Science.gov

Sample records for growth inhibition caused

  1. Decreased growth-induced water potential: A primary cause of growth inhibition at low water potentials

    SciTech Connect

    Nonami, Hiroshi; Wu, Yajun; Boyer, J.S.

    1997-06-01

    Cell enlargement depends on a growth-induced difference in water potential to move water into the cells. Water deficits decrease this potential difference and inhibit growth. To investigate whether the decrease causes the growth inhibition, pressure was applied to the roots of soybean seedlings and the growth and potential difference were monitored in the stems. In water-limited plants, the inhibited stem growth increased when the roots were pressurized and it reverted to the previous rate when the pressure was released. The pressure around the roots was perceived as an increased turgor in the stem in small cells next to the xylem, but not in outlying cortical cells. This local effect implied that water transport was impeded by the small cells. The diffusivity for water was much less in the small cells than in the outlying cells. The small cells thus were a barrier that caused the growth-induced potential difference to be large during rapid growth, but to reverse locally during the early part of a water deficit. Such a barrier may be a frequent property of meristems. Because stem growth responded to the pressure-induced recovery of the potential difference across this barrier, we conclude that a decrease in the growth-induced potential difference was a primary cause of the inhibition.

  2. Hypernegative Supercoiling Inhibits Growth by Causing RNA Degradation▿

    PubMed Central

    Baaklini, Imad; Usongo, Valentine; Nolent, Flora; Sanscartier, Patrick; Hraiky, Chadi; Drlica, Karl; Drolet, Marc

    2008-01-01

    Transcription-induced hypernegative supercoiling is a hallmark of Escherichia coli topoisomerase I (topA) mutants. However, its physiological significance has remained unclear. Temperature downshift of a mutant yielded transient growth arrest and a parallel increase in hypernegative supercoiling that was more severe with lower temperature. Both properties were alleviated by overexpression of RNase HI. While ribosomes in extracts showed normal activity when obtained during growth arrest, mRNA on ribosomes was reduced for fis and shorter for crp, polysomes were much less abundant relative to monosomes, and protein synthesis rate dropped, as did the ratio of large to small proteins. Altered processing and degradation of lacA and fis mRNA was also observed. These data are consistent with truncation of mRNA during growth arrest. These effects were not affected by a mutation in the gene encoding RNase E, indicating that this endonuclease is not involved in the abnormal mRNA processing. They were also unaffected by spectinomycin, an inhibitor of protein synthesis, which argued against induction of RNase activity. In vitro transcription revealed that R-loop formation is more extensive on hypernegatively supercoiled templates. These results allow us, for the first time, to present a model by which hypernegative supercoiling inhibits growth. In this model, the introduction of hypernegative supercoiling by gyrase facilitates degradation of nascent RNA; overproduction of RNase HI limits the accumulation of hypernegative supercoiling, thereby preventing extensive RNA degradation. PMID:18790862

  3. Hypernegative supercoiling inhibits growth by causing RNA degradation.

    PubMed

    Baaklini, Imad; Usongo, Valentine; Nolent, Flora; Sanscartier, Patrick; Hraiky, Chadi; Drlica, Karl; Drolet, Marc

    2008-11-01

    Transcription-induced hypernegative supercoiling is a hallmark of Escherichia coli topoisomerase I (topA) mutants. However, its physiological significance has remained unclear. Temperature downshift of a mutant yielded transient growth arrest and a parallel increase in hypernegative supercoiling that was more severe with lower temperature. Both properties were alleviated by overexpression of RNase HI. While ribosomes in extracts showed normal activity when obtained during growth arrest, mRNA on ribosomes was reduced for fis and shorter for crp, polysomes were much less abundant relative to monosomes, and protein synthesis rate dropped, as did the ratio of large to small proteins. Altered processing and degradation of lacA and fis mRNA was also observed. These data are consistent with truncation of mRNA during growth arrest. These effects were not affected by a mutation in the gene encoding RNase E, indicating that this endonuclease is not involved in the abnormal mRNA processing. They were also unaffected by spectinomycin, an inhibitor of protein synthesis, which argued against induction of RNase activity. In vitro transcription revealed that R-loop formation is more extensive on hypernegatively supercoiled templates. These results allow us, for the first time, to present a model by which hypernegative supercoiling inhibits growth. In this model, the introduction of hypernegative supercoiling by gyrase facilitates degradation of nascent RNA; overproduction of RNase HI limits the accumulation of hypernegative supercoiling, thereby preventing extensive RNA degradation. PMID:18790862

  4. Direct inhibition of Retinoblastoma phosphorylation by Nimbolide causes cell cycle arrest and suppresses glioblastoma growth

    PubMed Central

    Anderson, Jane; Liu, Xiaona; Henry, Heather; Gasilina, Anjelika; Nassar, Nicholas; Ghosh, Jayeeta; Clark, Jason P; Kumar, Ashish; Pauletti, Giovanni M.; Ghosh, Pradip K; Dasgupta, Biplab

    2013-01-01

    Purpose Classical pharmacology allows the use and development of conventional phytomedicine faster and more economically than conventional drugs. This approach should be tested for their efficacy in terms of complementarity and disease control. The purpose of this study was to determine the molecular mechanisms by which nimbolide, a triterpenoid found in the well-known medicinal plant Azadirachta indica controls glioblastoma (GBM) growth. Experimental Design Using in vitro signaling, anchorage-independent growth, kinase assays, and xenograft models, we investigated the mechanisms of its growth inhibition in glioblastoma. Results We show that nimbolide or an ethanol soluble fraction of A. indica leaves (Azt) that contains nimbolide as the principal cytotoxic agent is highly cytotoxic against GBM in vitro and in vivo. Azt caused cell cycle arrest, most prominently at the G1-S stage in GBM cells expressing EGFRvIII, an oncogene present in about 20-25% of GBMs. Azt/nimbolide directly inhibited CDK4/CDK6 kinase activity leading to hypophosphorylation of the retinoblastoma (RB) protein, cell cycle arrest at G1-S and cell death. Independent of RB hypophosphorylation, Azt also significantly reduced proliferative and survival advantage of GBM cells in vitro and in tumor xenografts by downregulating Bcl2 and blocking growth factor induced phosphorylation of Akt, Erk1/2 and STAT3. These effects were specific since Azt did not affect mTOR or other cell cycle regulators. In vivo, Azt completely prevented initiation and inhibited progression of GBM growth. Conclusions Our preclinical findings demonstrate Nimbolide as a potent anti-glioma agent that blocks cell cycle and inhibits glioma growth in vitro and in vivo. PMID:24170547

  5. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest.

    PubMed

    Zhang, Yusong; Zhuang, Zhixiang; Meng, Qinghui; Jiao, Yang; Xu, Jiaying; Fan, Saijun

    2014-01-01

    Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer. PMID:24348867

  6. Photoactivation of lysosomally sequestered sunitinib after angiostatic treatment causes vascular occlusion and enhances tumor growth inhibition

    PubMed Central

    Nowak-Sliwinska, P; Weiss, A; van Beijnum, J R; Wong, T J; Kilarski, W W; Szewczyk, G; Verheul, H M W; Sarna, T; van den Bergh, H; Griffioen, A W

    2015-01-01

    The angiogenesis inhibitor sunitinib is a tyrosine kinase inhibitor that acts mainly on the VEGF and PDGF pathways. We have previously shown that sunitinib is sequestered in the lysosomes of exposed tumor and endothelial cells. This phenomenon is part of the drug-induced resistance observed in the clinic. Here, we demonstrate that when exposed to light, sequestered sunitinib causes immediate destruction of the lysosomes, resulting in the release of sunitinib and cell death. We hypothesized that this photoactivation of sunitinib could be used as a vaso-occlusive vascular-targeting approach to treating cancer. Spectral properties of sunitinib and its lysosomal accumulation were measured in vitro. The human A2780 ovarian carcinoma transplanted onto the chicken chorioallantoic membrane (CAM) and the Colo-26 colorectal carcinoma model in Balb/c mice were used to test the effects of administrating sunitinib and subsequently exposing tumor tissue to light. Tumors were subsequently resected and subject to immunohistochemical analysis. In A2780 ovarian carcinoma tumors, treatment with sunitinib+light resulted in immediate specific angio-occlusion, leading to a necrotic tumor mass 24 h after treatment. Tumor growth was inhibited by 70% as compared with the control group (**P<0.0001). Similar observations were made in the Colo-26 colorectal carcinoma, where light exposure of the sunitinib-treated mice inhibited tumor growth by 50% as compared with the control and by 25% as compared with sunitinib-only-treated tumors (N≥4; P=0.0002). Histology revealed that photoactivation of sunitinib resulted in a change in tumor vessel architecture. The current results suggest that the spectral properties of sunitinib can be exploited for application against certain cancer indications. PMID:25675301

  7. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings 1

    PubMed Central

    Creelman, Robert A.; Mason, Hugh S.; Bensen, Robert J.; Boyer, John S.; Mullet, John E.

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite. Images Figure 6 Figure 7 PMID:16667248

  8. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms

    PubMed Central

    Berry, Kathryn L. E.; Hoogenboom, Mia O.; Flores, Florita; Negri, Andrew P.

    2016-01-01

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0–275 mg coal l−1) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l−1) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems. PMID:27174014

  9. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms.

    PubMed

    Berry, Kathryn L E; Hoogenboom, Mia O; Flores, Florita; Negri, Andrew P

    2016-01-01

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l(-1)) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l(-1)) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems. PMID:27174014

  10. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms

    NASA Astrophysics Data System (ADS)

    Berry, Kathryn L. E.; Hoogenboom, Mia O.; Flores, Florita; Negri, Andrew P.

    2016-05-01

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0–275 mg coal l‑1) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l‑1) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.

  11. Fusarium graminearum growth inhibition due to glucose starvation caused by osthol.

    PubMed

    Shi, Zhiqi; Shen, Shouguo; Zhou, Wei; Wang, Fei; Fan, Yongjian

    2008-03-01

    The effects of osthol, a plant coumarin, on morphology, sugar uptake and cell wall components of Fusarium graminearum were examined in vitro by electron microscopy,(14)C-labelling and enzyme activity detection. The results revealed that osthol could inhibit the hypha growth of F. graminearum by decreasing hyphal absorption to reducing sugar. After treatment with 100 microg.mL(-1) osthol for 24 h, many hyphal fragments of F. graminearum appeared. Microscopy observation showed that the cell walls of hyphal fragments blurred and the organelles of the cells degraded with the increasing vacuoles. The N-acetyl-D-glucosamine contents and chitinase activity both increased when hypha were treated with 100 microg.mL(-1) osthol, whereas the activity of beta-1,6-glucanase remained unchanged. When F. graminearum fed with (14)C glucose was treated with 100 microg.mL(-1)osthol, glucose contents decreased to the lowest level, while the contents in non-osthol treated controls remained unchanged. These results suggested that chitinase activity might be related to glucose starvation under osthol treatment, and that the appearance of hyphae fragments maybe the results of the promoted chitinase activity which itself triggered chitin degradation. PMID:19325755

  12. In vitro growth inhibition of mastitis causing bacteria by phenolics and metal chelators

    SciTech Connect

    Chew, B.P.; Tjoelker, L.W.; Tanaka, T.S.

    1985-11-01

    Antimicrobial activities of three phenolic compounds and four metal chelators were tested at 0, 250, 500, and 1000 ppm in vitro against four major mastitis-causing bacteria, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pnuemoniae, and Escherichia coli. Overall, butylated hydroxyanisole and tert-butylhydroquinone showed the greatest antimicrobial activity. These phenolics were bactericidal at 250 to 500 ppm against all four bacteria tested. The butylated hydroxytoluene was bactericidal against the gram-positive bacteria but was ineffective against the coliforms. At 250 ppm, disodium ethylenediaminetetraacetic acid was bactericidal against the gram-positive bacteria but much less effective against the gram-negatives. However, diethylene-triaminepentaacetic acid was more growth inhibitory than ethylenediaminetetraacetic acid against the gram-negative bacteria and especially against Escherichia coli. All other compounds were generally much less effective or ineffective against all four microorganisms. Therefore, butylated hydroxyanisole, butylated hydroxytoluene, tert-butylhydroquinone, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid may have practical implications in the prevention or treatment of bovine mastitis.

  13. Overaccumulation of γ-Glutamylcysteine in a Jasmonate-Hypersensitive Arabidopsis Mutant Causes Jasmonate-Dependent Growth Inhibition1[OPEN

    PubMed Central

    Wei, Hsin-Ho; Rowe, Martha; Riethoven, Jean-Jack M.; Grove, Ryan; Adamec, Jiri; Jikumaru, Yusuke; Staswick, Paul

    2015-01-01

    Glutathione (GSH) is essential for many aspects of plant biology and is associated with jasmonate signaling in stress responses. We characterized an Arabidopsis (Arabidopsis thaliana) jasmonate-hypersensitive mutant (jah2) with seedling root growth 100-fold more sensitive to inhibition by the hormone jasmonyl-isoleucine than the wild type. Genetic mapping and genome sequencing determined that the mutation is in intron 6 of GLUTATHIONE SYNTHETASE2, encoding the enzyme that converts γ-glutamylcysteine (γ-EC) to GSH. The level of GSH in jah2 was 71% of the wild type, while the phytoalexin-deficient2-1 (pad2-1) mutant, defective in GSH1 and having only 27% of wild-type GSH level, was not jasmonate hypersensitive. Growth defects for jah2, but not pad2, were also seen in plants grown to maturity. Surprisingly, all phenotypes in the jah2 pad2-1 double mutant were weaker than in jah2. Quantification of γ-EC indicated these defects result from hyperaccumulation of this GSH precursor by 294- and 65-fold in jah2 and the double mutant, respectively. γ-EC reportedly partially substitutes for loss of GSH, but growth inhibition seen here was likely not due to an excess of total glutathione plus γ-EC because their sum in jah2 pad2-1 was only 16% greater than in the wild type. Further, the jah2 phenotypes were lost in a jasmonic acid biosynthesis mutant background, indicating the effect of γ-EC is mediated through jasmonate signaling and not as a direct result of perturbed redox status. PMID:26282239

  14. Overaccumulation of γ-Glutamylcysteine in a Jasmonate-Hypersensitive Arabidopsis Mutant Causes Jasmonate-Dependent Growth Inhibition.

    PubMed

    Wei, Hsin-Ho; Rowe, Martha; Riethoven, Jean-Jack M; Grove, Ryan; Adamec, Jiri; Jikumaru, Yusuke; Staswick, Paul

    2015-10-01

    Glutathione (GSH) is essential for many aspects of plant biology and is associated with jasmonate signaling in stress responses. We characterized an Arabidopsis (Arabidopsis thaliana) jasmonate-hypersensitive mutant (jah2) with seedling root growth 100-fold more sensitive to inhibition by the hormone jasmonyl-isoleucine than the wild type. Genetic mapping and genome sequencing determined that the mutation is in intron 6 of GLUTATHIONE SYNTHETASE2, encoding the enzyme that converts γ-glutamylcysteine (γ-EC) to GSH. The level of GSH in jah2 was 71% of the wild type, while the phytoalexin-deficient2-1 (pad2-1) mutant, defective in GSH1 and having only 27% of wild-type GSH level, was not jasmonate hypersensitive. Growth defects for jah2, but not pad2, were also seen in plants grown to maturity. Surprisingly, all phenotypes in the jah2 pad2-1 double mutant were weaker than in jah2. Quantification of γ-EC indicated these defects result from hyperaccumulation of this GSH precursor by 294- and 65-fold in jah2 and the double mutant, respectively. γ-EC reportedly partially substitutes for loss of GSH, but growth inhibition seen here was likely not due to an excess of total glutathione plus γ-EC because their sum in jah2 pad2-1 was only 16% greater than in the wild type. Further, the jah2 phenotypes were lost in a jasmonic acid biosynthesis mutant background, indicating the effect of γ-EC is mediated through jasmonate signaling and not as a direct result of perturbed redox status. PMID:26282239

  15. Exposure of breast cancer cells to a subcytotoxic dose of apigenin causes growth inhibition, oxidative stress, and hypophosphorylation of Akt.

    PubMed

    Harrison, Megan E; Power Coombs, Melanie R; Delaney, Leanne M; Hoskin, David W

    2014-10-01

    Epidemiological studies show that fruit- and vegetable-rich diets are associated with a reduced risk of developing certain forms of cancer, including breast cancer. In this study we demonstrate that a subcytotoxic concentration of apigenin, which is a flavone found at high concentrations in parsley, onions, grapefruit, oranges, and chamomile tea, inhibited DNA synthesis in a panel of human breast cancer cell lines (MDA-MB-231, MBA-MB-468, MCF-7, SK-BR-3). Decreased proliferation of MDA-MB-468 cells in the presence of apigenin was associated with G2/M phase cell cycle arrest and the production of reactive oxygen species. Apigenin-treated MDA-MB-468 cells also showed reduced phosphorylation of Akt (protein kinase B), which is an essential effector serine/threonine kinase in the phosphatidylinositide 3-kinase pathway that promotes tumor growth and progression. However, exposure to the antioxidant reduced glutathione failed to reverse apigenin-mediated inhibition of Akt phosphorylation and cell proliferation, indicating that these effects were not due to oxidative stress. Taken together, these findings suggest that low-dose apigenin has the potential to slow or prevent breast cancer progression. PMID:25019465

  16. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells

    PubMed Central

    Hartsink-Segers, Stefanie A.; Exalto, Carla; Allen, Matthew; Williamson, Daniel; Clifford, Steven C.; Horstmann, Martin; Caron, Huib N.; Pieters, Rob; Den Boer, Monique L.

    2013-01-01

    This study investigated Polo-like kinase 1, a mitotic regulator often over-expressed in solid tumors and adult hematopoietic malignancies, as a potential new target in the treatment of pediatric acute lymphoblastic leukemia. Polo-like kinase 1 protein and Thr210 phosphorylation levels were higher in pediatric acute lymphoblastic leukemia (n=172) than in normal bone marrow mononuclear cells (n=10) (P<0.0001). High Polo-like kinase 1 protein phosphorylation, but not expression, was associated with a lower probability of event-free survival (P=0.042) and was a borderline significant prognostic factor (P=0.065) in a multivariate analysis including age and initial white blood cell count. Polo-like kinase 1 was necessary for leukemic cell survival, since short hairpin-mediated Polo-like kinase 1 knockdown in acute lymphoblastic leukemia cell lines inhibited cell proliferation by G2/M cell cycle arrest and induced apoptosis through caspase-3 and poly (ADP-ribose) polymerase cleavage. Primary patient cells with a high Polo-like kinase 1 protein expression were sensitive to the Polo-like kinase 1-specific inhibitor NMS-P937 in vitro, whereas cells with a low expression and normal bone marrow cells were resistant. This sensitivity was likely not caused by Polo-like kinase 1 mutations, since only one new mutation (Ser335Arg) was found by 454-sequencing of 38 pediatric acute lymphoblastic leukemia cases. This mutation did not affect Polo-like kinase 1 expression or NMS-P937 sensitivity. Together, these results indicate a pivotal role for Polo-like kinase 1 in pediatric acute lymphoblastic leukemia and show potential for Polo-like kinase 1-inhibiting drugs as an addition to current treatment strategies for cases expressing high Polo-like kinase 1 levels. PMID:23753023

  17. An increase in galectin-3 causes cellular unresponsiveness to IFN-γ-induced signal transduction and growth inhibition in gastric cancer cells

    PubMed Central

    Tseng, Po-Chun; Chen, Chia-Ling; Shan, Yan-Shen; Lin, Chiou-Feng

    2016-01-01

    Glycogen synthase kinase (GSK)-3β facilitates interferon (IFN)-γ signaling by inhibiting Src homology-2 domain-containing phosphatase (SHP) 2. Mutated phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN) cause AKT activation and GSK-3β inactivation to induce SHP2-activated cellular unresponsiveness to IFN-γ in human gastric cancer AGS cells. This study investigated the potential role of galectin-3, which acts upstream of AKT/GSK-3β/SHP2, in gastric cancer cells. Increasing or decreasing galectin-3 altered IFN-γ signaling. Following cisplatin-induced galectin-3 upregulation, surviving cells showed cellular unresponsiveness to IFN-γ. Galectin-3 induced IFN-γ resistance independent of its extracellular β-galactoside-binding activity. Galectin-3 expression was not regulated by PI3K activation or by a decrease in PTEN. Increased galectin-3 may cause GSK-3β inactivation and SHP2 activation by promoting PDK1-induced AKT phosphorylation at a threonine residue. Overexpression of AKT, inactive GSK-3βR96A, SHP2, or active SHP2D61A caused cellular unresponsiveness to IFN-γ in IFN-γ-sensitive MKN45 cells. IFN-γ-induced growth inhibition and apoptosis in AGS cells were observed until galectin-3 expression was downregulated. These results demonstrate that an increase in galectin-3 facilitates AKT/GSK-3β/SHP2 signaling, causing cellular unresponsiveness to IFN-γ. PMID:26934444

  18. Flowers of Camellia nitidissima cause growth inhibition, cell-cycle dysregulation and apoptosis in a human esophageal squamous cell carcinoma cell line.

    PubMed

    Dai, Lu; Li, Ji-Lin; Liang, Xin-Qiang; Li, Lin; Feng, Yan; Liu, Hai-Zhou; Wei, Wen-Er; Ning, Shu-Fang; Zhang, Li-Tu

    2016-08-01

    The present study aimed to investigate the chemopreventive effect of Camellia nitidissima flowers water extract (CNFE) on the Eca109 human esophageal squamous cell carcinoma (ESCC) cell line. The antiproliferative effect on Eca109 cells was determined using the trypan blue exclusion assay. The effects of CNFE on apoptosis and cell cycle arrest were investigated by flow cytometry. CNFE inhibited cell growth in both a dose‑ and time‑dependent manner in Eca109 cells. CNFE also caused dose‑ and time‑dependent apoptosis of these cells. Treatment of cells with CNFE resulted in dose‑dependent G0/G1 phase arrest of the cell cycle. The data demonstrated that CNFE serves antiproliferative effects against human ESCC Eca109 cells by inducing apoptosis and interrupting the cell cycle. These results suggested that CNFE has the potential to be a chemoprotective agent for ESCC. PMID:27314447

  19. Flowers of Camellia nitidissima cause growth inhibition, cell-cycle dysregulation and apoptosis in a human esophageal squamous cell carcinoma cell line

    PubMed Central

    Dai, Lu; Li, Ji-Lin; Liang, Xin-Qiang; Li, Lin; Feng, Yan; Liu, Hai-Zhou; Wei, Wen-Er; Ning, Shu-Fang; Zhang, Li-Tu

    2016-01-01

    The present study aimed to investigate the chemo-preventive effect of Camellia nitidissima flowers water extract (CNFE) on the Eca109 human esophageal squamous cell carcinoma (ESCC) cell line. The antiproliferative effect on Eca109 cells was determined using the trypan blue exclusion assay. The effects of CNFE on apoptosis and cell cycle arrest were investigated by flow cytometry. CNFE inhibited cell growth in both a dose- and time-dependent manner in Eca109 cells. CNFE also caused dose- and time-dependent apoptosis of these cells. Treatment of cells with CNFE resulted in dose-dependent G0/G1 phase arrest of the cell cycle. The data demonstrated that CNFE serves antiproliferative effects against human ESCC Eca109 cells by inducing apoptosis and interrupting the cell cycle. These results suggested that CNFE has the potential to be a chemoprotective agent for ESCC. PMID:27314447

  20. si-RNA inhibition of brain insulin or insulin-like growth factor receptors causes developmental cerebellar abnormalities: relevance to fetal alcohol spectrum disorder

    PubMed Central

    2011-01-01

    Background In experimental models of fetal alcohol spectrum disorder (FASD), cerebellar hypoplasia and hypofoliation are associated with insulin and insulin-like growth factor (IGF) resistance with impaired signaling through pathways that mediate growth, survival, plasticity, metabolism, and neurotransmitter function. To more directly assess the roles of impaired insulin and IGF signaling during brain development, we administered intracerebroventricular (ICV) injections of si-RNA targeting the insulin receptor, (InR), IGF-1 receptor (IGF-1R), or IGF-2R into postnatal day 2 (P2) Long Evans rat pups and examined the sustained effects on cerebellar function, structure, and neurotransmitter-related gene expression (P20). Results Rotarod tests on P20 demonstrated significant impairments in motor function, and histological studies revealed pronounced cerebellar hypotrophy, hypoplasia, and hypofoliation in si-InR, si-IGF-1R, and si-IGF-2R treated rats. Quantitative RT-PCR analysis showed that si-InR, and to a lesser extent si-IGF-2R, broadly inhibited expression of insulin and IGF-2 polypeptides, and insulin, IGF-1, and IGF-2 receptors in the brain. ELISA studies showed that si-InR increased cerebellar levels of tau, phospho-tau and β-actin, and inhibited GAPDH. In addition, si-InR, si-IGF-1R, and si-IGF-2R inhibited expression of choline acetyltransferase, which mediates motor function. Although the ICV si-RNA treatments generally spared the neurotrophin and neurotrophin receptor expression, si-InR and si-IGF-1R inhibited NT3, while si-IGF-1R suppressed BDNF. Conclusions early postnatal inhibition of brain InR expression, and to lesser extents, IGF-R, causes structural and functional abnormalities that resemble effects of FASD. The findings suggest that major abnormalities in brains with FASD are mediated by impairments in insulin/IGF signaling. Potential therapeutic strategies to reduce the long-term impact of prenatal alcohol exposure may include treatment with agents

  1. An unusual cause of growth failure in cystic fibrosis: A salutary reminder of the interaction between glucocorticoids and cytochrome P450 inhibiting medication.

    PubMed

    Albert, Benjamin B; Jaksic, Mirjana; Ramirez, Jessica; Bors, Jacqueline; Carter, Philippa; Cutfield, Wayne S; Hofman, Paul L

    2015-07-01

    A 12 ½ year old male with cystic fibrosis presented with growth failure after itraconazole was added to a treatment regimen including inhaled and intranasal glucocorticoids. Investigations showed severe adrenal suppression. This case demonstrates the potential for exogenous glucocorticoids to accumulate when their degradation is inhibited by a CYP3A4 inhibitor. PMID:25286825

  2. 15-PGJ2, but not thiazolidinediones, inhibits cell growth, induces apoptosis, and causes downregulation of Stat3 in human oral SCCa cells

    PubMed Central

    Nikitakis, N G; Siavash, H; Hebert, C; Reynolds, M A; Hamburger, A W; Sauk, J J

    2002-01-01

    Activation of peroxisome proliferator-activated receptor gamma (PPARγ) has been linked to induction of differentiation, cell growth inhibition and apoptosis in several types of human cancer. However, the possible effects of PPARγ agonists on human oral squamous cell carcinoma have not yet been reported. In this study, treatment with 15-deoxy-Δ12,14-PGJ2 (15-PGJ2), a natural PPARγ ligand, induced a significant reduction of oral squamous cell carcinoma cell growth, which was mainly attributed to upregulation of apoptosis. Interestingly, rosiglitazone and ciglitazone, two members of the thiazolidinedione family of PPARγ activators, did not exert a growth inhibitory effect. Given the critical role that the oncogene signal transducer and activator of transcription 3 (Stat3) plays in head and neck carcinogenesis, its potential regulation by PPARγ ligands was also examined. Treatment of oral squamous cell carcinoma cells with 15-PGJ2 induced an initial reduction and eventual elimination of both phosphorylated and unphosphorylated Stat3 protein levels. In contrast, other PPARγ did not induce similar effects. Our results provide the first evidence of significant antineoplastic effects of 15-PGJ2 on human oral squamous cell carcinoma cells, which may be related to downmodulation of Stat3 and are at least partly mediated through PPARγ-independent events. British Journal of Cancer (2002) 87, 1396–1403. doi:10.1038/sj.bjc.6600618 www.bjcancer.com © 2002 Cancer Research UK PMID:12454768

  3. Well having inhibited microbial growth

    DOEpatents

    Lee, Brady D.; Dooley, Kirk J.

    2006-08-15

    The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.

  4. Ormeloxifene efficiently inhibits ovarian cancer growth

    PubMed Central

    Maher, Diane M.; Khan, Sheema; Nordquist, Jordan; Ebeling, Mara C.; Bauer, Nichole A.; Kopel, Lucas; Singh, Man Mohan; Halaweish, Fathi; Bell, Maria C.; Jaggi, Meena; Chauhan, Subhash C.

    2014-01-01

    Ovarian cancer continues to be a leading cause of cancer related deaths for women. Anticancer agents effective against chemo-resistant cells are greatly needed for ovarian cancer treatment. Repurposing drugs currently in human use is an attractive strategy for developing novel cancer treatments with expedited translation into clinical trials. Therefore, we examined whether ormeloxifene (ORM), a non-steroidal Selective Estrogen Receptor Modulator (SERM) currently used for contraception, is therapeutically effective at inhibiting ovarian cancer growth. We report that ORM treatment inhibits cell growth and induces apoptosis in ovarian cancer cell lines, including cell lines resistant to cisplatin. Furthermore, ORM treatment decreases Akt phosphorylation, increases p53 phosphorylation, and modulates the expression and localization patterns of p27, cyclin E, cyclin D1, and CDK2. In a pre-clinical xenograft mouse ORM treatment significantly reduces tumorigenesis and metastasis. These results indicate that ORM effectively inhibits the growth of cisplatin resistant ovarian cancer cells. ORM is currently in human use and has an established record of patient safety. Our encouraging in vitro and pre-clinical in vivo findings indicate that ORM is a promising candidate for the treatment of ovarian cancer. PMID:25306892

  5. Downregulation of NPM-ALK by siRNA causes anaplastic large cell lymphoma cell growth inhibition and augments the anti cancer effects of chemotherapy in vitro.

    PubMed

    Hsu, Faye Yuan-yi; Zhao, Yi; Anderson, W French; Johnston, Patrick B

    2007-06-01

    The fusion protein, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), results from the chromosome translocation t(2;5)(p23;q25) and is present in 50-70 percent of anaplastic large-cell lymphomas (ALCLs). NPM-ALK is a constitutively activated kinase that transforms cells through stimulating several mitogenic signaling pathways. To examine if the NPM-ALK is a potential therapeutic target in ALCL, we used siRNA to specifically downregulate the expression of the NPM-ALK in ALCL cell lines. In this report, we demonstrated viability loss in t(2;5)-positive ALCL cell lines, SUDHL-1 and Karpas 299 cells, but not in lymphoma cell lines without the chromosome translocation, Jurkat and Granta 519 cells. Further study demonstrated that the downregulation of NPM-ALK resulted in decreased cell proliferation and increased cell apoptosis. When used in combination with chemotherapeutic agents, such as doxorubicin, the inhibition of the NPM-ALK augments the chemosensitivity of the tumor cells. These results revealed the importance of continuous expression of NPM-ALK in maintaining the growth of ALCL cells. Our data also suggested that the repression of the fusion gene might be a potential novel therapeutic strategy for NPM-ALK positive ALCLs. PMID:17612934

  6. Characterization of a lily anther-specific gene encoding cytoskeleton-binding glycoproteins and overexpression of the gene causes severe inhibition of pollen tube growth.

    PubMed

    Wang, Bing-Jyun; Hsu, Yi-Feng; Chen, Yun-Chu; Wang, Co-Shine

    2014-09-01

    This work characterizes an anther/pollen-specific gene that encodes potential intermediate filament (IF)-binding glycoproteins in lily (Lilium longiflorum Thunb. cv. Snow Queen) anthers during the development and pollen germination. LLP13 is a single gene that encodes a polypeptide of 807 amino acids, and a calculated molecular mass of 91 kDa. The protein contains a predicted transmembrane domain at the N-terminus and a conserved domain of unknown function (DUF)593 at the C-terminal half of the polypeptide. Sequence analysis revealed that LLP13 shares significant identity (37-41 %) with two intermediate filament antigen-binding proteins, representing a unique subgroup of DUF593 domain proteins from known rice and Arabidopsis species. The expression of LLP13 gene is anther-specific, and the transcript accumulates only at the stage of pollen maturation. Both premature drying and abscisic acid (ABA) treatment of developing pollen indicated that LLP13 was not induced by desiccation and ABA, but by other developmental cues. Antiserum was raised against the overexpressed LLP13C fragment of the protein in Escherichia coli and affinity-purified antibodies were prepared. Immunoblot analyses revealed that the LLP13 protein was a heterogeneous, anther-specific glycoprotein that accumulated only at the stage of pollen maturation. The protein is not heat-soluble. The level of LLP13 protein remained for 24 h during germination in vitro. Overexpression of LLP13-GFP or GFP-LLP13 in lily pollen tubes caused severe inhibition of tube elongation. The LLP13 protein codistributed with mTalin in growing tubes, suggesting that it apparently decorates actin cytoskeleton and is likely a cytoskeleton-binding protein that binds with IFs that potentially exist in pollen tubes. PMID:24944111

  7. Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth.

    PubMed

    Yokoyama, Y; Dhanabal, M; Griffioen, A W; Sukhatme, V P; Ramakrishnan, S

    2000-04-15

    Ovarian cancer is the leading cause of fatality among gynecological malignancies. Ovarian cancer growth is angiogenesis-dependent, and an increased production of angiogenic growth factors such as vascular endothelial growth factor is prognostically significant even during early stages of the disease. Therefore, we investigated whether antiangiogenic treatment can be used to inhibit the growth of ovarian cancer in an experimental model system. Mouse angiostatin (kringle 1-4) and endostatin were expressed in yeast. Purified angiostatin and endostatin were then used to treat established ovarian cancers in athymic mice. These studies showed that both angiostatin and endostatin inhibited tumor growth. However, angiostatin treatment was more effective in inhibiting ovarian cancer growth when compared with endostatin in parallel experiments. Residual tumors obtained from angiostatin- and endostatin-treated animals showed decreased number of blood vessels and, as a consequence, increased apoptosis of tumor cells. Subsequently, the efficacy of a combined treatment with angiostatin and endostatin was investigated. In the presence of both angiostatic proteins, endothelial cell proliferation was synergistically inhibited. Similarly, a combination regimen using equal amounts of angiostatin and endostatin showed more than additive effect in tumor growth inhibition when compared with treatment with individual angiostatic protein. These studies demonstrate synergism between two angiostatic molecules and that antiangiogenic therapy can be used to inhibit ovarian cancer growth. PMID:10786683

  8. Inhibition of angiogenesis and murine tumour growth by laminarin sulphate.

    PubMed Central

    Hoffman, R.; Paper, D. H.; Donaldson, J.; Vogl, H.

    1996-01-01

    LAM S5 is a polysulphated derivative of the glucan laminarian that inhibits basic fibroblast growth factor (bFGF) binding and the bFGF-stimulated proliferation of fetal bovine heart endothelial (FBHE) cells. This report demonstrates that LAM S5 has anti-angiogenic activity, as shown by inhibition of tubule formation by endothelial cells cultured on Matrigel and inhibition of vascularisation of the chick chorioallantoic membrane. In addition, LAM S5 caused a tumour growth delay of the murine RIF-1 tumour of 2.6 days (P = 0.01). Images Figure 2 PMID:8630276

  9. Interferon alpha2b gene delivery using adenoviral vector causes inhibition of tumor growth in xenograft models from a variety of cancers.

    PubMed

    Iqbal Ahmed, C M; Johnson, D E; Demers, G W; Engler, H; Howe, J A; Wills, K N; Wen, S F; Shinoda, J; Beltran, J; Nodelman, M; Machemer, T; Maneval, D C; Nagabhushan, T L; Sugarman, B J

    2001-10-01

    A recombinant adenovirus expressing human interferon alpha2b driven by the cytomegalovirus promoter, IACB, was shown to produce and secrete biologically active protein in vitro and in vivo. Intravenous administration of IACB in Buffalo rats resulted in circulating levels of biologically active human interferon at 70,000 international units/mL for up to 15 days. Distribution of interferon protein after IACB administration was different from that seen with the subcutaneous delivery of interferon protein. Higher levels of interferon protein were observed in liver and spleen after IACB delivery compared to protein delivery. The antitumor efficacy of IACB, as measured by suppression of tumor growth, was tested in athymic nude mice bearing established human tumor xenografts from different types of human cancer. Subcutaneous tumors most responsive to the intratumoral administration of IACB ranked as U87MG (glioblastoma) and K562 (chronic myelogenous leukemia), followed by Hep 3B (hepatocellular carcinoma) and LN229 cells (glioblastoma). Intravenous administration of IACB in animals bearing U87MG or Hep 3B xenografts was also effective in suppressing tumor growth, although to a lesser extent than the intratumoral administration. IACB was also tested in a metastatic model in beige/SCID mice generated with H69 (small cell lung carcinoma) cells and was found to prolong survival in tumor-bearing animals. This suggested that interferon gene delivery can be effective in suppressing tumor growth in a wide variety of cells. PMID:11687902

  10. Timing of growth inhibition following shoot inversion in Pharbitis nil

    NASA Technical Reports Server (NTRS)

    Abdel-Rahman, A. M.; Cline, M. G.

    1989-01-01

    Shoot inversion in Pharbitis nil results in the enhancement of ethylene production and in the inhibition of elongation in the growth zone of the inverted shoot. The initial increase in ethylene production previously was detected within 2 to 2.75 hours after inversion. In the present study, the initial inhibition of shoot elongation was detected within 1.5 to 4 hours with a weighted mean of 2.4 hours. Ethylene treatment of upright shoots inhibited elongation in 1.5 hours. A cause and effect relationship between shoot inversion-enhanced ethylene production and inhibition of elongation cannot be excluded.

  11. Exogenous proline relieves growth inhibition caused by NaCl in petunia cells: Metabolism of L-( sup 15 M)-proline followed by sup 15 N NMR

    SciTech Connect

    Heyser, J.W.; Chacon, M.J. )

    1989-04-01

    Exogenous proline stimulated the growth of Petunia hybrida cells on 195 mM NaCl 10-fold as compared with cells grown on 195 mM CaCl medium minus proline. L-({sup 15}N)-proline was fed to cells growing on 0 and 195 mM CaCl, and its metabolism was followed by {sup 15}N NMR analysis of cell extracts. Total proline and amino acids were determined by ninhydrin assay. Proline and primary amino acids were easily resolved in NMR spectra and the amount of {sup 15}N-label which remained in proline was determined. Reduced catabolism of proline in cells grown on NaCl was evident. The role of exogenous proline in conferring increased NaCl tolerance in this nonhalophyte will be discussed.

  12. Niclosamide inhibits leaf blight caused by Xanthomonas oryzae in rice.

    PubMed

    Kim, Sung-Il; Song, Jong Tae; Jeong, Jin-Yong; Seo, Hak Soo

    2016-01-01

    Rice leaf blight, which is caused by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), results in huge losses in grain yield. Here, we show that Xoo-induced rice leaf blight is effectively controlled by niclosamide, an oral antihelminthic drug and molluscicide, which also functions as an anti-tumor agent. Niclosamide directly inhibited the growth of the three Xoo strains PXO99, 10208 and K3a. Niclosamide moved long distances from the site of local application to distant rice tissues. Niclosamide also increased the levels of salicylate and induced the expression of defense-related genes such as OsPR1 and OsWRKY45, which suppressed Xoo-induced leaf wilting. Niclosamide had no detrimental effects on vegetative/reproductive growth and yield. These combined results indicate that niclosamide can be used to block bacterial leaf blight in rice with no negative side effects. PMID:26879887

  13. Niclosamide inhibits leaf blight caused by Xanthomonas oryzae in rice

    PubMed Central

    Kim, Sung-Il; Song, Jong Tae; Jeong, Jin-Yong; Seo, Hak Soo

    2016-01-01

    Rice leaf blight, which is caused by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), results in huge losses in grain yield. Here, we show that Xoo-induced rice leaf blight is effectively controlled by niclosamide, an oral antihelminthic drug and molluscicide, which also functions as an anti-tumor agent. Niclosamide directly inhibited the growth of the three Xoo strains PXO99, 10208 and K3a. Niclosamide moved long distances from the site of local application to distant rice tissues. Niclosamide also increased the levels of salicylate and induced the expression of defense-related genes such as OsPR1 and OsWRKY45, which suppressed Xoo-induced leaf wilting. Niclosamide had no detrimental effects on vegetative/reproductive growth and yield. These combined results indicate that niclosamide can be used to block bacterial leaf blight in rice with no negative side effects. PMID:26879887

  14. Mullerian inhibiting substance inhibits ovarian cell growth through an Rb-independent mechanism.

    PubMed

    Ha, T U; Segev, D L; Barbie, D; Masiakos, P T; Tran, T T; Dombkowski, D; Glander, M; Clarke, T R; Lorenzo, H K; Donahoe, P K; Maheswaran, S

    2000-11-24

    Müllerian inhibiting substance (MIS), a transforming growth factor-beta family member, causes regression of the Müllerian duct in male embryos. MIS overexpression in transgenic mice ablates the ovary, and MIS inhibits the growth of ovarian cancer cell lines in vitro, suggesting a key role for this hormone in postnatal development of the ovary. This report describes a mechanism for MIS-mediated growth inhibition in both a human epithelial ovarian cancer cell line and a cell line derived from normal ovarian surface epithelium, which is the origin of human epithelial ovarian cancers. MIS-treated cells accumulated in the G(1) phase of the cell cycle and subsequently underwent apoptosis. MIS up-regulated the cyclin-dependent kinase inhibitor p16 through an MIS type II receptor-mediated mechanism and inhibited growth in the absence of detectable or inactive Rb protein. Prolonged treatment with MIS down-regulated the Rb-related protein p130 and increased the Rb family-regulated transcription factor E2F1, overexpression of which inhibited growth. These findings demonstrate that p16 is required for MIS-mediated growth inhibition in ovarian epithelial cells and tumor cells and suggest that up-regulation of E2F1 also plays a role in this process. PMID:10958795

  15. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    SciTech Connect

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  16. Inhibition of Vascularization in Tumor Growth

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.; Sansone, B. Capogrosso

    2002-11-01

    The transition to a vascular phase is a prerequisite for fast tumor growth. During the avascular phase, the neoplasm feeds only from the (relatively few) existing nearby blood vessels. During angiogenesis, the number of capillaries surrounding and infiltrating the tumor increases dramatically. A model which includes physical and biological mechanisms of the interactions between the tumor and vascular growth describes the avascular-vascular transition. Numerical results agree with clinical observations and predict the influence of therapies aiming to inhibit the transition.

  17. Inhibition of estrogen biosynthesis enhances lymphoma growth in mice

    PubMed Central

    Talaber, Gergely; Yakimchuk, Konstantin; Guan, Jiyu; Inzunza, Jose; Okret, Sam

    2016-01-01

    Most lymphomas show higher incidence and poorer prognosis in males compared to females. However, the endocrine contribution to this gender difference is not entirely known. Here we show that castration accelerates lymphoma growth in C57BL6 male mice grafted with murine EG7 T cell lymphoma cells. However, the androgen receptor antagonist Bicalutamide did not affect lymphoma growth, suggesting no impact of androgen receptor signaling on lymphoma progression. In contrast, inhibition of androgen-to-estrogen conversion by the aromatase inhibitor (AI) Letrozole induced faster lymphoma growth in mice, suggesting that androgens impact lymphoma growth through its conversion to estrogens. This was supported by the inability of dihydrotestosterone, which is not converted to estrogens by aromatase, to influence lymphoma growth in castrated male mice. Lymphoma growth was also stimulated in immunocompromised mice grafted with human B cell lymphoma (Granta-519) and treated with either reversible or irreversible AIs, showing that the blockage of estrogen synthesis caused enhanced growth of both murine T and human B cell lymphomas and with different AIs. Additionally, AI-treated EG7 lymphomas showed accelerated growth not only in male but also in intact female mice. Altogether, our results demonstrate that aromatase inhibition accelerates lymphoma growth but not androgens per se, highlighting a protective role of estrogens in lymphoma pathogenesis. These results also raise concern that the use of AIs in women with breast cancer might enhance lymphoma progression. PMID:26943574

  18. Monensin causes dose dependent inhibition of Mycobacterium avium subspecies paratuberculosis in radiometric culture

    PubMed Central

    Greenstein, Robert J; Su, Liya; Whitlock, Robert H; Brown, Sheldon T

    2009-01-01

    Background Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic wasting diarrheal disease in ruminants called Johne's disease, that is evocative of human inflammatory bowel disease (IBD). Agents used to treat IBD, called "anti-inflammatories", immuno-modulators" and "immuno-suppressants" inhibit MAP growth in culture. We concluded that, unknowingly, the medical profession has been treating MAP since sulfasalazine's introduction in 1942. Monensin, called a "Growth Enhancer" in cattle, ameliorates Johne's disease without a documented mechanism of action. We hypothesized that Monensin would inhibit MAP in culture. Methods Using the radiometric 14CO2 Bactec® system, that expresses mycobacterial growth in arbitrary growth index (GI) units, we studied the effect of Monensin on the growth kinetic of MAP isolated from humans with IBD ("Dominic", "Ben" & UCF-4) and cattle with Johne's disease (303 & ATCC 19698.) Results are expressed as percent inhibition of cumulative GI (%–ΔcGI). Results The positive control Clofazimine inhibits every strain tested. The negative controls Cycloheximide & Phthalimide, have no inhibition on any MAP strain. Monensin has dose dependent inhibition on every MAP strain tested. The most susceptible human isolate was UCF-4 (73% – ΔcGI at 1 μg/ml) and bovine isolate was 303 (73% – ΔcGI at 4 μg/ml.) Monensin additionally inhibits M. avium ATCC 25291 (87% – ΔcGI at 64 μg/ml) & BCG (92% – ΔcGI at 16 μg/ml). Discussion We show that in radiometric culture the "Growth Enhancer" Monensin causes dose dependent inhibition of mycobacteria including MAP. We posit that the "Growth Enhancer" effect of Monensin may, at least in part, be due to inhibition of MAP in clinical or sub-clinical Johne's disease. PMID:19338684

  19. Apicoplast-Targeting Antibacterials Inhibit the Growth of Babesia Parasites

    PubMed Central

    AbouLaila, Mahmoud; Munkhjargal, Tserendorj; Sivakumar, Thillaiampalam; Ueno, Akio; Nakano, Yuki; Yokoyama, Miki; Yoshinari, Takeshi; Nagano, Daisuke; Katayama, Koji; El-Bahy, Nasr; Yokoyama, Naoaki

    2012-01-01

    The apicoplast housekeeping machinery, specifically apicoplast DNA replication, transcription, and translation, was targeted by ciprofloxacin, thiostrepton, and rifampin, respectively, in the in vitro cultures of four Babesia species. Furthermore, the in vivo effect of thiostrepton on the growth cycle of Babesia microti in BALB/c mice was evaluated. The drugs caused significant inhibition of growth from an initial parasitemia of 1% for Babesia bovis, with 50% inhibitory concentrations (IC50s) of 8.3, 11.5, 12, and 126.6 μM for ciprofloxacin, thiostrepton, rifampin, and clindamycin, respectively. The IC50s for the inhibition of Babesia bigemina growth were 15.8 μM for ciprofloxacin, 8.2 μM for thiostrepton, 8.3 μM for rifampin, and 206 μM for clindamycin. The IC50s for Babesia caballi were 2.7 μM for ciprofloxacin, 2.7 μM for thiostrepton, 4.7 μM for rifampin, and 4.7 μM for clindamycin. The IC50s for the inhibition of Babesia equi growth were 2.5 μM for ciprofloxacin, 6.4 μM for thiostrepton, 4.1 μM for rifampin, and 27.2 μM for clindamycin. Furthermore, an inhibitory effect was revealed for cultures with an initial parasitemia of either 10 or 7% for Babesia bovis or Babesia bigemina, respectively. The three inhibitors caused immediate death of Babesia bovis and Babesia equi. The inhibitory effects of ciprofloxacin, thiostrepton, and rifampin were confirmed by reverse transcription-PCR. Thiostrepton at a dose of 500 mg/kg of body weight resulted in 77.5% inhibition of Babesia microti growth in BALB/c mice. These results implicate the apicoplast as a potential chemotherapeutic target for babesiosis. PMID:22391527

  20. Nordihydroguaiaretic Acid Inhibits Insulin-Like Growth Factor Signaling, Growth, and Survival in Human Neuroblastoma Cells

    PubMed Central

    Meyer, Gary E.; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A.; Goldenberg, David D.; Youngren, Jack F.; Goldfine, Ira D.; Weiss, William A.; Matthay, Katherine K.; Rosenthal, Stephen M.

    2010-01-01

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  1. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

    PubMed

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d'Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201

  2. Selenium nanoparticles inhibit Staphylococcus aureus growth

    PubMed Central

    Tran, Phong A; Webster, Thomas J

    2011-01-01

    Staphylococcus aureus is a key bacterium commonly found in numerous infections. S. aureus infections are difficult to treat due to their biofilm formation and documented antibiotic resistance. While selenium has been used for a wide range of applications including anticancer applications, the effects of selenium nanoparticles on microorganisms remain largely unknown to date. The objective of this in vitro study was thus to examine the growth of S. aureus in the presence of selenium nanoparticles. Results of this study provided the first evidence of strongly inhibited growth of S. aureus in the presence of selenium nanoparticles after 3, 4, and 5 hours at 7.8, 15.5, and 31 μg/mL. The percentage of live bacteria also decreased in the presence of selenium nanoparticles. Therefore, this study suggests that selenium nanoparticles may be used to effectively prevent and treat S. aureus infections and thus should be further studied for such applications. PMID:21845045

  3. Rapamycin inhibits the growth of glioblastoma.

    PubMed

    Arcella, Antonietta; Biagioni, Francesca; Antonietta Oliva, Maria; Bucci, Domenico; Frati, Alessandro; Esposito, Vincenzo; Cantore, Giampaolo; Giangaspero, Felice; Fornai, Francesco

    2013-02-01

    The molecular target of rapamycin (mTOR) is up-regulated in glioblastoma (GBM) and this is associated with the rate of cell growth, stem cell proliferation and disease relapse. Rapamycin is a powerful mTOR inhibitor and strong autophagy inducer. Previous studies analyzed the effects of rapamycin in GBM cell lines. However, to our knowledge, no experiment was carried out to evaluate the effects of rapamycin neither in primary cells derived from GBM patients nor in vivo in brain GBM xenograft. These data are critical to get a deeper insight into the effects of such adjuvant therapy in GBM patients. In the present study, various doses of rapamycin were tested in primary cell cultures from GBM patients. These effects were compared with that obtained by the same doses of rapamycin in GBM cell lines (U87Mg). The effects of rapamycin were also evaluated in vivo, in brain tumors developed from mouse xenografts. Rapamycin, starting at the dose of 10nm inhibited cell growth both in U87Mg cell line and primary cell cultures derived from various GBM patients. When administered in vivo to brain xenografts in nude mice rapamycin almost doubled the survival time of mice and inhibited by more than 95% of tumor volume. PMID:23261661

  4. Simulating cholinesterase inhibition in birds caused by dietary insecticide exposure

    USGS Publications Warehouse

    Corson, M.S.; Mora, M.A.; Grant, W.E.

    1998-01-01

    We describe a stochastic simulation model that simulates avian foraging in an agricultural landscape to evaluate factors affecting dietary insecticide exposure and to predict post-exposure cholinesterase (ChE) inhibition. To evaluate the model, we simulated published field studies and found that model predictions of insecticide decay and ChE inhibition reasonably approximated most observed results. Sensitivity analysis suggested that foraging location usually influenced ChE inhibition more than diet preferences or daily intake rate. Although organophosphorus insecticides usually caused greater inhibition than carbamate insecticides, insecticide toxicity appeared only moderately important. When we simulated impact of heavy insecticide applications during breeding seasons of 15 wild bird species, mean maximum ChE inhibition in most species exceeded 20% at some point. At this level of inhibition, birds may experience nausea and/or may exhibit minor behavioral changes. Simulated risk peaked in April-May and August-September and was lowest in July. ChE inhibition increased with proportion of vegetation in the diet. This model, and ones like it, may help predict insecticide exposure of and sublethal ChE inhibition in grassland animals, thereby reducing dependence of ecological risk assessments on field studies alone.

  5. Lactam inhibiting Streptococcus mutans growth on titanium.

    PubMed

    Xavier, J G; Geremias, T C; Montero, J F D; Vahey, B R; Benfatti, C A M; Souza, J C M; Magini, R S; Pimenta, A L

    2016-11-01

    The aim of this work was to analyze the activity of novel synthetic lactams on preventing biofilm formation on titanium surfaces. Titanium (Ti6Al4V) samples were exposed to Streptococcus mutans cultures in the presence or absence of a synthetic lactam. After 48h incubation, planktonic growth was determined by spectrophotometry. Biofilm was evaluated by crystal violet staining and colony forming units (CFU·ml(-)(1)), followed by scanning electron microscopy (SEM). Results showed that the average of adhered viable cells was approximately 1.5×10(2)CFU/ml in the presence of lactam and 4×10(2)CFU/ml in its absence. This novel compound was considerable active in reducing biofilm formation over titanium surfaces, indicating its potential for the development of antimicrobial drugs targeting the inhibition of the initial stages of bacterial biofilms on dental implants abutments. PMID:27524086

  6. Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition

    PubMed Central

    Järvinen, Tero A. H.; Prince, Stuart

    2015-01-01

    Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer. PMID:26697491

  7. Kinetic model of particle-inhibited grain growth

    NASA Astrophysics Data System (ADS)

    Thompson, Gary Scott

    The effects of second phase particles on matrix grain growth kinetics were investigated using Al2O3-SiC as a model system. In particular, the validity of the conclusion drawn from a previous kinetic analysis that the kinetics of particle-inhibited grain growth in Al2 O3-SiC samples with an intermediate volume fraction of second phase could be well quantified by a modified-Zener model was investigated. A critical analysis of assumptions made during the previous kinetic analysis revealed oversimplifications which affect the validity of the conclusion. Specifically, the degree of interaction between particles and grain boundaries was assumed to be independent of the mean second phase particle size and size distribution. In contrast, current measurements indicate that the degree of interaction in Al2O3-SiC is dependent on these parameters. An improved kinetic model for particle-inhibited grain growth in Al 2O3-SiC was developed using a modified-Zener approach. The comparison of model predictions with experimental grain growth data indicated that significant discrepancies (as much as 4--5 orders of magnitude) existed. Based on this, it was concluded that particles had a much more significant effect on grain growth kinetics than that caused by a simple reduction of the boundary driving force due to the removal of boundary area. Consequently, it was also concluded that the conclusion drawn from the earlier kinetic analysis regarding the validity of a modified-Zener model was incorrect. Discrepancies between model and experiment were found to be the result of a significant decrease in experimental growth rate constant not predicted by the model. Possible physical mechanisms for such a decrease were investigated. The investigation of a small amount of SiO2 on grain growth in Al2O3 indicated that the decrease was not the result of a decrease in grain boundary mobility due to impurity contamination by particles. By process of elimination and based on previous observations

  8. Bee venom inhibits growth of human cervical tumors in mice.

    PubMed

    Lee, Hye Lim; Park, Sang Ho; Kim, Tae Myoung; Jung, Yu Yeon; Park, Mi Hee; Oh, Sang Hyun; Yun, Hye Seok; Jun, Hyung Ok; Yoo, Hwan Soo; Han, Sang-Bae; Lee, Ung Soo; Yoon, Joo Hee; Song, Min Jong; Hong, Jin Tae

    2015-03-30

    We studied whether bee venom (BV) inhibits cervical tumor growth through enhancement of death receptor (DR) expressions and inactivation of nuclear factor kappa B (NF-κB) in mice. In vivo study showed that BV (1 mg/kg) inhibited tumor growth. Similar inhibitory effects of BV on cancer growth in primary human cervical cancer cells were also found. BV (1-5 μg/ml) also inhibited the growth of cancer cells, Ca Ski and C33Aby the induction of apoptotic cell death in a dose dependent manner. Agreed with cancer cell growth inhibition, expression of death receptors; FAS, DR3 and DR6, and DR downstream pro-apoptotic proteins including caspase-3 and Bax was concomitantly increased, but the NF-κB activity and the expression of Bcl-2 were inhibited by treatment with BV in tumor mice, human cancer cell and human tumor samples as well as cultured cancer cells. In addition, deletion of FAS, DR3 and DR6 by small interfering RNA significantly reversed BV-induced cell growth inhibitory effects as well as NF-κB inactivation. These results suggest that BV inhibits cervical tumor growth through enhancement of FAS, DR3 and DR6 expression via inhibition of NF-κB pathway. PMID:25730901

  9. A chemical pollen suppressant inhibits auxin-induced growth in maize coleoptile sections

    SciTech Connect

    Vesper, M.J. ); Cross, J.W. )

    1990-05-01

    Chemical inhibitors of pollen development having a phenylcinnoline carboxylate structure were found to inhibit IAA- and 1-NAA-induced growth in maize coleoptile sections. The inhibitor (100 {mu}M) used in these experiments caused approx. 35% reduction in auxin-induced growth over the auxin concentration range of 0.3 to 100 {mu}M. Growth inhibition was noted as a lengthening of the latent period and a decrease in the rate of an auxin-induced growth response. An acid growth response to pH 5 buffer in abraded sections was not impaired. The velocity of basipetal transport of ({sup 3}H)IAA through the coleoptile sections also was not inhibited by the compound, nor was uptake of ({sup 3}H)IAA. Similarly, the inhibitor does not appear to alter auxin-induced H{sup +} secretion. We suggest that the agent targets some other process necessary for auxin-dependent growth.

  10. Venom peptides cathelicidin and lycotoxin cause strong inhibition of Escherichia coli ATP synthase.

    PubMed

    Azim, Sofiya; McDowell, Derek; Cartagena, Alec; Rodriguez, Ricky; Laughlin, Thomas F; Ahmad, Zulfiqar

    2016-06-01

    Venom peptides are known to have strong antimicrobial activity and anticancer properties. King cobra cathelicidin or OH-CATH (KF-34), banded krait cathelicidin (BF-30), wolf spider lycotoxin I (IL-25), and wolf spider lycotoxin II (KE-27) venom peptides were found to strongly inhibit Escherichia coli membrane bound F1Fo ATP synthase. The potent inhibition of wild-type E. coli in comparison to the partial inhibition of null E. coli by KF-34, BF-30, Il-25, or KE-27 clearly links the bactericidal properties of these venom peptides to the binding and inhibition of ATP synthase along with the possibility of other inhibitory targets. The four venom peptides KF-34, BF-30, IL-25, and KE-27, caused ≥85% inhibition of wild-type membrane bound E.coli ATP synthase. Venom peptide induced inhibition of ATP synthase and the strong abrogation of wild-type E. coli cell growth in the presence of venom peptides demonstrates that ATP synthase is a potent membrane bound molecular target for venom peptides. Furthermore, the process of inhibition was found to be fully reversible. PMID:26930579

  11. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  12. Mechanisms of suberoylanilide hydroxamic acid inhibition of mammary cell growth

    PubMed Central

    Said, Thenaa K; Moraes, Ricardo CB; Sinha, Raghu; Medina, Daniel

    2001-01-01

    The mechanism of suberoylanilide hydroxamic acid in cell growth inhibition involved induction of pRb-2/p130 interaction and nuclear translocation with E2F-4, followed by significant repression in E2F-1 and PCNA nuclear levels, which led to inhibition in DNA synthesis in mammary epithelial cell lines. PMID:11250759

  13. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    SciTech Connect

    Hannon, Patrick R. Brannick, Katherine E. Wang, Wei Gupta, Rupesh K. Flaws, Jodi A.

    2015-04-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1–100 μg/ml) for 24–96 h to establish the temporal effects of DEHP on the follicle. Following 24–96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. - Highlights: • DEHP inhibits antral follicle growth by dysregulating cell cycle regulators. • DEHP induces antral follicle atresia by dysregulating apoptosis regulators. • DEHP

  14. College-Student Personal-Growth and Attributions of Cause

    ERIC Educational Resources Information Center

    Anderson, W. P., Jr.; Lopez-Baez, Sandra I.

    2012-01-01

    Little is known about levels of personal growth attributed by students to typical college life experiences. This paper documents two studies of student self-reported and posttraumatic growth and compares growth levels across populations. Both studies measure student attributions of cause to academic and non-academic experiences, respectively. It…

  15. Endocannabinoids inhibit the growth of free-living amoebae.

    PubMed

    Dey, Rafik; Pernin, Pierre; Bodennec, Jacques

    2010-07-01

    The cannabinoid Delta(9)-tetrahydrocannabinol inhibits the growth of some pathogenic amoebae in vitro and exacerbates amoebic encephalitis in animal models. However, the effects of endogenous cannabinoids on amoebae remain unknown. Therefore, we tested several endocannabinoids (N-acyl ethanolamines and 2-O-acyl glycerol) on different genera of amoebae. The results showed that all of the endocannabinoids tested inhibit amoebic growth at subpharmacological doses, with 50% inhibitory concentrations ranging from 15 to 20 microM. A nonhydrolyzable endocannabinoid had similar effects, showing that the inhibition seen results from endocannabinoids per se rather than from a catabolic product. PMID:20479202

  16. Endocannabinoids Inhibit the Growth of Free-Living Amoebae▿

    PubMed Central

    Dey, Rafik; Pernin, Pierre; Bodennec, Jacques

    2010-01-01

    The cannabinoid Δ9-tetrahydrocannabinol inhibits the growth of some pathogenic amoebae in vitro and exacerbates amoebic encephalitis in animal models. However, the effects of endogenous cannabinoids on amoebae remain unknown. Therefore, we tested several endocannabinoids (N-acyl ethanolamines and 2-O-acyl glycerol) on different genera of amoebae. The results showed that all of the endocannabinoids tested inhibit amoebic growth at subpharmacological doses, with 50% inhibitory concentrations ranging from 15 to 20 μM. A nonhydrolyzable endocannabinoid had similar effects, showing that the inhibition seen results from endocannabinoids per se rather than from a catabolic product. PMID:20479202

  17. Inhibition of growth by erythritol catabolism in Brucella abortus.

    PubMed Central

    Sperry, J F; Robertson, D C

    1975-01-01

    The growth of Brucella abortus (US-19) in a complex tryptose-yeast extract medium containing D-glucose is inhibited by 10 mM erythritol. The enzymes of the erythritol pathway, except for D-erythrulose 1-phosphate dehydrogenase (D-glycero-2-tetrulose 1-phosphate:nicotinamide adenine dinucleotide (NAD+) 4-oxidoreductase) were detected in the soluble and membrane fractions of cell extracts. Glucose catabolism by cell extracts was inhibited by erythritol, whereas, phosphorylated intermediates of the hexose monophosphate pathway were converted to pyruvic acid with oxygen consumption. Erythritol kinase (EC 2.7.1.27; adenosine 5'-triphosphate (ATP): erythritol 1-phosphotransferase) was found to be eightfold higher in activity than the hexokinase in cell extracts. In vivo, ATP is apparently consumed with the accumulation of D-erythrulose 1-phosphate (D-glycero-2-tetrulose 1-phosphate) and no substrate level phosphorylation. ATP levels dropped 10-fold in 30 min after addition of erythritol to log phase cells in tryptose-yeast extract medium with D-glucose as the carbon source. These data suggest bacteriostasis in the presence of erythritol results from the ATP drain caused by erythritol kinase. PMID:170249

  18. Causes of growth failure in growth failure in a model of neonatal zinc (Zn) deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zn deficiency is a common cause of growth failure in children in developing countrie,s and Zn supplementation can significantly improve growth of at-risk populations. Although Zn deficiency leads to anorexia and poor growth, it is unclear whether anorexia is the sole cause of poor growth. Our object...

  19. An orally administered DNA vaccine targeting vascular endothelial growth factor receptor-3 inhibits lung carcinoma growth.

    PubMed

    Chen, Yan; Liu, Xin; Jin, Cong Guo; Zhou, Yong Chun; Navab, Roya; Jakobsen, Kristine Raaby; Chen, Xiao Qun; Li, Jia; Li, Ting Ting; Luo, Lu; Wang, Xi Cai

    2016-02-01

    Lung cancer is the leading cause of mortality and 5-year survival rate is very low worldwide. Recent studies show that vascular endothelial growth factor receptor-3 (VEGFR-3) signaling pathway contributes to lung cancer progression. So we hypothesize that an oral DNA vaccine that targets VEGFR-3 carried by attenuated Salmonella enterica serovar typhimurium strain SL3261 has impacts on lung cancer progression. In this study, the oral VEGFR-3-based vaccine-immunized mice showed appreciable inhibition of tumor growth and tumor lymphatic microvessels in lung cancer mice model. Moreover, the oral VEGFR-3-based vaccine-immunized mice showed remarkable increases in both VEGFR-3-specific antibody levels and cytotoxic activity. Furthermore, the oral VEGFR-3-based vaccine-immunized mice showed a significant increase in the levels of T helper type 1 (Th1) cell intracellular cytokine expression (IL-2, IFN-γ, and TNF-α). After inoculation with murine Lewis lung carcinoma (LLC) cells, CD4(+) or CD8(+) T cell numbers obviously declined in control groups whereas high levels were maintained in the oral VEGFR-3-based vaccine group. These results demonstrated that the oral VEGFR-3-based vaccine could induce specific humoral and cellular immune responses and then significantly inhibit lung carcinoma growth via suppressing lymphangiogenesis. PMID:26376999

  20. Guanine nucleotide depletion inhibits pre-ribosomal RNA synthesis and causes nucleolar disruption.

    PubMed

    Huang, Min; Ji, Yanshan; Itahana, Koji; Zhang, Yanping; Mitchell, Beverly

    2008-01-01

    Inosine monophosphate dehydrogenase (IMPDH) is a pivotal enzyme in the de novo pathway of guanine nucleotide biosynthesis. Inhibitors of this enzyme decrease intracellular guanine nucleotide levels by 50-80% and have potential as anti-neoplastic agents. Both mycophenolic acid (MPA) and AVN-944 are highly specific inhibitors of IMPDH that cause cell cycle arrest or apoptosis in lymphocytes and leukemic cell lines. We have examined the mechanisms by which these two agents cause cytotoxicity. Both MPA and AVN-944 inhibit the growth of K562 cells, and induce apoptosis in Raji B and CCRF-CEM T cells. Both compounds strikingly inhibit RNA synthesis within 2 h of exposure. Depletion of guanine nucleotides by MPA and AVN-944 also causes an early and near-complete reduction in levels of the 45S precursor rRNA synthesis and the concomitant translocation of nucleolar proteins including nucleolin, nucleophosmin, and nucleostemin from the nucleolus to the nucleoplasm. This efflux correlates temporally with the sustained induction of p53 in cell lines with wild-type p53. We conclude that inhibition of IMPDH causes a primary reduction in rRNA synthesis and secondary nucleolar disruption and efflux of nucleolar proteins that most likely mediate cell cycle arrest or apoptosis. The ability of AVN-944 to induce apoptosis in a number of leukemic cell lines supports its potential utility in the treatment of hematologic malignancies. PMID:17462731

  1. Inhibition of rate of tumor growth by creatine and cyclocreatine.

    PubMed Central

    Miller, E E; Evans, A E; Cohn, M

    1993-01-01

    Growth rate inhibition of subcutaneously implanted tumors results from feeding rats and athymic nude mice diets containing 1% cyclocreatine or 1%, 2%, 5%, or 10% creatine. The tumors studied included rat mammary tumors (Ac33tc in Lewis female rats and 13762A in Fischer 344 female rats), rat sarcoma MCI in Lewis male rats, and tumors resulting from the injection of two human neuroblastoma cell lines, IMR-5 and CHP-134, in athymic nude mice. Inhibition was observed regardless of the time experimental diets were administered, either at the time of tumor implantation or after the appearance of palpable tumors. For mammary tumor Ac33tc, the growth inhibition during 24 days after the implantation was approximately 50% for both 1% cyclocreatine and 1% creatine, and inhibition increased as creatine was increased from 2% to 10% of the diet. For the other rat mammary tumor (13762A), there was approximately 35% inhibition by both 1% cyclocreatine and 2% creatine. In the case of the MCI sarcoma, the inhibitory effect appeared more pronounced at earlier periods of growth, ranging from 26% to 41% for 1% cyclocreatine and from 30% to 53% for 1% creatine; there was no significant difference in growth rate between the tumors in the rats fed 1% and 5% creatine. The growth rate of tumors in athymic nude mice, produced by implantation of the human neuroblastoma IMR-5 cell line, appeared somewhat more effectively inhibited by 1% cyclocreatine than by 1% creatine, and 5% creatine feeding was most effective. For the CHP-134 cell line, 33% inhibition was observed for the 1% cyclocreatine diet and 71% for the 5% creatine diet. In several experiments, a delay in appearance of tumors was observed in animals on the experimental diets. In occasional experiments, neither additive inhibited tumor growth rate for the rat tumors or the athymic mouse tumors. Images Fig. 3 PMID:8475072

  2. Ozone selectively inhibits growth of human cancer cells

    SciTech Connect

    Sweet, F.; Kao, M.S.; Lee, S.C.; Hagar, W.L.; Sweet, W.E.

    1980-08-01

    The growth of human cancer cells from lung, breast, and uterine tumors was selectively inhibited in a dose-dependent manner by ozone at 0.3 to 0.8 part per million of ozone in ambient air during 8 days of culture. Human lung diploid fibroblasts served as noncancerous control cells. The presence of ozone at 0.3 to 0.5 part per million inhibited cancer cell growth 40 and 60 percent, respectively. The noncancerous lung cells were unaffected at these levels. Exposure to ozone at 0.8 part per million inhibited cancer cell growth more than 90 percent and control cell growth less than 50 percent. Evidently, the mechanisms for defense against ozone damage are impaired in human cancer cells.

  3. Aurapten, a coumarin with growth inhibition against Leishmania major promastigotes.

    PubMed

    Napolitano, H B; Silva, M; Ellena, J; Rodrigues, B D G; Almeida, A L C; Vieira, P C; Oliva, G; Thiemann, O H

    2004-12-01

    Several natural compounds have been identified for the treatment of leishmaniasis. Among them are some alkaloids, chalcones, lactones, tetralones, and saponins. The new compound reported here, 7-geranyloxycoumarin, called aurapten, belongs to the chemical class of the coumarins and has a molecular weight of 298.37. The compound was extracted from the Rutaceae species Esenbeckia febrifuga and was purified from a hexane extract starting from 407.7 g of dried leaves and followed by four silica gel chromatographic fractionation steps using different solvents as the mobile phase. The resulting compound (47 mg) of shows significant growth inhibition with an LD50 of 30 microM against the tropical parasite Leishmania major, which causes severe clinical manifestations in humans and is endemic in the tropical and subtropical regions. In the present study, we investigated the atomic structure of aurapten in order to determine the existence of common structural motifs that might be related to other coumarins and potentially to other identified inhibitors of Leishmania growth and viability. This compound has a comparable inhibitory activity of other isolated molecules. The aurapten is a planar molecule constituted of an aromatic system with electron delocalization. A hydrophobic side chain consisting of ten carbon atoms with two double bonds and negative density has been identified and may be relevant for further compound synthesis. PMID:15558191

  4. Further evidence that naphthoquinone inhibits Toxoplasma gondii growth in vitro.

    PubMed

    da Silva, Luciana Lemos Rangel; Portes, Juliana de Araujo; de Araújo, Marlon Heggdorne; Silva, Jéssica Lays Sant'ana; Rennó, Magdalena Nascimento; Netto, Chaquip Daher; da Silva, Alcides José Monteiro; Costa, Paulo Roberto Ribeiro; De Souza, Wanderley; Seabra, Sergio Henrique; DaMatta, Renato Augusto

    2015-12-01

    Toxoplasmosis is a widely disseminated disease caused by Toxoplasma gondii, an intracellular protozoan parasite. Standard treatment causes many side effects, such as depletion of bone marrow cells, skin rashes and gastrointestinal implications. Therefore, it is necessary to find chemotherapeutic alternatives for the treatment of this disease. It was shown that a naphthoquinone derivative compound is active against T. gondii, RH strain, with an IC50 around 2.5 μM. Here, three different naphthoquinone derivative compounds with activity against leukemia cells and breast carcinoma cell were tested against T. gondii (RH strain) infected LLC-MK2 cell line. All the compounds were able to inhibit parasite growth in vitro, but one of them showed an IC50 activity below 1 μM after 48 h of treatment. The compounds showed low toxicity to the host cell. In addition, these compounds were able to induce tachyzoite-bradyzoite conversion confirmed by morphological changes, Dolichus biflorus lectin cyst wall labeling and characterization of amylopectin granules in the parasites by electron microscopy analysis using the Thierry technique. Furthermore, the compounds induced alterations on the ultrastructure of the parasite. Taken together, our results point to the naphthoquinone derivative (LQB 151) as a potential compound for the development of new drugs for the treatment of toxoplasmosis. PMID:26335616

  5. IN VITRO INHIBITION OF YEAST GROWTH BY MOUSE ASCITES FLUID AND SERUM

    PubMed Central

    Summers, Donald F.; Hasenclever, H. F.

    1964-01-01

    Summers, Donald F. (National Institute of Allergy and Infectious Diseases, Bethesda, Md.), and H. F. Hasenclever. In vitro inhibition of yeast growth by mouse ascites fluid and serum. J. Bacteriol. 87:1–7. 1964.—A nondialyzable heat-stable factor(s) present in experimentally produced mouse ascites fluid and in serum from these ascitic mice was shown to inhibit the invitro growth of several yeasts. The inhibitory activity was almost totally abolished by trypsin treatment of the ascites fluid, and was progressively diminished by repeated adsorption of the ascites fluid by heat-killed Candida albicans cells. A close relationship was shown to exist between growth inhibition by ascites fluid and concentration of free iron or nutrients in the growth medium. Increased concentration of nutrients or free iron caused diminution of inhibitory activity. PMID:14102855

  6. IN VITRO INHIBITION OF YEAST GROWTH BY MOUSE ASCITES FLUID AND SERUM.

    PubMed

    SUMMERS, D F; HASENCLEVER, H F

    1964-01-01

    Summers, Donald F. (National Institute of Allergy and Infectious Diseases, Bethesda, Md.), and H. F. Hasenclever. In vitro inhibition of yeast growth by mouse ascites fluid and serum. J. Bacteriol. 87:1-7. 1964.-A nondialyzable heat-stable factor(s) present in experimentally produced mouse ascites fluid and in serum from these ascitic mice was shown to inhibit the invitro growth of several yeasts. The inhibitory activity was almost totally abolished by trypsin treatment of the ascites fluid, and was progressively diminished by repeated adsorption of the ascites fluid by heat-killed Candida albicans cells. A close relationship was shown to exist between growth inhibition by ascites fluid and concentration of free iron or nutrients in the growth medium. Increased concentration of nutrients or free iron caused diminution of inhibitory activity. PMID:14102855

  7. Mullerian Inhibiting Substance inhibits cervical cancer cell growth via a pathway involving p130 and p107.

    PubMed

    Barbie, Thanh U; Barbie, David A; MacLaughlin, David T; Maheswaran, Shyamala; Donahoe, Patricia K

    2003-12-23

    In addition to causing regression of the Mullerian duct in the male embryo, Mullerian Inhibiting Substance (MIS) inhibits the growth of epithelial ovarian cancer cells, which are known to be of Mullerian origin. Because the uterine cervix is derived from the same Mullerian duct precursor as the epithelium of the ovary, we tested the hypothesis that cervical cancer cells might also respond to MIS. A number of cervical cancer cell lines express the MIS type II receptor, and MIS inhibits the growth of both human papilloma virus-transformed and non-human papilloma virus-transformed cervical cell lines, with a more dramatic effect seen in the latter. As in the ovarian cancer cell line OVCAR8, suppression of growth of the C33A cervical cancer cell line by MIS is associated with induction of the p16 tumor suppressor protein. However, in contrast to OVCAR8 cells, induction of p130 and p107 appears to play an important role in the inhibition of growth of C33A cells by MIS. Finally, normal cervical tissue expresses the MIS type II receptor in vivo, supporting the idea that MIS could be a targeted therapy for cervical cancer. PMID:14671316

  8. Inhibition of Orobanche crenata seed germination and radicle growth by allelochemicals identified in cereals.

    PubMed

    Fernández-Aparicio, Mónica; Cimmino, Alessio; Evidente, Antonio; Rubiales, Diego

    2013-10-16

    Orobanche crenata is a parasitic weed that causes severe yield losses in important grain and forage legume crops. Cereals have been reported to inhibit O. crenata parasitism when grown intercropped with susceptible legumes, but the responsible metabolites have not been identified. A number of metabolites have been reported in cereals that have allelopathic properties against weeds, pests, and pathogens. We tested the effect of several allelochemicals identified in cereals on O. crenata seed germination and radicle development. We found that 2-benzoxazolinone, its derivative 6-chloroacetyl-2-benzoxazolinone, and scopoletin significantly inhibited O. crenata seed germination. Benzoxazolinones, l-tryptophan, and coumalic acid caused the stronger inhibition of radicle growth. Also, other metabolites reduced radicle length, this inhibition being dose-dependent. Only scopoletin caused cell necrotic-like darkening in the young radicles. Prospects for their application to parasitic weed management are discussed. PMID:24044614

  9. Serotypes of Plasmodium falciparum defined by immune serum inhibition of in vitro growth*

    PubMed Central

    Chulay, J. D.; Haynes, J. D.; Diggs, C. L.

    1985-01-01

    In vitro growth inhibition assays were used to detect antigenic differences among geographically distinct strains of Plasmodium falciparum. Owl monkeys were immunized against the Camp and FCR-3/FMG strains of P. falciparum by infection, drug treatment, and rechallenge with homologous parasites. Camp-immune monkey serum was used to inhibit the in vitro growth of eight strains of P. falciparum. Inhibition was maximum for the homologous Camp strain (an average of 62% inhibition by 100 ml/litre Camp-immune serum). Four other strains were inhibited to a lesser degree, and three strains (FCR-3/FMG, FVO, and Smith) were not significantly inhibited by Camp-immune serum at concentrations as high as 400 ml/litre. FCR-3/FMG-immune serum at a concentration of 50 ml/litre caused significant inhibition of the FCR-3/FMG strain, but not the Camp strain. Thus Camp and FCR-3/FMG strains appear to bear distinct antigenic determinants recognized by the homologous, but not the heterologous, antiserum. Inhibition of in vitro growth by immune serum may be useful for serotyping P. falciparum and may have application in the selection of strains for inclusion in a malaria vaccine. PMID:3893775

  10. Spectroscopic analysis of urinary calculi and inhibition of their growth

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Durrer, William; Govani, Jayesh; Reza, Layra; Pinales, Luis

    2009-10-01

    We present here a study of kidney stone formation and growth inhibition based on a traditional medicine approach with Aquatica Lour (RAL) herbal extracts. Kidney stone material systems were synthesized in vitro using a simplified single diffusion gel growth technique. With the objective of revealing the mechanism of inhibition of calculi formation by RAL extracts, samples prepared without the presence of extract, and with the presence of extract, were analyzed using Raman, photoluminescence, and XPS. The unexpected presence of Zn revealed by XPS in a sample prepared with RAL provides an explanation for the inhibition process, and also explains the dramatic reflectance of incident light observed in attempts to obtain infrared transmission data. Raman data are consistent with the binding of the inhibitor to the oxygen of the kidney stone. Photoluminescence data corroborate with the other results to provide additional evidence of Zn-related inhibition.

  11. HMG-CoA reductase inhibition causes neurite loss by interfering with geranylgeranylpyrophosphate synthesis.

    PubMed

    Schulz, Joachim G; Bösel, Julian; Stoeckel, Magali; Megow, Dirk; Dirnagl, Ulrich; Endres, Matthias

    2004-04-01

    To determine whether neurite outgrowth depends upon the mevalonate pathway, we blocked mevalonate synthesis in nerve growth factor-treated PC12 cells or primary cortical neurones with atorvastatin, a 3-hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, and substituted different intermediates of the mevalonate pathway. We show that HMG-CoA reductase inhibition causes a profound reduction of neurite length, neurite loss and ultimatively cell death in undifferentiated and pre-differentiated PC12 cells and also in rat primary cortical neurones. Geranylgeranylpyrophosphate, but not farnesylpyrophosphate, squalene or cholesterol, completely compensated for the lack of mevalonate. Our data indicate that, under HMG-CoA reductase inhibition, geranylgeranylpyrophosphate rather than farnesylpyrophosphate or cholesterol is critical for neurite outgrowth and/or maintenance. Loss of neurites is an early manifestation of various neurodegenerative disorders, and dysfunction of isoprenylation might play a role in their pathogenesis. PMID:15030386

  12. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  13. Plasmodium falciparum Choline Kinase Inhibition Leads to a Major Decrease in Phosphatidylethanolamine Causing Parasite Death.

    PubMed

    Serrán-Aguilera, Lucía; Denton, Helen; Rubio-Ruiz, Belén; López-Gutiérrez, Borja; Entrena, Antonio; Izquierdo, Luis; Smith, Terry K; Conejo-García, Ana; Hurtado-Guerrero, Ramon

    2016-01-01

    Malaria is a life-threatening disease caused by different species of the protozoan parasite Plasmodium, with P. falciparum being the deadliest. Increasing parasitic resistance to existing antimalarials makes the necessity of novel avenues to treat this disease an urgent priority. The enzymes responsible for the synthesis of phosphatidylcholine and phosphatidylethanolamine are attractive drug targets to treat malaria as their selective inhibition leads to an arrest of the parasite's growth and cures malaria in a mouse model. We present here a detailed study that reveals a mode of action for two P. falciparum choline kinase inhibitors both in vitro and in vivo. The compounds present distinct binding modes to the choline/ethanolamine-binding site of P. falciparum choline kinase, reflecting different types of inhibition. Strikingly, these compounds primarily inhibit the ethanolamine kinase activity of the P. falciparum choline kinase, leading to a severe decrease in the phosphatidylethanolamine levels within P. falciparum, which explains the resulting growth phenotype and the parasites death. These studies provide an understanding of the mode of action, and act as a springboard for continued antimalarial development efforts selectively targeting P. falciparum choline kinase. PMID:27616047

  14. Inhibition of breast cancer growth and metastasis by a biomimetic peptide

    PubMed Central

    Lee, Esak; Lee, Seung Jae; Koskimaki, Jacob E.; Han, Zheyi; Pandey, Niranjan B.; Popel, Aleksander S.

    2014-01-01

    Metastasis is the main cause of mortality in cancer patients. Though there are many anti-cancer drugs targeting primary tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression, particularly, lymphangiogenesis is pivotal for metastasis in breast cancer. Here we report that a novel collagen IV derived biomimetic peptide inhibits breast cancer growth and metastasis by blocking angiogenesis and lymphangiogenesis. The peptide inhibits blood and lymphatic endothelial cell viability, migration, adhesion, and tube formation by targeting IGF1R and Met signals. The peptide blocks MDA-MB-231 tumor growth by inhibiting tumor angiogenesis in vivo. Moreover, the peptide inhibits lymphangiogenesis in primary tumors. MDA-MB-231 tumor conditioned media (TCM) was employed to accelerate spontaneous metastasis in tumor xenografts, and the anti-metastatic activity of the peptide was tested in this model. The peptide prevents metastasis to the lungs and lymph nodes by inhibiting TCM-induced lymphangiogenesis and angiogenesis in the pre-metastatic organs. In summary, a novel biomimetic peptide inhibits breast cancer growth and metastasis by blocking angiogenesis and lymphangiogenesis in the pre-metastatic organs as well as primary tumors. PMID:25409905

  15. Microbial growth inhibition by alternating electric fields in mice with Pseudomonas aeruginosa lung infection.

    PubMed

    Giladi, Moshe; Porat, Yaara; Blatt, Alexandra; Shmueli, Esther; Wasserman, Yoram; Kirson, Eilon D; Palti, Yoram

    2010-08-01

    High-frequency, low-intensity electric fields generated by insulated electrodes have previously been shown to inhibit bacterial growth in vitro. In the present study, we tested the effect of these antimicrobial fields (AMFields) on the development of lung infection caused by Pseudomonas aeruginosa in mice. We demonstrate that AMFields (10 MHz) significantly inhibit bacterial growth in vivo, both as a stand-alone treatment and in combination with ceftazidime. In addition, we show that peripheral (skin) heating of about 2 degrees C can contribute to bacterial growth inhibition in the lungs of mice. We suggest that the combination of alternating electric fields, together with the heat produced during their application, may serve as a novel antibacterial treatment modality. PMID:20547811

  16. [Lesions of the growth plate caused by sports stress].

    PubMed

    Segesser, B; Morscher, E; Goesele, A

    1995-09-01

    Besides the positive physiological, psychological and social aspects, sports activities in adolescents bear the risk of injuries and overuse of the locomotor system. Previous examinations have shown that increased stress to the growth plates by sports activities, in relation to the intensity of strain during growth spurts, can influence normal growth. In female gymnasts, hormonal changes can decrease the growth speed and long-term growth. On the other hand, during more intensive phases of growth the column cartilage of the growth plate is the weakest part of the locomotor system because of the influence of somatotropin and low levels of testosterone. This can cause subchondral stress fractures in the growing cartilage that later on, if missed or not sufficiently treated, can cause osteochondrosis dissecans. The apophysis of tendons of big muscle groups can show loosening of the apophysis caused by increased muscle strength and acute or chronic microtrauma. Male adolescents show an incidence of lesions in the relation of 9:1 to female adolescents. The therapy for apophyseal lesions is generally nonoperative. Due to the persistent growth possibility, pseudotumors can occur, which can cause problems in differential diagnosis among skeletal tumors. Too high pressure, pushing and tearing forces can influence growth. Later examinations of previous high-level sportsmen and patients with coxarthrosis with and without a sports history show that blockage of the rotation of the foot during growth, for example caused by soccer shoes, can cause high pushing forces on the femoral epiphysis, which can lead to epiphyseolysis cap. fem. lenta and thereby to pre-arthritic deformities. This is overcorrection of the "physiological" epiphyseolysis, described by Morscher. Knowledge of the reduced strength of the growth plate indicates better adaptation of training and supervision of the adolescent high-level sportsman. A regular check-up of the growing athlete and a reduction in sports

  17. Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer.

    PubMed

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E

    2008-11-01

    Functional somatostatin receptors (SSTR) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G(0)/G(1) growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n = 5, P < 0.05, Student's t-test), and inhibited tumor weight by 69% and 47% (n = 5, P < 0.05, Student's t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  18. Somatostatin Receptor-1 Induces Cell Cycle Arrest and Inhibits Tumor Growth in Pancreatic Cancer

    PubMed Central

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F. Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E.

    2010-01-01

    Functional somatostatin receptors (SSTRs) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G0/G1 growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n=5, p<0.05, t-test), and inhibited tumor weight by 69% and 47%, (n=5, p<0.05, t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  19. [Inhibition of growth of microscopic fungi with organic acids].

    PubMed

    Conková, E; Para, L; Kocisová, A

    1993-01-01

    Fungicidal effects of five selected organic acids (lactic, acetic, formic, oxalic, and propionic) in concentrations 3, 5, 10, 20 and 50 ml/l on nine selected species of moulds were tested. Lactic and oxalic acids did not prove the satisfactory fungicidal activity in any of the chosen concentrations. The antifungal effect of the other three acids, manifested by the growth inhibition of the tested moulds is shown in Tab. I and it can be expressed by sequence: propionic acid, formic acid, and acetic acid. These acids also had effects only in concentrations 20 ml/l and 50 ml/l. Propionic acid in concentration 20 ml/l inhibited the growth of five moulds (Penicillium glabrum, Aspergillus niger, Fusarium moniliforme, Aspergillus fumigatus, Cladosporium sphaerospermum). In testing of concentration 50 ml/l, the lower fungicidal ability was ascertained only in growth suppression of Aspergillus flavus. The fungicidal activity of formic acid was registered in concentration 20 ml/l in two cases and in concentration 50 ml/l in six cases. Acetic acid inhibited the growth in concentration 50 ml/l only in two cases. Tab. II shows the percentual evaluation of propionic acid and formic acid with regard to their inhibition abilities. The fungicidal efficiency of propionic acid resulting from the experiment is 88.9%. PMID:8122343

  20. Growth hormone receptor inhibition decreases the growth and metastasis of pancreatic ductal adenocarcinoma

    PubMed Central

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Salcido, Alyssa; Boopalan, Thiyagarajan; Arumugam, Arunkumar; Nandy, Sushmita; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is the only major cancer with very low survival rates (1%). It is the fourth leading cause of cancer-related death. Hyperactivated growth hormone receptor (GHR) levels have been shown to increase the risk of cancer in general and this pathway is a master regulator of key cellular functions like proliferation, apoptosis, differentiation, metastasis, etc. However, to date there is no available data on how GHR promotes pancreatic cancer pathogenesis. Here, we used an RNA interference approach targeted to GHR to determine whether targeting GHR is an effective method for controlling pancreatic cancer growth and metastasis. For this, we used an in vitro model system consisting of HPAC and PANC-1 pancreatic cancer cells lines. GHR is upregulated in both of these cell lines and silencing GHR significantly reduced cell proliferation and viability. Inhibition of GHR also reduced the metastatic potential of pancreatic cancer cells, which was aided through decreased colony-forming ability and reduced invasiveness. Flow cytometric and western blot analyses revealed the induction of apoptosis in GHR silenced cells. GHR silencing affected phosphatidylinositol 3 kinase/AKT, mitogen extracellular signal-regulated kinase/extracellular signal-regulated kinase, Janus kinase/signal transducers and activators of transcription and mammalian target of rapamycin signaling, as well as, epithelial to mesenchymal transition. Interestingly, silencing GHR also suppressed the expression of insulin receptor-β and cyclo-oxygenease-2. Altogether, GHR silencing controls the growth and metastasis of pancreatic cancer and reveals its importance in pancreatic cancer pathogenesis. PMID:25301264

  1. Specific Bifidobacterium strains isolated from elderly subjects inhibit growth of Staphylococcus aureus.

    PubMed

    Lahtinen, Sampo J; Jalonen, Lotta; Ouwehand, Arthur C; Salminen, Seppo J

    2007-06-10

    Cell-free, pH-controlled supernatants of thirty-eight Bifidobacterium strains isolated from healthy elderly subjects were subjected to antimicrobial activity assay. Bioluminescent indicator strains Staphylococcus aureus RN4220, Escherichia coli K-12, and Salmonella enterica serovar Typhimurium ATCC 14028 were used as targets of antimicrobial activity. The effect of nutrient depletion on the inhibition was eliminated with spent-culture controls. Three out of thirty-eight Bifidobacterium strains were capable of inhibiting the growth of S. aureus. The inhibition was equal to 23.2+/-19.1% to 50.4+/-26.7% of the inhibition caused by 50 IU/ml nisin. Reuterin-producing positive strain Lactobacillus reuteri SD2112 was capable of 86.0+/-24.6% inhibition, but Bifidobacterium lactis Bb-12, a known probiotic strain, showed no inhibition. None of the strains was capable of inhibiting the growth of E. coli or S. enterica. The observed inhibition by bifidobacteria was related to hydrogen peroxide formation and possible production of heat-stable proteinaceous compounds. The results suggest that production of antimicrobial substances other than organic acids is not common among Bifidobacterium strains typical of elderly subjects. However, specific strains were identified which showed considerable inhibitory activity against S. aureus. PMID:17462772

  2. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles.

    PubMed

    Hannon, Patrick R; Brannick, Katherine E; Wang, Wei; Gupta, Rupesh K; Flaws, Jodi A

    2015-04-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1-100 μg/ml) for 24-96 h to establish the temporal effects of DEHP on the follicle. Following 24-96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. PMID:25701202

  3. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    PubMed Central

    Hannon, Patrick R.; Brannick, Katherine E.; Wang, Wei; Gupta, Rupesh K.; Flaws, Jodi A.

    2015-01-01

    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1-100μg/ml) for 24-96 hr to establish the temporal effects of DEHP on the follicle. Following 24-96 hr of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydorxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. PMID:25701202

  4. Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor

    NASA Astrophysics Data System (ADS)

    Lee, L. S.

    1981-02-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.

  5. Vitamin K enhancement of Sorafenib-mediated HCC cell growth inhibition in vitro and in vivo

    PubMed Central

    Wei, Gang; Wang, Meifanf; Hyslop, Terry; Wang, Ziqiu; Carr, Brian I.

    2010-01-01

    The multi-kinase inhibitor Sorafenib, is the first oral agent to show activity against human hepatocellular carcinoma (HCC). Apoptosis has been shown to be induced in HCC by several agents, including Sorafenib, as well as by the naturally occurring K vitamins (VKs). Since few non toxic agents have activity against HCC growth, we evaluated the activity of Sorafenib and K vitamins, both independently and together on the growth in vitro and in vivo of HCC cells. We found that when VK was combined with Sorafenib, the concentration of Sorafenib required for growth inhibition was substantially reduced. Conversely, VK enhanced Sorafenib effects in several HCC cell lines on growth inhibition. Growth could be inhibited at doses of VK plus Sorafenib that were ineffective with either agent alone,using vitamins K1, K2 and K5. Combination VK1 plus Sorafenib induced apoptosis on FACS, TUNEL staining and caspase activation. Phospho-ERK levels were decreased, as was Mcl-1, an ERK target. Sorafenib alone inhibited growth of transplantable HCC in vivo. At sub-effective Sorafenib doses in vivo, addition of VK1 caused major tumor regression, with decreased phospho-ERK and Mcl-1 staining. Thus, combination VK1 plus Sorafenib strongly induced growth inhibition and apoptosis in rodent and human HCC and inhibited the RAF/MEK/ERK pathway. VK1 alone activated PKA, a mediator of inhibitory Raf phosphorylation. Thus, each agent can antagonize Raf; Sorafenib as a direct inhibitor and VK1 through inhibitory Raf phosphorylation. Since both agents are available for human use, the combination has potential for improving Sorafenib effects in HCC. PMID:21351273

  6. In vitro inhibition of struvite crystal growth by acetohydroxamic acid.

    PubMed

    Downey, J A; Nickel, J C; Clapham, L; McLean, R J

    1992-10-01

    Struvite (MgNH4PO46H2O) crystals were produced by Proteus mirabilis growth in artificial urine, in the presence and absence of the urease inhibitor, acetohydroxamic acid (AHA). In the absence of AHA, struvite crystals assumed an "X-shaped" or dendritic crystal habit due to rapid growth along their 100 axis. When AHA was present, crystal growth, as monitored by phase contrast light microscopy, was greatly slowed, and the crystals assumed an octahedral crystal habit. Scanning electron microscopy revealed that crystals grown in the presence of AHA were pitted on their surface. This pitting was absent in control samples. While most of this inhibition by AHA was due to lowered urease activity, some crystal growth inhibition occurred in struvite produced in the absence of urease activity through NH4OH titration of artificial urine. We conclude that while AHA is primarily a urease inhibitor, it may also disrupt struvite growth and formation directly through interference with the molecular growth processes on crystal surfaces. PMID:1450840

  7. SGLT-2 inhibition and glucagon: Cause for alarm?

    PubMed

    Kibbey, Richard G

    2015-07-01

    Recent studies raised the alarm that the inhibition of sodium-coupled glucose transporter type-2 in humans increases endogenous glucose production rates by an unclear mechanism. Surprisingly, a potential explanation may be linked directly to the alpha-cell. Is this a mechanistic spoiler or an added benefit? PMID:26059706

  8. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro.

    PubMed

    Velázquez-Becerra, Crisanto; Macías-Rodríguez, Lourdes I; López-Bucio, José; Flores-Cortez, Idolina; Santoyo, Gustavo; Hernández-Soberano, Christian; Valencia-Cantero, Eduardo

    2013-12-01

    Plant diseases caused by fungal pathogens such as Botrytis cinerea and the oomycete Phytophthora cinnamomi affect agricultural production worldwide. Control of these pests can be done by the use of fungicides such as captan, which may have deleterious effects on human health. This study demonstrates that the rhizobacterium Arthrobacter agilis UMCV2 produces volatile organic compounds that inhibit the growth of B. cinerea in vitro. A single compound from the volatile blends, namely dimethylhexadecylamine (DMHDA), could inhibit the growth of both B. cinerea and P. cinnamomi when supplied to the growth medium in low concentrations. DMHDA also inhibited the growth of beneficial fungi Trichoderma virens and Trichoderma atroviride but at much higher concentrations. DMHDA-related aminolipids containing 4, 8, 10, 12, and 14 carbons in the alkyl chain were tested for their inhibitory effect on the growth of the pathogens. The results show that the most active compound from those tested was dimethyldodecylamine. This effect correlates with a decrease in the number of membrane lipids present in the mycelium of the pathogen including eicosanoic acid, (Z)-9-hexadecenoic acid, methyl ester, and (Z)-9-octadecenoic acid, methyl ester. Strawberry leaflets treated with DMHDA were not injured by the compound. These data indicate that DMHDA and related compounds, which can be produced by microorganisms may effectively inhibit the proliferation of certain plant pathogens. PMID:23674267

  9. Growth of antarctic cyanobacteria under ultraviolet radiation: UVA counteracts UVB inhibition

    SciTech Connect

    Quesada, A. |; Mouget, J.L.; Vincent, W.F.

    1995-04-01

    A mat-forming cyanobacterium (Phormidium murayi West and West) isolated from an ice-shelf pond in Antarctica was grown under white light combined with a range of UVA and UVB irradiance. The 4-day growth rate decreased under increasing ultraviolet (UV) radiation, with a ninefold greater response to UVB relative to UVA. In vivo absorbance spectra showed that UVA and to a greater extent UVB caused a decrease in phycocyanin/chlorophyll a and an increase in carotenoids/chlorophyll a. The phycocyanin/chlorophyll a ratio was closely and positively correlated to the UVB-inhibited growth rate. Under fixed spectral gradients of UV radiation, the growth inhibition effect was dominated by UVB. However, at specific UVB irradiances the inhibition of growth depended on the ratio of UVB to UVA, and growth rates increased linearly with increasing UVA. These results are consistent with the view that UVB inhibition represents the balance between damage and repair processes that are each controlled by separate wavebands. They also underscore the need to consider UV spectral balance in laboratory and field assays of UVB toxicity. 49 refs., 6 figs.

  10. Could inhibition of the proteasome cause mad cow disease?

    PubMed

    Hooper, Nigel M

    2003-04-01

    The proteasome is the cellular machinery responsible for the degradation of normal and misfolded proteins. Inhibitors of the proteasome are being evaluated as therapeutic agents and recent work suggests that such inhibition might promote the neurotoxic properties of the prion protein (the causative agent of mad cow disease) and its conformational conversion to the infectious form, thus raising the question as to whether proteasome inhibitors might facilitate the development of prion diseases. PMID:12679058

  11. Selective potentiation of lometrexol growth inhibition by dipyridamole through cell-specific inhibition of hypoxanthine salvage.

    PubMed Central

    Turner, R. N.; Aherne, G. W.; Curtin, N. J.

    1997-01-01

    The novel antifolate lometrexol (5,10-dideazatetrahydrofolate) inhibits de novo purine biosynthesis, and co-incubation with hypoxanthine abolishes its cytotoxicity. The prevention of hypoxanthine rescue from an antipurine antifolate by the nucleoside transport inhibitor dipyridamole was investigated for the first time in nine human and rodent cell lines from seven different tissues of origin. In A549, HeLa and CHO cells, dipyridamole prevented hypoxanthine rescue and so growth was inhibited by the combination of lometrexol, dipyridamole and hypoxanthine, but in HT29, HCT116, KK47, MDA231, CCRF CEM and L1210 cells dipyridamole had no effect and the combination did not inhibit growth. Dipyridamole inhibited hypoxanthine uptake in A549 but not in CCRF CEM cells. Dipyridamole prevented the hypoxanthine-induced repletion of dGTP pools, depleted by lometrexol, in A549 but not in CCRF CEM cells. Thus, the selective growth-inhibitory effect of the combination of lometrexol, dipyridamole and hypoxanthine is apparently due to the dipyridamole sensitivity (ds) or insensitivity (di) of hypoxanthine transport. Both the human and murine leukaemic cells are of the di phenotype. If this reflects the transport phenotype of normal bone marrow it would suggest that the combination of lometrexol, dipyridamole and hypoxanthine might be selectively toxic to certain tumour types and have reduced toxicity to the bone marrow. PMID:9374375

  12. Nur77 inhibits androgen-induced bladder cancer growth.

    PubMed

    Wu, Jianping; Liu, Jun; Jia, Ruipeng; Song, Hongbin

    2013-12-01

    Currently, bladder cancer ranks as the second most common genitourinary malignancy which is exacting significant morbidity and mortality worldwide. Although there are abundant epidemiological and basic studies which strongly suggest the role of androgen hormone in bladder cancer, the underlying mechanism is not fully understood. In the current study, we sought to identify a new competitive inhibitor for androgen receptor in bladder cancer cells. Our results showed that Nur77 hyperexpression inhibits UM-UC-3 cell growth and cell cycle progression while Nur77 knockdown exerts the opposite effect. In our cell culture model, we also demonstrated that Nur77 competitively inhibits androgen-dependent transcription activity and more specifically, Nur77 competes with androgen receptor for binding to src-1, a well-known coactivator for steroids. More importantly, we also showed that a small molecule agonist for Nur77, Cytosporone B, significantly inhibits androgen-dependent bladder cancer cell growth in two different cell lines. These data provide a good proof-of-principle that Nur77 signaling machinery could be a new target for growth control of androgen-dependent bladder cancer cells. PMID:24299210

  13. Growth of Streptococcus mutans protoplasts is not inhibited by penicillin.

    PubMed Central

    Parks, L C; Shockman, G D; Higgins, M L

    1980-01-01

    A method is described in which cells of Streptococcus mutans BHT can be converted to spherical, osmotically fragile protoplasts. Exponential-phase cells were suspended in a solution containing 0.5 M melezitose, and their cell walls were hydrolyzed with mutanolysin (M-1 enzyme). When the resultant protoplasts were incubated in a chemically defined growth medium containing 0.5 M NH4Cl, the protoplast suspensions increased in turbidity, protein, ribonucleic acid, and deoxyribonucleic acid in a balanced fashion. In the presence of benzylpenicillin (5 microgram/ml), balanced growth of protoplasts was indistinguishable from untreated controls. This absence of inhibition of protoplast growth in the presence of benzylpenicillin was apparently not due to inactivation of the antibiotic. When exponential-phase cells of S. mutans BHT were first exposed to 5 microgram of benzyl-penicillin per ml for 1 h and then converted to protoplasts, these protoplasts were also able to grow in chemically defined, osmotically stabilized medium. The ability of wall-free protoplasts to grow and to synthesize ribonucleic acid and protein in the presence of a relatively high concentration of benzylpenicillin contrasts with the previously reported rapid inhibition of ribonucleic acid and protein synthesis in intact streptococci. These data suggest that this secondary inhibition of ribonucleic acid and protein synthesis in whole cells is due to factors involved with the continued assembly of an intact, insoluble cell wall rather than with earlier stages of peptidoglycan synthesis. Images PMID:6997274

  14. FH535 inhibited metastasis and growth of pancreatic cancer cells

    PubMed Central

    Wu, Meng-Yao; Liang, Rong-Rui; Chen, Kai; Shen, Meng; Tian, Ya-Li; Li, Dao-Ming; Duan, Wei-Ming; Gui, Qi; Gong, Fei-Ran; Lian, Lian; Li, Wei; Tao, Min

    2015-01-01

    FH535 is a small-molecule inhibitor of the Wnt/β-catenin signaling pathway, which a substantial body of evidence has proven is activated in various cancers, including pancreatic cancer. Activation of the Wnt/β-catenin pathway plays an important role in tumor progression and metastasis. We investigated the inhibitory effect of FH535 on the metastasis and growth of pancreatic cancer cells. Western blotting and luciferase reporter gene assay indicated that FH535 markedly inhibited Wnt/β-catenin pathway viability in pancreatic cancer cells. In vitro wound healing, invasion, and adhesion assays revealed that FH535 significantly inhibited pancreatic cancer cell metastasis. We also observed the inhibitory effect of FH535 on pancreatic cancer cell growth via the tetrazolium and plate clone formation assays. Microarray analyses suggested that changes in the expression of multiple genes could be involved in the anti-cancer effect of FH535 on pancreatic cancer cells. Our results indicate for the first time that FH535 inhibits pancreatic cancer cell metastasis and growth, providing new insight into therapy of pancreatic cancer. PMID:26185454

  15. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro.

    PubMed

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A

    2016-03-15

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. PMID:26876617

  16. Inhibition of Mycoplasma pneumoniae growth by FDA-approved anticancer and antiviral nucleoside and nucleobase analogs

    PubMed Central

    2013-01-01

    Background Mycoplasma pneumoniae (Mpn) is a human pathogen that causes acute and chronic respiratory diseases and has been linked to many extrapulmonary diseases. Due to the lack of cell wall, Mpn is resistant to antibiotics targeting cell wall synthesis such as penicillin. During the last 10 years macrolide-resistant Mpn strains have been frequently reported in Asian countries and have been spreading to Europe and the United States. Therefore, new antibiotics are needed. In this study, 30 FDA-approved anticancer or antiviral drugs were screened for inhibitory effects on Mpn growth and selected analogs were further characterized by inhibition of target enzymes and metabolism of radiolabeled substrates. Results Sixteen drugs showed varying inhibitory effects and seven showed strong inhibition of Mpn growth. The anticancer drug 6-thioguanine had a MIC (minimum inhibitory concentration required to cause 90% of growth inhibition) value of 0.20 μg ml-1, whereas trifluorothymidine, gemcitabine and dipyridamole had MIC values of approximately 2 μg ml-1. In wild type Mpn culture the presence of 6-thioguanine and dipyridamole strongly inhibited the uptake and metabolism of hypoxanthine and guanine while gemcitabine inhibited the uptake and metabolism of all nucleobases and thymidine. Trifluorothymidine and 5-fluorodeoxyuridine, however, stimulated the uptake and incorporation of radiolabeled thymidine and this stimulation was due to induction of thymidine kinase activity. Furthermore, Mpn hypoxanthine guanine phosphoribosyl transferase (HPRT) was cloned, expressed, and characterized. The 6-thioguanine, but not other purine analogs, strongly inhibited HPRT, which may in part explain the observed growth inhibition. Trifluorothymidine and 5-fluorodeoxyuridine were shown to be good substrates and inhibitors for thymidine kinase from human and Mycoplasma sources. Conclusion We have shown that several anticancer and antiviral nucleoside and nucleobase analogs are potent

  17. Targeting Platelet-Derived Growth Factor Receptor β(+) Scaffold Formation Inhibits Choroidal Neovascularization.

    PubMed

    Strittmatter, Karin; Pomeroy, Hayley; Marneros, Alexander G

    2016-07-01

    Neovascular age-related macular degeneration is among the most common causes of irreversible blindness and manifests with choroidal neovascularization (CNV). Anti-vascular endothelial growth factor-A therapies are only partially effective and their chronic administration may impair functions of the choriocapillaris and retina. Thus, novel therapeutic targets are needed urgently. We have observed in a laser-induced model of CNV that a platelet-derived growth factor receptor β positive (PDGFRβ(+)) scaffold is formed before infiltration of neovessels into this scaffold to form CNV lesions, and that this scaffold limits the extent of neovascularization. Based on these observations we hypothesized that ablation of proliferating PDGFRβ(+) cells to prevent the formation of this scaffold might inhibit CNV growth and present a novel therapeutic approach for neovascular age-related macular degeneration. To test this hypothesis we targeted proliferating PDGFRβ(+) cells through independent distinct approaches after laser injury: i) by using an inducible genetic model to inhibit specifically proliferating PDGFRβ(+) cells, ii) by treating mice with a neutralizing anti-PDGFRβ antibody, iii) by administering an anti-PDGF-AB/BB aptamer, and iv) by using small chemical inhibitor approaches. The results show that therapeutic targeting of proliferating PDGFRβ(+) cells potently inhibits the formation of the pericyte-like scaffold, with concomitant attenuation of CNV. Moreover, we show that early inhibition of PDGFRβ(+) cell proliferation before neovessel formation is sufficient to inhibit scaffold formation and neovascularization. PMID:27338108

  18. Primate mammary development. Effects of hypophysectomy, prolactin inhibition, and growth hormone administration.

    PubMed Central

    Kleinberg, D L; Niemann, W; Flamm, E; Cooper, P; Babitsky, G; Valensi, Q

    1985-01-01

    The pituitary gland has been found to be an important factor in mammary development in primates. Hypophysectomy in 12 sexually immature monkeys caused significant inhibition of estradiol (E2)-induced mammary growth and development. A histological index of mammary development in sexually immature hypophysectomized animals was lower (0.82) than in intact E2-treated controls (3.4; P less than 0.008). Hypophysectomy also inhibited growth of the mammary gland as judged by a size index. Despite the hypophysectomy, E2 stimulated some, albeit blunted, mammary growth and development, which may have been due to incomplete hypophysectomy. Selective inhibition of prolactin by ergot drugs in intact animals did not prevent full mammary development, suggesting that there may be pituitary mammogens other than prolactin, or that very low or unmeasurable concentrations of prolactin were sufficient to synergize with E2 to cause full acinar development. The mean histological index was 3.08 in E2-treated animals and 3.16 in animals treated with E2 plus pergolide. There was also no difference in the size of the glands. We evaluated the effect of growth hormone on mammary development by treating three hypophysectomized animals with pure 22,000 mol wt human growth hormone (hGH) (Genentech, Inc., South San Francisco, CA). We found that physiological or slightly supraphysiological concentrations of hGH in animals with unmeasurable prolactin were incapable of restoring the capacity of E2 to induce full mammary growth. These findings suggest that, if growth hormone is a mammary mitogen, that physiological concentrations are insufficient to synergize with E2 to induce full mammary growth or that other forms of hGH are mammogenic. Our studies suggest that the role of the pituitary gland in mammary mitogenesis in primates is more complicated than previously thought. They also raise the possibility that heretofore unidentified pituitary substances may be mammogenic. Images PMID:4008646

  19. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram

    NASA Astrophysics Data System (ADS)

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Yu, Haijun; Mao, Shirui; Li, Yaping

    2014-03-01

    Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.

  20. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.

    PubMed

    Xiao, Y; Karttunen, M; Jalkanen, J; Mussi, M C M; Liao, Y; Grohe, B; Lagugné-Labarthet, F; Siqueira, W L

    2015-08-01

    In our recent studies, we have shown that in vivo-acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo-acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P < 0.05). MD simulations showed a strong affinity and fast adsorption to hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease. PMID:26116492

  1. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.

    PubMed

    Lin, Daohui; Xing, Baoshan

    2007-11-01

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50mg/L for radish, and about 20mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. PMID:17374428

  2. Growth inhibition by tyrosine kinase inhibitors in mesothelioma cell lines.

    PubMed

    Nutt, Joyce E; O'Toole, Kieran; Gonzalez, David; Lunec, John

    2009-06-01

    Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma. PMID:19318229

  3. Di (2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway

    SciTech Connect

    Wang, Wei Craig, Zelieann R. Basavarajappa, Mallikarjuna S. Gupta, Rupesh K. Flaws, Jodi A.

    2012-01-15

    Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that has been shown to inhibit growth of mouse antral follicles, however, little is known about the mechanisms by which DEHP does so. Oxidative stress has been linked to follicle growth inhibition as well as phthalate-induced toxicity in non-ovarian tissues. Thus, we hypothesized that DEHP causes oxidative stress and that this leads to inhibition of the growth of antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice (age 31–35 days) were cultured with vehicle control (dimethylsulfoxide [DMSO]) or DEHP (1–100 μg/ml) ± N-acetyl cysteine (NAC, an antioxidant at 0.25–1 mM). During culture, follicles were measured daily. At the end of culture, follicles were collected and processed for in vitro reactive oxygen species (ROS) assays to measure the presence of free radicals or for measurement of the expression and activity of various key antioxidant enzymes: Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX) and catalase (CAT). The results indicate that DEHP inhibits the growth of follicles compared to DMSO control and that NAC (0.25–1 mM) blocks the ability of DEHP to inhibit follicle growth. Furthermore, DEHP (10 μg/ml) significantly increases ROS levels and reduces the expression and activity of SOD1 compared to DMSO controls, whereas NAC (0.5 mM) rescues the effects of DEHP on ROS levels and SOD1. However, the expression and activity of GPX and CAT were not affected by DEHP treatment. Collectively, these data suggest that DEHP inhibits follicle growth by inducing production of ROS and by decreasing the expression and activity of SOD1. -- Highlights: ► DEHP inhibits growth and increases reactive oxygen species in ovarian antral follicles in vitro. ► NAC rescues the effects of DEHP on the growth and reactive oxygen species levels in follicles. ► DEHP decreases the expression and activity of Cu/Zn superoxide dismutase, which can be rescued by NAC, in antral

  4. Arctiin induces cell growth inhibition through the down-regulation of cyclin D1 expression.

    PubMed

    Matsuzaki, Youichirou; Koyama, Makoto; Hitomi, Toshiaki; Yokota, Tomoya; Kawanaka, Mayumi; Nishikawa, Akiyoshi; Germain, Doris; Sakai, Toshiyuki

    2008-03-01

    Arctiin is a major lignan constituent of Arctium lappa and has anti-cancer properties in animal models. It was recently reported that arctiin induces growth inhibition in human prostate cancer PC-3 cells. However, the growth inhibitory mechanism of arctiin remains unknown. Herein we report that arctiin induces growth inhibition and dephosphorylates the tumor-suppressor retinoblastoma protein in human immortalized keratinocyte HaCaT cells. We also show that the growth inhibition caused by arctiin is associated with the down-regulation of cyclin D1 protein expression. Furthermore, the arctiin-induced suppression of cyclin D1 protein expression occurs in various types of human tumor cells, including osteosarcoma, lung, colorectal, cervical and breast cancer, melanoma, transformed renal cells and prostate cancer. Depletion of the cyclin D1 protein using small interfering RNA-rendered human breast cancer MCF-7 cells insensitive to the growth inhibitory effects of arctiin, implicates cyclin D1 as an important target of arctiin. Taken together, these results suggest that arctiin down-regulates cyclin D1 protein expression and that this at least partially contributes to the anti-proliferative effect of arctiin. PMID:18288407

  5. Inhibition of Receptor Signaling and of Glioblastoma-derived Tumor Growth by a Novel PDGFRβ Aptamer

    PubMed Central

    Camorani, Simona; Esposito, Carla L; Rienzo, Anna; Catuogno, Silvia; Iaboni, Margherita; Condorelli, Gerolama; de Franciscis, Vittorio; Cerchia, Laura

    2014-01-01

    Platelet-derived growth factor receptor β (PDGFRβ) is a cell-surface tyrosine kinase receptor implicated in several cellular processes including proliferation, migration, and angiogenesis. It represents a compelling therapeutic target in many human tumors, including glioma. A number of tyrosine kinase inhibitors under development as antitumor agents have been found to inhibit PDGFRβ. However, they are not selective as they present multiple tyrosine kinase targets. Here, we report a novel PDGFRβ-specific antagonist represented by a nuclease-resistant RNA-aptamer, named Gint4.T. This aptamer is able to specifically bind to the human PDGFRβ ectodomain (Kd: 9.6 nmol/l) causing a strong inhibition of ligand-dependent receptor activation and of downstream signaling in cell lines and primary cultures of human glioblastoma cells. Moreover, Gint4.T aptamer drastically inhibits cell migration and proliferation, induces differentiation, and blocks tumor growth in vivo. In addition, Gint4.T aptamer prevents PDGFRβ heterodimerization with and resultant transactivation of epidermal growth factor receptor. As a result, the combination of Gint4.T and an epidermal growth factor receptor–targeted aptamer is better at slowing tumor growth than either single aptamer alone. These findings reveal Gint4.T as a PDGFRβ-drug candidate with translational potential. PMID:24566984

  6. Does retrieval strategy disruption cause general and specific collaborative inhibition?

    PubMed

    Dahlström, Örjan; Danielsson, Henrik; Emilsson, Magnus; Andersson, Jan

    2011-02-01

    The purpose of the experiment on collaborative memory was to investigate if the collaborative inhibition is due to collaborating pair's disruption of each others' retrieval strategies (the retrieval strategy disruption hypothesis, RSD). The participants' (N = 36) task was to recall a list of 60 words individually and collaboratively. Retrieval strategies were manipulated by presenting word lists organised either by categories or by country of origin and adoption of retrieval strategies were examined by the adjusted ratio of clustering score. Half of the dyads received word lists organised by the same strategy and half of the dyads received word lists organised by different strategies. The results revealed a main effect of collaboration, i.e., collaborative recalled items were significantly fewer than the sum of the non-redundant individually recalled items. Both conditions (same strategies vs different strategies) suffered to the same extent from collaboration, which did not support the RSD hypothesis. However, focusing on words recalled individually but not collaboratively, dyads with different strategies, as predicted by the RSD, forgot more items during collaboration than did dyads with the same strategy. Additional results suggest that collaborative forgetting is mainly manifested by forgetting of non-overlapping items (as measured by individual recalls). PMID:21331969

  7. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    SciTech Connect

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  8. Prolonged cyclic strain inhibits human endothelial cell growth.

    PubMed

    Peyton, Kelly J; Liu, Xiao-ming; Durante, William

    2016-01-01

    The vascular endothelium is continuously exposed to cyclic mechanical strain due to the periodic change in vessel diameter as a result of pulsatile blood flow. Since emerging evidence indicates the cyclic strain plays an integral role in regulating endothelial cell function, the present study determined whether application of a physiologic regimen of cyclic strain (6% at 1 hertz) influences the proliferation of human arterial endothelial cells. Prolonged exposure of human dermal microvascular or human aortic endothelial cells to cyclic strain for up to 7 days resulted in a marked decrease in cell growth. The strain-mediated anti-proliferative effect was associated with the arrest of endothelial cells in the G2/M phase of the cell cycle, did not involve cell detachment or cytotoxicity, and was due to the induction of p21. Interestingly, the inhibition in endothelial cell growth was independent of the strain regimen since prolonged application of constant or intermittent 6% strain was also able to block endothelial cell proliferation. The ability of chronic physiologic cyclic strain to inhibit endothelial cell growth represents a previously unrecognized mechanism by which hemodynamic forces maintain these cells in a quiescent, non-proliferative state. PMID:26709656

  9. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth.

    PubMed

    Harel, Sivan; Higgins, Claire A; Cerise, Jane E; Dai, Zhenpeng; Chen, James C; Clynes, Raphael; Christiano, Angela M

    2015-10-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells. PMID:26601320

  10. Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth

    PubMed Central

    Wang, Jin Dao; Chen, Xiao Ying; Ji, Ke Wei; Tao, Feng

    2016-01-01

    Bruton’s tyrosine kinase (Btk) is a member of the Tec-family non-receptor tyrosine kinases family. It has previously been reported to be expressed in B cells and has an important role in B-cell malignancies. While the roles of Btk in the pathogenesis of certain B-cell malignancies are well established, the functions of Btk in gastric carcinoma have never been investigated. Herein, we found that Btk is over-expressed in gastric carcinoma tissues and gastric cancer cells. Knockdown of Btk expression selectively inhibits the growth of gastric cancer cells, but not that of the normal gastric mucosa epithelial cell, which express very little Btk. Inhibition of Btk by its inhibitor ibrutinib has an additive inhibitory effect on gastric cancer cell growth. Treatment of gastric cancer cells, but not immortalized breast epithelial cells with ibrutinib results in effective cell killing, accompanied by the attenuation of Btk signals. Ibrutinib also induces apoptosis in gastric carcinoma cells as well as is a chemo-sensitizer for docetaxel (DTX), a standard of care for gastric carcinoma patients. Finally, ibrutinib markedly reduces tumor growth and increases tumor cell apoptosis in the tumors formed in mice inoculated with the gastric carcinoma cells. Given these promising preclinical results for ibrutinib in gastric carcinoma, a strategy combining Btk inhibitor warrants attention in gastric cancer. PMID:27508020

  11. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth

    PubMed Central

    Harel, Sivan; Higgins, Claire A.; Cerise, Jane E.; Dai, Zhenpeng; Chen, James C.; Clynes, Raphael; Christiano, Angela M.

    2015-01-01

    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells. PMID:26601320

  12. [Growth inhibition effect of immobilized pectinase on Microcystis aeruginosa].

    PubMed

    Shen, Qing-Qing; Peng, Qian; Lai, Yong-Hong; Ji, Kai-Yan; Han, Xiu-Lin

    2012-12-01

    To confirm the growth inhibition effect of immobilized pectinase on algae, co-cultivation method was used to investigate the effect of immobilized pectinase on the growth of Microcystis aeruginosa. After co-cultivation, the damage status of the algae was observed through electron microscope, and the effect of immobilized pectase on the physiological and biochemical characteristics of the algae was also measured. The results showed that the algae and immobilized pectase co-cultivated solution etiolated distinctly on the third day and there was a significantly positive correlation between the extent of etiolation and the dosage as well as the treating time of the immobilized pectinase. Under electron microscope, plasmolysis was found in the slightly damaged cells, and the cell surface of these cells was rough, uneven and irregular; the severely damaged cells were collapsed or disintegrated completely. The algal yield and the chlorophyll a content decreased significantly with the increase of the treating time. The measurement of the malondiadehyde (MDA) value showed that the antioxidation system of the treated algal cells was destroyed, and their membrane lipid was severely peroxidated. The study indicated that the immobilized pectinase could efficiently inhibit the growth of M. aeruginosa, and the inhibitory rate reached up to 96%. PMID:23379158

  13. Inhibition of Rho A activity causes pemphigus skin blistering

    PubMed Central

    Waschke, Jens; Spindler, Volker; Bruggeman, Paola; Zillikens, Detlef; Schmidt, Gudula; Drenckhahn, Detlev

    2006-01-01

    The autoimmune blistering skin diseases pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are mainly caused by autoantibodies against desmosomal cadherins. In this study, we provide evidence that PV–immunoglobulin G (IgG) and PF-IgG induce skin blistering by interference with Rho A signaling. In vitro, pemphigus IgG caused typical hallmarks of pemphigus pathogenesis such as epidermal blistering in human skin, cell dissociation, and loss of desmoglein 1 (Dsg 1)–mediated binding probed by laser tweezers. These changes were accompanied by interference with Rho A activation and reduction of Rho A activity. Pemphigus IgG–triggered keratinocyte dissociation and Rho A inactivation were p38 mitogen-activated protein kinase dependent. Specific activation of Rho A by cytotoxic necrotizing factor-y abolished all pemphigus-triggered effects, including keratin retraction and release of Dsg 3 from the cytoskeleton. These data demonstrate that Rho A is involved in the regulation of desmosomal adhesion, at least in part by maintaining the cytoskeletal anchorage of desmosomal proteins. This may open the possibility of pemphigus treatment with the epidermal application of Rho A agonists. PMID:17130286

  14. Aerosolized 3-bromopyruvate inhibits lung tumorigenesis without causing liver toxicity.

    PubMed

    Zhang, Qi; Pan, Jing; North, Paula E; Yang, Shoua; Lubet, Ronald A; Wang, Yian; You, Ming

    2012-05-01

    3-Bromopyruvate, an alkylating agent and a well-known inhibitor of energy metabolism, has been proposed as a specific anticancer agent. However, the chemopreventive effect of 3-bromopyruvate in lung tumorigenesis has not been tested. In this study, we investigated the chemopreventive activity of 3-bromopyruvate in a mouse lung tumor model. Benzo(a)pyrene was used to induce lung tumors, and 3-bromopyruvate was administered by oral gavage to female A/J mice. We found that 3-bromopyruvate significantly decreased tumor multiplicity and tumor load by 58% and 83%, respectively, at a dose of 20 mg/kg body weight by gavage. Due to the known liver toxicity of 3-bromopyruvate in animal models given large doses of 3-bromopyruvate, confirmed in this study, we decided to test the chemopreventive activity of aerosolized 3-bromopyruvate in the same lung tumor model. As expected, aerosolized 3-bromopyruvate similarly significantly decreased tumor multiplicity and tumor load by 49% and 80%, respectively, at a dose of 10 mg/mL by inhalation. Interestingly, the efficacy of aerosolized 3-bromopyruvate did not accompany any liver toxicity indicating that it is a safer route of administering this compound. Treatment with 3-bromopyruvate increased immunohistochemical staining for cleaved caspase-3, suggesting that the lung tumor inhibitory effects of 3-bromopyruvate were through induction of apoptosis. 3-Bromopyruvate also dissociated hexokinase II from mitochondria, reduced hexokinase activity, and blocked energy metabolism in cancer cells, finally triggered cancer cell death and induced apoptosis through caspase-3, and PARP in human lung cancer cell line. The ability of 3-bromopyruvate to inhibit mouse lung tumorigenesis, in part through induction of apoptosis, merits further investigation of this compound as a chemopreventive agent for human lung cancer. PMID:22401980

  15. Feeding inhibition explains effects of imidacloprid on the growth, maturation, reproduction, and survival of Daphnia magna.

    PubMed

    Agatz, Annika; Cole, Tabatha A; Preuss, Thomas G; Zimmer, Elke; Brown, Colin D

    2013-03-19

    Effects of some xenobiotics on aquatic organisms might not be caused directly by the compound but rather arise from acclimation of the organism to stress invoked by feeding inhibition during exposure. Experiments were conducted to identify effects of imidacloprid on individual performance (feeding, growth, maturation, reproduction, and survival) of Daphnia magna under surplus and reduced food availability. Concentrations inhibiting feeding by 5, 50, and 95% after one day of exposure were 0.19, 1.83, and 8.70 mg/L, respectively. Exposure with imidacloprid at ≥ 3.7 mg/L reduced growth by up to 53 ± 11% within one week. Surplus food availability after inhibition allowed recovery from this growth inhibition, whereas limited food supply eliminated the potential for recovery in growth even for exposure at 0.15 mg/L. A shift in the distribution of individual energy reserves toward reproduction rather than growth resulted in increased reproduction after exposure to concentrations ≤ 0.4 mg/L. Exposure to imidacloprid at ≥ 4.0 mg/L overwhelmed this adaptive response and reduced reproduction by up to 57%. We used the individual based Daphnia magna population model IDamP as a virtual laboratory to demonstrate that only feeding was affected by imidacloprid, and that in turn this caused the other impacts on individual performance. Consideration of end points individually would have led to a different interpretation of the effects. Thus, we demonstrate how multiple lines of evidence linked by understanding the ecology of the organism are necessary to elucidate xenobiotic impacts along the effect cascade. PMID:23425205

  16. Meloxicam inhibits the growth of colorectal cancer cells.

    PubMed

    Goldman, A P; Williams, C S; Sheng, H; Lamps, L W; Williams, V P; Pairet, M; Morrow, J D; DuBois, R N

    1998-12-01

    Cyclooxygenase-2 has been reported to play an important role in colorectal carcinogenesis. The effects of meloxicam (a COX-2 inhibitor) on the growth of two colon cancer cell lines that express COX-2 (HCA-7 and Moser-S) and a COX-2 negative cell line (HCT-116) were evaluated. The growth rate of these cells was measured following treatment with meloxicam. HCA-7 and Moser-S colony size were significantly reduced following treatment with meloxicam; however, there was no significant change in HCT-116 colony size with treatment. In vivo studies were performed to evaluate the effect of meloxicam on the growth of HCA-7 cells when xenografted into nude mice. We observed a 51% reduction in tumor size after 4 weeks of treatment. Analysis of COX-1 and COX-2 protein levels in HCA-7 tumor lysates revealed a slight decrease in COX-2 expression levels in tumors taken from mice treated with meloxicam and no detectable COX-1 expression. Here we report that meloxicam significantly inhibited HCA-7 colony and tumor growth but had no effect on the growth of the COX-2 negative HCT-116 cells. PMID:9886578

  17. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.

    PubMed

    Asari, Shashidar; Matzén, Staffan; Petersen, Mikael Agerlin; Bejai, Sarosh; Meijer, Johan

    2016-06-01

    Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production. PMID:27053756

  18. DNA Walker-Regulated Cancer Cell Growth Inhibition.

    PubMed

    Li, Feiran; Cha, Tae-Gon; Pan, Jing; Ozcelikkale, Altug; Han, Bumsoo; Choi, Jong Hyun

    2016-06-16

    We demonstrate a DNAzyme-based walker system as a controlled oligonucleotide drug AS1411 release platform for breast cancer treatment. In this system, AS1411 strands are released from fuel strands as a walker moves along its carbon nanotube track. The release rate and amount of anticancer oligonucleotides are controlled by the walker operation. With a walker system embedded within the collagen extracellular matrix, we show that this drug release system can be used for in situ cancer cell growth inhibition. PMID:27059426

  19. Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway.

    PubMed

    Zheng, Jie; Son, Dong Ju; Gu, Sun Mi; Woo, Ju Rang; Ham, Young Wan; Lee, Hee Pom; Kim, Wun Jae; Jung, Jae Kyung; Hong, Jin Tae

    2016-01-01

    Piperlongumine has anti-cancer activity in numerous cancer cell lines via various signaling pathways. But there has been no study regarding the mechanisms of PL on the lung cancer yet. Thus, we evaluated the anti-cancer effects and possible mechanisms of PL on non-small cell lung cancer (NSCLC) cells in vivo and in vitro. Our findings showed that PL induced apoptotic cell death and suppressed the DNA binding activity of NF-κB in a concentration dependent manner (0-15 μM) in NSCLC cells. Docking model and pull down assay showed that PL directly binds to the DNA binding site of nuclear factor-κB (NF-κB) p50 subunit, and surface plasmon resonance (SPR) analysis showed that PL binds to p50 concentration-dependently. Moreover, co-treatment of PL with NF-κB inhibitor phenylarsine oxide (0.1 μM) or p50 siRNA (100 nM) augmented PL-induced inhibitory effect on cell growth and activation of Fas and DR4. Notably, co-treatment of PL with p50 mutant plasmid (C62S) partially abolished PL-induced cell growth inhibition and decreased the enhanced expression of Fas and DR4. In xenograft mice model, PL (2.5-5 mg/kg) suppressed tumor growth of NSCLC dose-dependently. Therefore, these results indicated that PL could inhibit lung cancer cell growth via inhibition of NF-κB signaling pathway in vitro and in vivo. PMID:27198178

  20. Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway

    PubMed Central

    Zheng, Jie; Son, Dong Ju; Gu, Sun Mi; Woo, Ju Rang; Ham, Young Wan; Lee, Hee Pom; Kim, Wun Jae; Jung, Jae Kyung; Hong, Jin Tae

    2016-01-01

    Piperlongumine has anti-cancer activity in numerous cancer cell lines via various signaling pathways. But there has been no study regarding the mechanisms of PL on the lung cancer yet. Thus, we evaluated the anti-cancer effects and possible mechanisms of PL on non-small cell lung cancer (NSCLC) cells in vivo and in vitro. Our findings showed that PL induced apoptotic cell death and suppressed the DNA binding activity of NF-κB in a concentration dependent manner (0–15 μM) in NSCLC cells. Docking model and pull down assay showed that PL directly binds to the DNA binding site of nuclear factor-κB (NF-κB) p50 subunit, and surface plasmon resonance (SPR) analysis showed that PL binds to p50 concentration-dependently. Moreover, co-treatment of PL with NF-κB inhibitor phenylarsine oxide (0.1 μM) or p50 siRNA (100 nM) augmented PL-induced inhibitory effect on cell growth and activation of Fas and DR4. Notably, co-treatment of PL with p50 mutant plasmid (C62S) partially abolished PL-induced cell growth inhibition and decreased the enhanced expression of Fas and DR4. In xenograft mice model, PL (2.5–5 mg/kg) suppressed tumor growth of NSCLC dose-dependently. Therefore, these results indicated that PL could inhibit lung cancer cell growth via inhibition of NF-κB signaling pathway in vitro and in vivo. PMID:27198178

  1. Targeted blockade of JAK/STAT3 signaling inhibits ovarian carcinoma growth

    PubMed Central

    Gritsina, Galina; Xiao, Fang; O'Brien, Shane W.; Gabbasov, Rashid; Maglaty, Marisa A.; Xu, Ren-Huan; Thapa, Roshan J.; Zhou, Yan; Nicolas, Emmanuelle; Litwin, Samuel; Balachandran, Siddharth; Sigal, Luis J.; Huszar, Dennis; Connolly, Denise C.

    2015-01-01

    Ovarian carcinoma (OC) is the fifth leading cause of death among women in the United States. Persistent activation of signal transducer and activator of transcription (STAT3) is frequently detected in OC. STAT3 is activated by Janus family kinases (JAK) via cytokine receptors, growth factor receptor and non-growth factor receptor tyrosine kinases. Activation of STAT3 mediates tumor cell proliferation, survival, motility, invasion, and angiogenesis, and recent work demonstrates that STAT3 activation suppresses anti-tumor immune responses and supports tumor-promoting inflammation. We hypothesized that therapeutic targeting of the JAK/STAT3 pathway would inhibit tumor growth by direct effects on OC cells and by inhibition of cells in the tumor microenvironment (TME). To test this, we evaluated the effects of a small molecule JAK inhibitor, AZD1480, on cell viability, apoptosis, proliferation, migration and adhesion of OC cells in vitro. We then evaluated the effects of AZD1480 on in vivo tumor growth and progression, gene expression, tumor-associated matrix metalloproteinase (MMP) activity and immune cell populations in a transgenic mouse model of OC. AZD1480-treatment inhibited STAT3 phosphorylation and DNA binding, and migration and adhesion of cultured OC cells and ovarian tumor growth rate, volume and ascites production in mice. In addition, drug treatment led to altered gene expression, decreased tumor-associated MMP activity, and fewer suppressor T cells in the peritoneal tumor microenvironment of tumor-bearing mice than control mice. Taken together, our results show pharmacological inhibition of the JAK2/STAT3 pathway leads to disruption of functions essential for ovarian tumor growth and progression and represents a promising therapeutic strategy. PMID:25646015

  2. Targeted Blockade of JAK/STAT3 Signaling Inhibits Ovarian Carcinoma Growth.

    PubMed

    Gritsina, Galina; Xiao, Fang; O'Brien, Shane W; Gabbasov, Rashid; Maglaty, Marisa A; Xu, Ren-Huan; Thapa, Roshan J; Zhou, Yan; Nicolas, Emmanuelle; Litwin, Samuel; Balachandran, Siddharth; Sigal, Luis J; Huszar, Dennis; Connolly, Denise C

    2015-04-01

    Ovarian carcinoma is the fifth leading cause of death among women in the United States. Persistent activation of STAT3 is frequently detected in ovarian carcinoma. STAT3 is activated by Janus family kinases (JAK) via cytokine receptors, growth factor receptor, and non-growth factor receptor tyrosine kinases. Activation of STAT3 mediates tumor cell proliferation, survival, motility, invasion, and angiogenesis, and recent work demonstrates that STAT3 activation suppresses antitumor immune responses and supports tumor-promoting inflammation. We hypothesized that therapeutic targeting of the JAK/STAT3 pathway would inhibit tumor growth by direct effects on ovarian carcinoma cells and by inhibition of cells in the tumor microenvironment (TME). To test this, we evaluated the effects of a small-molecule JAK inhibitor, AZD1480, on cell viability, apoptosis, proliferation, migration, and adhesion of ovarian carcinoma cells in vitro. We then evaluated the effects of AZD1480 on in vivo tumor growth and progression, gene expression, tumor-associated matrix metalloproteinase (MMP) activity, and immune cell populations in a transgenic mouse model of ovarian carcinoma. AZD1480 treatment inhibited STAT3 phosphorylation and DNA binding, and migration and adhesion of cultured ovarian carcinoma cells and ovarian tumor growth rate, volume, and ascites production in mice. In addition, drug treatment led to altered gene expression, decreased tumor-associated MMP activity, and fewer suppressor T cells in the peritoneal TME of tumor-bearing mice than control mice. Taken together, our results show pharmacologic inhibition of the JAK2/STAT3 pathway leads to disruption of functions essential for ovarian tumor growth and progression and represents a promising therapeutic strategy. PMID:25646015

  3. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Wenjing; Yang, Licong; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Zhou, Yunshan; Liu, Jie

    2014-06-01

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

  4. Cationic Pillararenes Potently Inhibit Biofilm Formation without Affecting Bacterial Growth and Viability.

    PubMed

    Joseph, Roymon; Naugolny, Alissa; Feldman, Mark; Herzog, Ido M; Fridman, Micha; Cohen, Yoram

    2016-01-27

    It is estimated that up to 80% of bacterial infections are accompanied by biofilm formation. Since bacteria in biofilms are less susceptible to antibiotics than are bacteria in the planktonic state, biofilm-associated infections pose a major health threat, and there is a pressing need for antibiofilm agents. Here we report that water-soluble cationic pillararenes differing in the quaternary ammonium groups efficiently inhibited the formation of biofilms by clinically important Gram-positive pathogens. Biofilm inhibition did not result from antimicrobial activity; thus, the compounds should not inhibit growth of natural bacterial flora. Moreover, none of the cationic pillararenes caused detectable membrane damage to red blood cells or toxicity to human cells in culture. The results indicate that cationic pillararenes have potential for use in medical applications in which biofilm formation is a problem. PMID:26745311

  5. The inhibition of crystal growth of mirabilite in aqueous solutions in the presence of phosphonates

    NASA Astrophysics Data System (ADS)

    Vavouraki, A. I.; Koutsoukos, P. G.

    2016-02-01

    The formation of sodium sulfate decahydrate (Mirabilite) has been known to cause serious damages to structural materials both of modern and of historical buildings. Methods which can retard or completely suppress the development of mirabilte crystals are urgently needed especially as remedies or preventive measures for the preservation of the built cultural heritage. In the present work we present results on the effect of the presence of phosphonate compounds on the kinetics of crystal growth from aqueous supersaturated solutions at 18 °C using the seeded growth technique. The phosphonate compounds tested differed with respect to the number of ionizable phosphonate groups and with respect to the number of amino groups in the respective molecules. The crystal growth process was monitored by the temperature changes during the exothermic crystallization of mirabilite in the stirred supersaturated solutions. The crystal growth of mirabilite in the presence of: (1-hydroxyethylidene)-1, 1-diphosphonic acid (HEDP), amino tri (methylene phosphonic acid) (ATMP), hexamethylenediaminetetra (methylene)phosphonic acid (HTDMP), and diethylene triamine penta(methylene phosphonic acid)(DETPMP) over a range of concentrations between 0.1-5% w/w resulted in significant decrease of the rates of mirabilite crystal growth. All phosphonic compounds tested reduced the crystallization rates up to 60% in comparison with additive-free solutions. The presence of the test compounds did not cause changes of the mechanism of crystal growth which was surface diffusion controlled, as shown by the second order dependence of the rates of mirabilite crystal growth on the relative supersaturation. The excellent fit of the measured rates to a kinetic Langmuir-type model suggested that the activity of the tested inhibitors could be attributed to the adsorption and subsequent reduction of the active crystal growth sites of the seed crystals. In all cases, the inhibitory activity was reduced with

  6. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  7. Piperine inhibits the growth and motility of triple-negative breast cancer cells.

    PubMed

    Greenshields, Anna L; Doucette, Carolyn D; Sutton, Kimberly M; Madera, Laurence; Annan, Henry; Yaffe, Paul B; Knickle, Allison F; Dong, Zhongmin; Hoskin, David W

    2015-02-01

    Piperine, an alkaloid from black pepper, is reported to have anticancer activities. In this study, we investigated the effect of piperine on the growth and motility of triple-negative breast cancer (TNBC) cells. Piperine inhibited the in vitro growth of TNBC cells, as well as hormone-dependent breast cancer cells, without affecting normal mammary epithelial cell growth. Exposure to piperine decreased the percentage of TNBC cells in the G2 phase of the cell cycle. In addition, G1- and G2-associated protein expression was decreased and p21(Waf1/Cip1) expression was increased in piperine-treated TNBC cells. Piperine also inhibited survival-promoting Akt activation in TNBC cells and caused caspase-dependent apoptosis via the mitochondrial pathway. Interestingly, combined treatment with piperine and γ radiation was more cytotoxic for TNBC cells than γ radiation alone. The in vitro migration of piperine-treated TNBC cells was impaired and expression of matrix metalloproteinase-2 and -9 mRNA was decreased, suggesting an antimetastatic effect by piperine. Finally, intratumoral administration of piperine inhibited the growth of TNBC xenografts in immune-deficient mice. Taken together, these findings suggest that piperine may be useful in the treatment of TNBC. PMID:25444919

  8. RPA inhibition increases replication stress and suppresses tumor growth.

    PubMed

    Glanzer, Jason G; Liu, Shengqin; Wang, Ling; Mosel, Adam; Peng, Aimin; Oakley, Greg G

    2014-09-15

    The ATR/Chk1 pathway is a critical surveillance network that maintains genomic integrity during DNA replication by stabilizing the replication forks during normal replication to avoid replication stress. One of the many differences between normal cells and cancer cells is the amount of replication stress that occurs during replication. Cancer cells with activated oncogenes generate increased levels of replication stress. This creates an increased dependency on the ATR/Chk1 pathway in cancer cells and opens up an opportunity to preferentially kill cancer cells by inhibiting this pathway. In support of this idea, we have identified a small molecule termed HAMNO ((1Z)-1-[(2-hydroxyanilino)methylidene]naphthalen-2-one), a novel protein interaction inhibitor of replication protein A (RPA), a protein involved in the ATR/Chk1 pathway. HAMNO selectively binds the N-terminal domain of RPA70, effectively inhibiting critical RPA protein interactions that rely on this domain. HAMNO inhibits both ATR autophosphorylation and phosphorylation of RPA32 Ser33 by ATR. By itself, HAMNO treatment creates DNA replication stress in cancer cells that are already experiencing replication stress, but not in normal cells, and it acts synergistically with etoposide to kill cancer cells in vitro and slow tumor growth in vivo. Thus, HAMNO illustrates how RPA inhibitors represent candidate therapeutics for cancer treatment, providing disease selectivity in cancer cells by targeting their differential response to replication stress. Cancer Res; 74(18); 5165-72. ©2014 AACR. PMID:25070753

  9. RPA Inhibition increases Replication Stress and Suppresses Tumor Growth

    PubMed Central

    Glanzer, Jason G.; Liu, Shengqin; Wang, Ling; Mosel, Adam; Peng, Aimin; Oakley, Greg G.

    2014-01-01

    The ATR/Chk1 pathway is a critical surveillance network that maintains genomic integrity during DNA replication by stabilizing the replication forks during normal replication to avoid replication stress. One of the many differences between normal cells and cancer cells is the amount of replication stress that occurs during replication. Cancer cells with activated oncogenes generate increased levels of replication stress. This creates an increased dependency on the ATR/Chk1 pathway in cancer cells and opens up an opportunity to preferentially kill cancer cells by inhibiting this pathway. In support of this idea, we have identified a small molecule termed HAMNO ((1Z)-1-[(2-hydroxyanilino)methylidene]naphthalen-2-one), a novel protein interaction inhibitor of replication protein A (RPA), a protein involved in the ATR/Chk1 pathway. HAMNO selectively binds the N-terminal domain of RPA70, effectively inhibiting critical RPA protein interactions which rely on this domain. HAMNO inhibits both ATR autophosphorylation and phosphorylation of RPA32 Ser33 by ATR. By itself, HAMNO treatment creates DNA replication stress in cancer cells that are already experiencing replication stress, but not in normal cells, and it acts synergistically with etoposide to kill cancer cells in vitro and slow tumor growth in vivo. Thus, HAMNO illustrates how RPA inhibitors represent candidate therapeutics for cancer treatment, providing disease selectivity in cancer cells by targeting their differential response to replication stress. PMID:25070753

  10. Inhibition of cell growth through inactivation of eukaryotic translation initiation factor 5A (eIF5A) by deoxyspergualin.

    PubMed Central

    Nishimura, Kazuhiro; Ohki, Yuji; Fukuchi-Shimogori, Tomomi; Sakata, Kaori; Saiga, Kan; Beppu, Takanobu; Shirahata, Akira; Kashiwagi, Keiko; Igarashi, Kazuei

    2002-01-01

    The mechanism of inhibition of cell growth by deoxyspergualin was studied using mouse mammary carcinoma FM3A cells. Results of studies using deoxyspergualin analogues showed that both the guanidinoheptanate amide and glyoxyspermidine moieties of deoxyspergualin were necessary to cause inhibition of cell growth. When deoxyspergualin was added to the medium, there was a strong inhibition of cell growth and formation of active eukaryotic translation initiation factor 5A (eIF5A) at the third day of culture. There was also a marked decrease in cellular putrescine content and a small decrease in spermidine content. Accumulation of decapped mRNA, which is typically associated with eIF5A deficiency in yeast, was also observed. The inhibition of cell growth and the formation of active eIF5A was not reversed by addition of spermidine. The activity of deoxyhypusine synthase, the first enzyme in the formation of active eIF5A, was inhibited by deoxyspergualin in a cell-free system. These results, taken together, indicate that inhibition of active eIF5A formation is strongly involved in the inhibition of cell growth by deoxyspergualin. PMID:11964177

  11. Stromal inhibition of prostatic epithelial cell proliferation not mediated by transforming growth factor beta.

    PubMed Central

    Kooistra, A.; van den Eijnden-van Raaij, A. J.; Klaij, I. A.; Romijn, J. C.; Schröder, F. H.

    1995-01-01

    The paracrine influence of prostatic stroma on the proliferation of prostatic epithelial cells was investigated. Stromal cells from the human prostate have previously been shown to inhibit anchorage-dependent as well as anchorage-independent growth of the prostatic tumour epithelial cell lines PC-3 and LNCaP. Antiproliferative activity, mediated by a diffusible factor in the stromal cell conditioned medium, was found to be produced specifically by prostatic stromal cells. In the present study the characteristics of this factor were examined. It is demonstrated that prostate stroma-derived inhibiting factor is an acid- and heat-labile, dithiothreitol-sensitive protein. Although some similarities with type beta transforming growth factor (TGF-beta)-like inhibitors are apparent, evidence is presented that the factor is not identical to TGF-beta or to the TGF-beta-like factors activin and inhibin. Absence of TGF-beta activity was shown by the lack of inhibitory response of the TGF-beta-sensitive mink lung cell line CCL-64 to prostate stromal cell conditioned medium and to concentrated, partially purified preparations of the inhibitor. Furthermore, neutralising antibodies against TGF-beta 1 or TGF-beta 2 did not cause a decline in the level of PC-3 growth inhibition caused by partially purified inhibitor. Using Northern blot analyses, we excluded the involvement of inhibin or activin. It is concluded that the prostate stroma-derived factor may be a novel growth inhibitor different from any of the currently described inhibiting factors. Images Figure 5 PMID:7543773

  12. Simultaneous Assessment of Acidogenesis-Mitigation and Specific Bacterial Growth-Inhibition by Dentifrices.

    PubMed

    Forbes, Sarah; Latimer, Joe; Sreenivasan, Prem K; McBain, Andrew J

    2016-01-01

    Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD); sodium fluoride (FD); stannous fluoride and zinc lactate (SFD1); or stannous fluoride, zinc lactate and stannous chloride (SFD2). Minimum inhibitory concentrations (MIC) were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC) were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC) was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC), a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC) under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC) was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices. PMID:26882309

  13. Simultaneous Assessment of Acidogenesis-Mitigation and Specific Bacterial Growth-Inhibition by Dentifrices

    PubMed Central

    Forbes, Sarah; Latimer, Joe; Sreenivasan, Prem K.; McBain, Andrew J.

    2016-01-01

    Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD); sodium fluoride (FD); stannous fluoride and zinc lactate (SFD1); or stannous fluoride, zinc lactate and stannous chloride (SFD2). Minimum inhibitory concentrations (MIC) were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC) were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC) was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC), a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC) under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC) was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices. PMID:26882309

  14. Specificity of growth inhibition of melanoma by 4-hydroxyanisole

    SciTech Connect

    Kulkarni, G.A.; Nathanson, L.

    1989-01-01

    An experimental study using human melanoma (NEL-MI), rat hepatoma (Fu5-5), and human kidney (293-31) cell lines was undertaken in order to evaluate the antitumor activity of 4-hydroxyanisole (4-OHA) in vitro. Prior reports have indicated highly specific antitumor activity of 4-OHA against melanoma cells in vitro. This specific antitumor activity has been proposed to be due to the oxidation of 4-OHA by tyrosinase to cytotoxic oxidation products. Dose-dependent cytotoxicity was observed when cells were cultured for 72 h in the presence of 4-OHA. At 100 microM, 4-OHA produced growth inhibition of 62%, 32%, and 55% in melanoma, hepatoma, and kidney cell lines, respectively. No effect was seen at 10 microM 4-OHA. 1,000 microM 4-OHA produced 100% kill. Tyrosinase activity was detected only in melanoma cells. The effect of 100 microM 4-OHA on the incorporation of 3H DNA precursors in melanoma, hepatoma, and kidney cells was also studied. Thymidine incorporation was inhibited in all three cell lines at the lowest cell density tested, with the greatest inhibition seen on melanoma cells. As cell density increased, the effect of 4-OHA on thymidine incorporation decreased. With respect to RNA synthesis, 4-OHA significantly reduced the incorporation of uridine in all three cell lines, with the greatest effect in melanoma cells. Cell density also affected the inhibition of uridine incorporation, but to a lesser extent than that observed on thymidine incorporation. The effect of 4-OHA on leucine incorporation was modest and uninfluenced by cell density. Thus, cytotoxicity of 4-OHA may involve two different mechanisms.

  15. Fetal calf serum-mediated inhibition of neurite growth from ciliary ganglion neurons in vitro.

    PubMed

    Davis, G E; Skaper, S D; Manthorpe, M; Moonen, G; Varon, S

    1984-01-01

    Embryonic chick ciliary ganglion (CG) neurons cultured in fetal calf serum-containing medium have been previously reported to extend neurites on polyornithine (PORN) substrata precoated with a neurite-promoting factor (PNPF) from rat schwannoma-conditioned medium. On PORN substrata alone, however, no neuritic growth occurred. This was interpreted as evidence that PORN was an incompetent substratum for ciliary neuritic growth. In this study, we now find that an untreated PORN substratum allows neuritic growth in serum-free defined medium. When PNPF was added to PORN, a more rapid and extensive neuritic response occurred. After 5 hr of culture, a 60% neuritic response occurred on PNPF/PORN, whereas no neurons initiated neurites until 10-12 hr on PORN. The inhibitory effect of fetal calf serum noted above on PORN could be obtained in part by pretreating the substratum with serum for 1 hr. Maximal inhibitory effects in the PORN pretreatment were achieved after 30 min and were not further improved by treatments up to 4 hr. Bovine serum albumin was also found to inhibit neurite growth on PORN to about 60% of the inhibition obtained by an equivalent amount of serum protein. Fetal calf serum was shown to cause a 15% reduction in the percentage of neurons bearing neurites after its addition to 18-hr serum-free PORN cultures and to cause statistically significant reductions in neurite lengths measured 2 hr later. PMID:6481819

  16. Dynamic light scattering study of inhibition of nucleation and growth of hydroxyapatite crystals by osteopontin.

    PubMed

    de Bruyn, John R; Goiko, Maria; Mozaffari, Maryam; Bator, Daniel; Dauphinee, Ron L; Liao, Yinyin; Flemming, Roberta L; Bramble, Michael S; Hunter, Graeme K; Goldberg, Harvey A

    2013-01-01

    We study the effect of isoforms of osteopontin (OPN) on the nucleation and growth of crystals from a supersaturated solution of calcium and phosphate ions. Dynamic light scattering is used to monitor the size of the precipitating particles and to provide information about their concentration. At the ion concentrations studied, immediate precipitation was observed in control experiments with no osteopontin in the solution, and the size of the precipitating particles increased steadily with time. The precipitate was identified as hydroxyapatite by X-ray diffraction. Addition of native osteopontin (nOPN) extracted from rat bone caused a delay in the onset of precipitation and reduced the number of particles that formed, but the few particles that did form grew to a larger size than in the absence of the protein. Recombinant osteopontin (rOPN), which lacks phosphorylation, caused no delay in initial calcium phosphate precipitation but severely slowed crystal growth, suggesting that rOPN inhibits growth but not nucleation. rOPN treated with protein kinase CK2 to phosphorylate the molecule (p-rOPN) produced an effect similar to that of nOPN, but at higher protein concentrations and to a lesser extent. These results suggest that phosphorylations are critical to OPN's ability to inhibit nucleation, whereas the growth of the hydroxyapatite crystals is effectively controlled by the highly acidic OPN polypeptide. This work also demonstrates that dynamic light scattering can be a powerful tool for delineating the mechanism of protein modulation of mineral formation. PMID:23457612

  17. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus. PMID:24571086

  18. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA

    SciTech Connect

    Wang, Yihui; Tang, Qingchao; Li, Mingqi; Jiang, Shixiong; Wang, Xishan

    2014-02-07

    Highlights: • miR-375 is downregulated in colorectal cancer cell lines and tissues. • miR-375 inhibits colorectal cancer cell growth by targeting PIK3CA. • miR-375 inhibits colorectal cancer cell growth in xenograft nude mice model. - Abstract: Colorectal cancer (CRC) is the second most common cause of death from cancer. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by triggering RNA degradation or interfering with translation. Aberrant miRNA expression is involved in human disease including cancer. Herein, we showed that miR-375 was frequently down-regulated in human colorectal cancer cell lines and tissues when compared to normal human colon tissues. PIK3CA was identified as a potential miR-375 target by bioinformatics. Overexpression of miR-375 in SW480 and HCT15 cells reduced PIK3CA protein expression. Subsequently, using reporter constructs, we showed that the PIK3CA untranslated region (3′-UTR) carries the directly binding site of miR-375. Additionally, miR-375 suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Furthermore, miR-375 overexpression resulted in inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. SiRNA-mediated silencing of PIK3CA blocked the inhibitory effect of miR-375 on CRC cell growth. Lastly, we found overexpressed miR-375 effectively repressed tumor growth in xenograft animal experiments. Taken together, we propose that overexpression of miR-375 may provide a selective growth inhibition for CRC cells by targeting PI3K/Akt signaling pathway.

  19. Tracing and inhibiting growth of Staphylococcus aureus in barbecue cheese production after product recall.

    PubMed

    Johler, S; Zurfluh, K; Stephan, R

    2016-05-01

    Staphylococcal food poisoning is one of the most prevalent causes of foodborne intoxication worldwide. It is caused by ingestion of enterotoxins formed by Staphylococcus aureus during growth in the food matrix. Following a recall of barbecue cheese due to the detection of staphylococcal enterotoxins in Switzerland in July 2015, we analyzed the production process of the respective dairy. Although most cheese-making processes involve acidification to inhibit the growth of pathogenic bacteria, barbecue cheese has to maintain a pH >6.0 to prevent undesired melting of the cheese. In addition, the dairy decided to retain the traditional manual production process of the barbecue cheese. In this study, therefore, we aimed to (1) trace Staph. aureus along the barbecue cheese production process, and (2) develop a sustainable strategy to inhibit growth of Staph. aureus and decrease the risk of staphylococcal food poisoning without changing the traditional production process. To this end, we traced Staph. aureus in a step-wise blinded process analysis on 4 different production days using spa (Staphylococcus protein A gene) typing, DNA microarray profiling, and pulsed-field gel electrophoresis analysis. We subsequently selected a new starter culture and used a model cheese production including a challenge test assay to assess its antagonistic effect on Staph. aureus growth, as well as its sensory and technological implications. We detected Staph. aureus in 30% (37/124) of the collected samples taken from the barbecue cheese production at the dairy. This included detection of Staph. aureus in the final product on all 4 production days, either after enrichment or using quantitative detection. We traced 2 enterotoxigenic Staph. aureus strains (t073/CC45 and t282/CC45) colonizing the nasal cavity and the forearms of the cheesemakers to the final product. In the challenge test assay, we were able to show that the new starter culture inhibited growth of Staph. aureus while meeting

  20. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  1. Blocking Fibroblast Growth Factor Receptor Signaling Inhibits Tumor Growth, Lymphangiogenesis, and Metastasis

    PubMed Central

    Larrieu-Lahargue, Frédéric; Welm, Alana L.; Bouchecareilh, Marion; Alitalo, Kari; Li, Dean Y.; Bikfalvi, Andreas; Auguste, Patrick

    2012-01-01

    Fibroblast Growth Factor receptor (FGFR) activity plays crucial roles in tumor growth and patient survival. However, FGF (Fibroblast Growth Factor) signaling as a target for cancer therapy has been under-investigated compared to other receptor tyrosine kinases. Here, we studied the effect of FGFR signaling inhibition on tumor growth, metastasis and lymphangiogenesis by expressing a dominant negative FGFR (FGFR-2DN) in an orthotopic mouse mammary 66c14 carcinoma model. We show that FGFR-2DN-expressing 66c14 cells proliferate in vitro slower than controls. 66c14 tumor outgrowth and lung metastatic foci are reduced in mice implanted with FGFR-2DN-expressing cells, which also exhibited better overall survival. We found 66c14 cells in the lumen of tumor lymphatic vessels and in lymph nodes. FGFR-2DN-expressing tumors exhibited a decrease in VEGFR-3 (Vascular Endothelial Growth Factor Receptor-3) or podoplanin-positive lymphatic vessels, an increase in isolated intratumoral lymphatic endothelial cells and a reduction in VEGF-C (Vascular Endothelial Growth Factor-C) mRNA expression. FGFs may act in an autocrine manner as the inhibition of FGFR signaling in tumor cells suppresses VEGF-C expression in a COX-2 (cyclooxygenase-2) or HIF1-α (hypoxia-inducible factor-1 α) independent manner. FGFs may also act in a paracrine manner on tumor lymphatics by inducing expression of pro-lymphangiogenic molecules such as VEGFR-3, integrin α9, prox1 and netrin-1. Finally, in vitro lymphangiogenesis is impeded in the presence of FGFR-2DN 66c14 cells. These data confirm that both FGF and VEGF signaling are necessary for the maintenance of vascular morphogenesis and provide evidence that targeting FGFR signaling may be an interesting approach to inhibit tumor lymphangiogenesis and metastatic spread. PMID:22761819

  2. Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of STAT3 signaling pathway.

    PubMed

    Cai, Qiaoyan; Lin, Jiumao; Wei, Lihui; Zhang, Ling; Wang, Lili; Zhan, Youzhi; Zeng, Jianwei; Xu, Wei; Shen, Aling; Hong, Zhenfeng; Peng, Jun

    2012-01-01

    Signal Transducer and Activator of Transcription 3 (STAT3), a common oncogenic mediator, is constitutively activated in many types of human cancers; therefore it is a major focus in the development of novel anti-cancer agents. Hedyotis diffusa Willd has been used as a major component in several Chinese medicine formulas for the clinical treatment of colorectal cancer (CRC). However, the precise mechanism of its anti-tumor activity remains largely unclear. Using a CRC mouse xenograft model, in the present study we evaluated the effect of the ethanol extract of Hedyotis diffusa Willd (EEHDW) on tumor growth in vivo and investigated the underlying molecular mechanisms. We found that EEHDW reduced tumor volume and tumor weight, but had no effect on body weight gain in CRC mice, demonstrating that EEHDW can inhibit CRC growth in vivo without apparent adverse effect. In addition, EEHDW treatment suppressed STAT3 phosphorylation in tumor tissues, which in turn resulted in the promotion of cancer cell apoptosis and inhibition of proliferation. Moreover, EEHDW treatment altered the expression pattern of several important target genes of the STAT3 signaling pathway, i.e., decreased expression of Cyclin D1, CDK4 and Bcl-2 as well as up-regulated p21 and Bax. These results suggest that suppression of the STAT3 pathway might be one of the mechanisms by which EEHDW treats colorectal cancer. PMID:22754353

  3. Growth Impairment Caused by Raw Linseed Consumption: Can Trypsin Inhibitors Be Harmful for Health?

    PubMed

    Anaya, Katya; Cruz, Ana C B; Cunha, Dayse C S; Monteiro, Sandra M N; Dos Santos, Elizeu A

    2015-09-01

    Linseed (Linun usitatissimum L.) is an important oilseed whose nutritional value can be impaired due to presence of antinutritional factors and low protein digestibility. Protein fractions from raw linseed meal were extracted, isolated and analyzed in vitro and in vivo. Globulins, the major protein fraction of linseed, showed low in vitro susceptibility to trypsin and chymotrypsin, but its in vivo digestibility was 93.2 %. Albumin fraction had high trypsin inhibition activity (5250 Inhibition Units g(-1)) and presented low molecular mass protein bands, similar to known trypsin inhibitors. Raw linseed consumption caused negative effects on rat growth and reduction of intestinal villi. Results indicate that raw linseed meal must not be used as an exclusive source of protein regardless of the major proteins have high digestibility; digestive enzymes inhibitors in raw linseed probably reduces the protein utilization. PMID:26243664

  4. HDAC6 inhibition restores ciliary expression and decreases tumor growth

    PubMed Central

    Gradilone, Sergio A; Radtke, Brynn N; Bogert, Pamela S; Huang, Bing Q; Gajdos, Gabriella B; LaRusso, Nicholas F

    2013-01-01

    Primary cilia are multisensory organelles recently found to be absent in some tumor cells, but the mechanisms of deciliation and the role of cilia in tumor biology remain unclear. Cholangiocytes, the epithelial cells lining the biliary tree, normally express primary cilia and their interaction with bile components regulates multiple processes, including proliferation and transport. Utilizing cholangiocarcinoma (CCA) as a model, we found primary cilia are reduced in CCA by a mechanism involving histone deacetylase 6 (HDAC6). The experimental deciliation of normal cholangiocyte cells increased the proliferation rate and induced anchorage-independent growth. Furthermore, deciliation induced the activation of MAPK and Hedgehog signaling, two important pathways involved in CCA development. We found HDAC6 is overexpressed in CCA and overexpression of HDAC6 in normal cholangiocytes induced deciliation, and increased both proliferation and anchorage-independent growth. To evaluate the effect of cilia restoration on tumor cells, we targeted HDAC6 by shRNA or by the pharmacologic inhibitor, tubastatin-A. Both approaches restored the expression of primary cilia in CCA cell lines and decreased cell proliferation and anchorage-independent growth. The effects of tubastatin-A were abolished when CCA cells were rendered unable to regenerate cilia by stable transfection of IFT88-shRNA. Finally, inhibition of HDAC6 by tubastatin-A also induced a significant decrease in tumor growth in a CCA animal model. Our data support a key role for primary cilia in malignant transformation, provide a plausible mechanism for their involvement, and suggest that restoration of primary cilia in tumor cells by HDAC6 targeting may be a potential therapeutic approach for CCA. PMID:23370327

  5. Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth.

    PubMed

    Carletto, Bruna; Berton, Juliana; Ferreira, Tamara Nascimento; Dalmolin, Luciana Facco; Paludo, Katia Sabrina; Mainardes, Rubiana Mara; Farago, Paulo Vitor; Favero, Giovani Marino

    2016-08-01

    In this study, resveratrol-loaded nanocapsules were developed and its antitumor activity tested on a melanoma mice model. These nanocapsules were spherically-shaped and presented suitable size, negative charge and high encapsulation efficiency for their use as a modified-release system of resveratrol. Nanoencapsulation leads to the drug amorphization. Resveratrol-loaded nanoparticles reduced cell viability of murine melanoma cells. There was a decrease in tumor volume, an increase in the necrotic area and inflammatory infiltrate of melanoma when resveratrol-loaded nanocapsules were compared to free resveratrol in treated mice. Nanoencapsulation of resveratrol also prevented metastasis and pulmonary hemorrhage. This modified-release technology containing resveratrol can be used as a feasible approach in order to inhibit murine melanoma tumor growth. PMID:27070053

  6. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets.

    PubMed

    Wöhrle, Simon; Henninger, Christine; Bonny, Olivier; Thuery, Anne; Beluch, Noemie; Hynes, Nancy E; Guagnano, Vito; Sellers, William R; Hofmann, Francesco; Kneissel, Michaela; Graus Porta, Diana

    2013-04-01

    Fibroblast growth factor 23 (FGF23) is a circulating factor secreted by osteocytes that is essential for phosphate homeostasis. In kidney proximal tubular cells FGF23 inhibits phosphate reabsorption and leads to decreased synthesis and enhanced catabolism of 1,25-dihydroxyvitamin D3 (1,25[OH]2 D3 ). Excess levels of FGF23 cause renal phosphate wasting and suppression of circulating 1,25(OH)2 D3 levels and are associated with several hereditary hypophosphatemic disorders with skeletal abnormalities, including X-linked hypophosphatemic rickets (XLH) and autosomal recessive hypophosphatemic rickets (ARHR). Currently, therapeutic approaches to these diseases are limited to treatment with activated vitamin D analogues and phosphate supplementation, often merely resulting in partial correction of the skeletal aberrations. In this study, we evaluate the use of FGFR inhibitors for the treatment of FGF23-mediated hypophosphatemic disorders using NVP-BGJ398, a novel selective, pan-specific FGFR inhibitor currently in Phase I clinical trials for cancer therapy. In two different hypophosphatemic mouse models, Hyp and Dmp1-null mice, resembling the human diseases XLH and ARHR, we find that pharmacological inhibition of FGFRs efficiently abrogates aberrant FGF23 signaling and normalizes the hypophosphatemic and hypocalcemic conditions of these mice. Correspondingly, long-term FGFR inhibition in Hyp mice leads to enhanced bone growth, increased mineralization, and reorganization of the disturbed growth plate structure. We therefore propose NVP-BGJ398 treatment as a novel approach for the therapy of FGF23-mediated hypophosphatemic diseases. PMID:23129509

  7. Biochemistry of growth inhibition by ammonium ions in mammalian cells

    SciTech Connect

    Ryll, T.; Valley, U.; Wagner, R. . Cell Culture Techniques Dept.)

    1994-06-20

    The intracellular pool of UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine has been shown to act as a central target during the inhibitory action of ammonium ions in vitro cultivated mammalian cell cultures. This pool has been demonstrated to be elevated at the end of a batch cultivation and very quickly as a response to exogenously applied ammonium chloride by using four different cell lines (hybridoma, BHK, CHO, and Ltk-929). The amount of enlarged UDP aminohexoses is correlated to the inhibitor concentration and additionally dependent on the cell line. The formation of the UDP sugars is associated with a transient reduction of the UTP pool. Moreover, the quick formation of UDP-GNAC is strictly dependent on the presence of, glucose and ammonium. Both metabolites act as biochemical precursors. Additionally, the formation of UDP-GNAc after ammonium application has been shown to increase with an elevated cultivation pH and to be independent of the inhibition of transcription and translation processes. The intracellular amount of UDP-GNAc correlates with the level of growth inhibition in mammalian cell lines.

  8. Inhibition of microbial growth on chitosan membranes by plasma treatment.

    PubMed

    de Oliveira Cardoso Macêdo, Marina; de Macêdo, Haroldo Reis Alves; Gomes, Dayanne Lopes; de Freitas Daudt, Natália; Rocha, Hugo Alexandre Oliveira; Alves, Clodomiro

    2013-11-01

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site, and it also affects the bulk properties of the polymers. The use of gas plasma is an elegant alternative sterilization technique. The plasma promotes efficient inactivation of the microorganisms, minimizes damage to the materials, and presents very little danger for personnel and the environment. In this study we used plasma for microbial inhibition of chitosan membranes. The membranes were treated with oxygen, methane, or argon plasma for different time periods (15, 30, 45, or 60 min). For inhibition of microbial growth with oxygen plasma, the time needed was 60 min. For the methane plasma, samples were successfully treated after 30, 45, and 60 min. For argon plasma, all treatment periods were effective. PMID:24251774

  9. Functional Characterization of Pseudomonas Contact Dependent Growth Inhibition (CDI) Systems

    PubMed Central

    Mercy, Chryslène; Ize, Bérengère; Salcedo, Suzana P.; de Bentzmann, Sophie; Bigot, Sarah

    2016-01-01

    Contact-dependent inhibition (CDI) toxins, delivered into the cytoplasm of target bacterial cells, confer to host strain a significant competitive advantage. Upon cell contact, the toxic C-terminal region of surface-exposed CdiA protein (CdiA-CT) inhibits the growth of CDI- bacteria. CDI+ cells express a specific immunity protein, CdiI, which protects from autoinhibition by blocking the activity of cognate CdiA-CT. CdiA-CT are separated from the rest of the protein by conserved peptide motifs falling into two distinct classes, the “E. coli”- and “Burkholderia-type”. CDI systems have been described in numerous species except in Pseudomonadaceae. In this study, we identified functional toxin/immunity genes linked to CDI systems in the Pseudomonas genus, which extend beyond the conventional CDI classes by the variability of the peptide motif that delimits the polymorphic CdiA-CT domain. Using P. aeruginosa PAO1 as a model, we identified the translational repressor RsmA as a negative regulator of CDI systems. Our data further suggest that under conditions of expression, P. aeruginosa CDI systems are implicated in adhesion and biofilm formation and provide an advantage in competition assays. All together our data imply that CDI systems could play an important role in niche adaptation of Pseudomonadaceae. PMID:26808644

  10. Exposure to Asulox Inhibits the Growth of Mosses

    PubMed Central

    ROWNTREE, J. K.; LAWTON, K. F.; RUMSEY, F. J.; SHEFFIELD, E.

    2003-01-01

    Asulox is a herbicide used to control bracken. Its effects on mosses were investigated to ascertain whether exposure proved as detrimental as found in parallel studies on pteridophytes. Mature gametophytes of 18 mosses were exposed to a range of concentrations of Asulox under standard conditions and the effects on growth monitored. Plants were cut to a standard length, exposed to Asulox solution for 24 h, grown for 3 weeks and total elongation (main stem and branches) measured. EC50 values were calculated and species ranked according to sensitivity. The effects of exposure on total elongation were compared with those on main stem elongation alone. Under the conditions tested, the total elongation of all species was inhibited after exposure to Asulox. The amount of elongation observed after exposure was different for different species and inhibition of elongation occurred at different exposure concentrations. A single regression equation was not adequate to describe the dose response curves of all species tested. An ability to produce secondary branches may confer increased tolerance to Asulox exposure. It is concluded that mosses suffer detrimental effects after exposure to Asulox at concentrations similar to those that affect fern gametophytes such as bracken. PMID:12933364

  11. Coumarin inhibits the growth of carrot (Daucus carota L. cv. Saint Valery) cells in suspension culture.

    PubMed

    Abenavoli, Maria Rosa; Sorgonà, Agostino; Sidari, Maria; Badiani, Maurizio; Fuggi, Amodio

    2003-03-01

    We used a carrot (Daucus carota L. cv. Saint Valery) cell suspension culture as a simplified model system to study the effects of the allelochemical compound coumarin (1,2 benzopyrone) on cell growth and utilisation of exogenous nitrate, ammonium and carbohydrates. Exposure to micromolar levels of coumarin caused severe inhibition of cell growth starting from the second day of culture onwards. At the same time, the presence of 50 mumol/L coumarin caused accumulation of free amino acids and of ammonium in the cultured cells, and stimulated their glutamine synthetase, glutamate dehydrogenase, glucose-6-phosphate dehydrogenase and phosphoenolpyruvate carboxylase activities. Malate dehydrogenase, on the other hand, was inhibited under the same conditions. These effects were interpreted in terms of the stimulation of protein catabolism and/or interference with protein biosynthesis induced by coumarin. This could have led to a series of compensatory changes in the activities of enzymes linking nitrogen and carbon metabolism. Because coumarin seemed to abolish the exponential phase and to accelerate the onset of the stationary phase of cell growth, we hypothesise that such allelochemical compounds may act in nature as an inhibitor of the cell cycle and/or as a senescence-promoting substance. PMID:12749079

  12. Inhibition of crystallization caused by Proteus mirabilis during the development of infectious urolithiasis by various phenolic substances.

    PubMed

    Torzewska, Agnieszka; Rozalski, Antoni

    2014-01-01

    Infectious urolithiasis is a consequence of persistent urinary tract infections caused by urease producing bacteria e.g. Proteus mirabilis. These stones are composed of struvite and carbonate apatite. Their rapid growth and high recurrence indicate that so far appropriate methods of treatment have not been found. In the present study, the inhibitory effect of phenolic compounds was investigated in vitro against formation of struvite/apatite crystals. The impact of these substances with different chemical structures on crystallization caused by clinical isolates of P. mirabilis was tested spectrophotometrically using a microdilution method. Among the 11 tested compounds resveratrol, epigallocatechin gallate, peralgonidin, vanillic and coffee acids at the concentrations 250-1000 μg/ml inhibited P. mirabilis urease activity and crystallization. However, only vanillic acid had such an effect on all tested strains of P. mirabilis. Therefore, using an in vitro model, bacterial growth, crystallization, urease activity and pH were examined for 24h in synthetic urine with vanillic acid. Effect of vanillic acid was compared with that of other known struvite/apatite crystallization inhibitors (acetohydroxamic acid, pyrophosphate) and it was shown that vanillic acid strongly inhibited bacterial growth and the formation of crystals. It can be assumed that this compound, after further studies, can be used in the treatment or prophylaxis of infectious urolithiasis. PMID:24239192

  13. The L-type Ca(2+) Channel Blocker Nifedipine Inhibits Mycelial Growth, Sporulation, and Virulence of Phytophthora capsici.

    PubMed

    Liu, Peiqing; Gong, Jie; Ding, Xueling; Jiang, Yue; Chen, Guoliang; Li, Benjin; Weng, Qiyong; Chen, Qinghe

    2016-01-01

    The oomycete vegetable pathogen Phytophthora capsici causes significant losses of important vegetable crops worldwide. Calcium and other plant nutrients have been used in disease management of oomycete pathogens. Calcium homeostasis and signaling is essential for numerous biological processes, and Ca(2+) channel blockers prevent excessive Ca(2+) influx into the fungal cell. However, it is not known whether voltage-gated Ca(2+) channel blockers improve control over oomycete pathogens. In the present study, we compared the inhibitory effects of CaCl2 and the extracellular Ca(2+) chelator EDTA on mycelial growth and found that calcium assimilation plays a key role in P. capsici mycelial growth. Next, we involved the voltage-gated Ca(2+) channel blockers verapamil (VP) and nifedipine (NFD) to analyze the effect of Ca(2+) channel blockers on mycelial growth and sporulation; the results suggested that NFD, but not VP, caused significant inhibition. Ion rescue in an NFD-induced inhibition assay suggested that NFD-induced inhibition is calcium-dependent. In addition, NFD increased P. capsici sensitivity to H2O2 in a calcium-dependent manner, and extracellular calcium rescued it. Furthermore, NFD inhibited the virulence and gene expression related to its pathogenicity. These results suggest that NFD inhibits mycelial growth, sporulation, and virulence of P. capsici. PMID:27540377

  14. The L-type Ca2+ Channel Blocker Nifedipine Inhibits Mycelial Growth, Sporulation, and Virulence of Phytophthora capsici

    PubMed Central

    Liu, Peiqing; Gong, Jie; Ding, Xueling; Jiang, Yue; Chen, Guoliang; Li, Benjin; Weng, Qiyong; Chen, Qinghe

    2016-01-01

    The oomycete vegetable pathogen Phytophthora capsici causes significant losses of important vegetable crops worldwide. Calcium and other plant nutrients have been used in disease management of oomycete pathogens. Calcium homeostasis and signaling is essential for numerous biological processes, and Ca2+ channel blockers prevent excessive Ca2+ influx into the fungal cell. However, it is not known whether voltage-gated Ca2+ channel blockers improve control over oomycete pathogens. In the present study, we compared the inhibitory effects of CaCl2 and the extracellular Ca2+ chelator EDTA on mycelial growth and found that calcium assimilation plays a key role in P. capsici mycelial growth. Next, we involved the voltage-gated Ca2+ channel blockers verapamil (VP) and nifedipine (NFD) to analyze the effect of Ca2+ channel blockers on mycelial growth and sporulation; the results suggested that NFD, but not VP, caused significant inhibition. Ion rescue in an NFD-induced inhibition assay suggested that NFD-induced inhibition is calcium-dependent. In addition, NFD increased P. capsici sensitivity to H2O2 in a calcium-dependent manner, and extracellular calcium rescued it. Furthermore, NFD inhibited the virulence and gene expression related to its pathogenicity. These results suggest that NFD inhibits mycelial growth, sporulation, and virulence of P. capsici. PMID:27540377

  15. Benzylidene Acylhydrazides Inhibit Chlamydial Growth in a Type III Secretion- and Iron Chelation-Independent Manner

    PubMed Central

    Bao, Xiaofeng; Gylfe, Åsa; Sturdevant, Gail L.; Gong, Zheng; Xu, Shuang; Caldwell, Harlan D.; Elofsson, Mikael

    2014-01-01

    Chlamydiae are widespread Gram-negative pathogens of humans and animals. Salicylidene acylhydrazides, developed as inhibitors of type III secretion system (T3SS) in Yersinia spp., have an inhibitory effect on chlamydial infection. However, these inhibitors also have the capacity to chelate iron, and it is possible that their antichlamydial effects are caused by iron starvation. Therefore, we have explored the modification of salicylidene acylhydrazides with the goal to uncouple the antichlamydial effect from iron starvation. We discovered that benzylidene acylhydrazides, which cannot chelate iron, inhibit chlamydial growth. Biochemical and genetic analyses suggest that the derivative compounds inhibit chlamydiae through a T3SS-independent mechanism. Four single nucleotide polymorphisms were identified in a Chlamydia muridarum variant resistant to benzylidene acylhydrazides, but it may be necessary to segregate the mutations to differentiate their roles in the resistance phenotype. Benzylidene acylhydrazides are well tolerated by host cells and probiotic vaginal Lactobacillus species and are therefore of potential therapeutic value. PMID:24914180

  16. Combined MET inhibition and topoisomerase I inhibition block cell growth of small cell lung cancer.

    PubMed

    Rolle, Cleo E; Kanteti, Rajani; Surati, Mosmi; Nandi, Suvobroto; Dhanasingh, Immanuel; Yala, Soheil; Tretiakova, Maria; Arif, Qudsia; Hembrough, Todd; Brand, Toni M; Wheeler, Deric L; Husain, Aliya N; Vokes, Everett E; Bharti, Ajit; Salgia, Ravi

    2014-03-01

    Small cell lung cancer (SCLC) is a devastating disease, and current therapies have not greatly improved the 5-year survival rates. Topoisomerase (Top) inhibition is a treatment modality for SCLC; however, the response is short lived. Consequently, our research has focused on improving SCLC therapeutics through the identification of novel targets. Previously, we identified MNNG HOS transforming gene (MET) to be overexpressed and functional in SCLC. Herein, we investigated the therapeutic potential of combinatorial targeting of MET using SU11274 and Top1 using 7-ethyl-10-hydroxycamptothecin (SN-38). MET and TOP1 gene copy numbers and protein expression were determined in 29 patients with limited (n = 11) and extensive (n = 18) disease. MET gene copy number was significantly increased (>6 copies) in extensive disease compared with limited disease (P = 0.015). Similar TOP1 gene copy numbers were detected in limited and extensive disease. Immunohistochemical staining revealed a significantly higher Top1 nuclear expression in extensive (0.93) versus limited (0.15) disease (P = 0.04). Interestingly, a significant positive correlation was detected between MET gene copy number and Top1 nuclear expression (r = 0.5). In vitro stimulation of H82 cells revealed hepatocyte growth factor (HGF)-induced nuclear colocalization of p-MET and Top1. Furthermore, activation of the HGF/MET axis enhanced Top1 activity, which was abrogated by SU11274. Combination of SN-38 with SU11274 dramatically decreased SCLC growth as compared with either drug alone. Collectively, these findings suggest that the combinatorial inhibition of MET and Top1 is a potentially efficacious treatment strategy for SCLC. PMID:24327519

  17. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    SciTech Connect

    Djeu, J.Y.; Parapanios, A.; Halkias, D.; Friedman, H.

    1986-03-05

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr at 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10..mu..g/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4..mu..g/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated.

  18. Epidermal growth factor receptor inhibition in metastatic anal cancer.

    PubMed

    Rogers, Jane E; Ohinata, Aki; Silva, Ninoska N; Mehdizadeh, Amir; Eng, Cathy

    2016-09-01

    Metastatic squamous cell carcinoma (SCCA) anal cancer is relatively rare. With limited data, cisplatin plus 5-fluorouracil has traditionally been utilized in the first-line setting. Treatment beyond front-line cisplatin progression is not well defined. Epidermal growth factor receptor (EGFR) is highly overexpressed in SCCA anal cancer and EGFR inhibition may represent a potential treatment target for this population in need. Our case series evaluated metastatic SCCA anal cancer patients who received an EGFR monoclonal antibody as second-line or third-line therapy. Data collected consisted of demographics, previous treatment, metastatic disease sites, localized therapy received, regimen received, first radiographic result, progression-free survival, and overall survival. A total of 17 patients were included, with most (76%) patients receiving an EGFR monoclonal antibody in the second-line setting. Common regimens identified combined cetuximab or panitumumab with a fluoropyrimidine plus platinum (35%), carboplatin plus paclitaxel (29%), or cisplatin plus vinorelbine (18%). Thirty-five percent of patients achieved a response and 24% had stable disease. The overall median progression-free survival and overall survival were 7.3 and 24.7 months, respectively. Compared with our large retrospective study in the front-line metastatic anal cancer setting, our study suggests that anti-EGFR therapy in combination with certain chemotherapy derived additional benefit in the refractory setting. In the metastatic setting, there is a need to discover effective therapies. We present a diverse metastatic SCCA anal cancer patient population who received cetuximab or panitumumab with chemotherapy in the second-line or third-line setting. Our case series strengthens the concept of EGFR inhibition in metastatic SCCA anal cancer. PMID:27272412

  19. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    PubMed

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  20. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    PubMed Central

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  1. Dll4 Inhibition plus Aflibercept Markedly Reduces Ovarian Tumor Growth.

    PubMed

    Huang, Jie; Hu, Wei; Hu, Limin; Previs, Rebecca A; Dalton, Heather J; Yang, Xiao-Yun; Sun, Yunjie; McGuire, Michael; Rupaimoole, Rajesha; Nagaraja, Archana S; Kang, Yu; Liu, Tao; Nick, Alpa M; Jennings, Nicholas B; Coleman, Robert L; Jaffe, Robert B; Sood, Anil K

    2016-06-01

    Delta-like ligand 4 (Dll4), one of the Notch ligands, is overexpressed in ovarian cancer, especially in tumors resistant to anti-VEGF therapy. Here, we examined the biologic effects of dual anti-Dll4 and anti-VEGF therapy in ovarian cancer models. Using Dll4-Fc blockade and anti-Dll4 antibodies (murine REGN1035 and human REGN421), we evaluated the biologic effects of Dll4 inhibition combined with aflibercept or chemotherapy in orthotopic mouse models of ovarian cancer. We also examined potential mechanisms by which dual Dll4 and VEGF targeting inhibit tumor growth using immunohistochemical staining for apoptosis and proliferation markers. Reverse-phase protein arrays were used to identify potential downstream targets of Dll4 blockade. Dual targeting of VEGF and Dll4 with murine REGN1035 showed superior antitumor effects in ovarian cancer models compared with either monotherapy. In the A2780 model, REGN1035 (targets murine Dll4) or REGN421 (targets human Dll4) reduced tumor weights by 62% and 82%, respectively; aflibercept alone reduced tumor weights by 90%. Greater therapeutic effects were observed for Dll4 blockade (REGN1035) combined with either aflibercept or docetaxel (P < 0.05 for the combination vs. aflibercept). The superior antitumor effects of REGN1035 and aflibercept were related to increased apoptosis in tumor cells compared with the monotherapy. We also found that GATA3 expression was significantly increased in tumor stroma from the mice treated with REGN1035 combined with docetaxel or aflibercept, suggesting an indirect effect of these combination treatments on the tumor stroma. These findings identify that dual targeting of Dll4 and VEGF is an attractive therapeutic approach. Mol Cancer Ther; 15(6); 1344-52. ©2016 AACR. PMID:27009216

  2. MECHANISMS OF FLUID SHEAR-INDUCED INHIBITION OF POPULATION GROWTH IN A RED-TIDE DINOFLAGELLATE

    EPA Science Inventory

    Net population growth of some dinoflagellates is inhibited by fluid shear at shear stresses comparable with those generated during oceanic turbulence. Decreased net growth may occur through lowered cell division, increased mortality, or both. The dominant mechanism under various ...

  3. Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism

    SciTech Connect

    Gottschalk, Alexander R. . E-mail: gottschalk@radonc17.ucsf.edu; Doan, Albert; Nakamura, Jean L.; Stokoe, David; Haas-Kogan, Daphne A.

    2005-11-15

    Purpose: To identify whether inhibition of phosphatidylinositol-3-kinase (PI3K) causes increased radiosensitivity through inhibition of protein kinase B (PKB), implicating PKB as an important therapeutic target in prostate cancer. Methods and Materials: The prostate cancer cell line LNCaP was treated with the PI3K inhibitor LY294002, radiation, and combinations of the two therapies. Apoptosis and survival were measured by cell cycle analysis, Western blot analysis for cleaved poly (ADP-ribose) polymerase, and clonogenic survival. To test the hypothesis that inhibition of PKB is responsible for LY294002-induced radiosensitivity, LNCaP cells expressing a constitutively active form of PKB were used. Results: The combination of PI3K inhibition and radiation caused an increase in apoptosis and a decrease in clonogenic survival when compared to either modality alone. The expression of constitutively activated PKB blocked apoptosis induced by combination of PI3K inhibition and radiation and prevented radiosensitization by LY294002. Conclusion: These data indicate that PI3K inhibition increases sensitivity of prostate cancer cell lines to ionizing radiation through inactivation of PKB. Therefore, PTEN mutations, which lead to PKB activation, may play an important role in the resistance of prostate cancer to radiation therapy. Targeted therapy against PKB could be beneficial in the management of prostate cancer patients.

  4. Inhibition of mitogen stimulated growth of human colon cancer cells by interferon.

    PubMed Central

    Hamburger, A. W.; Condon, M. E.; O'Donnell, K.

    1988-01-01

    Recombinant human interferon alpha inhibits growth of a human colon cancer cell line, Colo 205. To explore the mechanisms of IFN induced growth inhibition, quiescent Colo 205 cells were stimulated to proliferate in serum-free media by defined growth factors. Addition of insulin, transferrin and selenium (ITS) stimulated DNA synthesis, as measured by 3H-thymidine incorporation, in a dose-dependent manner. IFN-alpha (at concentrations greater than 100 U ml-1) inhibited ITS stimulated DNA synthesis by 63%. Inhibition of cell cycle traverse was confirmed by flow cytometric analysis. Although IFN inhibited growth of ITS-treated cells, steady state levels of c-myc mRNA remained above levels observed in unstimulated cells. IFN inhibited DNA synthesis only when added prior to mitogen stimulation. IFN, added 6 h after exposure of quiescent cells to ITS, failed to inhibit cell growth. Addition of increasing concentrations of ITS failed to overcome the IFN-induced growth inhibition. These results suggest IFN may inhibit cell growth in part by antagonizing the action of growth factors. Images Figure 4 PMID:3166905

  5. Trophosome of the Deep-Sea Tubeworm Riftia pachyptila Inhibits Bacterial Growth.

    PubMed

    Klose, Julia; Aistleitner, Karin; Horn, Matthias; Krenn, Liselotte; Dirsch, Verena; Zehl, Martin; Bright, Monika

    2016-01-01

    The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gammaproteobacterium Cand. Endoriftia persephone. Symbionts are released back into the environment upon host death in high-pressure experiments, while microbial fouling is not involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the tubeworm's trophosome and skin. The growth of all four tested Gram-positive, but only of one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrading trophosome (incubated up to ten days at either warm or cold temperature), while no effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with longer incubation time of trophosome samples. This correlated with an increasing growth inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains. Therefore, the free fatty acids produced upon host degradation could be the cause of inhibition of at least these two bacterial strains. PMID:26730960

  6. Trophosome of the Deep-Sea Tubeworm Riftia pachyptila Inhibits Bacterial Growth

    PubMed Central

    Klose, Julia; Aistleitner, Karin; Horn, Matthias; Krenn, Liselotte; Dirsch, Verena; Zehl, Martin; Bright, Monika

    2016-01-01

    The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gammaproteobacterium Cand. Endoriftia persephone. Symbionts are released back into the environment upon host death in high-pressure experiments, while microbial fouling is not involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the tubeworm’s trophosome and skin. The growth of all four tested Gram-positive, but only of one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrading trophosome (incubated up to ten days at either warm or cold temperature), while no effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with longer incubation time of trophosome samples. This correlated with an increasing growth inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains. Therefore, the free fatty acids produced upon host degradation could be the cause of inhibition of at least these two bacterial strains. PMID:26730960

  7. Endothelin inhibits cholangiocarcinoma growth by a decrease in the vascular endothelial growth factor expression

    PubMed Central

    Fava, Giammarco; DeMorrow, Sharon; Gaudio, Eugenio; Franchitto, Antonio; Onori, Paolo; Carpino, Guido; Glaser, Shannon; Francis, Heather; Coufal, Monique; Marucci, Luca; Alvaro, Domenico; Marzioni, Marco; Horst, Trenton; Mancinelli, Romina; Benedetti, Antonio; Alpini, Gianfranco

    2009-01-01

    Background: Endothelins (ET-1, ET-2, ET-3) are peptides with vasoactive properties interacting with ETA and ETB receptors. ET-1 inhibits secretin-stimulated ductal secretion (hallmark of cholangiocyte growth) of cholestatic rats by interaction with ET receptors. Aim: The aims of the studies were to evaluate (i) the effect of ET-1 on cholangiocarcinoma growth in Mz-ChA-1 cells and nude mice and (ii) whether ET-1 regulation of cholangiocarcinoma growth is associated with changes in the expression of vascular endothelial growth factor-A (VEGF-A), VEGF-C, VEGF receptor-2 (VEGFR-2) and VEGFR-3. Methods: We determined the expression of ETA and ETB receptors on normal and malignant (Mz-ChA-1) cholangiocytes and human cholangiocarcinoma tissue and the effect of ET-1 on the proliferation and expression of VEGF-A, VEGF-C (regulators of tumour angiogenesis) and its receptors, VEGFR-2 and VEGFR-3, in Mz-ChA-1 cells. In vivo, Mz-ChA-1 cells were injected into the flanks of athymic mice and injections of ET-1 or saline into the tumours were performed daily. The effect of ET-1 on tumour size, cell proliferation, apoptosis, collagen quantity and the expression of VEGF-A and VEGF-C and VEGFR-2 and VEGFR-3 were measured after 73 days. Results: Higher expression of ETA and ETB was observed in malignant compared with normal cholangiocytes. ET-1 inhibited proliferation and VEGF-A, VEGF-C, VEGFR-2 and VEGFR-3 expression of Mz-ChA-1 cells. Chronic ET-1 treatment decreased tumour volume, tumour cell proliferation and VEGF-A and VEGF-C expression but increased apoptosis and collagen tissue deposition compared with controls. Conclusions: Modulation of VEGF-A and VEGF-C (by ET-1) may be important for managing cholangiocarcinoma growth. PMID:19291182

  8. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    PubMed Central

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  9. Growth of Steptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin, in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  10. Growth of Streptomyces Hygroscopicus in Rotating-Wall Bioreactor Under Simulated Microgravity Inhibits Rapamycin Production

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  11. Elevated circulating insulin-like growth factor binding protein-1 is sufficient to cause fetal growth restriction.

    PubMed

    Watson, Carole S; Bialek, Peter; Anzo, Makoto; Khosravi, Javad; Yee, Siu-Pok; Han, Victor K M

    2006-03-01

    IGF binding protein-1 (IGFBP-1) inhibits the mitogenic actions of the IGFs. Circulating IGFBP-1 is elevated in newborns and experimental animals with fetal growth restriction (FGR). To establish a causal relationship between high circulating IGFBP-1 and FGR, we have generated transgenic mice using the mouse alpha-fetoprotein gene promoter to target overexpression of human IGFBP-1 (hIGFBP-1) in the fetal liver. These transgenic mice (AFP-BP1) expressed hIGFBP-1 mainly in the fetal hepatocytes, starting at embryonic d 14.5 (E14.5), with lower levels in the gut. The expression peaked at 1 wk postnatally (plasma concentration, 474 +/- 34 ng/ml). At birth, AFP-BP1 pups were 18% smaller [weighed 1.34 +/- 0.02 g compared with 1.62 +/- 0.04 g for wild type (WT); P < 0.05], and they did not demonstrate any postnatal catch-up growth. The placentas of the AFP-BP1 mice were larger than WT from E16.5 onwards (150 +/- 12 for AFP-BP1 vs. 100 +/- 5 mg for WT at E16.5; P < 0.05). Thus, this model of FGR is associated with a larger placenta, but without postnatal catch-up growth. Overall, these data clearly demonstrate that high concentrations of circulating IGFBP-1 are sufficient to cause FGR. PMID:16293667

  12. Inhibition of tomato shoot growth by over-irrigation is linked to nitrogen deficiency and ethylene.

    PubMed

    Fiebig, Antje; Dodd, Ian C

    2016-01-01

    Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over-irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over-irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over-irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over-irrigated substrate. Over-irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60-70%) compared with well-drained plants. Over-irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over-irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene-insensitive genotype Never ripe (Nr) was much less sensitive to over-irrigation than the wild type. Over-irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3 )2 to over-irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over-irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over-irrigated plants, in part by stimulating foliar ethylene emission. PMID:25950248

  13. WISP1/CCN4: A Potential Target for Inhibiting Prostate Cancer Growth and Spread to Bone

    PubMed Central

    Sonn, Robert; Kilts, Tina M.; de Castro, Luis F.; Maeda, Azusa; Fisher, Larry W.; Robey, Pamela G.; Berendsen, Agnes D.; Li, Li; McCartney-Francis, Nancy; Brown, Aaron C.; Crawford, Nigel P. S.; Molinolo, Alfredo; Jain, Alka; Fedarko, Neal S.; Young, Marian F.

    2013-01-01

    Prostate cancer (PC) is a leading cause of death in men however the factors that regulate its progression and eventual metastasis to bone remain unclear. Here we show that WISP1/CCN4 expression in prostate cancer tissues was up-regulated in early stages of the disease and, further, that it correlated with increased circulating levels of WISP1 in the sera of patients at early stages of the disease. WISP1 was also elevated in the mouse prostate cancer model TRAMP in the hypoplastic diseased tissue that develops prior to advanced carcinoma formation. When the ability of anti-WISP1 antibodies to reduce the spread of PC3-Luc cells to distant sites was tested it showed that twice weekly injections of anti-WISP1 antibodies reduced the number and overall size of distant tumors developed after intracardiac (IC) injection of PC3-Luc cells in mice. The ability of antibodies against WISP1 to inhibit growth of PC3-Luc cancer cells in mice was also evaluated and showed that twice weekly injections of anti-WISP1 antibodies reduced local tumor growth when examined in xenografts. To better understand the mechanism of action, the migration of PC3-Luc cells through membranes with or without a Matrigel™ barrier showed the cells were attracted to WISP1, and that this attraction was inhibited by treatment with anti-WISP1 antibodies. We also show the expression of WISP1 at the bone-tumor interface and in the stroma of early grade cancers suggested WISP1 expression is well placed to play roles in both fostering growth of the cancer and its spread to bone. In summary, the up-regulation of WISP1 in the early stages of cancer development coupled with its ability to inhibit spread and growth of prostate cancer cells makes it both a potential target and an accessible diagnostic marker for prostate cancer. PMID:23977121

  14. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth.

    PubMed

    Sano, Michael B; Arena, Christopher B; Bittleman, Katelyn R; DeWitt, Matthew R; Cho, Hyung J; Szot, Christopher S; Saur, Dieter; Cissell, James M; Robertson, John; Lee, Yong W; Davalos, Rafael V

    2015-01-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models. PMID:26459930

  15. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    NASA Astrophysics Data System (ADS)

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; Dewitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-10-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.

  16. Chinese medicinal herbs inhibit growth of murine renal cell carcinoma.

    PubMed

    Lau, B H; Ruckle, H C; Botolazzo, T; Lui, P D

    1994-01-01

    Tumors are known to produce factors suppressing immune functions. We previously showed that a murine renal cell carcinoma (Renca) suppressed macrophage function in vitro and that this suppression was abolished by co-incubation with extracts of two Chinese medicinal herbs. We now report that these phytochemicals are capable of inhibiting growth of Renca in vivo. BALB/c mice were transplanted intraperitoneally (IP) with 1-2 x 10(5) Renca cells. One day after tumor transplant, mice were randomized into two groups. One group was treated IP, daily for 10 days, with 100 microliters of phytochemicals containing 500 micrograms each of Astragalus membranaceus and Ligustrum lucidum, while the other group received saline as controls. A cure rate of 57% was obtained with these phytochemicals when the initial tumor load was 2 x 10(5), and 100% when the initial tumor load was 1 x 10(5). Additional experiments were performed to investigate the mechanisms involved in this protection. Splenic macrophages from tumor-bearing mice were shown to have depressed chemiluminescent oxidative burst activity, and this depression was restored with phytochemical treatment. Splenocytes from mice transplanted with Renca responded less favorably to interleukin-2 (IL-2) in generating lymphokine-activated killer (LAK) cells; again this depression was restored with phytochemical treatment. Our data suggest that these phytochemicals may have exerted their antitumor effects via augmentation of phagocyte and LAK cell activities. PMID:7812364

  17. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    PubMed Central

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; DeWitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-01-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models. PMID:26459930

  18. Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice.

    PubMed

    Cordoba-Chacon, Jose; Majumdar, Neena; List, Edward O; Diaz-Ruiz, Alberto; Frank, Stuart J; Manzano, Anna; Bartrons, Ramon; Puchowicz, Michelle; Kopchick, John J; Kineman, Rhonda D

    2015-09-01

    Patients with nonalcoholic fatty liver disease (NAFLD) are reported to have low growth hormone (GH) production and/or hepatic GH resistance. GH replacement can resolve the fatty liver condition in diet-induced obese rodents and in GH-deficient patients. However, it remains to be determined whether this inhibitory action of GH is due to direct regulation of hepatic lipid metabolism. Therefore, an adult-onset, hepatocyte-specific, GH receptor (GHR) knockdown (aLivGHRkd) mouse was developed to model hepatic GH resistance in humans that may occur after sexual maturation. Just 7 days after aLivGHRkd, hepatic de novo lipogenesis (DNL) was increased in male and female chow-fed mice, compared with GHR-intact littermate controls. However, hepatosteatosis developed only in male and ovariectomized female aLivGHRkd mice. The increase in DNL observed in aLivGHRkd mice was not associated with hyperactivation of the pathway by which insulin is classically considered to regulate DNL. However, glucokinase mRNA and protein levels as well as fructose-2,6-bisphosphate levels were increased in aLivGHRkd mice, suggesting that enhanced glycolysis drives DNL in the GH-resistant liver. These results demonstrate that hepatic GH actions normally serve to inhibit DNL, where loss of this inhibitory signal may explain, in part, the inappropriate increase in hepatic DNL observed in NAFLD patients. PMID:26015548

  19. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine.

    PubMed

    Medina, Jorge Mansur; Rodrigues, Juliany Cola Fernandes; Moreira, Otacilio C; Atella, Geórgia; Souza, Wanderley de; Barrabin, Hector

    2015-02-01

    Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens. PMID:25742263

  20. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine

    PubMed Central

    Medina, Jorge Mansur; Rodrigues, Juliany Cola Fernandes; Moreira, Otacilio C; Atella, Geórgia; de Souza, Wanderley; Barrabin, Hector

    2015-01-01

    Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens. PMID:25742263

  1. Contribution of dopamine to mitochondrial complex I inhibition and dopaminergic deficits caused by methylenedioxymethamphetamine in mice.

    PubMed

    Barros-Miñones, L; Goñi-Allo, B; Suquia, V; Beitia, G; Aguirre, N; Puerta, E

    2015-06-01

    Methylenedioxymethamphetamine (MDMA) causes a persistent loss of dopaminergic cell bodies in the substantia nigra of mice. Current evidence indicates that MDMA-induced neurotoxicity is mediated by oxidative stress probably due to the inhibition of mitochondrial complex I activity. In this study we investigated the contribution of dopamine (DA) to such effects. For this, we modulated the dopaminergic system of mice at the synthesis, uptake or metabolism levels. Striatal mitochondrial complex I activity was decreased 1 h after MDMA; an effect not observed in the striatum of DA depleted mice or in the hippocampus, a dopamine spare region. The DA precursor, L-dopa, caused a significant reduction of mitochondrial complex I activity by itself and exacerbated the dopaminergic deficits when combined with systemic MDMA. By contrast, no damage was observed when L-dopa was combined with intrastriatal injections of MDMA. On the other hand, dopamine uptake blockade using GBR 12909, inhibited both, the acute inhibition of complex I activity and the long-term dopaminergic toxicity caused by MDMA. Moreover, the inhibition of DA metabolism with the monoamine oxidase (MAO) inhibitor, pargyline, afforded a significant protection against MDMA-induced complex I inhibition and neurotoxicity. Taken together, these findings point to the formation of hydrogen peroxide subsequent to DA metabolism by MAO, rather than a direct DA-mediated mitochondrial complex I inhibition, and the contribution of a peripheral metabolite of MDMA, as the key steps in the chain of biochemical events leading to DA neurotoxicity caused by MDMA in mice. PMID:25666033

  2. MiR-503 inhibits hepatocellular carcinoma cell growth via inhibition of insulin-like growth factor 1 receptor

    PubMed Central

    Xiao, Yao; Tian, Qinggang; He, Jiantai; Huang, Ming; Yang, Chao; Gong, Liansheng

    2016-01-01

    MicroRNAs (miRs) have been demonstrated to play key roles in the development and progression of hepatocellular carcinoma (HCC). However, the regulatory mechanism of miR-503 in HCC has not been fully uncovered. In this study, we found that miR-503 was significantly downregulated in HCC tissues compared to nontumorous liver tissues. Moreover, lower miR-503 levels were associated with the malignant progression of HCC, and the expression of miR-503 was also decreased in several common HCC cell lines compared to normal human liver cell line THLE-3. Overexpression of miR-503 inhibited proliferation but induced apoptosis of LM3 and HepG2 cells. Bioinformatical analysis and luciferase reporter assay further identified insulin-like growth factor 1 receptor (IGF-1R) as a novel target of miR-503 in 293T cells. Moreover, overexpression of miR-503 led to a significant decrease in the protein levels of IGF-1R, while knockdown of miR-503 enhanced its protein levels in LM3 and HepG2 cells. Besides, overexpression of IGF-1R reversed the effects of miR-503-mediated HCC cell proliferation and apoptosis, indicating that IGF-1R acts as a downstream effector of miR-503 in HCC cells. Furthermore, IGF-1R was found to be significantly upregulated in HCC tissues compared to nontumorous liver tissues. In addition, the mRNA levels of IGF-1R were inversely correlated to the miR-503 levels in the HCC tissues. Thus, we demonstrate that miR-503 inhibits the proliferation and induces the apoptosis of HCC cells, partly at least, by directly targeting IGF-1R, and suggest that IGF-1R may serve as a promising target for the treatment of HCC. PMID:27366090

  3. Inhibition of cystine uptake disrupts the growth of primary brain tumors.

    PubMed

    Chung, Wook Joon; Lyons, Susan A; Nelson, Gina M; Hamza, Hashir; Gladson, Candece L; Gillespie, G Yancey; Sontheimer, Harald

    2005-08-01

    Glial cells play an important role in sequestering neuronally released glutamate via Na+-dependent transporters. Surprisingly, these transporters are not operational in glial-derived tumors (gliomas). Instead, gliomas release glutamate, causing excitotoxic death of neurons in the vicinity of the tumor. We now show that glutamate release from glioma cells is an obligatory by-product of cellular cystine uptake via system xc-, an electroneutral cystine-glutamate exchanger. Cystine is an essential precursor for the biosynthesis of glutathione, a major redox regulatory molecule that protects cells from endogenously produced reactive oxygen species (ROS). Glioma cells, but not neurons or astrocytes, rely primarily on cystine uptake via system xc- for their glutathione synthesis. Inhibition of system xc- causes a rapid depletion of glutathione, and the resulting loss of ROS defense causes caspase-mediated apoptosis. Glioma cells can be rescued if glutathione status is experimentally restored or if glutathione is substituted by alternate cellular antioxidants, confirming that ROS are indeed mediators of cell death. We describe two potent drugs that permit pharmacological inhibition of system xc-. One of these drugs, sulfasalazine, is clinically used to treat inflammatory bowel disease and rheumatoid arthritis. Sulfasalazine was able to reduce glutathione levels in tumor tissue and slow tumor growth in vivo in a commonly used intracranial xenograft animal model for human gliomas when administered by intraperitoneal injection. These data suggest that inhibition of cystine uptake into glioma cells through the pharmacological inhibition of system xc- may be a viable therapeutic strategy with a Food and Drug Administration-approved drug already in hand. PMID:16079392

  4. MiR-940 inhibits hepatocellular carcinoma growth and correlates with prognosis of hepatocellular carcinoma patients.

    PubMed

    Yuan, Bo; Liang, Yasha; Wang, Duoning; Luo, Fengming

    2015-07-01

    Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related death in China. Deregulation of microRNA (miRNA) contributes to HCC development by influencing cell growth, apoptosis, migration or invasion. It has been proved that miR-940 plays important roles in various cancers. Here we investigated the role of miR-940 in HCC. We found that miR-940 was remarkably decreased in HCC tissues and cell lines. Importantly, lower miR-940 expression in HCC tissues significantly correlated with the reduced patient's survival rate. Overexpression of miR-940 inhibited HCC cell line growth and induced cell apoptosis, and vice versa. Estrogen-related receptor gamma (ESRRG) was targeted by miR-940, and suppression of ESRRG inhibited HCC cell lines growth and induced cell apoptosis. In conclusion, we found that a lower level of miR-940 in HCC promoted cellular proliferation via ESRRG, which may lead to the short survival period of HCC patients. PMID:25940592

  5. MiR-940 inhibits hepatocellular carcinoma growth and correlates with prognosis of hepatocellular carcinoma patients

    PubMed Central

    Yuan, Bo; Liang, Yasha; Wang, Duoning; Luo, Fengming

    2015-01-01

    Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related death in China. Deregulation of microRNA (miRNA) contributes to HCC development by influencing cell growth, apoptosis, migration or invasion. It has been proved that miR-940 plays important roles in various cancers. Here we investigated the role of miR-940 in HCC. We found that miR-940 was remarkably decreased in HCC tissues and cell lines. Importantly, lower miR-940 expression in HCC tissues significantly correlated with the reduced patient’s survival rate. Overexpression of miR-940 inhibited HCC cell line growth and induced cell apoptosis, and vice versa. Estrogen-related receptor gamma (ESRRG) was targeted by miR-940, and suppression of ESRRG inhibited HCC cell lines growth and induced cell apoptosis. In conclusion, we found that a lower level of miR-940 in HCC promoted cellular proliferation via ESRRG, which may lead to the short survival period of HCC patients. PMID:25940592

  6. Inhibition of growth and alteration of host cell interactions of Pasteurella multocida with natural byproducts.

    PubMed

    Salaheen, S; Almario, J A; Biswas, D

    2014-06-01

    Pasteurella multocida is a leading cause of fowl cholera in both free-range pasture and conventional/commercially raised poultry. Its infection is a serious threat to poultry health and overall flock viability. Organic poultry is comparatively more vulnerable to this pathogen. It is a significant cause of production loss and price increase of poultry products, specifically organic poultry products. Some plant products are well documented as sources of natural antimicrobials such as polyphenols found in different berry pomaces and citrus oil. Pomace, a byproduct (primarily of seeds and skins) of fruits used for juice and wine production, and citrus oil, the byproduct of citrus juice production, show promising antimicrobial activity against various pathogens. Here, we showed for the first time that blackberry and blueberry pomace extracts and citrus oil inhibited P. multocida growth. Minimum bactericidal concentrations were determined as 0.3 and 0.4 mg/mL gallic acid equivalent for blackberry and blueberry pomace extracts, respectively. Similarly, only 0.05% citrus oil (vol/vol) completely inhibited P. multocida growth. Under shaking conditions, the antimicrobial activity of both pomace extracts and citrus oil was more intensive. Even citrus oil vapor also significantly reduced the growth of P. multocida. In addition, cell surface hydrophobicity of P. multocida was increased by 2- to 3-fold and its adherence to chicken fibroblast (DF1) and bovine mammary gland (MacT) cells was reduced significantly in the presence of pomace extracts only. This study indicates that these natural products might be good alternatives to conventional antimicrobial agents, and hence, may be used as feed or water supplements to control fowl cholera and reduce production loss caused by P. multocida. PMID:24879687

  7. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    PubMed

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. PMID:26980729

  8. Inhibition by somatostatin (growth-hormone release-inhibiting hormone, GH-RIH) of gastric acid and pepsin and G-cell release of gastrin.

    PubMed Central

    Barros D'sa, A A; Bloom, S R; Baron, J H

    1978-01-01

    Somatostatin (cyclic growth-hormone release-inhibiting hormone--GH-RIH) was infused into dogs with gastric fistulae. Somatostatin inhibited gastric acid response to four gastric stimulants--insulin, food, histamine, and pentagastrin. Histamine- and pentagastrin-stimulated pepsins were inhibited similarly to inhibition of acid. Somatostatin inhibited the gastrin response to insulin and food. PMID:348581

  9. Inhibition of bacterial, fungal and plant growth by testa extracts of Citrullus genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon (Citrullus lanatus var. lanatus (Thunb.) Matsum & Nakai) seed exudates inhibit germination and seedling growth of several plant species and growth of pathogenic fungi and bacteria. This study was conducted to determine if extractable components in testae contribute to the inhibition. T...

  10. The novel Aryl hydrocarbon receptor inhibitor biseugenol inhibits gastric tumor growth and peritoneal dissemination

    PubMed Central

    Lai, De-Wei; Karlsson, Anna Isabella; Wang, Keh-Bin; Chen, Yi-Ching; Shen, Chin-Chang; Wu, Sheng-Mao; Liu, Chia-Yu; Tien, Hsing-Ru; Peng, Yen-Chun; Jan, Yee-Jee; Chao, Te-Hsin; Lan, Keng-Hsin; Arbiser, Jack L.; Sheu, Meei-Ling

    2014-01-01

    Biseugenol (Eug) is known to antiproliferative of cancer cells; however, to date, the antiperitoneal dissemination effects have not been studied in any mouse cancer model. In this study, Aryl hydrocarbon receptor (AhR) expression was associated with lymph node and distant metastasis in patients with gastric cancer and was correlated with clinicolpathological pattern. We evaluated the antiperitoneal dissemination potential of knockdown AhR and Biseugenol in cancer mouse model and assessed mesenchymal characteristics. Our results demonstrate that tumor growth, peritoneal dissemination and peritoneum or organ metastasis implanted MKN45 cells were significantly decreased in shAhR and Biseugenol-treated mice and that endoplasmic reticulum (ER) stress was caused. Biseugenol-exposure tumors showed acquired epithelial features such as phosphorylation of E-cadherin, cytokeratin-18 and loss mesenchymal signature Snail, but not vimentin regulation. Snail expression, through AhR activation, is an epithelial-to-mesenchymal transition (EMT) determinant. Moreover, Biseugenol enhanced Calpain-10 (Calp-10) and AhR interaction resulted in Snail downregulation. The effect of shCalpain-10 in cancer cells was associated with inactivation of AhR/Snail promoter binding activity. Inhibition of Calpain-10 in gastric cancer cells by short hairpin RNA or pharmacological inhibitor was found to effectively reduced growth ability and vessel density in vivo. Importantly, knockdown of AhR completed abrogated peritoneal dissemination. Herein, Biseugenol targeting ER stress provokes Calpain-10 activity, sequentially induces reversal of EMT and apoptosis via AhR may involve the paralleling processes. Taken together, these data suggest that Calpain-10 activation and AhR inhibition by Biseugenol impedes both gastric tumor growth and peritoneal dissemination by inducing ER stress and inhibiting EMT. PMID:25226618

  11. Nimbolide, a Limonoid Triterpene, Inhibits Growth of Human Colorectal Cancer Xenografts by Suppressing the Proinflammatory Microenvironment

    PubMed Central

    Gupta, Subash C.; Prasad, Sahdeo; Sethumadhavan, Dhanya R.; Nair, Mangalam S.; Mo, Yin-Yuan; Aggarwal, Bharat B.

    2014-01-01

    Purpose Extensive research over the past decade has revealed that the proinflammatory microenvironment plays a critical role in the development of colorectal cancer (CRC). Whether nimbolide, a limonoid triterpene, can inhibit the growth of CRC was investigated in the present study. Experimental Design The effect of nimbolide on proliferation of CRC cell lines was examined by MTT assay, apoptosis by caspase activation and poly-ADP ribose polymerase cleavage, nuclear factor-kappa B (NF-kB) activation by DNA-binding assay, and protein expression by Western blotting. The effect of nimbolide on the tumor growth in vivo was examined in CRC xenografts in a nude mouse model. Results Nimbolide inhibited proliferation, induced apoptosis, and suppressed NF-κB activation and NF-κB–regulated tumorigenic proteins in CRC cells. The suppression of NF-κB activation by nimbolide was caused by sequential inhibition of IκB kinase (IKK) activation, IκBα phosphorylation, and p65 nuclear translocation. Furthermore, the effect of nimbolide on IKK activity was found to be direct. In vivo, nimbolide (at 5 and 20 mg/kg body weight), injected intraperitoneally after tumor inoculation, significantly decreased the volume of CRC xenografts. The limonoid-treated xenografts exhibited significant down-regulation in the expression of proteins involved in tumor cell survival (Bcl-2, Bcl-xL, c-IAP-1, survivin, Mcl-1), proliferation (c-Myc, cyclin D1), invasion (MMP-9, ICAM-1), metastasis (CXCR4), and angiogenesis (VEGF). The limonoid was found to be bioavailable in the blood plasma and tumor tissues of treated mice. Conclusions Our studies provide evidence that nimbolide can suppress the growth of human CRC through modulation of the proinflammatory microenvironment. PMID:23766363

  12. A tissue-engineered therapeutic device inhibits tumor growth in vitro and in vivo.

    PubMed

    Sun, Ming; Wang, Miao; Chen, Muwan; Dagnaes-Hansen, Frederik; Le, Dang Quang Svend; Baatrup, Anette; Horsman, Michael R; Kjems, Jørgen; Bünger, Cody Eric

    2015-05-01

    Bone metastasis is one of the leading causes of death in breast cancer patients. The current treatment is performed as a palliative therapy and the adverse side effects can compromise the patients' quality of life. In order to both effectively treat bone metastasis and avoid the limitation of current strategies, we have invented a drug eluting scaffold with clay matrix release doxorubicin (DESCLAYMR_DOX) to mechanically support the structure after resecting the metastatic tissue while also releasing the anticancer drug doxorubicin which supplements growth inhibition and elimination of the remaining tumor cells. We have previously demonstrated that this device has the capacity to regenerate the bone and provide sustained release of the anticancer drug in vitro. In this study, we focus on the ability of the device to inhibit cancer cell growth in vitro as well as in vivo. Drug-release kinetics was investigated and the cell viability test showed that the tumor inhibitory effect is sustained for up to 4weeks in vitro. Subcutaneous implantation of DESCLAYMR_DOX in athymic mice resulted in significant growth inhibition of human tumor xenografts of breast origin and decelerated multi-organ metastasis formation. Fluorescence images, visualizing doxorubicin, showed a sustained drug release from the DESCLAYMR device in vivo. Furthermore, local use of DESCLAYMR_DOX implantation reduced the incidence of doxorubicin's cardio-toxicity. These results suggest that DESCLAYMR_DOX can be used in reconstructive surgery to support the structure after bone tumor resection and facilitate a sustained release of anticancer drugs in order to prevent tumor recurrence. PMID:25686557

  13. Bacteria Isolated from Bats Inhibit the Growth of Pseudogymnoascus destructans, the Causative Agent of White-Nose Syndrome

    PubMed Central

    Hoyt, Joseph R.; Cheng, Tina L.; Langwig, Kate E.; Hee, Mallory M.; Frick, Winifred F.; Kilpatrick, A. Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species. PMID:25853558

  14. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome.

    PubMed

    Hoyt, Joseph R; Cheng, Tina L; Langwig, Kate E; Hee, Mallory M; Frick, Winifred F; Kilpatrick, A Marm

    2015-01-01

    Emerging infectious diseases are a key threat to wildlife. Several fungal skin pathogens have recently emerged and caused widespread mortality in several vertebrate groups, including amphibians, bats, rattlesnakes and humans. White-nose syndrome, caused by the fungal skin pathogen Pseudogymnoascus destructans, threatens several hibernating bat species with extinction and there are few effective treatment strategies. The skin microbiome is increasingly understood to play a large role in determining disease outcome. We isolated bacteria from the skin of four bat species, and co-cultured these isolates with P. destructans to identify bacteria that might inhibit or kill P. destructans. We then conducted two reciprocal challenge experiments in vitro with six bacterial isolates (all in the genus Pseudomonas) to quantify the effect of these bacteria on the growth of P. destructans. All six Pseudomonas isolates significantly inhibited growth of P. destructans compared to non-inhibitory control bacteria, and two isolates performed significantly better than others in suppressing P. destructans growth for at least 35 days. In both challenge experiments, the extent of suppression of P. destructans growth was dependent on the initial concentration of P. destructans and the initial concentration of the bacterial isolate. These results show that bacteria found naturally occurring on bats can inhibit the growth of P. destructans in vitro and should be studied further as a possible probiotic to protect bats from white-nose syndrome. In addition, the presence of these bacteria may influence disease outcomes among individuals, populations, and species. PMID:25853558

  15. Growth inhibition and chromosomal instability of cultured marsupial (opossum) cells after treatment with DNA polymerase α inhibitor.

    PubMed

    Takemura, Masaharu; Kazama, Tomoko; Sakuma, Kurumi; Mizushina, Yoshiyuki; Oshima, Teruyoshi

    2011-01-01

    The DNA replication mechanism has been well established for eutherian mammals (placental mammals such as humans, mice, and cattle), but not, to date, for metatherian mammals (marsupials such as kangaroos, koalas, and opossums). In this study, we found that dehydroaltenusin, a selective inhibitor of mammalian (eutherian) DNA polymerase α, clearly suppressed the growth of metatherian (opossum and rat kangaroo) cultured cells. In cultured opossum (OK) cells, dehydroaltenusin also suppressed the progression of DNA replication. These results suggest that dehydroaltenusin inhibits metatherian as well as eutherian DNA replication. Dehydroaltenusin treatment of OK cells engendered fluctuations in the numbers of chromosomes in the OK cells as well as inhibition of cell growth and DNA replication. This suggests that partial inhibition of DNA replication by dehydroaltenusin causes chromosomal instability in cultured cells. PMID:21737927

  16. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    SciTech Connect

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun; Chiu, Chien-Chih; Su, Chun-Li; Chen, Kwun-Min; Fang, Kang

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  17. Simultaneous Inhibition of Key Growth Pathways in Melanoma Cells and Tumor Regression by a Designed Bidentate Constrained Helical Peptide

    PubMed Central

    Dhar, Amlanjyoti; Mallick, Shampa; Ghosh, Piya; Maiti, Atanu; Ahmed, Israr; Bhattacharyya, Seemana; Mandal, Tapashi; Manna, Asit; Roy, Koushik; Singh, Sandeep; Nayak, Dipak Kumar; Wilder, Paul T.; Markowitz, Joseph; Weber, David J.; Ghosh, Mrinal K.; Chattopadhyay, Samit; Guha, Rajdeep; Konar, Aditya; Bandyopadhyay, Santu; Roy, Siddhartha

    2014-01-01

    Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight binding peptide, TRTK-12. The helical conformation of the peptide was constrained by substitution of α-amino isobutyric acid----an amino acid having high helical propensity----in positions which do not interact with S100B. A branched bidentate version of the peptide, bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts anti-proliferative action through simultaneous inhibition of key growth pathways including reactivation of wild-type p53 and inhibition of Akt and STAT-3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development. PMID:24839139

  18. Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis

    PubMed Central

    Zhang, Guodong; Panigrahy, Dipak; Hwang, Sung Hee; Yang, Jun; Mahakian, Lisa M.; Wettersten, Hiromi I.; Liu, Jun-Yan; Wang, Yanru; Ingham, Elizabeth S.; Tam, Sarah; Kieran, Mark W.; Weiss, Robert H.; Ferrara, Katherine W.; Hammock, Bruce D.

    2014-01-01

    Prostaglandins derived from the cyclooxygenase (COX) pathway and epoxyeicosatrienoic acids (EETs) from the cytochrome P450/soluble epoxide hydrolase (sEH) pathway are important eicosanoids that regulate angiogenesis and tumorigenesis. COX-2 inhibitors, which block the formation of prostaglandins, suppress tumor growth, whereas sEH inhibitors, which increase endogenous EETs, stimulate primary tumor growth and metastasis. However, the functional interactions of these two pathways in cancer are unknown. Using pharmacological inhibitors as probes, we show here that dual inhibition of COX-2 and sEH synergistically inhibits primary tumor growth and metastasis by suppressing tumor angiogenesis. COX-2/sEH dual pharmacological inhibitors also potently suppress primary tumor growth and metastasis by inhibiting tumor angiogenesis via selective inhibition of endothelial cell proliferation. These results demonstrate a critical interaction of these two lipid metabolism pathways on tumorigenesis and suggest dual inhibition of COX-2 and sEH as a potential therapeutic strategy for cancer therapy. PMID:25024195

  19. Epidermal growth factor receptor inhibition in lung cancer: status 2012.

    PubMed

    Hirsch, Fred R; Jänne, Pasi A; Eberhardt, Wilfried E; Cappuzzo, Federico; Thatcher, Nick; Pirker, Robert; Choy, Hak; Kim, Edward S; Paz-Ares, Luis; Gandara, David R; Wu, Yi-Long; Ahn, Myung-Ju; Mitsudomi, Tetsuya; Shepherd, Frances A; Mok, Tony S

    2013-03-01

    Lung cancer is the most common cause of cancer deaths. Most patients present with advanced-stage disease, and the prognosis is generally poor. However, with the understanding of lung cancer biology, and development of molecular targeted agents, there have been improvements in treatment outcomes for selected subsets of patients with non-small-cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have demonstrated significantly improved tumor responses and progression-free survival in subsets of patients with advanced NSCLC, particularly those with tumors harboring activating EGFR mutations. Testing for EGFR mutations is a standard procedure for identification of patients who will benefit from first-line EGFR TKIs. For patients with advanced NSCLC and no activating EGFR mutations (EGFR wild-type) or no other driving oncogenes such as ALK-gene rearrangement, chemotherapy is still the standard of care. A new generation of EGFR TKIs, targeting multiple receptors and with irreversible bindings to the receptors, are in clinical trials and have shown encouraging effects. Research on primary and acquired resistant mechanisms to EGFR TKIs are ongoing. Monoclonal antibodies (e.g. cetuximab), in combination with chemotherapy, have demonstrated improved outcomes, particularly for subsets of NSCLC patients, but further validations are needed. Novel monoclonal antibodies are combined with chemotherapy, and randomized comparative studies are ongoing. This review summarizes the current status of EGFR inhibitors in NSCLC in 2012 and some of the major challenges we are facing. PMID:23370315

  20. Inhibition of Fusarium graminearum growth in flour gel cultures by hexane-soluble compounds from oat (Avena sativa L.) flour.

    PubMed

    Doehlert, Douglas C; Rayas-Duarte, Patricia; McMullen, Michael S

    2011-12-01

    Fusarium head blight, incited by the fungus Fusarium graminearum, primarily affects wheat (Triticum aestivum) and barley (Hordeum vulgarum), while oat (Avena sativa) appears to be more resistant. Although this has generally been attributed to the open panicle of oats, we hypothesized that a chemical component of oats might contribute to this resistance. To test this hypothesis, we created culture media made of wheat, barley, and oat flour gels (6 g of flour in 20 ml of water, gelled by autoclaving) and inoculated these with plugs of F. graminearum from actively growing cultures. Fusarium growth was measured from the diameter of the fungal plaque. Plaque diameter was significantly smaller on oat flour cultures than on wheat or barley cultures after 40 to 80 h of growth. Ergosterol concentration was also significantly lower in oat cultures than in wheat cultures after growth. A hexane extract from oats added to wheat flour also inhibited Fusarium growth, and Fusarium grew better on hexane-defatted oat flour. The growth of Fusarium on oat flour was significantly and negatively affected by the oil concentration in the oat, in a linear relationship. A hexane-soluble chemical in oat flour appears to inhibit Fusarium growth and might contribute to oat's resistance to Fusarium head blight. Oxygenated fatty acids, including hydroxy, dihydroxy, and epoxy fatty acids, were identified in the hexane extracts and are likely candidates for causing the inhibition. PMID:22186063

  1. Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds

    PubMed Central

    Sackett, Tara E.; Thomas, Sean C.

    2016-01-01

    Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)–gas chromatography–mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant

  2. Topical minoxidil counteracts stress-induced hair growth inhibition in mice.

    PubMed

    Arck, Petra Clara; Handjiski, Bori; Peters, Eva M J; Hagen, Evelin; Klapp, Burghard F; Paus, Ralf

    2003-10-01

    Stress has long been suspected as a possible cause of hair loss in various species, even though convincing experimental evidence has not been available. Recently, we have shown in a murine model that sonic stress alters hair growth and cycling in vivo, and have postulated the existence of a 'brain-hair follicle axis' (BHA). In order to study whether a clinically available and widely used topically active hair growth stimulator mitigates stress-triggered hair growth inhibition in this stress model, we have applied a 5% minoxidil solution. Female CBA/J mice were depilated and randomized in to two groups: control (n = 20) and sonic stress (n = 20). These groups were further divided and either treated daily with 5% minoxidil solution or vehicle alone. The stress group was exposed to sonic stress for 24 h starting 14 days after anagen induction by depilation. All mice were sacrificed 16 days after the depilation and assessed by quantitative histomorphometry. Sonic stress significantly increased the number of hair follicles with apoptotic cells and inhibited intrafollicular keratinocyte proliferation. In addition, the number of clusters of perifollicular MHC class II+ cells and degranulated perifollicular mast cells was significantly enhanced in the stressed mice. In accordance with previous findings, all stressed mice showed an advanced hair cycle progression towards catagen. All of these stress-induced hair growth inhibitory changes along the BHA were down-regulated by topical minoxidil application. This encourages one to explore clinically whether topical minoxidil is a safe and effective pharmacologic tool for the management of stress-associated telogen effluvium in humans. PMID:14705798

  3. Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi.

    PubMed

    Velho, R V; Medina, L F C; Segalin, J; Brandelli, A

    2011-07-01

    The biological activity and the presence of genes sfp and ituD (surfactin and iturin A) among Bacillus strains isolated from the Amazon basin were determined. Bacillus spp. were tested for hemolytic activity and inhibition of fungal growth by agar plate assays in parallel with PCR for identification of sfp and ituD genes. All strains tested produced surface-active compounds, giving evidence by lysis of erythrocytes and emulsifying activity on mineral oil and soybean oil. These strains of Bacillus caused growth inhibition of several phytopathogenic fungi, including Fusarium spp., Aspergillus spp., and Bipolaris sorokiniana. The presence of genes ituD and sfp was confirmed by PCR and sequence analysis. The only exception was Bacillus sp. P34 that lacks sfp gene. Lipopeptides were isolated from culture supernatants and analyzed by mass spectrometry. Characteristic m/z peaks for surfactin and iturin were observed, and some strains also produced fengycin and bacillomycin. The remarkable antifungal activity showed by the strains could be associated with the co-production of three or more lipopeptide antibiotics. Screening for novel bacteria producing useful biosurfactants or biocontrol agents for agriculture is a topic of greatest importance to eliminate chemical pollutants. PMID:21818610

  4. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.

    PubMed

    Krustok, I; Odlare, M; Truu, J; Nehrenheim, E

    2016-02-01

    The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors. PMID:26716890

  5. Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro.

    PubMed

    Jeong, Clara H; Gao, Liying; Dettro, Tyler; Wagner, Elizabeth D; Ricke, William A; Plewa, Michael J; Flaws, Jodi A

    2016-07-01

    Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25-1.00mM of CAA; 2-15μM of BAA or IAA) for 48 and 96h. Follicle growth was measured every 24h and the media were analyzed for estradiol levels at 96h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro. PMID:27151372

  6. Galactose inhibits auxin-induced growth of Avena coleoptiles by two mechanisms

    NASA Technical Reports Server (NTRS)

    Cheung, S. P.; Cleland, R. E.

    1991-01-01

    Galactose inhibits auxin-induced growth of Avena coleoptiles by at least two mechanisms. First, it inhibits auxin-induced H(+)-excretion needed for the initiation of rapid elongation. Galactose cannot be doing so by directly interfering with the ATPase since fusicoccin-induced H(+)-excretion is not affected. Secondly, galactose inhibits long-term auxin-induced growth, even in an acidic (pH 4.5) solution. This may be due to an inhibition of cell wall synthesis. However, galactose does not reduce the capacity of walls to be loosened by H+, given exogenously or excreted in response to fusicoccin.

  7. Synergistic action of auxin and ethylene on root elongation inhibition is caused by a reduction of epidermal cell length.

    PubMed

    Alarcón, M Victoria; Lloret, Pedro G; Salguero, Julio

    2014-01-01

    Auxin and ethylene have been largely reported to reduce root elongation in maize primary root. However the effects of auxin are greater than those caused by ethylene. Although auxin stimulates ethylene biosynthesis through the specific increase of ACC synthase, the auxin inhibitory effect on root elongation is not mediated by the auxin-induced increase of ethylene production. Recently it has been demonstrated that root inhibition by the application of the synthetic auxin NAA (1-naphtalenacetic acid) is increased if combined with the ethylene precursor ACC (1-aminocyclopropane-1-carboxilic acid) when both compounds are applied at very low concentrations.   Root elongation is basically the result of two processes: a) cell divisions in the meristem where meristematic cells continuously generate new cells and b) subsequently polarized growth by elongation along the root axis as cells leave the meristem and enter the root elongation zone. Our results indicate that exogenous auxin reduced both root elongation and epidermal cell length. In a different way, ethylene at very low concentrations only inhibited root elongation without affecting significantly epidermal cell length. However, these concentrations of ethylene increased the inhibitory effect of auxin on root elongation and cell length. Consequently the results support the hypothesis that ethylene acts synergistically with auxin in the regulation of root elongation and that inhibition by both hormones is due, at least partially, to the reduction of cell length in the epidermal layer. PMID:24598313

  8. The inhibition of angiogenesis and tumor growth by denbinobin is associated with the blocking of insulin-like growth factor-1 receptor signaling.

    PubMed

    Tsai, An-Chi; Pan, Shiow-Lin; Lai, Chin-Yu; Wang, Chih-Ya; Chen, Chien-Chih; Shen, Chien-Chang; Teng, Che-Ming

    2011-07-01

    Denbinobin, which is a phenanthraquinone derivative present in the stems of Ephemerantha lonchophylla, has been demonstrated to display antitumor activity. Recent reports suggest that the enhanced activity of insulin-like growth factor-1 receptor (IGF-1R) is closely associated with tumor angiogenesis and growth. This study aims at investigating the roles of denbinobin in suppressing these effects and at further elucidating the underlying molecular mechanisms. In the present study, we used an in vivo xenograft model antitumor and the Matrigel implant assays to show that denbinobin suppresses lung adenocarcinoma A549 growth and microvessel formation. Additionally, crystal violet and capillary-like tube formation assays indicated that denbinobin selectively inhibits insulin-like growth factor-1 (IGF-1)-induced proliferation (GI50=1.3×10⁻⁸ M) and tube formation of human umbilical vascular endothelial cells (HUVECs) without influencing the effect of epidermal growth factor; vascular endothelial growth factor and basic fibroblast growth factor. Furthermore, denbinobin inhibited the IGF-1-induced migration of HUVECs in a concentration-dependent fashion. Western blotting and immunoprecipitation demonstrated that denbinobin causes more efficient inhibition of IGF-1-induced activation of IGF-1R and its downstream signaling targets, including , extracellular signal-regulated kinase, Akt, mTOR, p70S6K, 4EBP and cyclin D1. All of our results provide evidences that denbinobin suppresses the activation of IGF-1R and its downstream signaling pathway, which leads to the inhibition of angiogenesis. Our findings suggest that denbinobin may be a novel IGF-1R kinase inhibitor and has potential therapeutic abilities for angiogenesis-related diseases such as cancer. PMID:20951021

  9. Mis-regulation of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase does not account for growth inhibition by phenylalanine in Agmenellum quadruplicatum.

    PubMed

    Jensen, R A; Stenmark-Cox, S; Ingram, L O

    1974-12-01

    The growth of the blue-green bacterium, Agmenellum quadruplicatum, is inhibited in the presence of l-phenylalanine. This species has a single, constitutively synthesized 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthetase. l-Phenylalanine inhibits DAHP synthetase non-competitively with respect to both substrate reactants. Other aromatic amino acids do not inhibit the activity of DAHP synthetase. A common expectation for branch-point enzymes such as DAHP synthetase is a balanced pattern of feedback control by all of the ultimate end products. It seemed likely that growth inhibition might equate with defective regulation within the branched aromatic pathway. Accordingly, the possibility was examined that mis-regulation of DAHP synthetase by l-phenylalanine in wild-type cells causes starvation for precursors of the other aromatic end products. However, the molecular basis for growth inhibition cannot be attributed to l-phenylalanine inhibition of DAHP synthetase for the following reasons: (i) DAHP synthetase enzymes from l-phenylalanine-resistant mutants are more, rather than less, sensitive to feedback inhibition by l-phenylalanine. (ii) Shikimate not only fails to antagonize inhibition, but is itself inhibitory. (iii) Neither the sensitivity nor the completeness of l-phenylalanine inhibition of the wild-type enzyme in vitro appears sufficient to account for the potent inhibition of growth in vivo by l-phenylalanine. The dominating effect of l-phenylalanine in the control of DAHP synthetase appears to reflect a mechanism that prevents rather than causes growth inhibition by l-phenylalanine. The alteration of the control of DAHP synthetase in mutants selected for resistance to growth inhibition by l-phenylalanine did indicate that the cause for this metabolite vulnerability can be localized within the aromatic amino acid pathway. Apparently, an aromatic intermediate (between shikimate and the end products) accumulates in the presence of l

  10. Polymer film deposition on agar using a dielectric barrier discharge jet and its bacterial growth inhibition

    NASA Astrophysics Data System (ADS)

    Tsai, T.-C.; Cho, J.; Mcintyre, K.; Jo, Y.-K.; Staack, D.

    2012-08-01

    Polymer film deposition on agar in ambient air was achieved using the helium dielectric barrier discharge jet (DBD jet) fed with polymer precursors, and the bacterial growth inhibition due to the deposited film was observed. The DBD jet with precursor addition was more efficient at sterilization than a helium-only DBD jet. On the areas where polymer films cover the agar the bacterial growth was significantly inhibited. The inhibition efficacy showed dependence on the film thickness. The DBD jet without precursor also created a modified agar layer, which may slow the growth of some bacterial strains.

  11. Growth inhibition of Mycobacterium tuberculosis by polyoxyethylene stearate present in the BACTEC pyrazinamide susceptibility test.

    PubMed

    Miller, M A; Thibert, L; Desjardins, F; Siddiqi, S H; Dascal, A

    1996-01-01

    We have previously found that approximately 3.5% of 428 clinical isolates of Mycobacterium tuberculosis yield uninterpretable results in the BACTEC pyrazinamide (PZA) susceptibility test system, because of inadequate growth. We tested the hypothesis that polyoxyethylene stearate (POES), the ingredient of the reconstituting fluid for the test, was the cause of this growth inhibition. A total of 15 isolates known for their previously uninterpretable results and 100 randomly chosen clinical isolates were tested in parallel both with and without POES. Repeat testing of the isolates with previously uninterpretable results yielded results in the presence of POES in only seven (47%). In the absence of POES, all gave interpretable results but one such result showed false resistance. For the other 100 clinical isolates, interpretable results were obtained with and without POES, but growth was enhanced in the absence of POES, especially in the PZA-susceptible strains. This was evidenced by a decreased time to attain a growth index of 200 in the control vial (4.9 days without POES versus 5.8 days with POES; P < 0.001) and a higher mean growth index ratio on the day of interpretation of the test (7.4% without POES versus 2.2% with POES; P < 0.001). However, the enhanced growth without POES led to 20 susceptible strains being misinterpreted as either resistant or borderline. We suggest that isolates of M. tuberculosis which yield uninterpretable results in the BACTEC PZA test system should be retested both with and without POES. If interpretable results indicating PZA resistance are obtained only in the absence of POES, the result should be confirmed by a pyrazinamidase assay or by the conventional proportion method. Routine omission of POES from the BACTEC test for all clinical strains is discouraged because of the unacceptably high false-resistance rates. PMID:8748279

  12. Plant Lectin Can Target Receptors Containing Sialic Acid, Exemplified by Podoplanin, to Inhibit Transformed Cell Growth and Migration

    PubMed Central

    Shen, Yongquan; Acharya, Nimish K.; Han, Min; McNulty, Dean E.; Hasegawa, Hitoki; Hyodo, Toshinori; Senga, Takeshi; Geng, Jian-Guo; Kosciuk, Mary; Shin, Seung S.; Goydos, James S.; Temiakov, Dmitry; Nagele, Robert G.; Goldberg, Gary S.

    2012-01-01

    Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL) with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth. PMID:22844530

  13. Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration.

    PubMed

    Ochoa-Alvarez, Jhon Alberto; Krishnan, Harini; Shen, Yongquan; Acharya, Nimish K; Han, Min; McNulty, Dean E; Hasegawa, Hitoki; Hyodo, Toshinori; Senga, Takeshi; Geng, Jian-Guo; Kosciuk, Mary; Shin, Seung S; Goydos, James S; Temiakov, Dmitry; Nagele, Robert G; Goldberg, Gary S

    2012-01-01

    Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL) with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth. PMID:22844530

  14. CDK2 Inhibition Causes Anaphase Catastrophe in Lung Cancer through the Centrosomal Protein CP110

    PubMed Central

    Hu, Shanhu; Danilov, Alexey V.; Godek, Kristina; Orr, Bernardo; Tafe, Laura J.; Rodriguez-Canales, Jaime; Behrens, Carmen; Mino, Barbara; Moran, Cesar A.; Memoli, Vincent A.; Mustachio, Lisa Maria; Galimberti, Fabrizio; Ravi, Saranya; DeCastro, Andrew; Lu, Yun; Sekula, David; Andrew, Angeline S; Wistuba, Ignacio I.; Freemantle, Sarah; Compton, Duane A.; Dmitrovsky, Ethan

    2015-01-01

    Aneuploidy is frequently detected in human cancers and is implicated in carcinogenesis. Pharmacological targeting of aneuploidy is an attractive therapeutic strategy as this would preferentially eliminate malignant over normal cells. We previously discovered that CDK2 inhibition causes lung cancer cells with more than two centrosomes to undergo multipolar cell division leading to apoptosis, defined as anaphase catastrophe. Cells with activating KRAS mutations were especially sensitive to CDK2 inhibition. Mechanisms of CDK2-mediated anaphase catastrophe and how activated KRAS enhances this effect were investigated. Live-cell imaging provided direct evidence that following CDK2 inhibition, lung cancer cells develop multipolar anaphase and undergo multipolar cell division with the resulting progeny apoptotic. Small interfering RNA (siRNA)-mediated repression of the CDK2 target and centrosome protein CP110 induced anaphase catastrophe of lung cancer cells. In contrast, CP110 overexpression antagonized CDK2 inhibitor-mediated anaphase catastrophe. Furthermore, activated KRAS mutations sensitized lung cancer cells to CDK2 inhibition by deregulating CP110 expression. Thus, CP110 is a critical mediator of CDK2-inhibition-driven anaphase catastrophe. Independent examination of murine and human paired normal-malignant lung tissues revealed marked upregulation of CP110 in malignant versus normal lung. Human lung cancers with KRAS mutations had significantly lower CP110 expression as compared to KRAS wild-type cancers. Thus, a direct link was found between CP110 and CDK2 inhibitor antineoplastic response. CP110 plays a mechanistic role in response of lung cancer cells to CDK2 inhibition, especially in the presence of activated KRAS mutations. PMID:25808870

  15. Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774.

    PubMed

    Barton, Larry L; Lyle, Daniel A; Ritz, Nathaniel L; Granat, Alex S; Khurshid, Ali N; Kherbik, Nada; Hider, Robert; Lin, Henry C

    2016-04-01

    Sulfate-reducing bacteria have been implicated in inflammatory bowel diseases and ulcerative colitis in humans and there is an interest in inhibiting the growth of these sulfide-producing bacteria. This research explores the use of several chelators of bismuth to determine the most effective chelator to inhibit the growth of sulfate-reducing bacteria. For our studies, Desulfovibrio desulfuricans ATCC 27774 was grown with nitrate as the electron acceptor and chelated bismuth compounds were added to test for inhibition of growth. Varying levels of inhibition were attributed to bismuth chelated with subsalicylate or citrate but the most effective inhibition of growth by D. desulfuricans was with bismuth chelated by deferiprone, 3-hydroxy-1,2-dimethyl-4(1H)-pyridone. Growth of D. desulfuricans was inhibited by 10 μM bismuth as deferiprone:bismuth with either nitrate or sulfate respiration. Our studies indicate deferiprone:bismuth has bacteriostatic activity on D. desulfuricans because the inhibition can be reversed following exposure to 1 mM bismuth for 1 h at 32 °C. We suggest that deferiprone is an appropriate chelator for bismuth to control growth of sulfate-reducing bacteria because deferiprone is relatively nontoxic to animals, including humans, and has been used for many years to bind Fe(III) in the treatment of β-thalassemia. PMID:26896170

  16. A chrysin derivative suppresses skin cancer growth by inhibiting cyclin-dependent kinases.

    PubMed

    Liu, Haidan; Liu, Kangdong; Huang, Zunnan; Park, Chan-Mi; Thimmegowda, N R; Jang, Jae-Hyuk; Ryoo, In-Ja; He, Long; Kim, Sun-Ok; Oi, Naomi; Lee, Ki Won; Soung, Nak-Kyun; Bode, Ann M; Yang, Yifeng; Zhou, Xinmin; Erikson, Raymond L; Ahn, Jong-Seog; Hwang, Joonsung; Kim, Kyoon Eon; Dong, Zigang; Kim, Bo-Yeon

    2013-09-01

    Chrysin (5,7-dihydroxyflavone), a natural flavonoid widely distributed in plants, reportedly has chemopreventive properties against various cancers. However, the anticancer activity of chrysin observed in in vivo studies has been disappointing. Here, we report that a chrysin derivative, referred to as compound 69407, more strongly inhibited EGF-induced neoplastic transformation of JB6 P(+) cells compared with chrysin. It attenuated cell cycle progression of EGF-stimulated cells at the G1 phase and inhibited the G1/S transition. It caused loss of retinoblastoma phosphorylation at both Ser-795 and Ser-807/811, the preferred sites phosphorylated by Cdk4/6 and Cdk2, respectively. It also suppressed anchorage-dependent and -independent growth of A431 human epidermoid carcinoma cells. Compound 69407 reduced tumor growth in the A431 mouse xenograft model and retinoblastoma phosphorylation at Ser-795 and Ser-807/811. Immunoprecipitation kinase assay results showed that compound 69407 attenuated endogenous Cdk4 and Cdk2 kinase activities in EGF-stimulated JB6 P(+) cells. Pulldown and in vitro kinase assay results indicated that compound 69407 directly binds with Cdk2 and Cdk4 in an ATP-independent manner and inhibited their kinase activities. A binding model between compound 69407 and a crystal structure of Cdk2 predicted that compound 69407 was located inside the Cdk2 allosteric binding site. The binding was further verified by a point mutation binding assay. Overall results indicated that compound 69407 is an ATP-noncompetitive cyclin-dependent kinase inhibitor with anti-tumor effects, which acts by binding inside the Cdk2 allosteric pocket. This study provides new insights for creating a general pharmacophore model to design and develop novel ATP-noncompetitive agents with chemopreventive or chemotherapeutic potency. PMID:23888052

  17. Effect of Trichoderma on plant growth: A balance between inhibition and growth promotion.

    PubMed

    Ousley, M A; Lynch, J M; Whipps, J M

    1993-11-01

    The effect of lettuce (Latuca sativa L.) germination and growth in nonsterilized potting compost of 0.1% and 1.0% w/w incorporation of fermenter biomass inocula of six strains of Trichoderma was investigated. Except for strains WT and T35 at 0.1 % w/w, all inocula inhibited germination. Biomass of strains WT, T35, 20, and 47 at 1.0% promoted shoot fresh weight, whereas strains TH1 and 8MF2 were inhibitory. In contrast, when biomass of strains WT, TH1, and 8MF2 was autoclaved and incorporated at 1%, shoot fresh weight was promoted, but the biomass of T35 was inhibitory. None of the strains incorporated at 0.1 % w/w increased shoot fresh weight, and autoclaved biomass of TH1, T35, and 20 incorporated at 0.1% w/w resulted in lower shoot fresh weights in comparison with uninoculated controls. The shoot dry weight of lettuce seedlings could be enhanced by germinating seeds in uninoculated compost and after five days' growth transferring them into WT-inoculated compost. Inoculum of strain TH1 when applied using this method was very inhibitory. With WT the degree of increase in shoot fresh weight and germination rate declined as the fermentation time to produce inocula was increased. PMID:24190096

  18. Enhanced non-vitreous cryopreservation of immortalized and primary cells by ice-growth inhibiting polymers.

    PubMed

    Deller, Robert C; Pessin, Jeffrey E; Vatish, Manu; Mitchell, Daniel A; Gibson, Matthew I

    2016-07-21

    Cell cryopreservation is an essential tool in modern biotechnology and medicine. The ability to freeze, store and distribute materials underpins basic cell biology and enables storage of donor cells needed for transplantation and regenerative medicine. However, many cell types do not survive freezing and the current state-of-the-art involves the addition of significant amounts of organic solvents as cryoprotectants, which themselves can be cytotoxic, or simply interfere with assays. A key cause of cell death in cryopreservation is ice recrystallization (growth), which primarily occurs during thawing. Here it is demonstrated that the addition of ice recrystalization inhibiting polymers to solutions containing low (non vitrifying) concentrations of DMSO enhance cell recovery rates by up to 75%. Cell functionality is also demonstrated using a placental cell line, and enhanced cryopreservation of primary rat hepatocytes is additionally shown. The crucial role of the polymers architecture (chain length) is shown, with shorter polymers being more effective than longer ones. PMID:27152370

  19. Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals

    SciTech Connect

    Jobling, S.; Sumpter, J.P.; Sheahan, D.; Osborne, J.A.; Matthiessen, P.

    1996-02-01

    It is becoming evident that an increasing number of widely used industrial and agricultural chemicals are estrogenic. The biodegradation products of a major group of nonionic surfactants, the alkylphenol polyethoxylates, are one such group. Some of these chemicals are widespread aquatic pollutants, and bioconcentrate in aquatic biota. Exposure of male rainbow trout (Oncorhynchus mykiss) to four different alkylphenolic chemicals caused synthesis of vitellogenin, a process normally dependent on endogenous estrogens, and a concomitant inhibition of testicular growth. The magnitude of these estrogenic effects was dependent on the estrogenic potency of the chemical, the stage of reproductive development of the fish, and the concentration of the chemical in the water. These results support the contention that exposure of wildlife to environmentally persistent estrogenic chemicals can result in deleterious reproductive consequences.

  20. Enhanced non-vitreous cryopreservation of immortalized and primary cells by ice-growth inhibiting polymers†

    PubMed Central

    Deller, Robert C.; Pessin, Jeffrey E.; Vatish, Manu; Mitchell, Daniel A.; Gibson, Matthew I.

    2016-01-01

    Cell cryopreservation is an essential tool in modern biotechnology and medicine. The ability to freeze, store and distribute materials underpins basic cell biology and enables storage of donor cells needed for transplantation and regenerative medicine. However, many cell types do not survive freezing and the current state-of-the-art involves the addition of significant amounts of organic solvents as cryoprotectants, which themselves can be cytotoxic, or simply interfere with assays. A key cause of cell death in cryopreservation is ice recrystallization (growth), which primarily occurs during thawing. Here it is demonstrated that the addition of ice recrystalization inhibiting polymers to solutions containing low (non vitrifying) concentrations of DMSO enhance cell recovery rates by up to 75%. Cell functionality is also demonstrated using a placental cell line, and enhanced cryopreservation of primary rat hepatocytes is additionally shown. The crucial role of the polymers architecture (chain length) is shown, with shorter polymers being more effective than longer ones. PMID:27152370

  1. Inhibition of Diabrotica Larval Growth by Patatin, the Lipid Acyl Hydrolase from Potato Tubers.

    PubMed Central

    Strickland, J. A.; Orr, G. L.; Walsh, T. A.

    1995-01-01

    Patatin, the nonspecific lipid acyl hydrolase from potato (Solanum tuberosum L.) tubers, dose-dependently inhibits the growth of southern corn rootworm (SCR) and western corn rootworm when fed to them on artificial diet. The 50% growth reduction levels are somewhat cultivar dependent, ranging from 60 to 150 [mu]g/g diet for neonate SCR larvae. A single patatin isoform also inhibits larval growth. Neonate SCR continuously exposed to patatin are halted in larval development. Treatment with di-isopropylfluorophosphate essentially eliminates patatin's phospholipase, galactolipase, and acyl hydrolase activities. SCR growth inhibition is eliminated also, indicating that patatin's serine hydrolase activity is responsible for the observed activities. Patatin-mediated phospholipolysis is highly pH and cultivar dependent, with specific activities up to 300-fold less at pH 5.5 than at pH 8.5. Esterase or phospholipase activities do not correlate with insect growth inhibition. Galactolipase activity, being cultivar and pH independent, correlates significantly with SCR growth inhibition. Insect-growth inhibition of patatin is significantly reduced with increased dietary cholesterol levels. In conclusion, patatin represents a new class of insect-control proteins with a novel mode of action possibly involving lipid metabolism. PMID:12228621

  2. Inhibition of Diabrotica Larval Growth by Patatin, the Lipid Acyl Hydrolase from Potato Tubers.

    PubMed

    Strickland, J. A.; Orr, G. L.; Walsh, T. A.

    1995-10-01

    Patatin, the nonspecific lipid acyl hydrolase from potato (Solanum tuberosum L.) tubers, dose-dependently inhibits the growth of southern corn rootworm (SCR) and western corn rootworm when fed to them on artificial diet. The 50% growth reduction levels are somewhat cultivar dependent, ranging from 60 to 150 [mu]g/g diet for neonate SCR larvae. A single patatin isoform also inhibits larval growth. Neonate SCR continuously exposed to patatin are halted in larval development. Treatment with di-isopropylfluorophosphate essentially eliminates patatin's phospholipase, galactolipase, and acyl hydrolase activities. SCR growth inhibition is eliminated also, indicating that patatin's serine hydrolase activity is responsible for the observed activities. Patatin-mediated phospholipolysis is highly pH and cultivar dependent, with specific activities up to 300-fold less at pH 5.5 than at pH 8.5. Esterase or phospholipase activities do not correlate with insect growth inhibition. Galactolipase activity, being cultivar and pH independent, correlates significantly with SCR growth inhibition. Insect-growth inhibition of patatin is significantly reduced with increased dietary cholesterol levels. In conclusion, patatin represents a new class of insect-control proteins with a novel mode of action possibly involving lipid metabolism. PMID:12228621

  3. Selective inhibition of fatty acid oxidation in colonocytes by ibuprofen: a cause of colitis?

    PubMed Central

    Roediger, W E; Millard, S

    1995-01-01

    Ibuprofen is associated with initiation or exacerbation of ulcerative colitis. As ibuprofen selectively inhibited fatty acid oxidation in the liver or caused mitochondrial damage in intestinal cells, its effect on substrate oxidation by isolated colonocytes of man and rat was examined. Ibuprofen dose dependently (2.0-7.5 mmol/l) and selectively inhibited 14CO2 production from labelled n-butyrate in colonocytes from the proximal and distal human colon (n = 12, p = < 0.001). Glucose oxidation was either unaltered or increased. Because short chain fatty acid oxidation is the main source of acetyl-CoA for long chain fatty acid synthesis, the inhibition of prostaglandin synthesis by ibuprofen in the colonic mucosa could also occur at this level. Because the concentrations of ibuprofen that can be attained in the human colon are not known, conclusions drawn from current dosages are tentative. The inhibition of fatty acid oxidation by ibuprofen may be biochemically implicated in the initiation and exacerbation of ulcerative colitis, manifestation of which would depend on the ibuprofen concentrations reached in the colon. PMID:7890237

  4. The Rac Inhibitor EHop-016 Inhibits Mammary Tumor Growth and Metastasis in a Nude Mouse Model

    PubMed Central

    Castillo-Pichardo, Linette; Humphries-Bickley, Tessa; De La Parra, Columba; Forestier-Roman, Ingrid; Martinez-Ferrer, Magaly; Hernandez, Eliud; Vlaar, Cornelis; Ferrer-Acosta, Yancy; Washington, Anthony V.; Cubano, Luis A.; Rodriguez-Orengo, Jose; Dharmawardhane, Suranganie

    2014-01-01

    Metastatic disease still lacks effective treatments, and remains the primary cause of cancer mortality. Therefore, there is a critical need to develop better strategies to inhibit metastatic cancer. The Rho family GTPase Rac is an ideal target for anti-metastatic cancer therapy, because Rac is a key molecular switch that is activated by a myriad of cell surface receptors to promote cancer cell migration/invasion and survival. Previously, we reported the design and development of EHop-016, a small molecule compound, which inhibits Rac activity of metastatic cancer cells with an IC50 of 1 μM. EHop-016 also inhibits the activity of the Rac downstream effector p21-activated kinase (PAK), lamellipodia extension, and cell migration in metastatic cancer cells. Herein, we tested the efficacy of EHop-016 in a nude mouse model of experimental metastasis, where EHop-016 administration at 25 mg/kg body weight (BW) significantly reduced mammary fat pad tumor growth, metastasis, and angiogenesis. As quantified by UPLC MS/MS, EHop-016 was detectable in the plasma of nude mice at 17 to 23 ng/ml levels at 12 h following intraperitoneal (i.p.) administration of 10 to 25 mg/kg BW EHop-016. The EHop-016 mediated inhibition of angiogenesis In Vivo was confirmed by immunohistochemistry of excised tumors and by In Vitro tube formation assays of endothelial cells. Moreover, EHop-016 affected cell viability by down-regulating Akt and Jun kinase activities and c-Myc and Cyclin D expression, as well as increasing caspase 3/7 activities in metastatic cancer cells. In conclusion, EHop-016 has potential as an anticancer compound to block cancer progression via multiple Rac-directed mechanisms. PMID:25389450

  5. Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro

    PubMed Central

    Recuenco, Frances Cagayat; Kobayashi, Kyousuke; Ishiwa, Akiko; Enomoto-Rogers, Yukiko; Fundador, Noreen Grace V.; Sugi, Tatsuki; Takemae, Hitoshi; Iwanaga, Tatsuya; Murakoshi, Fumi; Gong, Haiyan; Inomata, Atsuko; Horimoto, Taisuke; Iwata, Tadahisa; Kato, Kentaro

    2014-01-01

    Here, we assessed the sulfated derivative of the microbial polysaccharide gellan gum and derivatives of λ and κ-carrageenans for their ability to inhibit Plasmodium falciparum 3D7 and Dd2 growth and invasion of red blood cells in vitro. Growth inhibition was assessed by means of flow cytometry after a 96-h exposure to the inhibitors and invasion inhibition was assessed by counting ring parasites after a 20-h exposure to them. Gellan sulfate strongly inhibited invasion and modestly inhibited growth for both P. falciparum 3D7 and Dd2; both inhibitory effects exceeded those achieved with native gellan gum. The hydrolyzed λ-carrageenan and oversulfated κ-carrageenan were less inhibitory than their native forms. In vitro cytotoxicity and anticoagulation assays performed to determine the suitability of the modified polysaccharides for in vivo studies showed that our synthesized gellan sulfate had low cytotoxicity and anticoagulant activity. PMID:24740150

  6. Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro.

    PubMed

    Recuenco, Frances Cagayat; Kobayashi, Kyousuke; Ishiwa, Akiko; Enomoto-Rogers, Yukiko; Fundador, Noreen Grace V; Sugi, Tatsuki; Takemae, Hitoshi; Iwanaga, Tatsuya; Murakoshi, Fumi; Gong, Haiyan; Inomata, Atsuko; Horimoto, Taisuke; Iwata, Tadahisa; Kato, Kentaro

    2014-01-01

    Here, we assessed the sulfated derivative of the microbial polysaccharide gellan gum and derivatives of λ and κ-carrageenans for their ability to inhibit Plasmodium falciparum 3D7 and Dd2 growth and invasion of red blood cells in vitro. Growth inhibition was assessed by means of flow cytometry after a 96-h exposure to the inhibitors and invasion inhibition was assessed by counting ring parasites after a 20-h exposure to them. Gellan sulfate strongly inhibited invasion and modestly inhibited growth for both P. falciparum 3D7 and Dd2; both inhibitory effects exceeded those achieved with native gellan gum. The hydrolyzed λ-carrageenan and oversulfated κ-carrageenan were less inhibitory than their native forms. In vitro cytotoxicity and anticoagulation assays performed to determine the suitability of the modified polysaccharides for in vivo studies showed that our synthesized gellan sulfate had low cytotoxicity and anticoagulant activity. PMID:24740150

  7. In vitro mechanism of inhibition of bacterial cell growth by allicin.

    PubMed Central

    Feldberg, R S; Chang, S C; Kotik, A N; Nadler, M; Neuwirth, Z; Sundstrom, D C; Thompson, N H

    1988-01-01

    Diallyl thiosulfinate (allicin) is the agent found in garlic which is responsible for the antibacterial and antifungal activity of extracts of this plant. The effect of bacteriostatic concentrations of allicin (0.2 to 0.5 mM) on the growth of Salmonella typhimurium revealed a pattern of inhibition characterized by: (i) a lag of approximately 15 min between addition of allicin and onset of inhibition, (ii) a transitory inhibition phase whose duration was proportional to allicin concentration and inversely proportional to culture density, (iii) a resumed growth phase which showed a lower rate of growth than in uninhibited controls, and (iv) an entry into stationary phase at a lower culture density. Whereas DNA and protein syntheses showed a delayed and partial inhibition by allicin, inhibition of RNA synthesis was immediate and total, suggesting that this is the primary target of allicin action. PMID:2469386

  8. Tumour growth inhibition and anti-angiogenic effects using curcumin correspond to combined PDE2 and PDE4 inhibition.

    PubMed

    Abusnina, Abdurazzag; Keravis, Thérèse; Zhou, Qingwei; Justiniano, Hélène; Lobstein, Annelise; Lugnier, Claire

    2015-02-01

    Vascular endothelial growth factor (VEGF) plays a major role in angiogenesis by stimulating endothelial cells. Increase in cyclic AMP (cAMP) level inhibits VEGF-induced endothelial cell proliferation and migration. Cyclic nucleotide phosphodiesterases (PDEs), which specifically hydrolyse cyclic nucleotides, are critical in the regulation of this signal transduction. We have previously reported that PDE2 and PDE4 up-regulations in human umbilical vein endothelial cells (HUVECs) are implicated in VEGF-induced angiogenesis and that inhibition of PDE2 and PDE4 activities prevents the development of the in vitro angiogenesis by increasing cAMP level, as well as the in vivo chicken embryo angiogenesis. We have also shown that polyphenols are able to inhibit PDEs. The curcumin having anti-cancer properties, the present study investigated whether PDE2 and PDE4 inhibitors and curcumin could have similar in vivo anti-tumour properties and whether the anti-angiogenic effects of curcumin are mediated by PDEs. Both PDE2/PDE4 inhibitor association and curcumin significantly inhibited in vivo tumour growth in C57BL/6N mice. In vitro, curcumin inhibited basal and VEGF-stimulated HUVEC proliferation and migration and delayed cell cycle progression at G0/G1, similarly to the combination of selective PDE2 and PDE4 inhibitors. cAMP levels in HUVECs were significantly increased by curcumin, similarly to rolipram (PDE4 inhibitor) and BAY-60-550 (PDE2 inhibitor) association, indicating cAMP-PDE inhibitions. Moreover, curcumin was able to inhibit VEGF-induced cAMP-PDE activity without acting on cGMP-PDE activity and to modulate PDE2 and PDE4 expressions in HUVECs. The present results suggest that curcumin exerts its in vitro anti-angiogenic and in vivo anti-tumour properties through combined PDE2 and PDE4 inhibition. PMID:25230992

  9. Inhibition of metastasis, angiogenesis, and tumor growth by Chinese herbal cocktail Tien-Hsien Liquid

    PubMed Central

    2010-01-01

    , our results show that THL inhibited the growth of human MDA-MB-231 breast cancer xenografts in NOD-SCID mice. This suppression of tumor growth was associated with decreased microvessel formation and increased apoptosis caused by THL. Conclusion Our data demonstrate that THL had broad-spectra anti-cancer activities and merits further evaluation for its use in cancer therapy. PMID:20429953

  10. ML264, A Novel Small-Molecule Compound That Potently Inhibits Growth of Colorectal Cancer.

    PubMed

    Ruiz de Sabando, Ainara; Wang, Chao; He, Yuanjun; García-Barros, Mónica; Kim, Julie; Shroyer, Kenneth R; Bannister, Thomas D; Yang, Vincent W; Bialkowska, Agnieszka B

    2016-01-01

    Colorectal cancer is one of the leading causes of cancer mortality in Western civilization. Studies have shown that colorectal cancer arises as a consequence of the modification of genes that regulate important cellular functions. Deregulation of the WNT and RAS/MAPK/PI3K signaling pathways has been shown to be important in the early stages of colorectal cancer development and progression. Krüppel-like factor 5 (KLF5) is a transcription factor that is highly expressed in the proliferating intestinal crypt epithelial cells. Previously, we showed that KLF5 is a mediator of RAS/MAPK and WNT signaling pathways under homeostatic conditions and that it promotes their tumorigenic functions during the development and progression of intestinal adenomas. Recently, using an ultrahigh-throughput screening approach we identified a number of novel small molecules that have the potential to provide therapeutic benefits for colorectal cancer by targeting KLF5 expression. In the current study, we show that an improved analogue of one of these screening hits, ML264, potently inhibits proliferation of colorectal cancer cells in vitro through modifications of the cell-cycle profile. Moreover, in an established xenograft mouse model of colon cancer, we demonstrate that ML264 efficiently inhibits growth of the tumor within 5 days of treatment. We show that this effect is caused by a significant reduction in proliferation and that ML264 potently inhibits the expression of KLF5 and EGR1, a transcriptional activator of KLF5. These findings demonstrate that ML264, or an analogue, may hold a promise as a novel therapeutic agent to curb the development and progression of colorectal cancer. PMID:26621868

  11. Ice Growth Inhibition in Antifreeze Polypeptide Solution by Short-Time Solution Preheating.

    PubMed

    Nishi, Naoto; Miyamoto, Takuya; Waku, Tomonori; Tanaka, Naoki; Hagiwara, Yoshimichi

    2016-01-01

    The objective of this study is to enhance the inhibition of ice growth in the aqueous solution of a polypeptide, which is inspired by winter flounder antifreeze protein. We carried out measurements on unidirectional freezing of the polypeptide solution. The thickness of the solution was 0.02 mm, and the concentration of polypeptide was varied from 0 to 2 mg/mL. We captured successive microscopic images of ice/solution interfaces, and measured the interface velocity from the locations of tips of the pectinate interface in the images. We also simultaneously measured the temperature by using a small thermocouple. The ice/solution interface temperature was defined by the temperature at the tips. It was found that the interface temperature was decreased with an increasing concentration of polypeptide. To try varying the activity of the polypeptide, we preheated the polypeptide solution and cooled it before carrying out the measurements. Preheating for 1-5 hours was found to cause a further decrease in the interface temperature. Furthermore, wider regions of solution and ice with inclined interfaces in the pectinate interface structure were observed, compared with the case where the solution was not preheated. Thus, the ice growth inhibition was enhanced by this preheating. To investigate the reason for this enhancement, we measured the conformation and aggregates of polypeptide in the solution. We also measured the local concentration of polypeptide. It was found that the polypeptide aggregates became larger as a result of preheating, although the polypeptide conformation was unchanged. These large aggregates caused both adsorption to the interface and the wide regions of supercooled solution in the pectinate interface structure. PMID:27152720

  12. Ice Growth Inhibition in Antifreeze Polypeptide Solution by Short-Time Solution Preheating

    PubMed Central

    Nishi, Naoto; Miyamoto, Takuya; Waku, Tomonori; Tanaka, Naoki; Hagiwara, Yoshimichi

    2016-01-01

    The objective of this study is to enhance the inhibition of ice growth in the aqueous solution of a polypeptide, which is inspired by winter flounder antifreeze protein. We carried out measurements on unidirectional freezing of the polypeptide solution. The thickness of the solution was 0.02 mm, and the concentration of polypeptide was varied from 0 to 2 mg/mL. We captured successive microscopic images of ice/solution interfaces, and measured the interface velocity from the locations of tips of the pectinate interface in the images. We also simultaneously measured the temperature by using a small thermocouple. The ice/solution interface temperature was defined by the temperature at the tips. It was found that the interface temperature was decreased with an increasing concentration of polypeptide. To try varying the activity of the polypeptide, we preheated the polypeptide solution and cooled it before carrying out the measurements. Preheating for 1–5 hours was found to cause a further decrease in the interface temperature. Furthermore, wider regions of solution and ice with inclined interfaces in the pectinate interface structure were observed, compared with the case where the solution was not preheated. Thus, the ice growth inhibition was enhanced by this preheating. To investigate the reason for this enhancement, we measured the conformation and aggregates of polypeptide in the solution. We also measured the local concentration of polypeptide. It was found that the polypeptide aggregates became larger as a result of preheating, although the polypeptide conformation was unchanged. These large aggregates caused both adsorption to the interface and the wide regions of supercooled solution in the pectinate interface structure. PMID:27152720

  13. Imatinib mesylate inhibits platelet derived growth factor stimulated proliferation of rheumatoid synovial fibroblasts

    SciTech Connect

    Sandler, Charlotta; Joutsiniemi, Saima; Lindstedt, Ken A.; Juutilainen, Timo; Kovanen, Petri T.; Eklund, Kari K. . E-mail: kari.eklund@hus.fi

    2006-08-18

    Synovial fibroblast is the key cell type in the growth of the pathological synovial tissue in arthritis. Here, we show that platelet-derived growth factor (PDGF) is a potent mitogen for synovial fibroblasts isolated from patients with rheumatoid arthritis. Inhibition of PDGF-receptor signalling by imatinib mesylate (1 {mu}M) completely abrogated the PDGF-stimulated proliferation and inhibited approximately 70% of serum-stimulated proliferation of synovial fibroblasts. Similar extent of inhibition was observed when PDGF was neutralized with anti-PDGF antibodies, suggesting that imatinib mesylate does not inhibit pathways other than those mediated by PDGF-receptors. No signs of apoptosis were detected in synovial fibroblasts cultured in the presence of imatinib. These results suggest that imatinib mesylate specifically inhibits PDGF-stimulated proliferation of synovial fibroblasts, and that inhibition of PDGF-receptors could represent a feasible target for novel antirheumatic therapies.

  14. Inhibition of Plasmodium falciparum dihydropteroate synthetase and growth in vitro by sulfa drugs.

    PubMed Central

    Zhang, Y; Meshnick, S R

    1991-01-01

    The Michaelis-Menten inhibitory constants (Kis) and the concentrations required for 50% inhibition of the Plasmodium falciparum dihydropteroate synthetase were determined for six sulfa drugs. These drugs inhibited the in vitro growth of P. falciparum (50% lethal concentration) at concentrations of 30 to 500 nM; these concentrations were 100 to 1,000 times lower than the concentrations required for 50% inhibition and Kis (6 to 500 microM). The uptake of p-aminobenzoic acid was not inhibited by the sulfa drugs. However, infected erythrocytes took up more labeled sulfamethoxazole than did uninfected erythrocytes. Thus, the concentration of sulfa drugs by malaria parasites may explain how sulfa drugs inhibit in vitro growth of parasites through the inhibition of dihydropteroate synthetase. PMID:2024960

  15. Ability of Cecal Cultures to Inhibit Growth of Salmonella Typhimurium during Aerobic Incubation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Poultry can serve as reservoirs for Salmonella; however, chicks provided cultures of cecal bacteria develop resistance to colonization by Salmonella. Research has indicated that cecal bacteria metabolize organic acids to produce substances that inhibit Salmonella growth. Purpose: The...

  16. Inhibition of prostate cancer growth by muscadine grapeskin extract and resveratrol through distinct mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytochemicals are naturally occurring compounds with demonstrated anti-tumor activities. The phytochemical resveratrol, contained in red grapes, has been shown to inhibit prostate cancer cell growth, potentially through its anti-oxidant activity. Muscadine grapes contain different phytochemical con...

  17. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    SciTech Connect

    Nurmio, Mirja; Joki, Henna; Kallio, Jenny; Maeaettae, Jorma A.; Vaeaenaenen, H. Kalervo; Toppari, Jorma; Jahnukainen, Kirsi; Laitala-Leinonen, Tiina

    2011-08-01

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.

  18. Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes.

    PubMed

    Ribalet, François; Berges, John A; Ianora, Adrianna; Casotti, Raffaella

    2007-12-15

    Several marine diatoms produce polyunsaturated aldehydes (PUAs) that have been shown to be toxic to a wide variety of model organisms, from bacteria to invertebrates. However, very little information is available on their effect on phytoplankton. Here, we expand previous studies to six species of marine phytoplankton, belonging to different taxonomic groups that are well represented in marine plankton. The effect of three PUAs, 2E,4E-decadienal, 2E,4E-octadienal and 2E,4E-heptadienal, was assessed on growth, cell membrane permeability, flow cytometric properties and morphology. A concentration-dependent reduction in the growth rate was observed for all cultures exposed to PUAs with longer-chained aldehydes having stronger effects on growth than shorter-chained aldehydes. Clear differences were observed among the different species. The prymnesiophyte Isochrysis galbana was the most sensitive species to PUA exposure with a lower threshold for an observed effect triggered by mean concentrations of 0.10 micromol L(-1) for 2E,4E-decadienal, 1.86 micromol L(-1) for 2E,4E-octadienal and 3.06 micromol L(-1) for 2E,4E-heptadienal, and a 50% growth inhibition (EC(50)) with respect to the control at 0.99, 2.25 and 5.90 micromol L(-1) for the three PUAs, respectively. Alternatively, the chlorophyte Tetraselmis suecica and the diatom Skeletonema marinoi (formerly S. costatum) were the most resistant species with 50% growth inhibition occurring at concentrations at least two to three times higher than I. galbana. In all species, the three PUAs caused changes in flow cytometric measures of cell size and cell granulosity and increased membrane permeability, assessed using the viability stain SYTOX Green. For example, after 48 h 51.6+/-2.6% of I. galbana cells and 15.0+/-1.8% of S. marinoi cells were not viable. Chromatin fragmentation was observed in the dinoflagellate Amphidinium carterae while clear DNA degradation was observed in the chlorophyte Dunaliella tertiolecta

  19. Membrane stress causes inhibition of water channels in brush border membrane vesicles from kidney proximal tubule.

    PubMed

    Soveral, G; Macey, R I; Moura, T F

    1997-08-01

    Brush border membrane vesicles (BBMV) from rabbit kidney proximal tubule cells, prepared with different internal solute concentrations (cellobiose buffer 13, 18 or 85 mosM) developed an hydrostatic pressure difference across the membrane of 18.7 mosM, that causes a membrane tension close to 5 x 10(-5) N cm-1. When subjected to several hypertonic osmotic shocks an initial delay of osmotic shrinkage (a lag time), corresponding to a very small change in initial volume was apparent. This initial osmotic response, which is significantly retarded, was correlated with the initial period of elevated membrane tension, suggesting that the water permeability coefficient is inhibited by membrane stress. We speculate that this inhibition may serve to regulate cell volume in the proximal tubule. PMID:9468597

  20. Di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate inhibit growth and reduce estradiol levels of antral follicles in vitro

    SciTech Connect

    Gupta, Rupesh K.; Singh, Jeffery M.; Leslie, Tracie C.; Meachum, Sharon; Flaws, Jodi A.; Yao, Humphrey H-C

    2010-01-15

    Any insult that affects survival of ovarian antral follicles can cause abnormal estradiol production and fertility problems. Phthalate esters (PEs) are plasticizers used in a wide range of consumer and industrial products. Exposure to these chemicals has been linked to reduced fertility in humans and animal models. Di-(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) decrease serum estradiol levels and aromatase (Arom) expression, prolong estrous cycles, and cause anovulation in animal and culture models. These observations suggest PEs directly target antral follicles. We therefore tested the hypothesis that DEHP (1-100 mug/ml) and MEHP (0.1-10 mug/ml) directly inhibit antral follicular growth and estradiol production. Antral follicles from adult mice were cultured with DEHP or MEHP, and/or estradiol for 96 h. During culture, follicle size was measured every 24 h as a measurement of follicle growth. After culture, media were collected for measurement of estradiol levels and follicles were subjected to measurement of cylin-D-2 (Ccnd2), cyclin-dependant-kinase-4 (Cdk4), and Arom. We found that DEHP and MEHP inhibited growth of follicles and decreased estradiol production compared to controls at the highest doses. DEHP and MEHP also decreased mRNA expression of Ccnd2, Cdk4, and Arom at the highest dose. Addition of estradiol to the culture medium prevented the follicles from DEHP- and MEHP-induced inhibition of growth, reduction in estradiol levels, and decreased Ccnd2 and Cdk4 expression. Collectively, our results indicate that DEHP and MEHP may directly inhibit antral follicle growth via a mechanism that partially includes reduction in levels of estradiol production and decreased expression of cell cycle regulators.

  1. Chloride anion transporters inhibit growth of methicillin-resistant Staphylococcus aureus (MRSA) in vitro.

    PubMed

    Share, Andrew I; Patel, Khushali; Nativi, Cristina; Cho, Eun J; Francesconi, Oscar; Busschaert, Nathalie; Gale, Philip A; Roelens, Stefano; Sessler, Jonathan L

    2016-06-18

    A series of aminopyrrolic receptors were tested as anion transporters using POPC liposome model membranes. Many were found to be effective Cl(-) transporters and to inhibit clinical strains of Staphylococcus aureus growth in vitro. The best transporters proved effective against the methicillin-resistant Staphylococcus aureus (MRSA) strains, Mu50 and HP1173. Tris-thiourea tren-based chloride transporters were also shown to inhibit the growth of S. aureus in vitro. PMID:27223254

  2. Replication-induced DNA damage after PARP inhibition causes G2 delay, and cell line-dependent apoptosis, necrosis and multinucleation

    PubMed Central

    Dale Rein, Idun; Solberg Landsverk, Kirsti; Micci, Francesca; Patzke, Sebastian; Stokke, Trond

    2015-01-01

    PARP inhibitors have been approved for treatment of tumors with mutations in or loss of BRCA1/2. The molecular mechanisms and particularly the cellular phenotypes resulting in synthetic lethality are not well understood and varying clinical responses have been observed. We have investigated the dose- and time-dependency of cell growth, cell death and cell cycle traverse of 4 malignant lymphocyte cell lines treated with the PARP inhibitor Olaparib. PARP inhibition induced a severe growth inhibition in this cell line panel and increased the levels of phosphorylated H2AX-associated DNA damage in S phase. Repair of the remaining replication related damage caused a G2 phase delay before entry into mitosis. The G2 delay, and the growth inhibition, was more pronounced in the absence of functional ATM. Further, Olaparib treated Reh and Granta-519 cells died by apoptosis, while U698 and JVM-2 cells proceeded through mitosis with aberrant chromosomes, skipped cytokinesis, and eventually died by necrosis. The TP53-deficient U698 cells went through several rounds of DNA replication and mitosis without cytokinesis, ending up as multinucleated cells with DNA contents of up to 16c before dying. In summary, we report here for the first time cell cycle-resolved DNA damage induction, and cell line-dependent differences in the mode of cell death caused by PARP inhibition. PMID:26312527

  3. Replication-induced DNA damage after PARP inhibition causes G2 delay, and cell line-dependent apoptosis, necrosis and multinucleation.

    PubMed

    Dale Rein, Idun; Solberg Landsverk, Kirsti; Micci, Francesca; Patzke, Sebastian; Stokke, Trond

    2015-01-01

    PARP inhibitors have been approved for treatment of tumors with mutations in or loss of BRCA1/2. The molecular mechanisms and particularly the cellular phenotypes resulting in synthetic lethality are not well understood and varying clinical responses have been observed. We have investigated the dose- and time-dependency of cell growth, cell death and cell cycle traverse of 4 malignant lymphocyte cell lines treated with the PARP inhibitor Olaparib. PARP inhibition induced a severe growth inhibition in this cell line panel and increased the levels of phosphorylated H2AX-associated DNA damage in S phase. Repair of the remaining replication related damage caused a G2 phase delay before entry into mitosis. The G2 delay, and the growth inhibition, was more pronounced in the absence of functional ATM. Further, Olaparib treated Reh and Granta-519 cells died by apoptosis, while U698 and JVM-2 cells proceeded through mitosis with aberrant chromosomes, skipped cytokinesis, and eventually died by necrosis. The TP53-deficient U698 cells went through several rounds of DNA replication and mitosis without cytokinesis, ending up as multinucleated cells with DNA contents of up to 16c before dying. In summary, we report here for the first time cell cycle-resolved DNA damage induction, and cell line-dependent differences in the mode of cell death caused by PARP inhibition. PMID:26312527

  4. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    SciTech Connect

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  5. Inhibition of Growth of Salmonella by Native Flora of Broiler Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Some bacteria in the cecal microflora of broilers can inhibit colonization of chicks by Salmonella. Beneficial cecal bacteria may reduce Salmonella colonization by competing for nutrients and attachment sites or by producing metabolites that inhibit Salmonella growth. The purpose of th...

  6. The FGF-2-Derived Peptide FREG Inhibits Melanoma Growth In Vitro and In Vivo

    PubMed Central

    Aguzzi, Maria S; Faraone, Debora; D'Arcangelo, Daniela; De Marchis, Francesco; Toietta, Gabriele; Ribatti, Domenico; Parazzoli, Alberto; Colombo, Paolo; Capogrossi, Maurizio C; Facchiano, Antonio

    2011-01-01

    Previous data report that fibroblast growth factor-2 (FGF-2)-derived peptide FREG potently inhibits FGF-2-dependent angiogenesis in vitro and in vivo. Here, we show that FREG inhibits up to 70% in vitro growth and invasion/migration of smooth muscle and melanoma cells. Such inhibition is mediated by platelet-derived growth factor-receptor-α (PDGF-Rα); in fact, proliferation and migration were restored upon PDGF-Rα neutralization. Further experiments demonstrated that FREG interacts with PDGF-Rα both in vitro and in vivo and stimulates its phosphorylation. We have previously shown that overexpressing PDGF-Rα strongly inhibits melanoma growth in vivo; we, therefore, hypothesized that PDGF-Rα agonists may represent a novel tool to inhibit melanoma growth in vivo. To support this hypothesis, FREG was inoculated intravenously (i.v.) in a mouse melanoma model and markedly inhibited pulmonary metastases formation. Immunohistochemical analyses showed less proliferation, less angiogenesis, and more apoptosis in metastasized lungs upon FREG treatment, as compared to untreated controls. Finally, in preliminary acute toxicity studies, FREG showed no toxicity signs in healthy animals, and neither microscopic nor macroscopic toxicity at the liver, kidney, and lungs level. Altogether, these data indicate that FREG systemic treatment strongly inhibits melanoma metastases development and indicate for the first time that agonists of PDGF-Rα may control melanoma both in vitro and in vivo. PMID:20924364

  7. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate

    PubMed Central

    Goldman, Corey K.; Kendall, Richard L.; Cabrera, Gustavo; Soroceanu, Liliana; Heike, Yuji; Gillespie, G. Yancey; Siegal, Gene P.; Mao, Xianzhi; Bett, Andrew J.; Huckle, William R.; Thomas, Kenneth A.; Curiel, David T.

    1998-01-01

    Vascular endothelial growth factor (VEGF) is a potent and selective vascular endothelial cell mitogen and angiogenic factor. VEGF expression is elevated in a wide variety of solid tumors and is thought to support their growth by enhancing tumor neovascularization. To block VEGF-dependent angiogenesis, tumor cells were transfected with cDNA encoding the native soluble FLT-1 (sFLT-1) truncated VEGF receptor which can function both by sequestering VEGF and, in a dominant negative fashion, by forming inactive heterodimers with membrane-spanning VEGF receptors. Transient transfection of HT-1080 human fibrosarcoma cells with a gene encoding sFLT-1 significantly inhibited their implantation and growth in the lungs of nude mice following i.v. injection and their growth as nodules from cells injected s.c. High sFLT-1 expressing stably transfected HT-1080 clones grew even slower as s.c. tumors. Finally, survival was significantly prolonged in mice injected intracranially with human glioblastoma cells stably transfected with the sflt-1 gene. The ability of sFLT-1 protein to inhibit tumor growth is presumably attributable to its paracrine inhibition of tumor angiogenesis in vivo, since it did not affect tumor cell mitogenesis in vitro. These results not only support VEGF receptors as antiangiogenic targets but also demonstrate that sflt-1 gene therapy might be a feasible approach for inhibiting tumor angiogenesis and growth. PMID:9671758

  8. Culture at a Higher Temperature Mildly Inhibits Cancer Cell Growth but Enhances Chemotherapeutic Effects by Inhibiting Cell-Cell Collaboration

    PubMed Central

    Zhu, Shengming; Wang, Jiangang; Xie, Bingkun; Luo, Zhiguo; Lin, Xiukun; Liao, D. Joshua

    2015-01-01

    Acute febrile infections have historically been used to treat cancer. To explore the underlying mechanism, we studied chronic effects of fever on cancer cell growth and chemotherapeutic efficacy in cell culture. We found that culturing cancer cells at 39°C mildly inhibited cell growth by arresting the cells at the G1 phase of the cell cycle. When cells were seeded in culture dishes at a lower density, e.g. about 1000–2000 cells per 35-mm dish, the growth inhibition was much greater, manifested as many fewer cell colonies in the 39°C dishes, compared with the results at a higher density seeding, e.g. 20,000 cells per dish, suggesting that cell-cell collaboration as the Allee effect in cell culture is inhibited at 39°C. Withdrawal of cells from serum enhanced the G1 arrest at 39°C and, for some cell lines such as A549 lung cancer cells, serum replenishment failed to quickly drive the cells from the G1 into the S and G2-M phases. Therapeutic effects of several chemotherapeutic agents, including clove bud extracts, on several cancer cell lines were more potent at 39°C than at 37°C, especially when the cells were seeded at a low density. For some cell lines and some agents, this enhancement is long-lasting, i.e. continuing after the cessation of the treatment. Collectively these results suggest that hyperthermia may inhibit cancer cell growth by G1 arrest and by inhibition of cell-cell collaboration, and may enhance the efficacy of several chemotherapeutic agents, an effect which may persist beyond the termination of chemotherapy. PMID:26495849

  9. Culture at a Higher Temperature Mildly Inhibits Cancer Cell Growth but Enhances Chemotherapeutic Effects by Inhibiting Cell-Cell Collaboration.

    PubMed

    Zhu, Shengming; Wang, Jiangang; Xie, Bingkun; Luo, Zhiguo; Lin, Xiukun; Liao, D Joshua

    2015-01-01

    Acute febrile infections have historically been used to treat cancer. To explore the underlying mechanism, we studied chronic effects of fever on cancer cell growth and chemotherapeutic efficacy in cell culture. We found that culturing cancer cells at 39°C mildly inhibited cell growth by arresting the cells at the G1 phase of the cell cycle. When cells were seeded in culture dishes at a lower density, e.g. about 1000-2000 cells per 35-mm dish, the growth inhibition was much greater, manifested as many fewer cell colonies in the 39°C dishes, compared with the results at a higher density seeding, e.g. 20,000 cells per dish, suggesting that cell-cell collaboration as the Allee effect in cell culture is inhibited at 39°C. Withdrawal of cells from serum enhanced the G1 arrest at 39°C and, for some cell lines such as A549 lung cancer cells, serum replenishment failed to quickly drive the cells from the G1 into the S and G2-M phases. Therapeutic effects of several chemotherapeutic agents, including clove bud extracts, on several cancer cell lines were more potent at 39°C than at 37°C, especially when the cells were seeded at a low density. For some cell lines and some agents, this enhancement is long-lasting, i.e. continuing after the cessation of the treatment. Collectively these results suggest that hyperthermia may inhibit cancer cell growth by G1 arrest and by inhibition of cell-cell collaboration, and may enhance the efficacy of several chemotherapeutic agents, an effect which may persist beyond the termination of chemotherapy. PMID:26495849

  10. In vitro Plasmodium falciparum drug sensitivity assay: inhibition of parasite growth by incorporation of stomatocytogenic amphiphiles into the erythrocyte membrane.

    PubMed

    Ziegler, Hanne L; Staerk, Dan; Christensen, Jette; Hviid, Lars; Hägerstrand, Henry; Jaroszewski, Jerzy W

    2002-05-01

    Lupeol, which shows in vitro inhibitory activity against Plasmodium falciparum 3D7 strain with a 50% inhibitory concentration (IC50) of 27.7 +/- 0.5 microM, was shown to cause a transformation of the human erythrocyte shape toward that of stomatocytes. Good correlation between the IC50 value and the membrane curvature changes caused by lupeol was observed. Preincubation of erythrocytes with lupeol, followed by extensive washing, made the cells unsuitable for parasite growth, suggesting that the compound incorporates into erythrocyte membrane irreversibly. On the other hand, lupeol-treated parasite culture continued to grow well in untreated erythrocytes. Thus, the antiplasmodial activity of lupeol appears to be indirect, being due to stomatocytic transformation of the host cell membrane and not to toxic effects via action on a drug target within the parasite. A number of amphiphiles that cause stomatocyte formation, but not those causing echinocyte formation, were shown to inhibit growth of the parasites, apparently via a mechanism similar to that of lupeol. Since antiplasmodial agents that inhibit parasite growth through erythrocyte membrane modifications must be regarded as unsuitable as leads for development of new antimalarial drugs, care must be exercised in the interpretation of results of screening of plant extracts and natural product libraries by an in vitro Plasmodium toxicity assay. PMID:11959580