Science.gov

Sample records for growth factor mrna

  1. Nerve growth factor mRNA in brain: localization by in situ hybridization

    SciTech Connect

    Rennert, P.D.; Heinrich, G.

    1986-07-31

    Nerve Growth Factor is a 118 amino acid polypeptide that plays an important role in the differentiation and survival of neurons. The recent discovery that a mRNA that encodes beta Nerve Growth Factor is present in brain suggests that the Nerve Growth Factor gene may not only regulate gene expression of peripheral but also of central neurons. To identify the site(s) of Nerve Growth Factor mRNA production in the brain and to determine which cells express the Nerve Growth Factor gene, the technique of in situ hybridization was employed. A 32P-labeled RNA probe complementary to Nerve Growth Factor mRNA hybridized to cells in the stratum granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus. These observations identify for the first time cellular sites of Nerve Growth Factor gene expression in the central nervous system, and suggest that Nerve Growth Factor mRNA is produced by neurons.

  2. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer.

    PubMed Central

    Bartlett, J. M.; Langdon, S. P.; Simpson, B. J.; Stewart, M.; Katsaros, D.; Sismondi, P.; Love, S.; Scott, W. N.; Williams, A. R.; Lessells, A. M.; Macleod, K. G.; Smyth, J. F.; Miller, W. R.

    1996-01-01

    The expression of mRNA for the epidermal growth factor (EGF) receptor, EGF and transforming growth factor alpha (TGF-alpha) was determined in 76 malignant, six borderline and 15 benign primary ovarian tumours using the reverse transcriptase-polymerase chain reaction and related to clinical and pathological parameters. Of the malignant tumours, 70% (53/76) expressed EGF receptor mRNA, 31% (23/75) expressed EGF mRNA and 35% (26/75) expressed TGF-alpha mRNA. For the borderline tumours, four of six (67%) expressed EGF receptor mRNA, 1/6 (17%) expressed TGF-alpha mRNA and none expressed EGF mRNA. Finally, 33% (5/15) of the benign tumours expressed EGF receptor mRNA, whereas 40% (6/15) expressed EGF mRNA and 7% (1/15) expressed TGF-alpha mRNA. The presence of the EGF receptor in malignant tumours was associated with that of TGF-alpha (P = 0.0015) but not with EGF (P = 1.00), whereas there was no relationship between the presence of EGF and TGF-alpha (P = 1.00). EGF receptor mRNA expression was significantly and positively associated with serous histology (P = 0.006) but not with stage or grade. Neither EGF nor TGF-alpha showed any link with histological subtype or stage. The survival of patients with malignant tumours possessing EGF receptor mRNA was significantly reduced compared with that of patients whose tumours were negative (P = 0.030 for all malignant tumours; P = 0.007 for malignant epithelial tumours only). In contrast, neither the expression of TGF-alpha nor EGF was related to survival. These data suggest that the presence of EGF receptor mRNA is associated with poor prognosis in primary ovarian cancer. Images Figure 1 PMID:8562334

  3. Interferon-alpha inhibits murine macrophage transforming growth factor-beta mRNA expression.

    PubMed

    Dhanani, S; Huang, M; Wang, J; Dubinett, S M

    1994-06-01

    Transforming growth factor-beta (TGF-beta), a multifunctional polypeptide is produced by a wide variety of cells and regulates a broad array of physiological and pathological functions. TGF-beta appears to play a central role in pulmonary fibrosis and may contribute to tumor-associated immunosuppression. Alveolar macrophages are a rich source of TGF-beta and are intimately involved in lung inflammation. We therefore chose to study TGF-beta regulation in murine alveolar macrophages as well as an immortalized peritoneal macrophage cell line (IC-21). Murine macrophages were incubated with cytokines to evaluate their role in regulating TGF-beta mRNA expression. We conclude that IFN-alpha downregulates TGF-beta mRNA expression in murine macrophages. PMID:8088926

  4. Transforming growth factor beta mRNA increases during liver regeneration: a possible paracrine mechanism of growth regulation.

    PubMed Central

    Braun, L; Mead, J E; Panzica, M; Mikumo, R; Bell, G I; Fausto, N

    1988-01-01

    Transforming growth factor beta (TGF-beta) is a growth factor with multiple biological properties including stimulation and inhibition of cell proliferation. To determine whether TGF-beta is involved in hepatocyte growth responses in vivo, we measured the levels of TGF-beta mRNA in normal liver and during liver regeneration after partial hepatectomy in rats. TGF-beta mRNA increases in the regenerating liver and reaches a peak (about 8 times higher than basal levels) after the major wave of hepatocyte cell division and mitosis have taken place and after the peak expression of the ras protooncogenes. Although hepatocytes from normal and regenerating liver respond to TGF-beta, they do not synthesize TGF-beta mRNA. Instead, the message is present in liver nonparenchymal cells and is particularly abundant in cell fractions enriched for endothelial cells. TGF-beta inhibits epidermal growth factor-induced DNA synthesis in vitro in hepatocytes from normal or regenerating liver, although the dose-response curves vary according to the culture medium used. We conclude that TGF-beta may function as the effector of an inhibitory paracrine loop that is activated during liver regeneration, perhaps to prevent uncontrolled hepatocyte proliferation. Images PMID:3422749

  5. Down-regulated expression of transforming growth factor beta 1 mRNA in endometrial carcinoma.

    PubMed Central

    Perlino, E.; Loverro, G.; Maiorano, E.; Giannini, T.; Cazzolla, A.; Napoli, A.; Fiore, M. G.; Ricco, R.; Marra, E.; Selvaggi, L.

    1998-01-01

    Transforming growth factor beta1 (TGF-beta1) is a potent modulator of cell proliferation in vitro, and recent studies have demonstrated its overexpression in several different tumours; nevertheless, the molecular mechanisms of TGF-beta1 action on cell growth and differentiation have not been fully elucidated. To clarify the role of TGF-beta and its receptor in human endometrial proliferation and differentiation, TGF-beta1 expression at both the mRNA and protein levels has been evaluated by using Northern blotting and immunohistochemistry, in both normal (atrophic, proliferative and secretory) and neoplastic (adenocarcinoma) endometrial samples. This study demonstrates that TGF-beta1 mRNA expression is dramatically reduced in endometrial carcinomas with respect to non-neoplastic tissues, whereas the immunohistochemical expression of TGF-beta1 is enhanced in the epithelial component of endometrial carcinomas compared with non-neoplastic tissues. These data suggest that TGF-beta1 acts as a paracrine regulator of endometrial cell proliferation and that it may contribute to the carcinogenic mechanisms of endometrial carcinoma. Images Figure 1 Figure 5 Figure 6 Figure 8 PMID:9579831

  6. Down-regulated expression of transforming growth factor beta 1 mRNA in endometrial carcinoma.

    PubMed

    Perlino, E; Loverro, G; Maiorano, E; Giannini, T; Cazzolla, A; Napoli, A; Fiore, M G; Ricco, R; Marra, E; Selvaggi, L

    1998-04-01

    Transforming growth factor beta1 (TGF-beta1) is a potent modulator of cell proliferation in vitro, and recent studies have demonstrated its overexpression in several different tumours; nevertheless, the molecular mechanisms of TGF-beta1 action on cell growth and differentiation have not been fully elucidated. To clarify the role of TGF-beta and its receptor in human endometrial proliferation and differentiation, TGF-beta1 expression at both the mRNA and protein levels has been evaluated by using Northern blotting and immunohistochemistry, in both normal (atrophic, proliferative and secretory) and neoplastic (adenocarcinoma) endometrial samples. This study demonstrates that TGF-beta1 mRNA expression is dramatically reduced in endometrial carcinomas with respect to non-neoplastic tissues, whereas the immunohistochemical expression of TGF-beta1 is enhanced in the epithelial component of endometrial carcinomas compared with non-neoplastic tissues. These data suggest that TGF-beta1 acts as a paracrine regulator of endometrial cell proliferation and that it may contribute to the carcinogenic mechanisms of endometrial carcinoma. PMID:9579831

  7. Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization.

    PubMed Central

    Wilcox, J N; Smith, K M; Williams, L T; Schwartz, S M; Gordon, D

    1988-01-01

    Platelet-derived growth factor (PDGF) mRNA, and mRNA for its receptor, have been localized to specific cell types within the human atherosclerotic plaque, using in situ hybridization. The predominant cell types found to express PDGF A and B chain mRNA are mesenchymal-appearing intimal cells and endothelial cells, respectively, with little or no expression detected in macrophages. The distribution of PDGF receptor mRNA containing cells was also examined and found to be localized predominantly in the plaque intima. Images PMID:2843568

  8. Expression of insulin-like growth factors at mRNA levels during the metamorphic development of turbot (Scophthalmus maximus).

    PubMed

    Meng, Zhen; Hu, Peng; Lei, Jilin; Jia, Yudong

    2016-09-01

    Insulin-like growth factors I and II (IGF-I and IGF-II) are important regulators of vertebrate growth and development. This study characterized the mRNA expressions of igf-i and igf-ii during turbot (Scophthalmus maximus) metamorphosis to elucidate the possible regulatory role of the IGF system in flatfish metamorphosis. Results showed that the mRNA levels of igf-i significantly increased at the early-metamorphosis stage and then gradually decreased until metamorphosis was completed. By contrast, mRNA levels of igf-ii significantly increased at the pre-metamorphosis stage and then substantially decreased during metamorphosis. Meanwhile, the whole-body thyroxine (T4) levels varied during larval metamorphosis, and the highest value was observed in the climax-metamorphosis. The mRNA levels of igf-i significantly increased and decreased by T4 and thiourea (TU, inhibitor of endogenous thyroid hormone) during metamorphosis, respectively. Conversely, the mRNA levels of igf-ii remained unchanged. Furthermore, TU significantly inhibited the T4-induced mRNA up-regulation of igf-i during metamorphosis. The whole-body thyroxine (T4) levels were significantly increased and decreased by T4 and TU during metamorphosis, respectively. These results suggested that igf-i and igf-ii may play different functional roles in larval development stages, and igf-i may have a crucial function in regulating the early metamorphic development of turbot. These findings may enhance our understanding of the potential roles of the IGF system to control flatfish metamorphosis and contribute to the improvement of broodstock management for larvae. PMID:27255364

  9. Hammerhead Ribozyme-Mediated Knockdown of mRNA for Fibrotic Growth Factors: Transforming Growth Factor-Beta 1 and Connective Tissue Growth Factor

    PubMed Central

    Robinson, Paulette M.; Blalock, Timothy D.; Yuan, Rong; Lewin, Alfred S.; Schultz, Gregory S.

    2013-01-01

    Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor- β (TGF- β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF- β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF- β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF- β and CTGF in cell cultures. PMID:22131029

  10. Effect of atmospheric fine particles on epidermal growth factor receptor mRNA expression in mouse skin tissue.

    PubMed

    Han, X; Liang, W L; Zhang, Y; Sun, L D; Liang, W Y

    2016-01-01

    We investigated the effect of atmospheric fine particles on epidermal growth factor receptor (Egfr) mRNA expression in mouse skin tissue and explored the effect of atmospheric fine particles on skin aging. Forty female BALB/c mice were randomly divided into four groups (each comprising 10 mice) as follows: a saline control group and low-, medium-, and high-dose atmospheric fine particle groups (1.6, 8.0, and 40.0 mg/kg, respectively) (fine particles were defined as those with a diameter of £2.5 mm, i.e., PM2.5). Each dose group was exposed to intratracheal instillation for 3 days. Twenty-four hours after the last exposure, real-time quantitative polymerase chain reaction was used to detect the expression of Egfr mRNA in the skin tissue of each mouse. The expression levels of Egfr mRNA in the medium- and high-dose PM2.5 groups were significantly higher (P < 0.05) than that in the control group, and were positively correlated with the dose. Medium and high concentrations of PM2.5 can induce the expression of Egfr mRNA and promote skin aging. PMID:27050971

  11. Time course of changes in growth factor mRNA levels in muscle of steroid-implanted and nonimplanted steers.

    PubMed

    Pampusch, M S; Johnson, B J; White, M E; Hathaway, M R; Dunn, J D; Waylan, A T; Dayton, W R

    2003-11-01

    We used a muscle biopsy technique in conjunction with real-time PCR analysis to examine the time course of changes in muscle IGF-I, IGFBP-3, myostatin, and hepatocyte growth factor (HGF) mRNA in the longissimus muscles of Revalor-S-implanted and nonimplanted steers on d 0, 7, 12, and 26 after implantation (nine steers/treatment group). Administration of a Revalor-S implant increased (P < 0.01) ADG and improved (P < 0.05) feed efficiency, 36 and 34%, respectively, compared with steers that received no implant during the 26-d trial. Daily dry matter intake did not differ (P > 0.15) between nonimplanted and implanted steers. Steers receiving the Revalor-S implant had increased (P < 0.001) circulating IGF-I concentrations compared with nonimplanted steers. The longissimus muscles of steers receiving the Revalor-S implant contained increased (P < 0.001) IGF-I mRNA levels compared with longissimus muscles of nonimplanted steers over the 26-d duration of the study. Longissimus muscle IGF-I mRNA levels in implanted steers were increased (P < 0.003) relative to d-0 concentrations on d 7 and 12 (101% and 128%, respectively), and byd 26, longissimus muscle mRNA levels were more than three times (P < 0.0001) those in the longissimus muscles of the same steers on d 0. There was no treatment effect on the level of IGFBP-3, myostatin, or HGF mRNA in the longissimus muscle at any time point; however, levels of IGFBP-3, myostatin, and HGF mRNA increased with time on feed. Based on current and previous studies, we hypothesize that the increased IGF-I level in muscle of implanted steers by d 7 of implantation stimulates satellite cell proliferation and maintains a high number of proliferating satellite cells at a point in the growth curve where satellite cell numbers and activity are normally dropping off. This would prolong the period of rapid muscle growth, resulting in the observed increased rate and efficiency of muscle deposition in implanted steers. PMID:14601876

  12. Vasoactive peptides upregulate mRNA expression and secretion of vascular endothelial growth factor in human airway smooth muscle cells.

    PubMed

    Alagappan, Vijay K T; Willems-Widyastuti, Anna; Seynhaeve, Ann L B; Garrelds, Ingrid M; ten Hagen, Timo L M; Saxena, Pramod R; Sharma, Hari S

    2007-01-01

    Airway remodeling and associated angiogenesis are documented features of asthma, of which the molecular mechanisms are not fully understood. Angiotensin (ANG)II and endothelin (ET)-1 are potent vasoconstricting circulatory hormones implicated in asthma. We investigated the effects of ANG II and ET-1 on human airway smooth muscle (ASM) cells proliferation and growth and examined the mRNA expression and release of the angiogenic peptide, vascular endothelial growth factor (VEGF). Serum deprived (48 h) human ASM cells were incubated with ANG II (100 nM) or ET-1 (10 nM) for 30 min, 1, 2, 4, 8, 16, and 24 h and the endogenous synthesis of VEGF was examined in relation to control cells receiving serum free culture medium. ET-1 induced time dependent DNA biosynthesis as determined by [3H]-thymidine incorporation assay. Using northern blot hybridization, we detected two mRNA species of 3.9 and 1.7 kb encoding VEGF in the cultured smooth muscle cells. Both ANG II and ET-1 induced the mRNA expression (two- to threefold) and secretion (1.8- to 2.8-fold) of VEGF reaching maximal levels between 4-8 h of incubation. Induced expression and release of VEGF declined after 8 h of ANG II incubation while levels remained elevated in the case of ET-1. The conditioned medium derived from ET-1-treated ASM cells induced [3H]-thymidine incorporation and cell number in porcine pulmonary artery endothelial as well as human umbilical vein endothelial cells. Moreover, the VEGF tyrosine kinase receptor inhibitor blocked the conditioned medium induced mitogenesis in endothelial cells. Our results suggest a potential role for ANG II and ET-1 in ASM cell growth and upregulation of VEGF that may participate in endothelial cell proliferation via paracrine mechanisms and thus causing pathological angiogenesis and vascular remodelling seen during asthma. PMID:17406064

  13. Epidermal growth factor increases the interaction between nucleolin and heterogeneous nuclear ribonucleoprotein K/poly(C) binding protein 1 complex to regulate the gastrin mRNA turnover.

    PubMed

    Lee, Pin-Tse; Liao, Pao-Chi; Chang, Wen-Chang; Tseng, Joseph T

    2007-12-01

    Gastrin, a gastrointestinal hormone responsible for gastric acid secretion, has been confirmed as a growth factor for gastrointestinal tract malignancies. High expression of gastrin mRNA was observed in pancreatic and colorectal cancer; however, the mechanism is unclear. Epidermal growth factor (EGF) was found to increase gastrin mRNA stability, indicating mRNA turnover regulation mechanism is involved in the control of gastrin mRNA expression. Using biotin-labeled RNA probe pull-down assay combined with mass spectrometry analysis, we identified the heterogeneous nuclear ribonucleoprotein K (hnRNP K) and poly(C) binding protein 1 (PCBP1) bound with the C-rich region in gastrin mRNA 3' untranslated region. Nucleolin bound with the AGCCCU motif and interacted with hnRNP K were also demonstrated. Under EGF treatment, we observed the amount of nucleolin interacting with hnRNP K and gastrin mRNA increased. Using small interfering RNA technology to define their functional roles, we found hnRNP K, PCBP1, and nucleolin were all responsible for stabilizing gastrin mRNA. Moreover, nucleolin plays a crucial role in mediating the increased gastrin mRNA stability induced by EGF signaling. Besides, we also observed hnRNP K/PCBP1 complex bound with the C-rich region in the gastrin mRNA increased nucleolin binding with gastrin mRNA. Finally, a novel binding model was proposed. PMID:17928403

  14. Epidermal growth factor-nonresponsive 3T3 variants do not contain epidermal growth factor receptor-related antigens or mRNA

    SciTech Connect

    Schneider, C.A.; Lim, R.W.; Terwilliger, E.; Herschman, H.R.

    1986-01-01

    The authors have previously isolated three independent variants of Swiss 3T3 cells that are unable to generate a mitogenic response to epidermal growth factor (EGF). Each of the variants is unable to bind /sup 125/I-labeled EGF; each lacks a functional EGF receptor. They used an antiserum to murine EGF receptor to look for an EGF-receptor gene product in wild-type 3T3 cells and in the three EGF-nonresponsive variants. No cross-reactive material could be detected in any of the three variants, either in /sup 125/I-labeled cell extracts or in (/sup 35/S)methionine metabolically labeled cells. 3T3 cells contained mRNA molecules homologous to a cDNA probe for the human EGF-receptor coding region. In contrast, no homologous RNA could be detected in any of the three variants. Analysis of genomic Southern blots of the DNA from 3T3 cells and the three EGF-nonresponsive variants indicated sequences from the EGF-receptor gene are present in the DNA of all four cell lines. These EGF-nonresponsive lines, which demonstrate proliferative responses to a variety of mitogens, will be ideal recipients for structure-function studies of the EGF receptor by transfection of the cloned gene.

  15. Insulin-like growth factor-I mRNA and peptide in the human anterior pituitary.

    PubMed

    Jevdjovic, T; Bernays, R L; Eppler, E

    2007-05-01

    The pituitary is the central organ regulating virtually all endocrine processes, and pathologies of the pituitary cause manifold adverse effects. Because insulin-like growth factor (IGF)-I appears to be involved in tumour pathogenesis, progression, and persistence, and only few data exist on the cellular synthesis sites of IGF-I, the present study aims to create a basis for further research on pituitary adenomas by investigating the presence of IGF-I in the human pituitary using reverse transcriptase-polymerase chain reaction, in situ hybridisation, immunohistochemistry and immunocytochemistry. IGF-I was expressed in the pituitary, and gene sequence analysis revealed a sequence identical to that found in human liver. The distribution pattern of IGF-I mRNA found by in situ hybridisation corresponded to that of IGF-I peptide in immunohistochemistry. In all pituitary samples investigated, IGF-I-immunoreactivity occurred in almost all adrenocorticotrophic hormone (ACTH)-immunoreactive cells. Occasionally, an interindividually varying number of growth hormone (GH) and, infrequently, follicle-stimulating hormone and luteinising hormone cells contained IGF-I-immunoreactivity but none was detected in supporting cells. At the ultrastructural level, IGF-I-immunoreactivity was confined to secretory granules in coexistence with ACTH- or GH-immunoreactivity, respectively, indicating a concomitant release of the hormones. Thus, in humans, IGF-I appears to be a constituent in ACTH cells whereas its production in GH-producing and gonadotrophic cells may depend on the physiological status (e.g. serum IGF-I level, age or reproductive phase). It is assumed that locally produced IGF-I plays a crucial role in the regulation of endocrine cells by autocrine/paracrine mechanisms in addition to the endocrine route. PMID:17425608

  16. Transforming growth factor (TGF)-beta stimulates hepatic jun-B and fos-B proto-oncogenes and decreases albumin mRNA.

    PubMed Central

    Beauchamp, R D; Sheng, H M; Ishizuka, J; Townsend, C M; Thompson, J C

    1992-01-01

    Transforming growth factor-beta (TGF-beta) modulates some components of the acute phase response in hepatic cells. The mechanisms for these actions of TGF-beta are largely unknown. The authors recently found that the decrease in albumin mRNA after TGF-beta 1 treatment required de novo RNA and protein synthesis, suggesting that TGF-beta acts through induction of another gene. The purpose of the current study was to determine whether TGF-beta 1 could regulate the expression of both the jun and fos genes that encode transcriptional regulatory proteins that constitute the AP-1 complex, and to determine whether expression of these genes may be coordinated with the decrease in albumin mRNA. Northern blot hybridization was used to determine levels of specific mRNAs. Transforming growth factor-beta 1 increased the levels of both jun-B and fos-B mRNA by 60 minutes after treatment of mouse hepatoma (BWTG3) cells. When TGF-beta 1 was removed from the media after 4 hours, there was a sustained effect of increased jun-B and decreased albumin mRNA (greater than 48 hours), and the subsequent decrease in jun-B levels coincided with the increase in albumin mRNA. The tumor-promoting phorbol ester (phorbol 12-myristate 13-acetate [PMA]), known to induce jun and fos gene expression, caused increases in jun-B and fos-B that preceded the decrease in albumin mRNA levels at 24 hours. These observations are consistent with our hypothesis that jun-B and fos-B induction may participate in downregulation of albumin synthesis as well as other hepatic responses to TGF-beta. Images FIG. 1. FIG. 2. FIG. 4. FIG. 5. FIG. 6. PMID:1417179

  17. Chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury.

    PubMed

    Ando, Hideyuki; Fukuda, Noboru; Kotani, Motoko; Yokoyama, Shin ichiro; Kunimoto, Satoshi; Matsumoto, Koichi; Saito, Satoshi; Kanmatsuse, Katsuo; Mugishima, Hideo

    2004-01-12

    We designed and synthesized a chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor (TGF)-beta 1 mRNA and found that this ribozyme effectively and specifically inhibited growth of vascular smooth muscle cells. We examined the effects of the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA on neointima formation and investigated the underlying mechanism to develop a possible gene therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty. Expression of mRNAs encoding TGF-beta 1, p27kip1, and connective tissue growth factor (CTGF) in carotid artery increased after balloon injury. Fluorescein-isothiocyanate (FITC)-labeled ribozyme was taken up into the midlayer smooth muscle of the injured carotid artery. Both 2 and 5 mg of ribozyme reduced neointima formation by 65% compared to that of controls. Ribozyme markedly decreased expression of TGF-beta 1 mRNA and protein in injured vessel. Mismatch ribozyme had no effect on expression of TGF-beta 1 mRNA protein in injured vessel. Ribozyme markedly decreased expression of fibronectin, p27kip1, and CTGF mRNAs in injured vessel, whereas a mismatch ribozyme had no effect on these mRNAs. These findings indicate that the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury with suppression of TGF-beta 1 and inhibition of extracellular matrix and CTGF. In conclusion, the hammerhead ribozyme against TGF-beta 1 may have promise as a therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty. PMID:14729108

  18. Expression of insulin-like growth factor-II (IGF-II) messenger ribonucleic acid (mRNA), but not IGF-I mRNA, in human preovulatory granulosa cells.

    PubMed

    Geisthovel, F; Moretti-Rojas, I; Asch, R H; Rojas, F J

    1989-11-01

    Increasing evidence suggests that insulin-like growth factors (IGFs) play an important role as intra-ovarian regulators in several mammalian species. Recently, we and others have reported the presence of both IGF-I and IGF-II in human follicular fluid. The source of these follicular IGFs, however, has not been determined. In this study, we have evaluated the possibility that human ovarian granulosa cells are a production site of IGFs in vivo. We used cDNA probes to analyse directly IGF-I and IGF-II gene expression at the level of mRNA content in granulosa cells from preovulatory follicles of women undergoing either gamete intra-Fallopian transfer or in-vitro fertilization. Samples of granulosa cell RNA enriched for polyadenylated RNA [poly(A)+RNA] were hybridized with probes for human IGF-I, human IGF-II and human actin (as a control). Transfer blot analysis revealed that the enriched poly(A)+RNA of human granulosa cells from preovulatory follicles contained no detectable IGF-I mRNA. In contrast, three species of IGF-II mRNA of approximately 6.1, 4.9 and 2.1 kb were detected. These data suggest that IGF-II mRNA, but not IGF-I mRNA, is expressed in human granulosa cells collected immediately before ovulation. Our results support the concept that human ovarian IGF-II is produced locally and may function in an autocrine or paracrine fashion in the human ovary in vivo. PMID:2613863

  19. Analysis of integrins and vascular endothelial growth factor isoforms mRNA expression in the canine uterus during perimplantation period.

    PubMed

    Bukowska, D; Kempisty, B; Jackowska, M; Woźna, M; Antosik, P; Piotrowska, H; Jaśkowski, J M

    2011-01-01

    Integrins are the major receptors within the extracellular matrix (ECM) that mediate several functions connected with cell life and metabolism, such as cell adhesion, migration, cytoskeletal organization, proliferation, survival, and differentiation. A vascular endothelial growth factor (VEGF) is one of the most important angiogenic factors. It has been suggested that the expression of this gene may play crucial physiological roles in reproductive organs. All investigated endometrial tissues were isolated on day 10-12 after mating. Control bitches, used in this study, were in metestrus, which was determined according to the vaginal cytology and progesterone level in blood. Early pregnancy was verified by flushing the uterine horns with PBS. Total RNA was isolated from the bitches endometrium by means of the Chomczyński and Sacchi method, treated by DNase I, and reverse-transcribed into cDNA. A quantitative analysis of integrins alpha2b, beta2 and beta3, VEGF 164, 182 and 188 cDNA was performed by RT-PCR. In results we have shown an increased expression of all investigated genes (integrins alpha2b, beta2 and beta3, VEGF 164, 182, and 188) in pregnant bitches uterus as compared to non-pregnant females (P < 0.001). Our results indicated that the expression of genes encoding integrins and vascular endothelial growth factors is different in relation to the time of the embryo implantation and it is increased in the first period of this process. This may be associated with the induction of specific mechanisms responsible for receptivity of uterus following the embryo attachment. In addition, all of investigated genes are up-regulated in a pregnancy-specific manner and the increased expression of these genes may regulate the uterus function during the implantation of canine embryos. PMID:21721410

  20. Epidermal Growth Factor and Parathyroid Hormone-related Peptide mRNA in the Mammary Gland and their Concentrations in Milk

    PubMed Central

    Bruder, E. D.; Van Hoof, J.; Young, J. B.; Raff, H.

    2008-01-01

    The physiological adaptations of the neonatal rat to hypoxia from birth include changes in gastrointestinal function and intermediary metabolism. We hypothesized that the hypoxic lactating dam would exhibit alterations in mammary gland function leading to changes in the concentration of milk peptides that are important in neonatal gastrointestinal development. The present study assessed the effects of chronic hypoxia on peptides produced by the mammary glands and present in milk. Chronic hypoxia decreased the concentration of epidermal growth factor (EGF) in expressed milk and pup stomach contents and decreased maternal mammary gland Egf mRNA. The concentration of parathyroid hormone-related protein (PTHrp) was unchanged in milk and decreased in pup stomach contents; however, mammary Pthlh mRNA was increased by hypoxia. There was a significant increase in adiponectin concentrations in milk from hypoxic dams. Chronic hypoxia decreased maternal body weight, and pair feeding normoxic dams an amount of food equivalent to hypoxic dam food intake decreased body weight to an equivalent degree. Decreased food intake did not affect the expression of Egf, Pthlh, or Lep mRNA in mammary tissue. The results indicated that chronic hypoxia modulated mammary function independently of hypoxia-induced decreases in maternal food intake. Decreased EGF and increased adiponectin concentrations in milk from hypoxic dams likely affect the development of neonatal intestinal function. PMID:18401831

  1. The effect of hypophysectomy on pancreatic islet hormone and insulin-like growth factor I content and mRNA expression in rat.

    PubMed

    Jevdjovic, Tanja; Maake, Caroline; Zwimpfer, Cornelia; Krey, Gunthild; Eppler, Elisabeth; Zapf, Jürgen; Reinecke, Manfred

    2005-02-01

    The growth arrest after hypophysectomy in rats is mainly due to growth hormone (GH) deficiency because replacement of GH or insulin-like growth factor (IGF) I, the mediator of GH action, leads to resumption of growth despite the lack of other pituitary hormones. Hypophysectomized (hypox) rats have, therefore, often been used to study metabolic consequences of GH deficiency and its effects on tissues concerned with growth. The present study was undertaken to assess the effects of hypophysectomy on the serum and pancreatic levels of the three major islet hormones insulin, glucagon, and somatostatin, as well as on IGF-I. Immunohistochemistry (IHC), in situ hybridization (ISH), radioimmunoassays (RIA), and Northern blot analysis were used to localize and quantify the hormones in the pancreas at the peptide and mRNA levels. IHC showed slightly decreased insulin levels in the beta cells of hypox compared with normal, age-matched rats whereas glucagon in alpha cells and somatostatin in delta cells showed increase. IGF-I, which localized to alpha cells, showed decrease. ISH detected a slightly higher expression of insulin mRNA and markedly stronger signals for glucagon and somatostatin mRNA in the islets of hypox rats. Serum glucose concentrations did not differ between the two groups although serum insulin and C-peptide were lower and serum glucagon was higher in the hypox animals. These changes were accompanied by a more than tenfold drop in serum IGF-I. The pancreatic insulin content per gram of tissue was not significantly different in hypox and normal rats. Pancreatic glucagon and somatostatin per gram of tissue were higher in the hypox animals. The pancreatic IGF-I content of hypox rats was significantly reduced. Northern blot analysis gave a 2.6-, 4.5-, and 2.2-fold increase in pancreatic insulin, glucagon, and somatostatin mRNA levels, respectively, in hypox rats, and a 2.3-fold decrease in IGF-I mRNA levels. Our results show that the fall of serum IGF-I after

  2. Induction of c-fos and c-myc mRNA by epidermal growth factor or calcium ionophore is cAMP dependent.

    PubMed Central

    Ran, W; Dean, M; Levine, R A; Henkle, C; Campisi, J

    1986-01-01

    Phorbol esters activate protein kinase C and induce expression of the c-fos and c-myc protooncogenes in density-arrested BALB/c 3T3 (A31) cells; in contrast, epidermal growth factor (EGF) does not activate protein kinase C and is a poor inducer of c-fos and c-myc in these confluent cells. We show that, when A31 cells were subconfluent and made quiescent by serum deprivation, the phorbol ester phorbol 12-myristate 13-acetate induced c-fos and c-myc mRNA poorly, whereas EGF was a better inducer. Another platelet-derived growth factor-inducible gene, JE, did not show this differential regulation by phorbol 12-myristate 13-acetate and EGF. The ability of EGF to induce protooncogene mRNA was associated with elevated levels of intracellular cAMP. First, serum-deprived cells maintained cAMP at about 2-fold higher level than density-arrested cells. Second, induction was greatly enhanced by cholera toxin and 3-isobutyl-1-methylxanthine, which increased intracellular cAMP 3- to 10-fold. The calcium ionophore A23187 mimicked EGF in that it elevated c-fos and c-myc mRNA when administered with cholera toxin and isobutylmethylxanthine. Neither cholera toxin and isobutyl-methylxanthine nor A23187 appreciably induced these mRNAs when used alone. Our results suggest that c-fos and c-myc expression can be regulated by an EGF-directed pathway that utilizes calcium and cAMP as cooperating cytoplasmic messengers. Images PMID:2430281

  3. Defining a novel cis element in the 3'-untranslated region of mammalian ribonucleotide reductase component R2 mRNA: role in transforming growth factor-beta 1 induced mRNA stabilization.

    PubMed Central

    Amara, F M; Chen, F Y; Wright, J A

    1995-01-01

    Ribonucleotide reductase R2 gene expression is elevated in BALB/c 3T3 fibroblasts treated with transforming growth factor beta 1. We investigated the possibility that the 3'-UTR of ribonucleotide reductase R2 mRNA contains regulatory information for TGF-beta 1 induced message stability. Using end-labeled RNA fragments in gel shift assays and UV cross-linking analyses, we detected in the 3'-UTR a novel 9 nucleotide (nt) cis element, 5'-GAGUUUGAG-3' site, which interacted specifically with a cytosolic protease sensitive factor to form a 75 kDa complex. The cis element protein binding activity was inducible and markedly up-regulated cross-link 4 h after TGF-beta 1 treatment of mouse BALB/c 3T3 cells. Other 3'-UTRs [IRE, GM-CSF, c-myc and homopolymer (U)] were poor competitors to the cis element with regard to forming the TGF-beta 1 dependent RNA-protein complex. However, the cis element effectively competed out the formation of the R2 3'-UTR protein complex. Cytosolic extracts from a variety of mammalian cell lines (monkey Cos7, several mouse fibrosarcomas and human HeLa S3) demonstrated similar TGF-beta 1 dependent RNA-protein band shifts as cell extract from BALB/c 3T3 mouse fibroblasts. Binding was completely prevented by several different mutations within the cis element, and by substitution mutagenesis, we were able to predict the consensus sequences, 5'-GAGUUUNNN-3' and 5'-NNNUUUGAG-3' for optimal protein binding. These results support a model in which the 9 nt region functions in cis to destabilize R2 mRNA in cells; and upon activation, a TGF-beta 1 responsive protein is induced and interacts with the 9 nt cis element in a mechanism that leads to stabilization of the mRNA. This appears to be the first example of a mRNA binding site that is involved in TGF-beta 1-mediated effects. Images PMID:7784197

  4. Transforming Growth Factor β1 (TGF-β1) Activates Hepcidin mRNA Expression in Hepatocytes.

    PubMed

    Chen, Simeng; Feng, Teng; Vujić Spasić, Maja; Altamura, Sandro; Breitkopf-Heinlein, Katja; Altenöder, Jutta; Weiss, Thomas S; Dooley, Steven; Muckenthaler, Martina U

    2016-06-17

    The hepatic hormone hepcidin is the master regulator of systemic iron homeostasis. Its expression level is adjusted to alterations in iron levels, inflammatory cues, and iron requirements for erythropoiesis. Bone morphogenetic protein 6 (BMP6) contributes to the iron-dependent control of hepcidin. In addition, TGF-β1 may stimulate hepcidin mRNA expression in murine hepatocytes and human leukocytes. However, receptors and downstream signaling proteins involved in TGF-β1-induced hepcidin expression are still unclear. Here we show that TGF-β1 treatment of mouse and human hepatocytes, as well as ectopic expression of TGF-β1 in mice, increases hepcidin mRNA levels. The hepcidin response to TGF-β1 depends on functional TGF-β1 type I receptor (ALK5) and TGF-β1 type II receptor (TβRII) and is mediated by a noncanonical mechanism that involves Smad1/5/8 phosphorylation. Interestingly, increasing availability of canonical Smad2/3 decreases TGF-β1-induced hepcidin regulation, whereas the BMP6-hepcidin signal was enhanced, indicating a signaling component stoichiometry-dependent cross-talk between the two pathways. Although ALK2/3-dependent hepcidin activation by BMP6 can be modulated by each of the three hemochromatosis-associated proteins: HJV (hemojuvelin), HFE (hemochromatosis protein), and TfR2 (transferrin receptor 2), these proteins do not control the ALK5-mediated hepcidin response to TGF-β1. TGF-β1 mRNA levels are increased in mouse models of iron overload, indicating that TGF-β1 may contribute to hepcidin synthesis under these conditions. In conclusion, these data demonstrate that a complex regulatory network involving TGF-β1 and BMP6 may control the sensing of systemic and/or hepatic iron levels. PMID:27129231

  5. Nerve Growth Factor Increases mRNA Levels for the Prion Protein and the β -amyloid Protein Precursor in Developing Hamster Brain

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.

    1988-12-01

    Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the β protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the β -protein precursor (β -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and β -PP mRNAs. The increases in PrP and β -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and β -PP mRNA levels. Increased PrP and β -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and β -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.

  6. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) overexpression in pancreatic ductal adenocarcinoma correlates with poor survival

    PubMed Central

    2010-01-01

    Background Pancreatic ductal adenocarcinoma is a lethal disease with a 5-year survival rate of 4% and typically presents in an advanced stage. In this setting, prognostic markers identifying the more agrressive tumors could aid in managment decisions. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3, also known as IMP3 or KOC) is an oncofetal RNA-binding protein that regulates targets such as insulin-like growth factor-2 (IGF-2) and ACTB (beta-actin). Methods We evaluated the expression of IGF2BP3 by immunohistochemistry using a tissue microarray of 127 pancreatic ductal adenocarcinomas with tumor grade 1, 2 and 3 according to WHO criteria, and the prognostic value of IGF2BP3 expression. Results IGF2BP3 was found to be selectively overexpressed in pancreatic ductal adenocarcinoma tissues but not in benign pancreatic tissues. Nine (38%) patient samples of tumor grade 1 (n = 24) and 27 (44%) of tumor grade 2 (n = 61) showed expression of IGF2BP3. The highest rate of expression was seen in poorly differentiated specimen (grade 3, n = 42) with 26 (62%) positive samples. Overall survival was found to be significantly shorter in patients with IGF2BP3 expressing tumors (P = 0.024; RR 2.3, 95% CI 1.2-4.8). Conclusions Our data suggest that IGF2BP3 overexpression identifies a subset of pancreatic ductal adenocarcinomas with an extremely poor outcome and supports the rationale for developing therapies to target the IGF pathway in this cancer. PMID:20178612

  7. Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family.

    PubMed

    Ernfors, P; Wetmore, C; Olson, L; Persson, H

    1990-10-01

    Cells expressing mRNA for hippocampus-derived neurotrophic factor (HDNF/NT-3) or brain-derived neurotrophic factor (BDNF) were identified by in situ hybridization. In the rat brain, HDNF mRNA was predominantly found in pyramidal neurons in CA1 and CA2 of the hippocampus. Lower levels of HDNF mRNA were found in granular neurons of the dentate gyrus and in neurons of the taenia tecta and induseum griseum. BDNF mRNA-expressing cells were more widely distributed in the rat brain, with high levels in neurons of CA2, CA3, and the hilar region of the dentate gyrus, in the external and internal pyramidal layers of the cerebral cortex, in the claustrum, and in one brainstem structure. Lower levels were seen in CA1 and in the granular layer of the hippocampus, in the taenia tecta, and in the mammillary complex. In peripheral tissues, HDNF mRNA was found in glomerular cells in the kidney, secretory cells in the male rat submandibular gland, and epithelial cells in secondary and tertiary follicles in the ovary. Cells expressing BDNF mRNA were found in the dorsal root ganglia, where neurons of various sizes were labeled. PMID:2206535

  8. In utero and lactational exposure to low-dose genistein-vinclozolin mixture affects the development and growth factor mRNA expression of the submandibular salivary gland in immature female rats.

    PubMed

    Kouidhi, Wided; Desmetz, Catherine; Nahdi, Afef; Bergès, Raymond; Cravedi, Jean-Pierre; Auger, Jacques; El May, Michèle; Canivenc-Lavier, Marie Chantal

    2012-06-01

    It has been suggested that hormonally controlled submandibular salivary gland (SSG) development and secretions may be affected by endocrine disruptor compounds. We investigated the effects of oral gestation-lactation exposure to 1 mg/kg body weight daily dose of the estrogenic soy-isoflavone genistein and/or the anti-androgenic food contaminant vinclozolin in female rats. The SSGs of female offspring were collected at postnatal day 35 to study gland morphogenesis and mRNA expression of sex-hormone receptors and endocrine growth factors as sex-dependent biomarkers. Because of high expression in neonatal SSG, mRNA expression of transforming growth factor α was also studied. Exposure to genistein, vinclozolin, or a genistein+vinclozolin mixture resulted in significantly lower numbers of striated ducts linked to an increase in their area and lower acinar proliferation (Ki-67-positive nuclei). Exposure to the mixture had the highest significant effects, which were particularly associated with repression of epidermal growth factor, nerve growth factor, and transforming growth factor α expression. In conclusion, early exposure to low doses of genistein and vinclozolin can affect glandular structure and endocrine gene mRNA expression in prepubertal SSG in female rats, and the effects are potentialized by the genistein+vinclozolin mixture. Our study provides the first evidence that SSG are targeted by both estrogenic and anti-androgenic disrupting compounds and are more sensitive to mixtures. PMID:22317923

  9. Insulin-like growth factor-binding protein-1 (IGFBP-1) in goldfish, Carassius auratus: molecular cloning, tissue expression, and mRNA expression responses to periprandial changes and cadmium exposure.

    PubMed

    Chen, Wenbo; Zhang, Zhen; Dong, Haiyan; Yan, Fangfang

    2016-06-01

    In this study, the cDNA encoding insulin-like growth factor-binding protein-1 (IGFBP-1) was cloned from the liver of goldfish (Carassius auratus). The obtained goldfish IGFBP-1 cDNA sequence was 1037 bp in length and had an open reading frame of 789 bp encoding a predicted polypeptide of 262 amino acid residues. IGFBP-1 transcript was detected in all tested central nervous and peripheral tissues. The relatively higher levels of IGFBP-1 mRNA were observed in the liver, gill, kidney, heart, spleen, fat and testis, while the lower levels were found in all different regions of brain, muscle and intestine. In the skin, IGFBP-1 mRNA expression level was extremely low. The IGFBP-1 mRNA expression level in liver was significantly elevated after feeding. With cadmium exposure for 24 h, IGFBP-1 mRNA expression levels in spleen and liver were significantly increased at different cadmium concentrations ranging from 0.5 to 10 ppm. The results in this study provided the data regarding molecular characteristics and expression patterns of IGFBP-1 in goldfish and showed that the expression of IGFBP-1 mRNA might be associated with metabolic status and heavy metal stress and regulated by metabolic factors and cadmium in fish. PMID:26753895

  10. In vitro Therapeutic Effects of Low Level Laser at mRNA Level on the Release of Skin Growth Factors from Fibroblasts in Diabetic Mice

    PubMed Central

    Khoo, Nooshafarin Kazemi; Shokrgozar, Mohammad Ali; Kashani, Iraj Ragerdi; Amanzadeh, Amir; Mostafavi, Ehsan; Sanati, Hassan; Habibi, Laleh; Talebi, Saeid; Abouzaripour, Morteza; Akrami, Seyed Mohammad

    2014-01-01

    Background Numerous in vitro reports suggest that Low Level Laser Therapy (LLLT) affects cellular processes by biostimulation, however most of them emphasize on using visible light lasers which have low penetration. The aim of this study was to determine the effect of infrared laser light (which is more useful in clinic because of its higher penetration) on secretion of Fibroblast Growth Factor (FGF), Platelet Derived Growth Factor (PDGF) and Vascular Endothelial Growth Factor (VEGF), as important growth factors in wound healing. Methods Fibroblasts were extracted from the skin of 7 diabetic and 7 nondiabetic mice and cultured. Cell cultures of experimental group were irradiated with single dose of LLLT (energy density of 1 J/cm 2) using an 810 nm continuous wave laser and the control group was not irradiated. Secretion of growth factors by skin fibroblasts were quantified through real time poly-merase chain reaction. Results Diabetic irradiated group showed significant increase in FGF (p = 0.017) expression, although PDGF increased and VEGF decreased in both diabetic and nondiabetic irradiated groups, but these variations were not statistically significant. Conclusion These results suggest that LLLT may play an important role in wound healing by stimulating the fibroblasts. PMID:24834313

  11. Temporal mRNA expression of transforming growth factor-beta superfamily members and inhibitors in the developing rainbow trout ovary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the transforming growth factor-beta (TGF-beta) superfamily have critical roles in ovarian development in mammals, yet many of these peptides have not been characterized or even identified in fish. Although much is known about the endocrine control of ovarian development in fishes, little...

  12. Increased abundance of aromatase and follicle stimulating hormone receptor mRNA and decreased insulin-like growth factor-2 receptor mRNA in small ovarian follicles of cattle selected for twin births.

    PubMed

    Echternkamp, S E; Aad, P Y; Eborn, D R; Spicer, L J

    2012-07-01

    Cattle genetically selected for twin ovulations and births (Twinner) exhibit increased ovarian follicular development, increased ovulation rate, and greater blood and follicular fluid IGF-1 concentrations compared with contemporary cattle not selected for twins (Control). Experimental objectives were to 1) assess relationships among aromatase (CYP19A1), IGF-1 (IGF1), IGF-2 receptor (IGF2R), and FSH receptor (FSHR) mRNA expression in small (≤5 mm) antral follicles and 2) determine their association with increased numbers of developing follicles in ovaries of Twinner females. Ovaries were collected from mature, cyclic (d 3 to 6) Twinner (n = 11), and Control (n = 12) cows at slaughter and pieces of cortical tissue were fixed and embedded in paraffin. Expression of mRNA was evaluated by in situ hybridization using (35)S-UTP-labeled antisense and sense probes for CYP19A1, FSHR, IGF1, and IGF2R mRNA. Silver grain density was quantified within the granulosa and theca cells of individual follicles (2 to 7 follicles/cow) by Bioquant image analysis. Follicles of Twinners tended to be smaller in diameter than Controls (1.9 ± 0.1 vs. 2.3 ± 0.1 mm; P = 0.08), but thickness of granulosa layer did not differ (P > 0.1) by genotype. Relative abundance of CYP19A1 (P < 0.01) and FSHR (P < 0.05) mRNA was greater in granulosa cells of Twinners vs. Controls, respectively, whereas IGF2R mRNA expression was less in both granulosa (P < 0.01) and theca (P < 0.05) cells in follicles of Twinners vs. Controls, respectively. Abundance of CYP19A1 mRNA in granulosa cells was correlated negatively with IGF2R mRNA expression in both granulosa (r = -0.33; P < 0.01) and theca (r = -0.21; P = 0.05) cells. Expression of IGF1 mRNA was primarily in granulosa cells, including cumulus cells, and its expression did not differ between Twinners vs. Controls (P > 0.10). Detected increases in CYP19A1 and FSHR, but not IGF1, mRNA expression along with decreases in IGF2R mRNA expression in individual

  13. Ribosomal Protein S1 Specifically Binds to the 5′ Untranslated Region of the Pseudomonas aeruginosa Stationary-Phase Sigma Factor rpoS mRNA in the Logarithmic Phase of Growth

    PubMed Central

    Ševo, Milica; Buratti, Emanuele; Venturi, Vittorio

    2004-01-01

    The rpoS gene encodes the stationary-phase sigma factor (RpoS or σs), which was identified in several gram-negative bacteria as a central regulator controlling the expression of genes involved in cell survival in response to cessation of growth (stationary phase) and providing cross-protection against various stresses. In Pseudomonas aeruginosa, the levels of σs increase dramatically at the onset of the stationary phase and are regulated at the transcriptional and posttranscriptional levels. The P. aeruginosa rpoS gene is transcribed as a monocistronic rpoS mRNA transcript comprised of an unusually long 373-bp 5′ untranslated region (5′ UTR). In this study, the 5′ UTR and total protein extracts from P. aeruginosa logarithmic and stationary phases of growth were used in order to investigate the protein-RNA interactions that may modulate the translational process. It was observed that a 69-kDa protein, which corresponded to ribosomal protein S1, preferentially binds the 5′ UTR of the rpoS mRNA in the logarithmic phase and not in the stationary phase. This is the first report of a protein-rpoS mRNA 5′ UTR interaction in P. aeruginosa, and the possible involvement of protein S1 in translation regulation of rpoS is discussed. PMID:15262927

  14. Transforming growth factor-β1 induces cholesterol synthesis by increasing HMG-CoA reductase mRNA expression in keratinocytes.

    PubMed

    Yamane, Takumi; Muramatsu, Aimi; Shimura, Mari; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2016-07-01

    In this study, we investigated the effect of TGF-β1 on cholesterol synthesis in human keratinocytes. TGF-β1 increased the level of cholesterol and the mRNA level of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in human keratinocytes. These results show that TGF-β1 induces cholesterol synthesis by increasing HMG-CoA reductase mRNA expression in human keratinocytes. PMID:26932266

  15. Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-I mRNA expression in early-weaned piglets.

    PubMed

    Tang, Zhi-Ru; Yin, Yu-Long; Nyachoti, Charles M; Huang, Rui-Lin; Li, Tie-Jun; Yang, Chengbo; Yang, Xiao-Jian; Gong, Joshua; Peng, Jiang; Qi, De-Sheng; Xing, Jian-Jun; Sun, Zhi-Hong; Fan, Ming Z

    2005-05-01

    The study was to determine effects of dietary supplementation of chitosan (COS) and galacto-mannan-oligosaccharides (GMOS) on some serum biochemical indices, serum growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels, and hepatic and long gissimus muscle IGF-I mRNA expression in early-weaned piglets. Twenty six Duroc x Landrace x Yorkshire piglets at the age of 15 days were used. The piglets had access to creep feed during the suckling. Six piglets were sacrificed for sampling at the beginning of the study. The other 20 piglets were individually housed in metabolic cages and randomly allotted to four corn and soybean meal-based diets including the control group, the antibiotic group with 110 mg lincomycin/kg diet, the COS group containing 0.025% COS, and the GMOS group with 0.20% GMOS, respectively, in a 2-week feeding experiment. Blood urea nitrogen (BUN) level was reduced whereas serum total protein concentration was increased (P<0.05) in responses to the COS and GMOS supplementation. Dietary supplementation of COS and GMOS also increased (P<0.05) the serum GH and IGF-I levels along with enhanced hepatic and the muscle IGF-I mRNA abundance. Dietary supplementation of oligosaccharides such as COS and GMOS may improve growth and feed conversion efficiency by increasing plasma GH and IGF-I levels, in the early-weaned piglets. PMID:15826777

  16. A quantitative analysis of the reduction in oxygen levels required to induce up-regulation of vascular endothelial growth factor (VEGF) mRNA in cervical cancer cell lines

    PubMed Central

    Chiarotto, J A; Hill, R P

    1999-01-01

    The presence of hypoxia (low oxygen concentrations) in solid tumours correlates with poor prognosis, increased metastasis, and resistance to radiotherapy and some forms of chemotherapy. Malignant cells produce an angiogenesis factor, vascular endothelial growth factor (VEGF), which may increase metastatic ability and is up-regulated in the presence of hypoxia. Clinical data for cancers of the cervix and head and neck relate oxygen levels in the tumour to treatment outcome. This suggests the possibility that the presence of VEGF mRNA might be used as a marker for relevant levels of hypoxia. Suspension cultures of three human cervical cancer cell lines, SiHa, ME-180 and HeLa, were used to investigate up-regulation of VEGF mRNA levels following exposure to precisely defined oxygen concentrations for 2 or 4 h. An oxygen sensor was used to confirm the actual levels of dissolved oxygen present. The oxygen concentrations which caused half-maximal upregulation (the Km value) of VEGF mRNA level in the three cell lines were similar except for one instance (Km at 4 h: SiHa 27.0 ± 5.7 μM, ME-180 16.8 ± 3.3 μM, HeLa 13.0 ± 1.8 μM, SiHa and HeLa P = 0.01). The Km values for the HeLa cell line as measured at 2 h (24.9 ± 0.8 μM) and 4 h (13.0 ± 1.8 μM) were significantly different (P < 0.0001). VEGF mRNA half-lives measured in air were consistent with values in the literature (SiHa 59.8 ± 5.8 min, ME-180 44.4 ± 7.2 min, HeLa 44.5 ± 6.3 min). Differences in oxygen consumption at low oxygen concentrations were noted between the different cell lines. Stirring in suspension culture was found to induce VEGF mRNA in SiHa cells. The presence of VEGF mRNA may be a marker for radiobiologic hypoxia. © 1999 Cancer Research Campaign PMID:10408392

  17. A guanosine quadruplex and two stable hairpins flank a major cleavage site in insulin-like growth factor II mRNA.

    PubMed Central

    Christiansen, J; Kofod, M; Nielsen, F C

    1994-01-01

    Insulin-like growth factor II (IGF-II) mRNAs are cleaved by an endonucleolytic event in a conserved part of their 3' untranslated region that is predicted to exhibit a complex higher-order RNA structure. In the present study, we have examined the putative secondary structures of in vitro transcripts from the conserved part of human and rat mRNAs by enzymatic and chemical probing. The results show that the cleavage site is situated between two highly structured domains. The upstream domain consists of two large hairpins, whereas the downstream domain is guanosine-rich. The guanosine-rich domain adopts a compact unimolecular conformation in Na+ or K+ but not in Li+, and it completely arrests reverse transcription in K+ but only partially in Na+, indicating the presence of an intramolecular guanosine quadruplex. The flanking higher-order structures may ensure that the cleavage site is not sequestered in stable RNA structures, thus allowing interactions with RNA or proteins at posttranscriptional stages of IGF-II expression. Images PMID:7838726

  18. mRNA Expression of Platelet-Derived Growth Factor Receptor-{beta} and C-KIT: Correlation With Pathologic Response to Cetuximab-Based Chemoradiotherapy in Patients With Rectal Cancer

    SciTech Connect

    Erben, Philipp Horisberger, Karoline; Muessle, Benjamin; Mueller, Martin Christian; Treschl, Anne; Ernst, Thomas; Kaehler, Georg; Stroebel, Philipp; Wenz, Frederik; Kienle, Peter; Post, Stefan; Hochhaus, Andreas; Willeke, Frank; Hofheinz, Ralf-Dieter

    2008-12-01

    Purpose: Deviant expression of platelet-derived growth factor receptor-{beta} (PDGFR{beta}) and c-kit was shown in patients with colorectal cancer. In the present study, mRNA expression of PDGFR{beta} and c-kit in 33 patients with locally advanced rectal cancer undergoing preoperative chemoradiotherapy with cetuximab/capecitabine/irinotecan in correlation with the tumor regression rate was investigated. Methods and Materials: Pretherapeutic biopsy cores and tumor material from the resected specimens were collected in parallel with normal rectal mucosa. The expression levels of PDGFR{beta} and c-kit were measured by quantitative polymerase chain reaction. Tumors were classified as good responders (tumor regression grade [TRG], 2-3) or poor responders (TRG, 0-1). Results: The TRG evaluation of the resected specimen was TRG 0-1 in 11 and TRG 2-3 in 22. The median normalized ratios in the pretreatment mucosa vs. tumor biopsy cores was as follows: PDGFR{beta} ratio of 15.2 vs. 49.5 (p <0.0001) and c-kit ratio of 0.94 vs. 0.67 (p = 0.014). The same tendency was observed for the median PDGFR{beta} ratios after chemoradiotherapy completion: 34.2 vs. 170.0 (p <0.0001). The PDGFR{beta} and c-kit mRNA expression values in the pretreatment tumor biopsy cores were lower than the values in the resected specimens: PDGFR{beta} ratio 49.5 vs. 170.0 (p = 0.0002) and c-kit ratio 0.67 vs. 1.1 (p = 0.0003). Nevertheless, no correlation was seen between the pretherapeutic PDGFR{beta} and c-kit mRNA expression and the pathologic regression rate. Conclusion: Cetuximab-based chemoradiotherapy increased PDGFR{beta} levels even further compared with the pretreatment samples and deserves further investigation.

  19. InsP6-Sensitive Variants of the Gle1 mRNA Export Factor Rescue Growth and Fertility Defects of the ipk1 Low-Phytic-Acid Mutation in Arabidopsis

    PubMed Central

    Lee, Ho-Seok; Lee, Du-Hwa; Cho, Hui Kyung; Kim, Song Hee; Auh, Joong Hyuck; Pai, Hyun-Sook

    2015-01-01

    Myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6), also known as phytic acid, accumulates in large quantities in plant seeds, serving as a phosphorus reservoir, but is an animal antinutrient and an important source of water pollution. Here, we report that Gle1 (GLFG lethal 1) in conjunction with InsP6 functions as an activator of the ATPase/RNA helicase LOS4 (low expression of osmotically responsive genes 4), which is involved in mRNA export in plants, supporting the Gle1-InsP6-Dbp5 (LOS4 homolog) paradigm proposed in yeast. Interestingly, plant Gle1 proteins have modifications in several key residues of the InsP6 binding pocket, which reduce the basicity of the surface charge. Arabidopsis thaliana Gle1 variants containing mutations that increase the basic charge of the InsP6 binding surface show increased sensitivity to InsP6 concentrations for the stimulation of LOS4 ATPase activity in vitro. Expression of the Gle1 variants with enhanced InsP6 sensitivity rescues the mRNA export defect of the ipk1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase) InsP6-deficient mutant and, furthermore, significantly improves vegetative growth, seed yield, and seed performance of the mutant. These results suggest that Gle1 is an important factor responsible for mediating InsP6 functions in plant growth and reproduction and that Gle1 variants with increased InsP6 sensitivity may be useful for engineering high-yielding low-phytate crops. PMID:25670768

  20. HuR, a protein implicated in oncogene and growth factor mRNA decay, binds to the 3' ends of hepatitis C virus RNA of both polarities.

    PubMed

    Spångberg, K; Wiklund, L; Schwartz, S

    2000-09-01

    To identify cellular factors that interact with hepatitis C virus RNA, cellular extracts were subjected to UV cross-linking to radiolabeled RNAs corresponding to the hepatitis C virus 5' and 3' untranslated regions of positive and negative polarities. Our results demonstrate that the U-rich region of the hepatitis C virus 3' untranslated region of the positive RNA strand is a hot spot for cellular RNA binding proteins. Two of these proteins were identified as the ELAV-like HuR protein and hnRNP C. Interestingly, HuR and hnRNP C also interacted with the 3' end of the RNA representing the negative strand of the HCV genome. The binding of HuR and hnRNP C to the 3' ends of the HCV RNAs of both negative and positive polarities suggests that HuR and hnRNP C may be involved in the transcription of the HCV RNA genome. Alternatively, they act by protecting the HCV RNAs from premature degradation by binding to their 3' ends. However, we were unable to demonstrate an effect on HCV RNA stability by the HuR protein. These interactions may be necessary for the establishment of chronic active infections that may develop into cirrhosis or hepatocellular carcinoma. PMID:10964780

  1. Tissue-specific regulation of the growth hormone/insulin-like growth factor axis during fasting and re-feeding: Importance of muscle expression of IGF-I and IGF-II mRNA in the tilapia.

    PubMed

    Fox, Bradley K; Breves, Jason P; Davis, Lori K; Pierce, Andrew L; Hirano, Tetsuya; Grau, E Gordon

    2010-05-01

    The effects of prolonged nutrient restriction (fasting) and subsequent restoration (re-feeding) on the growth hormone (GH)/insulin-like growth factor (IGF) axis were investigated in the tilapia (Oreochromis mossambicus). Mean weight and specific growth rate declined within 1 week in fasted fish, and remained lower than controls throughout 4 weeks of fasting. Plasma levels of IGF-I were lower than fed controls during 4 weeks of fasting, suggesting a significant catabolic state. Following re-feeding, fasted fish gained weight continuously, but did not attain the weight of fed controls at 8 weeks after re-feeding. Specific growth rate increased above the continuously-fed controls during the first 6 weeks of re-feeding, clearly indicating a compensatory response. Plasma IGF-I levels increased after 1 week of re-feeding and levels were not otherwise different from fed controls. Plasma GH levels were unaffected by either fasting or re-feeding. No consistent effect of fasting or re-feeding was observed on liver expression of GH receptor (GH-R), somatolactin (SL) receptor (SL-R), IGF-I or IGF-II. In contrast, muscle expression of GH-R increased markedly during 4 weeks of fasting, and then declined below control levels upon re-feeding for weeks 1 and 2. Similarly, muscle expression of SL-R increased after 4 weeks of fasting, and reduced below control levels after 1 and 2 weeks of re-feeding. On the other hand, muscle expression of IGF-I was strongly reduced throughout the fasting period, and levels recovered 2 weeks after re-feeding. Muscle expression of IGF-II was not affected by fasting, but was reduced after 1 and 2 weeks of re-feeding. These results indicate that GH/IGF axis, particularly muscle expression of GH-R, SL-R and IGF-I and -II, is sensitive to nutritional status in the tilapia. PMID:19932110

  2. Transforming growth factor-beta 1 and fibroblast growth factors in rat growth plate.

    PubMed

    Jingushi, S; Scully, S P; Joyce, M E; Sugioka, Y; Bolander, M E

    1995-09-01

    Chondrocytes in the growth plate progress in an orderly fashion from resting through proliferating to hypertrophic cells. In the region of hypertrophic chondrocytes, the cartilage is invaded by capillary loops and endochondral ossification is initiated. It is currently believed that growth factors may regulate the proliferation and maturation of chondrocytes and the synthesis of extracellular matrix in the growth plate. The ordered sequence of proliferation and differentiation observed in the growth plate provides a unique opportunity to study the role of acidic fibroblast growth factor, basic fibroblast growth factor, and transforming growth factor-beta 1 in the regulation of these processes. In this study, expression of the mRNA of these growth factors was examined using total RNA extracted from the physis and epiphysis of rat tibias. Transforming growth factor-beta 1 mRNA was detected by Northern hybridization. Expression of the genes encoding acidic and basic fibroblast growth factors was demonstrated by polymerase chain reaction amplification. In addition, using polyclonal antibodies against these growth factors, we localized them by immunohistochemical analysis. Strong intracellular staining with a predominantly nuclear pattern was observed in chondrocytes from the proliferating and upper hypertrophic zones. In contrast, chondrocytes in the resting zone stained only faintly for the presence of these growth factors. Some chondrocytes in the resting zone adjacent to the proliferating zone stained with these antibodies, and the antibodies also stained cells in the zone of Ranvier, which regulates latitudinal bone growth. Lastly, the location of transforming growth factor-beta 1 was examined further with use of a polyclonal antipeptide antibody specific for its extracellular epitope.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7472755

  3. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  4. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  5. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  6. Growth factors in haemopoiesis.

    PubMed

    Jones, A L; Millar, J L

    1989-01-01

    Haemopoietic growth factors have for over two decades allowed experimentalists to grow haemopoietic bone marrow cells in vitro. With refinements in technique and the discovery of novel growth factors, all of the known haemopoietic lineages can now be grown in vitro. This has allowed a much greater understanding of the complex process of haemopoiesis from the haemopoietic stem cell to the mature, functioning end-cell. The in vivo action of these growth factors has been harder to investigate. Although recombinant technology has afforded us the much greater quantities necessary for in vivo work, problems remain with administration because of effects on other tissues. Interpretation of results is difficult because of the complex inter-relationships which exist between factors. Some of these have been defined in vitro and it appears likely that they also operate in vivo. Erythropoietin is a physiological regulator of erythropoiesis. It has been detected in vivo with levels responding appropriately to stress (i.e. elevated in anaemia) and, when administered in pharmacological doses, has been shown to correct anaemia. Granulocyte/macrophage colony-stimulating factor (GM-CSF) has been detected in vivo and may influence the production and function of granulocytes and macrophages, although how it is regulated is unknown. Granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor are ore lineage-specific. Interleukin 3 (IL-3), although it has not been detected in vivo, may act on a primitive marrow precursor by expanding the population and making these cells more susceptible to other growth factors, such as GM-CSF. Interleukin 1 (IL-1) has been detected in vivo, does not appear to have any isolated action on bone marrow (except possibly radioprotection) but probably acts synergistically with other growth factors, such as G-CSF. Interleukins 2, 4, 5 and 6 have not been detected in vivo. All have effects on B-cells. In addition IL-2 is an essential

  7. In vitro treatment with 17,20b-dihydroxy-4-pregnen-3-one regulates mRNA levels of transforming growth factor beta superfamily members in rainbow trout (Oncorhynchus mykiss) ovarian tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transforming growth factor beta (TGFB) superfamily members are important paracrine/autocrine regulators of ovarian development and steroidogenesis in mammals, but their reproductive role in fishes is not well understood. Our objectives were 3-fold: to determine if key TGFB superfamily transcripts a...

  8. Peptide growth factors, part B

    SciTech Connect

    Barnes, D.; Sirbasku, D.A.

    1987-01-01

    This book discusses the following topics: Platelet-Derived Growth Factor;Nerve and Glial Growth Factors;PC12 Pheochromocytoma Cells;Techniques for the Study of Growth Factor Activity;Genetic Approaches and Biological Effects.

  9. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation

    PubMed Central

    Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.

    2016-01-01

    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614

  10. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse.

    PubMed

    Hashikawa, Naoya; Ogawa, Takumi; Sakamoto, Yusuke; Ogawa, Mami; Matsuo, Yumi; Zamami, Yoshito; Hashikawa-Hobara, Narumi

    2015-08-01

    Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test. PMID:25820756

  11. MRN1 Implicates Chromatin Remodeling Complexes and Architectural Factors in mRNA Maturation

    PubMed Central

    Düring, Louis; Thorsen, Michael; Petersen, Darima Sophia Njama; Køster, Brian; Jensen, Torben Heick; Holmberg, Steen

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6ΔΔ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin architectural proteins Nhp6A/Nhp6B, accumulate intron-containing pre-mRNA at the restrictive temperature. In addition, we demonstrate that rsc8-ts16 nhp6ΔΔ cells contain low levels of U6 snRNA and U4/U6 di-snRNA that is further exacerbated after two hours growth at the restrictive temperature. This change in U6 snRNA and U4/U6 di-snRNA levels in rsc8-ts16 nhp6ΔΔ cells is indicative of splicing deficient conditions. We identify MRN1 (multi-copy suppressor of rsc nhp6ΔΔ) as a growth suppressor of rsc nhp6ΔΔ synthetic sickness. Mrn1 is an RNA binding protein that localizes both to the nucleus and cytoplasm. Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309Δ, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing. PMID:23028530

  12. Vascular Endothelial Growth Factor (VEGF) mRNA Isoforms are Altered in Bovine Granulosa Cells (GC) by Circulating Progestin Concentrations (P4) and May Indicate Follicle Status and Oocyte Competence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, Melengestrol Acetate (MGA) fed for 14 d (0.5mg/cow/d; < 1 ng/ml P4) resulted in persistent follicles with increased size, decreased number of GC/follicular fluid (FF) volume, and less fertile oocytes. An experiment was conducted to determine effects of circulating P4 on amount of mRNA fo...

  13. Chronic neonatal nicotine exposure increases mRNA expression of neurotrophic factors in the postnatal rat hippocampus.

    PubMed

    Son, Jong-Hyun; Winzer-Serhan, Ursula H

    2009-06-30

    Nicotine, the psychoactive ingredient in tobacco, can be neuroprotective but the mechanism is unknown. In the adult hippocampus, chronic nicotine can increase expression of growth factors which could contribute to nicotine's neuroprotective effects. During development, nicotine could also increase expression of neurotrophic factors. Therefore, we determined whether chronic neonatal nicotine (CNN) exposure increased mRNA expression levels of brain-derived neurotrophic factor (BDNF), nerve-growth factor (NGF), neurotrophin-3 (NT-3), fibroblast growth factor-2 (FGF-2), and insulin-like growth factor-1 (IGF-1). Nicotine (6 mg/kg/day in milk formula) or milk formula (controls) were delivered in three daily doses via oral gastric intubation to rat pups from postnatal day (P)1 to P8, and then sacrificed. Brains were processed for in situ hybridization using specific (35)S-labeled cRNA probes. At P8, CNN had a significant stimulant treatment effect on the expression of BDNF, FGF-2, NT-3 and IGF-1 [p<0.01], but not NGF. Specifically, BDNF mRNA expression, detected in CA1, CA3 stratum (s.) pyramidal and granule cell layer of the dentate gyrus (DG), was increased by 27.4%, 23.26% and 27.3%, respectively. FGF-2 mRNA expression, detected in neurons and astrocytes in CA1 s. radiatum, CA2 and CA3 s. pyramidale, and molecular layer of the DG, was increased by 34.0%, 8.9%, 31.0% and 23.1%, respectively. NT-3 mRNA expression in CA2 s. pyramidale was increased by 80.0%, and CNN increased the number of IGF-1-expressing cells in CA1 (18.0%), CA3 (20.9%) and DG (17.7%). Thus, nicotine exposure during early postnatal development differentially up-regulated expression of neurotrophic factor mRNAs in the hippocampus, which could increase neurotrophic tone and alter developmental processes. PMID:19410565

  14. Nerve growth factor and asthma.

    PubMed

    Bonini, S; Lambiase, A; Lapucci, G; Properzi, F; Bresciani, M; Bracci Laudiero, M L; Mancini, M J; Procoli, A; Micera, A; Sacerdoti, G; Bonini, S; Levi-Schaffer, F; Rasi, G; Aloe, L

    2002-01-01

    An increasing body of evidence shows that nerve growth factor (NGF) exerts biological activity not only on the central and peripheral nervous system, but also on the immune system thereby influencing allergic diseases and asthma. (1) NGF circulating levels are increased in patients with allergic diseases and asthma, and are related to the severity of the inflammatory process and disease. In vernal keratoconjunctivitis, NGF plasma levels correlate with the number of mast cells infiltrating the conjunctiva, and NGF mRNA is increased in nasal mucosal scrapings of patients with allergic rhinitis who have high levels of NGF in serum and nasal fluids; NGF is further increased in nasal fluids after specific allergen challenge. (2) NGF is produced and released by several modulatory and effector cells of allergic inflammation and asthma, for example T-helper 2 lymphocytes, mast cells and eosinophils. (3) NGF receptors are expressed on the conjunctival epithelium of patients with allergic conjunctivitis and the number of NGF-receptor positive cells is increased in the conjunctiva of these patients. Indeed, local administration of NGF induces fibroblast activation and healing processes of human corneal ulcers, which suggests that NGF plays a role in tissue remodelling processes occurring in asthma. (4) NGF increases airway hyperreactivity to histamine in an animal model of asthma, while anti-NGF treatment reduces airway hyperreactivity induced by ovalbumin topical challenge in the sensitized mouse. PMID:12144547

  15. Membrane-association of mRNA decapping factors is independent of stress in budding yeast

    PubMed Central

    Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy

    2016-01-01

    Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation. PMID:27146487

  16. Membrane-association of mRNA decapping factors is independent of stress in budding yeast.

    PubMed

    Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy

    2016-01-01

    Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation. PMID:27146487

  17. Distinguishing direct from indirect roles for bicoid mRNA localization factors

    PubMed Central

    Weil, Timothy T.; Xanthakis, Despina; Parton, Richard; Dobbie, Ian; Rabouille, Catherine; Gavis, Elizabeth R.; Davis, Ilan

    2010-01-01

    Localization of bicoid mRNA to the anterior of the Drosophila oocyte is essential for patterning the anteroposterior body axis in the early embryo. bicoid mRNA localizes in a complex multistep process involving transacting factors, molecular motors and cytoskeletal components that remodel extensively during the lifetime of the mRNA. Genetic requirements for several localization factors, including Swallow and Staufen, are well established, but the precise roles of these factors and their relationship to bicoid mRNA transport particles remains unresolved. Here we use live cell imaging, super-resolution microscopy in fixed cells and immunoelectron microscopy on ultrathin frozen sections to study the distribution of Swallow, Staufen, actin and dynein relative to bicoid mRNA during late oogenesis. We show that Swallow and bicoid mRNA are transported independently and are not colocalized at their final destination. Furthermore, Swallow is not required for bicoid transport. Instead, Swallow localizes to the oocyte plasma membrane, in close proximity to actin filaments, and we present evidence that Swallow functions during the late phase of bicoid localization by regulating the actin cytoskeleton. In contrast, Staufen, dynein and bicoid mRNA form nonmembranous, electron dense particles at the oocyte anterior. Our results exclude a role for Swallow in linking bicoid mRNA to the dynein motor. Instead we propose a model for bicoid mRNA localization in which Swallow is transported independently by dynein and contributes indirectly to bicoid mRNA localization by organizing the cytoskeleton, whereas Staufen plays a direct role in dynein-dependent bicoid mRNA transport. PMID:20023172

  18. Growth hormone, growth factors, and acromegaly

    SciTech Connect

    Ludecke, D.K.; Tolis, G.T.

    1987-01-01

    This book contains five sections, each consisting of several papers. The section headings are: Biochemistry and Physiology of GH and Growth Factors, Pathology of Acromegaly, Clinical Endocrinology of Acromegaly, Nonsurgical Therapy of Acromegaly, and Surgical Therapy of Acromegaly.

  19. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  20. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    SciTech Connect

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  1. The expression and localization of mRNA for colony-stimulating factor (CSF)-1 in human term placenta.

    PubMed

    Kanzaki, H; Yui, J; Iwai, M; Imai, K; Kariya, M; Hatayama, H; Mori, T; Guilbert, L J; Wegmann, T G

    1992-04-01

    A 4-kb mRNA for colony-stimulating factor 1 (CSF-1) was detected in normal human placenta at term by Northern blot analysis. In-situ hybridization revealed that the mRNA for CSF-1 was localized in the mesenchymal cells of the chorionic villous stroma, but not in the trophoblasts or capillary epithelial cells. Because there are significant numbers of tissue macrophages (Hofbauer cells) in the placental stroma and because the receptor for CSF-1 (the c-fms proto-oncogene product) is known to be expressed by trophoblasts, our results suggest that CSF-1 produced by placental stromal cells may act as a growth and survival factor for human placental macrophages and trophoblasts. PMID:1522204

  2. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency

    PubMed Central

    Argente, Jesús; Flores, Raquel; Gutiérrez-Arumí, Armand; Verma, Bhupendra; Martos-Moreno, Gabriel Á; Cuscó, Ivon; Oghabian, Ali; Chowen, Julie A; Frilander, Mikko J; Pérez-Jurado, Luis A

    2014-01-01

    The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences. Subject Categories Genetics, Gene Therapy ' Genetic Disease; Metabolism PMID:24480542

  3. Interstitial fibrosis and growth factors.

    PubMed Central

    Lasky, J A; Brody, A R

    2000-01-01

    Interstitial pulmonary fibrosis (IPF) is scarring of the lung caused by a variety of inhaled agents including mineral particles, organic dusts, and oxidant gases. The disease afflicts millions of individuals worldwide, and there are no effective therapeutic approaches. A major reason for this lack of useful treatments is that few of the molecular mechanisms of disease have been defined sufficiently to design appropriate targets for therapy. Our laboratory has focused on the molecular mechanisms through which three selected peptide growth factors could play a role in the development of IPF. Hundreds of growth factors and cytokines could be involved in the complex disease process. We are studying platelet-derived growth factor because it is the most potent mesenchymal cell mitogen yet described, transforming growth factor beta because it is a powerful inducer of extracellular matrix (scar tissue) components by mesenchymal cells, and tumor necrosis factor alpha because it is a pleiotropic cytokine that we and others have shown is essential for the development of IPF in animal models. This review describes some of the evidence from studies in humans, in animal models, and in vitro, that supports the growth factor hypothesis. The use of modern molecular and transgenic technologies could elucidate those targets that will allow effective therapeutic approaches. Images Figure 1 Figure 2 PMID:10931794

  4. Growth factors in ischemic stroke

    PubMed Central

    Lanfranconi, S; Locatelli, F; Corti, S; Candelise, L; Comi, G P; Baron, P L; Strazzer, S; Bresolin, N; Bersano, A

    2011-01-01

    Abstract Data from pre-clinical and clinical studies provide evidence that colony-stimulating factors (CSFs) and other growth factors (GFs) can improve stroke outcome by reducing stroke damage through their anti-apoptotic and anti-inflammatory effects, and by promoting angiogenesis and neurogenesis. This review provides a critical and up-to-date literature review on CSF use in stroke. We searched for experimental and clinical studies on haemopoietic GFs such as granulocyte CSF, erythropoietin, granulocyte-macrophage colony-stimulating factor, stem cell factor (SCF), vascular endothelial GF, stromal cell-derived factor-1α and SCF in ischemic stroke. We also considered studies on insulin-like growth factor-1 and neurotrophins. Despite promising results from animal models, the lack of data in human beings hampers efficacy assessments of GFs on stroke outcome. We provide a comprehensive and critical view of the present knowledge about GFs and stroke, and an overview of ongoing and future prospects. PMID:20015202

  5. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed Central

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-01-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8105469

  6. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing.

    PubMed

    Muppavarapu, Mridula; Huch, Susanne; Nissan, Tracy

    2016-04-01

    Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation. PMID:26918764

  7. Growth Factors Regulate Expression of Mineral Associated Genes in Cementoblasts

    PubMed Central

    Saygin, N. Esra; Tokiyasu, Yoshihiko; Giannobile, William V.; Somerman, Martha J.

    2008-01-01

    Background Knowledge of the responsiveness of cells within the periodontal region to specific bioactive agents is important for improving regenerative therapies. The aim of this study was to determine the effect of specific growth factors, insulin-like growth factor-I (IGF-I), platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) on cementoblasts in vitro and ex vivo. Methods Osteocalcin (OC) promoter driven SV40 transgenic mice were used to obtain immortalized cementoblasts. Growth factor effects on DNA synthesis were assayed by [3H]-thymidine incorporation. Northern analysis was used to determine the effects of growth factors on gene expression profile. Effects of growth factors on cementoblast induced biomineralization were determined in vitro (von Kossa stain) and ex vivo (re-implantation of cells in immunodeficient (SCID) mice). Results All growth factors stimulated DNA synthesis compared to control. Twenty-four hour exposure of cells to PDGF-BB or TGF-β resulted in a decrease in bone sialoprotein (BSP) and osteocalcin (OCN) mRNAs while PDGF-BB also increased osteopontin (OPN) mRNA. Cells exposed to IGF-I for 24 hours exhibited decreased transcripts for OCN and OPN with an upregulation of BSP mRNA noted at 72 hours. In vitro mineralization was inhibited by continuous application of PDGF-BB or TGF-β, while cells exposed to these factors prior to implantation into SCID mice still promoted biomineralization. Conclusions These data indicate IGF-I, PDGF-BB, and TGF-β influence mitogenesis, phenotypic gene expression profile, and biomineralization potential of cementoblasts suggesting that such factors alone or in combination with other agents may provide trigger factors required for regenerating periodontal tissues. PMID:11063392

  8. Expression and localization of epidermal growth factor, transforming growth factor-α and epidermal growth factor receptor in the canine testis

    PubMed Central

    TAMADA, Hiromichi; TAKEMOTO, Kohei; TOMINAGA, Masato; KAWATE, Noritoshi; TAKAHASHI, Masahiro; HATOYA, Shingo; MATSUYAMA, Satoshi; INABA, Toshio; SAWADA, Tsutomu

    2015-01-01

    Gene expression of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and EGF receptor (EGF-R) and the localization of the corresponding proteins in the canine testis were studied. Levels of mRNA expressions were determined by semiquantitative reverse transcription polymerase chain reaction in the testes of the peripubertal (4–6 months), young adult (3–4 years), advanced adult (7–8 years) and senescent (11–16 years) groups. The EGF-R mRNA level in the testes of the peripubertal group was significantly higher than those in the other groups, whereas there was no difference in EGF and TGF-α mRNA levels among groups. Immunohistochemical stainings for EGF, TGF-α and EGF-R in the testis revealed that immunoreactivity in the seminiferous epithelium and Sertoli cell was weak and nonspecific for the stage of spermatogenesis, and distinct staining was found in Leydig cells. These results suggest that the EGF family of growth factors may be involved in testicular maturation and function in the dog. PMID:26498203

  9. Nonsense-mediated mRNA decay among coagulation factor genes

    PubMed Central

    Shahbazi, Shirin

    2016-01-01

    Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. Materials and Methods: A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Results: Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD). There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8) does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Conclusion: Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade. PMID:27279976

  10. GH, IGF-I and GH receptors mRNA expression in response to growth impairment following a food deprivation period in individually housed cichlid fish Cichlasoma dimerus.

    PubMed

    Delgadin, Tomás Horacio; Pérez Sirkin, Daniela Irina; Di Yorio, María Paula; Arranz, Silvia Eda; Vissio, Paula Gabriela

    2015-02-01

    Cichlasoma dimerus is a social cichlid fish capable of growing at high rates under laboratory conditions, but knowledge on somatic growth regulation is still unclear. Growth hormone (GH)/insulin-like growth factor I (IGF-I) axis is the key regulator of somatic growth in vertebrates. Two types of growth hormone receptors have been described in teleost fish, named GH receptor type 1 (GHR1) and type 2 (GHR2). In addition, isoforms of these receptors lacking part of the intracellular region have been described. The aim of this study was to evaluate the somatic growth, liver histology and changes in the GH/IGF-I axis after 4 weeks of food deprivation in C. dimerus. Four-week fasted fish showed reductions in specific growth rates in body weight (p < 0.001) and standard length (p < 0.001). Additionally, the hepatosomatic index (p < 0.001) and hepatocyte area (p < 0.001) decreased in fasted fish, while no changes in glucose levels were detected in plasma. The starvation protocol failed to induce changes in GH mRNA levels in the pituitary and IGF-I mRNA levels in liver. In contrast, IGF-I mRNA levels in muscle decreased in fasted fish (p = 0.002). On the other hand, GHR2 (detected with primer sets designed over the extracellular and intracellular region) was upregulated by starvation both in liver and muscle (p < 0.05), while GHR1 remained unchanged. These results show that a fasting period reduced somatic growth both in length and body weight concomitantly with alterations on liver and muscle GHR2 and muscle IGF-I mRNA expression. PMID:25351458

  11. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

    PubMed Central

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A.; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E.

    2016-01-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay. The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. PMID:26717982

  12. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons.

    PubMed

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E

    2016-05-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. PMID:26717982

  13. Growth factors in orthopedic surgery

    PubMed Central

    Zaharia, C; Despa, N; Simionescu, M; Jinga, V; Fleseriu, I

    2010-01-01

    Growth factors have represented an essential issue of interest for the researchers and clinicians in orthopedics and trauma over the last 40 years. In the last 10 to 15 years, the advances registered in this field have permitted the identification of the most active cellular and humoral factors as well as the improvement of their use in the orthopedic and trauma surgery. Their domain of application has been continuously enlarged and the results have been visible from the beginning. The authors present their appreciation on the actual state of this subject as well as their experience with results and related conclusions. PMID:20302195

  14. Atrial natriuretic factor mRNA and binding sites in the adrenal gland.

    PubMed Central

    Nunez, D J; Davenport, A P; Brown, M J

    1990-01-01

    The factor inhibiting aldosterone secretion produced by the adrenal medulla may be atrial natriuretic factor (ANF), since the latter abolishes aldosterone release in response to a number of secretagogues, including angiotensin II and K+. In this study we have shown that cells in the adrenal medulla contain ANF mRNA and therefore have the potential to synthesize this peptide. The presence of binding sites for ANF predominantly in the adrenal zona glomerulosa suggests that, if ANF is synthesized in the medulla and transferred to the cortex, it may affect mineralocorticoid status. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2146954

  15. Assessing prostate cancer growth with mRNA of spermine metabolic enzymes.

    PubMed

    Kaul, David; Wu, Chin-Lee; Adkins, Christen B; Jordan, Kate W; Defeo, Elita M; Habbel, Piet; Peterson, Randall T; McDougal, W Scott; Pohl, Ute; Cheng, Leo L

    2010-05-01

    Statistical data from prostate cancer (PCa) clinics indicates that a large patient population discovered by annual prostate specific antigen (PSA) screening may have a latent form of the disease. However, current medical tests cannot differentiate slow from fast growing PCa, resulting in many unnecessary radical treatments and morbidities. It is thus necessary to find new screening tests that enable us to differentiate between fast- and slow-growing tumors. Inspired by the reported functions of spermine in carcinogenesis, we analyzed spermine and mRNA expression levels of rate-limiting enzymes in the spermine metabolic pathway for nine cases of PCa with accurately defined PSA velocity (Vpsa). Using MR spectroscopy, histopathology, laser-capture microdissection and real-time PCR techniques, we analyzed relationships between changes in spermine levels, mRNA expression levels of spermine anabolic and catabolic enzymes and human prostate cancer growth rates represented by serum Vpsa. The expression levels of spermine anabolic enzymes: ornithine decarboxylase (ODC1) and S-adenosylmethionine decarboxylase (AMD1) in benign epithelia surrounding cancer glands was logarithmically reduced with the increase of Vpsa (ODC1, p < 0.016; AMD1, p < 0.048), and antizyme (OAZ1) expression in cancer cells was increased with the increase of Vpsa (p < 0.001). Finally, we observed an inverse correlation between ODC1 and OAZ1 (p < 0.019) measured in cancer cells. These correlations may function to evaluate the aggressiveness of human prostate cancer, and assist patients and clinicians to select appropriate treatment strategies based on biological activities of individual tumors. PMID:20215859

  16. Epidermal growth factor and growth in vivo

    SciTech Connect

    Rhodes, J.A.

    1986-01-01

    Epidermal growth factor (EGF) causes a dose-dependent thickening of the epidermis in suckling mice. The cellular mechanisms underlying this thickening were analyzed by measuring the effect of EGF on the cell-cycle. Neonatal mice were given daily injections of either 2ug EGF/g body weight/day or an equivalent volume of saline, and on the seventh day received a single injection of /sup 3/H-thymidine. At various times the mice were perfused with fixative; 1um sections of skin were stained with a modification of Harris' hematoxylin and were autoradiographed. The sections were analyzed using three methods based on the dependence on time after injection of /sup 3/H-thymidine of: frequency of labelled mitoses, labelling index, and reciprocal grains/nucleus. It was found that EGF caused a two-fold increase in the cell production rate. The effect of exogenous EGF on the morphology of gastric mucosa and incisors of suckling mice was also studied. The gastric mucosa appeared thicker in EGF-treated animals, but the effect was not statistically significant. In contrast to its effect on epidermis and gastric mucosa, EGF caused a significant, dose-dependent decrease in the size of the incisors. Because the mouse submandibular salivary gland is the major source of EGF the effect of sialoadenectomy on female reproductive functions was examined. Ablation of the submandibular gland had no effect on: length of estrus cycle, ability of the female to produce litters, length of the gestation period, litter size, and weight of the litter at birth. There was also no effect on survival of the offspring or on age at which the eyelids separated.

  17. Elongation factor 1 gamma mRNA expression in oesophageal carcinoma.

    PubMed Central

    Mimori, K; Mori, M; Inoue, H; Ueo, H; Mafune, K; Akiyoshi, T; Sugimachi, K

    1996-01-01

    Elongation factor 1 gamma (EF1 gamma) is known to be a subunit of EF1, one of the G proteins that mediate the transport of aminoacyl tRNA to 80S ribosomes during translation. As little is known regarding the expression of EF1 gamma in human oesophageal carcinoma, this study looked at its expression using a northern blot analysis. Thirty six cases of oesophageal carcinoma and 15 oesophageal carcinoma cell lines were studied. The EF1 gamma mRNA overexpression at a level of twofold or more was seen in five (14%) of 36 carcinomatous tissues compared with the normal counterparts. All five overexpressed cases showed severe lymph node metastases compared with the non-overexpressed cases, and the difference was significant (p = 0.028). The stage of the disease of these five cases was far advanced compared with the nonoverexpressed cases (p = 0.012). All 15 oesophageal carcinoma cells expressed EF1 gamma mRNA relatively lower than the gastric or pancreatic carcinoma cell lines, in which EF1 gamma was originally isolated. As the expression of EF1 gamma mRNA could be detected even in the biopsy specimens, its overexpression in tumour tissue may provide preoperative useful information for predicting the aggressiveness of tumours. Images Figure 1 Figure 2 Figure 3 PMID:8566862

  18. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella).

    PubMed

    Liu, Sen; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zeng, Yun-Yun; Xu, Shu-De; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-08-01

    This study investigated the effects of exogenous lipase supplementation on the growth performance, intestinal growth and function, immune response and physical barrier function, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (255.02 ± 0.34 g) were fed five diets for 60 days. There were 5 dietary treatments that included a normal protein and lipid diet containing 30% crude protein (CP) with 5% ether extract (EE), and the low-protein and high-lipid diets (28% CP, 6% EE) supplemented with graded levels of exogenous lipase supplementation activity at 0, 1193, 2560 and 3730 U/kg diet. The results indicated that compared with a normal protein and lipid diet (30% CP, 5% EE), a low-protein and high-lipid diet (28% CP, 6% EE) (un-supplemented lipase) improved lysozyme activities and complement component 3 contents in the distal intestine (DI), interleukin 10 mRNA expression in the proximal intestine (PI), and glutathione S-transferases activity and glutathione content in the intestine of young grass carp. In addition, in low-protein and high-lipid diets, optimal exogenous lipase supplementation significantly increased acid phosphatase (ACP) activities and complement component 3 (C3) contents (P < 0.05), up-regulated the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and hepcidin) and anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1) and signaling molecules inhibitor protein-κBα (IκBα) and target of rapamycin (TOR) (P < 0.05), down-regulated the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), and signaling molecules (nuclear factor kappa B p65, IκB kinase β, IκB kinase γ) (P < 0.05) in the intestine of young grass carp. Moreover, optimal exogenous lipase supplementation significantly decreased reactive oxygen species (ROS), malondialdehyde

  19. mRNA Transcript abundance during plant growth and the influence of Li(+) exposure.

    PubMed

    Duff, M C; Kuhne, W W; Halverson, N V; Chang, C-S; Kitamura, E; Hawthorn, L; Martinez, N E; Stafford, C; Milliken, C E; Caldwell, E F; Stieve-Caldwell, E

    2014-12-01

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li(+) concentration, exposure time, species and growth conditions. Most plant studies with Li(+) focus on short-term acute exposures. This study examines short- and long-term effects of Li(+) exposure in Arabidopsis with Li(+) uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li(+)-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li(+) resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li(+) exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li(+) exposure increases expression signal transduction genes. The identification of new Li(+)-sensitive genes and a gene-based "response plan" for acute and chronic Li(+) exposure are delineated. PMID:25443852

  20. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    DOE PAGESBeta

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; Chang, C. -S.; Kitamura, E.; Hawthorn, L.; Martinez, N. E.; Stafford, C.; Milliken, C. E.; Caldwell, E. F.; et al

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on:more » inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.« less

  1. Endothelin receptor B protects granulocyte macrophage colony-stimulating factor mRNA from degradation.

    PubMed

    Jungck, David; Knobloch, Jürgen; Körber, Sandra; Lin, Yingfeng; Konradi, Jürgen; Yanik, Sarah; Stoelben, Erich; Koch, Andrea

    2015-06-01

    Evidence is lacking on the differential effects of the two therapeutic concepts of endothelin receptor antagonists (ERAs): the blockade of only the endothelin receptor A (ETAR; selective antagonism) versus both ETAR and endothelin receptor B (ETBR; dual blockade). Ambrisentan, a selective ERA, and bosentan, a dual blocker, are both available for therapy. We hypothesized that there are differences in the potential of ERAs to ameliorate inflammatory processes in human airway smooth muscle cells (HASMCs) and aimed to unravel underlying mechanisms. We used HASMC culture, enzyme-linked immunosorbent assay, and quantitative reverse-transcription polymerase chain reaction. Tumor necrosis factor α (TNFα) induced transcription and expression of chemokine (C-X-C motif) ligand 2 (CXCL2), chemokine (C-X-C motif) ligand 3 (CXCL3), granulocyte macrophage colony-stimulating factor (GM-CSF), and matrix metalloproteinase 12 (MMP12) in HASMCs. In concentration-response experiments, bosentan led to a significantly greater reduction of GM-CSF and MMP12 protein release than ambrisentan, whereas there was no significant difference in their effect on GM-CSF and MMP12 mRNA. Both ERAs reduced CXCL3 protein and mRNA equally but had no effect on CXCL2. Blocking mitogen-activated protein kinases revealed that both ETAR and ETBR signal through p38 mitogen-activated protein kinase, but ETBR also signals through extracellular signal-regulated kinase (ERK) 1/2 to induce GM-CSF expression. In the presence of the transcription inhibitor actinomycin D, bosentan, but not ambrisentan, reduced GM-CSF but not MMP12 or CXCL3 mRNA. In conclusion, blockade of each endothelin receptor subtype reduces GM-CSF transcription, but blocking ETBR additionally protects GM-CSF mRNA from degradation via ERK-1/2. Accordingly, blocking both ETAR and ETBR leads to a stronger reduction of TNFα-induced GM-CSF protein expression. This mechanism might be specific to GM-CSF. Our data stress the anti-inflammatory potential

  2. Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis

    PubMed Central

    Morfoisse, Florent; Renaud, Edith; Hantelys, Fransky; Prats, Anne-Catherine; Garmy-Susini, Barbara

    2014-01-01

    Hypoxia is known to be a major factor in the induction of angiogenesis during tumor development but its role in lymphangiogenesis remains unclear. Blood and lymphatic vasculatures are stimulated by the vascular endothelial family of growth factors – the VEGFs. In this review, we investigate the role of hypoxia in the molecular regulation of synthesis of the lymphangiogenic growth factors VEGF-A, VEGF-C, and VEGF-D. Gene expression can be regulated by hypoxia at either transcriptional or translational levels. In contrast to strong induction of DNA transcription by hypoxia-inducible factors (HIFs), the majority of cellular stresses such as hypoxia lead to inhibition of cap-dependent translation of mRNA and downregulation of protein synthesis. Here, we describe how initiation of translation of VEGF mRNA is induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. Considering the implications of the lymphatic vasculature for metastatic dissemination, it is crucial to understand the molecular regulation of lymphangiogenic growth factors by hypoxia to obtain new insights into cancer therapy. PMID:27308316

  3. Expression of vascular endothelial growth factor-b in human astrocytoma.

    PubMed Central

    Gollmer, J. C.; Ladoux, A.; Gioanni, J.; Paquis, P.; Dubreuil, A.; Chatel, M.; Frelin, C.

    2000-01-01

    Growth of human malignant gliomas is stringently dependent on an angiogenic process that probably involves vascular endothelial growth factor (VEGF). Expressions of mRNA coding for the different forms of VEGF were analyzed in surgical specimens from human astrocytomas. Low levels of placental growth factor (PGF) and VEGFC mRNA were observed in polymerase chain reaction, but not in Northern blot experiments. VEGF mRNA was found in some but not all grade and grade IV astrocytomas. VEGFB mRNA was observed in all tissue samples analyzed irrespective of the tumor grade. A new splice variant of VEGFB (VEGFB155) that lacks exons 5 and 6 is described. Expressions of VEGF mRNA in cultured glioblastomas cells were upregulated by hypoxia, but the sensitivity of the cells to hypoxia was reduced as compared with normal rat astrocytes. VEGF expression was depressed by dexamethasone. Expressions of VEGFB mRNA were affected neither by hypoxia nor by dexamethasone. The results indicate a coexpression of VEGF mRNA and VEGFB mRNA in human astrocytomas. Expression of VEGFB is markedly different from that of VEGF. Possible roles of VEGFB as a cofactor for hypoxia-induced angiogenesis in human astrocytomas are discussed. PMID:11303624

  4. Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export

    PubMed Central

    Zhang, Liang; Das, Priyabrata; Schmolke, Mirco; Manicassamy, Balaji; Wang, Yaming; Deng, Xiaoyi; Cai, Ling; Tu, Benjamin P.; Forst, Christian V.; Roth, Michael G.; Levy, David E.; García-Sastre, Adolfo; de Brabander, Jef; Phillips, Margaret A.

    2012-01-01

    The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. PMID:22312003

  5. Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas.

    PubMed Central

    Hatva, E.; Böhling, T.; Jääskeläinen, J.; Persico, M. G.; Haltia, M.; Alitalo, K.

    1996-01-01

    Capillary hemangioblastomas and hemangiopericytomas are highly vascular central nervous system tumors of controversial origin. Of interest in their pathogenesis are mechanisms regulating endothelial cell growth. The endothelial cell mitogen vascular endothelial growth factor (VEGF) stimulates angiogenesis, and together with its two receptor tyrosine kinases VEGFR-1(FLT1) and VEGFR-2(KDR), is up-regulated during the malignant progression of gliomas. We have analyzed the expression of VEGF and its receptors, the related placental growth factor (PlGF) and the endothelial receptors FLT4 and Tie by in situ hybridization in capillary hemangioblastomas and hemangiopericytomas. VEGF mRNA was up-regulated in all of the hemangiopericytomas studied and highly expressed in the stromal cells of hemangioblastomas. In addition, some hemangioblastoma tumor cells expressed high levels of PlGF. Significantly elevated levels of Tie mRNA, Tie protein, VEGFR-1, and VEGFR-2 but not FLT4 mRNAs were observed in the endothelia of both tumor types. In hemangioblastomas, however, the receptors were also highly expressed by a subpopulation of stromal cells. Consistent results were obtained for a human hemangioblastoma cell line in culture. Up-regulation of the endothelial growth factors and receptors may result in autocrine or paracrine stimulation of endothelial cells and their precursors involved in the genesis of these two vascular tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8774132

  6. Fibroblast growth factor receptor 3 effects on proliferation and telomerase activity in sheep growth plate chondrocytes

    PubMed Central

    2012-01-01

    Background Fibroblast growth factor receptor 3 (FGFR3) inhibits growth-plate chondrocyte proliferation and limits bone elongation. Gain-of-function FGFR3 mutations cause dwarfism, reduced telomerase activity and shorter telomeres in growth plate chondroyctes suggesting that FGFR3 reduces proliferative capacity, inhibits telomerase, and enhances senescence. Thyroid hormone (T3) plays a role in cellular maturation of growth plate chondrocytes and a known target of T3 is FGFR3. The present study addressed whether reduced FGFR3 expression enhanced telomerase activity, mRNA expression of telomerase reverse transcriptase (TERT) and RNA component of telomerase (TR), and chondrocyte proliferation, and whether the stimulation of FGFR3 by T3 evoked the opposite response. Results Sheep growth-plate proliferative zone chondrocytes were cultured and transfected with siRNA to reduce FGFR3 expression; FGFR3 siRNA reduced chondrocyte FGFR3 mRNA and protein resulting in greater proliferation and increased TERT mRNA expression and telomerase activity (p < 0.05). Chondrocytes treated with T3 significantly enhanced FGFR3 mRNA and protein expression and reduced telomerase activity (p < 0.05); TERT and TR were not significantly reduced. The action of T3 at the growth plate may be partially mediated through the FGFR3 pathway. Conclusions The results suggest that FGFR3 inhibits chondrocyte proliferation by down-regulating TERT expression and reducing telomerase activity indicating an important role for telomerase in sustaining chondrocyte proliferative capacity during bone elongation. PMID:23216972

  7. The transcription factor ERG recruits CCR4-NOT to control mRNA decay and mitotic progression.

    PubMed

    Rambout, Xavier; Detiffe, Cécile; Bruyr, Jonathan; Mariavelle, Emeline; Cherkaoui, Majid; Brohée, Sylvain; Demoitié, Pauline; Lebrun, Marielle; Soin, Romuald; Lesage, Bart; Guedri, Katia; Beullens, Monique; Bollen, Mathieu; Farazi, Thalia A; Kettmann, Richard; Struman, Ingrid; Hill, David E; Vidal, Marc; Kruys, Véronique; Simonis, Nicolas; Twizere, Jean-Claude; Dequiedt, Franck

    2016-07-01

    Control of mRNA levels, a fundamental aspect in the regulation of gene expression, is achieved through a balance between mRNA synthesis and decay. E26-related gene (Erg) proteins are canonical transcription factors whose previously described functions are confined to the control of mRNA synthesis. Here, we report that ERG also regulates gene expression by affecting mRNA stability and identify the molecular mechanisms underlying this function in human cells. ERG is recruited to mRNAs via interaction with the RNA-binding protein RBPMS, and it promotes mRNA decay by binding CNOT2, a component of the CCR4-NOT deadenylation complex. Transcriptome-wide mRNA stability analysis revealed that ERG controls the degradation of a subset of mRNAs highly connected to Aurora signaling, whose decay during S phase is necessary for mitotic progression. Our data indicate that control of gene expression by mammalian transcription factors may follow a more complex scheme than previously anticipated, integrating mRNA synthesis and degradation. PMID:27273514

  8. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    PubMed Central

    Nandy, Debashis; Mukhopadhyay, Debabrata

    2011-01-01

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed. PMID:24212642

  9. Upregulation of epidermal growth factor receptor 4 in oral leukoplakia

    PubMed Central

    Kobayashi, Hiroshi; Kumagai, Kenichi; Gotoh, Akito; Eguchi, Takanori; Yamada, Hiroyuki; Hamada, Yoshiki; Suzuki, Satsuki; Suzuki, Ryuji

    2013-01-01

    In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP). The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP. PMID:23492901

  10. Positive mRNA Translational Control in Germ Cells by Initiation Factor Selectivity

    PubMed Central

    Friday, Andrew J.; Keiper, Brett D.

    2015-01-01

    Ultimately, the production of new proteins in undetermined cells pushes them to new fates. Other proteins hold a stem cell in a mode of self-renewal. In germ cells, these decision-making proteins are produced largely from translational control of preexisting mRNAs. To date, all of the regulation has been attributed to RNA binding proteins (RBPs) that repress mRNAs in many models of germ cell development (Drosophila, mouse, C. elegans, and Xenopus). In this review, we focus on the selective, positive function of translation initiation factors eIF4E and eIF4G, which recruit mRNAs to ribosomes upon derepression. Evidence now shows that the two events are not separate but rather are coordinated through composite complexes of repressors and germ cell isoforms of eIF4 factors. Strikingly, the initiation factor isoforms are themselves mRNA selective. The mRNP complexes of translation factors and RBPs are built on specific populations of mRNAs to prime them for subsequent translation initiation. Simple rearrangement of the partners causes a dormant mRNP to become synthetically active in germ cells when and where they are required to support gametogenesis. PMID:26357652

  11. Heterogeneity of cytokine and growth factor gene expression in human melanoma cells with different metastatic potentials.

    PubMed

    Singh, R K; Gutman, M; Radinsky, R

    1995-01-01

    The purpose of this study was to determine the mRNA expression level of multiple cytokine and growth factor genes in human malignant melanoma. Melanoma cells were isolated from several surgical specimens, adapted to growth in culture, characterized for their ability to produce experimental metastases in nude mice, and assessed for cytokine and growth factor steady-state gene expression. Highly metastatic in vivo- and in vitro-derived variants isolated from a single melanoma, A375, were also analyzed. Northern blot analyses revealed that all melanomas analyzed constitutively expressed steady-state mRNA transcripts for the growth and angiogenic factors, basic fibroblast growth factor (bFGF), and transforming growth factor alpha (TGF-alpha), which correlated with metastatic propensity. Only one highly metastatic melanoma, TXM-1, originally isolated from a lymph node metastasis, expressed mRNA transcripts specific for monocyte chemotactic and activating factor (MCAF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Similarly, of the nine melanomas examined, only TXM-1 expressed interleukin (IL)-1 alpha, IL-1 beta, and IL-6, important immunomodulatory cytokines. These data demonstrate the differential and heterogeneous expression of cytokine and growth factor genes in human malignant melanoma. PMID:7648437

  12. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  13. Mouse nerve growth factor gene: structure and expression.

    PubMed Central

    Selby, M J; Edwards, R; Sharp, F; Rutter, W J

    1987-01-01

    The organization and biologically significant sequences of the entire mouse nerve growth factor (NGF) gene have been determined. The gene spans 45 kilobases and contains several small 5' exons. Transcription of the gene results in four different mRNA species, which can be accounted for by alternative splicing and independent initiation from two promoters. These transcripts encode proteins which have divergent N termini and the NGF moiety at their C termini. The levels of the various NGF transcripts have been determined in different tissues and throughout postnatal development. We have also examined the expression of these transcripts in the brain in response to specific early sensory deprivation. The results suggest that the expression of NGF mRNA during postnatal development is regulated independently of the formation of complex neural networks. Images PMID:3670305

  14. Autocrine growth factors and solid tumor malignancy.

    PubMed Central

    Walsh, J. H.; Karnes, W. E.; Cuttitta, F.; Walker, A.

    1991-01-01

    The ability of malignant cells to escape the constraint that normally regulate cell growth and differentiation has been a primary focus of attention for investigators of cancer cell biology. An outcome of this attention has been the discovery that the protein products of oncogenes play a role in the activation of growth signal pathways. A second outcome, possibly related to abnormal oncogene expression, has been the discovery that malignant cells frequently show an ability to regulate their own growth by the release of autocrine growth modulatory substances. Most important, the growth of certain malignant cell types has been shown to depend on autocrine growth circuits. A malignant tumor whose continued growth depends on the release of an autocrine growth factor may be vulnerable to treatment with specific receptor antagonists or immunoneutralizing antibodies designed to break the autocrine circuit. Information is rapidly emerging concerning autocrine growth factors in selected human solid tissue malignancy. Images PMID:1926844

  15. Hormonal regulation of rat hypothalamic neuropeptide mRNAs: effect of hypophysectomy and hormone replacement on growth-hormone-releasing factor, somatostatin and the insulin-like growth factors.

    PubMed

    Wood, T L; Berelowitz, M; Gelato, M C; Roberts, C T; LeRoith, D; Millard, W J; McKelvy, J F

    1991-03-01

    Hormonal feedback regulation of hypothalamic peptides putatively involved in growth hormone (GH) regulation has been studied by measurement of steady-state mRNA levels in male hypophysectomized rats with or without thyroid hormone, corticosterone, testosterone or GH replacement. Hypothalamic GH-releasing factor (GRF) mRNA levels increased progressively following hypophysectomy to 420% of sham levels after 15 days while hypothalamic insulin-like growth factor I (IGF-I) and insulin-like growth factor II (IGF-II) mRNA levels decreased to less than 40% of sham levels. Whole hypothalamic somatostatin mRNA levels were not significantly different from sham. One week of continuous GH infusion restored hypothalamic IGF-I mRNA to levels (95%) indistinguishable from those in sham-operated controls but had no effect on either IGF-II or GRF mRNA. Thyroid hormone, corticosterone and testosterone treatment without GH had no effect on the hypophysectomy-induced reduction of either IGF-I or IGF-II mRNA levels but reversed the elevation of GRF mRNA. We conclude that hypothalamic IGF-I may be involved in GH feedback regulation and thus may function as a hypothalamic modulator of GH. In contrast, IGF-II may be regulated by one of the pituitary trophic hormones but not by GH or the target hormones tested. Finally, hypothalamic GRF mRNA regulation appears to be complex and may include target hormone feedback. PMID:1674982

  16. Growth-regulated synthesis and secretion of biologically active nerve growth factor by human keratinocytes.

    PubMed

    Di Marco, E; Marchisio, P C; Bondanza, S; Franzi, A T; Cancedda, R; De Luca, M

    1991-11-15

    Nerve growth factor (NGF) transcripts were identified in normal human keratinocytes in primary and secondary culture. The expression of the NGF mRNA was strongly down-regulated by corticosteroids and was maximal when keratinocytes were in the exponential phase of growth. Immunofluorescence studies on growing keratinocytes colonies and on elutriated keratinocytes obtained from growing colonies and mature stratified epithelium showed specific staining of the Golgi apparatus only in basal keratinocytes in the exponential phase of growth. The keratinocyte-derived NGF was secreted in a biologically active form as assessed by neurite induction in sensory neurons obtained from chick embryo dorsal root ganglia. Based on these data we suggest that the basal keratinocyte is the cell synthesizing and secreting NGF in the human adult epidermis. The paracrine secretion of NGF by keratinocytes might have a major role in regulating innervation, lymphocyte function, and melanocyte growth and differentiation in epidermal morphogenesis as well as during wound healing. PMID:1718982

  17. Roles for Growth Factors in Cancer Progression

    PubMed Central

    Witsch, Esther; Sela, Michael; Yarden, Yosef

    2011-01-01

    Under physiological conditions, cells receive fate-determining signals from their tissue surroundings, primarily in the form of polypeptide growth factors. Integration of these extracellular signals underlies tissue homeostasis. Although departure from homeostasis and tumor initiation are instigated by oncogenic mutations rather than by growth factors, the latter are the major regulators of all subsequent steps of tumor progression, namely clonal expansion, invasion across tissue barriers, angiogenesis, and colonization of distant niches. Here, we discuss the relevant growth factor families, their roles in tumor biology, as well as the respective downstream signaling pathways. Importantly, cancer-associated activating mutations that impinge on these pathways often relieve, in part, the reliance of tumors on growth factors. On the other hand, growth factors are frequently involved in evolvement of resistance to therapeutic regimens, which extends the roles for polypeptide factors to very late phases of tumor progression and offers opportunities for cancer therapy. PMID:20430953

  18. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  19. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  20. Expression of the genes for insulin-like growth factors and their receptors in bone during skeletal growth

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.

    1994-01-01

    Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.

  1. A role for platelet-derived growth factor-BB in rat postpneumonectomy compensatory lung growth.

    PubMed

    Yuan, Shizeng; Hannam, Vicky; Belcastro, Rosetta; Cartel, Nicholas; Cabacungan, Judy; Wang, Jinxia; Diambomba, Yenge; Johnstone, Leslie; Post, Martin; Tanswell, A Keith

    2002-07-01

    Unilateral pneumonectomy leads to compensatory growth in the residual lung, the mediators of which are largely unknown. We hypothesized, based on its other known roles in lung cell growth, that platelet-derived growth factor (PDGF)-BB would be an essential mediator of postpneumonectomy compensatory lung growth. Left-sided pneumonectomies were performed on 21-d-old rats, for comparison with sham-operated or unoperated control animals. Body weights were not different between groups. Right lung weights and DNA content were significantly increased (p < 0.05), compared with controls, by 10 d after pneumonectomy. The rate of DNA synthesis was maximal on d 5 postpneumonectomy. Total right lung PDGF-B mRNA and PDGF-BB protein increased after pneumonectomy, but were apparently tightly regulated, relative to total right lung beta-actin mRNA and protein content, respectively. However, PDGF-BB expression after pneumonectomy was apparently not purely constitutive, in that daily i.p. injections of a truncated soluble PDGF beta-receptor both reduced activation of the native PDGF beta-receptor, and attenuated increased lung DNA synthesis on d 3 after pneumonectomy. These findings are consistent with a critical role for PDGF-BB in postpneumonectomy lung growth. PMID:12084843

  2. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  3. Dual functions for the Schizosaccharomyces pombe inositol kinase Ipk1 in nuclear mRNA export and polarized cell growth.

    PubMed

    Sarmah, Bhaskarjyoti; Wente, Susan R

    2009-02-01

    The inositol 1,3,4,5,6-pentakisphosphate (IP(5)) 2-kinase (Ipk1) catalyzes the production of inositol hexakisphosphate (IP(6)) in eukaryotic cells. Previous studies have shown that IP(6) is required for efficient nuclear mRNA export in the budding yeast Saccharomyces cerevisiae. Here, we report the first functional analysis of ipk1(+) in Schizosaccharomyces pombe. S. pombe Ipk1 (SpIpk1) is unique among Ipk1 orthologues in that it harbors a novel amino (N)-terminal domain with coiled-coil structural motifs similar to those of BAR (Bin-amphiphysin-Rvs) domain proteins. Mutants with ipk1(+) deleted (ipk1Delta) had mRNA export defects as well as pleiotropic defects in polarized growth, cell morphology, endocytosis, and cell separation. The SpIpk1 catalytic carboxy-terminal domain was required to rescue these defects, and the mRNA export block was genetically linked to SpDbp5 function and, likely, IP(6) production. However, the overexpression of the N-terminal domain alone also inhibited these functions in wild-type cells. This revealed a distinct noncatalytic function for the N-terminal domain. To test for connections with other inositol polyphosphates, we also analyzed whether the loss of asp1(+) function, encoding an IP(6) kinase downstream of Ipk1, had an effect on ipk1Delta cells. The asp1Delta mutant alone did not block mRNA export, and its cell morphology, polarized growth, and endocytosis defects were less severe than those of ipk1Delta cells. Moreover, ipk1Delta asp1Delta double mutants had altered inositol polyphosphate levels distinct from those of the ipk1Delta mutant. This suggested novel roles for asp1(+) upstream of ipk1(+). We propose that IP(6) production is a key signaling linchpin for regulating multiple essential cellular processes. PMID:19047361

  4. Growth factors from genes to clinical application

    SciTech Connect

    Sara, V.R. ); Hall, K.; Low, H. )

    1990-01-01

    The last decade has witnessed an explosion in the identification of growth factors and their receptors. This has been greatly facilitated by recombinant DNA technology, which has provided the tools not only to identify these proteins at the gene level but also to produce recombinant proteins for evaluating their biological activities. With the help of such techniques, we are moving toward an understanding of the biosynthesis of growth factors and their receptors, structure-function relationships, as well as mechanisms for intracellular signal transmission. The possibility of modifying these factors has opened new fields of clinical application. In this paper, four major areas of growth factor research are presented: the characterization of growth factor genes and their protein products, growth factor receptors and signal transduction by the receptors to mediate biological action, the biological actions of the various growth factors, and the role of growth factors in health and disease and their possible clinical application. Some of the topics covered include: structure of the IGFs and their variants; isoforms of PDGF receptor types; tyrosine kinase activation; structure of G-proteins in biological membranes; possible therapeutic application of NGF in the treatment of Parkinson's and Alzheimer's diseases; PDGF's possible role in the development of several fibroproliferative diseases and its therapeutic application in wound healing; and the possible use of angiogenic inhibitors in tumor treatment.

  5. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    PubMed

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. PMID:27032617

  6. Growth factors for the treatment of ischemic brain injury (growth factor treatment).

    PubMed

    Larpthaveesarp, Amara; Ferriero, Donna M; Gonzalez, Fernando F

    2015-01-01

    In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans. PMID:25942688

  7. Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson's disease rats.

    PubMed

    Wang, Shuju; Fang, Jianqiao; Ma, Jun; Wang, Yanchun; Liang, Shaorong; Zhou, Dan; Sun, Guojie

    2013-02-25

    Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat models of Parkinson's disease, and that abnormal behavior of rats was significantly improved following electroacupuncture treatment. These results indicated that electroacupuncture treatment upregulated brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression in the substantia nigra of rat models of Parkinson's disease. Thus, electroacupuncture may be useful in the treatment of Parkinson's disease. PMID:25206697

  8. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  9. Environmental factors influencing growth and pubertal development.

    PubMed Central

    Delemarre-van de Waal, H A

    1993-01-01

    Postnatal growth is based on hereditary signals and environmental factors in a complex regulatory network. Each factor must be in an optimal state for normal growth of the child. Fetal conditions may also have consequences on postnatal height. Intrauterine growth retardation can be recovered postnatally, although postnatal growth remains depressed in about one-third of cases. After birth, the environment may exert either a positive or negative effect on growth. In underdeveloped countries, malnutrition plays a major role in inhibiting the growth process. Children from families of higher socioeconomic classes are taller than their coevals in the lower socioeconomic groups. Urbanization also has a positive effect on growth. Better child care is supported by sufficient food supply, appropriate health and sanitation services, and a higher level of education. Over the last century, these factors have induced a taller stature and a more rapid maturity in Europe, North America, and Australia; a phenomenon which has been referred to as "the secular trend" in growth. Recently, a secular trend has also been reported in some developing countries. Although urbanization in general appears to be associated with better conditions of living, this is not the case in the slums of South America or in Africa where rural children are better off than children living in the poor cities. This paper describes in more detail the different hereditary and environmental factors that act during the fetal period and postnatally, and which play a role in human growth and pubertal development. PMID:8243404

  10. Vascular growth factors in neuropsychiatry

    PubMed Central

    Newton, Samuel S.; Fournier, Neil M.; Duman, Ronald S.

    2014-01-01

    Recent advances in understanding the cellular and molecular basis of psychiatric illnesses have shed light on the important role played by trophic factors in modulating functional parameters associated with disease causality and drug action. Disease mechanisms are now thought to involve multiple cell types, including neurons and endothelial cells. These functionally distinct but interactively coupled cell types engage in cellular cross talk via shared and common signaling molecules. Dysregulation in their cellular signaling pathways influences brain function and alters behavioral performance. Multifunctional trophic factors such as VEGF and EPO that possess both neurotrophic and angiogenic actions are of particular interest due to their ability to rescue structural and plasticity deficits in neurons and vasculature. Obtaining insight into the behavioral, cellular and molecular actions of multi-functional trophic factors has the potential to open new and transformative therapeutic approaches. PMID:23475069

  11. The mRNA of a Knotted1-like transcription factor of potato is phloem mobile.

    PubMed

    Mahajan, Ameya; Bhogale, Sneha; Kang, Il Ho; Hannapel, David J; Banerjee, Anjan K

    2012-08-01

    Potato Homeobox1 (POTH1) is a Knotted1-like transcription factor from the Three Amino Acid Loop Extension (TALE) superfamily that is involved in numerous aspects of development in potato (Solanum tuberosum L). POTH1 interacts with its protein partner, StBEL5, to facilitate binding to specific target genes to modulate hormone levels, mediate leaf architecture, and enhance tuber formation. In this study, promoter analyses show that the upstream sequence of POTH1 drives β-glucuronidase activity in response to light and in association with phloem cells in both petioles and stems. Because POTH1 transcripts have previously been detected in phloem cells, long-distance movement of its mRNA was tested. Using RT-PCR and transgenic potato lines over-expressing POTH1, in vitro micrografts demonstrated unilateral movement of POTH1 RNA in a rootward direction. Movement across a graft union into leaves from newly arising axillary shoots and roots of wild type stocks was verified using soil-grown tobacco heterografts. Leaves from the wild type stock containing the mobile POTH1 RNA exhibited a reduction in leaf size relative to leaves from wild type grafts. Both untranslated regions of POTH1 when fused to an expression marker β-glucuronidase, repressed its translation in tobacco protoplasts. RNA/protein binding assays demonstrated that the UTRs of POTH1 bind to two RNA-binding proteins, a polypyrimidine tract-binding protein and an alba-domain type. Conserved glycerol-responsive elements (GRE), specific to alba-domain interaction, are duplicated in both the 5' and 3' untranslated regions of POTH1. These results suggest that POTH1 functions as a mobile signal in regulating development. PMID:22638904

  12. New Clue Found to Growth Factor Action.

    ERIC Educational Resources Information Center

    Hoffman, Michelle

    1991-01-01

    Discussed is the discovery which may help to explain epidermal growth factor effects on the cell skeleton. The role of a protein called profilin in the regulation of the microfilament system is described. (CW)

  13. Expression of growth factors in Dictyostelium discoideum.

    PubMed

    Asgari, S; Arun, S; Slade, M B; Marshall, J; Williams, K L; Wheldrake, J F

    2001-07-01

    Growth factors and their binding proteins are important proteins regulating mammalian cell proliferation and differentiation so there is considerable interest in producing them as recombinant proteins, especially in hosts that do not already produce a complex mixture of growth factors. Many growth factors require post-translational modifications making them unsuitable for production in Escherichia coli or other prokaryotes. Since several expression vector systems have been recently developed for foreign protein production in the cellular slime mould, Dictyostelium discoideum, we attempted to use two of these systems to express human insulin-like growth factor binding protein 6 (hIGFBP6) and bovine beta-cellulin (bBTC) as secreted proteins. Although both proteins were successfully produced in stably transformed amoebae, no secretion was detected in spite of several attempts to facilitate this occurring. PMID:11361083

  14. [T-LYMPHOCYTES AND TISSUE GROWTH FACTORS].

    PubMed

    Tishevskaya, N V; Gevorkyan, N M; Kozlova, N I

    2015-08-01

    Lympnoici regulation, in aciaition to ensuring tne protection of tne antigen, is aimecl at maintaining a qualitative, quantitative, structural and functional integrity of the body. T-lymphocytes and growth factors are involved in cell proliferation, differentiation, and tissue and organ regeneration. Lymphocyte's, sensitivity to homeostasis changes and their morphogenetic function are connected with a large number of receptors to bioactive substances and with their ability to syn- thesize and secrete hormones and tissue growth factors. At the same time tissue growth factors are involved in the development of thymocytes, in the differentiation of T helper and cytotoxic lymphocytes. Growth factors modulate the functions of Thl, Th2, Treg, Thl7, Th9. The important aspects of the interaction of T cells and EGF, TGF-P, FGF, VEGF, PlGF, HGF/SF in normal and pathological conditions are shown in this review. PMID:26591583

  15. Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis

    PubMed Central

    Morfoisse, Florent; Renaud, Edith; Hantelys, Fransky; Prats, Anne-Catherine; Garmy-Susini, Barbara

    2015-01-01

    Hypoxia is a major condition for the induction of angiogenesis during tumor development but its role in lymphangiogenesis remains unclear. Blood and lymphatic vasculatures are stimulated by growth factors from the vascular endothelial family: the VEGFs. In this review, we investigate the role of hypoxia in the molecular regulation of synthesis of lymphangiogenic growth factors VEGF-A, VEGF-C, and VEGF-D. Gene expression can be regulated at transcriptional and translational levels by hypoxia. Despite strong regulation of DNA transcription induced by hypoxia-inducible factors (HIFs), the majority of cellular stresses such as hypoxia lead to inhibition of cap-dependent translation of the mRNA, resulting in downregulation of protein synthesis. Here, we describe how translation initiation of VEGF mRNAs is induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. Considering the implication of the lymphatic vasculature in metastatic dissemination, it seems crucial to understand the hypoxia-induced molecular regulation of lymphangiogenic growth factors to obtain new insights for cancer therapy. PMID:27308508

  16. Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis.

    PubMed

    Morfoisse, Florent; Renaud, Edith; Hantelys, Fransky; Prats, Anne-Catherine; Garmy-Susini, Barbara

    2015-01-01

    Hypoxia is a major condition for the induction of angiogenesis during tumor development but its role in lymphangiogenesis remains unclear. Blood and lymphatic vasculatures are stimulated by growth factors from the vascular endothelial family: the VEGFs. In this review, we investigate the role of hypoxia in the molecular regulation of synthesis of lymphangiogenic growth factors VEGF-A, VEGF-C, and VEGF-D. Gene expression can be regulated at transcriptional and translational levels by hypoxia. Despite strong regulation of DNA transcription induced by hypoxia-inducible factors (HIFs), the majority of cellular stresses such as hypoxia lead to inhibition of cap-dependent translation of the mRNA, resulting in downregulation of protein synthesis. Here, we describe how translation initiation of VEGF mRNAs is induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. Considering the implication of the lymphatic vasculature in metastatic dissemination, it seems crucial to understand the hypoxia-induced molecular regulation of lymphangiogenic growth factors to obtain new insights for cancer therapy. PMID:27308508

  17. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation

    PubMed Central

    Wang, Xin; Xi, Wen; Toomey, Shaun; Chiang, Yueh-Chin; Hasek, Jiri; Laue, Thomas M.; Denis, Clyde L.

    2016-01-01

    Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation. PMID:26953568

  18. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation.

    PubMed

    Wang, Xin; Xi, Wen; Toomey, Shaun; Chiang, Yueh-Chin; Hasek, Jiri; Laue, Thomas M; Denis, Clyde L

    2016-01-01

    Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation. PMID:26953568

  19. LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation.

    PubMed

    Küspert, Maritta; Murakawa, Yasuhiro; Schäffler, Katrin; Vanselow, Jens T; Wolf, Elmar; Juranek, Stefan; Schlosser, Andreas; Landthaler, Markus; Fischer, Utz

    2015-07-01

    mRNAs are key molecules in gene expression and subject to diverse regulatory events. Regulation is accomplished by distinct sets of trans-acting factors that interact with mRNAs and form defined mRNA-protein complexes (mRNPs). The resulting "mRNP code" determines the fate of any given mRNA and thus controlling gene expression at the post-transcriptional level. The La-related protein 4B (LARP4B) belongs to an evolutionarily conserved family of RNA-binding proteins characterized by the presence of a La-module implicated in direct RNA binding. Biochemical experiments have shown previously direct interactions of LARP4B with factors of the translation machinery. This finding along with the observation of an association with actively translating ribosomes suggested that LARP4B is a factor contributing to the mRNP code. To gain insight into the function of LARP4B in vivo we tested its mRNA association at the transcriptome level and its impact on the proteome. PAR-CLIP analyses allowed us to identify the in vivo RNA targets of LARP4B. We show that LARP4B binds to a distinct set of cellular mRNAs by contacting their 3' UTRs. Biocomputational analysis combined with in vitro binding assays identified the LARP4B-binding motif on mRNA targets. The reduction of cellular LARP4B levels leads to a marked destabilization of its mRNA targets and consequently their reduced translation. Our data identify LARP4B as a component of the mRNP code that influences the expression of its mRNA targets by affecting their stability. PMID:26001795

  20. Bud-Localization of CLB2 mRNA Can Constitute a Growth Rate Dependent Daughter Sizer.

    PubMed

    Spiesser, Thomas W; Kühn, Clemens; Krantz, Marcus; Klipp, Edda

    2015-04-01

    Maintenance of cellular size is a fundamental systems level process that requires balancing of cell growth with proliferation. This is achieved via the cell division cycle, which is driven by the sequential accumulation and destruction of cyclins. The regulatory network around these cyclins, particularly in G1, has been interpreted as a size control network in budding yeast, and cell size as being decisive for the START transition. However, it is not clear why disruptions in the G1 network may lead to altered size rather than loss of size control, or why the S-G2-M duration also depends on nutrients. With a mathematical population model comprised of individually growing cells, we show that cyclin translation would suffice to explain the observed growth rate dependence of cell volume at START. Moreover, we assess the impact of the observed bud-localisation of the G2 cyclin CLB2 mRNA, and find that localised cyclin translation could provide an efficient mechanism for measuring the biosynthetic capacity in specific compartments: The mother in G1, and the growing bud in G2. Hence, iteration of the same principle can ensure that the mother cell is strong enough to grow a bud, and that the bud is strong enough for independent life. Cell sizes emerge in the model, which predicts that a single CDK-cyclin pair per growth phase suffices for size control in budding yeast, despite the necessity of the cell cycle network around the cyclins to integrate other cues. Size control seems to be exerted twice, where the G2/M control affects bud size through bud-localized translation of CLB2 mRNA, explaining the dependence of the S-G2-M duration on nutrients. Taken together, our findings suggest that cell size is an emergent rather than a regulatory property of the network linking growth and proliferation. PMID:25910075

  1. Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory

    PubMed Central

    Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R.; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe

    2016-01-01

    The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R2 of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system. PMID:27460882

  2. Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory.

    PubMed

    Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe

    2016-01-01

    The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R(2) of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system. PMID:27460882

  3. Predictive factors for intrauterine growth restriction

    PubMed Central

    Albu, AR; Anca, AF; Horhoianu, VV; Horhoianu, IA

    2014-01-01

    Abstract Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies. Abbreviations: SGA = small for gestational age; IUGR = intrauterine growth restriction; FGR = fetal growth restriction; IUFD = intrauterine fetal demise; HIV = human immunodeficiency virus; PAPP-A = pregnancy associated plasmatic protein A; β-hCG = beta human chorionic gonadotropin; MoM = multiple of median; ADAM-12 = A-disintegrin and metalloprotease 12; PP-13 = placental protein 13; VEGF = vascular endothelial growth factor; PlGF = placental growth factor; sFlt-1 = soluble fms-like tyrosine kinase-1; UAD = uterine arteries Doppler ultrasound; RI = resistence index; PI = pulsatility index; VOCAL = Virtual Organ Computer–Aided Analysis software; VI = vascularization index; FI = flow index; VFI = vascularization flow index; PQ = placental quotient PMID:25408721

  4. Organic growth factor requirements of some yeasts.

    PubMed

    Madan, M; Gulati, N

    1980-01-01

    Some sporogenous yeasts (Brettanomyces bruxellensis, Debaryomyces hansenii, Hansenula ciferrii, Hansenula polymorpha, Pichia polymorpha, Saccharomycopsis guttulata, and Saccharomyces chevalieri), isolated from various fruits have been examined for their organic growth factor requisites. H. ciferrii was completely deficient in thiamine, biotin, inositol, riboflavin, niacin, and partially deficient in pantothenic acid. It required an external supply of 0.1-1.0 ppm thiamine, 0.01-0.1 ppm biotin, 10.0 ppm inositol, 0.10 ppm niacin and riboflavin for its optimum growth. H. polymorpha showed partial deficiency only in xanthine. P. polymorpha gave indications of partial deficiencies in thiamine and biotin. S. guttulata was completely deficient in biotin, and partially deficient in adenine sulphate. It required 0.01 ppm biotin for optimum growth. S chevalieri was completely deficient in pyridoxine and partially deficient in thiamine. It required 0.1 ppm pyridoxine for maximum growth. D. hansenii and B bruxellensis were auxoautotrophic for the various growth factors studied. PMID:7242379

  5. Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP.

    PubMed

    Zhu, Ling; Inoue, Koichi; Yoshizumi, Satoshi; Kobayashi, Hiroshi; Zhang, Yonglong; Ouyang, Ming; Kato, Fuminori; Sugai, Motoyuki; Inouye, Masayori

    2009-05-01

    Escherichia coli mRNA interferases, such as MazF and ChpBK, are sequence-specific endoribonucleases encoded by toxin-antitoxin (TA) systems present in its genome. A MazF homologue in Staphylococcus aureus (MazF(Sa)) has been shown to inhibit cell growth when induced in E. coli. Here, we determined the cleavage site for MazF(Sa) with the use of phage MS2 RNA as a substrate and CspA, an RNA chaperone, which prevents the formation of secondary structures in the RNA substrate. MazF(Sa) specifically cleaves the RNA at a pentad sequence, U downward arrow ACAU. Bioinformatics analysis revealed that this pentad sequence is significantly abundant in several genes, including the sraP gene in the S. aureus N315 strain. This gene encodes a serine-rich protein, which is known to play an important role in adhesion of the pathogen to human tissues and thus in endovascular infection. We demonstrated that the sraP mRNA became extremely unstable in comparison with the ompA mRNA only when MazF(Sa) was induced in E. coli. Further bioinformatics analysis indicated that the pentad sequence is also significantly abundant in the mRNAs for all the pathogenic factors in S. aureus. This observation suggests a possible regulatory relationship between the MazEF(Sa) TA module and the pathogenicity in S. aureus. PMID:19251861

  6. Co-induction of hepatic IGF-I and progranulin mRNA by growth hormone in tilapia, Oreochromis mossambiccus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Like IGF-I, progranulin (pgrn) is a growth factor involved in tumorigenesis and wound healing. We report here the identification and characterization of pgrn cDNA in tilapia and the regulation of its expression by growth hormone(GH). The tilapia pgrn cDNA was cloned by RT-PCR ampliWcation, using g...

  7. Blocking Fibroblast Growth Factor Receptor Signaling Inhibits Tumor Growth, Lymphangiogenesis, and Metastasis

    PubMed Central

    Larrieu-Lahargue, Frédéric; Welm, Alana L.; Bouchecareilh, Marion; Alitalo, Kari; Li, Dean Y.; Bikfalvi, Andreas; Auguste, Patrick

    2012-01-01

    Fibroblast Growth Factor receptor (FGFR) activity plays crucial roles in tumor growth and patient survival. However, FGF (Fibroblast Growth Factor) signaling as a target for cancer therapy has been under-investigated compared to other receptor tyrosine kinases. Here, we studied the effect of FGFR signaling inhibition on tumor growth, metastasis and lymphangiogenesis by expressing a dominant negative FGFR (FGFR-2DN) in an orthotopic mouse mammary 66c14 carcinoma model. We show that FGFR-2DN-expressing 66c14 cells proliferate in vitro slower than controls. 66c14 tumor outgrowth and lung metastatic foci are reduced in mice implanted with FGFR-2DN-expressing cells, which also exhibited better overall survival. We found 66c14 cells in the lumen of tumor lymphatic vessels and in lymph nodes. FGFR-2DN-expressing tumors exhibited a decrease in VEGFR-3 (Vascular Endothelial Growth Factor Receptor-3) or podoplanin-positive lymphatic vessels, an increase in isolated intratumoral lymphatic endothelial cells and a reduction in VEGF-C (Vascular Endothelial Growth Factor-C) mRNA expression. FGFs may act in an autocrine manner as the inhibition of FGFR signaling in tumor cells suppresses VEGF-C expression in a COX-2 (cyclooxygenase-2) or HIF1-α (hypoxia-inducible factor-1 α) independent manner. FGFs may also act in a paracrine manner on tumor lymphatics by inducing expression of pro-lymphangiogenic molecules such as VEGFR-3, integrin α9, prox1 and netrin-1. Finally, in vitro lymphangiogenesis is impeded in the presence of FGFR-2DN 66c14 cells. These data confirm that both FGF and VEGF signaling are necessary for the maintenance of vascular morphogenesis and provide evidence that targeting FGFR signaling may be an interesting approach to inhibit tumor lymphangiogenesis and metastatic spread. PMID:22761819

  8. Site-specific factor involved in the editing of the psbL mRNA in tobacco plastids.

    PubMed Central

    Chaudhuri, S; Carrer, H; Maliga, P

    1995-01-01

    In tobacco plastids, functional psbL mRNA is created by editing an ACG codon to an AUG translation initiation codon. To determine if editing may occur in a chimeric mRNA, the N-terminal part of psbL containing the editing site was translationally fused with the aadA and kan bacterial genes. The chimeric constructs were introduced into the tobacco plastid genome by targeted gene insertion. Editing of the chimeric mRNAs indicated that the 98 nt fragment spanning the psbL editing site contains all cis information required for editing. Expression of the chimeric gene transcripts led to a significant decrease in the editing efficiency of the endogenous psbL mRNA. However, the efficiency of editing in the transplastomic lines was unchanged for four sites in the rpoB and ndhB mRNAs. Reduced efficiency of psbL editing, but not of the other four sites, in the transplastomic lines indicates depletion of psbL-specific editing factor(s). This finding implicates the involvement of site-specific factors in editing of plastid mRNAs in higher plants. Images PMID:7796820

  9. Modulation of growth and differentiation in normal human keratinocytes by transforming growth factor-beta

    SciTech Connect

    Matsumoto, K.; Hashimoto, K.; Hashiro, M.; Yoshimasa, H.; Yoshikawa, K. )

    1990-10-01

    The effect of transforming growth factor-type beta 1(TGF-beta) on the growth and differentiation of normal human skin keratinocytes cultured in serum-free medium was investigated. TGF-beta markedly inhibited the growth of keratinocytes at the concentrations greater than 2 ng/ml under low Ca2+ conditions (0.1 mM). Growth inhibition was accompanied by changes in cell functions related to proliferation. Remarkable inhibition of DNA synthesis was demonstrated by the decrease of (3H)thymidine incorporation. The decrease of (3H)thymidine incorporation was observed as early as 3 hr after addition of TGF-beta. TGF-beta also decreased c-myc messenger RNA (mRNA) expression 30 min after addition of TGF-beta. This rapid reduction of c-myc mRNA expression by TGF-beta treatment is possibly one of the main factors in the process of TGF-beta-induced growth inhibition of human keratinocytes. Since growth inhibition and induction of differentiation are closely related in human keratinocytes, the growth-inhibitory effect of TGF-beta under high Ca2+ conditions was examined. TGF-beta inhibited the growth of keratinocytes under high Ca2+ conditions in the same manner as under low Ca2+ conditions, suggesting that it is a strong growth inhibitor in both low and high Ca2+ environments. The induction of keratinocyte differentiation was evaluated by measuring involucrin expression and cornified envelope formation: TGF-beta at 20 ng/ml increased involucrin expression from 9.3% to 18.8% under high Ca2+ conditions, while it decreased involucrin expression from 7.0% to 3.3% under low Ca2+ conditions. Cornified envelope formation was modulated in a similar way by addition of TGF-beta: TGF-beta at 20 ng/ml decreased cornified envelope formation by 53% under low Ca2+ conditions, while it enhanced cornified envelope formation by 30.7% under high Ca2+ conditions.

  10. Regulation of insulin-like growth factor (IGF)-binding protein expression by growth factors and cytokines alters IGF-mediated proliferation of postnatal lung fibroblasts.

    PubMed

    Price, Wayne A

    2004-06-01

    Postnatal day 5 is the beginning of septation and the peak of postnatal fibroblast proliferation. The author and colleagues studied fibroblasts from this developmental time period to determine factors that regulate cell proliferation. Exposure of cells to insulin-like growth factor (IGF)-I for 48 hours increased cell number whereas exposure to epithelial growth factor (EGF), platelet-derived growth factor (PDGF)-BB, fibroblast growth factor (FGF)-7, FGF-2, tumor necrosis factor-alpha (TNF-alpha), or interleukin (L)-1beta did not alter cell number. Long[R3]IGF-I (a synthetic IGF analog with reduced affinity for IGF-binding proteins [IGFBPs]) was more potent than IGF-I, with half-maximal stimulation at a dose of 0.6 nM for long[R3]IGF-I compared to 1.5 nM for IGF-I, suggesting that IGFBPs in the conditioned medium (CM) inhibit IGF activity. Addition of exogenous IGFBP-3 inhibited the IGF-stimulated increase in cell number. Addition of IGFBP-4 did not alter IGF activity because IGF-I stimulated proteolysis of IGFBP-4. The expression of mRNA for PAPP-A (a known IGFBP-4 protease) suggests that the clearance of IGFBP-4 is mediated by pregnancy-associated plasma protein (PAPP)-A. Exposure of cells to TNF-alpha or IL-1beta increased IGFBP-3 mRNA abundance and IGFBP-3 protein in CM. PDGF-BB and IL-1beta increased IGFBP-4 protein abundance and PDGF-BB and dibutyryl cAMP increased IGFBP-4 mRNA. The increase in CM IGFBP-3 following TNF-alpha exposure blocked IGF-mediated cell proliferation, suggesting that the growth factor- and cytokine-mediated changes in IGFBP abundance regulate postnatal fibroblast cell proliferation. PMID:15204833

  11. Expression of transforming growth factor alpha and epidermal growth factor receptor in rat lung neoplasms induced by plutonium-239

    SciTech Connect

    Stegelmeier, B.L.; Gillett, N.A.; Hahn, F.F.; Kelly, G.; Rebar, A.H.

    1994-11-01

    Ninety-two rat lung proliferative lesions and neoplasms induced by inhaled {sup 239}PuO{sub 2} were evaluated for aberrant expression of transforming growth factor alpha (TGF-{alpha}) and epidermal growth factor receptor (EGFR). Expression of TGF-{alpha} protein, measured by immunohistochemistry, was higher in 94% of the squamous cell carcinomas and 87% of the foci of alveolar epithelial squamous metaplasia than that exhibited by the normal-appearing, adjacent lung parenchyma. In contrast, only 20% of adenocarcinomas and foci of epithelial hyperplasia expressed elevated levels of TGF-{alpha}. Many neoplasms expressing TGF-{alpha} also expressed excessive levels of EGFR mRNA. Southern and DNA slot blot analyses showed that the elevated EGFR expression was not due to amplification of the EGFR gene. These data suggest that increased amounts of TGF-{alpha} were early alterations in the progression of plutonium-induced squamous cell carcinoma, and these increases may occur in parallel with overexpression of the receptor for this growth factor. Together, these alterations create a potential autocrine loop for sustaining clonal expansion of cells initiated by high-LET radiation. 44 refs., 4 figs., 1 tab.

  12. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1

    PubMed Central

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem–loop structure containing the branch site near its apical loop and the 3′ splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  13. Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours

    PubMed Central

    Bialkowski, Lukasz; van Weijnen, Alexia; Van der Jeught, Kevin; Renmans, Dries; Daszkiewicz, Lidia; Heirman, Carlo; Stangé, Geert; Breckpot, Karine; Aerts, Joeri L.; Thielemans, Kris

    2016-01-01

    The lack of appropriate mouse models is likely one of the reasons of a limited translational success rate of therapeutic vaccines against cervical cancer, as rapidly growing ectopic tumours are commonly used for preclinical studies. In this work, we demonstrate that the tumour microenvironment of TC-1 tumours differs significantly depending on the anatomical location of tumour lesions (i.e. subcutaneously, in the lungs and in the genital tract). Our data demonstrate that E7-TriMix mRNA vaccine-induced CD8+ T lymphocytes migrate into the tumour nest and control tumour growth, although they do not express mucosa-associated markers such as CD103 or CD49a. We additionally show that despite the presence of the antigen-specific T cells in the tumour lesions, the therapeutic outcomes in the genital tract model remain limited. Here, we report that such a hostile tumour microenvironment can be reversed by cisplatin treatment, leading to a complete regression of clinically relevant tumours when combined with mRNA immunization. We thereby demonstrate the necessity of utilizing clinically relevant models for preclinical evaluation of anticancer therapies and the importance of a simultaneous combination of anticancer immune response induction with targeting of tumour environment. PMID:26931556

  14. Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours.

    PubMed

    Bialkowski, Lukasz; van Weijnen, Alexia; Van der Jeught, Kevin; Renmans, Dries; Daszkiewicz, Lidia; Heirman, Carlo; Stangé, Geert; Breckpot, Karine; Aerts, Joeri L; Thielemans, Kris

    2016-01-01

    The lack of appropriate mouse models is likely one of the reasons of a limited translational success rate of therapeutic vaccines against cervical cancer, as rapidly growing ectopic tumours are commonly used for preclinical studies. In this work, we demonstrate that the tumour microenvironment of TC-1 tumours differs significantly depending on the anatomical location of tumour lesions (i.e. subcutaneously, in the lungs and in the genital tract). Our data demonstrate that E7-TriMix mRNA vaccine-induced CD8(+) T lymphocytes migrate into the tumour nest and control tumour growth, although they do not express mucosa-associated markers such as CD103 or CD49a. We additionally show that despite the presence of the antigen-specific T cells in the tumour lesions, the therapeutic outcomes in the genital tract model remain limited. Here, we report that such a hostile tumour microenvironment can be reversed by cisplatin treatment, leading to a complete regression of clinically relevant tumours when combined with mRNA immunization. We thereby demonstrate the necessity of utilizing clinically relevant models for preclinical evaluation of anticancer therapies and the importance of a simultaneous combination of anticancer immune response induction with targeting of tumour environment. PMID:26931556

  15. Human oocytes and preimplantation embryos express mRNA for growth hormone receptor.

    PubMed

    Ménézo, Y J; el Mouatassim, S; Chavrier, M; Servy, E J; Nicolet, B

    2003-11-01

    Human genetic expression of growth hormone receptor (GHR) gene was qualitatively analysed using reverse transcription polymerase chain reaction (RT-PCR) in cumulus cells, immature germinal vesicle (GV) and mature metaphase II (MII) stage oocytes and preimplantation human embryos. The transcripts encoding GHR were detected in cumulus cells and also in naked oocytes, either mature or not. In this case, a nested PCR is needed, as for early embryo preimplantation stages, before genomic activation. The GHR gene is highly expressed from the 4-day morula onwards. This suggests that GHR transcription follows a classical scheme associated with genomic activation. It is probable that, in human, growth hormone plays a role in the final stages of oocyte maturation and early embryogenesis as it does for several other mammalian species. PMID:15085728

  16. Heparin Binding Epidermal Growth Factor Like Growth Factor Heals Chronic Tympanic Membrane Perforations With Advantage Over Fibroblast Growth Factor 2 and Epidermal Growth Factor in an Animal Model

    PubMed Central

    Santa Maria, Peter Luke; Weierich, Kendall; Kim, Sungwoo; Yang, Yunzhi Peter

    2016-01-01

    Hypothesis That heparin binding epidermal growth factor like growth factor (HB-EGF) heals chronic tympanic membrane (TM) perforations at higher rates than fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF) in an animal model. Background A non-surgical treatment for chronic TM perforation would benefit those unable to access surgery or those unable to have surgery, as well as reducing the cost of tympanoplasty. Growth factor (GF) treatments have been reported in the literature with variable success with the lack of a suitable animal providing a major obstacle. Methods The GFs were tested in a validated mouse model of chronic TM perforation. A bio absorbable hydrogel polymer was used to deliver the GF at a steady concentration as it dissolved over four weeks. A control (polymer only, n=18) was compared to polymer loaded with HB-EGF (5ug/ml, n=18), FGF2 (100ug/ml, n=19) and EGF (250ug/ml, n=19). Perforations were inspected at four weeks. Results The healing rates, as defined as one hundred percent perforation closure, were control (5/18, 27.8%), HB-EGF (15/18, 83.3%), FGF2 (6/19, 31.6%) and EGF (3/19, 15.8%). There were no differences between FGF2 (p=0.80) and EGF (p=0.31) with control healing rates. HB-EGF (p= 0.000001) showed a significant difference for healing. The HB-EGF healed TMs showed layers similar to a normal TM, whilst the other groups showed a lack of epithelial migration. Conclusion This study confirms the advantage of HB-EGF over two other commonly used growth factors and is a promising non-surgical treatment of chronic TM perforations. PMID:26075672

  17. Telomerase RNA TLC1 shuttling to the cytoplasm requires mRNA export factors and is important for telomere maintenance.

    PubMed

    Wu, Haijia; Becker, Daniel; Krebber, Heike

    2014-09-25

    Telomerases protect the ends of linear chromosomes from shortening. They are composed of an RNA (TLC1 in S. cerevisiae) and several proteins. TLC1 undergoes several maturation steps before it is exported into the cytoplasm to recruit the Est proteins for complete assembly. The mature telomerase is subsequently reimported into the nucleus, where it fulfills its function on telomeres. Here, we show that TLC1 export into the cytoplasm requires not only the Ran GTPase-dependent karyopherin Crm1/Xpo1 but also the mRNA export machinery. mRNA export factor mutants accumulate mature and export-competent TLC1 RNAs in their nuclei. Moreover, TLC1 physically interacts with the mRNA transport factors Mex67 and Dbp5/Rat8. Most importantly, we show that the nuclear export of TLC1 is an essential step for the formation of the functional RNA containing enzyme, because blocking TLC1 export in the mex67-5 xpo1-1 double mutant prevents its cytoplasmic maturation and leads to telomere shortening. PMID:25220466

  18. Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development

    PubMed Central

    Everett, Allen D.; Lobe, David R.; Matsumura, Martin E.; Nakamura, Hideji; McNamara, Coleen A.

    2000-01-01

    Hepatoma-derived growth factor (HDGF) is the first member identified of a new family of secreted heparin-binding growth factors highly expressed in the fetal aorta. The biologic role of HDGF in vascular growth is unknown. Here, we demonstrate that HDGF mRNA is expressed in smooth muscle cells (SMCs), most prominently in proliferating SMCs, 8–24 hours after serum stimulation. Exogenous HDGF and endogenous overexpression of HDGF stimulated a significant increase in SMC number and DNA synthesis. Rat aortic SMCs transfected with a hemagglutinin-epitope–tagged rat HDGF cDNA contain HA-HDGF in their nuclei during S-phase. We also detected native HDGF in nuclei of cultured SMCs, of SMCs and endothelial cells from 19-day fetal (but not in the adult) rat aorta, of SMCs proximal to abdominal aortic constriction in adult rats, and of SMCs in the neointima formed after endothelial denudation of the rat common carotid artery. Moreover, HDGF colocalizes with the proliferating cell nuclear antigen (PCNA) in SMCs in human atherosclerotic carotid arteries, suggesting that HDGF helps regulate SMC growth during development and in response to vascular injury. PMID:10712428

  19. Fibroblast Growth Factor Receptor 1 and Related Ligands in Small-Cell Lung Cancer

    PubMed Central

    Zhang, Liping; Yu, Hui; Badzio, Andrzej; Boyle, Theresa A.; Schildhaus, Hans-Ulrich; Lu, Xian; Dziadziuszko, Rafal; Jassem, Jacek; Varella-Garcia, Marileila; Heasley, Lynn E.; Kowalewski, Ashley A.; Ellison, Kim; Chen, Gang; Zhou, Caicun

    2015-01-01

    Introduction: Small-cell lung cancer (SCLC) accounts for 15% of all lung cancers and has been understudied for novel therapies. Signaling through fibroblast growth factors (FGF2, FGF9) and their high-affinity receptor has recently emerged as a contributing factor in the pathogenesis and progression of non–small-cell lung cancer. In this study, we evaluated fibroblast growth factor receptor 1 (FGFR1) and ligand expression in primary SCLC samples. Methods: FGFR1 protein expression, messenger RNA (mRNA) levels, and gene copy number were determined by immunohistochemistry (IHC), mRNA in situ hybridization, and silver in situ hybridization, respectively, in primary tumors from 90 patients with SCLC. Protein and mRNA expression of the FGF2 and FGF9 ligands were determined by IHC and mRNA in situ hybridization, respectively. In addition, a second cohort of 24 SCLC biopsy samples with known FGFR1 amplification by fluorescence in situ hybridization was assessed for FGFR1 protein expression by IHC. Spearman correlation analysis was performed to evaluate associations of FGFR1, FGF2 and FGF9 protein levels, respective mRNA levels, and FGFR1 gene copy number. Results: FGFR1 protein expression by IHC demonstrated a significant correlation with FGFR1 mRNA levels (p < 0.0001) and FGFR1 gene copy number (p = 0.03). The prevalence of FGFR1 mRNA positivity was 19.7%. FGFR1 mRNA expression correlated with both FGF2 (p = 0.0001) and FGF9 (p = 0.002) mRNA levels, as well as with FGF2 (p = 0.01) and FGF9 (p = 0.001) protein levels. There was no significant association between FGFR1 and ligands with clinical characteristics or prognosis. In the second cohort of specimens with known FGFR1 amplification by fluorescence in situ hybridization, 23 of 24 had adequate tumor by IHC, and 73.9% (17 of 23) were positive for FGFR1 protein expression. Conclusions: A subset of SCLCs is characterized by potentially activated FGF/FGFR1 pathways, as evidenced by positive FGF2, FGF9, and FGFR1 protein

  20. Advanced Glycation End-Products Induce Connective Tissue Growth Factor-Mediated Renal Fibrosis Predominantly through Transforming Growth Factor β-Independent Pathway

    PubMed Central

    Zhou, Guihua; Li, Cai; Cai, Lu

    2004-01-01

    Advanced glycation end-products (AGEs) play a critical role in diabetic nephropathy by stimulating extracellular matrix (ECM) synthesis. Connective tissue growth factor (CTGF) is a potent inducer of ECM synthesis and increases in the diabetic kidneys. To determine the critical role of CTGF in AGE-induced ECM accumulation leading to diabetic nephropathy, rats were given AGEs by intravenous injection for 6 weeks. AGE treatment induced a significant renal ECM accumulation, as shown by increases in periodic acid-Schiff-positive materials, fibronectin, and type IV collagen (Col IV) accumulation in glomeruli, and a mild renal dysfunction, as shown by increases in urinary volume and protein content. AGE treatment also caused significant increases in renal CTGF and transforming growth factor (TGF)-β1 mRNA and protein expression. Direct exposure of rat mesangial cells to AGEs in vitro significantly induced increases in fibronectin and Col IV production, which could be completely prevented by pretreatment with anti-CTGF antibody. AGE treatment also significantly increased both TGF-β1 and CTGF mRNA expression; however, inhibition of TGF-β1 mRNA expression by shRNA or neutralization of TGF-β1 protein by anti-TGF-β1 antibody did not significantly prevent AGE-increased expression of CTGF mRNA and protein. These results suggest that AGE-induced CTGF expression, predominantly through a TGF-β1-independent pathway, plays a critical role in renal ECM accumulation leading to diabetic nephropathy. PMID:15579446

  1. Synergistic and multidimensional regulation of plasminogen activator inhibitor type 1 expression by transforming growth factor type β and epidermal growth factor

    SciTech Connect

    Song, Xiaoling; Thalacker, F.W.; Nilsen-Hamilton, Marit

    2012-04-06

    The major physiological inhibitor of plasminogen activator, type I plasminogen activator inhibitor (PAI-1), controls blood clotting and tissue remodeling events that involve cell migration. Transforming growth factor type β (TGFβ) and epidermal growth factor (EGF) interact synergistically to increase PAI-1 mRNA and protein levels in human HepG2 and mink Mv1Lu cells. Other growth factors that activate tyrosine kinase receptors can substitute for EGF. EGF and TGFβ regulate PAI-1 by synergistically activating transcription, which is further amplified by a decrease in the rate of mRNA degradation, the latter being regulated only by EGF. The combined effect of transcriptional activation and mRNA stabilization results in a rapid 2-order of magnitude increase in the level of PAI-1. TGFβ also increases the sensitivity of the cells to EGF, thereby recruiting the cooperation of EGF at lower than normally effective concentrations. The contribution of EGF to the regulation of PAI-1 involves the MAPK pathway, and the synergistic interface with the TGFβ pathway is downstream of MEK1/2 and involves phosphorylation of neither ERK1/2 nor Smad2/3. Synergism requires the presence of both Smad and AP-1 recognition sites in the promoter. This work demonstrates the existence of a multidimensional cellular mechanism by which EGF and TGFβ are able to promote large and rapid changes in PAI-1 expression.

  2. Epidermal Growth Factor and Intestinal Barrier Function.

    PubMed

    Tang, Xiaopeng; Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng; Fang, Rejun

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  3. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  4. Body Condition Score and Day of Lactation Affect Lipogenic mRNA Abundance and Transpription Factors in Adipose Tissue of Beef Cows Fed Supplemental Fat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that BCS at parturition and postpartum dietary fat supplementation will alter transcription factors and mRNA abundance of adipose tissue lipogenic and lipolytic enzymes during lactation in beef cows. Our objective was to determine abundance of mRNA for acetyl-CoA carboxylase (ACC), h...

  5. Essential amino acids increase microRNA-499, -208b, and -23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle.

    PubMed

    Drummond, Micah J; Glynn, Erin L; Fry, Christopher S; Dhanani, Shaheen; Volpi, Elena; Rasmussen, Blake B

    2009-12-01

    Essential amino acids (EAA) stimulate muscle protein synthesis in humans. However, little is known about whether microRNAs (miRNA) and genes associated with muscle growth are expressed differently following EAA ingestion. Our purpose in this experiment was to determine whether miRNA and growth-related mRNA expressed in skeletal muscle are up- or downregulated in humans following the ingestion of EAA. We hypothesized that EAA would alter miRNA expression in skeletal muscle as well as select growth-related genes. Muscle biopsies were obtained from the vastus lateralis of 7 young adult participants (3 male, 4 female) before and 3 h after ingesting 10 g of EAA. Muscle samples were analyzed for muscle miRNA (miR-499, -208b, -23a, -1, -133a, and -206) and muscle-growth related genes [MyoD1, myogenin, myostatin, myocyte enhancer factor C (MEF2C), follistatin-like-1 (FSTL1), histone deacytylase 4, and serum response factor mRNA] before and after EAA ingestion using real-time PCR. Following EAA ingestion, miR-499, -208b, -23a, -1, and pri-miR-206 expression increased (P < 0.05). The muscle-growth genes MyoD1 and FSTL1 mRNA expression increased (P < 0.05), and myostatin and MEF2C mRNA were downregulated following EAA ingestion (P < 0.05). We conclude that miRNA and growth-related genes expressed in skeletal muscle are rapidly altered within hours following EAA ingestion. Further work is needed to determine whether these miRNA are post-transcriptional regulators of growth-related genes following an anabolic stimulus. PMID:19828686

  6. Uteroplacental Adenovirus Vascular Endothelial Growth Factor Gene Therapy Increases Fetal Growth Velocity in Growth-Restricted Sheep Pregnancies

    PubMed Central

    Wallace, Jacqueline M.; Aitken, Raymond P.; Milne, John S.; Mehta, Vedanta; Martin, John F.; Zachary, Ian C.; Peebles, Donald M.; David, Anna L.

    2014-01-01

    Abstract Fetal growth restriction (FGR) occurs in ∼8% of pregnancies and is a major cause of perinatal mortality and morbidity. There is no effective treatment. FGR is characterized by reduced uterine blood flow (UBF). In normal sheep pregnancies, local uterine artery (UtA) adenovirus (Ad)-mediated overexpression of vascular endothelial growth factor (VEGF) increases UBF. Herein we evaluated Ad.VEGF therapy in the overnourished adolescent ewe, an experimental paradigm in which reduced UBF from midgestation correlates with reduced lamb birthweight near term. Singleton pregnancies were established using embryo transfer in adolescent ewes subsequently offered a high intake (n=45) or control intake (n=12) of a complete diet to generate FGR or normal fetoplacental growth, respectively. High-intake ewes were randomized midgestation to receive bilateral UtA injections of 5×1011 particles Ad.VEGF-A165 (n=18), control vector Ad.LacZ (n=14), or control saline (n=13). Fetal growth/well-being were evaluated using serial ultrasound. UBF was monitored using indwelling flowprobes until necropsy at 0.9 gestation. Vasorelaxation, neovascularization within the perivascular adventitia, and placental mRNA expression of angiogenic factors/receptors were examined using organ bath analysis, anti-vWF immunohistochemistry, and qRT-PCR, respectively. Ad.VEGF significantly increased ultrasonographic fetal growth velocity at 3–4 weeks postinjection (p=0.016–0.047). At 0.9 gestation fewer fetuses were markedly growth-restricted (birthweight >2SD below contemporaneous control-intake mean) after Ad.VEGF therapy. There was also evidence of mitigated fetal brain sparing (lower biparietal diameter-to-abdominal circumference and brain-to-liver weight ratios). No effects were observed on UBF or neovascularization; however, Ad.VEGF-transduced vessels demonstrated strikingly enhanced vasorelaxation. Placental efficiency (fetal-to-placental weight ratio) and FLT1/KDR mRNA expression were

  7. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor. alpha. subunit

    SciTech Connect

    Harris, D.A.; Falls, D.L.; Dill-Devor, R.M.; Fischbach, G.D. )

    1988-03-01

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the {alpha} subunit of the receptor, with little or no change in the levels of {gamma}- and {delta}-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of {alpha}-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of {alpha} subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of {alpha}-subunit mRNA, with little change in the amount of {gamma}- and {delta}-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the {alpha}-subunit nuclear precursor.

  8. Nonsense-mediated mRNA decay factor Upf2 exists in both the nucleoplasm and the cytoplasm.

    PubMed

    Tatsuno, Takanori; Nakamura, Yuka; Ma, Shaofu; Tomosugi, Naohisa; Ishigaki, Yasuhito

    2016-07-01

    Upf2 protein predominantly localizes to the cytoplasmic fraction, and binds to the exon junction complex (EJC) on spliced mRNA. The present study aimed to determine the cellular site where the interaction between Upf2 and EJC occurs. First, the cell lysate was fractionated into the cytoplasm and nucleoplasm, and western blotting to detect levels of Upf2 protein was performed. Upf2 was clearly detected in the cytoplasm and in the nucleoplasm. Secondly, immunostaining was performed, and the majority of Upf2 was detected in the cytoplasmic perinuclear region; a small quantity of Upf2 was detected in the intranuclear region. RNase treatment of the cells reduced the Upf2 immunostained signal. The immunopurified fractions containing nuclear and cytoplasmic Upf2 also contained one of the EJC core factors, RBM8A. These results implied the existence of Upf2 in the nucleoplasm and the cytoplasm, and it appeared to be involved in the construction of the mRNA complex. In order to verify the construction of Upf2‑binding EJC in the nucleoplasm, an in situ proximity ligation assay was performed with anti‑Upf2 and anti‑RBM8A antibodies. These results demonstrated that their interaction occurred not only in the cytoplasmic region, but also in the intranuclear region. Taken together, these results suggested that Upf2 combines with EJC in both the cytoplasmic and the intranuclear fractions, and that it is involved in mRNA metabolism in human cells. PMID:27221324

  9. Nonsense-mediated mRNA decay factor Upf2 exists in both the nucleoplasm and the cytoplasm

    PubMed Central

    TATSUNO, TAKANORI; NAKAMURA, YUKA; MA, SHAOFU; TOMOSUGI, NAOHISA; ISHIGAKI, YASUHITO

    2016-01-01

    Upf2 protein predominantly localizes to the cytoplasmic fraction, and binds to the exon junction complex (EJC) on spliced mRNA. The present study aimed to determine the cellular site where the interaction between Upf2 and EJC occurs. First, the cell lysate was fractionated into the cytoplasm and nucleoplasm, and western blotting to detect levels of Upf2 protein was performed. Upf2 was clearly detected in the cytoplasm and in the nucleoplasm. Secondly, immunostaining was performed, and the majority of Upf2 was detected in the cytoplasmic perinuclear region; a small quantity of Upf2 was detected in the intranuclear region. RNase treatment of the cells reduced the Upf2 immunostained signal. The immune-purified fractions containing nuclear and cytoplasmic Upf2 also contained one of the EJC core factors, RBM8A. These results implied the existence of Upf2 in the nucleoplasm and the cytoplasm, and it appeared to be involved in the construction of the mRNA complex. In order to verify the construction of Upf2-binding EJC in the nucleoplasm, an in situ proximity ligation assay was performed with anti-Upf2 and anti-RBM8A antibodies. These results demonstrated that their interaction occurred not only in the cytoplasmic region, but also in the intranuclear region. Taken together, these results suggested that Upf2 combines with EJC in both the cytoplasmic and the intranuclear fractions, and that it is involved in mRNA metabolism in human cells. PMID:27221324

  10. Nerve Growth Factor and Diabetic Neuropathy

    PubMed Central

    Vinik, Aaron

    2003-01-01

    Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium. PMID:14668049

  11. Transforming growth factor-beta reverses a posttranscriptional defect in elastin synthesis in a cutis laxa skin fibroblast strain.

    PubMed Central

    Zhang, M C; Giro, M; Quaglino, D; Davidson, J M

    1995-01-01

    Skin fibroblasts from two cases of autosomal recessive cutis laxa (CL), having insignificant elastin production and mRNA levels, were challenged with transforming growth factor beta-1 (TGF-beta 1). Elastin production was brought from undetectable values to amounts typical of normal human skin fibroblasts in a dose-dependent fashion. Basic fibroblast growth factor (100 ng/ml) alone or in combination with TGF-beta 1 reduced elastin production and mRNA expression in CL skin fibroblasts more extensively than in normal cells. In situ hybridization showed that these effects were at the transcript level. One of the CL strains was examined in detail. Transcription rates for elastin were similar in normal and CL and unchanged by TGF-beta 1 or TGF-beta 2 (10 ng/ml), while in CL elastin mRNA half-life was increased > 10-fold by TGF-beta 2 and reduced 6-fold after TGF-beta 2 withdrawal, as compared with a control strain. Cycloheximide partially reversed elastin mRNA instability. These data are consistent with a defect in elastin mRNA stability that requires synthesis of labile factors or intact translational machinery, resulting in an extremely low steady state level of mRNA present in this strain of CL. Furthermore, TGF-beta can relieve elastin mRNA instability in at least one CL strain and elastin production defects in both CL strains. Images PMID:7884000

  12. Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor.

    PubMed Central

    Mellon, J. K.; Cook, S.; Chambers, P.; Neal, D. E.

    1996-01-01

    We have examined levels of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) in neoplastic and non-neoplastic bladder tissue using a standard radioimmunoassay technique. Tumour samples had much higher TGF-alpha levels compared with EGF and TGF-alpha levels in malignant tissue were significantly higher than in benign bladder samples. There was, in addition, a difference in mean EGF levels from 'normal' bladder samples from non-tumour bearing areas of bladder in patients with bladder cancer compared with 'normal' bladder tissue obtained at the time of organ retrieval surgery. Levels of EGF and TGF-alpha did not correlate with levels of EGF receptor (EGFR) as determined by a radioligand binding method but levels of TGF-alpha > 10 ng gm-1 of tumour tissue did correlate with EGFR positivity defined using immunohistochemistry. These data suggest that TGF-alpha is the likely ligand for EGFR in bladder tumours. PMID:8605103

  13. Hypoxia induces expression of connective tissue growth factor in scleroderma skin fibroblasts

    PubMed Central

    Hong, K-H; Yoo, S-A; Kang, S-S; Choi, J-J; Kim, W-U; Cho, C-S

    2006-01-01

    Connective tissue growth factor (CTGF) plays a role in the fibrotic process of systemic sclerosis (SSc). Because hypoxia is associated with fibrosis in several profibrogenic conditions, we investigated whether CTGF expression in SSc fibroblasts is regulated by hypoxia. Dermal fibroblasts from patients with SSc and healthy controls were cultured in the presence of hypoxia or cobalt chloride (CoCl2), a chemical inducer of hypoxia-inducible factor (HIF)-1α. Expression of CTGF was evaluated by Northern and Western blot analyses. Dermal fibroblasts exposed to hypoxia (1% O2) or CoCl2 (1–100 µM) enhanced expression of CTGF mRNA. Skin fibroblasts transfected with HIF-1α showed the increased levels of CTGF protein and mRNA, as well as nuclear staining of HIF-1α, which was enhanced further by treatment of CoCl2. Simultaneous treatment of CoCl2 and transforming growth factor (TGF)-β additively increased CTGF mRNA in dermal fibroblasts. Interferon-γ inhibited the TGF-β-induced CTGF mRNA expression dose-dependently in dermal fibroblasts, but they failed to hamper the CoCl2-induced CTGF mRNA expression. In addition, CoCl2 treatment increased nuclear factor (NF)-κB binding activity for CTGF mRNA, while decreasing IκBα expression in dermal fibroblasts. Our data suggest that hypoxia, caused possibly by microvascular alterations, up-regulates CTGF expression through the activation of HIF-1α in dermal fibroblasts of SSc patients, and thereby contributes to the progression of skin fibrosis. PMID:17034590

  14. The expression and role of insulin-like growth factor II in malignant hemangiopericytomas.

    PubMed

    Pavelić, K; Spaventi, S; Gluncić, V; Matejcić, A; Pavicić, D; Karapandza, N; Kusić, Z; Lukac, J; Dohoczky, C; Cabrijan, T; Pavelić, J

    1999-12-01

    Hemangiopericytoma is a rare soft tissue tumor originating from contractile pericapillary pericytes. To address the issue of molecular genetic events that participate in genesis and progression of hemangiopericytoma we analyzed insulin-like growth factor (IGF) II and IGF I receptor in 29 tumors collected from a human tumor bank network. Seven of these tumors were associated with severe hypoglycemia; six were retroperitoneal and one was located in the leg. Of 22 tumors tested 12 (54.5%) exhibited IGF II mRNA, while almost 90% (17 of 19) of hemangiopericytomas exhibited IGF I receptor mRNA. Sera from some patients whose tumors expressed IGF II mRNA contained elevated levels of IGF II. Removal of the tumor eliminated most of the IGF II immunoreactivity from the sera. The potential role of IGF II as a growth-promoting factor was examined on three malignant primary hemangiopericytoma cell cultures. Extracellular addition of IGF II significantly enhanced cell proliferation in a dose-dependent manner. Antisense oligodeoxynucleotides that specifically inhibit IGF II mRNA, at a concentration of 40 or 80 micrograms/ml, inhibited the growth of hemangiopericytoma cells significantly, by 40%. Simultaneous administration of antisense deoxyoligonucleotides to both IGF II and IGF I receptor inhibited tumor cell proliferation by even 80%. Our data suggest that tumor cells produce IGF II, and that this in turn stimulates their proliferation by autocrine mechanisms. PMID:10682323

  15. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  16. Growth hormone, insulin-like growth factor system and carcinogenesis.

    PubMed

    Boguszewski, Cesar Luiz; Boguszewski, Margaret Cristina da Silva; Kopchick, John J

    2016-01-01

    The growth hormone (GH) and insulin-like growth factor (IGF) system plays an important role in the regulation of cell proliferation, differentiation, apoptosis, and angiogenesis. In terms of cell cycle regulation, the GH-IGF system induces signalling pathways for cell growth that compete with other signalling systems that result in cell death; thus the final effect of these opposed forces is critical for normal and abnormal cell growth. The association of the GH-IGF system with carcinogenesis has long been hypothesised, mainly based on in vitro studies and the use of a variety of animal models of human cancer, and also on epidemiological and clinical evidence in humans. While ample experimental evidence supports a role of the GH-IGF system in tumour promotion and progression, with several of its components being currently tested as central targets for cancer therapy, the strength of evidence from patients with acromegaly, GH deficiency, or treated with GH is much weaker. In this review, we will attempt to consolidate this data. (Endokrynol Pol 2016; 67 (4): 414-426). PMID:27387246

  17. Molecular cloning of a human gene that is a member of the nerve growth factor family.

    PubMed Central

    Jones, K R; Reichardt, L F

    1990-01-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. We have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development. Images PMID:2236018

  18. Heparin-binding epidermal growth factor-like growth factor in hippocampus: modulation of expression by seizures and anti-excitotoxic action.

    PubMed

    Opanashuk, L A; Mark, R J; Porter, J; Damm, D; Mattson, M P; Seroogy, K B

    1999-01-01

    The expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), an EGF receptor ligand, was investigated in rat forebrain under basal conditions and after kainate-induced excitotoxic seizures. In addition, a potential neuroprotective role for HB-EGF was assessed in hippocampal cultures. In situ hybridization analysis of HB-EGF mRNA in developing rat hippocampus revealed its expression in all principle cell layers of hippocampus from birth to postnatal day (P) 7, whereas from P14 through adulthood, expression decreased in the pyramidal cell layer versus the dentate gyrus granule cells. After kainate-induced excitotoxic seizures, levels of HB-EGF mRNA increased markedly in the hippocampus, as well as in several other cortical and limbic forebrain regions. In the hippocampus, HB-EGF mRNA expression increased within 3 hr after kainate treatment, continued to increase until 24 hr, and then decreased; increases occurred in the dentate gyrus granule cells, in the molecular layer of the dentate gyrus, and in and around hippocampal pyramidal CA3 and CA1 neurons. At 48 hr after kainate treatment, HB-EGF mRNA remained elevated in vulnerable brain regions of the hippocampus and amygdaloid complex. Western blot analysis revealed increased levels of HB-EGF protein in the hippocampus after kainate administration, with a peak at 24 hr. Pretreatment of embryonic hippocampal cell cultures with HB-EGF protected neurons against kainate toxicity. The kainate-induced elevation of [Ca2+]i in hippocampal neurons was not altered in cultures pretreated with HB-EGF, suggesting an excitoprotective mechanism different from that of previously characterized excitoprotective growth factors. Taken together, these results suggest that HB-EGF may function as an endogenous neuroprotective agent after seizure-induced neural activity/injury. PMID:9870945

  19. Expression of SANT/HTH Myb mRNA, a plant morphogenesis-regulating transcription factor, changes due to viroid infection.

    PubMed

    Matoušek, Jaroslav; Piernikarczyk, Rajen J J; Týcová, Anna; Duraisamy, Ganesh S; Kocábek, Tomáš; Steger, Gerhard

    2015-07-01

    Potato spindle tuber viroid (PSTVd) belongs to plant-pathogenic, circular, non-coding RNAs. Its propagation is accompanied by (mis)regulation of host genes and induction of pathogenesis symptoms including changes of leaf morphogenesis depending on the strength of viroid variant. We found strong genotype-dependent suppression of tomato morphogenesis-regulating transcription factor SANT/HTH-Myb (SlMyb) due to viroid pathogenesis. Its relative mRNA level was found to be significantly decreased in PSTVd-sensitive tomato (cvs Rutgers and Heinz 1706) due to degradation processes, but increased in PSTVd-tolerant (cv. Harzfeuer). In heterologous system of Nicotiana benthamiana, we observed a SlMyb-associated necrotic effect in agroinfiltrated leaf sectors during ectopic overexpression. Leaf sector necroses were accompanied by activation of nucleolytic enzymes but were suppressed by a strongly pathogenic PSTVd variant. Contrary to that, PSTVd's effect was inhibited by the silencing suppressor p19. It was found that in both, Solanum lycopersicum leaves and N. benthamiana leaf sectors, SlMyb mRNA degradation was significantly stronger in viroid-infected tissues. Necroses induction as well as gene silencing experiments using the SANT/HTH-Myb homologues revealed involvement of this Myb in physiological changes like distortions in flower morphogenesis and growth suppression. PMID:26118459

  20. Puerperal influence of bovine uterine health status on the mRNA expression of pro-inflammatory factors.

    PubMed

    Peter, S; Michel, G; Hahn, A; Ibrahim, M; Lubke-Becker, A; Jung, M; Einspanier, R; Gabler, C

    2015-06-01

    After parturition, uterine bacterial infections lead to inflammatory processes such as subclinical/clinical endometritis with high prevalence in dairy cows. Endometrial epithelial cells participate in this immune response with the production of pro-inflammatory factors. The objective of the present study was to evaluate the endometrial mRNA expression pattern of pro-inflammatory factors during a selected postpartum (pp) period. Dairy cows with three different uterine health conditions on days 24-30 pp (healthy: n = 11, subclinical endometritis: n = 10, clinical endometritis: n = 10) were sampled using the cytobrush technique. Subsequently, each cow was sampled 3 more times in weekly intervals (days 31-37 pp; days 38-44 pp; days 45-51 pp). Samples were subjected to mRNA analysis performed by RT-qPCR. Additionally, an analysis of cultivable bacteria was performed at the early/late stage of the selected puerperal period. mRNA expression of 16 candidate genes was analyzed by using two different approaches. The first approach referred to the initial grouping on days 24-30 pp to reveal long-term effects of the uterine health on the subsequent puerperal period. The second approach considered the current uterine health status at each sampling to elucidate the impact of different points in time. Long-term effects seem to appear for chemokines, prostacyclin synthase and prostaglandin D2 synthase. If related to the current uterine health, the majority of candidate genes were significantly higher expressed in endometritic cows on days 45-51 pp in contrast to earlier stages of the puerperium. Microbiological analysis revealed the significantly higher prevalence of Trueperella pyogenes findings in cows with clinical endometritis on days 24-30 pp, but no correlations were found on days 45-51 pp. In conclusion, a strong immune response to subclinical/clinical endometritis in the late puerperium may be related to the negative impact of these conditions on reproductive performance

  1. Expression and modulation of nerve growth factor in murine keratinocytes (PAM 212)

    SciTech Connect

    Tron, V.A.; Coughlin, M.D.; Jang, D.E.; Stanisz, J.; Sauder, D.N. )

    1990-04-01

    Nerve growth factor (NGF) is a polypeptide that is required for normal development and maintenance of the sympathetic and sensory nervous systems. Skin has been shown to contain relatively high amounts of NGF, which is in keeping with the finding that the quantity of NGF in a tissue is proportional to the extent of sympathetic innervation of that organ. Since the keratinocyte, a major cellular constituent of the skin, is known to produce other growth factors and cytokines, our experiments were designed to determine whether keratinocytes are a source of NGF. Keratinocyte-conditioned media from the keratinocyte cell line PAM 212 contained NGF-like activity, approximately 2-3 ng/ml, as detected by the neurite outgrowth assay. Freshly isolated BALB/c keratinocytes contained approximately 0.1 ng/ml. Using a cDNA probe directed against NGF, we demonstrated the presence of a 1.3-kb NGF mRNA in both PAM 212 and BALB/c keratinocytes. Since ultraviolet radiation (UV) is a potentially important modulating factor for cytokines in skin, we examined the effect of UV on NGF mRNA expression. Although UV initially inhibited the expression of keratinocyte NGF mRNA (4 h), by 24 h an induction of NGF mRNA was seen. The NGF signal could also be induced by phorbol esters. Thus, keratinocytes synthesize and express NGF, and its expression is modulated by UVB and phorbol esters.

  2. Growth hormone-insulinlike growth factor I and immune function.

    PubMed

    Gelato, M C

    1993-04-01

    Growth hormone (GH) and insulinlike growth factor I (IGF-I) may be part of a neuroendocrine immune axis that stimulates cellular proliferation of primary lymphoid organs (bone marrow, thymus) as well as stimulates activation of peripheral lymphocytes and macrophages to enhance specific immune responses. GH can also stimulate production of thymic hormones and cytokines, and in this way impact on immune function. It is not clear whether GH and IGF-I act independently or whether the action of GH is mediated by local production of IGF-I by lymphocytes. Both GH and IGF-I and their receptors are present in lymphocytes. Thus, cells of the immune system may be important targets of the GH-IGF-I axis. PMID:18407143

  3. Growth Factors and Astrocytes Metabolism: Possible Roles for Platelet Derived Growth Factor.

    PubMed

    Cabezas, Ricardo; Avila-Rodriguez, Marco; Vega-Vela, Nelson E; Echeverria, Valentina; González, Janneth; Hidalgo, Oscar A; Santos, Altair B; Aliev, Gjumrakch; Barreto, George E

    2016-01-01

    Astrocytes exert multiple functions in the brain such as the development of blood-brain barrier characteristics, the promotion of neurovascular coupling, attraction of cells through the release of chemokines, clearance of toxic substances and generation of antioxidant molecules and growth factors. In this aspect, astrocytes secrete several growth factors (BDNF, GDNF, NGF, and others) that are fundamental for cell viability, oxidant protection, genetic expression and modulation of metabolic functions. The platelet derived growth factor (PDGF), which is expressed by many SNC cells, including astrocytes, is an important molecule that has shown neuroprotective potential, improvement of wound healing, regulation of calcium metabolism and mitochondrial function. Here we explore some of these astrocyte-driven functions of growth factors and their possible therapeutic uses in the context of neurodegeneration. PMID:26477707

  4. Role of growth factors in the human endometrium during aging.

    PubMed

    Leone, M; Costantini, C; Gallo, G; Voci, A; Massajoli, M; Messeni Leone, M; de Cecco, L

    1993-01-01

    The aim of this study was to investigate the possible role of epidermal growth factor (EGF) and of insulin-like growth factor-I (IGF-I) in physiological and pathological changes of the endometrial tissue during aging. Thirty-four patients undergoing hysterectomy were divided into three groups: (A) premenopausal women with regular menses, (B) pre-menopausal women with irregular bleeding and (C) post-menopausal women. Endometrial samples were collected after the removal of uterus and were used for immunohistochemical evaluation of EGF, EGF receptor (EGFr) and IGF-I and also for Northern blot analysis of IGF-I gene expression. Plasma levels of 17 beta-oestradiol (E2), D4-androstenedione (D4-A) and oestrone (E1) were also assayed. The immunohistochemical scores (HSCORES) for EGF, EGFr and IGF-I were significantly higher in groups A and B than in group C. Independently from the menstrual history, significantly higher HSCORES of EGF, EGFr and IGF-I were present in hyperplastic endometrium than in those which were proliferative and atrophic. Moreover, IGF-I mRNA expression was observed in all pre-menopausal women, whereas only 1 post-menopausal women with hyperplastic endometrium showed detectable RNA encoding for IGF-I. Higher levels of D4-A were also significantly correlated (P < 0.05) with higher HSCORES of EGF, EGFr and IGF-I. Our results suggest that the above mentioned growth factors could act as mediators of oestrogens on the endometrial functional activity. PMID:7679182

  5. Mitogenic and metabolic actions of epidermal growth factor on rat articular chondrocytes: modulation by fetal calf serum, transforming growth factor-beta, and tyrphostin.

    PubMed

    Ribault, D; Khatib, A M; Panasyuk, A; Barbara, A; Bouizar, Z; Mitrovic, R D

    1997-01-15

    The effects of human recombinant epidermal growth factor (EGF) on rat articular chondrocytes from humeral and femoral head cartilage of 21-day-old Wistar rats were analyzed. The cells were cultured under standard conditions as monolayers. Cell proliferation was studied by [3H]thymidine incorporation and determination of DNA content, proteoglycan synthesis by [35S]sulfate incorporation, and collagen synthesis by [3H]proline incorporation. The presence of specific receptors was confirmed by [125I]-EGF binding and that of EGF and EGF-receptor (EGF-R) mRNA by reverse transcription and the polymerase chain reaction. EGF (0.5-2.5 ng/ml) stimulated [3H]thymidine incorporation and increased DNA content of cultures. The effect was strongest when serum concentration was low (< or =1%) and was lost at high (> or =7.5%) serum concentrations. The EGF-induced effect on deoxynucleic acid synthesis was inhibited by transforming growth factor-beta and tyrphostin, a tyrosine kinase inhibitor that blocks the phosphorylation of tyrosine residues on EGF-R. Cultured rat articular chondrocytes possess a single class of high-affinity binding sites (Kd 0.18 nM). There were about 4.5 x 10(9) binding sites per microgram of DNA or about 37,800 binding sites per cell with 8.3 pg DNA per cell. Cultured cells contained EGF mRNA and EGF-R mRNA. Incubation of cells with EGF for 24 h decreased the EGF mRNA transcripts and increased the EGF-R mRNA levels. These findings suggest that EGF probably takes part in the regulation of chondrocyte activity under normal and presumably pathological conditions. PMID:9016808

  6. The suppression of fibroblast growth factor 2/fibroblast growth factor 4-dependent tumour angiogenesis and growth by the anti-growth factor activity of dextran derivative (CMDB7).

    PubMed Central

    Bagheri-Yarmand, R.; Kourbali, Y.; Mabilat, C.; Morère, J. F.; Martin, A.; Lu, H.; Soria, C.; Jozefonvicz, J.; Crépin, M.

    1998-01-01

    Our previous studies showed that carboxymethyl benzylamide dextran (CMDB7) blocks basic fibroblast growth factor (FGF-2)-dependent cell proliferation of a human breast epithelial line (HBL100), suggesting its potential role as a potent antiangiogenic substance. The derived cell line (HH9), which was transformed with the hst/FGF4 gene, has been shown to be highly proliferative in vitro and to induce angiogenic tumours in nude mice. We show here that CMDB7 inhibits the mitogenic activities of the conditioned media from HBL 100 and HH9 cells in a dose-dependent manner. When HH9 cells were injected s.c. into nude mice, CMDB7 treatment (300 mg kg(-1) week(-1)) suppressed the tumour take and the tumour growth by about 50% and 80% respectively. Immunohistochemical analysis showed a highly significant decrease, by more than threefold, in the endothelial density of viable tumour regions, together with a significant increase in the necrosis area. This antiangiogenic activity of CMDB7 was further demonstrated by direct inhibition of calf pulmonary artery (CPAE) and human umbilical vein (HUVEC) endothelial cell proliferation and migration in vitro. In addition, we showed that CMDB7 inhibits specifically the mitogenic effects of the growth factors that bind to heparin such as FGF-2, FGF-4, platelet-derived growth factor (PDGF-BB) and transforming growth factor (TGF-beta1), but not those of epidermal growth factor (EGF) and insulin-like growth factor (IGF-1). These results demonstrate that CMDB7 inhibits FGF-2/FGF-4-dependent tumour growth and angiogenesis, most likely by disrupting the autocrine and paracrine effects of growth factors released from the tumour cells. Images Figure 4 PMID:9662260

  7. Growth Factor Dependent Regulation of Centrosome Function and Genomic Instability by HuR

    PubMed Central

    Filippova, Natalia; Yang, Xiuhua; Nabors, Louis Burt

    2015-01-01

    The mRNA binding protein HuR is over expressed in cancer cells and contributes to disease progression through post-transcriptional regulation of mRNA. The regulation of HuR and how this relates to glioma is the focus of this report. SRC and c-Abl kinases regulate HuR sub-cellular trafficking and influence accumulation in the pericentriolar matrix (PCM) via a growth factor dependent signaling mechanism. Growth factor stimulation of glioma cell lines results in the associate of HuR with the PCM and amplification of centrosome number. This process is regulated by tyrosine phosphorylation of HuR and is abolished by mutating tyrosine residues. HuR is overexpressed in tumor samples from patients with glioblastoma and associated with a reduced survival. These findings suggest HuR plays a significant role in centrosome amplification and genomic instability, which contributes to a worse disease outcome. PMID:25803745

  8. Growth Hormone and Insulin-Like Growth Factor-1.

    PubMed

    Nicholls, Adam R; Holt, Richard I G

    2016-01-01

    Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. PMID:27347885

  9. Waste management - cytokines, growth factors and cachexia.

    PubMed

    Saini, Amarjit; Al-Shanti, Nasser; Nasser, Al-Shanti; Stewart, Claire E H

    2006-12-01

    Muscle damage with a lack of regeneration, manifests itself in several life-threatening diseases, including cancer cachexia, congestive heart failure, AIDS and sepsis. Often misdiagnosed as a condition simply of weight loss, cachexia is actually a highly complex metabolic disorder involving features of anorexia, anaemia, lipolysis and insulin resistance. A significant loss of lean body mass arises from such conditions, resulting in wasting of skeletal muscle. Unlike starvation, the weight loss seen in chronic illnesses arises equally from loss of muscle and of fat. The cachectic state is particularly problematic in cancer, typifying poor prognosis and often lowering responses to chemotherapy and radiation treatment. More than half of cancer patients suffer from cachexia, and strikingly, nearly one-third of cancer deaths are related to cachexia rather than the tumour burden. In considering this disorder, we are faced with a conundrum; how is it possible for uncontrolled growth to prevail in the tumour, in the face of unrestrained tissue loss in our muscles? Consistently, the catabolic state has been associated with a shift in the homeostatic balance between muscle synthesis and degradation mediated by the actions of growth factors and cytokines. Indeed, tumour necrosis factor-alpha (TNF-alpha) levels are raised in several animal models of cachectic muscle wasting, whereas the insulin-like growth factor (IGF) system acts potently to regulate muscle development, hypertrophy and maintenance. This concept of skeletal muscle homeostasis, often viewed as the net balance between two separate processes of protein synthesis and degradation has however changed. More recently, the view is that these two biochemical processes are not occurring independently of each other but in fact are finely co-ordinated by a web of intricate signalling networks. This review, therefore, aims to discuss data currently available regarding the mechanisms of degeneration and regeneration with

  10. Vascular Endothelial Growth Factor and Spinal Cord Injury Pain

    PubMed Central

    Sundberg, Laura M.; Herrera, Juan J.; Mokkapati, Venkata U.L.; Lee, Julieann; Narayana, Ponnada A.

    2010-01-01

    Abstract Vascular endothelial growth factor (VEGF)-A mRNA was previously identified as one of the significantly upregulated transcripts in spinal cord injured tissue from adult rats that developed allodynia. To characterize the role of VEGF-A in the development of pain in spinal cord injury (SCI), we analyzed mechanical allodynia in SCI rats that were treated with either vehicle, VEGF-A isoform 165 (VEGF165), or neutralizing VEGF165-specific antibody. We have observed that exogenous administration of VEGF165 increased both the number of SCI rats that develop persistent mechanical allodynia, and the level of hypersensitivity to mechanical stimuli. Our analysis identified excessive and aberrant growth of myelinated axons in dorsal horns and dorsal columns of chronically injured spinal cords as possible mechanisms for both SCI pain and VEGF165-induced amplification of SCI pain, suggesting that elevated endogenous VEGF165 may have a role in the development of allodynia after SCI. However, the neutralizing VEGF165 antibody showed no effect on allodynia or axonal sprouting after SCI. It is possible that another endogenous VEGF isoform activates the same signaling pathway as the exogenously-administered 165 isoform and contributes to SCI pain. Our transcriptional analysis revealed that endogenous VEGF188 is likely to be the isoform involved in the development of allodynia after SCI. To the best of our knowledge, this is the first study to suggest a possible link between VEGF, nonspecific sprouting of myelinated axons, and mechanical allodynia following SCI. PMID:20698758

  11. Effect of hypophysectomy and growth hormone replacement on hypothalamic growth hormone-releasing factor messenger ribonucleic Acid levels.

    PubMed

    Eccleston, L M; Powell, J F; Clayton, R N

    1991-12-01

    Abstract The mechanisms by which the pituitary gland, and growth hormone (GH) in particular, affect growth hormone-releasing factor (GRF) gene expression have been addressed using the technique of in situ hybridization. Anatomically matched sections through the mediobasal hypothalamus of control and hypophysectomized male rats, with or without GH hormone replacement, were analysed to obtain information on GRF mRNA levels within the arcuate nucleus and around the ventromedial hypothalamus. Hypophysectomy resulted in a 70% increase in the amount of GRF mRNA per cell (P<0.001), within neurons in the arcuate nucleus. GH replacement and T4 replacement separately partially attenuated this increase (GH replacement P< 0.001 versus hypophysectomy, T4 replacement P<0.05 versus hypophysectomy). Additionally, after hypophysectomy there was an 80% increase in the number of cells expressing the GRF gene in neurons around the ventromedial hypothalamus, when compared to shamoperated controls (P<0.01). Both GH and T4 replacement separately partially attenuated this phenomenon (P<0.01 versus hypophysectomized animals). Hypothyroidism alone did not affect GRF mRNA levels in either the arcuate nucleus or in the area surrounding the ventromedial hypothalamus. These results show that hypophysectomy increases GRF mRNA levels in two separate ways: by increasing the amount of mRNA produced per cell within the arcuate nucleus, and by increasing the number of cells expressing the gene in the area surrounding the ventromedial hypothalamus. This increase in the number of GRF mRNA-containing cells after hypophysectomy could result from the recruitment of neurons which previously did not express the GRF gene, and may reflect the plasticity of the adult central nervous system in response to a changing endocrine environment. This could represent part of a sensor mechanism to drive the production of GRF in the arcuate nucleus in response to extreme disruption of the GRF/ GH feedback loop. PMID

  12. Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes.

    PubMed Central

    Takahashi, N; Calderone, A; Izzo, N J; Mäki, T M; Marsh, J D; Colucci, W S

    1994-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) is a peptide growth factor that may play a role in the myocardial response to hypertrophic stimuli. However, the cellular distribution, mechanism of induction, and source of increased TGF-beta 1 in response to hypertrophic stimuli are not known. We tested the hypothesis that the cardiac myocyte responds to hypertrophic stimuli with the increased expression of TGF-beta 1. In adult rat ventricular myocardium freshly dissociated into myocyte and nonmyocyte cellular fractions, the preponderance of TGF-beta 1 mRNA visualized by Northern hybridization was in the nonmyocyte fraction. Abdominal aortic constriction (7 d) and subcutaneous norepinephrine infusion (36 h) each caused ventricular hypertrophy associated with 3.1-fold and 3.8-fold increases, respectively, in TGF-beta 1 mRNA in the myocyte fraction, but had no effect on the level of TGF-beta 1 mRNA in the nonmyocyte fraction. In ventricular myocytes, norepinephrine likewise caused a 4.1-fold increase in TGF-beta 1 mRNA associated with an increase in TGF-beta bioactivity. This induction of TGF-beta 1 mRNA occurred at norepinephrine concentrations as low as 1 nM and was blocked by prazosin, but not propranolol. NE did not increase the TGF-beta 1 mRNA level in nonmyocytes, primarily fibroblasts, cultured from neonatal rat ventricle. Thus, the cardiac myocyte responds to two hypertrophic stimuli, pressure overload and norepinephrine, with the induction of TGF-beta 1. These data support the view that TGF-beta 1, released by myocytes and acting in an autocrine and/or paracrine manner, is involved in myocardial remodeling by hypertrophic stimuli. Images PMID:7929822

  13. Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production.

    PubMed Central

    Davis, B H; Kramer, R T; Davidson, N O

    1990-01-01

    Recent studies suggest that vitamin A plays an inhibitory role with respect to "activation" of the hepatic Ito cell, a likely effector of hepatic fibrogenesis. Ito cell "activation" during fibrogenesis is characterized by a decrease in intracellular vitamin A and an increase in cellular proliferation and collagen production. To explore the hypothesis that retinoids have the capacity to diminish Ito cell activation, cultured Ito cells were exposed to retinoic acid and its effects assessed on three key features: cell proliferation, collagen protein production and mRNA abundance, and transforming growth factor beta protein production. Retinoic acid was 100-1,000X more potent than retinol with respect to inhibition of Ito cell proliferation. Interstitial collagen and transforming growth factor beta production were also reduced by 10(-6) M retinoic acid. The relative abundance of type I collagen mRNA however, was not significantly altered. By contrast, retinoic acid administration to rats caused a marked reduction in the abundance of type I collagen mRNA in both total hepatic and purified Ito cell RNA. The relative abundance of rat hepatic fibronectin or apolipoprotein E mRNA was not significantly altered. These studies demonstrate that retinoic acid can differentially modulate several key features of hepatic fibrogenesis in vitro and in vivo. Images PMID:2254460

  14. Human insulin-like growth factor II leader 2 mediates internal initiation of translation.

    PubMed Central

    Pedersen, Susanne K; Christiansen, Jan; Hansen, Thomas v O; Larsen, Martin R; Nielsen, Finn C

    2002-01-01

    Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IGF-II leader 3 mRNA translation is regulated by a rapamycin-sensitive pathway, whereas leader 4 mRNA is constitutively translated, but so far the significance of leader 2 mRNA has been unclear. Here, we show that leader 2 mRNA is translated efficiently in an eIF4E-independent manner. In a bicistronic vector system, the 411 nt leader 2 was capable of internal initiation via a phylogenetically conserved internal ribosome entry site (IRES), located in the 3' half of the leader. The IRES is composed of an approx. 120 nt ribosome recruitment element, followed by an 80 nt spacer region, which is scanned by the ribosomal pre-initiation complex. Since cap-dependent translation is down-regulated during cell division, leader 2 might facilitate a continuous IGF-II production in rapidly dividing cells during development. PMID:11903044

  15. Thyrotropin (TSH)-induced production of vascular endothelial growth factor in thyroid cancer cells in vitro: evaluation of TSH signal transduction and of angiogenesis-stimulating growth factors.

    PubMed

    Hoffmann, Sebastian; Hofbauer, Lorenz C; Scharrenbach, Vera; Wunderlich, Anette; Hassan, Iyad; Lingelbach, Susanne; Zielke, Andreas

    2004-12-01

    Thyroid tumor growth requires angiogenesis, and vascular endothelial growth factor (VEGF) has been shown to be the most important endothelial mitogen. TSH is the major thyrotropic hormone, but its impact to modulate VEGF production has not yet been studied. Several other growth factors have also been shown to affect thyroid cancer cell growth and function in vitro. Therefore, the aim of the current study was to 1) establish the effect of TSH on VEGF as well as 2) evaluate the TSH signal transduction of this effect, and 3) screen other growth factors for the ability to modulate VEGF in thyroid cancer cell lines. HTC, a follicular cancer cell line lacking endogenous TSH receptor (TSHr), its receptor positive variant (HTC TSHr), and a cell line of Huerthle cell origin (XTC) were used. After stimulation with growth factors in vitro [TSH; epidermal growth factor (EGF), IGF, placenta growth factor, TGF-alpha, TGF-beta1, fibroblast growth factor, platelet-derived growth factor, and hepatocyte growth factor] cells were analyzed for VEGF gene expression by Northern blotting and for VEGF protein by enzyme immunoassay. TSHr signal transduction was evaluated by analyzing the effect of stimulators (cholera toxin, 8-bromo-cAMP, forskolin, and 12-O-tetradecanoyl-phorbol-13-acetate) and inhibitors (2',5'-dideoxyadenosine and staurosporine) on VEGF protein levels under basal and TSH-stimulated conditions. TSH increased VEGF mRNA and protein in a dose-dependent manner in HTC TSHr and XTC cells by up to 40%. The effects of TSH were mediated by protein kinase C (PKC), rather than protein kinase A (PKA), stimulation, because inhibition of PKC by staurosporine resulted in a decrease in VEGF production of up to 65%, whereas inhibition of the PKA signal transduction pathway (2',5'-dideoxyadenosine) resulted in only a minor decrease. TSH was not the most powerful stimulator of VEGF production. TGF-beta1 and EGF were 1.5- to 2-fold more potent. Placenta growth factor and TGF-alpha did not

  16. Expression of cyr61, a growth factor-inducible immediate-early gene.

    PubMed Central

    O'Brien, T P; Yang, G P; Sanders, L; Lau, L F

    1990-01-01

    A set of immediate-early genes that are rapidly activated by serum or purified platelet-derived growth factor in mouse 3T3 fibroblasts has been previously identified. Among these genes, several are related to known or putative transcription factors and growth factors, supporting the notion that some of these genes encode regulatory molecules important to cell growth. We show here that a member of this set of genes, cyr61 (originally identified by its cDNA 3CH61), encodes a 379-amino-acid polypeptide rich in cysteine residues. cyr61 can be induced through protein kinase C-dependent and -independent pathways. Unlike many immediate-early genes that are transiently expressed, the cyr61 mRNA is accumulated from the G0/G1 transition through mid-G1. This expression pattern is due to persistent transcription, while the mRNA is rapidly turned over during the G0/G1 transition and in mid-G1 at the same rate. In logarithmically growing cells, the cyr61 mRNA level is constant throughout the cell cycle. Cyr61 contains an N-terminal secretory signal sequence; however, it is not detected in the culture medium by immunoprecipitation. Cyr61 is synthesized maximally at 1 to 2 h after serum stimulation and has a short half-life within the cell. Images PMID:2355916

  17. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    PubMed Central

    Nagashima, Yukihiro; Mishiba, Kei-ichiro; Suzuki, Eiji; Shimada, Yukihisa; Iwata, Yuji; Koizumi, Nozomu

    2011-01-01

    IRE1 plays an essential role in the endoplasmic reticulum (ER) stress response in yeast and mammals. We found that a double mutant of Arabidopsis IRE1A and IRE1B (ire1a/ire1b) is more sensitive to the ER stress inducer tunicamycin than the wild-type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated that bZIP60 mRNA is spliced by ER stress, removing 23 ribonucleotides and therefore causing a frameshift that replaces the C-terminal region of bZIP60 including the transmembrane domain (TMD) with a shorter region without a TMD. This splicing was detected in ire1a and ire1b single mutants, but not in the ire1a/ire1b double mutant. We conclude that IRE1A and IRE1B catalyse unconventional splicing of bZIP60 mRNA to produce the active transcription factor. PMID:22355548

  18. Expression and activation of erbB-2 and epidermal growth factor receptor in lung adenocarcinomas.

    PubMed Central

    Rachwal, W. J.; Bongiorno, P. F.; Orringer, M. B.; Whyte, R. I.; Ethier, S. P.; Beer, D. G.

    1995-01-01

    ErbB-2 and EGFR (epidermal growth factor receptor) are expressed in lung adenocarcinomas and associated with a poor prognosis. Immunocytochemical analysis revealed erbB-2 and EGFR coexperession as a characteristic feature of most lung adenocarcinomas, and at levels of receptor expression present in bronchial epithelial cells. In primary lung tumours and cell lines, erbB-2 detected using Western blot analysis demonstrated low-level phosphotyrosine staining of the 185 kDa band, as compared with breast cancer cell lines. A549 and A427 lung adenocarcinoma cells treated with neu differentiation factor (NDF) showed increased erbB-2 phosphotyrosine staining, but to a much lesser extent than breast cancer cells. The lung cells were examined for expression of the potential autocrine growth factors NDF and transforming growth factor alpha (TGF-alpha) by Northern blot analysis. Both NDF and TFG-alpha mRNA were abundantly expressed in the A549 cells. NDF mRNA was highest during active cell proliferation and decreased in confluent cells or after treatment with the growth-inhibitory steroid dexamethasone. Primary tumours and cell lines expressed EGFR, showing higher basal level phosphotyrosine staining than erbB-2. Treatment with NDF and EGF (epidermal growth factor) stimulated cell growth, and in A549 cells the presence of both factors provided an additive increase in cell growth. The growth stimulus that ligand-activated erbB-2 and EGFR provides to lung adenocarcinoma cells may establish a background of continued cell proliferation over which other critical transforming events may occur. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7599067

  19. PXR stimulates growth factor-mediated hepatocyte proliferation by cross-talk with the FOXO transcription factor.

    PubMed

    Shizu, Ryota; Abe, Taiki; Benoki, Satoshi; Takahashi, Miki; Kodama, Susumu; Miayata, Masaaki; Matsuzawa, Atsushi; Yoshinari, Kouichi

    2016-02-01

    Growth factor-mediated hepatocyte proliferation is crucial in liver regeneration and the recovery of liver function after injury. The nuclear receptor, pregnane X receptor (PXR), is a key transcription factor for the xenobiotic-induced expression of genes associated with various liver functions. Recently, we reported that PXR activation stimulates xenobiotic-induced hepatocyte proliferation. In the present study, we investigated whether PXR activation also stimulates growth factor-mediated hepatocyte proliferation. In G0 phase-synchronized, immortalized mouse hepatocytes, serum or epidermal growth factor treatment increased cell growth and this growth was augmented by the expression of mouse PXR and co-treatment with pregnenolone 16α-carbonitrile (PCN), a PXR ligand. In a liver regeneration model using carbon tetrachloride, PCN treatment enhanced the injury-induced increase in the number of Ki-67-positive nuclei as well as Ccna2 and Ccnb1 mRNA levels in wild-type (WT) but not Pxr-null mice. Chronological analysis of this model demonstrated that PCN treatment shifted the maximum cell proliferation to an earlier time point and increased the number of M-phase cells at those time points. In WT but not Pxr-null mice, PCN treatment reduced hepatic mRNA levels of genes involved in the suppression of G0/G1- and G1/S-phase transition, e.g. Rbl2, Cdkn1a and Cdkn1b. Analysis of the Rbl2 promoter revealed that PXR activation inhibited its Forkhead box O3 (FOXO3)-mediated transcription. Finally, the PXR-mediated enhancement of hepatocyte proliferation was inhibited by the expression of dominant active FOXO3 in vitro. The results of the present study suggest that PXR activation stimulates growth factor-mediated hepatocyte proliferation in mice, at least in part, through inhibiting FOXO3 from accelerating cell-cycle progression. PMID:26574435

  20. Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition

    PubMed Central

    Järvinen, Tero A. H.; Prince, Stuart

    2015-01-01

    Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer. PMID:26697491

  1. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    SciTech Connect

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; Chang, C. -S.; Kitamura, E.; Hawthorn, L.; Martinez, N. E.; Stafford, C.; Milliken, C. E.; Caldwell, E. F.; Stieve-Caldwell, E.

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.

  2. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    SciTech Connect

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung; Rebecchi, Mario

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  3. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors

    SciTech Connect

    Yakubov, Eduard; Rechavi, Gidi; Rozenblatt, Shmuel; Givol, David

    2010-03-26

    Reprogramming of differentiated cells into induced pluripotent cells (iPS) was accomplished in 2006 by expressing four, or less, embryonic stem cell (ESC)-specific transcription factors. Due to the possible danger of DNA damage and the potential tumorigenicity associated with such DNA damage, attempts were made to minimize DNA integration by the vectors involved in this process without complete success. Here we present a method of using RNA transfection as a tool for reprogramming human fibroblasts to iPS. We used RNA synthesized in vitro from cDNA of the same reprogramming four transcription factors. After transfection of the RNA, we show intracellular expression and nuclear localization of the respective proteins in at least 70% of the cells. We used five consecutive transfections to support continuous protein expression resulting in the formation of iPS colonies that express alkaline phosphatase and several ESC markers and that can be expanded. This method completely avoids DNA integration and may be developed to replace the use of DNA vectors in the formation of iPS.

  4. Vascular endothelial growth factor C promotes survival of retinal vascular endothelial cells via vascular endothelial growth factor receptor‐2

    PubMed Central

    Zhao, Bojun; Smith, Gill; Cai, Jun; Ma, Aihua; Boulton, Mike

    2007-01-01

    Aim To determine vascular endothelial growth factor C (VEGF‐C) expression in retinal endothelial cells, its antiapoptotic potential and its putative role in diabetic retinopathy. Method Cultured retinal endothelial cells and pericytes were exposed to tumour necrosis factor (TNF)α and VEGF‐C expression determined by reverse transcriptase‐polymerase chain reaction. Secreted VEGF‐C protein levels in conditioned media from endothelial cells were examined by western blotting analysis. The ability of VEGF‐C to prevent apoptosis induced by TNFα or hyperglycaemia in endothelial cells was assessed by flow cytometry. The expression of VEGF‐C in diabetic retinopathy was studied by immunohistochemistry of retinal tissue. Result VEGF‐C was expressed by both vascular endothelial cells and pericytes. TNFα up regulated both VEGF‐C and vascular endothelial growth factor receptor‐2 (VEGFR)‐2 expression in endothelial cells in a dose‐dependent manner, but had no effect on VEGFR‐3. Flow cytometry results showed that VEGF‐C prevented endothelial cell apoptosis induced by TNFα and hyperglycaemia and that the antiapoptotic effect was mainly via VEGFR‐2. In pericytes, the expression of VEGF‐C mRNA remained stable on exogenous TNFα treatment. VEGF‐C immunostaining was increased in retinal vessels in specimens with diabetes compared with retinal specimens from controls without diabetes. Conclusion In retinal endothelial cells, TNFα stimulates the expression of VEGF‐C, which in turn protects endothelial cells from apoptosis induced by TNFα or hyperglycaemia via VEGFR‐2 and thus helps sustain retinal neovascularisation. PMID:16943230

  5. Keratinocyte growth factor and hepatocyte growth factor/scatter factor are heparin-binding growth factors for alveolar type II cells in fibroblast-conditioned medium.

    PubMed Central

    Panos, R J; Rubin, J S; Csaky, K G; Aaronson, S A; Mason, R J

    1993-01-01

    Epithelial-mesenchymal interactions mediate aspects of normal lung growth and development and are important in the restoration of normal alveolar architecture after lung injury. To determine if fibroblasts are a source of soluble growth factors for alveolar type II cells, we investigated the effect of fibroblast-conditioned medium (CM) on alveolar type II cell DNA synthesis. Serum-free CM from confluent adult human lung fibroblasts was concentrated fivefold by lyophilization. Type II cells were isolated from adult rats by elastase dissociation and incubated with [3H]thymidine and varying dilutions of concentrated CM and serum from day 1 to 3 of culture. Stimulation of type II cell DNA synthesis by fibroblast-CM was maximal after 48 h of conditioning and required the presence of serum. The activity of the CM was eliminated by boiling and by treatment with trypsin, pepsin, or dithiothreitol and was additive with saturating concentrations of acidic fibroblast growth factor, epidermal growth factor, and insulin. The growth factor activity bound to heparin-Sepharose and was eluted with 0.6 and 1.0 M NaCl. Neutralizing antibody studies demonstrated that the primary mitogens isolated in the 0.6 and 1.0 M NaCl fractions were keratinocyte growth factor (KGF, fibroblast growth factor 7) and hepatocyte growth factor/scatter factor (HGF/SF), respectively. HGF/SF was demonstrated in the crude CM and KGF was detected in the 0.6 M NaCl eluent by immunoblotting. Northern blot analysis confirmed that the lung fibroblasts expressed both KGF and HGF/SF transcripts. Human recombinant KGF and HGF/SF induced a concentration- and serum-dependent increase in rat alveolar type II cell DNA synthesis. We conclude that adult human lung fibroblasts produce at least two soluble heparin-binding growth factors, KGF and HGF/SF, which promote DNA synthesis and proliferation of rat alveolar type II cells in primary culture. KGF and HGF/SF may be important stimuli for alveolar type II cell

  6. Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms.

    PubMed

    Pierce, G F; Mustoe, T A; Lingelbach, J; Masakowski, V R; Griffin, G L; Senior, R M; Deuel, T F

    1989-07-01

    Platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-beta) markedly potentiate tissue repair in vivo. In the present experiments, both in vitro and in vivo responses to PDGF and TGF-beta were tested to identify mechanisms whereby these growth factors might each enhance the wound-healing response. Recombinant human PDGF B-chain homodimers (PDGF-BB) and TGF-beta 1 had identical dose-response curves in chemotactic assays with monocytes and fibroblasts as the natural proteins from platelets. Single applications of PDGF-BB (2 micrograms, 80 pmol) and TGF-beta 1 (20 micrograms, 600 pmol) were next applied to linear incisions in rats and each enhanced the strength required to disrupt the wounds at 5 d up to 212% of paired control wounds. Histological analysis of treated wounds demonstrated an in vivo chemotactic response of macrophages and fibroblasts to both PDGF-BB and to TGF-beta 1 but the response to TGF-beta 1 was significantly less than that observed with PDGF-BB. Marked increases of procollagen type I were observed by immunohistochemical staining in fibroblasts in treated wounds during the first week. The augmented breaking strength of TGF-beta 1 was not observed 2 and 3 wk after wounding. However, the positive influence of PDGF-BB on wound breaking strength persisted through the 7 wk of testing. Furthermore, PDGF-BB-treated wounds had persistently increased numbers of fibroblasts and granulation tissue through day 21, whereas the enhanced cellular influx in TGF-beta 1-treated wounds was not detectable beyond day 7. Wound macrophages and fibroblasts from PDGF-BB-treated wounds contained sharply increased levels of immunohistochemically detectable intracellular TGF-beta. Furthermore, PDGF-BB in vitro induced a marked, time-dependent stimulation of TGF-beta mRNA levels in cultured normal rat kidney fibroblasts. The results suggest that TGF-beta transiently attracts fibroblasts into the wound and may stimulate collagen synthesis directly. In

  7. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    PubMed

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. PMID:26764533

  8. Neonatal fibroblast growth factor treatment enhances cocaine sensitization.

    PubMed

    Clinton, Sarah M; Turner, Cortney A; Flagel, Shelly B; Simpson, Danielle N; Watson, Stanley J; Akil, Huda

    2012-11-01

    Growth factors are critical in neurodevelopment and neuroplasticity, and recent studies point to their involvement in addiction. We previously reported increased levels of basic fibroblast growth factor (FGF2) in high novelty/drug-seeking rats (bred high responders, bHR) compared to low novelty/drug-seeking rats(bred low responders, bLRs). The present study asked whether an early life manipulation of the FGF system(a single FGF2 injection on postnatal day 2) can impact cocaine sensitization and associated neurobiological markers in adult bHR/bLR animals. Neonatal FGF2- and vehicle-treated bHR/bLR rats were sensitized to cocaine(7 daily injections, 15 mg/kg/day, i.p.) in adulthood. Neonatal FGF2 markedly increased bLRs' typically low psychomotor sensitization to cocaine (day 7 locomotor response to cocaine), but had little effect on bHRs' cocaine sensitization. Gene expression studies examined dopaminergic molecules as well as FGF2 and the FGFR1 receptor in cocaine naïve animals, to investigate possible neurobiological alterations induced by neonatal FGF2 exposure that may influence behavioral response to cocaine. bLRs showed decreased tyrosine hydroxylase in the ventral tegmental area (VTA), decreased D1 and increased D2 receptor expression in the nucleus accumbens core, as well as decreased FGF2 in the VTA, substantia nigra, accumbens core, and caudate putamen compared to bHRs. Neonatal FGF2 selectively increased D1 receptor and FGF2 mRNA in the accumbens core of bLRs, which may contribute to their heightened cocaine sensitization. Our results suggest increased FGF2 in the mesodopaminergic circuit (as in baseline bHRs and neonatal FGF2-exposed bLRs vs. baseline bLRs) enhances an individual's susceptibility to cocaine sensitization and may increase vulnerability to drug seeking and addiction. PMID:22819969

  9. Neonatal Fibroblast Growth Factor Treatment Enhances Cocaine Sensitization

    PubMed Central

    Clinton, Sarah M.; Turner, Cortney A.; Flagel, Shelly B.; Simpson, Danielle N.; Watson, Stanley J.; Akil, Huda

    2012-01-01

    Growth factors are critical in neurodevelopment and neuroplasticity, and recent studies point to their involvement in addiction. We previously reported increased levels of basic fibroblast growth factor (FGF2) in high novelty/drug-seeking rats (bred High Responders, bHR) compared to low novelty/drug-seeking rats (bred Low Responders, bLRs). The present study asked whether an early life manipulation of the FGF system (a single FGF2 injection on postnatal day 2) can impact cocaine sensitization and associated neurobiological markers in adult bHR/bLR animals. Neonatal FGF2- and vehicle-treated bHR/bLR rats were sensitized to cocaine (7 daily injections, 15 mg/kg/day, i.p.) in adulthood. Neonatal FGF2 markedly increased bLRs’ typically low psychomotor sensitization to cocaine (day 7 locomotor response to cocaine), but had little effect on bHRs’ cocaine sensitization. Gene expression studies examined dopaminergic molecules as well as FGF2 and the FGFR1 receptor in cocaine naïve animals, to investigate possible neurobiological alterations induced by neonatal FGF2 exposure that may influence behavioral response to cocaine. bLRs showed decreased tyrosine hydroxylase in the ventral tegmental area (VTA), decreased D1 and increased D2 receptor expression in the nucleus accumbens core, as well as decreased FGF2 in the VTA, substantia nigra, accumbens core, and caudate putamen compared to bHRs. Neonatal FGF2 selectively increased D1 receptor and FGF2 mRNA in the accumbens core of bLRs, which may contribute to their heightened cocaine sensitization. Our results suggest increased FGF2 in the mesodopaminergic circuit (as in baseline bHRs and neonatal FGF2-exposed bLRs vs. baseline bLRs) enhances an individual’s susceptibility to cocaine sensitization and may increase vulnerability to drug seeking and addiction. PMID:22819969

  10. Nerve Growth Factor Inhibits Sympathetic Neurons' Response to an Injury Cytokine

    NASA Astrophysics Data System (ADS)

    Shadiack, Annette M.; Vaccariello, Stacey A.; Sun, Yi; Zigmond, Richard E.

    1998-06-01

    Axonal damage to adult peripheral neurons causes changes in neuronal gene expression. For example, axotomized sympathetic, sensory, and motor neurons begin to express galanin mRNA and protein, and recent evidence suggests that galanin plays a role in peripheral nerve regeneration. Previous studies in sympathetic and sensory neurons have established that galanin expression is triggered by two consequences of nerve transection: the induction of leukemia inhibitory factor (LIF) and the reduction in the availability of the target-derived factor, nerve growth factor. It is shown in the present study that no stimulation of galanin expression occurs following direct application of LIF to intact neurons in the superior cervical sympathetic ganglion. Injection of animals with an antiserum to nerve growth factor concomitant with the application of LIF, on the other hand, does stimulate galanin expression. The data suggest that the response of neurons to an injury factor, LIF, is affected by whether the neurons still receive trophic signals from their targets.

  11. Transforming growth factor beta1 (TGF-beta1) is a preoperative prognostic indicator in advanced gastric carcinoma.

    PubMed Central

    Nakamura, M.; Katano, M.; Kuwahara, A.; Fujimoto, K.; Miyazaki, K.; Morisaki, T.; Mori, M.

    1998-01-01

    It has been generally accepted that transforming growth factor beta1 (TGF-beta1) has both negative and positive effects on tumour growth and progression. This study analysed the prognostic value of TGF-beta1 mRNA in advanced gastric carcinoma. A reverse transcriptase-polymerase chain reaction analysis (RT-PCR) was used for TGF-beta1 in endoscopic biopsy specimens from 42 advanced gastric carcinomas. Thirty specimens expressed TGF-beta1 mRNA while 12 specimens did not. The follow-up duration ranged from 4 to 37 months (mean 22.8 months). TGF-beta1-positive group demonstrated a shorter overall survival compared with the TGF-beta1 -negative group (P=0.0014). A significant correlation was also found in the 32 patients who underwent curative resection (P=0.0048). Significant correlations were found between TGF-beta1 mRNA expression and both stage (P=0.0015) and nodal involvement (P=0.0060). Multivariate analysis demonstrated that only TGF-beta1 mRNA expression (P=0.0306) was an independent prognostic factor. All of ten patients who underwent non-curative resection expressed TGF-beta1 mRNA. Expression of TGF-beta1 mRNA in gastric biopsy specimens may be an important preoperative prognostic variable for advanced gastric carcinoma. Images Figure 1 PMID:9823982

  12. Characterization of insulin-like growth factor I and epidermal growth factor receptors in meningioma

    SciTech Connect

    Kurihara, M.; Tokunaga, Y.; Tsutsumi, K.; Kawaguchi, T.; Shigematsu, K.; Niwa, M.; Mori, K. )

    1989-10-01

    Receptors for insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) were localized and characterized in eight samples of human meningioma (four fibrous, two meningothelial, and two angioblastic types), using quantitative autoradiographic techniques. Effects of both growth factors on deoxyribonucleic acid (DNA) synthesis in the cultured meningioma cells were examined. High numbers of specific binding sites for both IGF-I and EGF were homogeneously present in tissue sections derived from fibrous and meningothelial types of meningiomas, whereas binding sites for these growth factors were not detectable in adjacent leptomeninges. While relatively large numbers of IGF-I binding sites were located in the wall of the intratumoral vasculature, the number of binding sites in the stromal component was lower in angioblastic-type meningiomas, including a low number of EGF binding sites detected only in the stromal portion. Scatchard analysis revealed the presence of a single class of high-affinity binding sites for both IGF-I and EGF in the meningiomas examined (dissociation constant (Kd) = 0.6 to 2.9 nM, and the maximum number of binding sites (Bmax) = 16 to 80 fmol/mg for IGF-I; and Kd = 0.6 to 4.0 nM, Bmax = 3 to 39 fmol/mg for EGF). Both growth factors increased the synthesis of DNA, in a dose-dependent manner, as measured by 3H-thymidine incorporation. The combination of IGF-I and EGF synergistically stimulated the synthesis of DNA, and the effects seen with 10% fetal bovine serum could be reproduced at a concentration of 10(-10) M. These observations can be interpreted to mean that both IGF-I and EGF may be involved in the growth modulation of meningiomas, possibly through paracrine or autocrine mechanisms.

  13. The Roles of Growth Factors in Keratinocyte Migration

    PubMed Central

    Seeger, Mark A.; Paller, Amy S.

    2015-01-01

    Significance: The re-epithelialization of wounded skin requires the rapid and coordinated migration of keratinocytes (KC) into the wound bed. Almost immediately after wounding, cells present at or attracted to the wound site begin to secrete a complex milieu of growth factors. These growth factors exert mitogenic and motogenic effects on KCs, inducing the rapid proliferation and migration of KCs at the wound edge. Recent Advances: New roles for growth factors in KC biology are currently being discovered and investigated. This review will highlight the growth factors, particularly transforming growth factor-α (TGF-α), heparin-binding epidermal growth factor (HB-EGF), insulin-like growth factor 1 (IGF-1), fibroblast growth factor 7 (FGF-7), FGF-10, and hepatocyte growth factor (HGF), which have conclusively been shown to be the most motogenic for KCs. Critical Issues: The cellular and molecular heterogeneity of wounded tissue makes establishing direct relationships between specific growth factors and KC migration difficult in situ. The absence of this complexity in simplified in vitro experimental models of migration makes the clinical relevance of the results obtained from these in vitro studies ambiguous. Future Directions: Deciphering the relationship between growth factors and KC migration is critical for understanding the process of wound healing in normal and disease states. Insights into the basic science of the effects of growth factors on KC migration will hopefully lead to the development of new therapies to treat acute and chronic wounds. PMID:25945284

  14. Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism.

    PubMed Central

    Mead, J E; Fausto, N

    1989-01-01

    We investigated whether transforming growth factor alpha (TGF-alpha) is involved in hepatocyte growth responses both in vivo and in culture. During liver regeneration after partial hepatectomy in rats, TGF-alpha mRNA increased; it reached a maximum (approximately 9-fold higher than normal) at the peak of DNA synthesis. The message and the peptide were localized in hepatocytes and found in higher amounts in hepatocytes obtained from regenerating liver. TGF-alpha caused a 13-fold elevation of DNA synthesis in hepatocytes in primary culture and was slightly more effective than epidermal growth factor. TGF-beta blocked TGF-alpha stimulation when added either simultaneously with TGF-alpha or a day later. TGF-alpha message increased in hepatocytes stimulated to undergo DNA synthesis by TGF-alpha or epidermal growth factor, and the peptide was detected in the culture medium by RIA. In the regenerating liver, the increase in TGF-alpha mRNA during the first day after partial hepatectomy coincided with an increase in epidermal growth factor/TGF-alpha receptor mRNA and a decrease (already reported) in the number of these receptors. We conclude that TGF-alpha may function as a physiological inducer of hepatocyte DNA synthesis during liver regeneration by means of an autocrine mechanism and that its stimulatory effects in this growth process are balanced by the inhibitory action of TGF-beta 1. Images PMID:2922399

  15. The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation.

    PubMed

    Tessier, Shannon N; Audas, Timothy E; Wu, Cheng-Wei; Lee, Stephen; Storey, Kenneth B

    2014-11-01

    Mammalian hibernators survive low body temperatures, ischemia-reperfusion, and restricted nutritional resources via global reductions in energy-expensive cellular processes and selective increases in stress pathways. Consequently, studies that analyze hibernation uncover mechanisms which balance metabolism and support survival by enhancing stress tolerance. We hypothesized processing factors that influence messenger ribonucleic acid (mRNA) maturation and translation may play significant roles in hibernation. We characterized the amino acid sequences of three RNA processing proteins (T cell intracellular antigen 1 (TIA-1), TIA1-related (TIAR), and poly(A)-binding proteins (PABP-1)) from thirteen-lined ground squirrels (Ictidomys tridecemlineatus), which all displayed a high degree of sequence identity with other mammals. Alternate Tia-1 and TiaR gene variants were found in the liver with higher expression of isoform b versus a in both cases. The localization of RNA-binding proteins to subnuclear structures was assessed by immunohistochemistry and confirmed by subcellular fractionation; TIA-1 was identified as a major component of subnuclear structures with up to a sevenfold increase in relative protein levels in the nucleus during hibernation. By contrast, there was no significant difference in the relative protein levels of TIARa/TIARb in the nucleus, and a decrease was observed for TIAR isoforms in cytoplasmic fractions of torpid animals. Finally, we used solubility tests to analyze the formation of reversible aggregates that are associated with TIA-1/R function during stress; a shift towards the soluble fraction (TIA-1a, TIA-1b) was observed during hibernation suggesting enhanced protein aggregation was not present during torpor. The present study identifies novel posttranscriptional regulatory mechanisms that may play a role in reducing translational rates and/or mRNA processing under unfavorable environmental conditions. PMID:24590458

  16. Initiation codon selection is accomplished by a scanning mechanism without crucial initiation factors in Sindbis virus subgenomic mRNA

    PubMed Central

    Sanz, Miguel Angel

    2015-01-01

    Translation initiation of alphavirus subgenomic mRNA (sgmRNA) can occur in the absence of several initiation factors (eIFs) in infected cells; however, the precise translation mechanism is still poorly understood. In this study, we have examined the mechanism of initiation and AUG selection in Sindbis virus (SINV) sgmRNA. Our present findings suggest that sgmRNA is translated via a scanning mechanism, since the presence of a hairpin structure before the initiation codon hampers protein synthesis directed by this mRNA. In addition, translation is partially recovered when an in-frame AUG codon is placed upstream of this hairpin. This scanning process takes place without the participation of eIF4A and active eIF2. These results, combined with our findings through modifying the SINV sgmRNA leader sequence, do not support the possibility of a direct initiation from the start codon without previous scanning, or a shunting mechanism. Moreover, studies carried out with sgmRNAs containing two alternative AUG codons within a good context for translation reveal differences in AUG selection which are dependent on the cellular context and the phosphorylation state of eIF2α. Thus, initiation at the additional AUG is strictly dependent on active eIF2, whereas the genuine AUG codon can start translation following eIF2α inactivation. Collectively, our results suggest that SINV sgmRNA is translated by a scanning mechanism without the potential participation of crucial eIFs. A model is presented that explains the mechanism of initiation of mRNAs bearing two alternative initiation codons. PMID:25404563

  17. Initiation codon selection is accomplished by a scanning mechanism without crucial initiation factors in Sindbis virus subgenomic mRNA.

    PubMed

    Garcia-Moreno, Manuel; Sanz, Miguel Angel; Carrasco, Luis

    2015-01-01

    Translation initiation of alphavirus subgenomic mRNA (sgmRNA) can occur in the absence of several initiation factors (eIFs) in infected cells; however, the precise translation mechanism is still poorly understood. In this study, we have examined the mechanism of initiation and AUG selection in Sindbis virus (SINV) sgmRNA. Our present findings suggest that sgmRNA is translated via a scanning mechanism, since the presence of a hairpin structure before the initiation codon hampers protein synthesis directed by this mRNA. In addition, translation is partially recovered when an in-frame AUG codon is placed upstream of this hairpin. This scanning process takes place without the participation of eIF4A and active eIF2. These results, combined with our findings through modifying the SINV sgmRNA leader sequence, do not support the possibility of a direct initiation from the start codon without previous scanning, or a shunting mechanism. Moreover, studies carried out with sgmRNAs containing two alternative AUG codons within a good context for translation reveal differences in AUG selection which are dependent on the cellular context and the phosphorylation state of eIF2α. Thus, initiation at the additional AUG is strictly dependent on active eIF2, whereas the genuine AUG codon can start translation following eIF2α inactivation. Collectively, our results suggest that SINV sgmRNA is translated by a scanning mechanism without the potential participation of crucial eIFs. A model is presented that explains the mechanism of initiation of mRNAs bearing two alternative initiation codons. PMID:25404563

  18. mRNA biogenesis-related helicase eIF4AIII from Arabidopsis thaliana is an important factor for abiotic stress adaptation.

    PubMed

    Pascuan, Cecilia; Frare, Romina; Alleva, Karina; Ayub, Nicolás Daniel; Soto, Gabriela

    2016-05-01

    Similar to other plant species, Arabidopsis has a huge repertoire of predicted helicases, including the eIF4AIII factor, a putative component of the exon junction complex related to mRNA biogenesis. In this article, we integrated evolutionary and functional approaches to have a better understanding of eIF4AIII function in plants. Phylogenetic analysis showed that the mRNA biogenesis-related helicase eIF4AIII is the ortholog of the stress-related helicases PDH45 from Pisum sativum and MH1 from Medicago sativa, suggesting evolutionary and probably functional equivalences between mRNA biogenesis and stress-related plant helicases. Molecular and genetic analyses confirmed the relevance of eIF4AIII during abiotic stress adaptation in Arabidopsis. Therefore, in addition to its function in mRNA biogenesis, eIF4AIII can play a role in abiotic stress adaptation. PMID:26883227

  19. Endothelial cytosolic proteins bind to the 3' untranslated region of endothelial nitric oxide synthase mRNA: regulation by tumor necrosis factor alpha.

    PubMed Central

    Alonso, J; Sánchez de Miguel, L; Montón, M; Casado, S; López-Farré, A

    1997-01-01

    Changes in endothelial nitric oxide synthase (eNOS) expression may be involved in the endothelium-dependent vasorelaxation dysfunction associated with several vascular diseases. In the present work, we demonstrate that eNOS mRNA contains a previously undescribed cis element in the 3' untranslated region (3' UTR). A U+C-rich segment in the 3' UTR is critical in complex formation with bovine aortic endothelial cell cytosolic proteins. Tumor necrosis factor alpha (TNF-alpha), which destabilizes eNOS mRNA, increased the binding activity of the cytosolic proteins in a time-dependent manner. These data suggest that endothelial cytosolic proteins bind to the 3' UTR of eNOS mRNA. These proteins may play a role in TNF-alpha-induced eNOS mRNA destabilization. PMID:9315630

  20. Heparin-binding growth factor type 1 (acidic fibroblast growth factor): a potential biphasic autocrine and paracrine regulator of hepatocyte regeneration.

    PubMed Central

    Kan, M; Huang, J S; Mansson, P E; Yasumitsu, H; Carr, B; McKeehan, W L

    1989-01-01

    Heparin-binding growth factor type 1 (HBGF-1; sometimes termed acidic fibroblast growth factor) is potentially an important factor in liver regeneration. HBGF-1 alone (half-maximal effect at 60 pM) stimulated hepatocyte DNA synthesis and bound to a high-affinity receptor (Kd = 62 pM; 5000 per cell). Epidermal growth factor (EGF) neutralized or masked the mitogenic effect of HBGF-1 concurrent with appearance of low-affinity HBGF-1 binding sites. HBGF-1 reduced the inhibitory effect of transforming growth factor type beta (TGF-beta) on the EGF stimulus. Nanomolar levels of HBGF-1 decreased the EGF stimulus. An increase in hepatic HBGF-1 gene expression after partial hepatectomy precedes increases in expression of the EGF homolog, TGF-alpha, and nonparenchymal-cell-derived TGF-beta in the regenerating liver. Expression of HBGF-1 mRNA occurs in both hepatocytes and nonparenchymal cells and persists for 7 days in liver tissue after partial hepatectomy. HBGF-1 acting through a high-affinity receptor is a candidate for the early autocrine stimulus that drives hepatocyte DNA synthesis prior to or concurrent with the EGF/TGF-alpha stimulus. It may allow hepatocyte proliferation to proceed in the presence of low levels of TGF-beta. An EGF/TGF-alpha-dependent change in HBGF-1 receptor phenotype and increasing levels of nonparenchymal-cell-derived HBGF-1 and TGF-beta may serve to limit hepatocyte proliferation. Images PMID:2477840

  1. Adipose Stem Cell Microbeads as Production Sources for Chondrogenic Growth Factors

    PubMed Central

    Lee, Christopher S.D.; Nicolini, Anthony M.; Watkins, Elyse A.; Burnsed, Olivia A.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Microencapsulating stem cells in injectable microbeads can enhance delivery and localization, but their ability to act as growth factor production sources is still unknown. To address this concern, growth factor mRNA levels and production from alginate microbeads with encapsulated human adipose stem cells (ASC microbeads) cultured in both growth and chondrogenic media (GM and CM) were measured over a two week period. Human ASCs in microbeads were either commercially purchased (Lonza) or isolated from six human donors and compared to human ASCs on tissue culture polystyrene (TCPS). The effects of crosslinking and alginate compositions on growth factor mRNA levels and production were also determined. Secretion profiles of IGF-I, TGF-β3 and VEGF-A from commercial human ASC microbeads were linear and at a significantly higher rate than TCPS cultures over two weeks. For human ASCs derived from different donors, microencapsulation increased pthlh and both IGF-I and TGF-β3 secretion. CM decreased fgf2 and VEGF-A secretion from ASC microbeads derived from the same donor population. Crosslinking microbeads in BaCl2 instead of CaCl2 did not eliminate microencapsulation’s beneficial effects, but did decrease IGF-I production. Increasing the guluronate content of the alginate microbead increased IGF-I retention. Decreasing alginate molecular weight eliminated the effects microencapsulation had on increasing IGF-I secretion. This study demonstrated that microencapsulation can enhance chondrogenic growth factor production and that chondrogenic medium treatment can decrease angiogenic growth factor production from ASCs, making these cells a potential source for paracrine factors that can stimulate cartilage regeneration. PMID:25705097

  2. Fibroblast growth factor 23 and bone mineralisation

    PubMed Central

    Guo, Yu-Chen; Yuan, Quan

    2015-01-01

    Fibroblast growth factor 23 (FGF23) is a hormone that is mainly secreted by osteocytes and osteoblasts in bone. The critical role of FGF23 in mineral ion homeostasis was first identified in human genetic and acquired rachitic diseases and has been further characterised in animal models. Recent studies have revealed that the levels of FGF23 increase significantly at the very early stages of chronic kidney disease (CKD) and may play a critical role in mineral ion disorders and bone metabolism in these patients. Our recent publications have also shown that FGF23 and its cofactor, Klotho, may play an independent role in directly regulating bone mineralisation instead of producing a systematic effect. In this review, we will discuss the new role of FGF23 in bone mineralisation and the pathophysiology of CKD-related bone disorders. PMID:25655009

  3. Neuropeptides as lung cancer growth factors.

    PubMed

    Moody, Terry W; Moreno, Paola; Jensen, Robert T

    2015-10-01

    This manuscript is written in honor of the Festschrift for Abba Kastin. I met Abba at a Society for Neuroscience meeting and learned that he was Editor-in-Chief of the Journal Peptides. I submitted manuscripts to the journal on "Neuropeptides as Growth Factors in Cancer" and subsequently was named to the Editorial Advisory Board. Over the past 30 years I have published dozens of manuscripts in Peptides and reviewed hundreds of submitted manuscripts. It was always rewarding to interact with Abba, a consummate professional. When I attended meetings in New Orleans I would sometimes go out to dinner with him at the restaurant "Commanders Palace". When I chaired the Summer Neuropeptide Conference we were honored to have him receive the Fleur Strand Award one year in Israel. I think that his biggest editorial contribution has been the "Handbook of Biologically Active Peptides." I served as a Section Editor on "Cancer/Anticancer Peptides" and again found that it was a pleasure working with him. This review focuses on the mechanisms by which bombesin-like peptides, neurotensin and vasoactive intestinal peptide regulate the growth of lung cancer. PMID:25836991

  4. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  5. Epidermal growth factor signaling in transformed cells

    PubMed Central

    Lindsey, Stephan; Langhans, Sigrid A.

    2016-01-01

    Members of the epidermal growth factor receptor (EGFR/ErbB) family play a critical role in normal cell growth and development. However, many ErbB family members, especially EGFR, are aberrantly expressed or deregulated in tumors and are thought to play crucial roles in cancer development and metastatic progression. In this chapter, we provide an overview of key mechanisms contributing to aberrant EGFR/ErbB signaling in transformed cells which results in many phenotypic changes associated with the earliest stages of tumor formation, including several hallmarks of epithelial-to-mesenchymal transition (EMT). These changes often occur through interaction with other major signaling pathways important to tumor progression resulting in a multitude of transcriptional changes that ultimately impact cell morphology, proliferation and adhesion, all of which are crucial for tumor progression. The resulting mesh of signaling networks will need to be taken into account as new regimens are designed for targeting EGFR for therapeutic intervention. As new insights into the molecular mechanisms of the cross-talk of EGFR signaling with other signaling pathways and their role in therapeutic resistance to anti-EGFR therapies are gained a continual reassessment of clinical therapeutic regimes and strategies will be required. Understanding the consequences and complexity of EGF signaling and how it relates to tumor progression is critical for the development of clinical compounds and establishing clinical protocols for the treatment of cancer. PMID:25619714

  6. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  7. A growth factor-responsive gene of murine BALB/c 3T3 cells encodes a protein homologous to human tissue factor

    SciTech Connect

    Hartzell, S.; Ryder, K.; Lanahan, A.; Nathans, D.; Lau, L.F.

    1989-06-01

    Polypeptide growth factors rapidly induce the transcription of a set of genes that appear to mediate cell growth. The authors report that one of the genes induced in BALB/c mouse 3T3 cells encodes a transmembrane protein (mTF) homologous to human tissue factor, which is involved in the proteolytic activation of blood clotting. mTF mRNA is present in many murine tissues and cell lines. The authors' results raise the possibility that mTF may also play a role in cell growth.

  8. Effect of endogenous insulin-like growth factor and stem cell factor on diabetic colonic dysmotility

    PubMed Central

    Wang, Yun; Xu, Xin-Yu; Tang, Yu-Rong; Yang, Wei-Wei; Yuan, Yu-Feng; Ning, Yue-Ji; Yu, Yin-Juan; Lin, Lin

    2013-01-01

    AIM: To investigate whether the reduction of stem cell factor (SCF) is mediated by decreased endogenous insulin-like growth factor (IGF)-1 in diabetic rat colon smooth muscle. METHODS: Sixteen Sprague-Dawley rats were randomly divided into two groups: control group and streptozotocin-induced diabetic group. After 8 wk of streptozotocin administration, colonic motility function and contractility of circular muscle strips were measured. The expression of endogenous IGF-1 and SCF was tested in colonic tissues. Colonic smooth muscle cells were cultured from normal adult rats. IGF-1 siRNA transfection was used to investigate whether SCF expression was affected by endogenous IGF-1 expression in smooth muscle cells, and IGF-1 induced SCF expression effects were studied. The effect of high glucose on the expression of endogenous IGF-1 and SCF was also investigated. RESULTS: Diabetic rats showed prolonged colonic transit time (252 ± 16 min vs 168 ± 9 min, P < 0.01) and weakness of circular muscle contraction (0.81 ± 0.09 g vs 2.48 ± 0.23 g, P < 0.01) compared with the control group. Endogenous IGF-1 and SCF protein expression was significantly reduced in the diabetic colonic muscle tissues. IGF-1 and SCF mRNA expression also showed a paralleled reduction in diabetic rats. In the IGF-1 siRNA transfected smooth muscle cells, SCF mRNA and protein expression was significantly decreased. IGF-1 could induce SCF expression in a concentration and time-dependent manner, mainly through the extracellular-signal-regulated kinase 1/2 signal pathway. High glucose inhibited endogenous IGF-1 and SCF expression and the addition of IGF-1 to the medium reversed the SCF expression. CONCLUSION: Myopathy may resolve in colonic motility dysfunction in diabetic rats. Deficiency of endogenous IGF-1 in colonic smooth muscle cells leads to reduction of SCF expression. PMID:23745035

  9. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  10. Bilirubin modulated cytokines, growth factors and angiogenesis to improve cutaneous wound healing process in diabetic rats.

    PubMed

    Ram, Mahendra; Singh, Vishakha; Kumawat, Sanjay; Kant, Vinay; Tandan, Surendra Kumar; Kumar, Dinesh

    2016-01-01

    Bilirubin has shown cutaneous wound healing potential in some preliminary studies. Here we hypothesize that bilirubin facilitates wound healing in diabetic rats by modulating important healing factors/candidates and antioxidant parameters in a time-dependent manner. Diabetes was induced in male Wistar rats by streptozotocin. In all diabetic rats wounds were created under pentobarbitone anesthesia. All the rats were divided into two groups, of which one (control) was treated with ointment base and other with bilirubin ointment (0.3%). Wound closer measurement and tissue collection were done on days 3, 7, 14 and 19 post-wounding. The relative expressions of hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 alpha (SDF-1α), transforming growth factor- beta1 (TGF-β1()), tumor necrosis factor-α (TNF-α) and interlukin-10 (IL-10) mRNA and proteins and the mRNA of interlukin-1 beta (IL-1β) and matrix metalloprteinase-9 (MMP-9) were determined in the wound tissues. CD-31 staining and collagen content were evaluated by immunohistochemistry and picrosirius red staining, respectively. Histopathological changes were assessed by H&E staining. The per cent wound closer was significantly higher from day 7 onwards in bilirubin-treated rats. HIF-1α, VEGF, SDF-1α, TGF-β1, IL-10 mRNA and protein levels were significantly higher on days 3, 7 and 14 in bilirubin-treated rats. The mRNA expression and protein level of TNF-α and the mRNA of IL-1β and MMP-9 were progressively and markedly reduced in bilirubin-treated rats. The collagen deposition and formation of blood vessels were greater in bilirubin-treated rats. Bilirubin markedly facilitated cutaneous wound healing in diabetic rats by modulating growth factors, cytokines, neovasculogenesis and collagen contents to the wound site. Topical application of bilirubin ointment might be of great use in cutaneous wound healing in diabetic patients. PMID:26679676

  11. A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor

    PubMed Central

    Emanuel, Stuart L; Engle, Linda J; Chao, Ginger; Zhu, Rong-Rong; Cao, Carolyn; Lin, Zheng; Yamniuk, Aaron; Hosbach, Jennifer; Brown, Jennifer; Fitzpatrick, Elizabeth; Gokemeijer, Jochem; Morin, Paul; Morse, Brent; Carvajal, Irvith M; Fabrizio, David; Wright, Martin C; Das Gupta, Ruchira; Gosselin, Michael; Cataldo, Daniel; Ryseck, Rolf P; Doyle, Michael L; Wong, Tai W; Camphausen, Raymond T; Cload, Sharon T; Marsh, H Nicholas; Gottardis, Marco M

    2011-01-01

    Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 1013 Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 µM for the parental clone. Individual optimized Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy. PMID:21099371

  12. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors.

    PubMed Central

    Hatva, E.; Kaipainen, A.; Mentula, P.; Jääskeläinen, J.; Paetau, A.; Haltia, M.; Alitalo, K.

    1995-01-01

    Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7856749

  13. Oestrogen and insulin-like growth factors during the reproduction and growth of the tilapia Oreochromis niloticus and their interactions.

    PubMed

    Baroiller, Jean-François; D'Cotta, Helena; Shved, Natalia; Berishvili, Giorgi; Toguyeni, Aboubacar; Fostier, Alexis; Eppler, Elisabeth; Reinecke, Manfred

    2014-09-01

    Oestrogens and insulin-like growth factors (Igfs) play both a central role in the regulation of reproduction and growth and can interact especially in species showing a clear-cut sex-linked growth dimorphism (SGD) like in tilapia. Aromatase is essential in ovarian differentiation and oogenesis since it controls oestrogen synthesis. During tilapia sex differentiation, aromatase cyp19a1a expression increases from 9 days post-fertilization (dpf), resulting in high oestradiol level. High temperature, exogenous androgens or aromatase inhibitors override genetic sex differentiation inducing testes development through the suppression of cyp19a1a gene expression and aromatase activity. Supplementation with 17ß-oestradiol (E2) of gonadectomized juveniles induced a sustained and higher E2 plasma level than in intact or gonadectomized controls and both sexes showed reduced growth. Juvenile and mature females treated with the aromatase inhibitor 1,4,6-androstatriene-3,17-dione had 19% lower E2 plasma level compared to controls and they showed a 32% increased growth after 28 days of treatment. Altogether, these data suggest that E2 inhibits female growth leading to the SGD. Regarding Igf-1, mRNA and peptide appeared in liver at ∼ 4 dpf and then in organs involved in growth and metabolism, indicating a role in early growth, metabolism and organogenesis. Gonad igf-1 showed an early expression and the peptide could be detected at ∼ 7 dpf in somatic cells. It appeared in germ cells at the onset of ovarian (29 dpf) and testicular (52 dpf) meiosis. In testis, Igf-1 together with steroids may regulate spermatogenesis whereas in ovary it participates in steroidogenesis regulation. Igf-1 and Igf-2 promote proliferation of follicular cells and oocyte maturation. Igf-3 expression is gonad specific and localized in the ovarian granulosa or testicular interstitial cells. In developing gonads igf-3 is up-regulated in males but down-regulated in females. In contrast, bream Gh injections

  14. Polyelectrolyte Complex for Heparin Binding Domain Osteogenic Growth Factor Delivery.

    PubMed

    Wing Moon Lam, Raymond; Abbah, Sunny Akogwu; Ming, Wang; Naidu, Mathanapriya; Ng, Felly; Tao, Hu; Goh Cho Hong, James; Ting, Kang; Hee Kit, Wong

    2016-01-01

    During reconstructive bone surgeries, supraphysiological amounts of growth factors are empirically loaded onto scaffolds to promote successful bone fusion. Large doses of highly potent biological agents are required due to growth factor instability as a result of rapid enzymatic degradation as well as carrier inefficiencies in localizing sufficient amounts of growth factor at implant sites. Hence, strategies that prolong the stability of growth factors such as BMP-2/NELL-1, and control their release could actually lower their efficacious dose and thus reduce the need for larger doses during future bone regeneration surgeries. This in turn will reduce side effects and growth factor costs. Self-assembled PECs have been fabricated to provide better control of BMP-2/NELL-1 delivery via heparin binding and further potentiate growth factor bioactivity by enhancing in vivo stability. Here we illustrate the simplicity of PEC fabrication which aids in the delivery of a variety of growth factors during reconstructive bone surgeries. PMID:27585207

  15. NKX3.1 activates expression of insulin-like growth factor binding protein-3 to mediate insulin-like growth factor-I signaling and cell proliferation.

    PubMed

    Muhlbradt, Erin; Asatiani, Ekaterina; Ortner, Elizabeth; Wang, Antai; Gelmann, Edward P

    2009-03-15

    NKX3.1 is a homeobox gene that codes for a haploinsufficient prostate cancer tumor suppressor. NKX3.1 protein levels are down-regulated in the majority of primary prostate cancer tissues. NKX3.1 expression in PC-3 cells increased insulin-like growth factor binding protein-3 (IGFBP-3) mRNA expression 10-fold as determined by expression microarray analysis. In both stably and transiently transfected PC-3 cells and in LNCaP cells, NKX3.1 expression increased IGFBP-3 mRNA and protein expression. In prostates of Nkx3.1 gene-targeted mice Igfbp-3 mRNA levels correlated with Nkx3.1 copy number. NKX3.1 expression in PC-3 cells attenuated the ability of insulin-like growth factor-I (IGF-I) to induce phosphorylation of type I IGF receptor (IGF-IR), insulin receptor substrate 1, phosphatidylinositol 3-kinase, and AKT. The effect of NKX3.1 on IGF-I signaling was not seen when cells were exposed to long-R3-IGF-I, an IGF-I variant peptide that does not bind to IGFBP-3. Additionally, small interfering RNA-induced knockdown of IGFBP-3 expression partially reversed the attenuation of IGF-IR signaling by NKX3.1 and abrogated NKX3.1 suppression of PC-3 cell proliferation. Thus, there is a close relationship in vitro and in vivo between NKX3.1 and IGFBP-3. The growth-suppressive effects of NKX3.1 in prostate cells are mediated, in part, by activation of IGFBP-3 expression. PMID:19258508

  16. Design of Growth Factor Sequestering Biomaterials

    PubMed Central

    Belair, David G.; Le, Ngoc Nhi; Murphy, William L.

    2014-01-01

    Growth factors (GFs) are major regulatory proteins that can govern cell fate, migration, and organization. Numerous aspects of the cell milieu can modulate cell responses to GFs, and GF regulation is often achieved by the native extracellular matrix (ECM). For example, the ECM can sequester GFs and thereby control GF bioavailability. In addition, GFs can exert distinct effects depending on whether they are sequestered in solution, at two-dimensional interfaces, or within three-dimensional matrices. Understanding how the context of GF sequestering impacts cell function in the native ECM can instruct the design of soluble or insoluble GF sequestering moieties, which can then be used in a variety of bioengineering applications. This Feature Article provides an overview of the natural mechanisms of GF sequestering in the cell milieu, and reviews the recent bioengineering approaches that have sequestered GFs to modulate cell function. Results to date demonstrate that the cell response to GF sequestering depends on the affinity of the sequestering interaction, the spatial proximity of sequestering in relation to cells, the source of the GF (supplemented or endogenous), and the phase of the sequestering moiety (soluble or insoluble). We highlight the importance of context for the future design of biomaterials that can leverage endogenous molecules in the cell milieu and mitigate the need for supplemented factors. PMID:25182455

  17. Regulation of vascular endothelial growth factor expression in human colon cancer by interleukin-1β

    PubMed Central

    Akagi, Y; Liu, W; Xie, K; Zebrowski, B; Shaheen, R M; Ellis, L M

    1999-01-01

    Expression of vascular endothelial growth factor (VEGF), an important angiogenic factor in colon cancer, is tightly regulated by factors in the microenvironment. However, specific factors indigenous to the organ microenvironment of colon cancer growth that regulate VEGF expression in human colon cancer are not well defined. We investigated interleukin-1β (IL-1β) induction of VEGF expression in colon cancer cells and the mechanism by which this occurs. HT29 human colon cancer cells were treated with IL-1β for various periods. Induction of VEGF mRNA by IL-1β peaked at 24 h (> fivefold) and returned to baseline by 48 h. SW620 human colon cancer cells also reached a peak induction of VEGF mRNA 24 h after treatment with IL-1β. VEGF was induced at a dose range between 1 and 20 ng ml−1 of IL-1β. IL-1β induction of VEGF was also confirmed at the protein level. To examine the mechanism for VEGF induction by IL-1β, we transiently transfected VEGF promoter-reporter constructs into HT29 cells. IL-1β increased the activity of the VEGF promoter-reporter construct. Pretreatment of HT29 cells with dactinomycin abrogated the induction of VEGF mRNA by IL-1β. The half-life of VEGF mRNA was not prolonged by treatment with IL-1β. These findings suggest that IL-1β regulates VEGF expression in human colon cancer cells by increasing transcription of the VEGF gene. © 1999 Cancer Research Campaign PMID:10408390

  18. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis.

    PubMed Central

    Yoshida, S; Ono, M; Shono, T; Izumi, H; Ishibashi, T; Suzuki, H; Kuwano, M

    1997-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a macrophage/monocyte-derived polypeptide which modulates the expression of various genes in vascular endothelial cells and induces angiogenesis. However, the underlying mechanism by which TNF-alpha mediates angiogenesis is not completely understood. In this study, we assessed whether TNF-alpha-induced angiogenesis is mediated through TNF-alpha itself or indirectly through other TNF-alpha-induced angiogenesis-promoting factors. Cellular mRNA levels of interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and their receptors were increased after the treatment of human microvascular endothelial cells with TNF-alpha (100 U/ml). TNF-alpha-dependent tubular morphogenesis in vascular endothelial cells was inhibited by the administration of anti-IL-8, anti-VEGF, and anti-bFGF antibodies, and coadministration of all three antibodies almost completely abrogated tubular formation. Moreover, treatment with Sp1, NF-kappaB, and c-Jun antisense oligonucleotides inhibited TNF-alpha-dependent tubular morphogenesis by microvascular endothelial cells. Administration of a NF-kappaB antisense oligonucleotide almost completely inhibited TNF-alpha-dependent IL-8 production and partially abrogated TNF-alpha-dependent VEGF production, and an Sp1 antisense sequence partially inhibited TNF-alpha-dependent production of VEGF. A c-Jun antisense oligonucleotide significantly inhibited TNF-alpha-dependent bFGF production but did not affect the production of IL-8 and VEGF. Administration of an anti-IL-8 or anti-VEGF antibody also blocked TNF-alpha-induced neovascularization in the rabbit cornea in vivo. Thus, angiogenesis by TNF-alpha appears to be modulated through various angiogenic factors, both in vitro and in vivo, and this pathway is controlled through paracrine and/or autocrine mechanisms. PMID:9199336

  19. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro

    NASA Technical Reports Server (NTRS)

    Long, C. J.; Roth, M. R.; Tasheva, E. S.; Funderburgh, M.; Smit, R.; Conrad, G. W.; Funderburgh, J. L.

    2000-01-01

    Keratocytes of the corneal stroma produce a specialized extracellular matrix responsible for corneal transparency. Corneal keratan sulfate proteoglycans (KSPG) are unique products of keratocytes that are down-regulated in corneal wounds and in vitro. This study used cultures of primary bovine keratocytes to define factors affecting KSPG expression in vitro. KSPG metabolically labeled with [(35)S]sulfate decreased during the initial 2-4 days of culture in quiescent cultures with low serum concentrations (0.1%). Addition of fetal bovine serum, fibroblast growth factor-2 (FGF-2), transforming growth factor beta, or platelet derived growth factor all stimulated cell division, but only FGF-2 stimulated KSPG secretion. Combined with serum, FGF-2 also prevented serum-induced KSPG down-regulation. KSPG secretion was lost during serial subculture with or without FGF-2. Expression of KSPG core proteins (lumican, mimecan, and keratocan) was stimulated by FGF-2, and steady state mRNA pools for these proteins, particularly keratocan, were significantly increased by FGF-2 treatment. KSPG expression therefore is supported by exogenous FGF-2 and eliminated by subculture of the cells in presence of serum. FGF-2 stimulates KSPG core protein expression primarily through an increase in mRNA pools.

  20. Intracellular insulin-like growth factor-1 induces Bcl-2 expression in airway epithelial cells.

    PubMed

    Chand, Hitendra S; Harris, Jennifer Foster; Mebratu, Yohannes; Chen, Yangde; Wright, Paul S; Randell, Scott H; Tesfaigzi, Yohannes

    2012-05-01

    Bcl-2, a prosurvival protein, regulates programmed cell death during development and repair processes, and it can be oncogenic when cell proliferation is deregulated. The present study investigated what factors modulate Bcl-2 expression in airway epithelial cells and identified the pathways involved. Microarray analysis of mRNA from airway epithelial cells captured by laser microdissection showed that increased expression of IL-1β and insulin-like growth factor-1 (IGF-1) coincided with induced Bcl-2 expression compared with controls. Treatment of cultured airway epithelial cells with IL-1β and IGF-1 induced Bcl-2 expression by increasing Bcl-2 mRNA stability with no discernible changes in promoter activity. Silencing the IGF-1 expression using short hairpin RNA showed that intracellular IGF-1 (IC-IGF-1) was increasing Bcl-2 expression. Blocking epidermal growth factor receptor or IGF-1R activation also suppressed IC-IGF-1 and abolished the Bcl-2 induction. Induced expression and colocalization of IC-IGF-1 and Bcl-2 were observed in airway epithelial cells of mice exposed to LPS or cigarette smoke and of patients with cystic fibrosis and chronic bronchitis but not in the respective controls. These studies demonstrate that IC-IGF-1 induces Bcl-2 expression in epithelial cells via IGF-1R and epidermal growth factor receptor pathways, and targeting IC-IGF-1 could be beneficial to treat chronic airway diseases. PMID:22461702

  1. Characterization and regulation of insulin-like growth factor binding proteins in human hepatic stellate cells.

    PubMed

    Gentilini, A; Feliers, D; Pinzani, M; Woodruff, K; Abboud, S

    1998-02-01

    Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-beta (TGF-beta) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-beta stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-beta is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal

  2. Autogenous Translational Regulation of the Borna Disease Virus Negative Control Factor X from Polycistronic mRNA Using Host RNA Helicases

    PubMed Central

    Watanabe, Yohei; Ohtaki, Naohiro; Hayashi, Yohei; Ikuta, Kazuyoshi; Tomonaga, Keizo

    2009-01-01

    Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that employs several unique strategies for gene expression. The shortest transcript of BDV, X/P mRNA, encodes at least three open reading frames (ORFs): upstream ORF (uORF), X, and P in the 5′ to 3′ direction. The X is a negative regulator of viral polymerase activity, while the P phosphoprotein is a necessary cofactor of the polymerase complex, suggesting that the translation of X is controlled rigorously, depending on viral replication. However, the translation mechanism used by the X/P polycistronic mRNA has not been determined in detail. Here we demonstrate that the X/P mRNA autogenously regulates the translation of X via interaction with host factors. Transient transfection of cDNA clones corresponding to the X/P mRNA revealed that the X ORF is translated predominantly by uORF-termination-coupled reinitiation, the efficiency of which is upregulated by expression of P. We found that P may enhance ribosomal reinitiation at the X ORF by inhibition of the interaction of the DEAD-box RNA helicase DDX21 with the 5′ untranslated region of X/P mRNA, via interference with its phosphorylation. Our results not only demonstrate a unique translational control of viral regulatory protein, but also elucidate a previously unknown mechanism of regulation of polycistronic mRNA translation using RNA helicases. PMID:19893625

  3. Transcription factors Mix1 and VegT, relocalization of vegt mRNA, and conserved endoderm and dorsal specification in frogs.

    PubMed

    Sudou, Norihiro; Garcés-Vásconez, Andrés; López-Latorre, María A; Taira, Masanori; Del Pino, Eugenia M

    2016-05-17

    Protein expression of the transcription factor genes mix1 and vegt characterized the presumptive endoderm in embryos of the frogs Engystomops randi, Epipedobates machalilla, Gastrotheca riobambae, and Eleutherodactylus coqui, as in Xenopus laevis embryos. Protein VegT was detected in the animal hemisphere of the early blastula in all frogs, and only the animal pole was VegT-negative. This finding stimulated a vegt mRNA analysis in X. laevis eggs and embryos. vegt mRNA was detected in the animal region of X. laevis eggs and early embryos, in agreement with the VegT localization observed in the analyzed frogs. Moreover, a dorso-animal relocalization of vegt mRNA occurred in the egg at fertilization. Thus, the comparative analysis indicated that vegt may participate in dorsal development besides its known roles in endoderm development, and germ-layer specification. Zygotic vegt (zvegt) mRNA was detected as a minor isoform besides the major maternal (mvegt) isoform of the X. laevis egg. In addition, α-amanitin-insensitive vegt transcripts were detected around vegetal nuclei of the blastula. Thus, accumulation of vegt mRNA around vegetal nuclei was caused by relocalization rather than new mRNA synthesis. The localization of vegt mRNA around vegetal nuclei may contribute to the identity of vegetal blastomeres. These and previously reportedly localization features of vegt mRNA and protein derive from the master role of vegt in the development of frogs. The comparative analysis indicated that the strategies for endoderm, and dorsal specification, involving vegt and mix1, have been evolutionary conserved in frogs. PMID:27140624

  4. Endorsement of Growth Factors in Experiential Training Groups

    ERIC Educational Resources Information Center

    Kiweewa, John; Gilbride, Dennis; Luke, Melissa; Seward, Derek

    2013-01-01

    The purpose of this study was to identify student growth factors during a semester long Master's level group counseling class. Results indicated that 12 growth factors accounted for 86% of the total number of critical incidents that participants reported as influencing their personal growth and awareness during the group experience. Two other…

  5. Gene Expression of Growth Factors and Growth Factor Receptors for Potential Targeted Therapy of Canine Hepatocellular Carcinoma

    PubMed Central

    IIDA, Gentoku; ASANO, Kazushi; SEKI, Mamiko; SAKAI, Manabu; KUTARA, Kenji; ISHIGAKI, Kumiko; KAGAWA, Yumiko; YOSHIDA, Orie; TESHIMA, Kenji; EDAMURA, Kazuya; WATARI, Toshihiro

    2013-01-01

    ABSTRACT The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC. PMID:24189579

  6. Identification of sequences within the murine granulocyte-macrophage colony-stimulating factor mRNA 3'-untranslated region that mediate mRNA stabilization induced by mitogen treatment of EL-4 thymoma cells.

    PubMed

    Iwai, Y; Bickel, M; Pluznik, D H; Cohen, R B

    1991-09-25

    Phorbol esters (TPA) and concanavalin A (ConA) are known to induce granulocyte-macrophage colony-stimulating factor (GM-CSF) production in murine thymoma EL-4 cells by mRNA stabilization. The role of the 3'-untranslated region (3'-UTR) in GM-CSF mRNA stabilization induced by TPA and ConA in EL-4 cells was examined by transfection studies using chloramphenicol acetyltransferase (CAT) constructions. The GM-CSF 3'-UTR contains a 63-nucleotide region at its 3' end with repeating ATTTA motifs which is responsible for mRNA degradation in a variety of cell types (Shaw, G., and Kamen, R. (1986) Cell 46, 659-666). We produced constructs containing most of the GM-CSF 3'-UTR (303 nucleotides, pRSV-CATgm) or the 3'-terminal AT-rich region (116 nucleotides, pRSV-CATau) and measured CAT enzyme activity and CAT mRNA after transient transfection into EL-4 and NIH 3T3 cells. Low levels of CAT activity were seen in both cells with either plasmid compared with levels of CAT activity obtained with pRSV-CAT. TPA treatment caused an approximately 10-fold increase in CAT activity and mRNA in EL-4 cells transfected with pRSV-CATgm. No increases were seen in EL-4 cells transfected with pRSV-CATau or pRSV-CAT. No response to TPA was detected in transfected NIH 3T3 cells, indicating that the response to TPA is relatively cell-specific. There was no increase in CAT activity after ConA treatment in EL-4 or NIH 3T3 cells transfected with any of the constructs suggesting that the GM-CSF 3'-UTR lacks elements that can respond alone to ConA. Nuclear run-on and actinomycin D chase experiments in EL-4 cells showed that TPA induces CAT activity via mRNA stabilization. By linker-substitution mutagenesis we show that TPA inducibility depends on a 60-nucleotide region of the 3'-UTR whose 5' end is located 160 nucleotides upstream of the 5' end of the AU-rich region. PMID:1917935

  7. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  8. Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1

    PubMed Central

    Kilchert, Cornelia; Wittmann, Sina; Passoni, Monica; Shah, Sneha; Granneman, Sander; Vasiljeva, Lidia

    2015-01-01

    Summary In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these “decay-promoting” introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA. This mechanism negatively regulates levels of the RNA helicase DDX5/Dbp2 to promote cell survival in response to stress. In contrast, fast removal of decay-promoting introns by co-transcriptional splicing precludes Mmi1 recruitment and relieves negative expression regulation. We propose that decay-promoting introns facilitate the regulation of gene expression. Based on the identification of multiple additional Mmi1 targets, including mRNAs, long non-coding RNAs, and sn/snoRNAs, we suggest a general role in RNA regulation for Mmi1 through transcript degradation. PMID:26670050

  9. Regulation of mRNA Levels by Decay-Promoting Introns that Recruit the Exosome Specificity Factor Mmi1.

    PubMed

    Kilchert, Cornelia; Wittmann, Sina; Passoni, Monica; Shah, Sneha; Granneman, Sander; Vasiljeva, Lidia

    2015-12-22

    In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these "decay-promoting" introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA. This mechanism negatively regulates levels of the RNA helicase DDX5/Dbp2 to promote cell survival in response to stress. In contrast, fast removal of decay-promoting introns by co-transcriptional splicing precludes Mmi1 recruitment and relieves negative expression regulation. We propose that decay-promoting introns facilitate the regulation of gene expression. Based on the identification of multiple additional Mmi1 targets, including mRNAs, long non-coding RNAs, and sn/snoRNAs, we suggest a general role in RNA regulation for Mmi1 through transcript degradation. PMID:26670050

  10. Isolated placental vessel response to vascular endothelial growth factor and placenta growth factor in normal and growth-restricted pregnancy.

    PubMed

    Szukiewicz, Dariusz; Szewczyk, Grzegorz; Watroba, Mateusz; Kurowska, Ewa; Maslinski, Slawomir

    2005-01-01

    Vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF) cause vasodilation. We examined the vasomotor response of isolated placental vessels to VEGF and PlGF in normal (group I) and intrauterine growth retardation (IUGR)-complicated pregnancy (group II). Rings of vessels were prepared in vitro and mounted on the vessel myograph plunged in tissue bath. The magnitude of dilation to increased doses of VEGF and PlGF has been studied. VEGF is a more potent vasodilator than PlGF. Both, VEGF- and PlGF-induced vasorelaxation was diminished in the IUGR (group II) nearly by half, compared to control (group I). Relative placental nitric oxide deficiency, or decreased sensitivity to VEGF and PlGF may contribute to the development of high impedance fetoplacental circulation. PMID:15591804

  11. The Role of Vascular Endothelial Growth Factors and Fibroblast Growth Factors in Angiogenesis during Otitis Media

    PubMed Central

    Husseman, Jacob; Palacios, Sean D.; Rivkin, Alexander Z.; Oehl, Heinz; Ryan, Allen F.

    2012-01-01

    The middle ear response to otitis media includes transformation and hyperplasia of the mucosal epithelium and subepithelial connective tissue. Significant neovascularization is also noted, which occurs both to support the hypertrophied mucosa and to mediate the increased trafficking of leukocytes. We investigated the role of two known potent angiogenic growth factor families, the fibroblast growth factors (FGFs) and vascular endothelial growth factors (VEGFs), in middle ear mucosal angiogenesis. DNA microarrays were used to evaluate the expression of FGFs and VEGFs, as well as their receptors and unique signaling proteins, in the middle ears of mice undergoing a complete course of acute bacterial otitis media. In addition, a member of each family was introduced to the middle ear submucosal compartment of the normal middle ears of guinea pigs, by a continuous-release osmotic minipump system over 1 week. During the course of bacterial otitis media, a significant regulation of a number of genes important for angiogenesis was identified. Histologic evaluation of middle ear mucosa following micropump infusion of both FGF1 and VEGF-A showed significant angiogenesis at the site of infusion in comparison to control saline infusion. These results support a role for FGFs and VEGFs in the neovascularization of the middle ear mucosa during otitis media, and offer a potential avenue for therapeutic intervention. PMID:22104377

  12. Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6

    PubMed Central

    Volz, Yvonne; Koschut, David; Matzke-Ogi, Alexandra; Dietz, Marina S.; Karathanasis, Christos; Richert, Ludovic; Wagner, Moritz G.; Mély, Yves; Heilemann, Mike; Niemann, Hartmut H.; Orian-Rousseau, Véronique

    2015-01-01

    CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs. PMID:26181364

  13. Vascular Endothelial Growth Factor in Eye Disease

    PubMed Central

    Penn, J.S.; Madan, A.; Caldwell, R.B.; Bartoli, M.; Caldwell, R.W.; Hartnett, M.E.

    2012-01-01

    Collectively, angiogenic ocular conditions represent the leading cause of irreversible vision loss in developed countries. In the U.S., for example, retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration are the principal causes of blindness in the infant, working age and elderly populations, respectively. Evidence suggests that vascular endothelial growth factor (VEGF), a 40 kDa dimeric glycoprotein, promotes angiogenesis in each of these conditions, making it a highly significant therapeutic target. However, VEGF is pleiotropic, affecting a broad spectrum of endothelial, neuronal and glial behaviors, and confounding the validity of anti-VEGF strategies, particularly under chronic disease conditions. In fact, among other functions VEGF can influence cell proliferation, cell migration, proteolysis, cell survival and vessel permeability in a wide variety of biological contexts. This article will describe the roles played by VEGF in the pathogenesis of retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. The potential disadvantages of inhibiting VEGF will be discussed, as will the rationales for targeting other VEGF-related modulators of angiogenesis. PMID:18653375

  14. [Epidermal growth factor, innovation and safety].

    PubMed

    Esquirol Caussa, Jordi; Herrero Vila, Elisabeth

    2015-10-01

    Bioidentical recombinant human epidermal growth factor (rhEGF) is available in concentrations and purity suitable for therapeutic use in long time stable formulations. Beneficial effects in several skin pathologies and lesions have been reported (traumatic and surgical wound healing, laser induced wounds, abnormal scars, keloids, radiation or chemotherapy induced dermatitis, post inflammatory hyperpigmentation or for skin aging damage repairing) and also may be considered for the treatment of several oropharingeal and high gastroesophageal tract mucosa diseases (mouth sores, pharyngeal fistulas, ulcers), and several corneal or conjunctive mucosa lesions. rhEGF has not shown any important side or collateral effects in humans or in laboratory experimentation animals, showing optimal tolerability and safety with continuous use for months. Compounding gives advantages of versatility, individualization, personalization, molecular stability, safety and effectiveness in ideal conditions, showing good tissue penetration, both on intact skin and skin lesions that expose the lower planes to the surface. rhEGF compounds can be considered for prevention or as a treatment of diverse skin and mucosa diseases and conditions through compounding preparations. PMID:25433777

  15. Connective tissue growth factor in tumor pathogenesis

    PubMed Central

    2012-01-01

    Key roles for connective tissue growth factor (CTGF/CCN2) are demonstrated in the wound repair process where it promotes myofibroblast differentiation and angiogenesis. Similar mechanisms are active in tumor-reactive stroma where CTGF is expressed. Other potential roles include prevention of hypoxia-induced apoptosis and promoting epithelial-mesenchymal transistion (EMT). CTGF expression in tumors has been associated to both tumor suppression and progression. For example, CTGF expression in acute lymphoblastic leukemia, breast, pancreas and gastric cancer correlates to worse prognosis whereas the opposite is true for colorectal, lung and ovarian cancer. This discrepancy is not yet understood. High expression of CTGF is a hallmark of ileal carcinoids, which are well-differentiated endocrine carcinomas with serotonin production originating from the small intestine and proximal colon. These tumors maintain a high grade of differentiation and low proliferation. Despite this, they are malignant and most patients have metastatic disease at diagnosis. These tumors demonstrate several phenotypes potentially related to CTGF function namely: cell migration, absent tumor cell apoptosis, as well as, reactive and well vascularised myofibroblast rich stroma and fibrosis development locally and in distal organs. The presence of CTGF in other endocrine tumors indicates a role in the progression of well-differentiated tumors. PMID:23259759

  16. Functions of maternal mRNA as a cytoplasmic factor responsible for pole cell formation in Drosophila embryos

    SciTech Connect

    Togashi, S.; Kobayashi, S.; Okada, M.

    1986-12-01

    Injection of mRNA extracted from Drosophila cleavage embryos or mature oocytes restored pole cell-forming ability to embryos that had been deprived of this ability by uv irradiation. However, mRNA extracted from blastoderms did not show the restoration activity. Pole cells thus formed in uv-irradiated embryos bear similarities to normal pole cells both in their morphology and their ability to migrate to the gonadal rudiments. But this mRNA does not appear to be capable of rescuing uv-induced sterility, or inducing pole cells in the anterior polar region.

  17. Eukaryotic Initiation Factor 4G Suppresses Nonsense-Mediated mRNA Decay by Two Genetically Separable Mechanisms

    PubMed Central

    Joncourt, Raphael; Eberle, Andrea B.; Rufener, Simone C.; Mühlemann, Oliver

    2014-01-01

    Nonsense-mediated mRNA decay (NMD), which is best known for degrading mRNAs with premature termination codons (PTCs), is thought to be triggered by aberrant translation termination at stop codons located in an environment of the mRNP that is devoid of signals necessary for proper termination. In mammals, the cytoplasmic poly(A)-binding protein 1 (PABPC1) has been reported to promote correct termination and therewith antagonize NMD by interacting with the eukaryotic release factors 1 (eRF1) and 3 (eRF3). Using tethering assays in which proteins of interest are recruited as MS2 fusions to a NMD reporter transcript, we show that the three N-terminal RNA recognition motifs (RRMs) of PABPC1 are sufficient to antagonize NMD, while the eRF3-interacting C-terminal domain is dispensable. The RRM1-3 portion of PABPC1 interacts with eukaryotic initiation factor 4G (eIF4G) and tethering of eIF4G to the NMD reporter also suppresses NMD. We identified the interactions of the eIF4G N-terminus with PABPC1 and the eIF4G core domain with eIF3 as two genetically separable features that independently enable tethered eIF4G to inhibit NMD. Collectively, our results reveal a function of PABPC1, eIF4G and eIF3 in translation termination and NMD suppression, and they provide additional evidence for a tight coupling between translation termination and initiation. PMID:25148142

  18. Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells

    PubMed Central

    FENG, GANG; WAN, YUQING; BALIAN, GARY; LAURENCIN, CATO T.; LI, XUDONG

    2010-01-01

    The repair of articular cartilage injuries is impeded by the avascular and non-innervated nature of cartilage. Transplantation of autologous chondrocytes has a limited ability to augment the repair process due to the highly differentiated state of chondrocytes and the risks of donor-site morbidity. Mesenchymal stem cells can undergo chondrogenesis in the presence of growth factors for cartilage defect repair. Growth and differentiation factor-5 (GDF5) plays an important role in chondrogenesis. In this study, we examined the effects of GDF5 on chondrogenesis of adipose-derived stem cells (ADSCs) and evaluate the chondrogenic potentials of GDF5 genetically engineered ADSCs using an in vitro pellet culture model. Rat ADSCs were grown as pellet cultures and treated with chondrogenic media (CM). Induction of GDF5 by an adenovirus (Ad-GDF5) was compared with exogenous supplementation of GDF5 (100 ng/ml) and transforming growth factor-β (TGF-β1; 10 ng/ml). The ADSCs underwent chondrogenic differentiation in response to GDF5 exposure as demonstrated by production of proteoglycan, and up-regulation of collagen II and aggrecan at the protein and mRNA level. The chondrogenic potential of a one-time infection with Ad-GDF5 was weaker than exogenous GDF5, but equal to that of TGF-β1. Stimulation with growth factors or CM alone induced transient expression of the mRNA for collagen X, indicating a need for optimization of the CM. Our findings indicate that GDF5 is a potent inducer of chondrogenesis in ADSCs, and that ADSCs genetically engineered to express prochondrogenic growth factors, such as GDF5, may be a promising therapeutic cell source for cartilage tissue engineering. PMID:18569021

  19. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    SciTech Connect

    Kakudo, Natsuko . E-mail: kakudon@takii.kmu.ac.jp; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-07-27

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration.

  20. Transforming growth factor-beta 1 in experimental autoimmune neuritis. Cellular localization and time course.

    PubMed Central

    Kiefer, R.; Funa, K.; Schweitzer, T.; Jung, S.; Bourde, O.; Toyka, K. V.; Hartung, H. P.

    1996-01-01

    Experimental autoimmune neuritis (EAN) is a monophasic inflammatory disorder of the peripheral nervous system that resolves spontaneously by molecular mechanisms as yet unknown. We have investigated whether the immunosuppressive cytokine transforming growth factor-beta 1 (TGF-beta 1) might be endogenously expressed in the peripheral nervous system of Lewis rats with actively induced and adoptive transfer EAN. TGF-beta 1 mRNA was upregulated to high levels in sensory and motor roots, spinal ganglia, and sciatic nerve as revealed by quantitative Northern blot analysis and in situ hybridization histochemistry, with peak levels just preceding the first signs of clinical recovery. TGF-beta 1 mRNA was localized to scattered round cells and dense cellular infiltrates, but only rarely to Schwann cell profiles. Double labeling studies revealed macrophages and subpopulations of T cells as the major cellular source of TGF-beta 1 mRNA. TGF-beta 1 protein was visualized immunocytochemically and localized to infiltrating mononuclear cells with peak expression around the same time as mRNA, in addition to some constitutive expression in axons and Schwann cells. Our studies suggest that the spontaneous recovery observed in Lewis rat EAN might be mediated by the endogenous elaboration of TGF-beta 1 within the peripheral nerve, and that macrophages might control their own cytotoxicity by expressing TGF-beta 1. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8546208

  1. Autocrine and paracrine actions of intestinal fibroblast-derived insulin-like growth factors.

    PubMed

    Simmons, J G; Pucilowska, J B; Lund, P K

    1999-04-01

    Paracrine and autocrine actions of the insulin-like growth factors (IGFs) are inferred by local expression within the bowel. CCD-18Co cells, IEC-6 cells, and immunoneutralization were used to analyze whether IGFs have direct autocrine or paracrine effects on proliferation of cultured intestinal fibroblasts and epithelial cells. Growth factor expression was analyzed by ribonuclease protection assay and RT-PCR. Extracellular matrix (ECM) was analyzed for effects on cell proliferation. CCD-18Co cells express IGF-II mRNAs and low levels of IGF-I mRNA. Conditioned medium from CCD-18Co cells (CCD-CM) stimulated proliferation of IEC-6 and CCD-18Co cells. Neutralization of IGF immunoreactivity in CCD-CM reduced but did not abolish this effect. RT-PCR and immunoneutralization demonstrated that other growth factors contribute to mitogenic activity of CCD-CM. Preincubation of CCD-CM with ECM prepared from IEC-6 or CCD-18Co cells reduced its mitogenic activity. ECM from CCD-18Co cells enhanced growth factor-dependent proliferation of IEC-6 cells. IEC-6 cell ECM inhibited IGF-I action on CCD-18Co cells. We conclude that IGF-II is a potent autocrine mitogen for intestinal fibroblasts. IGF-II interacts with other fibroblast-derived growth factors and ECM to stimulate proliferation of intestinal epithelial cells in a paracrine manner. PMID:10198323

  2. Minocycline inhibits the production of the precursor form of nerve growth factor by retinal microglial cells☆

    PubMed Central

    Yang, Xiaochun; Duan, Xuanchu

    2013-01-01

    A rat model of acute ocular hypertension was established by enhancing the perfusion of balanced salt solution in the anterior chamber of the right eye. Minocycline (90 mg/kg) was administered intraperitoneally into rats immediately after the operation for 3 consecutive days. Immunofluorescence, western blot assay and PCR detection revealed that the expression of the precursor form of nerve growth factor, nerve growth factor and the p75 neurotrophin receptor, and the mRNA expression of nerve growth factor and the p75 neurotrophin receptor, increased after acute ocular hypertension. The number of double-labeled CD11B- and precursor form of nerve growth factor-positive cells, glial fibrillary acidic protein- and p75 neurotrophin receptor-positive cells, glial fibrillary acidic protein- and caspase-3-positive cells in the retina markedly increased after acute ocular hypertension. The above-described expression decreased after minocycline treatment. These results suggested that minocycline inhibited the increased expression of the precursor form of nerve growth factor in microglia, the p75 neurotrophin receptor in astroglia, and protected cells from apoptosis. PMID:25206672

  3. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    PubMed Central

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-01-01

    Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177

  4. Increased epidermal growth factor receptor gene expression by gamma-interferon in a human breast carcinoma cell line.

    PubMed Central

    Hamburger, A. W.; Pinnamaneni, G. D.

    1991-01-01

    The interferons are a group of naturally occurring proteins that inhibit the growth of tumours in vivo and many transformed cell lines in vitro. The mechanisms of action of interferon, however, remain unclear. The IFN induced inhibition of growth of many epithelial cancer cell lines is associated with changes in Epidermal Growth Factor Receptor (EGFR) binding or expression. Therefore, we examined the effect of IFN treatment on the expression of EGFR in a human breast carcinoma cell line, MDA 468. We have found the IFN-gamma inhibited, in a dose dependent fashion, the growth of MDA 468 cells. IFN decreased cell surface binding of 125I-EGF to EGFR by changing receptor number rather than affinity. However, total cellular receptor protein, as measured by immunoprecipitation with monoclonal antibodies, was increased in IFN-treated cells. The half-life of the metabolically labelled receptor was unchanged by treatment with IFN. Increased amounts of EGFR mRNA were observed in MDA 468 cells treated with IFN-gamma for 3 days. The levels of mRNA increased with time in culture, reaching a peak of four times control values after 5 days of treatment. This effect was observable with as little as 10 U ml-1 of IFN-gamma. Treatment of the cells with Actinomycin D to inhibit new RNA synthesis suggested that the stability of EGFR mRNA was not enhanced in IFN-gamma treated cells. The increase in receptor mRNA induced by IFN was not inhibited by cycloheximide. These data suggest IFN-gamma can increase expression of EGFR mRNA and protein in MDA 468 cells. Increased expression of EGFR mRNA and protein by IFN-gamma is associated with inhibition of cell growth. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1906727

  5. Nerve Growth Factor Receptor TrkA Is Expressed by Horizontal and Amacrine Cells During Chicken Retinal Development

    PubMed Central

    KARLSSON, MIRIAM; CLARY, DOUGLAS O.; LEFCORT, FRANCES B.; REICHARDT, LOUIS F.; KARTEN, HARVEY J.; HALLBÖÖK, FINN

    2009-01-01

    Nerve growth factor is known to stimulate neurite outgrowth and support neuronal survival during embryonic development. We have studied the expression of the nerve growth factor receptor, TrkA, at both mRNA and protein levels during the course of chicken retinal development. Furthermore, we have compared the expression of trkA mRNA with that of the 75-kD low-affinity neurotrophin receptor (p75NTR). RNase protection assay identified peak-levels of trkA mRNA in the late embryonic retina. Using in situ hybridization and immunohistochemistry, we found cells expressing TrkA in both the internal and the external part of the inner nuclear layer, corresponding to amacrine and horizontal cells, respectively. The TrkA-expressing amacrine cell has a unistratified dendritic arborization in the second sublamina of the inner plexiform layer, and may represent the stellate amacrine cell described by Cajal. The horizontal cells, possessing arciform dendrite processes in the outer plexiform layer, showed strong TrkA immunoreactivity in both dendrites and cell bodies. During the course of retinal development, the TrkA-expressing amacrine cells decreased in number, whereas the TrkA-expressing horizontal cells persisted. Because nerve growth factor was expressed where the horizontal cells, but not where the amacrine cells were located, these findings raise the question of whether nerve growth factor could locally support the survival of TrkA-expressing interneurons during retinal development. PMID:9779944

  6. Fibroblast Growth Factor Signaling in Metabolic Regulation

    PubMed Central

    Nies, Vera J. M.; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T.; Atkins, Annette R.; Evans, Ronald M.; Jonker, Johan W.; Downes, Michael Robert

    2016-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions. PMID:26834701

  7. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.

    PubMed Central

    Forsythe, J A; Jiang, B H; Iyer, N V; Agani, F; Leung, S W; Koos, R D; Semenza, G L

    1996-01-01

    Expression of vascular endothelial growth factor (VEGF) is induced in cells exposed to hypoxia or ischemia. Neovascularization stimulated by VEGF occurs in several important clinical contexts, including myocardial ischemia, retinal disease, and tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein that activates transcription of the human erythropoietin gene in hypoxic cells. Here we demonstrate the involvement of HIF-1 in the activation of VEGF transcription. VEGF 5'-flanking sequences mediated transcriptional activation of reporter gene expression in hypoxic Hep3B cells. A 47-bp sequence located 985 to 939 bp 5' to the VEGF transcription initiation site mediated hypoxia-inducible reporter gene expression directed by a simian virus 40 promoter element that was otherwise minimally responsive to hypoxia. When reporters containing VEGF sequences, in the context of the native VEGF or heterologous simian virus 40 promoter, were cotransfected with expression vectors encoding HIF-1alpha and HIF-1beta (ARNT [aryl hydrocarbon receptor nuclear translocator]), reporter gene transcription was much greater in both hypoxic and nonhypoxic cells than in cells transfected with the reporter alone. A HIF-1 binding site was demonstrated in the 47-bp hypoxia response element, and a 3-bp substitution eliminated the ability of the element to bind HIF-1 and to activate transcription in response to hypoxia and/or recombinant HIF-1. Cotransfection of cells with an expression vector encoding a dominant negative form of HIF-1alpha inhibited the activation of reporter transcription in hypoxic cells in a dose-dependent manner. VEGF mRNA was not induced by hypoxia in mutant cells that do not express the HIF-1beta (ARNT) subunit. These findings implicate HIF-1 in the activation of VEGF transcription in hypoxic cells. PMID:8756616

  8. Novel Drosophila receptor that binds multiple growth factors

    SciTech Connect

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-05-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10/sup -6/ to 10/sup -8/ M. The 100 kDa protein can be affinity-labeled with these /sup 125/I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by /sup 125/I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors.

  9. Growth factor array fabrication using a color ink jet printer.

    PubMed

    Watanabe, Kohei; Miyazaki, Takeshi; Matsuda, Ryoichi

    2003-04-01

    We have developed a novel method for growth factor analysis using a commercial color ink jet printer to fabricate substrata patterned with growth factors. We prepared substrata with insulin printed in a simple pattern or containing multiple areas of varying quantities of printed insulin. When we cultured the mouse myoblast cell line, C2C12, on the insulin-patterned substrata, the cells were grown in the same pattern with the insulin-printed pattern. Cell culture with the latter substrata demonstrated that quantity control of insulin deposition by a color ink jet printer is possible. For further applications, we developed substrata with insulin-like growth factor-I (IGF-I) and basic fibroblast growth factor (bFGF) spotted in 16 different areas in varying combinations and concentrations (growth factor array). With this growth factor array, C2C12 cells were cultured, and the onset of muscle cell differentiation was monitored for the expression of the myogenic regulator myogenin. The ratio of cells expressing myogenin varied with the doses of IGF-I and bFGF in the sections, demonstrating a feasibility of growth factor array fabrication by a color ink jet printer. Since a printer manipulates several colors, this method can be easily applied to multivariate analyses of growth factors and attachment factors affecting cell growth and differentiation. This method may provide a powerful tool for cell biology and tissue engineering, especially for stem cell research in investigating unknown conditions for differentiation. PMID:12719645

  10. Connective tissue growth factor hammerhead ribozyme attenuates human hepatic stellate cell function

    PubMed Central

    Gao, Run-Ping; Brigstock, David R

    2009-01-01

    AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function. METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-β1 to the culture medium. Semi-quantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen I, while protein levels of each molecule in cell lysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry. RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen I, and an increase in produced and secreted CCN2 or extracellular collagen I protein levels. pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen I protein. Furthermore, the TGF-β1-induced increase in mRNA or protein for CCN2 or collagen I was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase. CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-β1-induced collagen I production in human HSCs and regulates entry of the cells into S phase. PMID:19673024

  11. The expression of apoB mRNA editing factors is not the sole determinant for the induction of editing in differentiating Caco-2 cells

    SciTech Connect

    Galloway, Chad A.; Smith, Harold C.

    2010-01-01

    Apolipoprotein B mRNA is edited at cytidine 6666 in the enterocytes lining the small intestine of all mammals; converting a CAA codon to a UAA stop codon. The conversion is {approx}80% efficient in this tissue and leads to the expression of the truncated protein, ApoB48, essential for secretion of dietary lipid as chylomicrons. Caco-2 cell raft cultures have been used as an in vitro model for the induction of editing activity during human small intestinal cell differentiation. This induction of apoB mRNA editing has been ascribed to the expression of APOBEC-1. In agreement our data demonstrated differentiation-dependent induction of expression of the editing enzyme APOBEC-1 and in addition we show alternative splicing of the essential auxiliary factor ACF. However, transfection of these editing factors in undifferentiated proliferating Caco-2 cells was not sufficient to induce robust apoB mRNA editing activity. Only differentiation of Caco-2 cells could induce more physiological like levels of apoB mRNA editing. The data suggested that additional regulatory mechanism(s) were induced by differentiation that controlled the functional activity of editing factors.

  12. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure.

    PubMed

    Nielsen, R H; Clausen, N M; Schjerling, P; Larsen, J O; Martinussen, T; List, E O; Kopchick, J J; Kjaer, M; Heinemeier, K M

    2014-02-01

    The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and mRNA expression (targets: GAPDH, RPLP0, IGF-IEa, IGF-IR, COL1A1, COL3A1, TGF-β1, TGF-β2, TGF-β3, versican, scleraxis, tenascin C, fibronectin, fibromodulin, decorin) in the Achilles tendon, and the mRNA expression was also measured in calf muscle (same targets as tendon plus IGF-IEb, IGF-IEc). We found that GHR-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon and muscle compared to CTRL. Mean collagen fibril diameter was significantly decreased with both high and low GH/IGF-I signaling, but the GHR-/- mouse tendons were most severely affected with a total loss of the normal bimodal diameter distribution. In conclusion, chronic manipulation of the GH/IGF-I axis influenced both morphology and mRNA levels of selected genes in the muscle-tendon unit of mice. Whereas only moderate structural changes were observed with up-regulation of GH/IGF-I axis, disruption of the GH receptor had pronounced effects upon tendon ultra-structure. PMID:24080228

  13. Thyrotropin inhibits while insulin, epidermal growth factor and tetradecanoyl phorbol acetate stimulate insulin-like growth factor binding protein secretion from sheep thyroid cells.

    PubMed

    Eggo, M C; Bachrach, L K; Brown, A L; Burrow, G N

    1991-01-01

    Six insulin-like growth factor binding proteins (IGFBP) have been identified in the conditioned medium from sheep thyroid cells cultured under serum-free conditions. IGFBPs of 32, 28, 23 and 19 kDa were secreted by cells cultured for 14 days in serum-free and hormone-free medium. The constitutive secretion of IGFBP was inhibited by thyrotropin (TSH, 0.3 mU per mL). The effect was most marked on the secretion of the 28 kDa BP. High insulin concentrations stimulated the secretion of this IGFBP. The stimulatory effects of insulin were inhibited by TSH. Growth hormone treatment decreased the secretion of the 28 kDa protein. Tetradecanoylphorbol-13 acetate (TPA) and epidermal growth factor (EGF) both of which stimulate thyroid cell growth but inhibit differentiated function, markedly stimulated IGFBP secretion and induced the appearance of a 46 and a 150 kDa IGFBP. The effects of EGF and TPA were not identical. A rat IGFBP-2 cDNA reacted with sheep thyroid RNA of approximate size 1.6 kb. TPA treatment increased IGFBP-2 mRNA. Other hormones used to enhance differentiation and growth in thyroid cells in culture i.e. transferrin, somatostatin, cortisol and glycyl-histidyl-lysine acetate had no marked effects on IGFBP secretion nor on TSH-dependent, insulin-mediated iodide uptake and organification and cell growth. We show a correlation between secretion of high molecular weight IGFBP with enhanced growth but decreased function. Conversely, we find a correlation between decreased secretion of the 28 kDa BP and increased growth and function. PMID:1722684

  14. Growth inhibition of head and neck squamous cell carcinoma cells by sgRNA targeting the cyclin D1 mRNA based on TRUE gene silencing.

    PubMed

    Iizuka, Satoshi; Oridate, Nobuhiko; Nashimoto, Masayuki; Fukuda, Satoshi; Tamura, Masato

    2014-01-01

    Head and neck squamous cell carcinoma (HNSCC) exhibits increased expression of cyclin D1 (CCND1). Previous studies have shown a correlation between poor prognosis of HNSCC and cyclin D1 overexpression. tRNase ZL-utilizing efficacious gene silencing (TRUE gene silencing) is one of the RNA-mediated gene expression control technologies that have therapeutic potential. This technology is based on a unique enzymatic property of mammalian tRNase ZL, which is that it can cleave any target RNA at any desired site by recognizing a pre-tRNA-like complex formed between the target RNA and an artificial small guide RNA (sgRNA). In this study, we designed several sgRNAs targeting human cyclin D1 mRNA to examine growth inhibition of HNSCC cells. Transfection of certain sgRNAs decreased levels of cyclin D1 mRNA and protein in HSC-2 and HSC-3 cells, and also inhibited their proliferation. The combination of these sgRNAs and cisplatin showed more than additive inhibition of cancer cell growth. These findings demonstrate that TRUE gene silencing of cyclin D1 leads to inhibition of the growth of HNSCC cells and suggest that these sgRNAs alone or combined with cisplatin may be a useful new therapy for HNSCCs. PMID:25437003

  15. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis

    PubMed Central

    Yan, Chunxia; Yan, Zongyun; Wang, Yizheng; Yan, Xiaoyuan; Han, Yuzhen

    2014-01-01

    The Tudor-SN protein (TSN) is universally expressed and highly conserved in eukaryotes. In Arabidopsis, TSN is reportedly involved in stress adaptation, but the mechanism involved in this adaptation is not understood. Here, we provide evidence that TSN regulates the mRNA levels of GA20ox3, a key enzyme for gibberellin (GA) biosynthesis. The levels of GA20ox3 transcripts decreased in TSN1/TSN2 RNA interference (RNAi) transgenic lines and increased in TSN1 over-expression (OE) transgenic lines. The TSN1 OE lines displayed phenotypes that may be attributed to the overproduction of GA. No obvious defects were observed in the RNAi transgenic lines under normal conditions, but under salt stress conditions these lines displayed slower growth than wild-type (WT) plants. Two mutants of GA20ox3, ga20ox3-1 and -2, also showed slower growth under stress than WT plants. Moreover, a higher accumulation of GA20ox3 transcripts was observed under salt stress. The results of a western blot analysis indicated that higher levels of TSN1 accumulated after salt treatment than under normal conditions. Subcellular localization studies showed that TSN1 was uniformly distributed in the cytoplasm under normal conditions but accumulated in small granules and co-localized with RBP47, a marker protein for stress granules (SGs), in response to salt stress. The results of RNA immunoprecipitation experiments indicated that TSN1 bound GA20ox3 mRNA in vivo. On the basis of these findings, we conclude that TSN is a novel component of plant SGs that regulates growth under salt stress by modulating levels of GA20ox3 mRNA. PMID:25205572

  16. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay

    PubMed Central

    Fatscher, Tobias; Boehm, Volker; Weiche, Benjamin

    2014-01-01

    Nonsense-mediated mRNA decay (NMD) eliminates different classes of mRNA substrates including transcripts with long 3′ UTRs. Current models of NMD suggest that the long physical distance between the poly(A) tail and the termination codon reduces the interaction between cytoplasmic poly(A)-binding protein (PABPC1) and the eukaryotic release factor 3a (eRF3a) during translation termination. In the absence of PABPC1 binding, eRF3a recruits the NMD factor UPF1 to the terminating ribosome, triggering mRNA degradation. Here, we have used the MS2 tethering system to investigate the suppression of NMD by PABPC1. We show that tethering of PABPC1 between the termination codon and a long 3′ UTR specifically inhibits NMD-mediated mRNA degradation. Contrary to the current model, tethered PABPC1 mutants unable to interact with eRF3a still efficiently suppress NMD. We find that the interaction of PABPC1 with eukaryotic initiation factor 4G (eIF4G), which mediates the circularization of mRNAs, is essential for NMD inhibition by tethered PABPC1. Furthermore, recruiting either eRF3a or eIF4G in proximity to an upstream termination codon antagonizes NMD. While tethering of an eRF3a mutant unable to interact with PABPC1 fails to suppress NMD, tethered eIF4G inhibits NMD in a PABPC1-independent manner, indicating a sequential arrangement of NMD antagonizing factors. In conclusion, our results establish a previously unrecognized link between translation termination, mRNA circularization, and NMD suppression, thereby suggesting a revised model for the activation of NMD at termination codons upstream of long 3′ UTR. PMID:25147240

  17. Involvement of Toll-like receptor 2 and epidermal growth factor receptor signaling in epithelial expression of airway remodeling factors.

    PubMed

    Homma, Tetsuya; Kato, Atsushi; Sakashita, Masafumi; Norton, James E; Suh, Lydia A; Carter, Roderick G; Schleimer, Robert P

    2015-04-01

    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti-TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2-dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti-TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α-dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  18. Involvement of Toll-Like Receptor 2 and Epidermal Growth Factor Receptor Signaling in Epithelial Expression of Airway Remodeling Factors

    PubMed Central

    Kato, Atsushi; Sakashita, Masafumi; Norton, James E.; Suh, Lydia A.; Carter, Roderick G.; Schleimer, Robert P.

    2015-01-01

    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti–TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2–dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti–TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α–dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  19. Enhanced Expression of Keratinocyte Growth Factor and Its Receptor Correlates with Venous Invasion in Pancreatic Cancer

    PubMed Central

    Cho, Kazumitsu; Ishiwata, Toshiyuki; Uchida, Eiji; Nakazawa, Nando; Korc, Murray; Naito, Zenya; Tajiri, Takashi

    2007-01-01

    Keratinocyte growth factor (KGF) and KGF receptor (KGFR) have been implicated in cancer growth as well as tissue development and repair. In this study, we examined whether KGF and KGFR have a role in human pancreatic ductal adenocarcinoma (PDAC). KGFR mRNA was expressed in eight pancreatic cancer cell lines, whereas the KGF mRNA was detected in seven of the cell lines and was absent in MIA PaCa-2 cells. KGFR and KGF immunoreactivity were localized in the cancer cells in 41.5 and 34.0% of patients, respectively. There was a significant correlation between KGFR or KGF immunoreactivity and venous invasion and a significant correlation between the presence of both markers and venous invasion, vascular endothelial growth factor (VEGF)-A expression, and poor prognosis. Exogenous KGF increased VEGF-A expression and release in MIA PaCa-2 cells, and PANC-1 cells stably transfected to overexpress KGF-exhibited increased VEGF-A expression. Moreover, short hairpin-KGFR transfection in MIA PaCa-2 cells reduced the stimulatory effect of exogenous KGF on VEGF-A expression. Short hairpin-KGF transfection in KLM-1 cells reduced VEGF-A expression in the cells. KGFR and KGF may act to promote venous invasion and tumor angiogenesis in PDAC, raising the possibility that they may serve as novel therapeutic targets in anti-angiogenic strategies in PDAC. PMID:17525264

  20. Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells.

    PubMed Central

    McClain, D A; Paterson, A J; Roos, M D; Wei, X; Kudlow, J E

    1992-01-01

    We have investigated the regulation of the expression of two growth factors found in vascular smooth muscle, transforming growth factor alpha (TGF alpha) and basic fibroblast growth factor (bFGF). Cells cultured in medium containing 30 mM glucose exhibited a 2-fold increase in TGF alpha mRNA and a 3-fold increase in bFGF mRNA compared with cells grown in normal (5.5 mM) glucose. Glucosamine was more potent than glucose, leading to a 6-fold increase in TGF alpha mRNA. TGF alpha protein levels were also increased by glucosamine treatment, and the predominant species present was the membrane-bound precursor form of TGF alpha. To examine further the regulation of growth factors by sugars, cultured rat aortic smooth muscle cells were transfected with a plasmid construct consisting of a 1.2-kilobase-pair fragment of the TGF alpha promoter linked to a luciferase reporter gene. Increasing the concentration of glucose in the culture medium from 5.5 mM to 30 mM led to a rapid, 1.7-fold increase in the activity of the TGF alpha promoter. Glucosamine was much more potent than glucose in this stimulation, with 2 mM glucosamine causing a 12-fold increase in TGF alpha promoter activity. Insulin had no effect on luciferase activity in either the presence or the absence of added sugars. The glucose response element of the TGF alpha gene maps to a 130-base-pair segment that includes three potential binding sites for the transcription factor Sp1. We conclude that high glucose concentrations such as are reached in diabetes mellitus can stimulate the transcription of the genes for growth factors in vascular smooth muscle cells. This signaling pathway apparently involves the metabolism of glucose to glucosamine. This effect could be representative of nutritional regulation of a family of genes and could contribute to the toxicity of hyperglycemia and the vascular complications of diabetes. Images PMID:1518840

  1. Rapid increase in fibroblast growth factor 21 in protein malnutrition and its impact on growth and lipid metabolism.

    PubMed

    Ozaki, Yori; Saito, Kenji; Nakazawa, Kyoko; Konishi, Morichika; Itoh, Nobuyuki; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Kato, Hisanori; Takenaka, Asako

    2015-11-14

    Protein malnutrition promotes hepatic steatosis, decreases insulin-like growth factor (IGF)-I production and retards growth. To identify new molecules involved in such changes, we conducted DNA microarray analysis on liver samples from rats fed an isoenergetic low-protein diet for 8 h. We identified the fibroblast growth factor 21 gene (Fgf21) as one of the most strongly up-regulated genes under conditions of acute protein malnutrition (P<0·05, false-discovery rate<0·001). In addition, amino acid deprivation increased Fgf21 mRNA levels in rat liver-derived RL-34 cells (P<0·01). These results suggested that amino acid limitation directly increases Fgf21 expression. FGF21 is a polypeptide hormone that regulates glucose and lipid metabolism. FGF21 also promotes a growth hormone-resistance state and suppresses IGF-I in transgenic mice. Therefore, to determine further whether Fgf21 up-regulation causes hepatic steatosis and growth retardation after IGF-I decrease in protein malnutrition, we fed an isoenergetic low-protein diet to Fgf21-knockout (KO) mice. Fgf21-KO did not rescue growth retardation and reduced plasma IGF-I concentration in these mice. Fgf21-KO mice showed greater epididymal white adipose tissue weight and increased hepatic TAG and cholesterol levels under protein malnutrition conditions (P<0·05). Overall, the results showed that protein deprivation directly increased Fgf21 expression. However, growth retardation and decreased IGF-I were not mediated by increased FGF21 expression in protein malnutrition. Furthermore, FGF21 up-regulation rather appears to have a protective effect against obesity and hepatic steatosis in protein-malnourished animals. PMID:26330054

  2. Comparative Anterior Pituitary miRNA and mRNA Expression Profiles of Bama Minipigs and Landrace Pigs Reveal Potential Molecular Network Involved in Animal Postnatal Growth.

    PubMed

    Ye, Rui-Song; Li, Meng; Qi, Qi-En; Cheng, Xiao; Chen, Ting; Li, Chao-Yun; Wang, Song-Bo; Shu, Gang; Wang, Li-Na; Zhu, Xiao-Tong; Jiang, Qing-Yan; Xi, Qian-Yun; Zhang, Yong-Liang

    2015-01-01

    The anterior pituitary is the most important endocrine organ modulating animal postnatal growth, mainly by controlling growth hormone (GH) gene transcription, synthesis, and secretion. As an ideal model for animal postnatal growth studies, the Bama minipig is characterized as having a lower growth performance and fewer individual differences compared with larger pig breeds. In this study, anterior pituitaries from Bama minipig and Landrace pig were used for miRNA and mRNA expression profile analysis using miRNA microarrays and mRNA-seq. Consequently, a total of 222 miRNAs and 12,909 transcripts were detected, and both miRNAs and mRNAs in the two breeds showed high correlation (r > 0.97). Additionally, 41 differentially expressed miRNAs and 2,254 transcripts were identified. Pathways analysis indicated that 32 pathways significantly differed in the two breeds. Importantly, two GH-regulation-signalling pathways, cAMP and inositol 1, 4, 5-triphosphate (IP3), and multiple GH-secretion-related transcripts were significantly down-regulated in Bama minipigs. Moreover, TargetScan and RNAHybrid algorithms were used for predicting differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) interaction. By examining their fold-changes, interestingly, most DE miRNA-DE mRNA target pairs (63.68-71.33%) presented negatively correlated expression pattern. A possible network among miRNAs, mRNAs, and GH-regulation pathways was also proposed. Among them, two miRNA-mRNA interactions (Y-47 targets FSHB; ssc-miR-133a-3p targets GNAI3) were validated by dual-luciferase assay. These data will be helpful in understanding the possible molecular mechanisms involved in animal postnatal growth. PMID:26134288

  3. Comparative Anterior Pituitary miRNA and mRNA Expression Profiles of Bama Minipigs and Landrace Pigs Reveal Potential Molecular Network Involved in Animal Postnatal Growth

    PubMed Central

    Qi, Qi-En; Cheng, Xiao; Chen, Ting; Li, Chao-Yun; Wang, Song-Bo; Shu, Gang; Wang, Li-Na; Zhu, Xiao-Tong; Jiang, Qing-Yan; Xi, Qian-Yun; Zhang, Yong-Liang

    2015-01-01

    The anterior pituitary is the most important endocrine organ modulating animal postnatal growth, mainly by controlling growth hormone (GH) gene transcription, synthesis, and secretion. As an ideal model for animal postnatal growth studies, the Bama minipig is characterized as having a lower growth performance and fewer individual differences compared with larger pig breeds. In this study, anterior pituitaries from Bama minipig and Landrace pig were used for miRNA and mRNA expression profile analysis using miRNA microarrays and mRNA-seq. Consequently, a total of 222 miRNAs and 12,909 transcripts were detected, and both miRNAs and mRNAs in the two breeds showed high correlation (r > 0.97). Additionally, 41 differentially expressed miRNAs and 2,254 transcripts were identified. Pathways analysis indicated that 32 pathways significantly differed in the two breeds. Importantly, two GH-regulation-signalling pathways, cAMP and inositol 1, 4, 5-triphosphate (IP3), and multiple GH-secretion-related transcripts were significantly down-regulated in Bama minipigs. Moreover, TargetScan and RNAHybrid algorithms were used for predicting differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) interaction. By examining their fold-changes, interestingly, most DE miRNA–DE mRNA target pairs (63.68–71.33%) presented negatively correlated expression pattern. A possible network among miRNAs, mRNAs, and GH-regulation pathways was also proposed. Among them, two miRNA-mRNA interactions (Y-47 targets FSHB; ssc-miR-133a-3p targets GNAI3) were validated by dual-luciferase assay. These data will be helpful in understanding the possible molecular mechanisms involved in animal postnatal growth. PMID:26134288

  4. An Exploratory Study of Factors Differentiating Freshmen Educational Growth.

    ERIC Educational Resources Information Center

    Lenning, Oscar T.

    The present study was an exploratory investigation of factors that differentiate students who exhibit "negative educational growth" from a group of equally able students who exhibit marked "positive educational growth." Educational growth was operationally defined as estimated true test-retest change on American College Tests (ACT) composite…

  5. Structure-function Studies of Nucleocytoplasmic Transport of Retroviral Genomic RNA by mRNA Export Factor TAP

    SciTech Connect

    M Teplova; L Wohlbold; N Khin; E Izaurralde; D Patel

    2011-12-31

    mRNA export is mediated by the TAP-p15 heterodimer, which belongs to the family of NTF2-like export receptors. TAP-p15 heterodimers also bind to the constitutive transport element (CTE) present in simian type D retroviral RNAs, and they mediate the export of viral unspliced RNAs to the host cytoplasm. We have solved the crystal structure of the RNA recognition and leucine-rich repeat motifs of TAP bound to one symmetrical half of the CTE RNA. L-shaped conformations of protein and RNA are involved in a mutual molecular embrace on complex formation. We have monitored the impact of structure-guided mutations on binding affinities in vitro and transport assays in vivo. Our studies define the principles by which CTE RNA subverts the mRNA export receptor TAP, thereby facilitating the nuclear export of viral genomic RNAs, and, more generally, provide insights on cargo RNA recognition by mRNA export receptors.

  6. Ambroxol inhibits platelet-derived growth factor production in human monocytic cells.

    PubMed

    Utsugi, Mitsuyoshi; Dobashi, Kunio; Koga, Yasuhiko; Masubuchi, Ken; Shimizu, Yasuo; Endou, Katsuaki; Nakazawa, Tsugio; Mori, Masatomo

    2002-02-01

    Several growth factors, including platelet-derived growth factor (PDGF), have been implicated in the mechanism of lung and airway remodeling. We investigated the effect of ambroxol, trans-4-[(2-amino-3,5-dibromobenzyl) amino] cyclohexanol hydrochloride, on the lipopolysaccharide-induced PDGF production in human monocytic cells, THP-1. Ambroxol inhibited the lipopolysaccharide-induced PDGF-AB production via PDGF-A mRNA expression. Lipopolysaccharide activated p44/42 extracellular signal-regulated kinase (ERK), and ambroxol attenuated the lipopolysaccharide-induced p44/42 ERK activation. Furthermore, mitogen-activated protein kinase kinase (MEK)-1-specific inhibitor, 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD 98059), blocked the lipopolysaccharide-induced p44/42 ERK activation and PDGF production. These findings indicate that ambroxol inhibits the lipopolysaccharide-induced PDGF production due to the suppression of p44/42 ERK activity. PMID:11834245

  7. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  8. Insulin-like growth factor-II and insulin-like growth factor-binding proteins in bovine cystic ovarian disease.

    PubMed

    Rey, F; Rodríguez, F M; Salvetti, N R; Palomar, M M; Barbeito, C G; Alfaro, N S; Ortega, H H

    2010-01-01

    Cystic ovarian disease (COD) is one of the most common reproductive disorders of cattle and is considered to have multifactorial aetiology. An accepted hypothesis involves neuroendocrinological dysfunction of the hypothalamic-pituitary-gonadal axis; however, the role of growth factors in COD has not been extensively investigated. The present study examines the potential role of members of the insulin-like growth factor (IGF) family in COD. Expression of genes encoding IGF-II and insulin-like growth factor-binding proteins (IGFBPs) was examined and the distribution of IGF-II within the follicular wall was assessed immunohistochemically. Finally, the concentration of IGF-II protein was determined in follicular fluid. There was increased IGF-II mRNA in the wall of cystic follicles, mainly associated with granulosa cells. Additionally, there was significantly more IGF-II protein in granulosa and theca cells in cystic follicles, but no change in the concentration of IGF-II in follicular fluid. Total IGFBPs, assessed by western blotting, were similar in different structures. However, by discriminating each IGFBP a decrease was detected in IGFBP-2 expression in cystic follicles that may be related to the observed higher expression of IGF-II. In summary, the present study provides evidence to suggest that COD in cattle is associated with modifications in the IGF-II system. PMID:19959179

  9. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  10. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage.

    PubMed

    Johns, D E; Athanasiou, K A

    2008-09-01

    Tissue-engineered fibrocartilage could become a feasible option for replacing tissues such as the knee meniscus or temporomandibular joint disc. This study employed five growth factors (insulin-like growth factor-I, transforming growth factor-beta1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor) in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs had lower biomechanical and biochemical properties than the controls with no growth factors, suggesting a detrimental effect, but the treatment with insulin-like growth factor-I tended to improve the constructs. Additionally, the 6-week time point was consistently better than that at 3 weeks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  11. Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Zhang, K.; Flanders, K. C.; Phan, S. H.

    1995-01-01

    Bleomycin-induced pulmonary fibrosis is associated with increased lung transforming growth factor-beta (TGF-beta) gene expression, but cellular localization of the source of this expression has not been unequivocally established. In this study, lung fibrosis was induced in rats by endotracheal bleomycin injection on day 0 and, on selected days afterwards, lungs were harvested for in situ hybridization, immunohistochemical and histochemical analyses for TGF-beta 1 mRNA and protein expression, and cell identification. The results show that control lungs express essentially no detectable TGF-beta 1 mRNA or protein in the parenchyma. Before day 3 after bleomycin treatment, scattered bronchiolar epithelial cells, mononuclear cells, and eosinophils expressed elevated levels of TGF-beta 1. Between days 3 and 14, there was a major increase in the number of eosinophils, myofibroblasts, and fibroblasts strongly expressing TGF-beta 1 mRNA and protein. TGF-beta 1-producing cells were predominantly localized within areas of injury and active fibrosis. After day 14, the intensity and number of TGF-beta 1-expressing cells significantly declined and were predominantly found in fibroblasts in fibrotic areas. The expression of TGF-beta 1 protein was generally coincident with that for mRNA with the exception of bronchiolar epithelial cells in which strong protein expression was unaccompanied by a commensurate increase in mRNA. The study demonstrates that myofibroblasts, fibroblasts, and eosinophils represent the major sources of increased lung TGF-beta 1 expression in this model of pulmonary fibrosis. Images Figure 2 Figure 3 Figure 4 PMID:7543734

  12. The effects of angiogenic growth factors on extravillous trophoblast invasion and motility.

    PubMed

    Lash, G E; Cartwright, J E; Whitley, G S; Trew, A J; Baker, P N

    1999-11-01

    There is accumulating evidence that deficient trophoblast invasion of the placental bed spiral arteries is crucial to the pathogenesis of pre-eclampsia and intrauterine growth restriction. However, the factors which regulate the process of trophoblast invasion remain unclear. We have investigated whether extravillous trophoblast invasion and motility are mediated by the angiogenic growth factors, vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). The SGHPL-4 extravillous trophoblast cell line was utilized. Expression of mRNA for the receptors of VEGF and PlGF (KDR and flt-1) was determined using the reverse transcriptase polymerase chain reaction. An in vitro model of invasion assessed the number and length of trophoblast processes invading into an extracellular matrix. The motility of cells under standard culture conditions was also quantified. The effect of the addition of VEGF and PlGF (+/-heparin) on trophoblast invasion and motility was determined. The effect of VEGF and PlGF (+/-heparin) on SGHPL-4 cell proliferation was assessed by cell counts at 24, 48 and 72 h post-addition of growth factor. The SGHPL-4 cells expressed mRNA for the flt-1 but not the KDR receptor. The addition of VEGF resulted in a significant decrease in the number of trophoblast processes formed (P< 0.02); this effect was not influenced by the addition of heparin. However, there was no effect on the length of processes formed in response to VEGF (+/-heparin). The addition of PlGF had no effect on either the number or the length of processes formed. The addition of VEGF increased the motility of the SGHPL-4 cells (P< 0.002); the addition of heparin prevented this VEGF-induced increase in motility. The addition of PlGF had no effect on SGHPL-4 motility (+/-heparin). Neither growth factor had any effect on the proliferative ability of SGHPL-4 cells. Contrary to our hypothesis, we did not find that the angiogenic growth factors, VEGF and PlGF, mediated the in vitro

  13. Targeting the opioid growth factor: opioid growth factor receptor axis for treatment of human ovarian cancer.

    PubMed

    Zagon, Ian S; Donahue, Renee; McLaughlin, Patricia J

    2013-05-01

    The opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis is a biological pathway that is present in human ovarian cancer cells and tissues. OGF, chemically termed [Met(5)]-enkephalin, is an endogenous opioid peptide that interfaces with OGFr to delay cells moving through the cell cycle by upregulation of cyclin-dependent inhibitory kinase pathways. OGF inhibitory activity is dose dependent, receptor mediated, reversible, protein and RNA dependent, but not related to apoptosis or necrosis. The OGF-OGFr axis can be targeted for treatment of human ovarian cancer by (i) administration of exogenous OGF, (ii) genetic manipulation to over-express OGFr and (iii) use of low dosages of naltrexone, an opioid antagonist, which stimulates production of OGF and OGFr for subsequent interaction following blockade of the receptor. The OGF-OGFr axis may be a feasible target for treatment of cancer of the ovary (i) in a prophylactic fashion, (ii) following cytoreduction or (iii) in conjunction with standard chemotherapy for additive effectiveness. In summary, preclinical data support the transition of these novel therapies for treatment of human ovarian cancer from the bench to bedside to provide additional targets for treatment of this devastating disease. PMID:23856908

  14. Extracellular matrix and growth factors in branching morphogenesis

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1993-01-01

    The unifying hypothesis of the NSCORT in gravitational biology postulates that the ECM and growth factors are key interrelated components of a macromolecular regulatory system. The ECM is known to be important in growth and branching morphogenesis of embryonic organs. Growth factors have been detected in the developing embryo, and often the pattern of localization is associated with areas undergoing epithelial-mesenchymal interactions. Causal relationships between these components may be of fundamental importance in control of branching morphogenesis.

  15. Vascular Endothelial Growth Factor is a Secreted Angiogenic Mitogen

    NASA Astrophysics Data System (ADS)

    Leung, David W.; Cachianes, George; Kuang, Wun-Jing; Goeddel, David V.; Ferrara, Napoleone

    1989-12-01

    Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.

  16. Growth factor-eluting technologies for bone tissue engineering.

    PubMed

    Nyberg, Ethan; Holmes, Christina; Witham, Timothy; Grayson, Warren L

    2016-04-01

    Growth factors are essential orchestrators of the normal bone fracture healing response. For non-union defects, delivery of exogenous growth factors to the injured site significantly improves healing outcomes. However, current clinical methods for scaffold-based growth factor delivery are fairly rudimentary, and there is a need for greater spatial and temporal regulation to increase their in vivo efficacy. Various approaches used to provide spatiotemporal control of growth factor delivery from bone tissue engineering scaffolds include physical entrapment, chemical binding, surface modifications, biomineralization, micro- and nanoparticle encapsulation, and genetically engineered cells. Here, we provide a brief review of these technologies, describing the fundamental mechanisms used to regulate release kinetics. Examples of their use in pre-clinical studies are discussed, and their capacities to provide tunable, growth factor delivery are compared. These advanced scaffold systems have the potential to provide safer, more effective therapies for bone regeneration than the systems currently employed in the clinic. PMID:25967594

  17. Factors that affect postnatal bone growth retardation in the twitcher murine model of Krabbe disease

    PubMed Central

    Contreras, Miguel Agustin; Ries, William Louis; Shanmugarajan, Srinivasan; Arboleda, Gonzalo; Singh, Inderjit; Singh, Avtar Kaur

    2010-01-01

    Krabbe disease is an inherited lysosomal disorder in which galactosylsphingosine (psychosine) accumulates mainly in the central nervous system. To gain insight into the possible mechanism(s) that may be participating in the inhibition of the postnatal somatic growth described in the animal model of this disease (twitcher mouse, twi), we studied their femora. This study reports that twi femora are smaller than of those of wild type (wt), and present with abnormality of marrow cellularity, bone deposition (osteoblastic function), and osteoclastic activity. Furthermore, lipidomic analysis indicates altered sphingolipid homeostasis, but without significant changes in the levels of sphingolipid-derived intermediates of cell death (ceramide) or the levels of the osteoclast-osteoblast coupling factor (sphingosine-1-phosphate). However, there was significant accumulation of psychosine in the femora of adult twi animals as compared to wt, without induction of tumor necrosis factor-alpha or interleukin-6. Analysis of insulin-like growth factor-1 (IGF-1) plasma levels, a liver secreted hormone known to play a role in bone growth, indicated a drastic reduction in twi animals when compared to wt. To identify the cause of the decrease, we examined the IGF-1 mRNA expression and protein levels in the liver. The results indicated a significant reduction of IGF-1 mRNA as well as protein levels in the liver from twi as compared to wt littermates. Our data suggest that a combination of endogenous (psychosine) and endocrine (IGF-1) factors play a role in the inhibition of postnatal bone growth in twi mice; and further suggest that derangements of liver function may be contributing, at least in part, to this alteration. PMID:20441793

  18. Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1

    PubMed Central

    LI, GUO-CAI; ZHANG, HONG-WEI; ZHAO, QING-CHUN; SUN, LI; YANG, JIAN-JUN; HONG, LIU; FENG, FAN; CAI, LEI

    2016-01-01

    Mesenchymal stem cells (MSCs) may influence the growth and metastasis of various human malignancies, including hepatocellular carcinoma (HCC). Therefore, the underlying mechanisms via which MSCs are able to affect malignancies require investigation. In the present study, the potential role of MSC in the angiogenesis of HCC was investigated. A total of 17 nude mouse models exhibiting human HCC were used to evaluate the effects of MSC on angiogenesis. A total of 8 mice were injected with human MSCs via the tail vein, and the remaining 9 mice were injected with phosphate-buffered saline as a control. A total of 35 days subsequent to the injection of MSCs, the microvessel density (MVD) of tumors was evaluated by immunostaining, using cluster of differentiation 31 antibody. The mRNA levels of transforming growth factor (TGF)β1, Smad2 and Smad7 were detected using reverse transcription-quantitative polymerase chain reaction. Protein expression levels of TGFβ1 and vascular endothelial growth factor (VEGF) in tumor tissues were analyzed using ELISA. Compared with controls, MVD in MSC-treated mice was significantly increased (28.00±9.19 vs. 18.11±3.30; P=0.006). The levels of TGFβ1 mRNA in the MSC-treated group were 2.15-fold higher compared with the control group (1.27±0.61 vs. 0.59±0.39; P=0.033), and MVD was higher in the group exhibiting increased TGFβ1 mRNA levels compared with the control group (26.50±9.11 vs. 19.44±6.14; P=0.038). In addition, a close correlation between the expression levels of TGFβ1 and VEGF was identified. The results of the present study suggested that MSCs may be capable of enhancing the angiogenesis of HCC, which may be partly due to the involvement of TGFβ1. PMID:26893697

  19. Intrachoroidal Neovascularization in Transgenic Mice Overexpressing Vascular Endothelial Growth Factor in the Retinal Pigment Epithelium

    PubMed Central

    Schwesinger, Catherine; Yee, Charles; Rohan, Richard M.; Joussen, Antonia M.; Fernandez, Antonio; Meyer, Tobias N.; Poulaki, Vassiliki; Ma, Joseph J. K.; Redmond, T. Michael; Liu, Suyan; Adamis, Anthony P.; D’Amato, Robert J.

    2001-01-01

    Choroidal neovascularization in age-related macular degeneration is a frequent and poorly treatable cause of vision loss in elderly Caucasians. This choroidal neovascularization has been associated with the expression of vascular endothelial growth factor (VEGF). In current animal models choroidal neovascularization is induced by subretinal injection of growth factors or vectors encoding growth factors such as VEGF, or by disruption of the Bruch’s membrane/retinal pigment epithelium complex with laser treatment. We wished to establish a transgenic murine model of age-related macular degeneration, in which the overexpression of VEGF by the retinal pigment epithelium induces choroidal neovascularization. A construct consisting of a tissue-specific murine retinal pigment epithelium promoter (RPE65 promoter) coupled to murine VEGF164 cDNA with a rabbit β-globin-3′ UTR was introduced into the genome of albino mice. Transgene mRNA was expressed in the retinal pigment epithelium at all ages peaking at 4 months. The expression of VEGF protein was increased in both the retinal pigment epithelium and choroid. An increase of intravascular adherent leukocytes and vessel leakage was observed. Histopathology revealed intrachoroidal neovascularization that did not penetrate through an intact Bruch’s membrane. These results support the hypothesis that additional insults to the integrity of Bruch’s membrane are required to induce growth of choroidal vessels into the subretinal space as seen in age-related macular degeneration. This model may be useful to screen for inhibitors of choroidal vessel growth. PMID:11238064

  20. Green tea increases the antiinflammatory tristetraprolin and decreases the proinflammatory tumor necrosis factor mRNA levels in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tristetraprolin (TTP) family proteins have antiinflammatory activity by binding to and destabilizing proinflammatory mRNAs such as TNF mRNA, and represent a potential therapeutic target for inflammation-related diseases. Tea has antiinflammatory properties but the molecular mechanism has not been e...

  1. Material factors influencing metallic whisker growth

    NASA Astrophysics Data System (ADS)

    Rodekohr, Chad L.

    Whiskering refers to the formation of slender, long, metallic filaments, much thinner than a human hair, that grow on a metallic thin film surface. They are readily observed for pure and alloyed zinc (Zn), silver (Ag), cadmium (Cd), indium (In), and tin (Sn) surfaces. The longest reported whisker length is 4.5 mm long but most high-aspect ratio whiskers range from 1-500 mum. The focus of this research is upon Sn whiskers. Sn whiskers pose serious reliability problems for the electronics industry and are known to be the source of failure in a wide range of electronic devices, such as nuclear power facilities, heart pacemakers, commercial satellites, aviation radar, telecommunication equipment, and desktop computers. The problem with whiskering has been recently exacerbated by the worldwide shift to lead (Pb) free electronics and the continuing reduction in electrical contact pitches. A thorough understanding of the growth mechanism of Sn whiskers is urgently needed. Currently, there is no universally accepted model that explains the broad range of observations on whiskering. The goals of this research are: (1) to develop a more detailed understanding of the physical mechanisms leading to the initiation and growth of Sn whiskers and (2) to outline reasonable mitigation strategies that could be followed to reduce or eliminate the problem of Sn whiskers. The major contributions of this work are: (1) A reliable method for growing Sn whiskers with predictable incubation times has been developed and tested. (2) A surface oxide is not necessary for whisker growth. (3) Intermetallic compounds (IMC) are not necessary for whisker growth. (4) Smoother, not rougher, substrate surfaces promote whisker growth. (5) Whiskers grow under both compressive and tensile thin film stress states. (6) Whisker growth increases with externally applied compression and tension forces. (7) Sn whiskers are composed of pure Sn except for the expected thin, native Sn oxide on their surface. (8) For

  2. mRNA degradation: an underestimated factor in steady-state transcript levels of cytochrome c oxidase subunits?

    PubMed

    Bremer, Katharina; Moyes, Christopher D

    2014-06-15

    Steady-state mRNA levels are determined by synthesis and degradation; however, changes in mRNA levels are usually attributed to transcription. For cytochrome c oxidase (COX), cold acclimation typically leads to an increase in COX activity while transcript levels for the nuclear-encoded subunits change non-stoichiometrically. Whether those patterns are caused by differences in subunit transcription rates, decay rates or both was not known. We assessed decay rates of transcripts for COX subunits, including representatives that decreased, increased in parallel with COX or increased in excess of COX. Low temperature reduced the decay rate of all transcripts; however, COX subunits displayed higher thermal sensitivity than housekeeping genes. The lower decay rates for COX transcripts might explain some of their increase in response to cold acclimation. The reason for the exaggerated transcript response of two subunits (COX6B-1 and COX7A-2) may be due to decreased decay. However, decay rate differences could not explain the patterns seen with another subunit that did not change in mRNA level with thermal acclimation (COX6A-2). Further, the decay patterns differed between two thermal acclimation experiments, which may explain some of the heterogeneity seen in fish studies. The differences in decay rates suggest that the lack of stoichiometry in mRNA levels is exacerbated by post-transcriptional mechanisms. Collectively, these results suggest that temperature-induced differences in COX subunit mRNA levels and deviations from stoichiometry between them may partially arise from subunit-specific sensitivities to degradation. We suggest that all subunits are controlled by transcription, and that exaggerated responses of some subunits are due to reduced decay rates. PMID:24737751

  3. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  4. EDUCATION AS A FACTOR IN ECONOMIC GROWTH.

    ERIC Educational Resources Information Center

    MACKERTICH, ALEX

    THE VALUE OF AN EDUCATION IN THE ECONOMIC GROWTH OF AN UNDERDEVELOPED COUNTRY (INDIA) WAS INVESTIGATED USING THE CASE STUDY APPROACH. DATA WERE GATHERED AT BOTH THE CENTRAL GOVERNMENT AND VILLAGE LEVELS THROUGH INTERVIEWS WITH INDIAN GOVERNMENT OFFICIALS AND FROM OFFICIAL GOVERNMENT PUBLICATIONS CONCERNING THE NATION'S EDUCATIONAL EFFORTS, AS…

  5. Regulation of insulin-like growth factor-binding protein messenger ribonucleic acid levels in sheep thyroid cells.

    PubMed

    Bachrach, L K; Eggo, M C; Burrow, G N; Liu, F; Tram, T; Powell, D R

    1991-04-01

    The insulin-like growth factors (IGFs) exist primarily bound to cell surface receptors or complexed to specific binding proteins (IGFBPs). The IGFBPs modulate the bioavailability of the IGFs and may enhance or inhibit IGF actions. Several distinct forms of IGFBPs have been described on the basis of size, immunological determinants, and distribution in biological fluids; the IGFBPs may differ as well in their biological function. Sheep thyroid cells produce IGFBPs under hormonal regulation. Cells grown in basal medium or with six-hormone (6H) medium supplements (transferrin, glycyl-histidyl-lysine, hydrocortisone, somatostatin, insulin, and TSH) release nonglycosylated BPs that migrate at 24, 27, 29, and 32 kDa on Western ligand blot. Cells cultured with the thyroid mitogens epidermal growth factor and phorbol ester release additional glycosylated IGFBPs of 40-44 kDa. Immunoprecipitation experiments indicate that 29- and 32-kDa IGFBPs are antigenically related to IGFBP-2, and the 40- to 44-kDa proteins are related to IGFBP-3. Using specific cDNA probes IGFBP-1, -2, and -3, we examined the regulation of IGFBP mRNA levels in sheep thyroid cultures. The rat IGFBP-2 cDNA probe hybridized to an approximately 1.6-kilobase mRNA species in cells under all culture conditions. However, IGFBP-3 mRNA was detectable only in epidermal growth factor- or phorbol ester-treated cells and appeared within 4 h, preceding the release of IGFBP-3 protein into the medium. The 6H additives, which stimulate differentiated function in thyroid cells, inhibited the mRNA levels of both IGFBP-2 and IGFBP-3. IGFBP-1 mRNA was not detectable. The distinct regulation of these IGFBPs suggest that they may play different biological roles in modulating thyroid physiology. PMID:1706262

  6. The bHLH transcription factor Tcf12 (ME1) mRNA is abundantly expressed in Paneth cells of mouse intestine.

    PubMed

    Tanigawa, Yoko; Yakura, Rieko; Komiya, Tohru

    2007-06-01

    Using a large-scale in situ hybridization screening system, we found that mRNA coding for ME1, a basic helix-loop-helix (bHLH) transcription factor, was abundantly expressed in Paneth cells of adult small intestinal crypts. Other functionally related E-protein mRNAs, ME2, and E2A, however, could not be detected in the cells. ME1 mRNA was first detected in the jejunum and ileum two weeks after birth when the number of Paneth cells starts to increase. ME1 is the first identified bHLH transcription factor expressed in the Paneth cells and may be used as a molecular marker and a key molecule for analyzing transcriptional regulation in the Paneth cell. PMID:17405739

  7. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    SciTech Connect

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.; Russell, J.D.; Trupin, J.S.

    1988-01-01

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloid fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.

  8. High-growth-factor implosions (HEP4)

    SciTech Connect

    Landen, O.L.; Keane, C.J.; Hammel, B.A.

    1996-06-01

    In inertial confinement fusion (ICF), the kinetic energy of an ablating, inward-driven, solid spherical shell is used to compressionally heat the low-density fuel inside. For a given drive, the maximum achievable compressed fuel density and temperature - and hence the maximum neutron production rate depend on the degree of shell isentropy and integrity maintained during the compression. Shell integrity will be degraded by hydrodynamic instability growth of areal density imperfections in the capsule. Surface imperfections on the shell grow as a result of the Richtmyer-Meshkov and Rayleigh-Taylor (RT) instabilities when the shell is accelerated by the ablating lower-density plasma. Perturbations at the outer capsule surface are transferred hydrodynamically to the inner surface, where deceleration of the shell by the lower-density fuel gives rise to further RT growth at the pusher-fuel interface.

  9. Enhanced jun gene expression is an early genomic response to transforming growth factor beta stimulation.

    PubMed Central

    Pertovaara, L; Sistonen, L; Bos, T J; Vogt, P K; Keski-Oja, J; Alitalo, K

    1989-01-01

    Transforming growth factor beta (TGF beta) is a multifunctional polypeptide that regulates proliferation, differentiation, and other functions of many cell types. The pathway of TGF beta signal transduction in cells is unknown. We report here that an early effect of TGF beta is an enhancement of the expression of two genes encoding serum- and phorbol ester tumor promoter-regulated transcription factors: the junB gene and the c-jun proto-oncogene, respectively. This stimulation was observed in human lung adenocarcinoma A549 cells which were growth inhibited by TGF beta, AKR-2B mouse embryo fibroblasts which were growth stimulated by TGF beta, and K562 human erythroleukemia cells, which were not appreciably affected in their growth by TGF beta. The increase in jun mRNA occurred with picomolar TGF beta concentrations within 1 h of TGF beta stimulation, reached a peak between 1 and 5 h in different cells, and declined gradually to base-line levels. This mRNA response was followed by a large increase in the biosynthesis of the c-jun protein (AP-1), as shown by metabolic labeling and immunoprecipitation analysis. However, differential and cell type-specific regulation appeared to determine the timing and magnitude of the response of each jun gene in a given cell. In AKR-2B and NIH 3T3 cells, only junB was induced by TGF beta, evidently in a protein synthesis-independent fashion. The junB response to TGF beta was maintained in c-Ha-ras and neu oncogene-transformed cells. Thus, one of the earliest genomic responses to TGF beta may involve nuclear signal transduction and amplification by the junB and c-jun transcription factors in concert with c-fos, which is also induced. The differential activation of the jun genes may explain some of the pleiotropic effects of TGF beta. Images PMID:2725496

  10. Evaluation of Three Growth Factors for TMJ Disc Tissue Engineering

    PubMed Central

    Detamore, Michael S.; Athanasiou, Kyriacos A.

    2015-01-01

    Arguably one of the most complex joints in the body, the temporomandibular joint (TMJ) presents one of the most difficult problems in modern medicine. Tissue engineering, for the TMJ disc in particular, has been proposed as a potential breakthrough treatment strategy for TMJ disorders. Central to tissue engineering is understanding growth factor effects on TMJ disc cells, and to the best of our knowledge, this is the first 3D growth factor study for these cells. The purpose was to examine the effects of high and low concentrations of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF), and transforming growth factor-β1 (TGF-β) on porcine TMJ disc cells. Cells were seeded onto non-woven PGA scaffolds (95% porosity) in spinner flasks, then cultured with a growth factor for 6 weeks. Constructs were analyzed for mechanical and structural integrity, cell number, and matrix biosynthesis. All growth factors improved mechanical and structural integrity compared to the control. IGF and TGF-β were most effective at promoting collagen synthesis, although there were no significant differences in glycosaminoglycan synthesis or cell number between any groups. After considering the economic advantage of IGF over TGF-β, the conclusion of this study is to use IGF in future TMJ disc tissue engineering experiments. PMID:15868729

  11. Growth factors in critical illness: regulation and therapeutic aspects.

    PubMed

    Frost, R A; Lang, C H

    1998-03-01

    The erosion of lean body mass observed during catabolic illness is still a major cause of morbidity and mortality. The known anabolic actions of growth hormone and insulin-like growth factor-I have stimulated interest in the use of these agents to mitigate the loss of muscle protein after injury. This review summarizes advances in our understanding of how nutrition, hormones and proinflammatory cytokines regulate the somatotropic axis in health and disease, and recent studies involving the use of growth hormone or insulin-like growth factor-I in the treatment of critically ill patients. PMID:10565348

  12. Insulin-like growth factor-binding protein-5 inhibits growth and induces differentiation of mouse osteosarcoma cells.

    PubMed

    Schneider, M R; Zhou, R; Hoeflich, A; Krebs, O; Schmidt, J; Mohan, S; Wolf, E; Lahm, H

    2001-10-26

    The precise role of insulin-like growth factor-binding protein-5 (IGFBP-5) in regulating the growth of tumor cells, especially of bone-derived malignant cells, is not well understood. We have investigated the biological activity of IGFBP-5 by transfecting OS/50-K8 mouse osteosarcoma cells with an expression vector containing the osteocalcin promoter and the complete mouse IGFBP-5 cDNA (OC-IGFBP-5). Overexpression of IGFBP-5 mRNA and secretion of increased amounts of bioactive protein in conditioned media were demonstrated in different clones. For the analysis of cell proliferation, three clones exhibiting high levels of IGFBP-5 expression were selected and compared to a mock clone and to nontransfected parental cells. IGFBP-5-secreting clones displayed reduced proliferation under both anchorage-dependent and -independent conditions (P < 0.05). The increase in proliferation observed in IGFBP-5-secreting clones after addition of exogenous IGF was significantly lower than that observed in mock-transfected or parental cells. A similar result was obtained with long[R3]IGF-I which has a low affinity for all IGFBPs, suggesting that the inhibitory effect of IGFBP-5 is only partially IGF-dependent. OC-IGFBP-5-transfected clones expressed significantly higher amounts of osteocalcin mRNA (P < 0.05) and secreted more osteocalcin protein than a mock clone or parental OS-50/K8 cells. Thus, part of the growth-inhibiting effect of IGFBP-5 may be due to an induction of differentiation in these cells. PMID:11606061

  13. Impacts of N-Butylphthalide on expression of growth factors in rats with focal cerebral ischemia

    PubMed Central

    Jiang, Yan; Sun, Leyu; Xuan, Xiaoyan; Wang, Jianping

    2016-01-01

    This study investigates the impacts of n-butylphthalide (NBP) on the expression of vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) in rats with focal cerebral ischemia. The thread embolization method was used to prepare the rat model of cerebral ischemia-reperfusion (CIR). The animals were divided into a sham operation group, a model control group and NBP treatment group. The NBP group was orally administered 25 mg/kg NBP twice a day after the surgery. The immunohistochemistry and reverse transcription-polymerase chain reaction were performed to observe the protein and mRNA expressions of VEGF and TGF-β 16 hours, 1 day and 2 days after inducing CIR. The mRNA and protein expressions of VEGF and TGF-β1 in the model control group and the NBP treatment group were all increased after CIR, and those of the NBP treatment group at each post-CIR time point were higher than the model control group (p < 0.01). After CIR, the expressions of VEGF and TGF-β1 increased, suggesting that VEGF and TGF-β1 exhibited protective effects towards the ischemic brain injuries, and that NBP could upregulate the expressions of VEGF and TGF-β1 in the peri-infarcted area, thus possibly protecting the ischemic brain tissues through this mechanism. PMID:26773175

  14. Transcriptional and posttranslational regulation of insulin-like growth factor binding protein-3 by Akt3

    PubMed Central

    Jin, Quanri; Lee, Hyo-Jong; Min, Hye-Young; Smith, John Kendal; Hwang, Su Jung; Whang, Young Mi; Kim, Woo-Young; Kim, Yeul Hong; Lee, Ho-Young

    2014-01-01

    Insulin-like growth factor (IGF)-dependent and -independent antitumor activities of insulin-like growth factor binding protein-3 (IGFBP-3) have been proposed in human non-small cell lung cancer (NSCLC) cells. However, the mechanism underlying regulation of IGFBP-3 expression in NSCLC cells is not well understood. In this study, we show that activation of Akt, especially Akt3, plays a major role in the mRNA expression and protein stability of IGFBP-3 and thus antitumor activities of IGFBP-3 in NSCLC cells. When Akt was activated by genomic or pharmacologic approaches, IGFBP-3 transcription and protein stability were decreased. Conversely, suppression of Akt increased IGFBP-3 mRNA levels and protein stability in NSCLC cell lines. Characterization of the effects of constitutively active form of each Akt subtype (HA-Akt-DD) on IGFBP-3 expression in NSCLC cells and a xenograft model indicated that Akt3 plays a major role in the Akt-mediated regulation of IGFBP-3 expression and thus suppression of Akt effectively enhances the antitumor activities of IGFBP-3 in NSCLC cells with Akt3 overactivation. Collectively, these data suggest a novel function of Akt3 as a negative regulator of IGFBP-3, indicating the possible benefit of a combined inhibition of IGFBP-3 and Akt3 for the treatment of patients with NSCLC. PMID:24942865

  15. Smad-Independent Transforming Growth Factor-β Regulation of Early Growth Response-1 and Sustained Expression in Fibrosis

    PubMed Central

    Bhattacharyya, Swati; Chen, Shu-Jen; Wu, Minghua; Warner-Blankenship, Matthew; Ning, Hongyan; Lakos, Gabriella; Mori, Yasuji; Chang, Eric; Nihijima, Chihiro; Takehara, Kazuhiro; Feghali-Bostwick, Carol; Varga, John

    2008-01-01

    Transforming growth factor-β (TGF-β) plays a key role in scleroderma pathogenesis. The transcription factor early growth response-1 (Egr-1) mediates the stimulation of collagen transcription elicited by TGF-β and is necessary for the development of pulmonary fibrosis in mice. Here, we report that TGF-β causes a time- and dose-dependent increase in Egr-1 protein and mRNA levels and enhanced transcription of the Egr-1 gene via serum response elements in normal fibroblasts. The ability of TGF-β to stimulate Egr-1 was preserved in Smad3-null mice and in explanted Smad3-null fibroblasts. The response was blocked by a specific mitogen-activated protein kinase kinase 1 (MEK1) inhibitor but not by an ALK5 kinase inhibitor. Furthermore, MEK1 was phosphorylated by TGF-β, which was sufficient to drive Egr-1 transactivation. Stimulation by TGF-β enhanced the transcriptional activity of Elk-1 via the MEK-extracellular signal-regulated kinase 1/2 pathway. Bleomycin-induced scleroderma in the mouse was accompanied by increased Egr-1 accumulation in lesional fibroblasts. Furthermore, biopsies of lesional skin and lung from patients with scleroderma showed increased Egr-1 levels, which were highest in early diffuse disease. Moreover, both Egr-1 mRNA and protein were elevated in explanted scleroderma skin fibroblasts in vitro. Together, these findings define a Smad-independent TGF-β signal transduction mechanism that underlies the stimulation of Egr-1, demonstrate for the first time sustained Egr-1 up-regulation in fibrotic lesions and suggests that Egr-1 has a role in the induction and progression of fibrosis. PMID:18772333

  16. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  17. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  18. Intestinal hormones and growth factors: Effects on the small intestine

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2009-01-01

    There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In partI, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids. PMID:19152442

  19. Motogenic substrata and chemokinetic growth factors for human skin cells

    PubMed Central

    Sutherland, Jennifer; Denyer, Morgan; Britland, Stephen

    2005-01-01

    Extracellular matrix remodelling and accurate spatio-temporal coordination of growth factor expression are two factors that are believed to regulate mitoses and cell migration in developing and regenerating tissues. The present quantitative videomicroscopical study examined the influence of some of the principal components of extracellular matrix and several growth factors that are known to be expressed in dermal wounds on three important facets of human skin cell behaviour in culture. Keratinocytes, melanocytes and dermal fibroblasts (and myofibroblast controls) exhibited varying degrees of substrate adhesion, division and migration depending on the composition of the culture substrate. Substrates that are recognized components of transitional matrices generally accentuated cell adhesion and proliferation, and were motogenic, when compared with serum-treated control surfaces, whereas components of more stable structures such as basement membrane had less influence. Platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and α fibroblastic growth factor (αFGF) all promoted cell proliferation and were chemokinetic to dermal fibroblasts, but not keratinocyte growth factor (KGF) or transforming growth factor β (TGFβ). PDGF, EGF and KGF, but not TGFβ or αFGF, all enhanced proliferation of dermal keratinocytes. The same growth factors, and in addition KGF, all stimulated motility in keratinocytes, but TGFβ and αFGF again had no effect. Developing a better understanding of the interdependency of factors that control crucial cell behaviour may assist those who are interested in the regulation of histogenesis and also inform the development of rational therapeutic strategies for the management of chronic and poorly healed wounds. PMID:16011545

  20. Expression of vascular endothelial growth factor receptors in bovine cystic follicles.

    PubMed

    Isobe, N; Kitabayashi, M; Yoshimura, Y

    2008-06-01

    Cystic follicles have excess fluid derived from blood flow in the theca interna of the follicle; therefore, the vasculature network is related to cystic follicle formation. Vascular endothelial growth factor (VEGF) is a potent stimulator of blood vessel permeability and angiogenesis. The aim of this study was to examine the expression of VEGF receptors proteins and mRNA in cystic follicles to elucidate the VEGF system in cystic follicles. The expression of protein for VEGF receptors; fms-like-tyrosine kinase-1 (Flt-1) and foetal liver kinase-1 (Flk-1) was detected by the immunohistochemical method. The mRNA expression of Flt-1 and Flk-1 in cystic follicles was determined by RT-PCR. Concentration of oestradiol-17beta and progesterone in the follicular fluid of cystic follicles was determined using ELISA. Flt-1- and Flk-1 proteins were localized in granulosa and theca interna cells and endothelial cells of theca layers. The intensity of Flt-1 and Flk-1 immunoreaction was similar among cystic follicles with various ratios of oestradiol-17beta/progesterone concentrations. The expression of Flt-1 and Flk-1 mRNA was similar, regardless of the ratio of oestradiol-17beta to progesterone in follicular fluid. These results demonstrate that cystic follicles have both VEGF receptors in the granulosa and theca interna layers, which may be responsible for the increased permeability of microvessels, causing the accumulation of follicular fluid in cystic follicles. PMID:18042207

  1. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis

    PubMed Central

    Brahma, Manoja K.; Adam, Rene C.; Pollak, Nina M.; Jaeger, Doris; Zierler, Kathrin A.; Pöcher, Nadja; Schreiber, Renate; Romauch, Matthias; Moustafa, Tarek; Eder, Sandra; Ruelicke, Thomas; Preiss-Landl, Karina; Lass, Achim; Zechner, Rudolf; Haemmerle, Guenter

    2014-01-01

    Fibroblast growth factor 21 (FGF21) is a PPARα-regulated gene elucidated in the liver of PPARα-deficient mice or PPARα agonist-treated mice. Mice globally lacking adipose triglyceride lipase (ATGL) exhibit a marked defect in TG catabolism associated with impaired PPARα-activated gene expression in the heart and liver, including a drastic reduction in hepatic FGF21 mRNA expression. Here we show that FGF21 mRNA expression is markedly increased in the heart of ATGL-deficient mice accompanied by elevated expression of endoplasmic reticulum (ER) stress markers, which can be reversed by reconstitution of ATGL expression in cardiac muscle. In line with this assumption, the induction of ER stress increases FGF21 mRNA expression in H9C2 cardiomyotubes. Cardiac FGF21 expression was also induced upon fasting of healthy mice, implicating a role of FGF21 in cardiac energy metabolism. To address this question, we generated and characterized mice with cardiac-specific overexpression of FGF21 (CM-Fgf21). FGF21 was efficiently secreted from cardiomyocytes of CM-Fgf21 mice, which moderately affected cardiac TG homeostasis, indicating a role for FGF21 in cardiac energy metabolism. Together, our results show that FGF21 expression is activated upon cardiac ER stress linked to defective lipolysis and that a persistent increase in circulating FGF21 levels interferes with cardiac and whole body energy homeostasis. PMID:25176985

  2. Insulin-like growth factor (IGF) and IGF binding protein gene expression in multicystic renal dysplasia.

    PubMed

    Matsell, D G; Bennett, T; Armstrong, R A; Goodyer, P; Goodyer, C; Han, V K

    1997-01-01

    Multicystic dysplastic kidney disease is the most common form of renal dysplasia that leads to ESRD in children. This study describes the histopathological changes of multicystic dysplasia that occur from early fetal life to the postnatal period. At 14 wk gestation, early cystic enlargement of various segments of the nephron have been identified, in addition to a displaced metanephric blastema adjacent to zones of normal nephrogenesis. At later stages, the predominant features include cyst enlargement with marked fibromuscular collars, architectural disorganization, and replacement of the interstitium with a disarray of mesenchymal tissue. This study investigated the expression of the mRNA encoding the insulin-like growth factors (IGF) and IGF binding proteins (IGFBP) and have demonstrated IGF-II, IGFBP-2, and IGFBP-3 to be altered. Apart from their expression in the displaced metanephric blastema, both IGF-II and IGFBP-2 were overexpressed in abnormal tissue elements in all kidneys from fetal to postnatal life. IGF-II gene expression was localized to mesenchymal tissue, specifically in the periductal fibromuscular collars. IGFBP-2 mRNA was found to be expressed exclusively in the cyst epithelia of all cysts at all ages studied, whereas IGFBP-3 mRNA was absent from these epithelia. This study details the failure of normal IGF expression in the development of multicystic renal dysplasia and suggests a role for the IGF system in the progressive histopathological changes of this disorder. PMID:9013452

  3. Targeting insulin-like growth factor pathways

    PubMed Central

    Yee, D

    2006-01-01

    Some cancer cells depend on the function of specific molecules for their growth, survival, and metastatic potential. Targeting of these critical molecules has arguably been the best therapy for cancer as demonstrated by the success of tamoxifen and trastuzumab in breast cancer. This review will evaluate the type I IGF receptor (IGF-IR) as a potential target for cancer therapy. As new drugs come forward targeting this receptor system, several issues will need to be addressed in the early clinical trials using these agents. PMID:16450000

  4. Regulation of Transforming Growth Factor β1, Platelet-Derived Growth Factor, and Basic Fibroblast Growth Factor by Silicone Gel Sheeting in Early-Stage Scarring

    PubMed Central

    Choi, Jaehoon; Lee, Eun Hee; Park, Sang Woo

    2015-01-01

    Background Hypertrophic scars and keloids are associated with abnormal levels of growth factors. Silicone gel sheets are effective in treating and preventing hypertrophic scars and keloids. There has been no report on the change in growth factors in the scar tissue following the use of silicone gel sheeting for scar prevention. A prospective controlled trial was performed to evaluate whether growth factors are altered by the application of a silicone gel sheet on a fresh surgical scar. Methods Four of seven enrolled patients completed the study. Transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) were investigated immunohistochemically in biopsies taken from five scars at 4 months following surgery. Results In both the epidermis and the dermis, the expression of TGF-β1 (P=0.042 and P=0.042) and PDGF (P=0.043 and P=0.042) was significantly lower in the case of silicone gel sheet-treated scars than in the case of untreated scars. The expression of bFGF in the dermis was significantly higher in the case of silicone gel sheet-treated scars than in the case of untreated scars (P=0.042), but in the epidermis, the expression of bFGF showed no significant difference between the groups (P=0.655). Conclusions The levels of TGF-β1, PDGF, and bFGF are altered by the silicone gel sheet treatment, which might be one of the mechanisms of action in scar prevention. PMID:25606485

  5. Vascular Endothelial Growth Factor/Placental Growth Factor Heterodimer Levels in Preterm Infants with Bronchopulmonary Dysplasia.

    PubMed

    Procianoy, Renato S; Hentges, Cláudia R; Silveira, Rita C

    2016-04-01

    Background Bronchopulmonary dysplasia (BPD) is associated with changes in pulmonary angiogenesis. However, the role of the vascular endothelial growth factor/placental growth factor (VEGF/PlGF) heterodimer, an antiangiogenic factor, remains unknown in this disease. Objective To compare VEGF/PlGF levels in preterm infants with and without BPD. Methods This study was approved by the Institutional Review Board. Preterm neonates with birth weight <2,000 g and gestational age ≤34 weeks were included. Exclusion criteria were: neonates transferred from other institutions after 72 hours of life; death before blood collection; presence of major congenital malformations, inborn errors of metabolism, and early sepsis; and mothers with multiple pregnancies, TORCH infections, HIV infection, or autoimmune diseases. BPD was defined as the need for oxygen therapy for a period equal to or greater than 28 days, accompanied by radiographic changes compatible with the disease. Blood was collected from neonates in the first 72 hours of life. VEGF/PlGF levels were measured using the enzyme-linked immunosorbent assay method. The chi-square test, t-test, Mann-Whitney test, analysis of variance, and Kruskal-Wallis test were used for statistical analysis. Variables found to be significant in the univariate analysis were included in the multivariate analysis. Results Seventy-three patients were included (19 with BPD, 43 without BPD, and 11 neonates who died in the first 28 days of life), with a mean (SD) gestational age of 30.32 (2.88) weeks and birth weight of 1,288 (462) g. Median VEGF/PlGF levels were higher in the groups with BPD and death in the first 28 days of life than in the group without BPD (16.46 [IQR, 12.19-44.57] and 20.64 [IQR, 13.39-50.22], respectively, vs. 9.14 [IQR, 0.02-20.64] pg/mL], p < 0.001). Higher VEGF/P1GF levels remained associated with BPD and death in the first 28 days of life in the multivariate analysis. Conclusion Higher plasma VEGF

  6. High glucose concentration induces the overexpression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells.

    PubMed Central

    Di Paolo, S.; Gesualdo, L.; Ranieri, E.; Grandaliano, G.; Schena, F. P.

    1996-01-01

    High glucose concentration has been shown to induce the overexpression of transforming growth factor (TGF)-beta 1 mRNA and protein in different cell types, including murine mesangial cells, thus possibly accounting for the expansion of mesangial extracellular matrix observed in diabetic glomerulopathy. In the present study, we evaluated platelet-derived growth factor (PDGF) B-chain and PDGF-beta receptor gene expression in human mesangial cells (HMCs) exposed to different concentrations of glucose and then sought a possible relationship between a PDGF loop and the modulation of TGF-beta 1 expression. HMC [3H]thymidine incorporation was upregulated by 30 mmol/L glucose (HG) up to 24 hours, whereas it was significantly inhibited at later time points. Neutralizing antibodies to PDGF BB abolished the biphasic response to HG, whereas anti-TGF-beta antibodies reversed only the late inhibitory effect of hyperglycemic medium. HG induced an early and persistent increase of PDGF B-chain gene expression, as evaluated by reverse transcriptase polymerase chain reaction, whereas PDGF-beta receptor mRNA increased by twofold after 6 hours, thereafter declining at levels 70% lower than in controls after 24 hours. 125I-Labeled PDGF BB binding studies in HMCs exposed to HG for 24 hours confirmed the decrease of PDGF-beta receptor expression. TGF-beta 1-specific transcripts showed 43 and 78% increases after 24 and 48 hours of incubation in HG, respectively, which was markedly diminished by anti-PDGF BB neutralizing antibodies or suramin. We conclude that HG induces an early activation of a PDGF loop that, in turn, causes an increase of TGF-beta 1 gene expression, thus modulating both HMC proliferation and mesangial matrix production. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:8952542

  7. The role of vascular endothelial growth factor in the tissue specific in vivo growth of prostate cancer cells.

    PubMed

    Krupski, T; Harding, M A; Herce, M E; Gulding, K M; Stoler, M H; Theodorescu, D

    2001-01-01

    Despite the fact that cancer cells can be found in many vascular beds, continued growth of the metastatic tumor focus exhibits a significant degree of 'organ tropism', with only certain organs exhibiting the ravages of metastatic disease. Since a limiting factor to the growth of metastases beyond 2 mm in diameter, may be a lack of angiogenesis, we sought to determine whether tumor overexpression of vascular endothelial growth factor (VEGF), a potent angiogenic factor related to prostate cancer metastasis, is causally related to organ specific tumor growth in a prostate cancer xenograft model. LnCaP-C4-2 is a subline of the human prostate cancer cell line LnCaP which unlike its parent, has a predilection for growth in bone, a common site for human prostate cancer metastasis. LnCaP-C4-2, is tumorigenic when injected intrafemorally in mice but requires co-injection of stromal components (Matrigel) to be tumorigenic in the subcutaneous site. Because of this site-specific tumorigenicity profile and relatively low VEGF mRNA and protein expression, this line was transfected with a full length cDNA encoding the 165 isoform of VEGF. Cells either overexpressing or not expressing the transfected gene were selected for study in vivo and in vitro. Overexpression of VEGF did not seem to affect in vitro cell growth. Such overexpression did affect tumorigenicity and in vivo tumor growth rates when cells were inoculated in the subcutaneus site. Interestingly, the dependency of subcutaneous tumorigenicity on Matrigel co-inoculation was still observed in cells overexpressing VEGF. In contrast to the impact that VEGF overexpression has on subcutaneous tumorigenicity, no such effect was observed when cells were inoculated in orthotopic/prostate (primary) or intrafemoral (metastatic) sites. In view of the importance of tumor-stromal interactions in growth of xenografts, we sought to determine if the host strain is important to the observed tumorigenicity effects of VEGF overexpression

  8. Pituitary and hypothalamic insulin-like growth factor-I (IGF-I) and IGF-I receptor expression in food-deprived rats.

    PubMed

    Olchovsky, D; Song, J; Gelato, M C; Sherwood, J; Spatola, E; Bruno, J F; Berelowitz, M

    1993-06-01

    The present study was designed to evaluate a possible role for the insulin-like growth factor-I (IGF-I) system in mediating the suppression of growth hormone (GH) secretion observed in food-deprived rats by measuring IGF-I mRNA, receptor concentration and receptor mRNA in neuroendocrine tissues (hypothalamus and pituitary). Rats were deprived of food (food-deprived) for 72 h or had free access to food (fed). Tissues were processed for measurement of steady-state levels of: (a) IGF-I and IGF-I receptor mRNA (by solution hybridization/RNase protection assay); (b) IGF-I in serum and tissue extracts (by RIA) and (c) IGF-I displaceable [125I]IGF-I binding to plasma membrane preparations. Food deprivation resulted in decreased serum and liver levels of IGF-I. Kidney IGF-I mRNA levels were reduced 80% in food-deprived rats with a concomitant increase in IGF-I receptor concentration and mRNA levels. Refeeding of food-deprived rats fully normalized these perturbations. Pituitary IGF-I content was reduced 50% in food-deprived rats while IGF-I mRNA levels were unaffected. A modest increase was seen in pituitary IGF-I receptor concentration; however, IGF-I receptor mRNA levels were not changed. Hypothalamic IGF-I mRNA content was reduced in 72 h food-deprived rats while IGF-I receptor binding capacity and mRNA were unaffected. In conclusion, IGF-I mRNA levels are decreased in liver, kidney and hypothalamus together with a reduction in plasma IGF-I in food-deprived rats but is unaffected in anterior pituitary. IGF-I receptor gene expression and binding capacity are coordinately regulated in kidney and hypothalamus, but not in the pituitary.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8349028

  9. A Genome-Wide mRNA Screen and Functional Analysis Reveal FOXO3 as a Candidate Gene for Chicken Growth

    PubMed Central

    Chen, Biao; Xu, Jiguo; He, Xiaomei; Xu, Haiping; Li, Guihuan; Du, Hongli; Nie, Qinghua; Zhang, Xiquan

    2015-01-01

    Chicken growth performance provides direct economic benefits to the poultry industry. However, the underlying genetic mechanisms are unclear. The objective of this study was to identify candidate genes associated with chicken growth and investigate their potential mechanisms. We used RNA-Seq to study the breast muscle transcriptome in high and low tails of Recessive White Rock (WRRh, WRRl) and Xinghua chickens (XHh, XHl). A total of 60, 23, 153 and 359 differentially expressed genes were detected in WRRh vs. WRRl, XHh vs. XHl, WRRh vs. XHh and WRRl vs. XHl, respectively. GO, KEGG pathway and gene network analyses showed that CEBPB, FBXO32, FOXO3 and MYOD1 played key roles in growth. The functions of FBXO32 and FOXO3 were validated. FBXO32 was predominantly expressed in leg muscle, heart and breast muscle. After decreased FBXO32 expression, growth-related genes such as PDK4, IGF2R and IGF2BP3 were significantly down-regulated (P < 0.05). FBXO32 was significantly (P < 0.05) associated with carcass and meat quality traits, but not growth traits. FOXO3 was predominantly expressed in breast and leg muscle. In both of these tissues, the FOXO3 mRNA level in XH was significantly higher than that in WRR chickens with normal body weight (P < 0.05). In DF-1 cells, siRNA knockdown of FOXO3 significantly (P < 0.01) inhibited the MYOD expression and significantly up-regulated (P < 0.01 or P < 0.05) the expression of growth-related genes including CEBPB, FBXO32, GH, GHR, IGF1R, IGF2R, IGF2BP1, IGF2BP3, INSR, PDK1 and PDK4. Moreover, 18 SNPs were identified in FOXO3. G66716193A was significantly (P < 0.05) associated with growth traits. The sites C66716002T, C66716195T and A66716179G were significantly (P < 0.05) associated with growth or carcass traits. These results demonstrated that FOXO3 is a candidate gene influencing chicken growth. Our observations provide new clues to understand the molecular basis of chicken growth. PMID:26366565

  10. Visualization of growth factor receptor sites in rat forebrain

    SciTech Connect

    Quirion, R.; Araujo, D.; Nair, N.P.; Chabot, J.G.

    1988-01-01

    It is now known that various growth factors may also act in the central nervous system. Among them, it has recently been shown that epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) may possess trophic effects in the mammalian brain. We report here on the respective autoradiographic distribution of (/sup 125/I)EGF and (/sup 125/I)IGF-I receptor binding sites in the rat brain, both during ontogeny and in adulthood. It appears that (/sup 125/I)EGF sites are mostly found in the rat forebrain during brain development. On the other hand, (/sup 125/I)IGF-I sites are more widely distributed both during ontogeny and in adulthood. These results reveal the plasticity of the expression of EGF and IGF-I receptor sites in the mammalian brain. This could be relevant for the respective role of these two growth factors in the development and maintenance of neuronal function.

  11. Nerve growth factor partially recovers inflamed skin from stress-induced worsening in allergic inflammation.

    PubMed

    Peters, Eva M J; Liezmann, Christiane; Spatz, Katharina; Daniltchenko, Maria; Joachim, Ricarda; Gimenez-Rivera, Andrey; Hendrix, Sven; Botchkarev, Vladimir A; Brandner, Johanna M; Klapp, Burghard F

    2011-03-01

    Neuroimmune dysregulation characterizes atopic disease, but its nature and clinical impact remain ill-defined. Induced by stress, the neurotrophin nerve growth factor (NGF) may worsen cutaneous inflammation. We therefore studied the role of NGF in the cutaneous stress response in a mouse model for atopic dermatitis-like allergic dermatitis (AlD). Combining several methods, we found that stress increased cutaneous but not serum or hypothalamic NGF in telogen mice. Microarray analysis showed increased mRNAs of inflammatory and growth factors associated with NGF in the skin. In stress-worsened AlD, NGF-neutralizing antibodies markedly reduced epidermal thickening together with NGF, neurotrophin receptor (tyrosine kinase A and p75 neurotrophin receptor), and transforming growth factor-β expression by keratinocytes but did not alter transepidermal water loss. Moreover, NGF expression by mast cells was reduced; this corresponded to reduced cutaneous tumor necrosis factor-α (TNF-α) mRNA levels but not to changes in mast cell degranulation or in the T helper type 1 (Th1)/Th2 cytokine balance. Also, eosinophils expressed TNF receptor type 2, and we observed reduced eosinophil infiltration after treatment with NGF-neutralizing antibodies. We thus conclude that NGF acts as a local stress mediator in perceived stress and allergy and that increased NGF message contributes to worsening of cutaneous inflammation mainly by enhancing epidermal hyperplasia, pro-allergic cytokine induction, and allergy-characteristic cellular infiltration. PMID:21085186

  12. Expression of transforming growth factor-β (TGF-β) in chronic idiopathic cough

    PubMed Central

    Xie, Shaoping; Macedo, Patricia; Hew, Mark; Nassenstein, Christina; Lee, Kang-Yun; Chung, Kian Fan

    2009-01-01

    In patients with chronic idiopathic cough, there is a chronic inflammatory response together with evidence of airway wall remodelling and an increase in airway epithelial nerves expressing TRPV-1. We hypothesised that these changes could result from an increase in growth factors such as TGFβ and neurotrophins. We recruited 13 patients with persistent non-asthmatic cough despite specific treatment of associated primary cause(s), or without associated primary cause, and 19 normal non-coughing volunteers without cough as controls, who underwent fiberoptic bronchoscopy with bronchoalveolar lavage (BAL) and bronchial biopsies. There was a significant increase in the levels of TGFβ in BAL fluid, but not of nerve growth factor(NGF) and brain-derived nerve growth factor(BDNF) compared to normal volunteers. Levels of TFGβ gene and protein expression were assessed in bronchial biopsies. mRNA expression for TGFβ was observed in laser-captured airway smooth muscle and epithelial cells, and protein expression by immunohistochemistry was increased in ASM cells in chronic cough patients, associated with an increase in nuclear expression of the transcription factor, smad 2/3. Subbasement membrane thickness was significantly higher in cough patients compared to normal subjects and there was a positive correlation between TGF-β levels in BAL and basement membrane thickening. TGFβ in the airways may be important in the airway remodelling changes observed in chronic idiopathic cough patients, that could in turn lead to activation of the cough reflex. PMID:19463161

  13. CRITICAL FACTORS CONTROLLING VEGETATION GROWTH ON COMPLETED SANITARY LANDFILLS

    EPA Science Inventory

    This study identifies some of the critical factors that affect tree and shrub growth on reclaimed sanitary landfill sites and determines which woody species are adaptable to the adverse growth conditions of such sites. Trees planted at the Edgeboro Landfill, East Brunswick, New J...

  14. Differential response to L-triiodothyronine of anterior pituitary growth hormone messenger ribonucleic acid (mRNA) and beta-thyrotropin mRNA in a hypothyroid Walker 256 carcinoma-bearing rat model of nonthyroidal disease.

    PubMed

    Hupart, K H; DeFesi, C R; Katz, C P; Shapiro, L E; Surks, M I

    1990-01-01

    To continue our studies on the influence of T3 on TSH regulation in the Walker 256 carcinoma-bearing rat model of nonthyroidal disease, we measured the effect of T3 on pituitary content of beta TSH mRNA and rat (r) TSH in hypothyroid control (C) and tumor-bearing (T) rats. The effect of T3 on TSH regulation was compared to effects on GH mRNA and rGH in the same animals. mRNA content was normalized to a pool of pituitaries from euthyroid rats (= 1.0). beta TSH mRNA increased 18-fold in both hypothyroid C and T rats and then decreased similarly with increasing T3 infusion to a value of 0.1. GH mRNA content decreased to 0.11 +/- 0.01 in hypothyroid C rats, but to only 0.38 +/- 0.02 in T rats (P less than 0.001). The pituitary contents of GH mRNA and rGH in hypothyroid T rats was significantly greater than those in C rats at all T3 infusion rates. These data together with our previous report of decreased nuclear T3 in T rats suggest that regulation of beta TSH mRNA by T3 is intact in T rats, but occurs at a lower concentration of nuclear T3. In contrast, the GH mRNA response is enhanced, displaying differential regulation of these two T3-responsive gene products in this model of nonthyroidal illness. PMID:2294008

  15. Molecular characterization and mRNA expression of hypoxia inducible factor-1 and cognate inhibiting factor in Macrobrachium nipponense in response to hypoxia.

    PubMed

    Sun, Shengming; Xuan, Fujun; Fu, Hongtuo; Ge, Xianping; Zhu, Jian; Qiao, Hui; Jin, Shubo; Zhang, Wenyi

    2016-01-01

    Hypoxia inducible factors (HIFs) are considered to be the master switches of oxygen-dependent gene expression in mammalian species. Currently, very little is known about the function of this important pathway or the molecular structures of key players in the hypoxia-sensitive Oriental River Prawn Macrobrachium nipponense. In this study, HIFs-1α (HIF-1α), -1β (HIF-1β) and HIF 1-alpha inhibitor (FIH-1) from M. nipponense were cloned. The 4903-bp cDNA of M. nipponense HIF-1α (MnHIF-1α) encodes a protein of 1088 aa, M. nipponense HIF-1β (MnHIF-1β) spans 2042bp encoding 663 aa and the 1163bp M. nipponense FIH-1 (MnFIH-1) specifies a polypeptide of 345 aa. MnHIF-1 and MnFIH-1 homologs exhibit significant sequence similarity and share key functional domains with previously described vertebrate and invertebrate isoforms. Phylogenetic analysis identifies that genetic diversification of HIF-1 and FIH-1 occurred within the invertebrate lineage, indicating functional specialization of the oxygen sensing pathways in this group. Quantitative real-time RT-PCR demonstrated that MnHIF-1 and MnFIH-1 mRNA are expressed in different tissues and exhibit transcriptional responses to severe hypoxia in gill and muscle tissue, consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. The role of HIF-1α in response to hypoxia was further investigated in the gills and muscles of prawns using in situ hybridization. These results suggested that HIF-1α plays an important role in oxygen sensing and homeostasis in M. nipponense. PMID:26883381

  16. The Antagonistic Effect of Selenium on Lead-Induced Inflammatory Factors and Heat Shock Proteins mRNA Expression in Chicken Livers.

    PubMed

    Wang, Hao; Li, Shu; Teng, Xiaohua

    2016-06-01

    The aim of this study was to investigate the effect of lead (Pb) poisoning on nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, the messenger RNA (mRNA) levels of inflammatory factors (nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E synthases (PTGEs), and iNOS), heat shock proteins (HSPs) (HSP27, HSP40, HSP60, HSP70, and HSP90), and the antagonistic effect of selenium (Se) on Pb in chicken livers. One hundred eighty 7-day-old male chickens were randomly divided into four groups and were fed commercial diet and drinking water, Na2SeO3-added commercial diet and drinking water, commercial diet and (CH3OO)2Pb-added drinking water, and Na2SeO3-added commercial diet and (CH3OO)2Pb-added drinking water, respectively, for 30, 60, and 90 days. Then, NO content, iNOS activity, and the mRNA levels of NF-κB, TNF-α, COX-2, PTGEs, iNOS, HSP27, HSP40, HSP60, HSP70, and HSP90 were examined in chicken livers. The results showed that Pb poisoning induced NO content, iNOS activity, and mRNA expression of inflammation factors and HSPs in chicken livers. In addition, Se alleviated Pb-induced increase of inflammation factor and HSP expression in chicken livers. PMID:26470710

  17. Hepatocyte growth factor inhibits apoptosis by the profibrotic factor angiotensin II via extracellular signal-regulated kinase 1/2 in endothelial cells and tissue explants.

    PubMed

    Lee, Young H; Marquez, Ana P; Mungunsukh, Ognoon; Day, Regina M

    2010-12-01

    Hepatocyte growth factor (HGF), an endogenous tissue repair factor, attenuates apoptosis in many primary cell types, but the mechanism is not completely understood. Our laboratory demonstrated that angiotensin (Ang) II activates the intrinsic apoptotic pathway in primary endothelial cells (ECs) via reduction of the antiapoptotic protein Bcl-x(L). Ang II decreased Bcl-x(L) mRNA half-life by reducing its binding to nucleolin, a protein that normally binds a 3' AU-rich region and stabilizes Bcl-x(L) mRNA. We hypothesized HGF may block apoptosis induced by Ang II. We used primary EC and ex vivo cultures of rat lung tissue to investigate HGF inhibition of Ang II-induced apoptosis. Our data indicated HGF abrogated Ang II-induced apoptosis by inhibiting cytochrome c release, caspase-3 activation, and DNA fragmentation. RNA-immunoprecipitation experiments demonstrated that HGF stabilized Bcl-x(L) mRNA by increasing nucleolin binding to the 3'-untranslated region that was associated with cytoplasmic localization of nucleolin. Cytoplasmic localization of nucleolin and Bcl-x(L) mRNA stabilization required HGF activation of extracellular signal-regulated kinase (ERK)1/2, but not phosphatidylinositol 3-kinase. HGF also blocked Ang II-induced caspase-3 activation and lactate dehydrogenase release in tissue explants in an ERK-dependent manner. PMID:20926686

  18. Regulation of wound healing by growth factors and cytokines.

    PubMed

    Werner, Sabine; Grose, Richard

    2003-07-01

    Cutaneous wound healing is a complex process involving blood clotting, inflammation, new tissue formation, and finally tissue remodeling. It is well described at the histological level, but the genes that regulate skin repair have only partially been identified. Many experimental and clinical studies have demonstrated varied, but in most cases beneficial, effects of exogenous growth factors on the healing process. However, the roles played by endogenous growth factors have remained largely unclear. Initial approaches at addressing this question focused on the expression analysis of various growth factors, cytokines, and their receptors in different wound models, with first functional data being obtained by applying neutralizing antibodies to wounds. During the past few years, the availability of genetically modified mice has allowed elucidation of the function of various genes in the healing process, and these studies have shed light onto the role of growth factors, cytokines, and their downstream effectors in wound repair. This review summarizes the results of expression studies that have been performed in rodents, pigs, and humans to localize growth factors and their receptors in skin wounds. Most importantly, we also report on genetic studies addressing the functions of endogenous growth factors in the wound repair process. PMID:12843410

  19. Placental restriction of fetal growth decreases IGF1 and leptin mRNA expression in the perirenal adipose tissue of late gestation fetal sheep.

    PubMed

    Duffield, Jaime A; Vuocolo, Tony; Tellam, Ross; Yuen, Bernard S; Muhlhausler, Beverly S; McMillen, I Caroline

    2008-05-01

    Placental restriction (PR) of fetal growth results in a low birth weight and an increased visceral fat mass in postnatal life. We investigated whether PR alters expression of genes that regulate adipogenesis [IGF1, IGF1 receptor (IGF1R), IGF2, IGF2R, proliferator-activated receptor-gamma, retinoid-X-receptor-alpha], adipocyte metabolism (lipoprotein lipase, G3PDH, GAPDH) and adipokine signaling (leptin, adiponectin) in visceral adipose tissue before birth. PR was induced by removal of the majority of endometrial caruncles in nonpregnant ewes before mating. Fetal blood samples were collected from 116 days gestation, and perirenal visceral adipose tissue (PAT) was collected from PR and control fetuses at 145 days. PAT gene expression was measured by quantitative RT-PCR. PR fetuses had a lower weight (PR 2.90 +/- 0.32 kg; control, 5.12 +/- 0.24 kg; P < 0.0001), mean gestational arterial Po(2) (P < 0.0001), plasma glucose (P < 0.01), and insulin concentrations (P < 0.02), than controls. The expression of IGF1 mRNA in PAT was lower in the PR fetuses (PR, 0.332 +/- 0.063; control, 0.741 +/- 0.083; P < 0.01). Leptin mRNA expression in PAT was also lower in PR fetuses (PR, 0.077 +/- 0.009; control, 0.115 +/- 0.013; P < 0.05), although there was no difference in the expression of other adipokine or adipogenic genes in PAT between PR and control fetuses. Thus, restriction of placental and hence, fetal substrate supply results in decreased IGF1 and leptin expression in fetal visceral adipose tissue, which may alter the functional development of the perirenal fat depot and contribute to altered leptin signaling in the growth-restricted newborn and the subsequent emergence of an increased visceral adiposity. PMID:18272661

  20. Effect of sericin on diabetic hippocampal growth hormone/insulin-like growth factor 1 axis

    PubMed Central

    Chen, Zhihong; Yang, Songhe; He, Yaqiang; Song, Chengjun; Liu, Yongping

    2013-01-01

    Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus model was established by intraperitoneal injection of 25 mg/kg streptozotocin for 3 successive days, following which the rats were treated with sericin for 35 days. After treatment, the blood glucose levels of the diabetic rats decreased significantly, the growth hormone level in serum and its expression in the hippocampus decreased significantly, while the insulin-like growth factor-1 level in serum and insulin-like growth factor-1 and growth hormone receptor expression in the hippocampus increased significantly. The experimental findings indicate that sericin improves disorders of the growth hormone/insulin-like growth factor 1 axis to alleviate hippocampal damage in diabetic rats. PMID:25206472

  1. Role of insulin-like growth factor-1 (IGF-1) in regulating cell cycle progression

    SciTech Connect

    Ma, Qi-lin; Yang, Tian-lun; Yin, Ji-ye; Peng, Zhen-yu; Yu, Min; Liu, Zhao-qian; Chen, Fang-ping

    2009-11-06

    Aims: Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells. Method: Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 {mu}g/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT{sub 1}) mRNA and cyclin E protein were determined by RT-PCR and Western blot, respectively. Results: Ang II (1 {mu}mol/L) induced HUVECs arrested at G{sub 0}/G{sub 1}, enhanced the expression level of AT{sub 1} mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT{sub 1} mRNA. L-NAME significantly counteracted these effects of IGF-1. Conclusions: Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G{sub 0}/G{sub 1} and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.

  2. Detection of vascular endothelial growth factor (VEGF) and VEGF receptors Flt-1 and KDR in canine mastocytoma cells.

    PubMed

    Rebuzzi, Laura; Willmann, Michael; Sonneck, Karoline; Gleixner, Karoline V; Florian, Stefan; Kondo, Rudin; Mayerhofer, Matthias; Vales, Anja; Gruze, Alexander; Pickl, Winfried F; Thalhammer, Johann G; Valent, Peter

    2007-02-15

    Vascular endothelial growth factor (VEGF) is a major regulator of angiogenesis and a potential autocrine growth factor for neoplastic cells in various malignancies. In the present study, we have investigated expression of VEGF and VEGF receptors in canine mastocytomas and the canine mastocytoma cell line C2. As assessed by immunostaining of tissue sections and cytospin slides, primary neoplastic mast cells (MC) and C2 cells were found to express the VEGF protein. In Northern blot and RT-PCR experiments, C2 cells expressed VEGF mRNA in a constitutive manner. VEGF mRNA expression in C2 cells was counteracted by LY294002 and rapamycin, suggesting involvement of the PI3-kinase/mTOR pathway. Moreover, C2 cells were found to express VEGF receptor-1 (Flt-1) and VEGF receptor-2 (KDR). However, recombinant VEGF failed to promote (3)H-thymidine uptake in C2 cells, and a neutralizing anti-VEGF antibody (bevacizumab) failed to downregulate spontaneous proliferation in these cells. In addition, rapamycin decreased the expression of VEGF in C2 cells at the mRNA and protein level without suppressing their proliferation. Together, canine mastocytoma cells express VEGF as well as VEGF receptors. However, despite co-expression of VEGF and its receptors, VEGF is not utilized as an autocrine growth regulator by canine mastocytoma cells. PMID:17196258

  3. The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth

    PubMed Central

    Sferruzzi-Perri, A N; Owens, J A; Pringle, K G; Roberts, C T

    2011-01-01

    Maternal insulin-like growth factors (IGFs) play a pivotal role in modulating fetal growth via their actions on both the mother and the placenta. Circulating IGFs influence maternal tissue growth and metabolism, thereby regulating nutrient availability for the growth of the conceptus. Maternal IGFs also regulate placental morphogenesis, substrate transport and hormone secretion, all of which influence fetal growth either via indirect effects on maternal substrate availability, or through direct effects on the placenta and its capacity to supply nutrients to the fetus. The extent to which IGFs influence the mother and/or placenta are dependent on the species and maternal factors, including age and nutrition. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing degenerative diseases in adult life, understanding the role of maternal IGFs during pregnancy is essential in order to identify mechanisms underlying altered fetal growth and offspring programming. PMID:20921199

  4. Growth-promoting action and growth factor release by different platelet derivatives.

    PubMed

    Passaretti, F; Tia, M; D'Esposito, V; De Pascale, M; Del Corso, M; Sepulveres, R; Liguoro, D; Valentino, R; Beguinot, F; Formisano, P; Sammartino, G

    2014-01-01

    Abstract Platelet derivatives are commonly used in wound healing and tissue regeneration. Different procedures of platelet preparation may differentially affect growth factor release and cell growth. Preparation of platelet-rich fibrin (PRF) is accompanied by release of growth factors, including platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGFβ1), and several cytokines. When compared with the standard procedure for platelet-rich plasma (PRP), PRF released 2-fold less PDGF, but >15-fold and >2-fold VEGF and TGFβ1, respectively. Also, the release of several cytokines (IL-4, IL-6, IL-8, IL-10, IFNγ, MIP-1α, MIP-1β and TNFα) was significantly increased in PRF-conditioned medium (CM), compared to PRP-CM. Incubation of both human skin fibroblasts and human umbilical vein endothelial cells (HUVECs) with PRF-derived membrane (mPRF) or with PRF-CM enhanced cell proliferation by >2-fold (p<0.05). Interestingly, PRP elicited fibroblast growth at a higher extent compared to PRF. At variance, PRF effect on HUVEC growth was significantly greater than that of PRP, consistent with a higher concentration of VEGF in the PRF-CM. Thus, the procedure of PRP preparation leads to a larger release of PDGF, as a possible result of platelet degranulation, while PRF enhances the release of proangiogenic factors. PMID:23855408

  5. Distribution of insulin-like growth factors in condylar hyperplasia.

    PubMed

    Götz, Werner; Lehmann, Tim Sebastian; Appel, Thorsten Robin; Rath-Deschner, Birgit; Dettmeyer, Reinhard; Luder, Hans-Ulrich; Reich, Rudolf H; Jäger, Andreas

    2007-01-01

    Condylar hyperplasia (CH) is a local overgrowth of the condylar process of the temporomandibular joint (TMJ) of unknown etiology. Probably, growth factors like the insulin-like growth factors (IGFs) are involved in its pathogenesis. Specimens from 12 patients were investigated histologically and immunohistochemically to obtain the distribution of the IGFs-I and -II and the IGF1 receptor. The results revealed juvenile and adult subtypes. While generally IGF-II could only be detected weakly, in the juvenile cases strong immunostaining for IGF-I in cartilage and bone supposes an influence on pathological growth processes. PMID:17695990

  6. Nerve growth factor binding domain of the nerve growth factor receptor

    SciTech Connect

    Welcher, A.A.; Bitler, C.M.; Radeke, M.J.; Shooter, E.M. )

    1991-01-01

    A structural analysis of the rat low-affinity nerve growth factor (NGF) receptor was undertaken to define the NGF binding domain. Mutant NGF receptor DNA constructs were expressed in mouse fibroblasts or COS cells, and the ability of the mutant receptors to bind NGF was assayed. In the first mutant, all but 16 amino acid residues of the intracellular domain of the receptor were removed. This receptor bound NGF with a K{sub d} comparable to that of the wild-type receptor. A second mutant contained only the four cysteine-rich sequences from the extracellular portion of the protein. This mutant was expressed in COS cells and the resultant protein was a secreted soluble form of the receptor that was able to bind NGF. Two N-terminal deletions, in which either the first cystein-rich sequence or the first and part of the second cystein-rich sequences were removed, bound NGF. However, a mutant lacking all four cysteine-rich sequences was unable to bind NGF. These results show that the four cysteine-rich sequences of the NGF receptor contain the NGF binding domain.

  7. [Novel role of growth factors in ovary function].

    PubMed

    Amsterdam, Abraham

    2010-12-01

    The development of the DNA microarray technique facilitated systematic studies of the modulation of gene function. Considerable attention has been focused on members of the growth factor family to elucidate the main regulators of oocyte maturation and ovarian follicle rupture. Among these growth factors, it was found, both in rodents and in humans, that amphiregulin (Ar) and epiregulin (Ep) of the epidermal growth factor (EGF) family were dramatically up-regulated by gonadotrophins in the intact ovary and in primary granulosa cells, respectively. Their role in cumulus expansion and oocyte maturation was established in rodents, and their synthesis under LH stimulation in granulosa cells was demonstrated in humans. To be activated, Ar and Ep must be cleaved by a disintegrin and metalloproteinases (ADAMs) family. However, the precise processing of Ar and Ep by the cumulus cells is still obscure. Future investigations using DNA microarray technique may reveal the repertoire of genes activated in Ar- and Ep-stimulated cumulus cells and may help elucidate the molecular basis of ovulation. EFG-like factors are also involved in triggering ovarian cancer The author hypothesized that the normal ovary maintains cyclicity in the formation of these growth factors preventing the ovary from developing ovarian cancer In ovarian cancer these growth factors are continuously formed in an autocrine manner, leading to transformation and subsequently to ovarian cancer. These growth factors are essential for both normal and neoplastic transformation of the ovary. Taking into consideration these growth factors in the treatment of ovarian malfunction may be one way of curing ovarian cancer. PMID:21916103

  8. Human nonsense-mediated mRNA decay factor UPF2 interacts directly with eRF3 and the SURF complex

    PubMed Central

    López-Perrote, Andrés; Castaño, Raquel; Melero, Roberto; Zamarro, Teresa; Kurosawa, Hitomi; Ohnishi, Tetsuo; Uchiyama, Akiko; Aoyagi, Kyoko; Buchwald, Gretel; Kataoka, Naoyuki; Yamashita, Akio; Llorca, Oscar

    2016-01-01

    Nonsense-mediated mRNA decay (NMD) is an mRNA degradation pathway that regulates gene expression and mRNA quality. A complex network of macromolecular interactions regulates NMD initiation, which is only partially understood. According to prevailing models, NMD begins by the assembly of the SURF (SMG1–UPF1–eRF1–eRF3) complex at the ribosome, followed by UPF1 activation by additional factors such as UPF2 and UPF3. Elucidating the interactions between NMD factors is essential to comprehend NMD, and here we demonstrate biochemically and structurally the interaction between human UPF2 and eukaryotic release factor 3 (eRF3). In addition, we find that UPF2 associates with SURF and ribosomes in cells, in an UPF3-independent manner. Binding assays using a collection of UPF2 truncated variants reveal that eRF3 binds to the C-terminal part of UPF2. This region of UPF2 is partially coincident with the UPF3-binding site as revealed by electron microscopy of the UPF2–eRF3 complex. Accordingly, we find that the interaction of UPF2 with UPF3b interferes with the assembly of the UPF2–eRF3 complex, and that UPF2 binds UPF3b more strongly than eRF3. Together, our results highlight the role of UPF2 as a platform for the transient interactions of several NMD factors, including several components of SURF. PMID:26740584

  9. Sensitivity of human granulosa cell tumor cells to epidermal growth factor receptor inhibition.

    PubMed

    Andersson, Noora; Anttonen, Mikko; Färkkilä, Anniina; Pihlajoki, Marjut; Bützow, Ralf; Unkila-Kallio, Leila; Heikinheimo, Markku

    2014-04-01

    Epidermal growth factor receptor (EGFR) is implicated in the progression of many human cancers, but its significance in ovarian granulosa cell tumor (GCT) pathobiology remains poorly understood. We assessed the EGFR gene copy number, surveyed the mRNA and protein expression patterns of EGFR in 90 adult GCTs, and assessed the in vitro sensitivity of GCT cells to EGFR inhibition. Low-level amplification of EGFR gene was observed in five GCTs and high-level amplification in one sample. EGFR mRNA was robustly expressed in GCTs. Most tumors expressed both unphosphorylated and phosphorylated EGFR protein, but the protein expression did not correlate with clinical parameters, including the risk of recurrence. Small-molecule EGFR inhibitors reduced the EGF-induced activation of EGFR and its downstream signaling molecules at nanomolar doses, but cell viability was reduced, and caspase-3/7 was activated in GCT cells only at micromolar doses. Based on the present results, EGFR is active and abundantly expressed in the majority of GCTs, but probably has only minor contribution to GCT cell growth. Given the high doses of EGFR inhibitors required to reduce GCT cell viability in vitro, they are not likely to be effective for GCT treatment as single agents; they should rather be tested as part of combination therapies for these malignancies. PMID:24463098

  10. Tenogenic induction of equine mesenchymal stem cells by means of growth factors and low-level laser technology.

    PubMed

    Gomiero, Chiara; Bertolutti, Giulia; Martinello, Tiziana; Van Bruaene, Nathalie; Broeckx, Sarah Y; Patruno, Marco; Spaas, Jan H

    2016-03-01

    Tendons regenerate poorly due to a dense extracellular matrix and low cellularity. Cellular therapies aim to improve tendon repair using mesenchymal stem cells and tenocytes; however, a current limitation is the low proliferative potential of tenocytes in cases of severe trauma. The purpose of this study was to develop a method useful in veterinary medicine to improve the differentiation of Peripheral Blood equine mesenchymal stem cells (PB-MSCs) into tenocytes. PB-MSCs were used to study the effects of the addition of some growth factors (GFs) as TGFβ3 (transforming growth factor), EGF2 (Epidermal growth factor), bFGF2 (Fibroblast growth factor) and IGF-1 (insulin-like growth factor) in presence or without Low Level Laser Technology (LLLT) on the mRNA expression levels of genes important in the tenogenic induction as Early Growth Response Protein-1 (EGR1), Tenascin (TNC) and Decorin (DCN). The singular addition of GFs did not show any influence on the mRNA expression of tenogenic genes whereas the specific combinations that arrested cell proliferation in favour of differentiation were the following: bFGF2 + TGFβ3 and bFGF2 + TGFβ3 + LLLT. Indeed, the supplement of bFGF2 and TGFβ3 significantly upregulated the expression of Early Growth Response Protein-1 and Decorin, while the use of LLLT induced a significant increase of Tenascin C levels. In conclusion, the present study might furnish significant suggestions for developing an efficient approach for tenocyte induction since the external administration of bFGF2 and TGFβ3, along with LLLT, influences the differentiation of PB-MSCs towards the tenogenic fate. PMID:26757735

  11. Mitotic Inheritance of mRNA Facilitates Translational Activation of the Osteogenic-Lineage Commitment Factor Runx2 in Progeny of Osteoblastic Cells.

    PubMed

    Varela, Nelson; Aranguiz, Alejandra; Lizama, Carlos; Sepulveda, Hugo; Antonelli, Marcelo; Thaler, Roman; Moreno, Ricardo D; Montecino, Martin; Stein, Gary S; van Wijnen, Andre J; Galindo, Mario

    2016-05-01

    Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that "bookmark" the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis. PMID:26381402

  12. Insulin-like growth factor-II: possible local growth factor in pheochromocytoma.

    PubMed

    Gelato, M C; Vassalotti, J

    1990-11-01

    Pheochromocytomas, neural crest tumors, express an abundance of insulin-like growth factor-II (IGF-II). To assess further the potential for IGF-II to play an autocrine role for these tumors, we measured 1) IGF-II content by RRA in 7 pheochromocytomas and peripheral blood in these patients, 2) IGF-II receptors by Western analysis, and 3) characterized the tumor binding proteins by ligand blot studies. IGF-II levels in the tumors varied from 2.8-41 micrograms/g. Chromatography revealed that 60% of the peptide eluted as a large mol wt form of IGF-II (8.7-10 kDa); the remainder coeluted with mature peptide (7.5 kDa). This was in contrast to IGF-II levels in normal adrenal tissue (0.225 +/- 0.005 micrograms/g) or another neural crest-derived tumor, medullary carcinoma of the thyroid (0.63 +/- 0.02 micrograms/g). Serum IGF-II levels in the 7 patients with pheochromocytoma (720 +/- 71 ng/mL) were similar to those in 35 normal controls (762 +/- 69 ng/mL). Radiolabeled IGF-II (9 +/- 1%) and IGF-I (20 +/- 2%) bound specifically to pheochromocytoma membranes. Western analysis of these membranes using a specific antiserum directed against the type II receptor demonstrated a band at 210 kDa. Affinity cross-linking studies with [125I]IGF-I demonstrated a specific band at 140 kDa. Ligand blot analysis was performed on the void volume pools from the Sephadex G-75 column and demonstrated bands at about 30 and 25 kDa. In conclusion, these data 1) confirm that pheochromocytomas have increased levels of IGF-II; 2) demonstrate that despite high IGF-II concentrations in the tumors, peripheral levels are not elevated, suggesting that very little tumoral IGF-II is released into the circulation, unlike catecholamines; 3) demonstrate the presence of IGF-II and IGF-I receptors; 4) describe binding protein species similar to those present in other tissues. Thus, the presence of high levels of IGF-II and both type I and type II receptors suggests that IGF II may act through both receptors to

  13. Epidermal growth factor receptor expression in primary cultured human colorectal carcinoma cells.

    PubMed Central

    Tong, W. M.; Ellinger, A.; Sheinin, Y.; Cross, H. S.

    1998-01-01

    In situ hybridization on human colon tissue demonstrates that epidermal growth factor receptor (EGFR) mRNA expression is strongly increased during tumour progression. To obtain test systems to evaluate the relevance of growth factor action during carcinogenesis, primary cultures from human colorectal carcinomas were established. EGFR distribution was determined in 2 of the 27 primary cultures and was compared with that in well-defined subclones derived from the Caco-2 cell line, which has the unique property to differentiate spontaneously in vitro in a manner similar to normal enterocytes. The primary carcinoma-derived cells had up to three-fold higher total EGFR levels than the Caco-2 subclones and a basal mitotic rate at least fourfold higher. The EGFR affinity constant is 0.26 nmol l(-1), which is similar to that reported in Caco-2 cells. The proliferation rate of Caco-2 cells is mainly induced by EGF from the basolateral cell surface where the majority of receptors are located, whereas primary cultures are strongly stimulated from the apical side also. This corresponds to a three- to fivefold higher level of EGFR at the apical cell surface. This redistribution of EGFR to apical plasma membranes in advanced colon carcinoma cells suggests that autocrine growth factors in the colon lumen may play a significant role during tumour progression. Images Figure 1 Figure 2 PMID:9667648

  14. Expression of fibroblast growth factor 21 in the liver of dairy cows in the transition period and during lactation.

    PubMed

    Schlegel, G; Ringseis, R; Keller, J; Schwarz, F J; Windisch, W; Eder, K

    2012-07-17

    Fibroblast growth factor 21 (FGF21) has been identified as a novel hormonal factor involved in the regulation of metabolic adaptations during energy deprivation. The present study aimed to investigate the expression of the FGF21 gene in the liver of dairy cows during the transition from pregnancy to lactation. Therefore, the relative mRNA abundance of FGF21 in liver biopsy samples of 20 dairy cows in late pregnancy (3 weeks pre-partum) and early lactation (1, 5, 14 weeks post-partum) was determined. It was observed that hepatic mRNA abundance of FGF21 at 1 week post-partum was dramatically increased (110-fold) compared to 3 weeks pre-partum (p < 0.001). With progress of lactation, mRNA concentration of FGF21 was declining; nevertheless, mRNA abundance at 5 and 14 weeks post-partum remained 25- and 10-fold increased compared to 3 weeks pre-partum (p < 0.001). Using a gene array technique, it was found that many genes involved in fatty acid oxidation, gluconeogenesis and ketogenesis were up-regulated during early lactation compared to late pregnancy. Moreover, there were positive linear correlations between hepatic mRNA concentration of FGF21 and mRNA concentrations of genes involved in ketogenesis as well as carnitine synthesis and carnitine uptake at various time-points during lactation, indicating that FGF21 could play a role in ketogenesis and carnitine metabolism in the liver of dairy cows (p < 0.05). In overall, the present study shows that expression of the FGF21 gene is strongly up-regulated during the transition period. It is assumed that the up-regulation of FGF21 might play an important role in the adaptation of liver metabolism during early lactation in dairy cows such as in other species. PMID:22805261

  15. An opioid growth factor regulates the replication of microorganisms.

    PubMed

    Zagon, I S; McLaughlin, P J

    1992-01-01

    An opioid growth factor (OGF), [Met5]-enkephalin, interacts with the zeta (zeta) opioid receptor to modulate development of eukaryotes. We have found that [Met5]-enkephalin, an endogenous opioid peptide serves to inhibit the growth of S. aureus. This effect on growth involves cell proliferative events and is under tonic control, since potent opioid antagonists accelerate cell replication. Both the OGF and zeta opioid receptor were associated with these microorganisms. Other opioid receptors (mu, delta and kappa) were not detected. OGF also controlled the growth of other bacteria: P. aeruginosa and S. marcesans. These results indicate that OGF and its receptor, known to be important in the regulation of mammalian development, also function in the growth of simple unicellular organisms. We suggest that the endogenous opioid system related to growth originated billions of years ago. PMID:1313136

  16. Growth factors in the management of adult acute leukemia.

    PubMed

    Bernstein, S H

    1993-02-01

    This review has explored the various ways that growth factors may be used in the management of adult acute leukemia. Growth factors have the potential to reduce the morbidity and mortality of both induction and postremission therapy by enhancing hematopoietic recovery or, when used as an adjunct to standard antimicrobial therapy, reducing the infectious complications of chemotherapy. In addition, they may have favorable effects on the biology of leukemia either by recruitment of leukemic progenitors into cycle, rendering them more sensitive to the cytotoxic effects of chemotherapy, or by inducing the terminal differentiation of the leukemic clone. Finally, disruption of aberrant growth factor networks, thought to play a role in the pathogenesis of leukemia, may be a therapeutic strategy now that soluble receptors and receptor antagonists to such growth factors as IL-1 are available. Whether growth factors used in such ways will have beneficial, or in fact adverse, effects on the treatment outcome for acute leukemia is not yet known. As such, the use of growth factors in the management of adults with acute leukemia is still experimental and needs to be studied in the context of clinical trials. Perhaps the ultimate benefit to be derived from the study of these growth factors will be a deeper understanding of the genetic perturbations that define the leukemic state. The development of molecular therapeutic techniques, such as gene transfer technology and the use of antisense oligonucleotides, has paralleled our increasing knowledge of cytokines. The hope is that as we come to understand leukemia at the molecular level, we will be able to develop the new therapeutic tools necessary to increase the numbers of patients cured. PMID:8449861

  17. Cutaneous adverse reactions specific to epidermal growth factor receptor inhibitors

    PubMed Central

    Lupu, I; Voiculescu, VM; Bacalbasa, N; Prie, BE; Cojocaru, I; Giurcaneanu, C

    2015-01-01

    Classical antineoplastic therapy is encumbered by extensively studied adverse reactions, most often of systemic nature. The emergence of new generations of anticancer treatments, including epidermal growth factor receptor inhibitors, besides improving the response to treatment and the survival rate, is accompanied by the occurrence of new specific side effects, incompletely studied. These side effects are most often cutaneous (hand foot syndrome, acneiform reactions), and in some cases are extremely severe, requiring dose reduction or drug discontinuation. The prevention of the cutaneous adverse effects and their treatment require a close collaboration between the oncologist and the dermatologist. The occurrence of some of these skin adverse effects may be a favorable prognostic factor for the response to the cancer treatment and the overall survival. Abbreviations: EGFR = epidermal growth factor receptors; EGFRI = epidermal growth factor receptors inhibitors PMID:26361513

  18. Early alterations in extracellular matrix and transforming growth factor [beta] gene expression in mouse lung indicative of late radiation fibrosis

    SciTech Connect

    Finkelstein, J.N.; Johnston, C.J.; Baggs, R.; Rubin, P. )

    1994-02-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The expression of late radiation injury can be found immediately after irradiation by measuring messenger RNA (mRNA) abundance. To determine if extracellular matrix mRNA and transforming growth factor beta abundance was affected acutely after irradiation, the authors measured mRNA levels of collagen I (CI), collagen III (CIII), collagen IV (CIV), fibronectin (FN), and transforming growth factor [beta] (TGF[beta][sub 1,2 3]) in mouse lungs on day 1 and day 14 after graded doses of radiation. C57BL/6 female mice were irradiated with a single dose to the thorax of 5 or 12.5 Gy. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabelled cDNA probes for CI, CIII, CIV, FN, TGF[beta][sub 1,2 3] and a control probe encoding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Autoradiographic data were quantified by video densitometry and results normalized to GAPDH. Changes in the expression of CI, CIII, CIV, FN and TGF[beta][sub 1,2 3] were observed as early as 1 day after exposure. Through 14 days, changes in mRNA up to 5-fold were seen for any one dose. Dose related changes as high as 10-fold were also evident. The CI:CIII ratio increased gradually for the 5 Gy dose at 14 days postirradiation while the CI:CII ratio for the 12.5 Gy dose decreased by approximately 4-fold as compared to the control. These studies suggest that alterations in expression of extracellular matrix and TGF[beta] mRNA occur very early after radiation injury even at low doses and may play a role in the development of chronic fibrosis. 37 refs., 6 figs.

  19. Hepatocyte growth factor, hepatocyte growth factor activator and arginine in a rat fulminant colitis model

    PubMed Central

    Zwintscher, Nathan P.; Shah, Puja M.; Salgar, Shashikumar K.; Newton, Christopher R.; Maykel, Justin A.; Samy, Ahmed; Jabir, Murad; Steele, Scott R.

    2016-01-01

    Introduction Dextran sodium sulfate (DSS) is commonly used to induce a murine fulminant colitis model. Hepatocyte growth factor (HGF) has been shown to decrease the symptoms of inflammatory bowel disease (IBD) but the effect of its activator, HGFA, is not well characterized. Arginine reduces effects of oxidative stress but its effect on IBD is not well known. The primary aim is to determine whether HGF and HGFA, or arginine will decrease IBD symptoms such as pain and diarrhea in a DSS-induced fulminant colitis murine model. Methods A severe colitis was induced in young, male Fischer 344 rats with 4% (w/v) DSS oral solution for seven days; rats were sacrificed on day 10. Rats were divided into five groups of 8 animals: control, HGF (700 mcg/kg/dose), HGF and HGFA (10 mcg/dose), HGF and arginine, and high dose HGF (2800 mcg/kg/dose). Main clinical outcomes were pain, diarrhea and weight loss. Blinded pathologists scored the terminal ileum and distal colon. Results DSS reliably induced severe active colitis in 90% of animals (n = 36/40). There were no differences in injury scores between control and treatment animals. HGF led to 1.38 fewer days in pain (p = 0.036), while arginine led to 1.88 fewer days of diarrhea (P = 0.017) compared to controls. 88% of HGFA-treated rats started regaining weight (P < 0.001). Discussion/Conclusion Although treatment was unable to reverse fulminant disease, HGF and arginine were associated with decreased days of pain and diarrhea. These clinical interventions may reduce associated symptoms for severe IBD patients, even when urgent surgical intervention remains the only viable option. PMID:27144006

  20. Skeletal unloading induces resistance to insulin-like growth factor I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E. R.

    1994-01-01

    In previous studies with a hindlimb elevation model, we demonstrated that skeletal unloading transiently inhibits bone formation. This effect is limited to the unloaded bones (the normally loaded humerus does not cease growing), suggesting that local factors are of prime importance. IGF-I is one such factor; it is produced in bone and stimulates bone formation. To determine the impact of skeletal unloading on IGF-I production and function, we assessed the mRNA levels of IGF-I and its receptor (IGF-IR) in the proximal tibia and distal femur of growing rats during 2 weeks of hindlimb elevation. The mRNA levels for IGF-I and IGF-IR rose during hindlimb elevation, returning toward control values during recovery. This was accompanied by a 77% increase in IGF-I levels in the bone, peaking at day 10 of unloading. Changes in IGF binding protein levels were not observed. Infusion of IGF-I (200 micrograms/day) during 1 week of hindlimb elevation doubled the increase in bone mass of the control animals but failed to reverse the cessation of bone growth in the hindlimb-elevated animals. We conclude that skeletal unloading induces resistance to IGF-I, which may result secondarily in increased local production of IGF-I.

  1. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ.

    PubMed

    Do, Ji Yeon; Choi, Young Keun; Kook, Hyun; Suk, Kyoungho; Lee, In-Kyu; Park, Dong Ho

    2015-05-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O2). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. PMID:25796334

  2. The trk family of receptors mediates nerve growth factor and neurotrophin-3 effects in melanocytes.

    PubMed Central

    Yaar, M; Eller, M S; DiBenedetto, P; Reenstra, W R; Zhai, S; McQuaid, T; Archambault, M; Gilchrest, B A

    1994-01-01

    We have recently shown that (a) human melanocytes express the p75 nerve growth factor (NGF) receptor in vitro; (b) that melanocyte dendricity and migration, among other behaviors, are regulated at least in part by NGF; and (c) that cultured human epidermal keratinocytes produce NGF. We now report that melanocyte stimulation with phorbol 12-tetra decanoate 13-acetate (TPA), previously reported to induce p75 NGF receptor, also induces trk in melanocytes, and TPA effect is further potentiated by the presence of keratinocytes in culture. Moreover, trk in melanocytes becomes phosphorylated within minutes after NGF stimulation. As well, cultures of dermal fibroblasts express neurotrophin-3 (NT-3) mRNA; NT-3 mRNA levels in cultured fibroblasts are modulated by mitogenic stimulation, UV irradiation, and exposure to melanocyte-conditioned medium. Moreover, melanocytes constitutively express low levels of trk-C, and its expression is downregulated after TPA stimulation. NT-3 supplementation to cultured melanocytes maintained in Medium 199 alone prevents cell death. These combined data suggest that melanocyte behavior in human skin may be influenced by neurotrophic factors, possibly of keratinocyte and fibroblast origin, which act through high affinity receptors. Images PMID:7929831

  3. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    PubMed

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression. PMID:25639875

  4. Effect of insoluble fibre on intestinal morphology and mRNA expression pattern of inflammatory, cell cycle and growth marker genes in a piglet model.

    PubMed

    Schedle, Karl; Pfaffl, Michael W; Plitzner, Christian; Meyer, Heinrich H D; Windisch, Wilhelm

    2008-12-01

    The effects of insoluble dietary fibre differing in lignin content on intestinal morphology and mRNA expression was tested in an animal model of 48 weaned piglets. Engaged fibre sources were wheat bran (rich in cellulose and hemicellulose) and pollen from Chinese Masson pine (Pinus massoniana) (rich in lignin), respectively. The fibre sources were added to a basal diet as follows: no addition (control), 3.0% wheat bran, 1.27% pine pollen, and 2.55% pine pollen. The 12 animals of each feeding group were fed four experimental diets ad libitum for 37 days and were then slaughtered for retrieving tissue samples from stomach, jejunum, ileum, colon and mesenterial lymph nodes. Both fibre sources increased villus height of mucosa in jejunum (+10% on average) and ileum (+16% on average). Results of mRNA expression rates of inflammatory, cell cycle and growth marker genes (NFkappaB, TNFalpha, TGFbeta, Caspase3, CDK4, IGF1) were specific to fibre source and tissue: wheat bran induced an up-regulation of NFkappaB in stomach and jejunum, as well as TNFalpha and TGFbeta, and Caspase3 in jejunum. Pine pollen induced down regulation of NFkappaB, TNFalpha, TGFbeta, Caspase3, CDK4 and IGF1 in the colon as well as up-regulation of NFkappaB and TGFbeta in mesenterial lymph nodes. Finally, an overall data comparison based on a hierarchical cluster analysis showed a close relation between gene regulation in different gut sections and organs, as well as between small intestine morphology and zootechnical performance. PMID:19143227

  5. Characterization of the betaherpesviral pUL69 protein family reveals binding of the cellular mRNA export factor UAP56 as a prerequisite for stimulation of nuclear mRNA export and for efficient viral replication.

    PubMed

    Zielke, Barbara; Thomas, Marco; Giede-Jeppe, Antje; Müller, Regina; Stamminger, Thomas

    2011-02-01

    UL69 of human cytomegalovirus (HCMV) encodes a pleiotropic transactivator protein and has a counterpart in every member of the Herpesviridae family thus far sequenced. However, little is known about the conservation of the functions of the nuclear phosphoprotein pUL69 in the homologous proteins of other betaherpesviruses. Therefore, eukaryotic expression vectors were constructed for pC69 of chimpanzee cytomegalovirus, pRh69 of rhesus cytomegalovirus, pM69 of murine cytomegalovirus, pU42 of human herpesvirus 6, and pU42 of elephant endotheliotropic herpesvirus. Indirect immunofluorescence experiments showed that all pUL69 homologs expressed by these vectors were localized to the cell nucleus. Coimmunoprecipitation experiments identified homodimerization as a conserved feature of all homologs, whereas heterodimerization with pUL69 was restricted to its closer relatives. Further analyses demonstrated that pC69 and pRh69 were the only two homologs that functioned, like pUL69, as viral-mRNA export factors. As we had reported recently that nucleocytoplasmic shuttling and interaction with the cellular DExD/H-box helicases UAP56 and URH49 were prerequisites for the nuclear-mRNA export activity of pUL69, the homologs were characterized with regard to these properties. Heterokaryon assays demonstrated nucleocytoplasmic shuttling for all homologs, and coimmunoprecipitation and mRNA export assays revealed that the interaction of UAP56 and/or URH49 with pC69 or pRh69 was required for mRNA export activity. Moreover, characterization of HCMV recombinants harboring mutations within the N-terminal sequence of pUL69 revealed a strong replication defect of viruses expressing pUL69 variants that were deficient in UAP56 binding. In summary, homodimerization and nucleocytoplasmic shuttling activity were identified as conserved features of betaherpesviral pUL69 homologs. UAP56 binding was shown to represent a unique characteristic of members of the genus Cytomegalovirus that is required

  6. Cytokine and Growth Factor Responses After Radiotherapy for Localized Ependymoma

    SciTech Connect

    Merchant, Thomas E. Li Chenghong; Xiong Xiaoping; Gaber, M. Waleed

    2009-05-01

    Purpose: To determine the time course and clinical significance of cytokines and peptide growth factors in pediatric patients with ependymoma treated with postoperative radiotherapy (RT). Methods and Materials: We measured 15 cytokines and growth factors (fibroblast growth factor, epidermal growth factor, vascular endothelial growth factor [VEGF], interleukin [IL]-1{beta}, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, interferon-{gamma}, tumor necrosis factor-{alpha}, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and macrophage inflammatory protein-{alpha}) from 30 patients before RT and 2 and 24 h, weekly for 6 weeks, and at 3, 6, 9, and 12 months after the initiation of RT. Two longitudinal models for the trend of log-transformed measurements were fitted, one during treatment and one through 12 months. Results: During RT, log IL-8 declined at a rate of -0.10389/wk (p = 0.0068). The rate of decline was greater (p = 0.028) for patients with an infratentorial tumor location. The decline in IL-8 after RT was significant when stratified by infratentorial tumor location (p = 0.0345) and more than one surgical procedure (p = 0.0272). During RT, the decline in log VEGF was significant when stratified by the presence of a ventriculoperitoneal shunt. After RT, the log VEGF declined significantly at a rate of -0.06207/mo. The decline was significant for males (p = 0.0222), supratentorial tumors (p = 0.0158), one surgical procedure (p = 0.0222), no ventriculoperitoneal shunt (p = 0.0005), and the absence of treatment failure (p = 0.0028). Conclusion: The pro-inflammatory cytokine IL-8 declined significantly during RT and the decline differed according to tumor location. The angiogenesis factor VEGF declined significantly during the 12 months after RT. The decline was greater in males, those without a ventriculoperitoneal shunt, and in those with favorable disease factors, including one surgical procedure, supratentorial tumor location, and

  7. Effect of CPU-XT-008, a combretastatin A-4 analogue, on the proliferation, apoptosis and expression of vascular endothelial growth factor and basic fibroblast growth factor in human umbilical vein endothelial cells

    PubMed Central

    XIONG, RUI; SUN, JING; LIU, KUN; XU, YUNGEN; HE, SHUYING

    2016-01-01

    The present study investigated the effect of the combretastatin A-4 analogue CPU-XT-008 on the proliferation, apoptosis and expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) in human umbilical vein endothelial cells (HUVECs). The proliferation capacity of HUVECs was analyzed with a cell viability assay, while their apoptosis and migration abilities were evaluated via flow cytometry and monolayer denudation assay, respectively. The mRNA and protein expression levels of VEGF and FGF-2 in these cells were determined by reverse transcription-polymerase chain reaction, and cell-based ELISA, western blotting and immunocytochemistry, respectively. The results demonstrated that CPU-XT-008 inhibited proliferation and migration, and induced apoptosis in HUVECs in a dose-dependent manner. In addition, CPU-XT-008 downregulated the mRNA and protein expression levels of VEGF and FGF-2 in these cells. These findings suggest that CPU-XT-008 exerts anti-angiogenic effects in HUVECs, which may explain the inhibition of cell proliferation and migration, induction of apoptosis, and reduction in the mRNA and protein expression levels of VEGF and FGF-2 observed in the present study. PMID:26870239

  8. Identification and characterization of novel factors that act in the nonsense-mediated mRNA decay pathway in nematodes, flies and mammals.

    PubMed

    Casadio, Angela; Longman, Dasa; Hug, Nele; Delavaine, Laurent; Vallejos Baier, Raúl; Alonso, Claudio R; Cáceres, Javier F

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs harboring premature termination codons (PTCs). We have conducted a genome-wide RNAi screen in Caenorhabditis elegans that resulted in the identification of five novel NMD genes that are conserved throughout evolution. Two of their human homologs, GNL2 (ngp-1) and SEC13 (npp-20), are also required for NMD in human cells. We also show that the C. elegans gene noah-2, which is present in Drosophila melanogaster but absent in humans, is an NMD factor in fruit flies. Altogether, these data identify novel NMD factors that are conserved throughout evolution, highlighting the complexity of the NMD pathway and suggesting that yet uncovered novel factors may act to regulate this process. PMID:25452588

  9. Identification and characterization of novel factors that act in the nonsense-mediated mRNA decay pathway in nematodes, flies and mammals

    PubMed Central

    Casadio, Angela; Longman, Dasa; Hug, Nele; Delavaine, Laurent; Vallejos Baier, Raúl; Alonso, Claudio R; Cáceres, Javier F

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs harboring premature termination codons (PTCs). We have conducted a genome-wide RNAi screen in Caenorhabditis elegans that resulted in the identification of five novel NMD genes that are conserved throughout evolution. Two of their human homologs, GNL2 (ngp-1) and SEC13 (npp-20), are also required for NMD in human cells. We also show that the C. elegans gene noah-2, which is present in Drosophila melanogaster but absent in humans, is an NMD factor in fruit flies. Altogether, these data identify novel NMD factors that are conserved throughout evolution, highlighting the complexity of the NMD pathway and suggesting that yet uncovered novel factors may act to regulate this process. PMID:25452588

  10. Growth factors in porcine full and partial thickness burn repair. Differing targets and effects of keratinocyte growth factor, platelet-derived growth factor-BB, epidermal growth factor, and neu differentiation factor.

    PubMed Central

    Danilenko, D. M.; Ring, B. D.; Tarpley, J. E.; Morris, B.; Van, G. Y.; Morawiecki, A.; Callahan, W.; Goldenberg, M.; Hershenson, S.; Pierce, G. F.

    1995-01-01

    The topical application of recombinant growth factors such as epidermal growth factor, platelet-derived growth factor-BB homodimer (rPDGF-BB), keratinocyte growth factor (rKGF), and neu differentiation factor has resulted in significant acceleration of healing in several animal models of wound repair. In this study, we established highly reproducible and quantifiable full and deep partial thickness porcine burn models in which burns were escharectomized 4 or 5 days postburn and covered with an occlusive dressing to replicate the standard treatment in human burn patients. We then applied these growth factors to assess their efficacy on several parameters of wound repair: extracellular matrix and granulation tissue production, percent reepithelialization, and new epithelial area. In full thickness burns, only rPDGF-BB and the combination of rPDGF-BB and rKGF induced significant changes in burn repair. rPDGF-BB induced marked extracellular matrix and granulation tissue production (P = 0.013) such that the burn defect was filled within several days of escharectomy, but had no effect on new epithelial area or reepithelialization. The combination of rPDGF-BB and rKGF in full thickness burns resulted in a highly significant increase in extracellular matrix and granulation tissue area (P = 0.0009) and a significant increase in new epithelial area (P = 0.007), but had no effect on reepithelialization. In deep partial thickness burns, rKGF induced the most consistent changes. Daily application of rKGF induced a highly significant increase in new epithelial area (P < 0.0001) but induced only a modest increase in reepithelialization (83.7% rKGF-treated versus 70.2% control; P = 0.016) 12 days postburn. rKGF also doubled the number of fully reepithelialized burns (P = 0.02) at 13 days postburn, at least partially because of marked stimulation of both epidermal and follicular proliferation as assessed by proliferating cell nuclear antigen expression. In situ hybridization for

  11. The expression of transforming growth factor-beta by cultured chick growth plate chondrocytes: differential regulation by 1,25-dihydroxyvitamin D3.

    PubMed

    Farquharson, C; Law, A S; Seawright, E; Burt, D W; Whitehead, C C

    1996-05-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) and transforming growth factor-beta (TGF-beta) are both important regulators of chondrocyte growth and differentiation. We report here that 1,25(OH)2D3 differentially regulates the expression of the genes for TGF-beta 1 to -beta 3 and the secretion of the corresponding proteins in cultured chick chondrocytes. Confluent growth plate chondrocytes were serum-deprived and cultured in varying concentrations of 1,25(OH)2D3. Cells were assayed for TGF-beta mRNA and conditioned medium was assayed for TGF-beta activity and isoform composition. Active TGF-beta was only detected in 10(-8) M 1,25(OH)2D3-treated cultures (8.37 ng active TGF-beta/mg protein). There was a significant decrease in total (latent-active) TGF-beta activity in conditioned medium of 10(-12) M (23.4%; P < 0.05) and 10(-10) M (20.7%; P < 0.05) 1,25(OH)2D3-treated cultures but 10(-8) M 1,25(OH)2D3 significantly increased (30.9%; P < 0.01) TGF-beta activity. The amounts of TGF-beta 1, -beta 2 and -beta 3 isoforms produced were similar in control, 10(-10) or 10(-12) M 1,25(OH)2D3-treated cultures but the conditioned medium of 10(-8) M 1,25(OH)2D3-treated cultures contained significantly higher amounts of all three isoforms. Quantification of TGF-beta mRNA demonstrated differential control of TGF-beta gene expression with TGF-beta 1 and -beta 3 mRNA levels reduced by all concentrations of 1,25(OH)2D3 examined (10(-8), 10(-10) and 10(-12) M) whilst TGF-beta 2 mRNA concentrations were elevated. Our results indicated that 1,25(OH)2D3 regulates chick growth plate chondrocyte TGF-beta secretion and mRNA expression in a concentration-dependent and isoform-specific manner. This interaction may be important in the regulation of chondrocyte metabolism and endochondral bone growth. PMID:8708539

  12. The biology of human epidermal growth factor receptor 2.

    PubMed

    Sundaresan, S; Penuel, E; Sliwkowski, M X

    1999-09-01

    Our understanding of the normal signaling mechanisms and functions of human epidermal growth factor receptor 2 (HER2) and other members of the HER family, namely epidermal growth factor receptor, HER3, and HER4, is growing rapidly. Activation of these receptors results in a diverse array of signals through the formation of homodimeric and heterodimeric receptor complexes; HER2 is the preferred dimerization partner for the other HERs. These oligomeric receptor complexes activate distinct signaling pathways, such as the Ras-MAPK and PI3-kinase pathways. These, in turn, affect various cellular processes. Recent gene deletion experiments in mice point to an important role for HER2 in cardiac and neural development, and evidence from other studies indicates that HER2 is involved in normal breast growth and development. Thus, HER2 is a key component of a complex signaling network that plays a critical role in the regulation of tissue development, growth, and differentiation. PMID:11122793

  13. Cellular Actions of Insulin-Like Growth Factor Binding Proteins

    PubMed Central

    Ferry, R. J.; Katz, L. E. L.; Grimberg, Adda; Cohen, P.; Weinzimer, S. A.

    2014-01-01

    The insulin-like growth factors (IGFs), insulin-like growth factor binding proteins (IGFBPs), and the IGFBP proteases are involved in the regulation of somatic growth and cellular proliferation both in vivo and in vitro. IGFs are potent mitogenic agents whose actions are determined by the availability of free IGFs to interact with the IGF receptors. IGFBPs comprise a family of proteins that bind IGFs with high affinity and specificity and thereby regulate IGF-dependent actions. IGFBPs have recently emerged as IGF-independent regulators of cell growth. Various IGFBP association proteins as well as cleavage of IGFBPs by specific proteases modulate levels of free IGFs and IGFBPs. The ubiquity and complexity of the IGF axis promise exciting discoveries and applications for the future. PMID:10226802

  14. Divergence of Pumilio/fem-3 mRNA Binding Factor (PUF) Protein Specificity through Variations in an RNA-binding Pocket*

    PubMed Central

    Qiu, Chen; Kershner, Aaron; Wang, Yeming; Holley, Cynthia P.; Wilinski, Daniel; Keles, Sunduz; Kimble, Judith; Wickens, Marvin; Hall, Traci M. Tanaka

    2012-01-01

    mRNA control networks depend on recognition of specific RNA sequences. Pumilio-fem-3 mRNA binding factor (PUF) RNA-binding proteins achieve that specificity through variations on a conserved scaffold. Saccharomyces cerevisiae Puf3p achieves specificity through an additional binding pocket for a cytosine base upstream of the core RNA recognition site. Here we demonstrate that this chemically simple adaptation is prevalent and contributes to the diversity of RNA specificities among PUF proteins. Bioinformatics analysis shows that mRNAs associated with Caenorhabditis elegans fem-3 mRNA binding factor (FBF)-2 in vivo contain an upstream cytosine required for biological regulation. Crystal structures of FBF-2 and C. elegans PUF-6 reveal binding pockets structurally similar to that of Puf3p, whereas sequence alignments predict a pocket in PUF-11. For Puf3p, FBF-2, PUF-6, and PUF-11, the upstream pockets and a cytosine are required for maximal binding to RNA, but the quantitative impact on binding affinity varies. Furthermore, the position of the upstream cytosine relative to the core PUF recognition site can differ, which in the case of FBF-2 originally masked the identification of this consensus sequence feature. Importantly, other PUF proteins lack the pocket and so do not discriminate upstream bases. A structure-based alignment reveals that these proteins lack key residues that would contact the cytosine, and in some instances, they also present amino acid side chains that interfere with binding. Loss of the pocket requires only substitution of one serine, as appears to have occurred during the evolution of certain fungal species. PMID:22205700

  15. Epidermal growth factor, from gene organization to bedside

    PubMed Central

    Zeng, Fenghua; Harris, Raymond C.

    2014-01-01

    In 1962, epidermal growth factor (EGF) was discovered by Dr. Stanley Cohen while studying nerve growth factor (NGF). It was soon recognized that EGF is the prototypical member of a family of peptide growth factors that activate the EGF receptors, and that the EGF/EGF receptor signaling pathway plays important roles in proliferation, differentiation and migration of a variety of cell types, especially in epithelial cells. After the basic characterization of EGF function in the first decade or so after its discovery, the studies related to EGF and its signaling pathway have extended to a broad range of investigations concerning its biological and pathophysiological roles in development and in human diseases. In this review, we briefly describe the gene organization and tissue distribution of EGF, with emphasis on its biological and pathological roles in human diseases. PMID:24513230

  16. Multiple Transcription Factor Families Regulate Axon Growth and Regeneration

    PubMed Central

    Moore, Darcie L.; Goldberg, Jeffrey L.

    2011-01-01

    Understanding axon regenerative failure remains a major goal in neuroscience, and reversing this failure remains a major goal for clinical neurology. While an inhibitory CNS environment clearly plays a role, focus on molecular pathways within neurons has begun to yield fruitful insights. Initial steps forward investigated the receptors and signaling pathways immediately downstream of environmental cues, but recent work has also shed light on transcriptional control mechanisms that regulate intrinsic axon growth ability, presumably through whole cassettes of gene target regulation. Here we will discuss transcription factors that regulate neurite growth in vitro and in vivo, including p53, SnoN, E47, CREB, STAT3, NFAT, c-Jun, ATF3, Sox11, NFκB, and Kruppel-like factors (KLFs). Revealing the similarities and differences among the functions of these transcription factors may further our understanding of the mechanisms of transcriptional regulation in axon growth and regeneration. PMID:21674813

  17. Insulin-like growth factor-1: roles in androgenetic alopecia.

    PubMed

    Panchaprateep, Ratchathorn; Asawanonda, Pravit

    2014-03-01

    Of all the cytokines or growth factors that have been postulated to play a role in hair follicle, insulin-like growth factor-1 (IGF-1) is known to be regulated by androgens. However, how IGF-1 is altered in the balding scalp has not yet been investigated. In this study, expressions of IGF-1 and its binding proteins by dermal papilla (DP) cells obtained from balding versus non-balding hair follicles were quantified using growth factor array. DP cells from balding scalp follicles were found to secrete significantly less IGF-1, IGFBP-2 and IGFBP-4 (P < 0.05) than their non-balding counterparts. Our data confirmed that the downregulation of IGF-1 may be one of the important mechanisms contributing to male pattern baldness. PMID:24499417

  18. Growth factors with heparin binding affinity in human synovial fluid

    SciTech Connect

    Hamerman, D.; Taylor, S.; Kirschenbaum, I.; Klagsbrun, M.; Raines, E.W.; Ross, R.; Thomas, K.A.

    1987-12-01

    Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of /sup 3/H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1 M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.

  19. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    SciTech Connect

    Story, M.T. )

    1989-05-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue.

  20. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    SciTech Connect

    Nilsson, Emeli M.; Brokken, Leon J.S.; Haerkoenen, Pirkko L.

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  1. Tissue factor, osteopontin, αvβ3 integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor expression

    PubMed Central

    Takano, S; Tsuboi, K; Tomono, Y; Mitsui, Y; Nose, T

    2000-01-01

    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor in human gliomas. VEGF-induced proteins in endothelial cells, tissue factor (TF), osteopontin (OPN) and αvβ3 integrin have been implicated as important molecules by which VEGF promotes angiogenesis in vivo. Sixty-eight gliomas were immunohistochemically stained with TF, VEGF, OPN and αvβ3 integrin antibody. Twenty-three tumours, six normal brains and nine glioma cell lines were evaluated for their mRNA expression of VEGF and TF by reverse transcription polymerase chain reaction analysis. The data indicated that TF as well as VEGF was a strong regulator of human glioma angiogenesis. First, TF expression in endothelial cells which was observed in 74% of glioblastomas, 54% of anaplastic astrocytomas and none of low-grade astrocytomas, correlated with the microvascular density of the tumours. Double staining for VEGF and TF demonstrated co-localization of these two proteins in the glioblastoma tissues. Second, there was a correlation between TF and VEGF mRNA expression in the glioma tissues. Third, glioma cell conditioned medium containing a large amount of VEGF up-regulated the TF mRNA expression in human umbilical vein endothelial cells. OPN and αvβ3 integrin, were also predominantly observed in the microvasculature of glioblastomas associated with VEGF expression. Microvascular expression of these molecules could be an effective antiangiogenesis target for human gliomas. © 2000 Cancer Research Campaign PMID:10864205

  2. Carnosine, nerve growth factor receptor and tyrosine hydroxylase expression during the ontogeny of the rat olfactory system.

    PubMed

    Biffo, S; Martí, E; Fasolo, A

    1992-01-01

    The localizations of carnosine, nerve growth factor (NGF) receptor and tyrosine hydroxylase (TH) were studied in the embryonic and postnatal rat olfactory bulb and epithelium by means of single- and double-immunostaining methods. Tyrosine hydroxylase ontogeny was also evaluated at the mRNA level by in situ hybridization. All these molecules were expressed in the olfactory bulb but with different developmental patterns and cellular localization: carnosine immunoreactivity is seen from embryonic day 17 in primary olfactory neurons scattered in the nasal cavity and in fibres projecting from them to the olfactory bulb. Nerve growth factor-receptor immunoreactivity associated with small glial-like cells is visible in some glomeruli starting from the second day of postnatal life. At postnatal day 10 NGF-receptor immunoreactivity is extended to all glomeruli. Periglomerular neurons expressing TH mRNA and protein are present prenatally and their number sharply increases during the early postnatal development. Double-staining methods show that TH and NGF-receptor immunoreactivity do not overlap in cell bodies and processes. In addition, NGF-receptor immunoreactivity is not colocalized with carnosine. These findings definitely exclude NGF-receptor expression in periglomerular and primary olfactory neurons, suggesting that at least part of NGF-receptor expression in the olfactory bulb is associated with glial cells. In addition, they provide the first immunohistochemical data on carnosine ontogeny and confirm at the mRNA level previous studies on the ontogeny of TH protein. PMID:1376608

  3. Nerve growth factor levels and localisation in human asthmatic bronchi.

    PubMed

    Olgart Höglund, C; de Blay, F; Oster, J P; Duvernelle, C; Kassel, O; Pauli, G; Frossard, N

    2002-11-01

    Nerve growth factor (NGF) has recently been suggested to be an important mediator of inflammation. In support of this, serum levels of NGF have been shown to be enhanced in asthmatics. However, it has not yet been shown whether the levels of NGF are also altered locally in asthmatic airways, when compared with healthy subjects, and the localisation of potential sources of NGF in the human bronchus have not yet been described. The aim of the present study was to assess NGF levels in bronchoalveolar lavage fluid (BALF) from asthmatics and to compare them to those of control subjects. Furthermore, the authors wanted to localise potential sources of NGF in bronchial tissue, and to number NGF-immunopositive infiltrating cells in the bronchial submucosa. BALF and bronchial biopsies were obtained from seven control subjects and seven asthmatic patients by fibreoptic bronchoscopy. NGF protein levels were quantified by enzyme-linked immunosorbent assay in BALF. NGF localisation was examined by immunohistochemistry on bronchial biopsy sections. The asthmatics exhibited significantly enhanced NGF levels in BALF. Intense NGF-immunoreactivity was observed in bronchial epithelium, smooth muscle cells and infiltrating inflammatory cells in the submucosa, and to a lesser extent in the connective tissue. The asthmatics exhibited a higher number of NGF-immunoreactive infiltrating cells in the bronchial submucosa than control subjects. This study provides evidence that nerve growth factor is locally produced in the airways, and shows that this production is enhanced in asthmatics. These findings suggest that nerve growth factor is produced by both structural cells and infiltrating inflammatory cells in human bronchus in vivo, and the authors suggest that the increase in nerve growth factor protein in bronchoalveolar lavage fluid observed in asthmatic patients may originate both from structural cells, producing increased nerve growth factor levels in inflammatory conditons, and from

  4. Effects of growth factors on temporomandibular joint disc cells.

    PubMed

    Detamore, Michael S; Athanasiou, Kyriacos A

    2004-07-01

    The effects of growth factors on cartilaginous tissues are well documented. An exception is the temporomandibular joint (TMJ) disc, where data for growth factor effects on proliferation and biosynthesis are very limited. The purpose of this study was to quantify proliferation of and synthesis by TMJ disc cells cultured in monolayer with either platelet derived growth factor-AB (PDGF), basic fibroblast growth factor (bFGF) or insulin-like growth factor-I (IGF), at either a low (10 ng/ml) or high (100 ng/ml) concentration. Proliferation was assessed with a DNA quantitation technique, collagen synthesis was measured via a hydroxyproline assay, and GAG synthesis was determined with a dimethylmethylene blue dye binding assay at 14 days. Overall, the most beneficial growth factor was bFGF, which was most potent in increasing proliferation and GAG synthesis, and also effective in promoting collagen synthesis. At the high concentration, bFGF resulted in 96% more cells than the control and 30 to 45% more cells than PDGF and IGF. PDGF and bFGF were the most potent upregulators of GAG synthesis, producing 2-3 times more GAG than the control. IGF had no significant effect on GAG production, although at its higher concentration it increased collagen production by 4.5 times over the control. Collagen synthesis was promoted by bFGF at its lower concentration, with levels 4.2 times higher than the control, whereas PDGF had no significant effect on collagen production. In general, higher concentrations increased proliferation, whereas lower concentrations favoured biosynthesis. PMID:15126139

  5. Suppression of Glioblastoma Angiogenicity and Tumorigenicity by Inhibition of Endogenous Expression of Vascular Endothelial Growth Factor

    NASA Astrophysics Data System (ADS)

    Cheng, Shi-Yuan; Huang, H.-J. Su; Nagane, Motoo; Ji, Xiang-Dong; Wang, Degui; Shih, Charles C.-Y.; Arap, Wadih; Huang, Chun-Ming; Cavenee, Webster K.

    1996-08-01

    The development of new capillary networks from the normal microvasculature of the host appears to be required for growth of solid tumors. Tumor cells influence this process by producing both inhibitors and positive effectors of angiogenesis. Among the latter, the vascular endothelial growth factor (VEGF) has assumed prime candidacy as a major positive physiological effector. Here, we have directly tested this hypothesis in the brain tumor, glioblastoma multiforme, one of the most highly vascularized human cancers. We introduced an antisense VEGF expression construct into glioblastoma cells and found that (i) VEGF mRNA and protein levels were markedly reduced, (ii) the modified cells did not secrete sufficient factors so as to be chemoattractive for primary human microvascular endothelial cells, (iii) the modified cells were not able to sustain tumor growth in immunodeficient animals, and (iv) the density of in vivo blood vessel formation was reduced in direct relation to the reduction of VEGF secretion and tumor formation. Moreover, revertant cells that recovered the ability to secrete VEGF regained each of these tumorigenic properties. These results suggest that VEGF plays a major angiogenic role in glioblastoma.

  6. Small Is Beautiful: Insulin-Like Growth Factors and Their Role in Growth, Development, and Cancer

    PubMed Central

    Maki, Robert G.

    2010-01-01

    Insulin-like growth factors were discovered more than 50 years ago as mediators of growth hormone that effect growth and differentiation of bone and skeletal muscle. Interest of the role of insulin-like growth factors in cancer reached a peak in the 1990s, and then waned until the availability in the past 5 years of monoclonal antibodies and small molecules that block the insulin-like growth factor 1 receptor. In this article, we review the history of insulin-like growth factors and their role in growth, development, organism survival, and in cancer, both epithelial cancers and sarcomas. Recent developments regarding phase I to II clinical trials of such agents are discussed, as well as potential studies to consider in the future, given the lack of efficacy of one such monoclonal antibody in combination with cytotoxic chemotherapy in a first-line study in metastatic non–small-cell lung adenocarcinoma. Greater success with these agents clinically is expected when combining the agents with inhibitors of other cell signaling pathways in which cross-resistance has been observed. PMID:20975071

  7. Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer.

    PubMed

    Maki, Robert G

    2010-11-20

    Insulin-like growth factors were discovered more than 50 years ago as mediators of growth hormone that effect growth and differentiation of bone and skeletal muscle. Interest of the role of insulin-like growth factors in cancer reached a peak in the 1990s, and then waned until the availability in the past 5 years of monoclonal antibodies and small molecules that block the insulin-like growth factor 1 receptor. In this article, we review the history of insulin-like growth factors and their role in growth, development, organism survival, and in cancer, both epithelial cancers and sarcomas. Recent developments regarding phase I to II clinical trials of such agents are discussed, as well as potential studies to consider in the future, given the lack of efficacy of one such monoclonal antibody in combination with cytotoxic chemotherapy in a first-line study in metastatic non-small-cell lung adenocarcinoma. Greater success with these agents clinically is expected when combining the agents with inhibitors of other cell signaling pathways in which cross-resistance has been observed. PMID:20975071

  8. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    SciTech Connect

    Hatano, Yu; Nakahama, Ken-ichi; Isobe, Mitsuaki; Morita, Ikuo

    2014-03-28

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  9. Vascular growth factors play critical roles in kidney glomeruli.

    PubMed

    Gnudi, Luigi; Benedetti, Sara; Woolf, Adrian S; Long, David A

    2015-12-01

    Kidney glomeruli ultrafilter blood to generate urine and they are dysfunctional in a variety of kidney diseases. There are two key vascular growth factor families implicated in glomerular biology and function, namely the vascular endothelial growth factors (VEGFs) and the angiopoietins (Angpt). We present examples showing not only how these molecules help generate and maintain healthy glomeruli but also how they drive disease when their expression is dysregulated. Finally, we review how manipulating VEGF and Angpt signalling may be used to treat glomerular disease. PMID:26561594

  10. Association of Chemerin and Vascular Endothelial Growth Factor (VEGF) with Diabetic Nephropathy.

    PubMed

    Lin, Shuhua; Teng, Jian; Li, Jixia; Sun, Fang; Yuan, Dong; Chang, Jing

    2016-01-01

    BACKGROUND Diabetic nephropathy (DN) is a common complication of diabetes, caused by diabetic microvascular lesions. The pathogenesis of DN is complicated, involving genetics, physics, chemistry, and environmental factors. Chemerin is a fat cell factor that participates in regulating inflammation. Vascular endothelial growth factor (VEGF) promotes vascular endothelial cell proliferation, differentiation, and angiogenesis. The relationship role of Chemerin and VEGF in DN is not fully understood. MATERIAL AND METHODS SD rats were randomly divided into 2 groups: the control group and the DN group. Streptozotocin was used to construct the DN model. Serum creatinine (Scr), blood urea nitrogen (BUN), and urine microalbumin (UAlb) were detected. Real-time PCR and Western blot were used to test Chemerin and VEGF mRNA and protein expression in kidney tissue. ELISA was performed to test TGF-β1, TNF-α, and INF-γ levels. The correlation of Chemerin and VEGF with renal function and inflammatory factors was analyzed. RESULTS DN group rats showed obviously increased Scr and BUN levels, and elevated TGF-β1, TNF-α, and INF-γ secretion (P<0.05). Compared with controls, Chemerin and VEGF were clearly overexpressed in the DN group (P<0.05). Chemerin and VEGF expression were positively correlated with inflammatory factors and renal function. CONCLUSIONS Chemerin and VEGF play important roles in DN by regulating inflammatory factors and renal function. They may be treated as indicators of DN. PMID:27612613

  11. Palmitoleate is a mitogen, formed upon stimulation with growth factors, and converted to palmitoleoyl-phosphatidylinositol.

    PubMed

    Koeberle, Andreas; Shindou, Hideo; Harayama, Takeshi; Shimizu, Takao

    2012-08-01

    Controversial correlations between biological activity and concentration of the novel lipokine palmitoleate (9Z-hexadecenoate, 16:1) might depend on the formation of an active 16:1 metabolite. For its identification, we analyzed the glycerophospholipid composition of mouse Swiss 3T3 fibroblasts in response to 16:1 using LC-MS/MS. 16:1 was either supplemented to the cell culture medium or endogenously formed when cells were stimulated with insulin or growth factors as suggested by the enhanced mRNA expression of 16:1-biosynthetic enzymes. The proportion of 1-acyl-2-16:1-sn-phosphatidylinositol (16:1-PI) was time-dependently and specifically increased relative to other glycerophospholipids under both conditions and correlated with the proliferation of fatty acid (16:1, palmitate, oleate, or arachidonate)-supplemented cells. Accordingly, cell proliferation was impaired by blocking 16:1 biosynthesis using the selective stearoyl-CoA desaturase-1 inhibitor CAY10566 and restored by supplementation of 16:1. The accumulation of 16:1-PI occurred throughout cellular compartments and within diverse mouse cell lines (Swiss 3T3, NIH-3T3, and 3T3-L1 cells). To elucidate further whether 16:1-PI is formed through the de novo or remodeling pathway of PI biosynthesis, phosphatidate levels and lyso-PI-acyltransferase activities were analyzed as respective markers. The proportion of 16:1-phosphatidate was significantly increased by insulin and growth factors, whereas lyso-PI-acyltransferases showed negligible activity for 16:1-coenzyme A. The relevance of the de novo pathway for 16:1-PI biosynthesis is supported further by the comparable incorporation rate of deuterium-labeled 16:1 and tritium-labeled inositol into PI for growth factor-stimulated cells. In conclusion, we identified 16:1 or 16:1-PI as mitogen whose biosynthesis is induced by growth factors. PMID:22700983

  12. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B.

    PubMed

    Bond, M; Fabunmi, R P; Baker, A H; Newby, A C

    1998-09-11

    Matrix metalloproteinase (MMPs) enzymes are implicated in matrix remodelling during proliferative inflammatory processes including wound healing. We report here synergistic upregulation of MMP-9 protein and mRNA by platelet-derived growth factor (PDGF) or basic fibroblast growth factor (bFGF) in combination with interleukin-1alpha (IL-1alpha) or tumour necrosis factor-alpha (TNF-alpha) in primary rabbit and human dermal fibroblasts. The synergistic interaction between growth factors and cytokines implies that basement membrane remodelling is maximal physiologically when both are present together. The signalling pathways mediating this synergistic regulation are not understood, although analysis of the MMP-9 promoter has identified an essential proximal AP-1 element and an upstream nuclear factor kappa-B (NF-kappaB) site. Using electromobility shift assays, binding to the AP-1 site was only slightly increased by growth factors and cytokines. NF-kappaB binding was rapidly induced by IL-1alpha or TNF-alpha but was neither induced nor potentiated by bFGF or PDGF. Neither AP-1 nor NF-kappaB was therefore sufficient on its own for synergistic regulation. Using a recently developed adenovirus that overexpresses the inhibitory subunit, IkappaB alpha, we demonstrated an absolute requirement for NF-kappaB in upregulation of MMP-9. Activation of NF-kappaB binding by inflammatory cytokines was therefore necessary but not sufficient for synergistic upregulation of MMP-9. PMID:9755853

  13. Increased growth factor expression and cell proliferation after contusive spinal cord injury.

    PubMed

    Zai, Laila J; Yoo, Soonmoon; Wrathall, Jean R

    2005-08-01

    The damage caused by traumatic central nervous system (CNS) injury can be divided into two phases: primary and secondary. The initial injury destroys many of the local neurons and glia and triggers secondary mechanisms that result in further cell loss. Approximately 50% of the astrocytes and oligodendrocytes in the spared white matter of the epicenter die by 24 h after spinal cord injury (SCI), but their densities return to normal levels by 6 weeks. This repopulation is largely due to the proliferation of local progenitors that divide in response of CNS injury. Previous studies indicate that the secondary events that cause cell death after SCI also increase the local levels of several growth factors that stimulate the proliferation of these endogenous progenitors. We compared the spatial pattern of the post-injury up-regulation of the pro-mitotic growth factors with that of 5-bromodeoxyuridine (BrdU) incorporation to determine if each could play a role in proliferation. Three days after a standard contusive SCI or laminectomy, animals received intraperitoneal BrdU injections to label dividing cells and were perfused 2 h after the last injection. Immunohistochemistry for BrdU and basic fibroblast growth factor (FGF2) and in situ hybridization for ciliary neurotrophic factor (CNTF) and glial growth factor (GGF2) mRNA were used to compare the number of dividing cells with growth factor levels in sections 2 and 4 mm from the epicenter. All three growth factors are significantly up-regulated 3 days after SCI, when cell proliferation is maximal. The increase in GGF2 and FGF2 levels is highest in sections 2 mm rostral to the epicenter, mimicking BrdU incorporation. Addition of rhGGF2 to cultured cells isolated from the spinal cord 3 days after SCI increased the number of NG2+ glial progenitors. These data suggest that FGF2 and GGF2 may contribute to the spontaneous recovery observed after SCI by stimulating the proliferation of local progenitors that help repopulate the

  14. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease.

    PubMed

    Ubhi, Kiren; Rockenstein, Edward; Vazquez-Roque, Ruben; Mante, Michael; Inglis, Chandra; Patrick, Christina; Adame, Anthony; Fahnestock, Margaret; Doppler, Edith; Novak, Philip; Moessler, Herbert; Masliah, Eliezer

    2013-02-01

    Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons. PMID:23152192

  15. Identification of derlin-1 as a novel growth factor-responsive endothelial antigen by suppression subtractive hybridization

    SciTech Connect

    Ran Yuliang; Jiang Yangfu; Zhong Xing; Zhou Zhuan; Liu Haiyan; Hu Hai; Lou Jinning; Yang Zhihua . E-mail: yang_zhihua_prof@yahoo.com.cn

    2006-10-06

    Endothelial cells play an important regulatory role in embryonic development, reproductive functions, tumor growth and progression. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify differentially expressed genes between non-stimulated endothelial cells and activated endothelial cells. Following mRNA isolation of non-stimulated and hepatocellular carcinoma homogenate-stimulated cells, cDNAs of both populations were prepared and subtracted by suppressive PCR. Sequencing of the enriched cDNAs identified a couple of genes differentially expressed, including derlin-1. Derlin-1 was significantly up-regulated by tumor homogenates, VEGF, and endothelial growth supplements in a dose-dependent manner. Knock-down of derlin-1 triggered endothelial cell apoptosis, inhibited endothelial cell proliferation, and blocked the formation of a network of tubular-like structures. Our data reveal that derlin-1 is a novel growth factor-responsive endothelial antigen that promotes endothelial cell survival and growth.

  16. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  17. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  18. Macrophage migration inhibitory factor up-regulates alpha(v)beta(3) integrin and vascular endothelial growth factor expression in endometrial adenocarcinoma cell line Ishikawa.

    PubMed

    Bondza, Patrick Kibangou; Metz, Christine N; Akoum, Ali

    2008-04-01

    Human endometrium undergoes a series of dynamic physiological changes during the menstrual cycle of reproductive age women. Many factors, including hormones, cytokines, growth factors, matrix metalloproteinases and integrins, are essential for the success of embryonic implantation into endometrial tissue. Herein, we used a well-differentiated endometrial adenocarcinoma cell line, Ishikawa, to investigate in vitro the role played by macrophage migration inhibitory factor (MIF) in the regulation of endometrial receptivity markers. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that MIF induced a slight increase in alpha(v) (alphav) mRNA integrin subunit expression during the first 12h, but reached a significant difference after 24h MIF treatment compared to control, whereas beta(3) (beta3) integrin subunit displayed significant increase in mRNA 2h following treatment. Immunocytofluorescence showed strong alphav and beta3 immunostaining at 25 ng/ml MIF, and Western blotting clearly indicated increased alphav and beta3 protein expression. MIF treatment significantly stimulated vascular endothelial growth factor (VEGF) mRNA expression in a dose- and time-dependent manner after 24 h treatment. Moreover, immunocytofluorescence revealed positive VEGF immunostaining compared to control, and analysis by ELISA of VEGF release in culture supernatants demonstrated that MIF (25 ng/ml) significantly induced VEGF secretion at 12 and 24 h. In conclusion, this study provides evidence that MIF directly up-regulates alphavbeta3 integrin and VEGF expression in human endometrial Ishikawa cells and may advance our understanding of factors involved in the establishment of endometrial receptivity and successful implantation. PMID:17854909

  19. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed. PMID:26066416

  20. Growth factors in the treatment of early osteoarthritis

    PubMed Central

    Civinini, Roberto; Nistri, Lorenzo; Martini, Caterina; Redl, Birgit; Ristori, Gabriele; Innocenti, Massimo

    2013-01-01

    Summary Regenerative medicine is the science that studies the regeneration of biological tissues obtained through use of cells, with the aid of support structures and with biomolecules such as growth factors. As regards the growth factors the PRP, or the platelet-rich plasma, obtained from a withdrawal of autologous blood, concentrating the platelets, represents a safe, economical, easy to prepare and easy to apply source of growth factors. Numerous growth factors are in fact within the platelets and in particular a large number of them have a specific activity on neo-proliferation, on cartilage regeneration and in particular also an antiapoptotic effect on chondroblasts: - The PDGF which regulates the secretion and synthesis of collagen;- The EGF that causes cellular proliferation, endothelial chemotaxis and angiogenesis;- The VEGF that increases angiogenesis and vascular permeability;- The TGF-beta that stimulates the proliferation of undifferentiated MSC, stimulates chemotaxis of endothelial cells and angiogenesis;- The bFGF that promotes the growth and differentiation of chondrocytes and osteoblasts stimulates mitogenesis of mesenchymal cells, chondrocytes and osteoblasts. These properties have led to the development of studies that evaluated the efficacy of treatment of infiltrations in the knee and hip with platelet-derived growth factors. Regarding the knee it was demonstrated that in patients with moderate degree of gonarthrosis, the PRP is able to significantly reduce the pain and improve joint function, both on placebo and towards infiltrations with hyaluronic acid. The success of the treatment was proportional to the age of and inversely proportional to the severity of osteoarthritis according to Kellgren and Lawrence classification. The possibility of infiltrations guided with ultrasound into the hip led us to extend the indications also to hip arthrosis, as already showed by Sanchez. Even in coxarthrosis preliminary results at 6 and 12 months show that

  1. Clinicopathological implications of vascular endothelial growth factor 165b expression in oral squamous cell carcinoma stroma.

    PubMed

    Nagasaki, Masahiro; Kondo, Seiji; Mukudai, Yoshiki; Kamatani, Takaaki; Akizuki, Ayako; Yaso, Atsushi; Shimane, Toshikazu; Shirota, Tatsuo

    2016-07-01

    Vascular endothelial growth factor (VEGF) is one of the most important angiogenic factors. VEGF165b was recently isolated as the anti-angiogenic VEGF splice variant. In the present study, we examined the association between VEGF165b expression and clinicopathological characteristics in order to determine how VEGF165b produced from oral squamous cell carcinoma (OSCC) affects the stromal cell biological activity. We examined the relationships between the expressions of both VEGF isoforms in normal human dermal fibroblasts (NHDFs) and OSCC cell lines (HSC2, 3, 4 and SAS). Our analyses indicated that both the mRNA and protein expression levels of VEGF165b in the HSC2 and SAS cells were higher than those in the NHDFs. VEGF165b did not promote cell growth or invasive capabilities, but it induced the cell adhesive capabilities to ECM. Although strong expression of the VEGF165 isoforms in tumor cells of OSCC tissues was observed, there was no significant difference in the VEGF165b expression level among the various degrees of malignancy. OSCC cells secrete VEGF165b into the stroma, and this factor may contribute to the process of anti-angiogenesis by inhibiting gelatinase-expressing cells and activating cell adhesive capabilities to ECM, such as that of fibroblasts surrounding tumor cells. PMID:27221145

  2. Expression of insulin-like growth factor family genes in clear cell renal cell carcinoma

    PubMed Central

    Białożyt, Michał; Plato, Marta; Mazurek, Urszula; Braczkowska, Bogumiła

    2016-01-01

    Aim of the study Despite significant progress in the pathology of clear cell renal cell carcinoma (ccRCC), diagnostic and predictive factors of major importance have not been discovered. Some hopes are associated with insulin-like growth factors. The aim of the study was to compare the expression of genes for insulin-like growth factor family in tumours and in tissue of kidneys without cancer. Material and methods Fifty-two patients years with clear cell renal cell cancer were qualified to the study group; patients nephrectomised because of hydronephrosis were included in the control group. Expression of genes were evaluated by RT-PCR. Results Expression of IGFR-1 gene in tumour accounts for about 60% of cases. The incidence is higher than in corresponding adjacent non-cancerous kidney tissues and higher (but with no statistical significance) than in kidney without cancer. Expression of IGFR-2 gene in tumours has not been established. The incidence of the expression in corresponding adjacent non-cancerous kidney tissues is small. Expression of this gene has been present in all specimens from kidneys without cancer. Expression of IGFBP-3 gene ascertained in all (except four) cases of ccRCC and in the majority of clippings from adjacent tissue. It was not found in kidneys from the control group. IGF-1, IGF-2, and IGFR-1 mRNA copy numbers in ccRCC were higher than in the material from the control group PMID:27358591

  3. Accelerated fracture healing in transgenic mice overexpressing an anabolic isoform of fibroblast growth factor 2.

    PubMed

    Hurley, Marja M; Adams, Douglas J; Wang, Liping; Jiang, Xi; Burt, Patience Meo; Du, Erxia; Xiao, Liping

    2016-03-01

    The effect of targeted expression of an anabolic isoform of basic fibroblast growth factor (FGF2) in osteoblastic lineage on tibial fracture healing was assessed in mice. Closed fracture of the tibiae was performed in Col3.6-18 kDaFgf2-IRES-GFPsaph mice in which a 3.6 kb fragment of type I collagen promoter (Col3.6) drives the expression of only the 18 kD isoform of FGF2 (18 kDaFgf2/LMW) with green fluorescent protein-sapphire (GFPsaph) as well as Vector mice (Col3.6-IRES-GFPsaph, Vector) that did not harbor the FGF2 transgene. Radiographic, micro-CT, DEXA, and histologic analysis of fracture healing of tibiae harvested at 3, 10 and 20 days showed a smaller fracture callus but accelerated fracture healing in LMWTg compared with Vector mice. At post fracture day 3, FGF receptor 3 and Sox 9 mRNA were significantly increased in LMWTg compared with Vector. Accelerated fracture healing was associated with higher FGF receptor 1, platelet derived growth factors B, C, and D, type X collagen, vascular endothelial cell growth factor, matrix metalloproteinase 9, tartrate resistant acid phosphatase, cathepsin K, runt-related transcription factor-2, Osterix and Osteocalcin and lower Sox9, and type II collagen expression at 10 days post fracture. We postulate that overexpression of LMW FGF2 accelerated the fracture healing process due to its effects on factors that are important in chondrocyte and osteoblast differentiation and vascular invasion. PMID:26252425

  4. Insulin-Like Growth Factor I (IGF-1) Ec/Mechano Growth Factor – A Splice Variant of IGF-1 within the Growth Plate

    PubMed Central

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation. PMID:24146828

  5. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    PubMed

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. PMID:26798059

  6. Assessing the Factors of Regional Growth Decline of Sugar Maple

    NASA Astrophysics Data System (ADS)

    Bishop, D. A.; Beier, C. M.; Pederson, N.; Lawrence, G. B.; Stella, J. C.; Sullivan, T. J.

    2014-12-01

    Sugar maple (Acer saccharum Marsh) is among the most ecologically, economically and culturally important trees in North America, but has experienced a decline disease across much of its range. We investigated the climatic and edaphic factors associated with A. saccharum growth in the Adirondack Mountains (USA) using a well-replicated tree-ring network incorporating a range of soil fertility (base cation availability). We found that nearly 3 in 4 A. saccharum trees exhibited declining growth rates during the last several decades, regardless of tree age or size. Although diameter growth was consistently higher on base-rich soils, the negative trends in growth were largely consistent across the soil chemistry gradient. Sensitivity of sugar maple growth to climatic variability was overall weaker than expected, but were also non-stationary during the 20th century. We observed increasingly positive responses to late-winter precipitation, increasingly negative responses to growing season temperatures, and strong positive responses to moisture availability during the 1960s drought that became much weaker during the recent pluvial. Further study is needed of these factors and their interactions as potential mechanisms for sugar maple growth decline.

  7. Changes in circulating levels of fibroblast growth factor 23 induced by short-term dietary magnesium deficiency in rats.

    PubMed

    Matsuzaki, Hiroshi; Katsumata, Shinichi; Maeda, Yoshiaki; Kajita, Yasutaka

    2016-06-01

    Fibroblast growth factor 23 (FGF23) is a potent regulator of phosphorus (P) and vitamin D metabolism. Long-term dietary magnesium (Mg) deficiency increases circulating levels of FGF23, whereas the effects of short-term dietary Mg deficiency are unclear. Thus, the present study investigated whether short-term dietary Mg deficiency affects circulating levels of FGF23. We also assessed changes in renal mRNA expression of vitamin D metabolizing enzymes and type II sodium-phosphate (Na/Pi) cotransporters, since these are regulated by FGF23. Rats were fed a control diet (control group) or an Mg-deficient diet (Mg-deficient group) for 2, 4 or 7 days. Serum Mg levels were significantly lower in the Mg-deficient group than in the control group at all time points. Serum FGF23 levels were significantly higher in the Mg-deficient group than in the control group at day 7. The 25-hydroxyvitamin D-24-hydroxylase (24(OH)ase) mRNA levels were significantly higher in the Mg-deficient group than in the control group at day 7 . No significant differences in types IIa and IIc Na/Pi cotransporter mRNA levels were observed between the control and Mg-deficient groups. These results suggest that dietary Mg deficiency causes a rapid increase in circulating levels of FGF23 and renal 24(OH)ase mRNA levels. PMID:27624533

  8. Effects of footshocks on anxiety-like behavior and mRNA levels of precursor peptides for corticotropin releasing factor and opioids in the forebrain of the rat.

    PubMed

    Wang, Huiying; Li, Sa; Kirouac, Gilbert J

    2015-12-01

    Corticotropin releasing factor (CRF) and dynorphin are neuropeptides that are associated with the negative emotional states. Experimental evidence indicates that dynorphin neurons located in the nucleus accumbens and CRF neurons in the bed nucleus of the stria terminalis (BST) and the central nucleus of the amygdala (CeA) mediate anxiety-like behaviors immediately after the stressful experience (24-48h). The present study was done to evaluate if changes in the levels of the mRNA for these peptides in the striatum, BST, and CeA were associated with the long-lasting avoidance of novelty, a measure of an anxiety-like state, in a subset of rats exposed to unpredictable and moderately intense footshocks (5×2s of 1.5mA). Shocked rats with enhanced fear to a novel tone 24h after the footshocks (high responders; HR) displayed long-lasting avoidance in the elevated T-maze whereas shocked rats with low levels of acute fear (low responders; LR) had low levels of avoidance similar to nonshocked rats. An increase in the level of proCRF mRNA was detected in the CeA of the HR compared to LR and nonshocked rats but not in other areas of the brain sampled. In contrast, prodynorphin and proenkephalin mRNA levels in the striatum, BST and CeA were not different between HR, LR and nonshocked rats. This study provides evidence that CRF neurons in the CeA may play a role in the anxiety-like state produced in a subset of rats exposed to footshocks. PMID:26363852

  9. Exogenous transforming growth factor-beta amplifies its own expression and induces scar formation in a model of human fetal skin repair.

    PubMed Central

    Lin, R Y; Sullivan, K M; Argenta, P A; Meuli, M; Lorenz, H P; Adzick, N S

    1995-01-01

    OBJECTIVE: Fetal skin wounds heal without scarring. To determine the role of TGF-beta 1 in fetal wound healing, mRNA expression of TGF-beta 1 was analyzed in human fetal and adult skin wounds. METHODS: Human fetal skin transplanted to a subcutaneous location on an adult athymic mouse that was subsequently wounded heals without scar, whereas human adult skin heals with scar formation in that location. In situ hybridization for TGF-beta 1 mRNA expression and species-specific immunohistochemistry for fibroblasts, macrophages, and neutrophils were performed in human adult wounds, fetal wounds, and fetal wounds treated with a TGF-beta 1 slow release disk. RESULTS: Transforming growth factor-beta 1 mRNA expression was induced by wounding adult skin. No TGF-beta 1 mRNA upregulation was detected in human fetal skin after wounding. However, when exogenous TGF-beta 1 was added to human fetal skin, induction of TGF-beta 1 mRNA expression in human fetal fibroblasts occurred, an adult-like inflammatory response was detected, and the skin healed with scar formation. CONCLUSIONS: Transforming growth factor-beta 1 is an important modulator in scar formation. Anti-TGF-beta 1 strategies may promote scarless healing in adult wounds. Images Figure 1. Figure 2. Figure 3. Figure 5. Figure 6. PMID:7639582

  10. Heparin-Binding Epidermal Growth Factor-like Growth Factor/Diphtheria Toxin Receptor in Normal and Neoplastic Hematopoiesis

    PubMed Central

    Vinante, Fabrizio; Rigo, Antonella

    2013-01-01

    Heparin-binding EGF-like growth factor (HB-EGF) belongs to the EGF family of growth factors. It is biologically active either as a molecule anchored to the membrane or as a soluble form released by proteolytic cleavage of the extracellular domain. HB-EGF is involved in relevant physiological and pathological processes spanning from proliferation and apoptosis to morphogenesis. We outline here the main activities of HB-EGF in connection with normal or neoplastic differentiative or proliferative events taking place primitively in the hematopoietic microenvironment. PMID:23888518

  11. The role of hematopoietic growth factors in transfusion medicine.

    PubMed

    Whitsett, C F

    1995-02-01

    Hematopoietic growth factors have already had an enormous impact on transfusion practice by eliminating or reducing the need for red blood cell transfusions in a variety of anemic states characterized by an absolute or relative decrease in erythropoietin. In addition, GM-CSF and G-CSF have stimulated the production of autologous neutrophils in febrile neutropenic patients in whom granulocyte transfusions had been considered ineffective. With the discovery of c-Mpl ligand and the promising results obtained with IL-11 and IL-3, a combination of growth factors that successfully stimulate platelet production may soon be identified. This first era in the clinical application of hematopoietic growth factors has been characterized largely by treatment of the patient to stimulate production of autologous cells or to enhance the ability of transplanted hematopoietic progenitor cells to repopulate the patient. The use of G-CSF to increase the yield of granulocytes harvested by apheresis procedures and to mobilize peripheral blood stem cells in allogeneic donors has initiated a new era in which the cell donor is treated to enhance cell production and enhance the repopulating ability of hematopoietic progenitor cells. As our understanding of hematopoiesis grows, scientists will be able to identify growth factors to overcome or correct deficient hematopoiesis. Increasingly, component transfusions will be reserved for life-threatening situations in which endogenous cell production cannot be stimulated or cell production will be too slow to prevent life-threatening events. PMID:7737944

  12. Controlled growth factor release from synthetic extracellular matrices

    NASA Astrophysics Data System (ADS)

    Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.

    2000-12-01

    Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.

  13. NEUROBIOLOGICAL EFFECTS OF COLCHICINE: MODULATION BY NERVE GROWTH FACTOR

    EPA Science Inventory

    To study the effects of exogenously applied nerve growth factor (NGF) on colchicine-induced neurodegeneration in the dentate gyrus of the rat hippocampal formation, male Fischer 344 rats (n=75) weighing 275-325 grams received colchicine [COLCH; 2.5 ug/site in 0.5 ul of artificial...

  14. Role of fibroblast growth factors in organ regeneration and repair.

    PubMed

    El Agha, Elie; Kosanovic, Djuro; Schermuly, Ralph T; Bellusci, Saverio

    2016-05-01

    In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases. PMID:26459973

  15. Total Chemical Synthesis of Biologically Active Vascular Endothelial Growth Factor

    SciTech Connect

    Mandal, Kalyaneswar; Kent, Stephen B.H.

    2011-09-15

    The 204-residue covalent-dimer vascular endothelial growth factor (VEGF, see picture) with full mitogenic activity was prepared from three unprotected peptide segments by one-pot native chemical ligations. The covalent structure of the synthetic VEGF was confirmed by precise mass measurement, and the three-dimensional structure of the synthetic protein was determined by high-resolution X-ray crystallography.

  16. Regulation of liver regeneration by growth factors and cytokines

    PubMed Central

    Böhm, Friederike; Köhler, Ulrike A; Speicher, Tobias; Werner, Sabine

    2010-01-01

    The capability of the liver to fully regenerate after injury is a unique phenomenon essential for the maintenance of its important functions in the control of metabolism and xenobiotic detoxification. The regeneration process is histologically well described, but the genes that orchestrate liver regeneration have been only partially characterized. Of particular interest are cytokines and growth factors, which control different phases of liver regeneration. Historically, their potential functions in this process were addressed by analyzing their expression in the regenerating liver of rodents. Some of the predicted roles were confirmed using functional studies, including systemic delivery of recombinant growth factors, neutralizing antibodies or siRNAs prior to liver injury or during liver regeneration. In particular, the availability of genetically modified mice and their use in liver regeneration studies has unraveled novel and often unexpected functions of growth factors, cytokines and their downstream signalling targets in liver regeneration. This review summarizes the results obtained by functional studies that have addressed the roles and mechanisms of action of growth factors and cytokines in liver regeneration after acute injury to this organ. PMID:20652897

  17. Fibroblast Growth Factor-2 Alters the Nature of Extinction

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2011-01-01

    These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction,…

  18. Characterization and estrogen regulation of uterine growth factor activity

    SciTech Connect

    Beck, C.A.

    1988-01-01

    Acid extracts of rat, bovine and rabbit uterus stimulated glucose transport, measured by phosphorylation of 2-deoxyglucose and DNA synthesis, measured by {sup 3}H-thymidne incorporation, in uterine tumor cells and in primary cultures of rat uterine cells. The stimulation of glucose transport was of the same magnitude and followed the same time course as estradiol stimulation in vivo. Uteri from estradiol-treated rat uteri contained 4 times more glucose transport-stimulating activity as control uteri. DNA synthetic activity in rat uterine homogenates was elevated 3-fold within 18-24 h after estradiol injection. Gel filtration showed molecular weight heterogeneity with activity eluting between 10-30 kDA. Both activities were acid and heat stable, were reduced by trypsin but not by dextran-coated charcoal. The effect of purified growth factors on DNA synthesis in primary cultures of rat uterine cells was examined. Epidermal growth factor (EGF), basic fibroblasts growth factor (bFGF), and transforming growth factor-{beta} (TGF{beta}) had no effect on {sup 3}H-thymidine incorporation.

  19. Mapping growth-factor-modulated Akt signaling dynamics.

    PubMed

    Gross, Sean M; Rotwein, Peter

    2016-05-15

    Growth factors alter cellular behavior through shared signaling cascades, raising the question of how specificity is achieved. Here, we have determined how growth factor actions are encoded into Akt signaling dynamics by real-time tracking of a fluorescent sensor. In individual cells, Akt activity was encoded in an analog pattern, with similar latencies (∼2 min) and half-maximal peak response times (range of 5-8 min). Yet, different growth factors promoted dose-dependent and heterogeneous changes in signaling dynamics. Insulin treatment caused sustained Akt activity, whereas EGF or PDGF-AA promoted transient signaling; PDGF-BB produced sustained responses at higher concentrations, but short-term effects at low doses, actions that were independent of the PDGF-α receptor. Transient responses to EGF were caused by negative feedback at the receptor level, as a second treatment yielded minimal responses, whereas parallel exposure to IGF-I caused full Akt activation. Small-molecule inhibitors reduced PDGF-BB signaling to transient responses, but only decreased the magnitude of IGF-I actions. Our observations reveal distinctions among growth factors that use shared components, and allow us to capture the consequences of receptor-specific regulatory mechanisms on Akt signaling. PMID:27044757

  20. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production

    PubMed Central

    David, Valentin; Martin, Aline; Isakova, Tamara; Spaulding, Christina; Qi, Lixin; Ramirez, Veronica; Zumbrennen-Bullough, Kimberly B.; Sun, Chia Chi; Lin, Herbert Y.; Babitt, Jodie L.; Wolf, Myles

    2015-01-01

    Circulating levels of fibroblast growth factor 23 (FGF23) are elevated in patients with chronic kidney disease (CKD), but the mechanisms are poorly understood. Here we tested whether inflammation and iron deficiency regulate FGF23. In wild-type mice, acute inflammation induced by single injections of heat-killed Brucella abortus or interleukin-1β (IL-1β) decreased serum iron within 6 hours, and was accompanied by significant increases in osseous Fgf23 mRNA expression and serum levels of C-terminal FGF23, but no changes in intact FGF23. Chronic inflammation induced by repeated bacteria or IL-1β injections decreased serum iron, increased osseous Fgf23 mRNA and serum C-terminal FGF23, but modestly increased biologically active, intact FGF23 serum levels. Chronic iron deficiency mimicked chronic inflammation. Increased osseous FGF23 cleavage rather than a prolonged half-life of C-terminal FGF23 fragments accounted for the elevated C-terminal FGF23 but near-normal intact FGF23 levels in inflammation. IL-1β injection increased Fgf23 mRNA and C-terminal FGF23 levels similarly in wild-type and Col4a3KO mice with CKD, but markedly increased intact FGF23 levels only in the CKD mice. Inflammation increased Fgf23 transcription by activating Hif1α signaling. Thus, inflammation and iron deficiency stimulate FGF23 production. Simultaneous upregulation of FGF23 cleavage in osteocytes maintains near-normal levels of biologically active, intact circulating FGF23, whereas downregulated or impaired FGF23 cleavage may contribute to elevated intact serum FGF23 in CKD. PMID:26535997

  1. [Expression of tissue factor and vascular endothelial growth factor in colorectal carcinoma].

    PubMed

    Altomare, D F; Rotelli, M T; Memeo, V; Martinelli, E; Guglielmi, A; DeFazio, M; D'Elia, G; Pentimone, A; Colucci, M; Semeraro, N

    2003-01-01

    Tissue factor (TF) and vascular endothelial growth factor (VEGF) play an important role in tumor progression and metastasis. We analyzed their expression in the carcinoma and normal mucosa of 53 colorectal cancer patients. VEGF levels were significantly higher in the tumor and correlated with TF expression. No correlation was found with tumor stage. TF may influence tumor growth and metastasis by modulating VEGF expression and neoangiogenesis. PMID:12903530

  2. Expression of fibroblast growth factor 21 in patients with biliary atresia.

    PubMed

    Li, Dawei; Lu, Tianfei; Shen, Conghuan; Liu, Yuan; Zhang, Jiang; Shan, Yuhua; Luo, Yi; Xi, Zhifeng; Qiu, Bijun; Chen, Qimin; Zhang, Jianjun; Xia, Qiang

    2016-07-01

    Fibroblast growth factor 21 is a critical circulating adipokine involving in metabolic disorders and various liver diseases. This study was performed to investigate whether FGF21 is also associated with the pathophysiology of biliary atresia. Serum FGF21 levels were measured in 57 BA patients and 20 age matched healthy controls. We also examined hepatic FGF21 mRNA expression and FGF21 protein levels in liver tissues obtained from 15 BA patients undergoing liver transplantation and 5 cases of pediatric donation after cardiac death donor without liver diseases by RT-PCR and Western blotting. Patients with BA showed significantly higher serum FGF21 levels than those without BA (554.7pg/mL [83-2300] vs. 124.5pg/mL [66-270], P<0.05). Patients with BA also had significantly higher FGF21 mRNA and protein levels in hepatic tissues than control subjects. Serum FGF21 expression increased corresponding to the severity of liver fibrosis. Furthermore, serum FGF21 levels dropped significantly in BA patients within 6months after liver transplantation and approached baseline in healthy controls (P>0.05). In vivo, FXR knockout could significantly abrogate cholestasis induced FGF21 expression. FGF21 levels in serum and liver tissue increased significantly in BA patients. In vivo, cholestasis could induce FGF21 expression in FXR dependent manner. PMID:27003131

  3. Neurotensin Decreases the Proinflammatory Status of Human Skin Fibroblasts and Increases Epidermal Growth Factor Expression

    PubMed Central

    Miguel Neves, Bruno; Cruz, Maria Teresa; Carvalho, Eugénia

    2014-01-01

    Fibroblasts colonization into injured areas during wound healing (WH) is responsible for skin remodelling and is also involved in the modulation of inflammation, as fibroblasts are immunologically active. Herein, we aimed to determine neurotensin effect on the immunomodulatory profile of fibroblasts, both in homeostatic and inflammatory conditions. Neurotensin mediated responses occurred through NTR1 or NTR3 receptors, while under inflammatory conditions NTR1 expression increase seemed to modulate neurotensin responses. Among different immunomodulatory genes, CCL11, IL-8, and IL-6 were the most expressed genes, while CCL4 and EGF were the less expressed genes. After neurotensin exposure, IL-8 mRNA expression was increased while CCL11 was decreased, suggesting a proinflammatory upregulation and chemoattractant ability downregulation of fibroblasts. Under inflammatory conditions, gene expression was significantly increased. After neurotensin exposure, CCL4 and IL-6 mRNA expression were decreased while CCL11 was increased, suggesting again a decrease in the chemoattractant capacity of fibroblasts and in their proinflammatory status. Furthermore, the expression of EGF, a crucial growth factor for skin cells proliferation and WH, was increased in all conditions. Overall, neurotensin, released by nerve fibers or skin cells, may be involved in the decrease of the chemotaxis and the proinflammatory status in the proliferation and remodelling phases of WH. PMID:25180119

  4. Carbachol stimulates a different phospholipid metabolism than nerve growth factor and basic fibroblast growth factor in PC12 cells.

    PubMed Central

    Pessin, M S; Altin, J G; Jarpe, M; Tansley, F; Bradshaw, R A; Raben, D M

    1991-01-01

    We have examined 1,2-diglycerides (DGs) generated in PC12 cells in response to the muscarinic agonist carbachol and compared them with those generated in response to the differentiation factors nerve growth factor and basic fibroblast growth factor. Whereas carbachol stimulates a greater release of inositol phosphates, all three agonists generate similar levels of DGs. In this report, we have analyzed the molecular species of PC12 DGs generated in response to these three agonists. Additionally, we have analyzed the molecular species of PC12 phospholipids. The data indicate that 1) after 1 min of either nerve growth factor or basic fibroblast growth factor stimulation, DGs arise primarily from phosphoinositide hydrolysis; 2) in contrast, after 1 min of carbachol stimulation, DG are generated equally by both phosphoinositide and phosphatidylcholine hydrolysis; and 3) after 15 min of stimulation by any of these agonists, DGs are generated largely by phosphatidylcholine hydrolysis, with a smaller component arising from the phosphoinositides. These results suggest that at least part of the mechanism by which PC12 cells distinguish between different agonists is via alterations in phospholipid sources and kinetics of DG generation. PMID:1892912

  5. Enhanced jun gene expression is an early genomic response to transforming growth factor. beta. stimulation

    SciTech Connect

    Pertovaara, L.; Sistonen, L.; Keski-Oja, J.; Alitalo, K. ); Bos, T.J.; Vogt, P.K. . Dept. of Microbiology)

    1989-03-01

    Transforming growth factor {beta} (TGF{beta}) is a multifunctional polypeptide4 that regulates proliferation, differentiation, and other functions of many cell types. The pathway of TGF{beta} signal transduction in cells is unknown. The authors report here that an early effect of TGF{beta} is an enhancement of the expression of two genes encoding serum- and phorbol ester tumor promoter-regulated transcription factors: the junB gene and the c-jun proto-oncogene, respectively. This stimulation was observed in human lung adenocarcinoma A549 cells which were growth inhibited by TGF{beta}, AKR-2B mouse embryo fibroblasts which were growth stimulated by TGF{beta}, and K562 human erythroleukemia cells, which were not appreciably affected in their growth by TFG{beta}. The increase in jun mRNA occurred with picomolar TGF{beta} concentrations within 1 h of TGF{beta} stimulation, reached a peak between 1 and 5 h in different cells, and declined gradually to base-fine levels. This mRNA response was followed by a large increase in the biosynthesis of the c-jun protein (AP-1), as shown by metabolic labeling and immunoprecipitation analysis. However, differential and cell type-specific regulation appeared to determine the timing and magnitude of the response of each jun gene in a given cell. In AKR-2B and NIH 3T3 cells, only junB was induced by TGF{beta}, evidently in a protein synthesis-independent fashion. The junB response to TGF{beta} was maintained in c-Ha-ras and neu oncogene-transformed cells. Thus, one of the earliest genomic responses to TGF{beta} may involve nuclear signal transduction and amplification by the junB and c-jun transcription factors in concert with c-fos, which is also induced. The differential activation of the jun genes may explain some of the pleiotropic effects of TGF{beta}.

  6. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    PubMed

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance. PMID:11953652

  7. Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor

    NASA Technical Reports Server (NTRS)

    Ellis, S.

    1981-01-01

    The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.

  8. RNA Processing Factor 7 and Polynucleotide Phosphorylase Are Necessary for Processing and Stability of nad2 mRNA in Arabidopsis Mitochondria

    PubMed Central

    Stoll, Birgit; Zendler, Daniel; Binder, Stefan

    2014-01-01

    Post-transcriptional maturation of plant mitochondrial transcripts requires several steps. Among these, the generation of mature 5′ ends is still one of the most enigmatic processes. Toward a characterization of proteins involved in 5′ processing of mitochondrial transcripts in Arabidopsis (Arabidopsis thaliana), we now analyzed 5′ maturation of nad2 transcripts. Based on natural genetic variation affecting 5′ ends of nad2 transcripts in ecotype Can-0 and complementation studies we now identified RNA processing factor 7, which takes part in the generation of the 5′ terminus of the mature nad2 mRNA. RPF7 is a relatively short regular P-class pentatricopeptide repeat protein comprising seven canonical P repeats and a single short S repeat. The corresponding allele in Can-0 encodes a truncated version of this protein lacking two C-terminal repeats, which are essential for the function of RPF7. Furthermore we established transgenic plants expressing artifical microRNAs targeting the mitochondrial polynucleotide phosphorylase (PNPase), which results in substantial reduction of the PNPase mRNA levels and strong knockdown of this gene. Detailed quantitative studies of 5′ and 3′ extended nad2 precursor RNAs in these knockdown plants as well as in the rpf7–1 knockout mutant suggest that 5′ processing contributes to the stability of mitochondrial transcripts in plants. PMID:25181358

  9. The Antagonistic Effect of Selenium on Lead-Induced Inflammatory Factors and Heat Shock Protein mRNA Level in Chicken Cartilage Tissue.

    PubMed

    Zheng, Shufang; Song, Huanyu; Gao, Han; Liu, Chunpeng; Zhang, Ziwei; Fu, Jing

    2016-09-01

    Selenium (Se) is recognized as a necessary trace mineral in animal diets, including those of birds. Lead (Pb) is a toxic heavy metal and can damage organs in humans and animals. Complex antagonistic interactions between Se and heavy metals have been reported in previous studies. However, little is known regarding the effects of Se on Pb-induced toxicity and the expression of inflammatory factors and heat shock proteins (HSPs) in the cartilage of chickens. In this present study, we fed chickens either with Se or Pb or both Se and Pb supplement and later analyzed the mRNA expressions of inflammatory factors (inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2)) and HSPs (Hsp27, Hsp40, Hsp60, Hsp70, and Hsp90). The results showed that Se and Pb influenced the expression of inflammatory factors and HSP genes in the chicken cartilage tissues. Additionally, we also found that antagonistic interaction existed between Se and Pb supplementation. Our findings suggested that Se could exert a antagonistic effect on Pb in chicken cartilage tissues. PMID:26831653

  10. Effects of 1,25(OH)2D3, 25OHD3, and EB1089 on cell growth and Vitamin D receptor mRNA and 1alpha-hydroxylase mRNA expression in primary cultures of the canine prostate.

    PubMed

    Kunakornsawat, S; Rosol, T J; Capen, C C; Omdahl, J L; Leroy, B E; Inpanbutr, N

    2004-05-01

    The aim of this study was to investigate effects of 1,25(OH)(2)D(3) (calcitriol), 25OHD(3), and EB1089 on cell growth and on Vitamin D receptor (VDR) mRNA and 1alpha-hydroxylase (1alpha-OHase) mRNA expression in normal canine prostatic primary cultures. Canine prostatic epithelial cells were isolated, cultured, and treated with vehicle (ethanol), calcitriol, 25OHD(3), and EB1089 at 10(-9) and 10(-7)M. The VDR was present in epithelial and stromal cells of the canine prostate gland. 1,25(OH)(2)D(3), 25OHD(3), and EB1089 inhibited epithelial cell growth at 10(-7)M compared to vehicle-treated controls [calcitriol (P < 0.01), EB1089 (P < 0.01), and 25OHD(3) (P < 0.05)]. Epithelial cells treated with calcitriol and EB1089 at 10(-7)M had slightly increased VDR mRNA expression (0.2-0.3-fold) at 6 and 12h compared to controls. There was no difference in 1alpha-OHase mRNA expression in epithelial cells treated with these three compounds. 1,25(OH)(2)D(3) and its analogs may be effective antiproliferative agents of epithelial cells in certain types of prostate cancer. PMID:15225811

  11. Vascular Endothelial growth factor signaling in hypoxia and Inflammation

    PubMed Central

    Ramakrishnan, S.; Anand, Vidhu; Roy, Sabita

    2014-01-01

    Infection, cancer and cardiovascular diseases are the major causes for morbidity and mortality in the United States according to the Center for Disease Control. The underlying etiology that contributes to the severity of these diseases is either hypoxia induced inflammation or inflammation resulting in hypoxia. Therefore, molecular mechanisms that regulate hypoxia-induced adaptive responses in cells are important areas of investigation. Oxygen availability is sensed by molecular switches which regulate synthesis and secretion of growth factors and inflammatory mediators. As a consequence, tissue microenvironment is altered by reprogramming metabolic pathways, angiogenesis, vascular permeability, pH homeostasis to facilitate tissue remodeling. Hypoxia inducible factor (HIF) is the central mediator of hypoxic response. HIF regulates several hundred genes and vascular endothelial growth factor (VEGF) is one of the primary target genes. Understanding the regulation of HIF and its influence on inflammatory response offers unique opportunities for drug development to modulate inflammation and ischemia in pathological conditions. PMID:24610033

  12. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  13. Extrinsic Factors Influencing Fetal Deformations and Intrauterine Growth Restriction

    PubMed Central

    Moh, Wendy; Graham, John M.; Wadhawan, Isha; Sanchez-Lara, Pedro A.

    2012-01-01

    The causes of intrauterine growth restriction (IUGR) are multifactorial with both intrinsic and extrinsic influences. While many studies focus on the intrinsic pathological causes, the possible long-term consequences resulting from extrinsic intrauterine physiological constraints merit additional consideration and further investigation. Infants with IUGR can exhibit early symmetric or late asymmetric growth abnormality patterns depending on the fetal stage of development, of which the latter is most common occurring in 70–80% of growth-restricted infants. Deformation is the consequence of extrinsic biomechanical factors interfering with normal growth, functioning, or positioning of the fetus in utero, typically arising during late gestation. Biomechanical forces play a critical role in the normal morphogenesis of most tissues. The magnitude and direction of force impact the form of the developing fetus, with a specific tissue response depending on its pliability and stage of development. Major uterine constraining factors include primigravida, small maternal size, uterine malformation, uterine fibromata, early pelvic engagement of the fetal head, aberrant fetal position, oligohydramnios, and multifetal gestation. Corrective mechanical forces similar to those that gave rise to the deformation to reshape the deformed structures are often used and should take advantage of the rapid postnatal growth to correct form. PMID:22888434

  14. Induction of tenascin-C by cyclic tensile strain versus growth factors: distinct contributions by Rho/ROCK and MAPK signaling pathways.

    PubMed

    Chiquet, Matthias; Sarasa-Renedo, Ana; Tunç-Civelek, Vildan

    2004-09-17

    Expression of the extracellular matrix (ECM) protein tenascin-C is induced in fibroblasts by growth factors as well as by tensile strain. Mechanical stress can act on gene regulation directly, or indirectly via the paracrine release of soluble factors by the stimulated cells. To distinguish between these possibilities for tenascin-C, we asked whether cyclic tensile strain and soluble factors, respectively, induced its mRNA via related or separate mechanisms. When cyclic strain was applied to chick embryo fibroblasts cultured on silicone membranes, tenascin-C mRNA and protein levels were increased twofold within 6 h compared to the resting control. Medium conditioned by strained cells did not stimulate tenascin-C mRNA in resting cells. Tenascin-C mRNA in resting cells was increased by serum; however, cyclic strain still caused an additional induction. Likewise, the effect of TGF-beta1 or PDGF-BB was additive to that of cyclic strain, whereas IL-4 or H2O2 (a reactive oxygen species, ROS) did not change tenascin-C mRNA levels. Antagonists for distinct mitogen-activated protein kinases (MAPK) inhibited tenascin-C induction by TGF-beta1 and PDGF-BB, but not by cyclic strain. Conversely, a specific inhibitor of Rho-dependent kinase strongly attenuated the response of tenascin-C mRNA to cyclic strain, but had limited effect on induction by growth factors. The data suggest that regulation of tenascin-C in fibroblasts by cyclic strain occurs independently from soluble mediators and MAPK pathways; however, it requires Rho/ROCK signaling. PMID:15363633

  15. Venlafaxine treatment after endothelin-1-induced cortical stroke modulates growth factor expression and reduces tissue damage in rats.

    PubMed

    Zepeda, Rodrigo; Contreras, Valentina; Pissani, Claudia; Stack, Katherine; Vargas, Macarena; Owen, Gareth I; Lazo, Oscar M; Bronfman, Francisca C

    2016-08-01

    Neuromodulators, such as antidepressants, may contribute to neuroprotection by modulating growth factor expression to exert anti-inflammatory effects and to support neuronal plasticity after stroke. Our objective was to study whether early treatment with venlafaxine, a serotonin-norepinephrine reuptake inhibitor, modulates growth factor expression and positively contributes to reducing the volume of infarcted brain tissue resulting in increased functional recovery. We studied the expression of BDNF, FGF2 and TGF-β1 by examining their mRNA and protein levels and cellular distribution using quantitative confocal microscopy at 5 days after venlafaxine treatment in control and infarcted brains. Venlafaxine treatment did not change the expression of these growth factors in sham rats. In infarcted rats, BDNF mRNA and protein levels were reduced, while the mRNA and protein levels of FGF2 and TGF-β1 were increased. Venlafaxine treatment potentiated all of the changes that were induced by cortical stroke alone. In particular, increased levels of FGF2 and TGF-β1 were observed in astrocytes at 5 days after stroke induction, and these increases were correlated with decreased astrogliosis (measured by GFAP) and increased synaptophysin immunostaining at twenty-one days after stroke in venlafaxine-treated rats. Finally, we show that venlafaxine reduced infarct volume after stroke resulting in increased functional recovery, which was measured using ladder rung motor tests, at 21 days after stroke. Our results indicate that the early oral administration of venlafaxine positively contributes to neuroprotection during the acute and late events that follow stroke. PMID:26965219

  16. Vascular Endothelial Growth Factor Acts Primarily via Platelet-Derived Growth Factor Receptor α to Promote Proliferative Vitreoretinopathy

    PubMed Central

    Pennock, Steven; Haddock, Luis J.; Mukai, Shizuo; Kazlauskas, Andrius

    2015-01-01

    Proliferative vitreoretinopathy (PVR) is a nonneovascular blinding disease and the leading cause for failure in surgical repair of rhegmatogenous retinal detachments. Once formed, PVR is difficult to treat. Hence, there is an acute interest in developing approaches to prevent PVR. Of the many growth factors and cytokines that accumulate in vitreous as PVR develops, neutralizing vascular endothelial growth factor (VEGF) A has recently been found to prevent PVR in at least one animal model. The goal of this study was to test if Food and Drug Administration–approved agents could protect the eye from PVR in multiple animal models and to further investigate the underlying mechanisms. Neutralizing VEGF with aflibercept (VEGF Trap-Eye) safely and effectively protected rabbits from PVR in multiple models of disease. Furthermore, aflibercept reduced the bioactivity of both experimental and clinical PVR vitreous. Finally, although VEGF could promote some PVR-associated cellular responses via VEGF receptors expressed on the retinal pigment epithelial cells that drive this disease, VEGF's major contribution to vitreal bioactivity occurred via platelet-derived growth factor receptor α. Thus, VEGF promotes PVR by a noncanonical ability to engage platelet-derived growth factor receptor α. These findings indicate that VEGF contributes to nonangiogenic diseases and that anti–VEGF-based therapies may be effective on a wider spectrum of diseases than previously appreciated. PMID:25261788

  17. Epidermal growth factor (EGF) antagonizes transforming growth factor (TGF)-beta1-induced collagen lattice contraction by human skin fibroblasts.

    PubMed

    Park, J S; Kim, J Y; Cho, J Y; Kang, J S; Yu, Y H

    2000-12-01

    Wound contraction plays an important role in healing, but in extreme conditions, it may lead to excessive scar formation and pathological wound contracture. To date, the key regulator of excessive contracture is known to be transforming growth factor-beta (TGF-beta1). In this study, we have evaluated epidermal growth factor (EGF) antagonism in fibroblast-populated collagen lattice (FPCL) gel contraction, which has been generally used as an in vitro model thought to mimic wound contraction in vivo. As expected, TGF-beta1 treatment enhanced normal fibroblast-induced collagen gel contraction in a dose-dependent manner. In contrast, EGF did not affect normal gel formation, but significantly antagonized TGF-beta1-induced gel formation (p<0.05 at 100 ng/ml), whereas the other growth factor, platelet-derived growth factor (PDGF), did not altered either normal or TGF-beta1-induced gel contractions. Similarly, EGF treatment, but not PDGF, also significantly suppressed TGF-beta1 release that was autologously elicited by TGF-beta1 treatment (p<0.01 at 100 ng/ml). Therefore, the results suggest that EGF may negatively regulate the role of TGF-beta1 through attenuating autologous release of TGF-beta1. PMID:11145189

  18. Transforming growth factor-beta and transforming growth factor beta-receptor expression in human meningioma cells.

    PubMed Central

    Johnson, M. D.; Federspiel, C. F.; Gold, L. I.; Moses, H. L.

    1992-01-01

    The transforming growth factor-beta (TGF beta) family in mammals includes three closely related peptides that influence proliferation and numerous physiologic processes in most mesenchymal cells. In this study, Northern blots, immunohistochemistry, TGF beta radioreceptor assays, TGF beta receptor affinity labeling and [3H] thymidine incorporation were used to evaluate whether primary cell cultures of human meningiomas synthesize the three TGF beta isoforms, bear TGF beta receptors, and respond to TGF beta. Transcripts for TGF beta 1 and 2 were detected in the three cases analyzed. Transforming growth factor-beta 1 immunoreactivity was detected in three of six cases, and TGF beta 2 and 3 immunoreactivity were detected in each case analyzed. Media conditioned by cells cultured from six meningiomas also contained latent TGF beta-like activity. Transforming growth factor-beta receptor cross-linking studies identified TGF beta binding sites corresponding to the type 1, type 2, and type 3 receptors on meningioma cells. Treatment with active TGF beta 1 produced a statistically significant reduction in [3H] thymidine incorporation after stimulation with 10% fetal calf serum and epidermal growth factor in all six cases studied. Images Figure 1 Figure 2 Figure 4 PMID:1325741

  19. Efficacy of anti-insulin-like growth factor I receptor monoclonal antibody cixutumumab in mesothelioma is highly correlated with insulin growth factor-I receptor sites/cell.

    PubMed

    Kalra, Neetu; Zhang, Jingli; Yu, Yunkai; Ho, Mitchell; Merino, Maria; Cao, Liang; Hassan, Raffit

    2012-11-01

    Insulin growth factor-I receptor (IGF-IR) is expressed in mesothelioma and therefore an attractive target for therapy. The antitumor activity of cixutumumab, a humanized monoclonal antibody to IGF-IR, in mesothelioma and relationship to IGF-IR expression was investigated using eight early passage tumor cells obtained from patients, nine established cell lines and an in vivo human mesothelioma tumor xenograft model. Although IGF-IR expression at the mRNA and protein level was present in all mesothelioma cells, using a quantitative ELISA immunoassay, there was considerable variability of IGF-IR expression ranging from 1 to 14 ng/mg of lysate. Using flow cytometry, the number of IGF-IR surface receptors varied from ≈ 2,000 to 50,000 sites/cell. Cells expressing >10,000 sites/cell had greater than 10% growth inhibition when treated with cixutumumab (100 μg/ml). Cixutumumab also induced antibody-dependent cell-mediated toxicity (>10% specific lysis) in cell lines, which had >20,000 IGF-IR sites/cell. Treatment with cixutumumab decreased phosphorylation of IGF-IR, Akt and Erk in cell lines, H226 and H28 having 24,000 and 51,000 IGF-IR sites/cell, respectively, but not in the cell line H2052 with 3,000 IGF-IR sites/cell. In vivo, cixutumumab treatment delayed growth of H226 mesothelioma tumor xenografts in mice and improved the overall survival of these mice compared to mice treated with saline (p < 0.004). Our results demonstrate that the antitumor efficacy of cixutumumab including inhibition of IGF-IR downstream signaling is highly correlated with IGF-IR sites/cell. A phase II clinical trial of cixutumumab is currently ongoing for the treatment of patients with mesothelioma. PMID:22323052

  20. FGF19 functions as autocrine growth factor for hepatoblastoma

    PubMed Central

    Elzi, David J.; Song, Meihua; Blackman, Barron; Weintraub, Susan T.; López-Terrada, Dolores; Chen, Yidong; Tomlinson, Gail E.; Shiio, Yuzuru

    2016-01-01

    Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain insight into cytokine signaling in hepatoblastoma, we employed mass spectrometry to analyze the proteins secreted from Hep293TT hepatoblastoma cell line we established and identified the specific secretion of fibroblast growth factor 19 (FGF19), a growth factor for liver cells. We determined that silencing FGF19 by shRNAs or neutralizing secreted FGF19 by anti-FGF19 antibody inhibits the proliferation of hepatoblastoma cells. Furthermore, blocking FGF19 signaling by an FGF receptor kinase inhibitor suppressed hepatoblastoma growth. RNA expression analysis in hepatoblastoma tumors revealed that the high expression of FGF19 signaling pathway components as well as the low expression of FGF19 signaling repression targets correlates with the aggressiveness of the tumors. These results suggest the role of FGF19 as autocrine growth factor for hepatoblastoma. PMID:27382436

  1. Transforming growth factor (TGF)-. alpha. in human milk

    SciTech Connect

    Okada, Masaki; Wakai, Kae; Shizume, Kazuo ); Iwashita, Mitsutoshi ); Ohmura, Eiji; Kamiya, Yoshinobu; Murakami, Hitomi; Onoda, Noritaka; Tsushima, Toshio

    1991-01-01

    Transforming growth factor (TGF)-{alpha} and epidermal growth factor (EGF) were measured in human milk by means of homologous radioimmunoassay. As previously reported, EGF concentration in the colostrum was approximately 200 ng/ml and decreased to 50 ng/ml by day 7 postpartum. The value of immunoreactive (IR)-TGF-{alpha} was 2.2-7.2 ng/ml, much lower than that of EGF. In contrast to EGF, the concentration of IR-TGF-{alpha} was fairly stable during the 7 postpartum days. There was no relationship between the concentrations of IR-TGF-{alpha} and IR-EGF, suggesting that the regulatory mechanism in the release of the two growth factors is different. On gel-chromatography using a Sephadex G-50 column, IR-EGF appeared in the fraction corresponding to that of authentic human EGF, while 70%-80% of the IR-TGF-{alpha} was eluted as a species with a molecular weight greater than that of authentic human TGF-{alpha}. Although the physiological role of TGF-{alpha} in milk is not known, it is possible that it is involved in the development of the mammary gland and/or the growth of newborn infants.

  2. Lifetime growth in wild meerkats: incorporating life history and environmental factors into a standard growth model.

    PubMed

    English, Sinéad; Bateman, Andrew W; Clutton-Brock, Tim H

    2012-05-01

    Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations. PMID:22108854

  3. Alzheimer amyloid peptide aβ42 regulates gene expression of transcription and growth factors.

    PubMed

    Barucker, Christian; Sommer, Anette; Beckmann, Georg; Eravci, Murat; Harmeier, Anja; Schipke, Carola G; Brockschnieder, Damian; Dyrks, Thomas; Althoff, Veit; Fraser, Paul E; Hazrati, Lili-Naz; George-Hyslop, Peter St; Breitner, John C S; Peters, Oliver; Multhaup, Gerhard

    2015-01-01

    The pathogenesis of Alzheimer's disease (AD) is characterized by the aggregation of amyloid-β (Aβ) peptides leading to deposition of senile plaques and a progressive decline of cognitive functions, which currently remains the main criterion for its diagnosis. Robust biomarkers for AD do not yet exist, although changes in the cerebrospinal fluid levels of tau and Aβ represent promising candidates in addition to brain imaging and genetic risk profiling. Although concentrations of soluble Aβ42 correlate with symptoms of AD, less is known about the biological activities of Aβ peptides which are generated from the amyloid-β protein precursor. An unbiased DNA microarray study showed that Aβ42, at sub-lethal concentrations, specifically increases expression of several genes in neuroblastoma cells, notably the insulin-like growth factor binding proteins 3 and 5 (IGFBP3/5), the transcription regulator inhibitor of DNA binding, and the transcription factor Lim only domain protein 4. Using qRT-PCR, we confirmed that mRNA levels of the identified candidate genes were exclusively increased by the potentially neurotoxic Aβ42 wild-type peptide, as both the less toxic Aβ40 and a non-toxic substitution peptide Aβ42 G33A did not affect mRNA levels. In vivo immunohistochemistry revealed a corresponding increase in both hippocampal and cortical IGFBP5 expression in an AD mouse model. Proteomic analyses of human AD cerebrospinal fluid displayed increased in vivo concentrations of IGFBPs. IGFBPs and transcription factors, as identified here, are modulated by soluble Aβ42 and may represent useful early biomarkers. PMID:25318543

  4. Amblyomma americanum tick saliva insulin-like growth factor binding protein-related protein 1 binds insulin but not insulin-like growth factors.

    PubMed

    Radulović, Ž M; Porter, L M; Kim, T K; Bakshi, M; Mulenga, A

    2015-10-01

    Silencing Amblyomma americanum insulin-like growth factor binding protein-related protein 1 (AamIGFBP-rP1) mRNA prevented ticks from feeding to repletion. In this study, we used recombinant (r)AamIGFBP-rP1 in a series of assays to obtain further insight into the role(s) of this protein in tick feeding regulation. Our results suggest that AamIGFBP-1 is an antigenic protein that is apparently exclusively expressed in salivary glands. We found that both males and females secrete AamIGFBP-rP1 into the host during feeding and confirmed that female ticks secrete this protein from within 24-48 h after attachment. Our data suggest that native AamIGFBP-rP1 is a functional insulin binding protein in that both yeast- and insect cell-expressed rAamIGFBP-rP1 bound insulin, but not insulin-like growth factors. When subjected to anti-blood clotting and platelet aggregation assays, rAamIGFBP-rP1 did not have any effect. Unlike human IGFBP-rP1, which is controlled by trypsinization, rAamIGFBP-rP1 is resistant to digestion, suggesting that the tick protein may not be under mammalian host control at the tick feeding site. The majority of tick-borne pathogens are transmitted 48 h after the tick has attached. Thus, the demonstrated antigenicity and secretion into the host within 24-48 h of the tick starting to feed makes AamIGFBP-rP1 an attractive target for antitick vaccine development. PMID:26108887

  5. Role of platelet-derived growth factor/platelet-derived growth factor receptor axis in the trafficking of circulating fibrocytes in pulmonary fibrosis.

    PubMed

    Aono, Yoshinori; Kishi, Masami; Yokota, Yuki; Azuma, Momoyo; Kinoshita, Katsuhiro; Takezaki, Akio; Sato, Seidai; Kawano, Hiroshi; Kishi, Jun; Goto, Hisatsugu; Uehara, Hisanori; Izumi, Keisuke; Nishioka, Yasuhiko

    2014-12-01

    Circulating fibrocytes have been reported to migrate into the injured lungs, and contribute to fibrogenesis via CXCL12-CXCR4 axis. In contrast, we report that imatinib mesylate prevented bleomycin (BLM)-induced pulmonary fibrosis in mice by inhibiting platelet-derived growth factor receptor (PDGFR), even when it was administered only in the early phase. The goal of this study was to test the hypothesis that platelet-derived growth factor (PDGF) might directly contribute to the migration of fibrocytes to the injured lungs. PDGFR expression in fibrocytes was examined by flow cytometry and RT-PCR. The migration of fibrocytes was evaluated by using a chemotaxis assay for human fibrocytes isolated from peripheral blood. The numbers of fibrocytes triple-stained for CD45, collagen-1, and CXCR4 were also examined in lung digests of BLM-treated mice. PDGFR mRNA levels in fibrocytes isolated from patients with idiopathic pulmonary fibrosis were investigated by real-time PCR. Fibrocytes expressed both PDGFR-α and -β, and migrated in response to PDGFs. PDGFR inhibitors (imatinib, PDGFR-blocking antibodies) suppressed fibrocyte migration in vitro, and reduced the number of fibrocytes in the lungs of BLM-treated mice. PDGF-BB was a stronger chemoattractant than the other PDGFs in vitro, and anti-PDGFR-β-blocking antibody decreased the numbers of fibrocytes in the lungs compared with anti-PDGFR-α antibody in vivo. Marked expression of PDGFR-β was observed in fibrocytes from patients with idiopathic pulmonary fibrosis compared with healthy subjects. These results suggest that PDGF directly functions as a strong chemoattractant for fibrocytes. In particular, the PDGF-BB-PDGFR-β biological axis might play a critical role in fibrocyte migration into the fibrotic lungs. PMID:24885373

  6. The influence of site factors on eucalypt growth in Karnataka

    SciTech Connect

    Dury, S.J.; Manjunath, B.E.

    1992-12-31

    The effect of site factors on the growth of E. tereticornis hybrid plantations in Karnataka, southern India, is investigated. Sites have been characterized and classified on the basis of the physical and chemical conditions of the soil, topography and climate. Growth data have been collected from two sources: permanent sample plots, to relate growth to site conditions and to detect site change over time, and fertilizer trials, to investigate which nutrients or combination of nutrients enhance growth rates. Site indices calculated from the permanent sample plots are used as the basis for relating growth rates to soil type. The lower than expected mean annual increments of the plantations, which vary between 0.2 and 7 m{sup 3} ha{sup {minus}1} yr{sup {minus}1} at six years of age, are considered to be primarily the result of water stress. Three of the areas studied have similar soil characteristics, as confirmed by discriminant analysis, but have quite different average site indices. This is shown to be related to differences in average rainfall. Practices for reducing moisture stress are therefore recommended to improve productivity. The fertilizer trials show no clear growth response to nitrogen or phosphorus; possible reasons for this are outlined. Evidence of potassium deficiency is presented. The need for a combined fertilizer/irrigation trial is discussed.

  7. Divergent effects of epidermal growth factor and transforming growth factors on a human endometrial carcinoma cell line.

    PubMed

    Korc, M; Haussler, C A; Trookman, N S

    1987-09-15

    Epidermal growth factor (EGF), at concentrations ranging from 0.83 to 4.98 nM, markedly inhibited the proliferation of RL95-2 cells that were seeded at low plating densities (4.7 X 10(3) cells/cm2). Under the same incubation conditions, 16.6 pM EGF enhanced cell proliferation. At high plating densities (2.5 X 10(4) cells/cm2) 0.83 nM EGF also stimulated cell proliferation. Both the inhibitory and stimulatory effects of EGF were mimicked by transforming growth factor-alpha (TGF-alpha). However, the inhibitory action of TGF-alpha was always greater that of EGF. Binding studies with 125I-labeled TGF-alpha indicated that maximal cell surface binding of TGF-alpha occurred at 15 min, whereas maximal internalization occurred at 45 min. Both cell surface and internalized radioactivity declined sharply thereafter. Analysis of radioactivity released into the incubation medium during pulse-chase experiments indicated that RL95-2 cells extensively degraded both TGF-alpha and EGF. The lysosomotropic compound methylamine arrested the generation of low-molecular-weight degradation products of EGF, but not of TGF-alpha. In contrast to EGF and TGF-alpha, transforming growth factor-beta (TGF-beta) inhibited the proliferation of RL95-2 cells that were seeded at either low or high plating densities. Further, transforming growth factor-beta induced the appearance of large cuboidal cells that were readily distinguished from cells treated with either EGF or TGF-alpha. These findings point to complex regulatory actions of growth factors on the proliferation of RL95-2 cells and suggest that the processing of TGF-alpha following EGF receptor activation is distinct from the processing of EGF. PMID:3497713

  8. Transforming growth factor beta 3 involved in the pathogenesis of synovial chondromatosis of temporomandibular joint

    PubMed Central

    Li, Yingjie; El.Mozen, Loaye Abdelaziz; Cai, Hengxing; Fang, Wei; Meng, Qinggong; Li, Jian; Deng, Mohong; Long, Xing

    2015-01-01

    Synovial chondromatosis (SC) of temporomandibular joint is rare proliferative disorder featured by the formation of cartilaginous nodules in synovium and joint space. Transforming growth factor beta 3 (TGF-β3) is closely related to chondrogenic differentiation, and might participate in pathogenesis of SC. We discovered that increased quantity of synoviocytes and blood vessels were observed in SC synovium. The vessel wall and sublining fibroblasts were stained positively by the antibodies against TGF-β3, fibroblast growth factor 2 (FGF-2), and CD34. In loose bodies (LBs), TGF-β3 was mainly expressed in chondrocytes and FGF-2 was expressed in chondrocytes, fibroblasts, and vessel walls. Expressions of TGF-β1, TGF-β3, FGF-2, Sox9, Wnt-4, Foxc2, and VEGF-A mRNA were significantly higher in SC synovium. Stimulation of TGF-β3 on synoviocytes increased alkaline phosphatase (ALP) activity and expressions of chondrogenic genes (Sox9, Col2α1, Aggrecan, Wnt-4, and Wnt-11), osteogenic genes (Runx2, Foxc2, osteocalcin, and Col1α1), and VEGF-A, but failed to influence FGF-2 expression. However, the addition of FGF-2 increased TGF-β3 expression. In conclusion, TGF-β3 existed in synovium and LBs of SC, and was responsible for the pathogenesis of SC. PMID:25742744

  9. Transforming growth factor beta 3 involved in the pathogenesis of synovial chondromatosis of temporomandibular joint.

    PubMed

    Li, Yingjie; El Mozen, Loaye Abdelaziz; Cai, Hengxing; Fang, Wei; Meng, Qinggong; Li, Jian; Deng, Mohong; Long, Xing

    2015-01-01

    Synovial chondromatosis (SC) of temporomandibular joint is rare proliferative disorder featured by the formation of cartilaginous nodules in synovium and joint space. Transforming growth factor beta 3 (TGF-β3) is closely related to chondrogenic differentiation, and might participate in pathogenesis of SC. We discovered that increased quantity of synoviocytes and blood vessels were observed in SC synovium. The vessel wall and sublining fibroblasts were stained positively by the antibodies against TGF-β3, fibroblast growth factor 2 (FGF-2), and CD34. In loose bodies (LBs), TGF-β3 was mainly expressed in chondrocytes and FGF-2 was expressed in chondrocytes, fibroblasts, and vessel walls. Expressions of TGF-β1, TGF-β3, FGF-2, Sox9, Wnt-4, Foxc2, and VEGF-A mRNA were significantly higher in SC synovium. Stimulation of TGF-β3 on synoviocytes increased alkaline phosphatase (ALP) activity and expressions of chondrogenic genes (Sox9, Col2α1, Aggrecan, Wnt-4, and Wnt-11), osteogenic genes (Runx2, Foxc2, osteocalcin, and Col1α1), and VEGF-A, but failed to influence FGF-2 expression. However, the addition of FGF-2 increased TGF-β3 expression. In conclusion, TGF-β3 existed in synovium and LBs of SC, and was responsible for the pathogenesis of SC. PMID:25742744

  10. Key roles of necroptotic factors in promoting tumor growth.

    PubMed

    Liu, Xinjian; Zhou, Min; Mei, Ling; Ruan, Jiaying; Hu, Qian; Peng, Jing; Su, Hang; Liao, Hong; Liu, Shanling; Liu, WeiPing; Wang, He; Huang, Qian; Li, Fang; Li, Chuan-Yuan

    2016-04-19

    Necroptotic factors are generally assumed to play a positive role in tumor therapy by eliminating damaged tumor cells. Here we show that, contrary to expectation, necroptotic factors RIPK1, RIPK3, and MLKL promote tumor growth. We demonstrate that genetic knockout of necroptotic genes RIPK1, RIPK3, or MLKL in cancer cells significantly attenuated their abilities to grow in an anchorage-independent manner. In addition, they exhibited significantly enhanced radiosensitivity. The knockout cells also showed greatly reduced ability to form tumors in mice. Moreover, necrosulfonamide (NSA), a previously identified chemical inhibitor of necroptosis, could significantly delay tumor growth in a xenograft model. Mechanistically, we show that necroptoic factors play a significant role in maintaining the activity of NF-κB. Finally, we found that high levels of phosphorylated MLKL in human esophageal and colon cancers are associated with poor overall survival. Taken together, we conclude that pro-necroptic factors such as RIPK1, RIPK3, and MLKL may play a role in supporting tumor growth, and MLKL may be a promising target for cancer treatment. PMID:26959742

  11. Key roles of necroptotic factors in promoting tumor growth

    PubMed Central

    Liu, Xinjian; Zhou, Min; Mei, Ling; Ruan, Jiaying; Hu, Qian; Peng, Jing; Su, Hang; Liao, Hong; Liu, Shanling; Liu, WeiPing; Wang, He; Huang, Qian; Li, Fang; Li, Chuan-Yuan

    2016-01-01

    Necroptotic factors are generally assumed to play a positive role in tumor therapy by eliminating damaged tumor cells. Here we show that, contrary to expectation, necroptotic factors RIPK1, RIPK3, and MLKL promote tumor growth. We demonstrate that genetic knockout of necroptotic genes RIPK1, RIPK3, or MLKL in cancer cells significantly attenuated their abilities to grow in an anchorage-independent manner. In addition, they exhibited significantly enhanced radiosensitivity. The knockout cells also showed greatly reduced ability to form tumors in mice. Moreover, necrosulfonamide (NSA), a previously identified chemical inhibitor of necroptosis, could significantly delay tumor growth in a xenograft model. Mechanistically, we show that necroptoic factors play a significant role in maintaining the activity of NF-κB. Finally, we found that high levels of phosphorylated MLKL in human esophageal and colon cancers are associated with poor overall survival. Taken together, we conclude that pro-necroptic factors such as RIPK1, RIPK3, and MLKL may play a role in supporting tumor growth, and MLKL may be a promising target for cancer treatment. PMID:26959742

  12. Growth factor choice is critical for successful functionalization of nanoparticles

    PubMed Central

    Pinkernelle, Josephine; Raffa, Vittoria; Calatayud, Maria P.; Goya, Gerado F.; Riggio, Cristina; Keilhoff, Gerburg

    2015-01-01

    Nanoparticles (NPs) show new characteristics compared to the corresponding bulk material. These nanoscale properties make them interesting for various applications in biomedicine and life sciences. One field of application is the use of magnetic NPs to support regeneration in the nervous system. Drug delivery requires a functionalization of NPs with bio-functional molecules. In our study, we functionalized self-made PEI-coated iron oxide NPs with nerve growth factor (NGF) and glial cell-line derived neurotrophic factor (GDNF). Next, we tested the bio-functionality of NGF in a rat pheochromocytoma cell line (PC12) and the bio-functionality of GDNF in an organotypic spinal cord culture. Covalent binding of NGF to PEI-NPs impaired bio-functionality of NGF, but non-covalent approach differentiated PC12 cells reliably. Non-covalent binding of GDNF showed a satisfying bio-functionality of GDNF:PEI-NPs, but turned out to be unstable in conjugation to the PEI-NPs. Taken together, our study showed the importance of assessing bio-functionality and binding stability of functionalized growth factors using proper biological models. It also shows that successful functionalization of magnetic NPs with growth factors is dependent on the used binding chemistry and that it is hardly predictable. For use as therapeutics, functionalization strategies have to be reproducible and future studies are needed. PMID:26388717

  13. A nerve growth factor peptide retards seizure development and inhibits neuronal sprouting in a rat model of epilepsy.

    PubMed Central

    Rashid, K; Van der Zee, C E; Ross, G M; Chapman, C A; Stanisz, J; Riopelle, R J; Racine, R J; Fahnestock, M

    1995-01-01

    Kindling, an animal model of epilepsy wherein seizures are induced by subcortical electrical stimulation, results in the upregulation of neurotrophin mRNA and protein in the adult rat forebrain and causes mossy fiber sprouting in the hippocampus. Intraventricular infusion of a synthetic peptide mimic of a nerve growth factor domain that interferes with the binding of neurotrophins to their receptors resulted in significant retardation of kindling and inhibition of mossy fiber sprouting. These findings suggest a critical role for neurotrophins in both kindling and kindling-induced synaptic reorganization. Images Fig. 2 PMID:7568161

  14. Identification of novel inhibitors of the transforming growth factor beta1 (TGF-beta1) type 1 receptor (ALK5).

    PubMed

    Callahan, James F; Burgess, Joelle L; Fornwald, James A; Gaster, Laramie M; Harling, John D; Harrington, Frank P; Heer, Jag; Kwon, Chet; Lehr, Ruth; Mathur, A; Olson, Barbara A; Weinstock, Joseph; Laping, Nicholas J

    2002-02-28

    Screening of our internal compound collection for inhibitors of the transforming growth factor beta1 (TGF-beta1) type I receptor (ALK5) identified several hits. Optimization of the dihydropyrroloimidazole hit 2 by introduction of a 2-pyridine and 3,4-methylenedioxyphenyl group gave 7, a selective ALK5 inhibitor. With this information, optimization of the triarylimidazole hit 8 gave the selective inhibitor 14, which inhibits TGF-beta1-induced fibronectin mRNA formation while displaying no measurable cytotoxicity in the 48 h XTT assay. PMID:11855979

  15. The role of transforming growth factor-beta (TGF-beta) during ovarian follicular development in sheep

    PubMed Central

    Juengel, Jennifer L; Bibby, Adrian H; Reader, Karen L; Lun, Stan; Quirke, Laurel D; Haydon, Lisa J; McNatty, Kenneth P

    2004-01-01

    Background Recently, several members of the transforming growth factor-beta (TGF-beta) superfamily have been shown to be essential for regulating the growth and differentiation of ovarian follicles and thus fertility. Methods Ovaries of neonatal and adult sheep were examined for expression of the TGF-betas 1–3 and their receptors (RI and RII) by in situ hybridization using ovine cDNAs. The effects of TGF-beta 1 and 2 on proliferation and differentiation of ovine granulosa cells in vitro were also studied. Results The expression patterns of TGF-beta 1 and 2 were similar in that both mRNAs were first observed in thecal cells of type 3 (small pre-antral) follicles. Expression of both mRNAs continued to be observed in the theca of larger follicles and was also present in cells within the stroma and associated with the vascular system of the ovary. There was no evidence for expression in granulosa cells or oocytes. Expression of TGF-beta 3 mRNA was limited to cells associated with the vascular system within the ovary. TGFbetaRI mRNA was observed in oocytes from the type 1 (primordial) to type 5 (antral) stages of follicular growth and granulosa and thecal cells expressed this mRNA at the type 3 (small pre-antral) and subsequent stages of development. The TGFbetaRI signal was also observed in the ovarian stroma and vascular cells. In ovarian follicles, mRNA encoding TGFbetaRII was restricted to thecal cells of type 3 (small pre-antral) and larger follicles. In addition, expression was also observed in some cells of the surface epithelium and in some stromal cells. In granulosa cells cultured for 6 days, both TGF-beta 1 and 2 decreased, in a dose dependent manner, both the amount of DNA and concentration of progesterone. Conclusion In summary, mRNA encoding both TGF-beta 1 and 2 were synthesized by ovarian theca, stroma and cells of the vascular system whereas TGF-beta 3 mRNA was synthesized by vascular cells. Luteinizing granulosa cells also responded to both TGF

  16. Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles.

    PubMed

    Azad, Milad; Khaledi, Neda; Hedayati, Mehdi

    2016-06-15

    Skeletal muscle is a highly elastic tissue which can respond to various functional demands by altering fiber-type composition. Exercise affects muscle fiber phenotype. One of the transcription factors that induce fiber-type transition is forkhead box O1 (FOXO1). Since eccentric contraction considered an essential part of exercise, so we are interested to see the effects of eccentric exercise (acute/chronic) on FOXO1 as an important factor of fiber-type transition in rat skeletal muscles. Twenty-four Sprague-Dawley rats (190-235g) were divided to 3 groups of 8 rats: 1) chronic eccentric exercise (CEE), 2) acute eccentric exercise (AEE), and 3) control (C). The exercise groups underwent downhill running protocol. CEE was running on treadmill in 3days of week for 9weeks, that slope and duration gradually managed from -4° to -16° and 15 to 90min, respectively. AEE group was running with 16m/min on -16° slope for 3 consecutive days that included 18 sets of 5min with rest interval of 2min in between. Soleus and super vastus lateralis (SVL) muscles mRNA were analyzed by real-time RT-PCR. SVL FOXO1 mRNA levels increased by 3.92-fold in the AEE and decreased 0.56-fold in the CEE group and were not significant in soleus muscle. In soleus muscle, myosin heavy chain (MHC) IIa, IIx, and IIb decreased in the AEE group and MHC IIa and IIx decreased in the CEE group. In SVL muscle, MHC I, IIa, and IIx increased in the AEE group and MHC IIa and IIX increased in the CEE group. In summary, both acute and chronic eccentric exercise could lead to change in FOXO1 mRNA only in fast SVL muscle of rat and so could induce fiber-type transition in both muscles regardless of changes in expression of FOXO1. So, oxidative stress can play important role in change of FOXO1. PMID:26915490

  17. Arginine methylation and citrullination of splicing factor proline- and glutamine-rich (SFPQ/PSF) regulates its association with mRNA

    PubMed Central

    Snijders, Ambrosius P.; Hautbergue, Guillaume M.; Bloom, Alex; Williamson, James C.; Minshull, Thomas C.; Phillips, Helen L.; Mihaylov, Simeon R.; Gjerde, Douglas T.; Hornby, David P.; Wilson, Stuart A.; Hurd, Paul J.

    2015-01-01

    Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO. In addition, we have identified several sites of arginine methylation in SFPQ/PSF using mass spectrometry and found that several arginines in the N-terminal domain of SFPQ/PSF are asymmetrically dimethylated. Furthermore, we find that the protein arginine N-methyltransferase, PRMT1, catalyzes this methylation in vitro and that this is antagonized by citrullination of SFPQ. Arginine methylation and citrullination of SFPQ/PSF does not affect complex formation with NONO. However, arginine methylation was shown to increase the association with mRNA in mRNP complexes in mammalian cells. Finally we show that the biochemical properties of the endogenous complex from cell lysates are significantly influenced by the ionic strength during purification. At low ionic strength, the SFPQ/NONO complex forms large heterogeneous protein assemblies or aggregates, preventing the purification of the SFPQ/NONO complex. The ability of the SFPQ/NONO complex to form varying protein assemblies, in conjunction with the effect of post-translational modifications of SFPQ modulating mRNA binding, suggests key roles affecting mRNP dynamics within the cell. PMID:25605962

  18. HIV-1 Nef-associated Factor 1 Enhances Viral Production by Interacting with CRM1 to Promote Nuclear Export of Unspliced HIV-1 gag mRNA.

    PubMed

    Ren, Xiao-Xin; Wang, Hai-Bo; Li, Chuan; Jiang, Jin-Feng; Xiong, Si-Dong; Jin, Xia; Wu, Li; Wang, Jian-Hua

    2016-02-26

    HIV-1 depends on host-cell-encoded factors to complete its life cycle. A comprehensive understanding of how HIV-1 manipulates host machineries during viral infection can facilitate the identification of host targets for antiviral drugs or gene therapy. The cellular protein Naf1 (HIV-1 Nef-associated factor 1) is a CRM1-dependent nucleo-cytoplasmic shuttling protein, and has been identified to regulate multiple receptor-mediated signal pathways in inflammation. The cytoplasm-located Naf1 can inhibit NF-κB activation through binding to A20, and the loss of Naf1 controlled NF-κB activation is associated with multiple autoimmune diseases. However, the effect of Naf1 on HIV-1 mRNA expression has not been characterized. In this study we found that the nucleus-located Naf1 could promote nuclear export of unspliced HIV-1 gag mRNA. We demonstrated that the association between Naf1 and CRM1 was required for this function as the inhibition or knockdown of CRM1 expression significantly impaired Naf1-promoted HIV-1 production. The mutation of Naf1 nuclear export signals (NESs) that account for CRM1 recruitment for nuclear export decreased Naf1 function. Additionally, the mutation of the nuclear localization signal (NLS) of Naf1 diminished its ability to promote HIV-1 production, demonstrating that the shuttling property of Naf1 is required for this function. Our results reveal a novel role of Naf1 in enhancing HIV-1 production, and provide a potential therapeutic target for controlling HIV-1 infection. PMID:26733199

  19. Differential regulation of human Eag1 channel expression by serum and epidermal growth factor in lung and breast cancer cells

    PubMed Central

    Acuña-Macías, Isabel; Vera, Eunice; Vázquez-Sánchez, Alma Yolanda; Mendoza-Garrido, María Eugenia; Camacho, Javier

    2015-01-01

    Oncogenic ether à-go-go-1 (Eag1) potassium channels are overexpressed in most primary human solid tumors. Low oxygen and nutrient/growth factor concentrations play critical roles in tumorigenesis. However, the mechanisms by which tumor cells survive and proliferate under growth factor-depleted conditions remain elusive. Here, we investigated whether serum-deprived conditions and epidermal growth factor (EGF) regulate Eag1 expression in human lung and breast cancer cells. The human cancer cell lines A549 and MCF-7 (from the lungs and breast, respectively) were obtained from the American Type Culture Collection and cultured following the manufacturer’s recommendations. Eag1 gene and protein expression were studied by real-time PCR and immunocytochemistry, respectively. Cell proliferation was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and ERK1/2 phosphorylation was investigated by Western blot. Serum-deprived conditions increased Eag1 mRNA and protein expression in both cell lines. This Eag1 upregulation was prevented by EGF and the ERK1/2 inhibitor U0126 in only lung cancer cells; vascular endothelial growth factor did not prevent Eag1 upregulation. Our results suggest that Eag1 may act as a survival and mitogenic factor under low-serum and nutrient conditions and may be a clinical target during the early stages of tumor development. PMID:26527881

  20. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    SciTech Connect

    Tomblin, Justin K.; Salisbury, Travis B.

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  1. Antitumor effect of hepatocyte growth factor on hepatoblastoma.

    PubMed

    Tsunoda, Y; Shibusawa, M; Tsunoda, A; Gomi, A; Yatsuzuka, M; Okamatsu, T

    1998-01-01

    A six month-old girl presented with an abdominal mass, and high serum level of alpha-fetoprotein. She was diagnosed as having a well-differentiated hepatoblastoma by open biopsy. The biopsy specimen was transplanted on a nude mouse, and a xenograft was successfully established. Because the xenograft maintained the characteristics of the original tumor, the effect of hepatocyte growth factor (HGF) on hepatoblastoma xenograft was investigated. Recently HGF was reported to be involved in growth, invasion, and metastasis of tumor cells. Contrary to our expectations, the treatment of hepatoblastoma xenograft with recombinant 20 ng/ml HGF produced a marked inhibition of cell growth and a suppression of producing alpha-fetoprotein. PMID:9891489

  2. A study of substrate factor on carbon nanotube forest growth

    NASA Astrophysics Data System (ADS)

    Read, Carlos; Call, Robert; Shen, T. C.

    2010-10-01

    Carbon Nanotube Forests (CNFs) are vertically grown carbon nanotubes. They can be as tall as millimeters with radii from less than one nm (single-walled) to more than a hundred nm (multi-walled). Their high surface to volume ratio provides a unique material system for EM radiation absorption, dry adhesive and biosensor applications. There have been numerous, but not all consistent reports on successful CNF growth. We find that the optimal growth conditions depend critically on the substrate, at least by the spray pyrolysis method we have adopted. To determine the substrate factor, we have investigated two grades of copper, stainless steel, silicon and quartz as substrates on which the catalytic particles and carbon source are delivered simultaneously by a ferrocine-xylene solution. We find that the interplay of lateral and in-diffusion of the iron atoms and interactions with existing gas molecules such as H2, O2, H2O on the substrates dictate the CNF growth.

  3. Modulation of epidermal growth factor receptors by human alpha interferon.

    PubMed Central

    Zoon, K C; Karasaki, Y; zur Nedden, D L; Hu, R Q; Arnheiter, H

    1986-01-01

    Treatment of Madin-Darby bovine kidney (MDBK) cells with human interferon (IFN)-alpha 2 at 37 degrees C results in a dose-dependent inhibition of cell growth and a reduction of the subsequent binding of 125I-labeled epidermal growth factor (EGF) at 4 degrees C. Human IFN-beta and -gamma, which exhibit little antiviral and antiproliferative activities on MDBK cells, have little effect on cell growth or the binding of 125I-labeled EGF to these cells. The binding of EGF is decreased after exposure to IFN-alpha for greater than 8 hr. Scatchard analyses of the EGF binding data indicate that a 20-hr exposure period results in a decrease in the apparent number of cell-surface EGF receptors and a reduction in the affinity of EGF for its receptor. The rate of internalization of EGF by MDBK cells does not appear to be affected by IFN treatment. PMID:3095830

  4. Modulation of epidermal growth factor receptors by human alpha interferon.

    PubMed

    Zoon, K C; Karasaki, Y; zur Nedden, D L; Hu, R Q; Arnheiter, H

    1986-11-01

    Treatment of Madin-Darby bovine kidney (MDBK) cells with human interferon (IFN)-alpha 2 at 37 degrees C results in a dose-dependent inhibition of cell growth and a reduction of the subsequent binding of 125I-labeled epidermal growth factor (EGF) at 4 degrees C. Human IFN-beta and -gamma, which exhibit little antiviral and antiproliferative activities on MDBK cells, have little effect on cell growth or the binding of 125I-labeled EGF to these cells. The binding of EGF is decreased after exposure to IFN-alpha for greater than 8 hr. Scatchard analyses of the EGF binding data indicate that a 20-hr exposure period results in a decrease in the apparent number of cell-surface EGF receptors and a reduction in the affinity of EGF for its receptor. The rate of internalization of EGF by MDBK cells does not appear to be affected by IFN treatment. PMID:3095830

  5. Fibroblast growth factor receptor 3 protein is overexpressed in oral and oropharyngeal squamous cell carcinoma.

    PubMed

    Koole, Koos; van Kempen, Pauline M W; Swartz, Justin E; Peeters, Ton; van Diest, Paul J; Koole, Ron; van Es, Robert J J; Willems, Stefan M

    2016-02-01

    Fibroblast growth factor receptor 3 (FGFR3) is a member of the fibroblast growth factor receptor tyrosine kinase family. It has been identified as a promising therapeutic target in multiple types of cancer. We have investigated FGFR3 protein expression and FGFR3 gene copy-numbers in a single well-documented cohort of oral and oropharyngeal squamous cell carcinoma. Tissue microarray sets containing 452 formalin-fixed paraffin-embedded tissues were immunohistochemically stained with an anti-FGFR3 antibody and hybridized with a FGFR3 fluorescence in situ hybridization probe. FGFR3 protein expression was correlated with clinicopathological and survival data, which were retrieved from electronic medical records. FGFR3 mRNA data of 522 head and neck squamous cell carcinoma (HNSCC) were retrieved from The Cancer Genome Atlas (TCGA). Fibroblast growth factor receptor 3 (FGFR3) protein was overexpressed in 48% (89/185) of oral and 59% (124/211) of oropharyngeal squamous cell carcinoma. Overexpression of FGFR3 protein was not related to overall survival or disease-free survival in oral (HR[hazard ratio]: 0.94; 95% CI: 0.64-1.39; P = 0.77, HR: 0.94; 95% CI: 0.65-1.36; P = 0.75) and oropharyngeal squamous cell carcinoma (HR: 1.21; 95% CI: 0.81-1.80; P = 0.36, HR: 0.42; 95% CI: 0.79-1.77; P = 0.42). FGFR3 mRNA was upregulated in 3% (18/522) of HNSCC from the TCGA. The FGFR3 gene was gained in 0.6% (1/179) of oral squamous cell carcinoma but no amplification was found in oral and oropharyngeal squamous cell carcinoma. In conclusion, FGFR3 protein is frequently overexpressed in oral and oropharyngeal squamous cell carcinoma. Therefore, it may serve as a potential therapeutic target for FGFR3-directed therapies in oral and oropharyngeal squamous cell carcinoma. PMID:26711175

  6. Insulin-like growth factor- I and factors affecting it in thalassemia major

    PubMed Central

    Soliman, Ashraf T.; Sanctis, Vincenzo De; Elalaily, Rania; Yassin, Mohamed

    2015-01-01

    Despite improvement of blood transfusion regimens and iron chelation therapy growth and maturational delay, cardiomyopathy, endocrinopathies and osteoporosis still occur in good number of thalassemic patients. Decreased IGF-1 secretion occurs in the majority of the thalassemic patients particularly those with growth and pubertal delay. Many factors contribute to this decreased synthesis of IGF-I including disturbed growth hormone (GH) - insulin-like growth factor - I (IGF-I) axis. The possible factors contributing to low IGF-I synthesis in thalassemia and the possible interaction between low IGF-I secretion and the occurrence of these complications is discussed in this mini-review. Improvement of IGF-I secretion in thalassemic patients should be intended to improve linear growth and bone mineral accretion in thalassemic patients. This can be attained through adequate correction of anemia and proper chelation, nutritional supplementation (increasing caloric intake), correction of vitamin D and zinc deficiencies, induction of puberty and correction of hypogonadism at the proper time and treating GH deficiency. This review paper provides a summary of the current state of knowledge regarding IGF-I and factors affecting it in patients with thalassaemia major (TM). Search on PubMed and reference lists of articles with the term ‘IGF-I, GH, growth, thalassemia, thyroxine, anemia, vitamin D, and zinc’ was carried out. A hundred and forty-eight articles were found and used in the write up and the data analyzed was included in this report. PMID:25729686

  7. Over-expression of platelet-derived growth factor-D promotes tumor growth and invasion in endometrial cancer.

    PubMed

    Wang, Yuan; Qiu, Haifeng; Hu, Weixu; Li, Shaoru; Yu, Jinjin

    2014-01-01

    The platelet-derived growth factor-D (PDGF-D) was demonstrated to be able to promote tumor growth and invasion in human malignancies. However, little is known about its roles in endometrial cancer. In the present study, we investigated the expression and functions of PDGF-D in human endometrial cancer. Alterations of PDGF-D mRNA and protein were determined by real time PCR, western blot and immunohistochemical staining. Up-regulation of PDGF-D was achieved by stably transfecting the pcDNA3-PDGF-D plasmids into ECC-1 cells; and knockdown of PDGF-D was achieved by transient transfection with siRNA-PDGF-D into Ishikawa cells. The MTT assay, colony formation assay and Transwell assay were used to detect the effects of PDGF-D on cellular proliferation and invasion. The xenograft assay was used to investigate the functions of PDGF-D in vivo. Compared to normal endometrium, more than 50% cancer samples showed over-expression of PDGF-D (p < 0.001), and high level of PDGF-D was correlated with late stage (p = 0.003), deep myometrium invasion (p < 0.001) and lympha vascular space invasion (p = 0.006). In vitro, over-expressing PDGF-D in ECC-1 cells significantly accelerated tumor growth and promoted cellular invasion by increasing the level of MMP2 and MMP9; while silencing PDGF-D in Ishikawa cells impaired cell proliferation and inhibited the invasion, through suppressing the expression of MMP2 and MMP9. Moreover, we also demonstrated that over-expressed PDGF-D could induce EMT and knockdown of PDGF-D blocked the EMT transition. Consistently, in xenografts assay, PDGF-D over-expression significantly promoted tumor growth and tumor weights. We demonstrated that PDGF-D was commonly over-expressed in endometrial cancer, which was associated with late stage deep myometrium invasion and lympha vascular space invasion. Both in vitro and in vivo experiments showed PDGF-D could promote tumor growth and invasion through up-regulating MMP2/9 and inducing EMT. Thus, we propose

  8. Intrauterine growth restriction in neonatal piglets affects small intestinal mucosal permeability and mRNA expression of redox-sensitive genes.

    PubMed

    Wang, Wei; Degroote, Jeroen; Van Ginneken, Chris; Van Poucke, Mario; Vergauwen, Hans; Dam, Thi Minh Tho; Vanrompay, Daisy; Peelman, Luc J; De Smet, Stefaan; Michiels, Joris

    2016-02-01

    Neonates with intrauterine growth restriction (IUGR) show lower efficiency of nutrient utilization compared to normal birth weight (NBW) newborns. This study was conducted using neonatal piglets as a model to test the hypothesis that IUGR affects the intestinal barrier function, intestinal structure, and antioxidant system development during the suckling period. The small intestinal mucosae were obtained from IUGR and NBW littermates in the suckling period (d 0, 3, 8, and 19 postnatal). The epithelial barrier function was assessed by FITC-dextran 4 (FD4) and horseradish peroxidase (HRP) fluxes across the epithelium, histomorphologic measurements, and expression of tight-junction proteins. Redox status represented by the glutathione disulfide/glutathione ratio and malondialdehyde concentrations was determined, whereas mRNA expressions of some redox-sensitive proteins were quantified. Results showed that IUGR piglets exhibited a 2-fold higher intestinal permeability in the proximal small intestine on d 0 (P < 0.05), and this difference between IUGR and NBW piglets was widened to 3 and 4 times for FD4 and HRP, respectively (P < 0.05), on d 3. In accordance, expression of occludin was down-regulated at the transcriptional level in IUGR piglets at d 0 and 19 (P < 0.01). Furthermore, the transcription of heme oxygenase 1, catalase, and thioredoxin reductase genes was down-regulated in IUGR piglets, mainly on postnatal d 0 and 19 (P < 0.01). It appears that IUGR subjects have a lower capacity to mount an antioxidant response in the early postnatal period. Collectively, these results add to our understanding of the mechanisms responsible for intestinal dysfunction in IUGR neonates. PMID:26514167

  9. Expression of transforming growth factors beta-1, beta 2 and beta 3 in human bladder carcinomas.

    PubMed Central

    Eder, I. E.; Stenzl, A.; Hobisch, A.; Cronauer, M. V.; Bartsch, G.; Klocker, H.

    1997-01-01

    We previously detected elevated transforming growth factor beta-1 (TGF-beta1) serum levels in patients with invasive bladder carcinomas. In this study, we therefore investigated whether elevated serum levels correlate with enhanced TGF-beta expression in human bladder tumours. mRNA levels of TGF-beta1, -beta2 and -beta3 were reduced in bladder tumour tissue to 86%, 68% and 56%, respectively, of the levels in normal urothelium. On the other hand, TGF-beta1 protein levels were found to be higher in superficial tumours (Ta-T1) (mean level of 0.153 ng mg(-1)) and in invasive T2/T3 tumours (mean level of 0.104 ng mg(-1)) compared with normal urothelium (mean level of 0.065 ng mg(-1)). Invasive T4 tumours, however, contained only low amounts of TGF-beta1 (mean level of 0.02 ng mg(-1)). Neither in mean nor in individual patients were serum and tissue TGF-beta levels correlated with each other. Cell culture experiments on primary bladder cells revealed a 57% decrease in TGF-beta1 mRNA levels in tumour compared with normal epithelial cells. Tumour epithelial cells contained about two times higher levels of TGF-beta2 and TGF-beta3 mRNA than normal epithelial cells. Fibroblasts expressed about the same amount of TGF-beta1 or TGF-beta2 as epithelial cells. Yet, fibroblasts released only 19% and 13% of the amount secreted by tumour epithelial cells into the supernatant. TGF-beta3, on the other hand, was expressed by fibroblasts with higher levels than by epithelial cells. TGF-beta1 was the predominent isoform in bladder tissue and cells at protein as well as on mRNA levels indicating that TGFs-beta2 and -beta3 are of minor importance in bladder cancer. In summary, there is a lack of correlation between TGF-beta serum levels and TGF-beta expression in tumour tissue in bladder cancer. Images Figure 1 PMID:9192977

  10. Activation of insulin-like growth factor 1 receptor in patients with non-small cell lung cancer.

    PubMed

    Kim, Jin-Soo; Kim, Edward S; Liu, Diane; Lee, J Jack; Behrens, Carmen; Lippman, Scott M; Hong, Waun Ki; Wistuba, Ignacio I; Lee, Euni; Lee, Ho-Yo