7% of raw milk, range 72%+/-107%). The concentration of acid-activated TGF-beta2 was measured by enzyme-linked immunosorbent assay. Mean concentration +/- SD of TGF-beta2 in raw milk samples was 5624+/-5038 pg/mL, range 195 to 15480. The mean concentration +/- SD of TGF-beta2 in heat-treated samples was 5073+/-4646 pg/mL, range 181 to 15140. TGF-beta2 survived with relatively little loss (0.6%): of 18 samples, 11 had increased and 7 had decreased concentrations after pasteurization (mean percent

  2. Factors in Client–Clinician Interaction That Influence Hearing Aid Adoption

    PubMed Central

    Jennings, Mary Beth; Shaw, Lynn; Meston, Christine N.; Cheesman, Margaret F.

    2011-01-01

    The influence of client–clinician interactions has not been emphasized in hearing health care, despite the extensive evidence of the impact of the provider–patient interaction on health outcomes. The purpose of this study was to identify factors in the client–clinician interaction that may influence hearing aid adoption. Thirteen adults who had received a hearing aid recommendation within the previous 3 months and 10 audiologists participated in a study to generate, sort, and rate the importance of factors in client–clinician interaction that may influence the hearing aid purchase decision. A concept mapping approach was used to define meaningful clusters of factors. Quantitative analysis and qualitative interpretation of the statements resulted in eight concepts. The concepts in order of their importance are (a) Ensuring client comfort, (b) Understanding and meeting client needs, (c) Client-centered traits and actions, (d) Acknowledging client as an individual, (e) Imposing undue pressure and discomfort, (f) Conveying device information by clinician, (g) Supporting choices and shared decision making, and (h) Factors in client readiness. Two overarching themes of client-centered interaction and client empowerment were identified. Results highlight the influence of the client–clinician interaction in hearing aid adoption and suggest the possibility of improving hearing aid adoption by empowering clients through a client-centered interaction. PMID:22155784

  3. Hepatocyte growth factor induces resistance to anti-epidermal growth factor receptor antibody in lung cancer.

    PubMed

    Yamada, Tadaaki; Takeuchi, Shinji; Kita, Kenji; Bando, Hideaki; Nakamura, Takahiro; Matsumoto, Kunio; Yano, Seiji

    2012-02-01

    Epidermal growth factor receptor (EGFR) is an attractive drug target in lung cancer, with several anti-EGFR antibodies and small-molecule inhibitors showing efficacy in lung cancer patients. Patients, however, may develop resistance to EGFR inhibitors. We demonstrated previously that hepatocyte growth factor (HGF) induced resistance to EGFR tyrosine kinase inhibitors in lung cancers harboring EGFR mutations. We therefore determined whether HGF could induce resistance to the anti-EGFR antibody (EGFR Ab) cetuximab in lung cancer cells, regardless of EGFR gene status. Cetuximab sensitivity and signal transduction in lung cancer cells were examined in the presence or absence of HGF, HGF-producing fibroblasts, and cells tranfected with the HGF gene in vitro and in vivo. HGF induced resistance to cetuximab in H292 (EGFR wild) and Ma-1(EGFR mutant) cells. Western blotting showed that HGF-induced resistance was mediated by the Met/Gab1/Akt signaling pathway. Resistance of H292 and Ma-1 cells to cetuximab was also induced by coculture with lung fibroblasts producing high levels of HGF and by cells stably transfected with the HGF gene. This resistance was abrogated by treatment with anti-HGF neutralizing antibody. HGF-mediated resistance is a novel mechanism of resistance to EGFR Ab in lung cancers, with fibroblast-derived HGF inducing cetuximab resistance in H292 tumors in vivo. The involvement of HGF-Met-mediated signaling should be assessed in acquired resistance to EGFR Ab in lung cancer, regardless of EGFR gene status.

  4. Growth factor deprivation induces cytosolic translocation of SIRT1

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; Xing, Da; Wu, Shengnan; Huang, Lei

    2010-02-01

    Sirtuin type 1 (SIRT1), a NAD+-dependent histone deacetylases, plays a critical role in cellular senescence, aging and longevity. In general, SIRT1 is localized in nucleus and is believed as a nuclear protein. Though overexpression of SIRT1 delays senescence, SIRT1-protein levels decline naturally in thymus and heart during aging. In the present studies, we investigated the subcellular localization of SIRT1 in response to growth factor deprivation in African green monkey SV40-transformed kidney fibroblast cells (COS-7). Using SIRT1-EGFP fluorescence reporter, we found that SIRT1 localized to nucleus in physiological conditions. We devised a model enabling cell senescence via growth factor deprivation, and we found that SIRT1 partially translocated to cytosol under the treatment, suggesting a reduced level of SIRT1's activity. We found PI3K/Akt pathway was involved in the inhibition of SIRT1's cytosolic translocation, because inhibition of these kinases significantly decreased the amount of SIRT1 maintained in nucleus. Taken together, we demonstrated that growth factor deprivation induces cytosolic translocation of SIRT1, which suggesting a possible connection between cytoplasm-localized SIRT1 and the aging process.

  5. Growth hormone and insulin-like growth factors in fish: Where we are and where to go

    USGS Publications Warehouse

    Reinecke, M.; Bjornsson, Bjorn Thrandur; Dickhoff, Walton W.; McCormick, S.D.; Navarro, I.; Power, D.M.; Gutierrez, J.

    2005-01-01

    This communication summarizes viewpoints, discussion, perspectives, and questions, put forward at a workshop on "Growth hormone and insulin-like growth factors in fish" held on September 7th, 2004, at the 5th International Symposium on Fish Endocrinology in Castello??n, Spain. ?? 2005 Elsevier Inc. All rights reserved.

  6. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  7. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    PubMed

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  8. Assessment of the Interactions between Economic Growth and Industrial Wastewater Discharges Using Co-integration Analysis: A Case Study for China’s Hunan Province

    PubMed Central

    Xiao, Qiang; Gao, Yang; Hu, Dan; Tan, Hong; Wang, Tianxiang

    2011-01-01

    We have investigated the interactions between economic growth and industrial wastewater discharge from 1978 to 2007 in China’s Hunan Province using co-integration theory and an error-correction model. Two main economic growth indicators and four representative industrial wastewater pollutants were selected to demonstrate the interaction mechanism. We found a long-term equilibrium relationship between economic growth and the discharge of industrial pollutants in wastewater between 1978 and 2007 in Hunan Province. The error-correction mechanism prevented the variable expansion for long-term relationship at quantity and scale, and the size of the error-correction parameters reflected short-term adjustments that deviate from the long-term equilibrium. When economic growth changes within a short term, the discharge of pollutants will constrain growth because the values of the parameters in the short-term equation are smaller than those in the long-term co-integrated regression equation, indicating that a remarkable long-term influence of economic growth on the discharge of industrial wastewater pollutants and that increasing pollutant discharge constrained economic growth. Economic growth is the main driving factor that affects the discharge of industrial wastewater pollutants in Hunan Province. On the other hand, the discharge constrains economic growth by producing external pressure on growth, although this feedback mechanism has a lag effect. Economic growth plays an important role in explaining the predicted decomposition of the variance in the discharge of industrial wastewater pollutants, but this discharge contributes less to predictions of the variations in economic growth. PMID:21845167

  9. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    PubMed

    Mishra, Bhuwaneshwar S; Singh, Manjul; Aggrawal, Priyanka; Laxmi, Ashverya

    2009-01-01

    Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62%) genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35%) even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient conditions.

  10. Improving In Vitro Generated Cartilage-Carrier-Constructs by Optimizing Growth Factor Combination

    PubMed Central

    Wiegandt, Katharina; Goepfert, Christiane; Pörtner, Ralf

    2007-01-01

    The presented study is focused on the generation of osteochondral implants for cartilage repair, which consist of bone substitutes covered with in vitro engineered cartilage. Re-differentiation of expanded porcine cells was performed in alginate gel followed by cartilage formation in high-density cell cultures. In this work, different combinations of growth factors for the stimulation of re-differentiation and cartilage formation have been tested to improve the quality of osteochondral implants. It has been demonstrated that supplementation of the medium with growth factors has significant effects on the properties of the matrix. The addition of the growth factors IGF-I (100 ng/mL) and TGF-β1 (10 ng/mL) during the alginate culture and the absence of any growth factors during the high-density cell culture led to significantly higher GAG to DNA ratios and Young’s Moduli of the constructs compared to other combinations. The histological sections showed homogenous tissue and intensive staining for collagen type II. PMID:19662133

  11. Interactive effects of temperature, pH, and water activity on the growth kinetics of Shiga toxin-producing Escherichia coli O104:H4 3.

    PubMed

    Juneja, Vijay K; Mukhopadhyay, Sudarsan; Ukuku, Dike; Hwang, Cheng-An; Wu, Vivian C H; Thippareddi, Harshavardhan

    2014-05-01

    The risk of non-O157 Shiga toxin-producing Escherichia coli strains has become a growing public health concern. Several studies characterized the behavior of E. coli O157:H7; however, no reports on the influence of multiple factors on E. coli O104:H4 are available. This study examined the effects and interactions of temperature (7 to 46°C), pH (4.5 to 8.5), and water activity (aw ; 0.95 to 0.99) on the growth kinetics of E. coli O104:H4 and developed predictive models to estimate its growth potential in foods. Growth kinetics studies for each of the 23 variable combinations from a central composite design were performed. Growth data were used to obtain the lag phase duration (LPD), exponential growth rate, generation time, and maximum population density (MPD). These growth parameters as a function of temperature, pH, and aw as controlling factors were analyzed to generate second-order response surface models. The results indicate that the observed MPD was dependent on the pH, aw, and temperature of the growth medium. Increasing temperature resulted in a concomitant decrease in LPD. Regression analysis suggests that temperature, pH, and aw significantly affect the LPD, exponential growth rate, generation time, and MPD of E. coli O104:H4. A comparison between the observed values and those of E. coli O157:H7 predictions obtained by using the U. S. Department of Agriculture Pathogen Modeling Program indicated that E. coli O104:H4 grows faster than E. coli O157:H7. The developed models were validated with alfalfa and broccoli sprouts. These models will provide risk assessors and food safety managers a rapid means of estimating the likelihood that the pathogen, if present, would grow in response to the interaction of the three variables assessed.

  12. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice1

    PubMed Central

    Sasaki, Takamitsu; Kitadai, Yasuhiko; Nakamura, Toru; Kim, Jang-Seong; Tsan, Rachel Z; Kuwai, Toshio; Langley, Robert R; Fan, Dominic; Kim, Sun-Jin; Fidler, Isaiah J

    2007-01-01

    The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α) and vascular endothelial growth factor (VEGF) but were negative for EGFR, human epidermal growth factor receptor 2 (HER2), and VEGFR. Double immunofluorescence staining revealed that tumor-associated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR), and phosphorylated VEGFR (pVEGFR). Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase) or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01); this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001). AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, and increased the level of apoptosis in both tumor-associated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer. PMID:18084614

  13. Integration of growth factor signals at the c-fos serum response element.

    PubMed

    Price, M A; Hill, C; Treisman, R

    1996-04-29

    A transcription factor ternary complex composed of serum response factor (SRF) and a second factor, ternary complex factor (TCF), mediates the response of the c-fos Serum Response Element to growth factors and mitogens. In NIH3T3 fibroblasts, TCF binding is required for transcriptional activation by the SRE in response to activation of the Ras-Raf-ERK pathway. We compared the properties of three members of the TCF family, Elk-1, SAP-1 and SAP-2 (ERP/NET). Although all the proteins contain sequences required for ternary complex formation with SRF, only Elk-1 and SAP-1 appear to interact with the c-fos SRE efficiently in vivo. Each TCF contains a C-terminal activation domain capable of transcriptional activation in response to activation of the Ras-Raf-ERK pathway, and this is dependent on the integrity of S/T-P motifs conserved between all the TCF family members. In contrast, activation of the SRE by whole serum and the mitogenic phospholipid LPA requires SRF binding alone. Constitutively activated members of the Rho subfamily of Ras-like GTPases are also capable of inducing activation of the SRE in the absence of TCF; unlike activated Ras itself, these proteins do not activate the TCFs in NIH3T3 cells. At the SRE, SRF- and TCF-linked signalling pathways act synergistically to potentiate transcription.

  14. [Metabolic and hemodynamic effects of the growth hormone system - insulin-like growth factor].

    PubMed

    Manhylova, T A; Gafarova, N H

    2015-01-01

    Significant congenital deficiency of growth factor (GF) results in pituitary nanism (dwarfism) and its substantial excess is accompanied by the development of gigantism or acromegaly. Its impact on the growth of the whole body or its individual parts is impossible without affecting metabolic processes and hemodynamic parameters. A number of investigations have proven that GF has a direct lipolytic effect: adequate replacement therapy for pituitary nanism gives rise to a reduction in fat depots. Since the concentration of GF is lower in obesity, Whether it may be used to treat this abnormality is considered.

  15. Autocrine and/or paracrine insulin-like growth factor-I activity in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.

    2002-01-01

    Similar to bone, skeletal muscle responds and adapts to changes in loading state via mechanisms that appear to be intrinsic to the muscle. One of the mechanisms modulating skeletal muscle adaptation it thought to involve the autocrine and/or paracrine production of insulinlike growth factor-I. This brief review outlines components of the insulinlike growth factor-I system as it relates to skeletal muscle and provides the rationale for the theory that insulinlike growth factor-I is involved with muscle adaptation.

  16. TIF-IA, the factor mediating growth-dependent control of ribosomal RNA synthesis, is the mammalian homolog of yeast Rrn3p

    PubMed Central

    Bodem, Jochen; Dobreva, Gergana; Hoffmann-Rohrer, Urs; Iben, Sebastian; Zentgraf, Hanswalter; Delius, Hajo; Vingron, Martin; Grummt, Ingrid

    2000-01-01

    Cells carefully modulate the rate of rRNA transcription in order to prevent an overinvestment in ribosome synthesis under less favorable nutritional conditions. In mammals, growth-dependent regulation of RNA polymerase I (Pol I) transcription is mediated by TIF-IA, an essential initiation factor that is active in extracts from growing but not starved or cycloheximide-treated mammalian cells. Here we report the molecular cloning and functional characterization of recombinant TIF-IA, which turns out to be the mammalian homolog of the yeast factor Rrn3p. We demonstrate that TIF-IA interacts with Pol I in the absence of template DNA, augments Pol I transcription in vivo and rescues transcription in extracts from growth-arrested cells in vitro. PMID:11265758

  17. Repression of myoblast proliferation and fibroblast growth factor receptor 1 promoter activity by KLF10 protein.

    PubMed

    Parakati, Rajini; DiMario, Joseph X

    2013-05-10

    FGFR1 gene expression regulates myoblast proliferation and differentiation, and its expression is controlled by Krüppel-like transcription factors. KLF10 interacts with the FGFR1 promoter, repressing its activity and cell proliferation. KLF10 represses FGFR1 promoter activity and thereby myoblast proliferation. A model of transcriptional control of chicken FGFR1 gene regulation during myogenesis is presented. Skeletal muscle development is controlled by regulation of myoblast proliferation and differentiation into muscle fibers. Growth factors such as fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate cell proliferation and differentiation in numerous tissues, including skeletal muscle. Transcriptional regulation of FGFR1 gene expression is developmentally regulated by the Sp1 transcription factor, a member of the Krüppel-like factor (KLF) family of transcriptional regulators. Here, we show that another KLF transcription factor, KLF10, also regulates myoblast proliferation and FGFR1 promoter activity. Expression of KLF10 reduced myoblast proliferation by 86%. KLF10 expression also significantly reduced FGFR1 promoter activity in myoblasts and Sp1-mediated FGFR1 promoter activity in Drosophila SL2 cells. Southwestern blot, electromobility shift, and chromatin immunoprecipitation assays demonstrated that KLF10 bound to the proximal Sp factor binding site of the FGFR1 promoter and reduced Sp1 complex formation with the FGFR1 promoter at that site. These results indicate that KLF10 is an effective repressor of myoblast proliferation and represses FGFR1 promoter activity in these cells via an Sp1 binding site.

  18. Scaling of elongation transition thickness during thin-film growth on weakly interacting substrates

    NASA Astrophysics Data System (ADS)

    Lü, B.; Souqui, L.; Elofsson, V.; Sarakinos, K.

    2017-08-01

    The elongation transition thickness ( θElong) is a central concept in the theoretical description of thin-film growth dynamics on weakly interacting substrates via scaling relations of θElong with respect to rates of key atomistic film-forming processes. To date, these scaling laws have only been confirmed quantitatively by simulations, while experimental proof has been left ambiguous as it has not been possible to measure θElong. Here, we present a method for determining experimentally θElong for Ag films growing on amorphous SiO2: an archetypical weakly interacting film/substrate system. Our results confirm the theoretically predicted θElong scaling behavior, which then allow us to calculate the rates of adatom diffusion and island coalescence completion, in good agreement with the literature. The methodology presented herein casts the foundation for studying growth dynamics and cataloging atomistic-process rates for a wide range of weakly interacting film/substrate systems. This may provide insights into directed growth of metal films with a well-controlled morphology and interfacial structure on 2D crystals—including graphene and MoS2—for catalytic and nanoelectronic applications.

  19. Integrative Analysis of Transcription Factor Combinatorial Interactions Using a Bayesian Tensor Factorization Approach

    PubMed Central

    Ye, Yusen; Gao, Lin; Zhang, Shihua

    2017-01-01

    Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions. PMID:29033978

  20. Integrative Analysis of Transcription Factor Combinatorial Interactions Using a Bayesian Tensor Factorization Approach.

    PubMed

    Ye, Yusen; Gao, Lin; Zhang, Shihua

    2017-01-01

    Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions.

  1. Transposase-Derived Proteins FHY3/FAR1 Interact with PHYTOCHROME-INTERACTING FACTOR1 to Regulate Chlorophyll Biosynthesis by Modulating HEMB1 during Deetiolation in Arabidopsis[W

    PubMed Central

    Tang, Weijiang; Wang, Wanqing; Chen, Dongqin; Ji, Qiang; Jing, Yanjun; Wang, Haiyang; Lin, Rongcheng

    2012-01-01

    Successful chlorophyll biosynthesis during initial light exposure is critical for plant survival and growth, as excess accumulation of chlorophyll precursors in darkness can cause photooxidative damage to cells. Therefore, efficient mechanisms have evolved to precisely regulate chlorophyll biosynthesis in plants. Here, we identify FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1), two transposase-derived transcription factors, as positive regulators of chlorophyll biosynthesis in Arabidopsis thaliana. We show that null mutations in FHY3 and FAR1 cause reduced protochlorophyllide (a precursor of chlorophyll) levels in darkness and less photobleaching in the light. We find that FHY3 directly binds to the promoter and activates expression of HEMB1, which encodes 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. We reveal that PHYTOCHROME-INTERACTING FACTOR1 physically interacts with the DNA binding domain of FHY3, thereby partly repressing FHY3/FAR1-activated HEMB1 expression. Strikingly, FHY3 expression is upregulated by white light. In addition, our genetic data indicate that overexpression, severe reduction, or lack of HEMB1 impairs plant growth and development. Together, our findings reveal a crucial role of FHY3/FAR1 in regulating chlorophyll biosynthesis, thus uncovering a new layer of regulation by which light promotes plant dark–light transition in early seedling development. PMID:22634759

  2. Modeling invasive breast cancer: growth factors propel progression of HER2-positive premalignant lesions

    PubMed Central

    Pradeep, C-R; Zeisel, A; Köstler, WJ; Lauriola, M; Jacob-Hirsch, J; Haibe-Kains, B; Amariglio, N; Ben-Chetrit, N; Emde, A; Solomonov, I; Neufeld, G; Piccart, M; Sagi, I; Sotiriou, C; Rechavi, G; Domany, E; Desmedt, C; Yarden, Y

    2013-01-01

    The HER2/neu oncogene encodes a receptor-like tyrosine kinase whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. However, the mechanisms underlying aggressiveness of HER2 (human epidermal growth factor receptor 2)-overexpressing tumors remain incompletely understood. Because it assists epidermal growth factor (EGF) and neuregulin receptors, we overexpressed HER2 in MCF10A mammary cells and applied growth factors. HER2-overexpressing cells grown in extracellular matrix formed filled spheroids, which protruded outgrowths upon growth factor stimulation. Our transcriptome analyses imply a two-hit model for invasive growth: HER2-induced proliferation and evasion from anoikis generate filled structures, which are morphologically and transcriptionally analogous to preinvasive patients’ lesions. In the second hit, EGF escalates signaling and transcriptional responses leading to invasive growth. Consistent with clinical relevance, a gene expression signature based on the HER2/EGF-activated transcriptional program can predict poorer prognosis of a subgroup of HER2-overexpressing patients. In conclusion, the integration of a three-dimensional cellular model and clinical data attributes progression of HER2-overexpressing lesions to EGF-like growth factors acting in the context of the tumor's microenvironment. PMID:22139081

  3. [Pathogenetic and Prognostic Role of Growth Factors in the Development of Chronic Heart Failure].

    PubMed

    Teplyakov, A T; Berezikova, E N; Shilov, S N; Efremova, A V; Pustovetova, M G; Popova, A A; Grakova, E V; Torim, Y Y; Safronov, I D; Andriyanova, A V

    2017-10-01

    To study the role of growth factors ((vascular endothelial growth factor (VEGF), platelet derived growth factor AB (PDGF-AB) and basic fibroblast growth factor (FGF-basic)) in the development and progression of chronic heart failure (CHF) in patients with ishcemic heart disease (IHD). We included in this study 94 patients with CHF. The control group comprised 32 persons. Blood serum levels of growth factors were determined at baseline and after 12 months of observation by enzyme-linked immunosorbent assay. VEGF, PDGF-AB and FGF-basic play an important role in the pathogenesis and progression of heart failure in patients with IHD, determining the increased risk of adverse cardiovascular events in this pathology. Serum activity of growth factors characterizes the severity and course of CHF: with disease progression levels of VEGF and FGF-basic decrease and PDGF-AB concentration increases. Initial low level of VEGF expression regardless of the sex of the patient's sex, significantly low level of FGF-basic and significantly high PDGF-AB in men characterizes unfavorable course of CHF. A correlation has been established between blood serum levels of VEGF, PDGF-AB and FGF-basic and severity and course of CHF.

  4. Detecting regulatory gene-environment interactions with unmeasured environmental factors.

    PubMed

    Fusi, Nicoló; Lippert, Christoph; Borgwardt, Karsten; Lawrence, Neil D; Stegle, Oliver

    2013-06-01

    Genomic studies have revealed a substantial heritable component of the transcriptional state of the cell. To fully understand the genetic regulation of gene expression variability, it is important to study the effect of genotype in the context of external factors such as alternative environmental conditions. In model systems, explicit environmental perturbations have been considered for this purpose, allowing to directly test for environment-specific genetic effects. However, such experiments are limited to species that can be profiled in controlled environments, hampering their use in important systems such as human. Moreover, even in seemingly tightly regulated experimental conditions, subtle environmental perturbations cannot be ruled out, and hence unknown environmental influences are frequent. Here, we propose a model-based approach to simultaneously infer unmeasured environmental factors from gene expression profiles and use them in genetic analyses, identifying environment-specific associations between polymorphic loci and individual gene expression traits. In extensive simulation studies, we show that our method is able to accurately reconstruct environmental factors and their interactions with genotype in a variety of settings. We further illustrate the use of our model in a real-world dataset in which one environmental factor has been explicitly experimentally controlled. Our method is able to accurately reconstruct the true underlying environmental factor even if it is not given as an input, allowing to detect genuine genotype-environment interactions. In addition to the known environmental factor, we find unmeasured factors involved in novel genotype-environment interactions. Our results suggest that interactions with both known and unknown environmental factors significantly contribute to gene expression variability. and implementation: Software available at http://pmbio.github.io/envGPLVM/. Supplementary data are available at Bioinformatics online.

  5. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    PubMed

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  6. Competition between Ski and CREB-binding protein for binding to Smad proteins in transforming growth factor-beta signaling.

    PubMed

    Chen, Weijun; Lam, Suvana S; Srinath, Hema; Schiffer, Celia A; Royer, William E; Lin, Kai

    2007-04-13

    The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational studies. Here, we show that Ski-(16-192) interacted directly with a homotrimer of receptor-regulated Smad protein (R-Smad), e.g. Smad2 or Smad3, to form a hexamer; Ski-(16-192) interacted with an R-Smad.Smad4 heterotrimer to form a pentamer. CBP-(1941-1992) was also found to interact directly with an R-Smad homotrimer to form a hexamer and with an R-Smad.Smad4 heterotrimer to form a pentamer. Moreover, these domains of Ski and CBP competed with each other for binding to Smad3. Our mutational studies revealed that domains of Ski and CBP interacted with Smad3 at a portion of the binding surface of the Smad anchor for receptor activation. Our results suggest that Ski negatively regulates TGF-beta signaling by replacing CBP in R-Smad complexes. Our working model suggests that Smad protein activity is delicately balanced by Ski and CBP in the TGF-beta pathway.

  7. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was

  8. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation.

    PubMed

    Tsuchiya, Haruyuki; Sakata, Naoaki; Yoshimatsu, Gumpei; Fukase, Masahiko; Aoki, Takeshi; Ishida, Masaharu; Katayose, Yu; Egawa, Shinichi; Unno, Michiaki

    2015-01-01

    The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation. Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group. Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14. The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.

  9. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  10. Dexras1 links glucocorticoids to insulin-like growth factor-1 signaling in adipogenesis

    PubMed Central

    Kim, Hyo Jung; Cha, Jiyoung Y.; Seok, Jo Woon; Choi, Yoonjeong; Yoon, Bo Kyung; Choi, Hyeonjin; Yu, Jung Hwan; Song, Su Jin; Kim, Ara; Lee, Hyemin; Kim, Daeun; Han, Ji Yoon; Kim, Jae-woo

    2016-01-01

    Glucocorticoids are associated with obesity, but the underlying mechanism by which they function remains poorly understood. Previously, we showed that small G protein Dexras1 is expressed by glucocorticoids and leads to adipocyte differentiation. In this study, we explored the mechanism by which Dexras1 mediates adipogenesis and show a link to the insulin-like growth factor-1 (IGF-1) signaling pathway. Without Dexras1, the activation of MAPK and subsequent phosphorylation of CCAAT/enhancer binding protein β (C/EBPβ) is abolished, thereby inhibiting mitotic clonal expansion and further adipocyte differentiation. Dexras1 translocates to the plasma membrane upon insulin or IGF-1 treatment, for which the unique C-terminal domain (amino acids 223–276) is essential. Dexras1-dependent MAPK activation is selectively involved in the IGF-1 signaling, because another Ras protein, H-ras localized to the plasma membrane independently of insulin treatment. Moreover, neither epidermal growth factor nor other cell types shows Dexras1-dependent MAPK activation, indicating the importance of Dexras1 in IGF-1 signaling in adipogenesis. Dexras1 interacts with Shc and Raf, indicating that Dexras1-induced activation of MAPK is largely dependent on the Shc-Grb2-Raf complex. These results suggest that Dexras1 is a critical mediator of the IGF-1 signal to activate MAPK, linking glucocorticoid signaling to IGF-1 signaling in adipogenesis. PMID:27345868

  11. Phenytoin enhances the phosphorylation of epidermal growth factor receptor and fibroblast growth factor receptor in the subventricular zone and promotes the proliferation of neural precursor cells and oligodendrocyte differentiation.

    PubMed

    Galvez-Contreras, Alma Y; Gonzalez-Castaneda, Rocio E; Campos-Ordonez, Tania; Luquin, Sonia; Gonzalez-Perez, Oscar

    2016-01-01

    Phenytoin is a widely used antiepileptic drug that induces cell proliferation in several tissues, such as heart, bone, skin, oral mucosa and neural precursors. Some of these effects are mediated via fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (EGFR). These receptors are strongly expressed in the adult ventricular-subventricular zone (V-SVZ), the main neurogenic niche in the adult brain. The aim of this study was to determine the cell lineage and cell fate of V-SVZ neural progenitors expanded by phenytoin, as well as the effects of this drug on EGFR/FGFR phosphorylation. Male BALB/C mice received 10 mg/kg phenytoin by oral cannula for 30 days. We analysed the proliferation of V-SVZ neural progenitors by immunohistochemistry and western blot. Our findings indicate that phenytoin enhanced twofold the phosphorylation of EGFR and FGFR in the V-SVZ, increased the number of bromodeoxyuridine (BrdU)+/Sox2+ and BrdU+/doublecortin+ cells in the V-SVZ, and expanded the population of Olig2-expressing cells around the lateral ventricles. After phenytoin removal, a large number of BrdU+/Receptor interacting protein (RIP)+ cells were observed in the olfactory bulb. In conclusion, phenytoin enhanced the phosphorylation of FGFR and EGFR, and promoted the expression of neural precursor markers in the V-SVZ. In parallel, the number of oligodendrocytes increased significantly after phenytoin removal. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. [Growth Factors and Interleukins in Amniotic Membrane Tissue Homogenate].

    PubMed

    Stachon, T; Bischoff, M; Seitz, B; Huber, M; Zawada, M; Langenbucher, A; Szentmáry, N

    2015-07-01

    Application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy resistant corneal epithelial defects. The purpose of this study was to determine the concentrations of epidermal growth factor (EGF), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), interleukin-6 (IL-6) and interleukin-8 (IL-8) in amniotic membrane homogenates. Amniotic membranes of 8 placentas were prepared and thereafter stored at - 80 °C using the standard methods of the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz. Following defreezing, amniotic membranes were cut in two pieces and homogenized in liquid nitrogen. One part of the homogenate was prepared in cell-lysis buffer, the other part was prepared in PBS. The tissue homogenates were stored at - 20 °C until enzyme-linked immunosorbent assay (ELISA) analysis for EGF, bFGF, HGF, KGF, IL-6 and IL-8 concentrations. Concentrations of KGF, IL-6 and IL-8 were below the detection limit using both preparation techniques. The EGF concentration in tissue homogenates treated with cell-lysis buffer (2412 pg/g tissue) was not significantly different compared to that of tissue homogenates treated with PBS (1586 pg/g tissue, p = 0.72). bFGF release was also not significantly different using cell-lysis buffer (3606 pg/g tissue) or PBS treated tissue homogenates (4649 pg/g tissue, p = 0.35). HGF release was significantly lower using cell-lysis buffer (23,555 pg/g tissue), compared to PBS treated tissue (47,766 pg/g tissue, p = 0.007). Containing EGF, bFGF and HGF, and lacking IL-6 and IL-8, the application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy-resistant corneal epithelial defects. Georg Thieme Verlag KG Stuttgart · New York.

  13. Understanding the role of growth factors in embryonic development: insights from the lens

    PubMed Central

    Lovicu, F. J.; McAvoy, J. W.; de Iongh, R. U.

    2011-01-01

    Growth factors play key roles in influencing cell fate and behaviour during development. The epithelial cells and fibre cells that arise from the lens vesicle during lens morphogenesis are bathed by aqueous and vitreous, respectively. Vitreous has been shown to generate a high level of fibroblast growth factor (FGF) signalling that is required for secondary lens fibre differentiation. However, studies also show that FGF signalling is not sufficient and roles have been identified for transforming growth factor-β and Wnt/Frizzled families in regulating aspects of fibre differentiation. In the case of the epithelium, key roles for Wnt/β-catenin and Notch signalling have been demonstrated in embryonic development, but it is not known if other factors are required for its formation and maintenance. This review provides an overview of current knowledge about growth factor regulation of differentiation and maintenance of lens cells. It also highlights areas that warrant future study. PMID:21402581

  14. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration.

    PubMed

    Dyondi, Deepti; Webster, Thomas J; Banerjee, Rinti

    2013-01-01

    Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF), and bone morphogenetic protein 7 (BMP7) were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.

  15. Discerning environmental factors affecting current tree growth in Central Europe.

    PubMed

    Cienciala, Emil; Russ, Radek; Šantrůčková, Hana; Altman, Jan; Kopáček, Jiří; Hůnová, Iva; Štěpánek, Petr; Oulehle, Filip; Tumajer, Jan; Ståhl, Göran

    2016-12-15

    We examined the effect of individual environmental factors on the current spruce tree growth assessed from a repeated country-level statistical landscape (incl. forest) survey in the Czech Republic. An extensive set of variables related to tree size, competition, site characteristics including soil texture, chemistry, N deposition and climate was tested within a random-effect model to explain growth in the conditions of dominantly managed forest ecosystems. The current spruce basal area increment was assessed from two consecutive landscape surveys conducted in 2008/2009 and six years later in 2014/2015. Tree size, age and competition within forest stands were found to be the dominant explanatory variables, whereas the expression of site characteristics, environmental and climatic drives was weaker. The significant site variables affecting growth included soil C/N ratio and soil exchangeable acidity (pH KCl; positive response) reflecting soil chemistry, long-term N-deposition (averaged since 1975) in combination with soil texture (clay content) and Standardized Precipitation Index (SPI), a drought index expressing moisture conditions. Sensitivity of growth to N-deposition was positive, although weak. SPI was positively related to and significant in explaining tree growth when expressed for the growth season. Except SPI, no significant relation of growth was determined to altitude-related variables (temperature, growth season length). We identified the current spruce growth optimum at elevations about 800ma.s.l. or higher in the conditions of the country. This suggests that at lower elevations, limitation by a more pronounced water deficit dominates, whereas direct temperature limitation may concern the less frequent higher elevations. The mixed linear model of spruce tree growth explained 55 and 65% of the variability with fixed and random effects included, respectively, and provided new insights on the current spruce tree growth and factors affecting it within the

  16. Altered Fibroblast Growth Factor Receptor 4 Stability Promotes Prostate Cancer Progression1

    PubMed Central

    Wang, Jianghua; Yu, Wendong; Cai, Yi; Ren, Chengxi; Ittmann, Michael M

    2008-01-01

    Fibroblast growth factor receptor 4 (FGFR-4) is expressed at significant levels in almost all human prostate cancers, and expression of its ligands is ubiquitous. A common polymorphism of FGFR-4 in which arginine (Arg388) replaces glycine (Gly388) at amino acid 388 is associated with progression in human prostate cancer. We show that the FGFR-4 Arg388 polymorphism, which is present in most prostate cancer patients, results in increased receptor stability and sustained receptor activation. In patients bearing the FGFR-4 Gly388 variant, expression of Huntingtin-interacting protein 1 (HIP1), which occurs in more than half of human prostate cancers, also results in FGFR-4 stabilization. This is associated with enhanced proliferation and anchorage-independent growth in vitro. Our findings indicate that increased receptor stability and sustained FGFR-4 signaling occur in most human prostate cancers due to either the presence of a common genetic polymorphism or the expression of a protein that stabilizes FGFR-4. Both of these alterations are associated with clinical progression in patients with prostate cancer. Thus, FGFR-4 signaling and receptor turnover are important potential therapeutic targets in prostate cancer. PMID:18670643

  17. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

    PubMed Central

    Alibolandi, Mona; Mirzahoseini, Hasan

    2011-01-01

    This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution. PMID:21837279

  18. Placental growth factor expression is reversed by antivascular endothelial growth factor therapy under hypoxic conditions.

    PubMed

    Zhou, Ai-Yi; Bai, Yu-Jing; Zhao, Min; Yu, Wen-Zhen; Huang, Lv-Zhen; Li, Xiao-Xin

    2014-08-01

    Clinical trials have revealed that the antivascular endothelial growth factor (VEGF) therapies are effective in retinopathy of prematurity (ROP). But the low level of VEGF was necessary as a survival signal in healthy conditions, and endogenous placental growth factor (PIGF) is redundant for development. The purpose of this study was to elucidate the PIGF expression under hypoxia as well as the influence of anti-VEGF therapy on PIGF. CoCl2-induced hypoxic human umbilical vein endothelial cells (HUVECs) were used for an in vitro study, and oxygen-induced retinopathy (OIR) mice models were used for an in vivo study. The expression patterns of PIGF under hypoxic conditions and the influence of anti-VEGF therapy on PIGF were evaluated by quantitative reverse transcription-polymerase chain reaction (RTPCR). The retinal avascular areas and neovascularization (NV) areas of anti-VEGF, anti-PIGF and combination treatments were calculated. Retina PIGF concentration was evaluated by ELISA after treatment. The vasoactive effects of exogenous PIGF on HUVECs were investigated by proliferation and migration studies. PIGF mRNA expression was reduced by hypoxia in OIR mice, in HUVECs under hypoxia and anti-VEGF treatment. However, PIGF expression was reversed by anti-VEGF therapy in the OIR model and in HUVECs under hypoxia. Exogenous PIGF significantly inhibited HUVECs proliferation and migration under normal conditions, but it stimulated cell proliferation and migration under hypoxia. Anti-PIGF treatment was effective for neovascular tufts in OIR mice (P<0.05). The finding that PIGF expression is iatrogenically up-regulated by anti-VEGF therapy provides a consideration to combine it with anti-PIGF therapy.

  19. Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control.

    PubMed

    Kulaberoglu, Yavuz; Lin, Kui; Holder, Maxine; Gai, Zhongchao; Gomez, Marta; Assefa Shifa, Belul; Mavis, Merdiye; Hoa, Lily; Sharif, Ahmad A D; Lujan, Celia; Smith, Ewan St John; Bjedov, Ivana; Tapon, Nicolas; Wu, Geng; Hergovich, Alexander

    2017-09-25

    The Hippo tumor suppressor pathway is essential for development and tissue growth control, encompassing a core cassette consisting of the Hippo (MST1/2), Warts (LATS1/2), and Tricornered (NDR1/2) kinases together with MOB1 as an important signaling adaptor. However, it remains unclear which regulatory interactions between MOB1 and the different Hippo core kinases coordinate development, tissue growth, and tumor suppression. Here, we report the crystal structure of the MOB1/NDR2 complex and define key MOB1 residues mediating MOB1's differential binding to Hippo core kinases, thereby establishing MOB1 variants with selective loss-of-interaction. By studying these variants in human cancer cells and Drosophila, we uncovered that MOB1/Warts binding is essential for tumor suppression, tissue growth control, and development, while stable MOB1/Hippo binding is dispensable and MOB1/Trc binding alone is insufficient. Collectively, we decrypt molecularly, cell biologically, and genetically the importance of the diverse interactions of Hippo core kinases with the pivotal MOB1 signal transducer.The Hippo tumor suppressor pathway is essential for development and tissue growth control. Here the authors employ a multi-disciplinary approach to characterize the interactions of the three Hippo kinases with the signaling adaptor MOB1 and show how they differently affect development, tissue growth and tumor suppression.

  20. A Prodomain Fragment from the Proteolytic Activation of Growth Differentiation Factor 11 Remains Associated with the Mature Growth Factor and Keeps It Soluble.

    PubMed

    Pepinsky, Blake; Gong, Bang-Jian; Gao, Yan; Lehmann, Andreas; Ferrant, Janine; Amatucci, Joseph; Sun, Yaping; Bush, Martin; Walz, Thomas; Pederson, Nels; Cameron, Thomas; Wen, Dingyi

    2017-08-22

    Growth differentiation factor 11 (GDF11), a member of the transforming growth factor β (TGF-β) family, plays diverse roles in mammalian development. It is synthesized as a large, inactive precursor protein containing a prodomain, pro-GDF11, and exists as a homodimer. Activation requires two proteolytic processing steps that release the prodomains and transform latent pro-GDF11 into active mature GDF11. In studying proteolytic activation in vitro, we discovered that a 6-kDa prodomain peptide containing residues 60-114, PDP 60-114 , remained associated with the mature growth factor. Whereas the full-length prodomain of GDF11 is a functional antagonist, PDP 60-114 had no impact on activity. The specific activity of the GDF11/PDP 60-114 complex (EC 50 = 1 nM) in a SMAD2/3 reporter assay was identical to that of mature GDF11 alone. PDP 60-114 improved the solubility of mature GDF11 at neutral pH. As the growth factor normally aggregates/precipitates at neutral pH, PDP 60-114 can be used as a solubility-enhancing formulation. Expression of two engineered constructs with PDP 60-114 genetically fused to the mature domain of GDF11 through a 2x or 3x G4S linker produced soluble monomeric products that could be dimerized through redox reactions. The construct with a 3x G4S linker retained 10% activity (EC 50 = 10 nM), whereas the construct connected with a 2x G4S linker could only be activated (EC 50 = 2 nM) by protease treatment. Complex formation with PDP 60-114 represents a new strategy for stabilizing GDF11 in an active state that may translate to other members of the TGF-β family that form latent pro/mature domain complexes.