Science.gov

Sample records for growth regime characterization

  1. Growth regimes during homoepitaxial growth of GaN by ammonia molecular beam epitaxy

    SciTech Connect

    Corrion, A. L.; Wu, F.; Speck, J. S.

    2012-09-01

    c-plane GaN films were grown by ammonia molecular beam epitaxy on metal-organic chemical vapor deposition templates for a wide range of NH{sub 3}:Ga flux ratios and growth temperatures, and the resulting films were characterized using atomic force microscopy, reflection high-energy electron diffraction, and transmission electron microscopy. Three distinct nitrogen-rich growth regimes - unstable layer-by-layer, quasi-stable step flow, and dislocation-mediated pitting - were identified based on the growth mode and film properties. In addition, step flow growth was observed under conditions of gallium droplet accumulation. The results indicate the existence of two regimes for step-flow growth of GaN by ammonia MBE - both gallium-rich and nitrogen-rich. Growth mode instabilities and mound formation were observed and are discussed in the context of a step-edge energy barrier to adatom diffusion over a terrace.

  2. Ballooning filament growth in the intermediate nonlinear regime

    SciTech Connect

    Zhu, P.; Hegna, C. C.

    2008-09-15

    A theory is developed for the description of ballooning instability in the intermediate nonlinear regime for general magnetic configurations including toroidal systems such as tokamaks. The evolution equations for the plasma filament growth induced by the ballooning instability are derived accounting for the dominant nonlinear effects in an ideal magnetohydrodynamic description. The intermediate nonlinear regime of ballooning modes is defined by the ordering that the plasma filament displacement across the magnetic surface is comparable to the linear mode width in the same direction. In the tokamak case, this regime could become particularly relevant for a transport barrier as the width of the barrier (or pedestal) region approaches the mode width of the dominant ballooning mode. A remarkable feature of the nonlinear ballooning equations is that solutions of the associated local linear ballooning mode equations continue to be valid solutions into the intermediate nonlinear regime. The filament growth equations for the intermediate nonlinear ballooning regime may be applicable to the precursor and precollapse phase of edge localized modes observed in both simulations and experiments.

  3. Coarsening foams robustly reach a self-similar growth regime.

    PubMed

    Lambert, Jérôme; Mokso, Rajmund; Cantat, Isabelle; Cloetens, Peter; Glazier, James A; Graner, François; Delannay, Renaud

    2010-06-18

    Dry liquid foams coarsen like other diphasic systems governed by interfacial energy: gas slowly diffuses across liquid films, resulting in large bubbles growing at the expense of smaller ones which eventually shrink and disappear. A foam scatters light very effectively, preventing direct optical observation of bubble sizes and shapes in large foams. Using high speed x-ray tomography, we have produced 4D movies (i.e., 3D + time) of up to 30,000 bubbles. After a transient regime, the successive images look alike, except that the average bubble size increases as the square root of time: This scaling state is the long sought self-similar growth regime. The bubble size and face-number distributions in this regime are compared with experimental distributions for grains in crystals and with numerical simulations of foams. PMID:20867343

  4. Water use regimes: Characterizing direct human interaction with hydrologic systems

    NASA Astrophysics Data System (ADS)

    Weiskel, Peter K.; Vogel, Richard M.; Steeves, Peter A.; Zarriello, Philip J.; Desimone, Leslie A.; Ries, Kernell G.

    2007-04-01

    The sustainability of human water use practices is a rapidly growing concern in the United States and around the world. To better characterize direct human interaction with hydrologic systems (stream basins and aquifers), we introduce the concept of the water use regime. Unlike scalar indicators of anthropogenic hydrologic stress in the literature, the water use regime is a two-dimensional, vector indicator that can be depicted on simple x-y plots of normalized human withdrawals (hout) versus normalized human return flows (hin). Four end-member regimes, natural-flow-dominated (undeveloped), human-flow-dominated (churned), withdrawal-dominated (depleted), and return-flow-dominated (surcharged), are defined in relation to limiting values of hout and hin. For illustration, the water use regimes of 19 diverse hydrologic systems are plotted and interpreted. Several of these systems, including the Yellow River Basin, China, and the California Central Valley Aquifer, are shown to approach particular end-member regimes. Spatial and temporal regime variations, both seasonal and long-term, are depicted. Practical issues of data availability and regime uncertainty are addressed in relation to the statistical properties of the ratio estimators hout and hin. The water use regime is shown to be a useful tool for comparative water resources assessment and for describing both historic and alternative future pathways of water resource development at a range of scales.

  5. Water use regimes: Characterizing direct human interaction with hydrologic systems

    USGS Publications Warehouse

    Weiskel, P.K.; Vogel, R.M.; Steeves, P.A.; Zarriello, P.J.; DeSimone, L.A.; Ries, Kernell G., III

    2007-01-01

    [1] The sustainability of human water use practices is a rapidly growing concern in the United States and around the world. To better characterize direct human interaction with hydrologic systems (stream basins and aquifers), we introduce the concept of the water use regime. Unlike scalar indicators of anthropogenic hydrologic stress in the literature, the water use regime is a two-dimensional, vector indicator that can be depicted on simple x-y plots of normalized human withdrawals (hout) versus normalized human return flows (hin). Four end-member regimes, natural-flow-dominated (undeveloped), human-flow-dominated (churned), withdrawal-dominated (depleted), and return-flow-dominated (surcharged), are defined in relation to limiting values of hout and hin. For illustration, the water use regimes of 19 diverse hydrologic systems are plotted and interpreted. Several of these systems, including the Yellow River Basin, China, and the California Central Valley Aquifer, are shown to approach particular end-member regimes. Spatial and temporal regime variations, both seasonal and long-term, are depicted. Practical issues of data availability and regime uncertainty are addressed in relation to the statistical properties of the ratio estimators hout and hin. The water use regime is shown to be a useful tool for comparative water resources assessment and for describing both historic and alternative future pathways of water resource development at a range of scales. Copyright 2007 by the American Geophysical Union.

  6. An extended fractal growth regime in the diffusion limited aggregation including edge diffusion

    NASA Astrophysics Data System (ADS)

    Ghosh, Aritra; Batabyal, R.; Das, G. P.; Dev, B. N.

    2016-01-01

    We have investigated on-lattice diffusion limited aggregation (DLA) involving edge diffusion and compared the results with the standard DLA model. For both cases, we observe the existence of a crossover from the fractal to the compact regime as a function of sticking coefficient. However, our modified DLA model including edge diffusion shows an extended fractal growth regime like an earlier theoretical result using realistic growth models and physical parameters [Zhang et al., Phys. Rev. Lett. 73 (1994) 1829]. While the results of Zhang et al. showed the existence of the extended fractal growth regime only on triangular but not on square lattices, we find its existence on the square lattice. There is experimental evidence of this growth regime on a square lattice. The standard DLA model cannot characterize fractal morphology as the fractal dimension (Hausdorff dimension, DH) is insensitive to morphology. It also predicts DH = DP (the perimeter dimension). For the usual fractal structures, observed in growth experiments on surfaces, the perimeter dimension can differ significantly (DH ≠ DP) depending on the morphology. Our modified DLA model shows minor sensitivity to this difference.

  7. Plasma confinement regimes and collective modes characterizing them

    SciTech Connect

    Coppi, B.; Zhou, T.

    2012-10-15

    A unified theory is presented for the modes that are excited at the edge of the plasma column and are important signatures of the advanced confinement regimes into which magnetically confined plasmas can be driven. In particular, the so-called EDA H-Regime, the Elmy H-Regime, and the I-Regime are considered. The modes that are identified theoretically have characteristics that are consistent with or have anticipated those of the modes observed experimentally for each of the investigated regimes. The phase velocities, the produced transport processes, the frequencies, the wavelengths, and the consistency with the direction of spontaneous rotation are the factors considered for comparison with the relevant experiments. The quasi-coherent mode [I. Cziegler, Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA, 2011] that is present in the EDA H-Regime has a phase velocity in the direction of the ion diamagnetic velocity in the plasma reference frame. Consequently, this is identified as a ballooning mode near finite Larmor radius marginal stability involving the effects of transverse ion viscosity and other dissipative effects. In this regime, impurities are driven outward by the combined effects of the local temperature gradients of the impurities and their thermal conductivity, while in the Elmy H-Regime impurities are driven toward the center of the plasma column. In the I-Regimes, the excited 'Heavy Particle' modes [B. Coppi and T. Zhou, Phys. Plasmas 19, 012302 (2012); Phys. Lett. A 375, 2916 (2011)] are not of the ballooning kind and are shown to expel the impurities toward the plasma edge in the presence of significant fluctuations. These modes can have a finite frequency of oscillation with a phase velocity in the direction of the electron diamagnetic velocity or they can be nearly purely growing, explaining why there are I-Regimes where fluctuations are not observed. Instead, the modes considered for the Elmy H-Regime are of the ballooning

  8. Importance of characterizing growth trajectories

    PubMed Central

    Regnault, Nolwenn; Gillman, Matthew W

    2016-01-01

    In the era of the obesity epidemic in children, characterizing childhood growth trajectories (weight, height or BMI/ weight-for-length) is becoming essential for surveillance. Clinicians routinely use growth curves to identify abnormal growth trajectories. Clinical epidemiologists use growth trajectories for different purposes. They are interested in the determinants of growth but also in the consequences of certain patterns of growth on later health and diseases. Characterizing growth trajectories is also necessary if one wants to predict future growth based on past growth and might be useful in the future to compare the anticipated impact of various interventions. PMID:25413648

  9. Evaluating and optimizing horticultural regimes in space plant growth facilities

    NASA Technical Reports Server (NTRS)

    Berkovich, Y. A.; Chetirkin, P. V.; Wheeler, R. M.; Sager, J. C.

    2004-01-01

    In designing innovative space plant growth facilities (SPGF) for long duration space flight, various limitations must be addressed including onboard resources: volume, energy consumption, heat transfer and crew labor expenditure. The required accuracy in evaluating on board resources by using the equivalent mass methodology and applying it to the design of such facilities is not precise. This is due to the uncertainty of the structure and not completely understanding the properties of all associated hardware, including the technology in these systems. We present a simple criteria of optimization for horticultural regimes in SPGF: Qmax = max [M x (EBI)2/(V x E x T], where M is the crop harvest in terms of total dry biomass in the plant growth system; EBI is the edible biomass index (harvest index), V is volume occupied by the crop; E is the crop light energy supply during growth; T is the crop growth duration. The criterion reflects directly on the consumption of onboard resources for crop production. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  10. Characterization of diffusion processes: Normal and anomalous regimes

    NASA Astrophysics Data System (ADS)

    Alves, Samuel B.; de Oliveira, Gilson F.; de Oliveira, Luimar C.; Passerat de Silans, Thierry; Chevrollier, Martine; Oriá, Marcos; de S. Cavalcante, Hugo L. D.

    2016-04-01

    Many man-made and natural processes involve the diffusion of microscopic particles subject to random or chaotic, random-like movements. Besides the normal diffusion characterized by a Gaussian probability density function, whose variance increases linearly in time, so-called anomalous-diffusion regimes can also take place. They are characterized by a variance growing slower (subdiffusive) or faster (superdiffusive) than normal. In fact, many different underlying processes can lead to anomalous diffusion, with qualitative differences between mechanisms producing subdiffusion and mechanisms resulting in superdiffusion. Thus, a general description, encompassing all three regimes and where the specific mechanisms of each system are not explicit, is desirable. Here, our goal is to present a simple method of data analysis that enables one to characterize a model-less diffusion process from data observation, by observing the temporal evolution of the particle spread. To generate diffusive processes in different regimes, we use a Monte-Carlo routine in which both the step-size and the time-delay of the diffusing particles follow Pareto (inverse-power law) distributions, with either finite or diverging statistical momenta. We discuss on the application of this method to real systems.

  11. Small Seed Black Hole Growth in Various Accretion Regimes

    NASA Astrophysics Data System (ADS)

    Gerling-Dunsmore, Hannalore J.; Hopkins, Philip F.

    2016-03-01

    Observational evidence indicates a population of super massive black holes (SMBHs) (~109 -1010M⊙) formed within 1 Gyr after the Big Bang. One proposed means of SMBH formation is accretion onto small seed black holes (BHs) (~ 100M⊙). However, the existence of SMBHs within 1 Gyr requires rapid growth, but conventional models of accretion fail to grow the seed BHs quickly enough. Super Eddington accretion (Ṁ >ṀEddington) may aid in improving growth efficiency. We study small seed BH growth via accretion in 3D, using the magneto-hydrodynamics+gravity code GIZMO. In particular, we consider a BH in a high density turbulent star-forming cloud, and ask whether or not the BH can capture sufficient gas to grow rapidly. We consider both Eddington-limited and super Eddington regimes, and resolve physics on scales from 0.1 pc to 1 kpc while including detailed models for stellar feedback physics, including stellar winds, supernovae, radiation pressure, and photo-ionization. We present results on the viability of different small seed BHs growing into SMBH candidates.

  12. Regime switch in karstic caves atmosphere; possible consequence on annual speleothem growth.

    NASA Astrophysics Data System (ADS)

    Bourges, F.; Genthon, P.; Mangin, A.; D'Hulst, D.

    2005-12-01

    Speleothem are usually considered as records of past climate, and are supposed to present annual growth rings. Yet, they grow inside caves that benefit from very stable environment. However, Bourges et al. 2001, have shown that the atmosphere of Aven d'Orgnac (South East France), was characterized by drop of CO2 concentration and 222Rn activity at the end of autumn and presented each year the succession of a winter and a summer regime. Temperature data are now used to constrain the climate of this cave system. Our data consist in 5 years monitoring with 0.01°C accuracy, three short thermal profiling campaigns, and sparser data gathered in different French painted caves. Near the opening of Aven d'Orgnac, the Salle de Jolys room records each year at the end of autumn the onset of the winter regime that is shown to be triggered by the inverse density stratification induced by the decrease of the outside night temperature. Comparison of summer and winter vertical temperature profiles point to a thermoconvective destabilization of this room atmosphere, involving the downward flow of cold outside bearing air near the cave floor during winter nights. The winter regime propagates then stepwise inside the Aven d'Orgnac cave system. In Salle Plane, which is situated more than one kilometer away from the entrance, the winter regime has never been observed. Our thermal profiling experiment shows there low amplitude (0.03°C) temperature changes, with major daily and half daily components, that are strongly correlated with the pressure first time derivative. Comparison with temperature records from other rooms of the Aven d'Orgnac cave system and with other caves monitored by our team suggest that a strong correlation between temperature changes and the pressure first time derivative could be considered as a clue to the confined character of a given cave room. We propose therefore that the Aven d'Orgnac cave system could be divided in two parts : the open system, where the

  13. Regime Switching in the Latent Growth Curve Mixture Model

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Schmittmann, Verena D.; Lubke, Gitta H.; Neale, Michael C.

    2005-01-01

    A linear latent growth curve mixture model is presented which includes switching between growth curves. Switching is accommodated by means of a Markov transition model. The model is formulated with switching as a highly constrained multivariate mixture model and is fitted using the freely available Mx program. The model is illustrated by analyzing…

  14. Phase-field modeling of submonolayer growth with the modulated nucleation regime

    NASA Astrophysics Data System (ADS)

    Dong, X. L.; Xing, H.; Chen, C. L.; Wang, J. Y.; Jin, K. X.

    2015-10-01

    In this letter, we perform the phase-field simulations to investigate nucleation regime of submonolayer growth via a quantified nucleation term. Results show that the nucleation related kinetic coefficients have changed the density of islands and critical sizes to modulate the nucleation regime. The scaling behavior of the island density can be agreed with the classical theory only when effects of modulations have been quantified. We expect to produce the quantitative descriptions of nucleation for submonolayer growth in phase-field models.

  15. Toward a Physical Characterization of Raindrop Collision Outcome Regimes

    NASA Technical Reports Server (NTRS)

    Testik, F. Y.; Barros, Ana P.; Bilven, Francis L.

    2011-01-01

    A comprehensive raindrop collision outcome regime diagram that delineates the physical conditions associated with the outcome regimes (i.e., bounce, coalescence, and different breakup types) of binary raindrop collisions is proposed. The proposed diagram builds on a theoretical regime diagram defined in the phase space of collision Weber numbers We and the drop diameter ratio p by including critical angle of impact considerations. In this study, the theoretical regime diagram is first evaluated against a comprehensive dataset for drop collision experiments representative of raindrop collisions in nature. Subsequently, the theoretical regime diagram is modified to explicitly describe the dominant regimes of raindrop interactions in (We, p) by delineating the physical conditions necessary for the occurrence of distinct types of collision-induced breakup (neck/filament, sheet, disk, and crown breakups) based on critical angle of impact consideration. Crown breakup is a subtype of disk breakup for lower collision kinetic energy that presents distinctive morphology. Finally, the experimental results are analyzed in the context of the comprehensive collision regime diagram, and conditional probabilities that can be used in the parameterization of breakup kernels in stochastic models of raindrop dynamics are provided.

  16. Unveiling the Hard Anodization Regime of Aluminum: Insight into Nanopores Self-Organization and Growth Mechanism.

    PubMed

    Vega, Víctor; García, Javier; Montero-Moreno, Josep M; Hernando, Blanca; Bachmann, Julien; Prida, Víctor M; Nielsch, Kornelius

    2015-12-30

    Pores growth mechanism and their self-ordering conditions are investigated for nanoporous alumina membranes synthesized by hard anodization (HA) of Al in a broad range of anodic conditions, covering oxalic acid electrolytes with concentrations from 0.300 M down to 0.075 M and potentiostatic anodization voltages between 120 and 225 V. The use of linear sweep voltammetry (LSV) and scanning and transmission electron microscopy, together with image analysis techniques allow one to characterize the intrinsic nature of the HA regime. HA of aluminum is explained on the basis of a phenomenological model taking into account the role of oxalate ions and their limited diffusion through alumina nanochannels from a bulk electrolyte. The depletion of oxalate ions at the bottom of the pores causes an increased growth of the alumina barrier layer at the oxide/electrolyte interface. Furthermore, an innovative method has been developed for the determination of the HA conditions leading to self-ordered pore growth in any given electrolyte, thus allowing one to extend the available range of interpore distances of the highly ordered hexagonal pore arrangement in a wide range of 240-507 nm, while keeping small pore diameters of 50-60 nm. PMID:26646814

  17. Fatigue crack growth in the highly plastic regime

    SciTech Connect

    Kim, K.S.; Baik, Y.M.

    1997-12-31

    This paper evaluates the performance of {Delta}J{sup {star}}, {Delta}J[superscript karet] and {Delta}K as fracture parameters for center-cracked plate specimens of Alloy 718 under R{sub {sigma}} = 0, nominally elastic and plastic loading at elevated temperatures. The parameters {Delta}J{sup {star}} and {Delta}J[superscript caret] are computed from the results of an elastic-plastic finite element analysis of crack growth. At 538 C the results show, in contrast to the previous results of R{sup {var_epsilon}} = {minus}1 strain control tests, that the correlation of crack growth rates with {Delta}J{sup {star}} or {Delta}J[superscript caret] deviates from the relation of the Paris law type while {Delta}K gives a satisfactory correlation. The correlation at 649 C is poor for all three parameters. The finite element analysis shows that the crack closing behavior diminishes and eventually disappears as the crack tip plasticity increases due to crack growth or increased applied stress.

  18. Bunch self-focusing regime of laser wakefield acceleration with reduced emittance growth.

    PubMed

    Reitsma, A J W; Goloviznin, V V; Kamp, L P J; Schep, T J

    2002-01-01

    A new regime of laser wakefield acceleration of an injected electron bunch is described. In this regime, the bunch charge is so high that the bunch wakefields play an important role in the bunch dynamics. In particular, the transverse bunch wakefield induces a strong self-focusing that suppresses the transverse emittance growth arising from misalignment errors. The decelerating longitudinal bunch wakefield, however, is not so strong that it completely cancels the accelerating laser wakefield. In fact, the induced energy spread can be compensated by exploiting phase slippage effects. These features make the new regime interesting for high beam quality laser wakefield acceleration. PMID:11800957

  19. Ecosystem regime shifts have not affected growth and survivorship of eastern Beaufort Sea belugas.

    PubMed

    Luque, Sebastián P; Ferguson, Steven H

    2009-05-01

    Large-scale ocean-atmosphere physical dynamics can have profound impacts on the structure and organization of marine ecosystems. These changes have been termed "regime shifts", and five different episodes have been detected in the North Pacific Ocean, with concurrent changes also occurring in the Bering and Beaufort Seas. Belugas from the Eastern Beaufort Sea (EBS) use the Bering Sea during winter and the Beaufort Sea during summer, yet the potential effects of regime shifts on belugas have not been assessed. We investigated whether body size and survivorship of EBS belugas harvested in the Mackenzie River delta region between 1993 and 2003 have been affected by previous purported regime shifts in the North Pacific. Residuals from the relationship between body length and age were calculated and compared among belugas born between 1932 and 1989. Residual body size was not significantly related to birth year for any regime, nor to the age group individuals belonged to during any regime. The percentage deviation in number of belugas born in any given year that survived to be included in the hunt (survivorship) did not show any significant trend within or between regimes. Accounting for lags of 1-5 years did not reveal any evidence of delayed effects. Furthermore, neither population index was significantly related to changes in major climatic variables that precede regime shifts. Our results suggest that EBS beluga body size and survivorship have not been affected by the major regime shifts of the North Pacific and the adjacent Bering and Beaufort Seas. EBS belugas may have been able to modify their diet without compromising their growth and survivorship. Diet and reproductive analyses over large and small time scales can help understand the mechanisms enabling belugas to avoid significant growth and reproductive effects of past regime shifts. PMID:19229560

  20. Retarding the growth of the Rosensweig instability unveils a new scaling regime

    NASA Astrophysics Data System (ADS)

    Lange, Adrian; Gollwitzer, Christian; Maretzki, Robin; Rehberg, Ingo; Richter, Reinhard

    2016-04-01

    Using a highly viscous magnetic fluid, the dynamics in the aftermath of the Rosensweig instability can be slowed down by more than 2000 times. In this way we expand the regime where the growth rate is predicted to scale linearly with the bifurcation parameter by six orders of magnitude, while this regime is tiny for standard ferrofluids and cannot be resolved experimentally there. We measure the growth of the pattern by means of a two-dimensional imaging technique, and find that the slopes of the growth and decay rates are not the same—a qualitative discrepancy with respect to the theoretical predictions. We solve this discrepancy by taking into account a viscosity which is assumed to be different for the growth and decay. This may be a consequence of the measured shear thinning of the ferrofluid.

  1. Retarding the growth of the Rosensweig instability unveils a new scaling regime.

    PubMed

    Lange, Adrian; Gollwitzer, Christian; Maretzki, Robin; Rehberg, Ingo; Richter, Reinhard

    2016-04-01

    Using a highly viscous magnetic fluid, the dynamics in the aftermath of the Rosensweig instability can be slowed down by more than 2000 times. In this way we expand the regime where the growth rate is predicted to scale linearly with the bifurcation parameter by six orders of magnitude, while this regime is tiny for standard ferrofluids and cannot be resolved experimentally there. We measure the growth of the pattern by means of a two-dimensional imaging technique, and find that the slopes of the growth and decay rates are not the same-a qualitative discrepancy with respect to the theoretical predictions. We solve this discrepancy by taking into account a viscosity which is assumed to be different for the growth and decay. This may be a consequence of the measured shear thinning of the ferrofluid. PMID:27176389

  2. Equilibrating dynamics in quenched Bose gases: Characterizing multiple time regimes

    NASA Astrophysics Data System (ADS)

    Rançon, A.; Levin, K.

    2014-08-01

    We address the physics of equilibration in ultracold atomic gases following a quench of the interaction parameter. Our work is based on a bath model which generates damping of the bosonic excitations. We illustrate this dissipative behavior through the momentum distribution of the excitations nk, observing that larger k modes have shorter relaxation times τ (k); they will equilibrate faster, as has been claimed in recent experimental work. We identify three time regimes. At short times nk exhibits oscillations; these are damped out at intermediate times where the system appears to be in a false or slowly converging equilibrium. Finally, at longer times, full equilibration occurs. This false equilibrium is, importantly, associated with the k dependence in τ (k) and has implications for experiment.

  3. Geographic variation in Pacific herring growth in response to regime shifts in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Ito, Shin-ichi; Rose, Kenneth A.; Megrey, Bernard A.; Schweigert, Jake; Hay, Douglas; Werner, Francisco E.; Aita, Maki Noguchi

    2015-11-01

    Pacific herring populations at eight North Pacific Rim locations were simulated to compare basin-wide geographic variations in age-specific growth due to environmental influences on marine productivity and population-specific responses to regime shifts. Temperature and zooplankton abundance from a three-dimensional lower-trophic ecosystem model (NEMURO: North Pacific Ecosystem Model for Understanding Regional Oceanography) simulation from 1948 to 2002 were used as inputs to a herring bioenergetics growth model. Herring populations from California, the west coast of Vancouver Island (WCVI), Prince William Sound (PWS), Togiak Alaska, the western Bering Sea (WBS), the Sea of Okhotsk (SO), Sakhalin, and Peter the Great Bay (PGB) were examined. The half-saturation coefficients of herring feeding were calibrated to climatological conditions at each of the eight locations to reproduce averaged size-at-age data. The depth of averaging used for water temperature and zooplankton, and the maximum consumption rate parameter, were made specific to each location. Using the calibrated half-saturation coefficients, the 1948-2002 period was then simulated using daily values of water temperature and zooplankton densities interpolated from monthly model output. To detect regime shifts in simulated temperatures, zooplankton and herring growth rates, we applied sequential t-test analyses on the 54 years of hindcast simulation values. The detected shifts of herring age-5 growth showed closest match (69%) to the regime shift years (1957/58, 1970/71, 1976/77, 1988/89, 1998/99). We explored relationships among locations using cluster and principal component analyses. The first principal component of water temperature showed good correspondence to the Pacific Decadal Oscillation and all zooplankton groups showed a pan-Pacific decrease after the 1976/77 regime shift. However, the first principal component of herring growth rate showed decreased growth at the SO, PWS, WCVI and California

  4. Regimes of radial growth for Ga-catalyzed GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Berdnikov, Y.; Sibirev, N. V.

    2016-07-01

    We present a non-stationary growth model of Ga-catalyzed GaAs nanowires which is based on the two kinetic equations for the nanowire elongation rate and a time-dependent base radius of the droplet. We show that self-catalyzed nanowire growth is principally different from the Au-catalyzed one because a stationary droplet size cannot be maintained at all times. Close examination of the model enables us to separate different regimes of radial growth in which the droplet shrinks, inflates or converges to a certain stationary size as nanowires grow, depending on the initial droplet radius and the growth conditions. We also discuss some experimental data on the growth modes of Ga-catalyzed GaAs nanowires from the viewpoint of the obtained results.

  5. Characterization of stock market regimes by data compression

    NASA Astrophysics Data System (ADS)

    Vogel, Eugenio E.; Saravia, Gonzalo

    2011-03-01

    It has been shown that data compression can characterize magnetic phases (Physica A 388 (2009) 4075). In the introduction of this presentation we briefly review this result. We then go onto introducing a new data compressor (wlzip) developed by us to optimize recognition of meaningful patterns in the compressing procedure, yielding sharp transition curves at the magnetic critical temperatures. The advantages of the new compressor, such as better definition and tuning capabilities are presented. The rest of the talk consists of applying wlzip to the Chilean stock market along several months during 2010. The accumulated daily data allow to recognizing days with different types of activity. Moreover, the data recorded every minute allow to analyzing the ``present'' status of the stock market by applying wlzip to the data of the last hour or couple of hours. Possible extensions of the application of this technique to other fields are discussed. Partial support from Fondecyt 1100156, ICM and CEDENNA is acknowledged.

  6. Growth Laws and Self-Similar Growth Regimes of Coarsening Two-Dimensional Foams: Transition from Dry to Wet Limits

    NASA Astrophysics Data System (ADS)

    Fortuna, Ismael; Thomas, Gilberto L.; de Almeida, Rita M. C.; Graner, François

    2012-06-01

    We study the topology and geometry of two-dimensional coarsening foam with an arbitrary liquid fraction. To interpolate between the dry limit described by von Neumann’s law and the wet limit described by Marqusee’s equation, the relevant bubble characteristics are the Plateau border radius and a new variable: the effective number of sides. We propose an equation for the individual bubble growth rate as the weighted sum of the growth through bubble-bubble interfaces and through bubble-Plateau border interfaces. The resulting prediction is successfully tested, without an adjustable parameter, using extensive bidimensional Potts model simulations. The simulations also show that a self-similar growth regime is observed at any liquid fraction, and they also determine how the average size growth exponent, side number distribution, and relative size distribution interpolate between the extreme limits. Applications include concentrated emulsions, grains in polycrystals, and other domains with coarsening that is driven by curvature.

  7. Characterization of Inductively Coupled Plasmas in High Power, High Pressure Regime

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Chieh; Kenney, Jason; Agarwal, Ankur; Nichols, Michael; Rogers, James; Rauf, Shahid

    2015-09-01

    Inductively coupled plasmas (ICP) are widely used in the microelectronic industry for thin film etching. ICPs have typically been operated at low gas pressures (<50 mTorr) and they have been well-characterized in this regime. Several applications requiring high etch rates (e.g., vertical NAND etch) have recently extended the use of ICPs to the high power (>4000 W) and high pressure (>100 mTorr) regime. ICP operation in this high-power, high-pressure regime imposes a tremendous challenge of achieving good plasma uniformity over large substrates. This necessitates a good theoretical understanding of the underlying physics, thorough experimental characterization, and more accurate numerical models for hardware design guidance. In this study, we will focus on the characterization of ICP in the high-power, high-pressure regime. Computational modeling is done using CRTRS, our in-house 2D/3D plasma model. The fluid plasma model is coupled to a circuit model to self-consistently account for the capacitive coupling from the coils that is expected to dominate in this operating regime. Properties of Ar plasma will be discussed and compared with experiments. The impact of critical operating parameters such as ICP power, pressure, flow rate, and current ratio (in multi-coil antenna structures) on plasma characteristics will be examined. Results in relevant processing gases will also be discussed.

  8. Shape transition of endotaxial islands growth from kinetically constrained to equilibrium regimes

    SciTech Connect

    Li, Zhi-Peng; Tok, Engsoon; Foo, Yonglim

    2013-09-01

    Graphical abstract: - Highlights: • All Fe{sub 13}Ge{sub 8} islands will grow into Ge(0 0 1) substrate at temperatures from 350 to 675 °C. • Shape transition occurred from kinetically constrained to equilibrium regime. • All endotaxial islands can be clarified into two types. • The mechanisms of endotaxial growth and shape transition have been rationalized. - Abstract: A comprehensive study of Fe grown on Ge(0 0 1) substrates has been conducted at elevated temperatures, ranging from 350 to 675 °C. All iron germinide islands, with the same Fe{sub 13}Ge{sub 8} phase, grow into the Ge substrate with the same epitaxial relationship. Shape transition occurs from small square islands (low temperatures), to elongated orthogonal islands or orthogonal nanowires (intermediate temperatures), and then finally to large square orthogonal islands (high temperatures). According to both transmission electron microscopy (TEM) and atomic force microscopy (AFM) investigations, all islands can be defined as either type-I or type-II. Type-I islands usually form at kinetically constrained growth regimes, like truncated pyramids. Type-II islands usually appear at equilibrium growth regimes forming a dome-like shape. Based on a simple semi-quantitative model, type-II islands have a lower total energy per volume than type-I, which is considered as the dominant mechanism for this type of shape transition. Moreover, this study not only elucidates details of endotaxial growth in the Fe–Ge system, but also suggests the possibility of controlled fabrication of temperature-dependent nanostructures, especially in materials with dissimilar crystal structures.

  9. Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires.

    PubMed

    Pinion, Christopher W; Nenon, David P; Christesen, Joseph D; Cahoon, James F

    2014-06-24

    The vapor-liquid-solid (VLS) mechanism is widely used for the synthesis of semiconductor nanowires (NWs), yet several aspects of the mechanism are not fully understood. Here, we present comprehensive experimental measurements on the growth rate of Au-catalyzed Si NWs over a range of temperatures (365-480 °C), diameters (30-200 nm), and pressures (0.1-1.6 Torr SiH4). We develop a kinetic model of VLS growth that includes (1) Si incorporation into the liquid Au-Si catalyst, (2) Si evaporation from the catalyst surface, and (3) Si crystallization at the catalyst-NW interface. This simple model quantitatively explains growth rate data collected over more than 65 distinct synthetic conditions. Surprisingly, upon increasing the temperature and/or pressure, the analysis reveals an abrupt transition from a diameter-independent growth rate that is limited by incorporation to a diameter-dependent growth rate that is limited by crystallization. The identification of two distinct growth regimes provides insight into the synthetic conditions needed for specific NW-based technologies, and our kinetic model provides a straightforward framework for understanding VLS growth with a range of metal catalysts and semiconductor materials. PMID:24815744

  10. Wheat and Rice Growth Stages and Fertilization Regimes Alter Soil Bacterial Community Structure, But Not Diversity

    PubMed Central

    Wang, Jichen; Xue, Chao; Song, Yang; Wang, Lei; Huang, Qiwei; Shen, Qirong

    2016-01-01

    Maintaining soil fertility and the microbial communities that determine fertility is critical to sustainable agricultural strategies, and the use of different organic fertilizer (OF) regimes represents an important practice in attempts to preserve soil quality. However, little is known about the dynamic response of bacterial communities to fertilization regimes across crop growth stages. In this study, we examined microbial community structure and diversity across eight representative growth stages of wheat-rice rotation under four different fertilization treatments: no nitrogen fertilizer (NNF), chemical fertilizer (CF), organic–inorganic mixed fertilizer (OIMF), and OF. Quantitative PCR (QPCR) and high-throughput sequencing of bacterial 16S rRNA gene fragments revealed that growth stage as the best predictor of bacterial community abundance and structure. Additionally, bacterial community compositions differed between wheat and rice rotations. Relative to soils under wheat rotation, soils under rice rotation contained higher relative abundances (RA) of anaerobic and mesophilic microbes and lower RA of aerophilic microbes. With respect to fertilization regime, NNF plots had a higher abundance of nitrogen–fixing Cyanobacteria. OIMF had a lower abundance of ammonia-oxidizing Thaumarchaeota compared with CF. Application of chemical fertilizers (CF and OIMF treatments) significantly increased the abundance of some generally oligotrophic bacteria such those belonging to the Acidobacteria, while more copiotrophic of the phylum Proteobacteria increased with OF application. A high correlation coefficient was found when comparing RA of Acidobacteria based upon QPCR vs. sequence analysis, yet poor correlations were found for the α- and β- Proteobacteria, highlighting the caution required when interpreting these molecular data. In total, crop, fertilization scheme and plant developmental stage all influenced soil microbial community structure, but not total levels of

  11. Wheat and Rice Growth Stages and Fertilization Regimes Alter Soil Bacterial Community Structure, But Not Diversity.

    PubMed

    Wang, Jichen; Xue, Chao; Song, Yang; Wang, Lei; Huang, Qiwei; Shen, Qirong

    2016-01-01

    Maintaining soil fertility and the microbial communities that determine fertility is critical to sustainable agricultural strategies, and the use of different organic fertilizer (OF) regimes represents an important practice in attempts to preserve soil quality. However, little is known about the dynamic response of bacterial communities to fertilization regimes across crop growth stages. In this study, we examined microbial community structure and diversity across eight representative growth stages of wheat-rice rotation under four different fertilization treatments: no nitrogen fertilizer (NNF), chemical fertilizer (CF), organic-inorganic mixed fertilizer (OIMF), and OF. Quantitative PCR (QPCR) and high-throughput sequencing of bacterial 16S rRNA gene fragments revealed that growth stage as the best predictor of bacterial community abundance and structure. Additionally, bacterial community compositions differed between wheat and rice rotations. Relative to soils under wheat rotation, soils under rice rotation contained higher relative abundances (RA) of anaerobic and mesophilic microbes and lower RA of aerophilic microbes. With respect to fertilization regime, NNF plots had a higher abundance of nitrogen-fixing Cyanobacteria. OIMF had a lower abundance of ammonia-oxidizing Thaumarchaeota compared with CF. Application of chemical fertilizers (CF and OIMF treatments) significantly increased the abundance of some generally oligotrophic bacteria such those belonging to the Acidobacteria, while more copiotrophic of the phylum Proteobacteria increased with OF application. A high correlation coefficient was found when comparing RA of Acidobacteria based upon QPCR vs. sequence analysis, yet poor correlations were found for the α- and β- Proteobacteria, highlighting the caution required when interpreting these molecular data. In total, crop, fertilization scheme and plant developmental stage all influenced soil microbial community structure, but not total levels of alpha

  12. Modelling of salad plants growth and physiological status in vitamin space greenhouse during lighting regime optimization

    NASA Astrophysics Data System (ADS)

    Konovalova, Irina; Berkovich, Yuliy A.; Smolyanina, Svetlana; Erokhin, Alexei; Yakovleva, Olga; Lapach, Sergij; Radchenko, Stanislav; Znamenskii, Artem; Tarakanov, Ivan

    2016-07-01

    The efficiency of the photoautotrophic element as part of bio-engineering life-support systems is determined substantially by lighting regime. The artificial light regime optimization complexity results from the wide range of plant physiological functions controlled by light: trophic, informative, biosynthetical, etc. An average photosynthetic photon flux density (PPFD), light spectral composition and pulsed light effects on the crop growth and plant physiological status were studied in the multivariate experiment, including 16 independent experiments in 3 replicates. Chinese cabbage plants (Brassica chinensis L.), cultivar Vesnianka, were grown during 24 days in a climatic chamber under white and red light-emitting diodes (LEDs): photoperiod 24 h, PPFD from 260 to 500 µM/(m ^{2}*s), red light share in the spectrum varying from 33% to 73%, pulsed (pulse period from 30 to 501 µs) and non-pulsed lighting. The regressions of plant photosynthetic and biochemical indexes as well as the crop specific productivity in response to the selected parameters of lighting regime were calculated. Developed models of crop net photosynthesis and dark respiration revealed the most intense gas exchange area corresponding to PPFD level 450 - 500 µM/(m ^{2}*s) with red light share in the spectrum about 60% and the pulse length 30 µs with a pulse period from 300 to 400 µs. Shoot dry weight increased monotonically in response to the increasing PPFD and changed depending on the pulse period under stabilized PPFD level. An increase in ascorbic acid content in the shoot biomass was revealed when increasing red light share in spectrum from 33% to 73%. The lighting regime optimization criterion (Q) was designed for the vitamin space greenhouse as the maximum of a crop yield square on its ascorbic acid concentration, divided by the light energy consumption. The regression model of optimization criterion was constructed based on the experimental data. The analysis of the model made it

  13. Characterization of electron kinetics regime with electron energy probability functions in inductively coupled hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-02-01

    Electron kinetics regime is characterized with the evolution of electron energy probability functions (EEPFs) in inductively coupled hydrogen plasmas. Measurements on EEPFs are carried out with a radio-frequency-compensated single Langmuir probe at the center of a planar-type hydrogen plasma driven by 13.56 MHz wave frequency. Measured EEPFs deviate considerably from the Maxwellian distribution only at relatively high pressures (15-40 mTorr), and the effective electron temperature steeply decreases as the gas pressure increases. Such evolution of the EEPF shapes with pressures is discussed in the consideration of the electron energy relaxation length and various characteristic frequencies. It is found that the EEPFs show locally depleted electron energy distribution where the electron-molecule vibrational collision frequency exceeds the electron-electron collision frequency at the local kinetics regime, while the measured EEPF is not dependent on the vibrational collision frequency at the non-local kinetics regime. Variation of the EEPF shape with distance from the heating region at the local kinetics regime is also well explained in the context of the energy relaxation length and electron-molecule collision frequencies. This study indicates that the control of electron energy distribution should be carried out in the consideration of electron kinetic regime depending on the energy relaxation length for various hydrogen plasma sources.

  14. Modular Growth in Bryozoans and the Inference of Pliocene Climate Regimes

    NASA Astrophysics Data System (ADS)

    Okamura, B.; O'Dea, A.; Knowles, T.; Clark, N.; Williams, M.

    2010-12-01

    We describe how variation in the modular growth of marine cheilostome bryozoans can be used to infer mean annual ranges in temperature (MART) through the application of the zooid-size MART technique (zs-MART) - an underutilised proxy for estimating seasonal temperature regimes in present-day and ancient environments. Inferences of temperature variation based on analyses of modular growth in bryozoans provide insights on both intra- and interannual environmental variation, and thereby enhance the climate records that are gleaned from foraminifers and other microfossils. The growing body of research to establish and utilise the zs-MART approach demonstrates its wide potential for gaining robust estimates of ancient temperature regimes, particularly when incorporated as part of a multi-proxy toolkit. We review how the zooid-size MART approach has enabled reconstruction of palaeoseasonality for the Pliocene across the North Atlantic, during the closure of the isthmus of Panama and in Antarctica and compare these data with those generated by other biological proxies and with output from GCMs.

  15. Feed and Feeding Regime Affect Growth Rate and Gonadosomatic Index of Adult Zebrafish (Danio Rerio)

    PubMed Central

    Law, Sheran Hiu Wan

    2013-01-01

    Abstract A 5-week study was conducted to evaluate commercially available Artemia, Ziegler zebrafish diet, and Calamac diet fed in five different feeding regimes on the growth and reproductive development of 7-month-old zebrafish. Zebrafish were fed to satiation three times daily during the normal work week and twice daily during the weekend and holidays. Zebrafish in dietary groups CCC (Calamac three times daily) and CCA (Calamac twice daily, Artemia once daily) had a significantly (p<0.05) greater weight gain and specific growth rate as compared to all other dietary groups. Male zebrafish in dietary group 5 had significantly larger gonadosomatic index (GSI) values than all other groups, while female zebrafish in dietary group CCC had significantly larger GSI values than all other groups. No differences in the fatty acid content of female gonads were detected. Zebrafish fed solely Artemia had the greatest weight loss and lowest GSI values. Preliminary evidence of protein sparing in zebrafish is reported. Collectively, this study sheds more light into the effects of the use of commercially available feeds and feeding regime on the rearing of zebrafish. PMID:23902461

  16. Numerical Analysis of Granular Flows in a Silo Bed on Flow Regime Characterization

    PubMed Central

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2015-01-01

    The flow characteristics of a gravity-driven dense granular flow in a granular bed with a contracted drainage orifice are studied by using discrete element method and quantitative analysis. Three values of discharging rates, ranging from fast to slow dense flows, are investigated. Time variations and derivatives of mean forces and velocities, as well as their respective correlations, are analyzed to quantitatively depict the characteristics of granular flow as well as flow regime categorization. The auto-correlation functions, as well as their Fourier spectrums, are utilized to characterize the differences between the mechanisms of slow and fast granular flows. Finally, it is suggested that the flow regimes of slow and fast flows can be characterized by the kinetic and kinematic flow properties of particles. PMID:25793996

  17. Numerical analysis of granular flows in a silo bed on flow regime characterization.

    PubMed

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2015-01-01

    The flow characteristics of a gravity-driven dense granular flow in a granular bed with a contracted drainage orifice are studied by using discrete element method and quantitative analysis. Three values of discharging rates, ranging from fast to slow dense flows, are investigated. Time variations and derivatives of mean forces and velocities, as well as their respective correlations, are analyzed to quantitatively depict the characteristics of granular flow as well as flow regime categorization. The auto-correlation functions, as well as their Fourier spectrums, are utilized to characterize the differences between the mechanisms of slow and fast granular flows. Finally, it is suggested that the flow regimes of slow and fast flows can be characterized by the kinetic and kinematic flow properties of particles. PMID:25793996

  18. Mesoscopic Impurities Expose a Nucleation-Limited Regime of Crystal Growth

    NASA Astrophysics Data System (ADS)

    Sleutel, Mike; Lutsko, James F.; Maes, Dominique; Van Driessche, Alexander E. S.

    2015-06-01

    Nanoscale self-assembly is naturally subject to impediments at the nanoscale. The recently developed ability to follow processes at the molecular level forces us to resolve older, coarse-grained concepts in terms of their molecular mechanisms. In this Letter, we highlight one such example. We present evidence based on experimental and simulation data that one of the cornerstones of crystal growth theory, the Cabrera-Vermilyea model of step advancement in the presence of impurities, is based on incomplete physics. We demonstrate that the piercing of an impurity fence by elementary steps is not solely determined by the Gibbs-Thomson effect, as assumed by Cabrera-Vermilyea. Our data show that for conditions leading up to growth cessation, step retardation is dominated by the formation of critically sized fluctuations. The growth recovery of steps is counter to what is typically assumed, not instantaneous. Our observations on mesoscopic impurities for lysozyme expose a nucleation-dominated regime of growth that has not been hitherto considered, where the system alternates between zero and near-pure velocity. The time spent by the system in arrest is the nucleation induction time required for the step to amass a supercritical fluctuation that pierces the impurity fence.

  19. Observation of Rayleigh-Taylor-instability growth in a plasma regime with magnetic and viscous stabilization

    NASA Astrophysics Data System (ADS)

    Adams, Colin

    2015-11-01

    Rayleigh-Taylor-instability (RTI) growth during the interaction between a high-Mach-number, unmagnetized plasma jet and a stagnated, magnetized plasma is observed in a regime where the growth of short-wavelength modes is influenced by plasma viscosity and magnetic fields. The time evolution of mode growth at the mostly planar interface is captured by a multi-frame fast camera. Interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to experimentally infer ni, Te, Z , acceleration, B -->, and ion viscosity in the vicinity of the evolving interface. As the instability grows, an evolution from mode wavelengths of ~ 1 . 7 cm to ~ 2 . 8 cm is observed. The growth time (~ 10 μs) and wavelength (~ 1 cm) of the observed modes agree with theoretical predictions computed from the experimentally inferred density (~1014 cm-3), deceleration (~109 m /s2), and magnetic field (~ 15 G in direction of wavevector). Furthermore, comparisons of experimental data with idealized magnetohydrodynamic simulations (which include a physical viscosity model) suggest that both magnetic and viscous stabilization contribute to the observed mode evolution. These data are relevant for benchmarking astrophysical and magneto-inertial-fusion-relevant computations of RTI. Supported by the LANL LDRD Program; PLX facility construction supported by OFES.

  20. Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico

    NASA Astrophysics Data System (ADS)

    Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.

    2013-05-01

    Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments

  1. A Maturing Global Testing Regime Meets the World Economy: Test Scores and Economic Growth, 1960-2012

    ERIC Educational Resources Information Center

    Kamens, David H.

    2015-01-01

    This article considers the growth of the international testing regime. It discusses sources of growth and empirically examines two related sets of issues: (1) the stability of countries' achievement scores, and (2) the influence of those national scores on subsequent economic development over different time lags. The article suggests that…

  2. Coalescence-controlled and coalescence-free growth regimes during deposition of pulsed metal vapor fluxes on insulating surfaces

    SciTech Connect

    Lü, B.; Münger, E. P.; Sarakinos, K.

    2015-04-07

    The morphology and physical properties of thin films deposited by vapor condensation on solid surfaces are predominantly set by the processes of island nucleation, growth, and coalescence. When deposition is performed using pulsed vapor fluxes, three distinct nucleation regimes are known to exist depending on the temporal profile of the flux. These regimes can be accessed by tuning deposition conditions; however, their effect on film microstructure becomes marginal when coalescence sets in and erases morphological features obtained during nucleation. By preventing coalescence from being completed, these nucleation regimes can be used to control microstructure evolution and thus access a larger palette of film morphological features. Recently, we derived the quantitative criterion to stop coalescence during continuous metal vapor flux deposition on insulating surfaces—which typically yields 3-dimensional growth—by describing analytically the competition between island growth by atomic incorporation and the coalescence rate of islands [Lü et al., Appl. Phys. Lett. 105, 163107 (2014)]. Here, we develop the analytical framework for entering a coalescence-free growth regime for metal vapor deposition on insulating substrates using pulsed vapor fluxes, showing that there exist three distinct criteria for suppressing coalescence that correspond to the three nucleation regimes of pulsed vapor flux deposition. The theoretical framework developed herein is substantiated by kinetic Monte Carlo growth simulations. Our findings highlight the possibility of using atomistic nucleation theory for pulsed vapor deposition to control morphology of thin films beyond the point of island density saturation.

  3. Phosphorus acquisition and growth of Pinus ponderosa under different climate regimes

    SciTech Connect

    DeLucia, E.H.; Callaway, R.M.; Thomas, E.M.

    1995-06-01

    Ponderosa pine seedlings were grown with an organic P fertilizer in a factorial 2 temp (25 & 30 C) and 2 CO{sub 2} (350 & 700 {mu}l/l) design. Elevated CO{sub 2} stimulated growth and elevated CO{sub 2} and temp increased the specific absorption rate of P by ca. 30%. The percent infection by mycorrhizae increased with elevated CO{sub 2} but decreased with elevated temp. In contrast, the activity of root phosphatases was depressed in seedlings grown under elevated CO{sub 2} and temperature. Thus, there appears to be a functional tradeoff in the mechanisms of P acquisition in different climate regimes. Under current conditions root phosphatase activity is high and mycorrhizal infection is low. This reverses under simulated future conditions of elevated temp and CO{sub 2}. The concentration of soil oxalate also increased under elevated CO{sub 2}. This small organic acid, released by roots and fungi, chelates Ca, Fe, and Al in the soil thereby increasing the availability of inorganic P. Enhanced P acquisition and utilization under elevated CO{sub 2} and temp contributed to higher growth rates suggesting that ponderosa pine may overcome P limitations under future climate conditions.

  4. Analytical Characterization of the Electrospray Ion Source in the Nanoflow Regime

    SciTech Connect

    Marginean, Ioan; Kelly, Ryan T.; Prior, David C.; Lamarche, Brian L.; Tang, Keqi; Smith, Richard D.

    2008-09-01

    We provide a thorough characterization of the low-flow electrospray as an ionization source for mass spectrometry (MS) using solutions typical for reversed-phase liquid chromatography. As expected, the electrospray operating regime strongly affects the MS signal; however, contrary to conventional wisdom, the pulsating regime consistently offers better performance than the cone-jet regime in these experimental conditions. We explain this observation by a highly efficient ionization achieved by the pulsating electrospray at low flow rates, rendering the increased charge generated by a cone-jet electrospray detrimental for transmission from atmospheric pressure to vacuum through a heated capillary interface. Over a wide range of voltages, the pulsating electrospray provides a relatively constant MS signal intensity, which depends significantly on the distance between the emitter and the MS inlet. For cone-jet electrosprays the MS signal decreases slightly with increasing voltage, but the signal is less affected by the emitter-inlet distance. At flow rates up to 100 nL/min the MS signal increases with increasing flow rate due to the larger number of ions supplied into the gas phase. At flow rates greater than 100 nL/min, the signal reaches a plateau due to increasingly unsatisfactory ionization efficiency at larger flow rates.

  5. Characterization of magnetic reconnection in the high-energy-density regime

    NASA Astrophysics Data System (ADS)

    Qiao, B.; Xu, Z.; Chang, H. X.; Wu, S. Z.; Zhou, C. T.; Wang, X. G.; He, X. T.

    2015-11-01

    Magnetic reconnection (MR), breaking and reorganizing the topology of magnetic field dramatically, is a fundamental process observed in many space, laboratory and astrophysical plasmas. In this talk, we report recent investigations on characterization of magnetic reconnection (MR) in the high-energy-density (HED) regime, where the plasma inflow is strongly driven and the total thermal pressure is larger than the magnetic pressure (β > 1) . This extreme regime of MR occurs frequently in astrophysics and recent HED experiments. Comparing the particle-in-cell simulation results for the interactions of colliding laser-produced plasma bubbles with induced anti-parallel and parallel poloidal magnetic fields respectively, the consequences caused by MR are distinguished from those by plasma bubble collisions and two-fluid effects. It is found that the out-of-plane quadrupole magnetic field, bipolar poloidal electric field, plasma heating and even the out-of-plane electric field appear in both cases, which cannot be recognized as evidences of MR here as previously thought. The Lorentz-invariant scalar quantity De =γe \\Jdot ⇀ . (E ⇀ + v ⇀ × B ⇀) [γe = (1 -ve2 /c2)- 1 / 2 is the Lorentz factor] in the electron dissipation region is proposed as the key sign of MR occurrence in the HED regime.

  6. [Responses of Medicago sativa and Astragalus adsurgens seedlings growth and water use to soil moisture regime].

    PubMed

    Xu, Bingcheng; Shan, Lun; Li, Fengmin

    2005-12-01

    In the semi-arid area of Loess Plateau, seasonal drought often occurs during the vegetative stage of grass plants, leading to the subsequent serious reduction of their yield. Aimed to study the responses of the seedlings growth and water use of two perennial leguminous grasses Medicago sativa and Astragalus adsurgens to different soil moisture regimes, a pot experiment was installed with five treatments, i.e., adequate water supply (HW), moderate water stress (LW), soil drying gradually from HW (DHW) and LW (DLW), and refilling water to LW after soil drying from LW (RWL). The results showed that under HW, the seedlings of both M. sativa and A. adsurgens had the highest biomass and transpiration water use efficiency (TWUE), and M. sativa had a significantly higher biomass than A. adsurgens (P < 0.05). When the soil moisture content declined, M. sativa had a higher reduction rate in biomass and TWUE than A. adsurgens, and after the soil moisture regime changed from LW and DLW to RWL, the biomass of M. sativa and A. adsurgens was reduced by 47.8% and 27.9%, respectively, as compared to LW (P < 0.05). At the same time, the root/shoot ratio (R/S) of M. sativa and its water consumption per unit root increased significantly, while the TWUE decreased significantly (P < 0.05); but for A. adsurgens, its R/S decreased significantly (P < 0.05), while the TWUE and the water consumption per unit root had no significant change. PMID:16515181

  7. [Response of photosynthesis and growth to weak light regime in different Adzuki bean (Vigna angularis) varieties].

    PubMed

    Zou, Chang-ming; Wang, Yun-qing; Cao, Wei-dong; Liu, Ying; Zhang, Xiao-hong; Tang, Shan

    2015-12-01

    In order to determine the adaptability of Adzuki beans as the interplanting crops in fruit yards, field and pot experimental treatments with full natural light and weak light (48% of full natural light) regimes were conducted to test the shade tolerance and physiological responses of three Adzuki bean varieties including Funan green Vigna angularis (FGVA), early-mature black V. angularis (EBVA) and late-mature black V. angularis (LBVA). The leaf photosynthetic characteristic parameters, photosynthetic pigment contents and the activity of RuBPCase were measured during the first bloom stage. The response of growth to weak light was likewise studied. The results showed that the photosynthetic characteristic parameters, i.e., the maximum net photosynthetic rate, light saturation point and light compensation point of the three Adzuki bean varieties under the weak light stress changed differently. The weak light stress induced the reduction of net photosynthetic rate, water use efficiency and RuBPCase activity of the three Adzuki bean varieties significantly. The contents of chlorophyll a and chlorophyll b in leaves of FGVA increased significantly, while Chl a/b and carotenoid content in the leaves decreased significantly after shading. But the other two varieties did not change obviously in photosynthetic pigments content after shading. The weak light changed the growth of the three Adzuki bean varieties, such as decreasing dry matter yield and dry matter accumulation efficiency, reducing root nodule and root-shoot ratio, debasing leaves quantity and leaf area index. The first bloom stage and maturing stage of FGVA advanced, while that of EBVA delayed under weak light. However, flowers were not strong enough to seed for LBVA under the weak light. In conclusion, according to the photosynthetic characteristics changes after shading, as well as the growth status, we concluded that the shade tolerance of the three Adzuki beans was ranked as FGVA>EBVA>LBVA. PMID:27112006

  8. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    SciTech Connect

    Cao, L F; Uschmann, I; Forster, E; Zamponi, F; Kampfer, T; Fuhrmann, A; Holl, A; Redmer, R; Toleikis, S; Tschentsher, T; Glenzer, S H

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in an ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.

  9. Effects of plant growth substances on rooting of Hedychium spicatum under different temperature regimes.

    PubMed

    Giri, Dinesh; Tamta, Sushma

    2013-03-01

    Present study was carried out to develop a simple and efficient vegetative propagation protocol by applying various treatments to rhizome cuttings with different test solutions of auxins and phenolic compound. These were alpha-naphthalene acetic acid (NAA), Indole-3-butyric acid (IBA), Indole Acetic Acid (IAA), phloroglucinol and coumarin. The concentrations for each treatment were 10.0, 50.0 and 100.0 microM. After treatments the rhizome cuttings were planted in polybags containing forest soil and kept under different temperature regimes i.e., inside polyhose (at 20-25 degrees C), inside mist chamber (at 15-20 degrees C) and under nethouse (nursery condition, at 14-18 degrees C). The maximum rooting percentage (74.06%) was achieved at 20-25 degrees C (inside polyhouse) by applying 50.0 microM IBA. Inside poly house condition, the various developmental parameters showed better responses compare to other conditions. On the basis of present study emphasizes that the temperature play a crucial role in rooting and further growth of the plants in this species. By using this simple and significant conventional method of propagation we could be propagate this vulnerable medicinal and aromatic species at large scale for commercial purpose. PMID:24175432

  10. Pedestal Characterization and Stability of Small-ELM Regimes in NSTX

    SciTech Connect

    Sontag, Aaron C; Canik, John; Maingi, Rajesh; Manickam, J.; Snyder, P.; Bell, R. E.; Gerhardt, S.P.; Kubota, S.; LaBlanc, B. P.; Mueller, D.; Osborne, T.; Tritz, K.

    2010-01-01

    An instability near the plasma edge known as the edge harmonic oscillation (EHO) is thought to enable access to the ELM-free quiescent H-mode (QH-mode) in tokamaks, which is a highly desirable operational regime for ITER because of the avoidance of periodic ELM heat loads. The EHO has been hypothesized to be a saturated kink driven unstable by toroidal rotational shear that provides sufficient transport near the plasma edge to keep the edge plasma below the peeling-ballooning stability limit. NSTX has observed unstable modes with similar characteristics to the EHO coincident with transition to a small-ELM regime (called Type-V). These small ELMs do not have a measurable effect on the plasma stored energy (< 1%). Transition to this regime is associated with a downward biased plasma as evidenced by drsep < -5 mm. Soft x-ray emission indicates that these modes are localized just inside the pedestal and are correlated with increased density fluctuations in the pedestal as measured by microwave reflectometry. The lowest order mode rotates at the plasma rotation frequency, indicating n=1, and harmonics up to n=6 have been observed simultaneously with the n=1, as determined by the rotation frequency of the higher harmonics. Increased edge collisionality is required to access Type-V ELMs. Stability analysis during the observed modes indicates instability to n=1-3 with n=3 having the highest growth rate and unstable mode eigenfunctions peaked near the plasma edge. Discharges with Type-V and Type-I ELMs are both calculated to be on the peeling unstable side of the peeling ballooning stability curve, with the Type-V case at higher normalized pressure gradient.

  11. Effects of constant and cyclical thermal regimes on growth and feeding of juvenile cutthroat trout of variable sizes

    USGS Publications Warehouse

    Meeuwig, M.H.; Dunham, J.B.; Hayes, J.P.; Vinyard, G.L.

    2004-01-01

    The effects of constant (12, 18, and 24 A?C) and cyclical (daily variation of 15a??21 and 12a??24 A?C) thermal regimes on the growth and feeding of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) of variable sizes were examined. Higher constant temperatures (i.e., 24 A?C) and more variable daily temperatures (i.e., 12a??24 A?C daily cycle) negatively affected growth rates. As fish mass increased (from 0.24 to 15.52 g) the effects of different thermal regimes on mass growth became more pronounced. Following 14 days exposure to the thermal regimes, feeding rates of individual fish were assessed during acute exposure (40 min) to test temperatures of 12, 18, and 24 A?C. Feeding rate was depressed during acute exposure to 24 A?C, but was not significantly affected by the preceding thermal regime. Our results indicate that even brief daily exposure to higher temperatures (e.g., 24 A?C) can have considerable sublethal effects on cutthroat trout, and that fish size should be considered when examining the effects of temperature.

  12. How do soil physical conditions for crop growth vary over time under established contrasting tillage regimes?

    NASA Astrophysics Data System (ADS)

    Hallett, Paul; Stobart, Ron; Valentine, Tracy; George, Timothy; Morris, Nathan; Newton, Adrian; McKenzie, Blair

    2014-05-01

    When plant breeders develop modern cereal varieties for the sustainable intensification of agriculture, insufficient thought is given to the impact of tillage on soil physical conditions for crop production. In earlier work, we demonstrated that barley varieties that perform best in ploughed soil (the approach traditionally used for breeding trials) were not the same as those performing best under shallow non-inversion or zero-tillage. We also found that the Quantitative Trait Loci (QTL) associated with improved phosphorus uptake, and hence useful for marker assisted breeding, were not robust between different tillage regimes. The impact of the soil environment had greater impact than the genetics in GxE interactions. It is obvious that soil tillage should be considered when breeding the next generation of crops. Tillage may also have important impacts on carbon storage, but we found that despite greater soil carbon at shallow depths under non-inversion tillage, the carbon stored throughout the soil profile was not affected by tillage. Studies on soil tillage impacts to crop productivity and soil quality are often performed in one season, on single sites that have had insufficient time to develop. Our current research explores multiple sites, on different soils, with temporal measurements of soil physical conditions under contrasting tillage regimes. We use the oldest established contemporary tillage experiments in the United Kingdom, with all sites sharing ploughed and shallow (7cm) non-inversion tillage treatments. In eastern Scotland (Mid Pilmore), the site also has zero tillage and deep ploughing (40 cm) treatments, and was established 11 years ago. In east England there are two sites, both also having a deep non-inversion tillage treatment, and they were established 6 (New Farm Systems) and 8 (STAR) years ago. We measure a range of crop and soil properties at sowing, one month after sowing and post-harvest, including rapid lab based assays that allow high

  13. SiGe nanowire growth and characterization

    NASA Astrophysics Data System (ADS)

    Qi, Cheng; Goncher, Gary; Solanki, Raj; Jordan, Jay

    2007-02-01

    Single-crystal SiGe nanowires were synthesized via the vapour-liquid-solid (VLS) growth mechanism using disilane and germane as precursor gases. We have investigated the effect of temperature, pressure, and the inlet gas ratio on the growth and stoichiometry of SixGe1-x nanowires. The nanowires were characterized using scanning and transmission electron microscopies and energy dispersive x-ray analysis. It was found that nanowires with a Si:Ge ratio of about 1 had smooth surfaces, whereas departure from this ratio led to rough surfaces. Electrical properties were then investigated by fabricating back-gated field effect transistors (using a focused ion beam system) where single SiGe nanowires served as the conduction channels. Gated conduction was observed although resistance in the undoped devices was high.

  14. SiGe nanowire growth and characterization.

    PubMed

    Qi, Cheng; Goncher, Gary; Solanki, Raj; Jordan, Jay

    2007-02-21

    Single-crystal SiGe nanowires were synthesized via the vapour-liquid-solid (VLS) growth mechanism using disilane and germane as precursor gases. We have investigated the effect of temperature, pressure, and the inlet gas ratio on the growth and stoichiometry of Si(x)Ge(1-x) nanowires. The nanowires were characterized using scanning and transmission electron microscopies and energy dispersive x-ray analysis. It was found that nanowires with a Si:Ge ratio of about 1 had smooth surfaces, whereas departure from this ratio led to rough surfaces. Electrical properties were then investigated by fabricating back-gated field effect transistors (using a focused ion beam system) where single SiGe nanowires served as the conduction channels. Gated conduction was observed although resistance in the undoped devices was high. PMID:21730497

  15. Crystal phase control in GaAs nanowires: opposing trends in the Ga- and As-limited growth regimes.

    PubMed

    Lehmann, Sebastian; Jacobsson, Daniel; Dick, Kimberly A

    2015-07-31

    Here we demonstrate the existence of two distinct regimes for tuning crystal structure in GaAs nanowires from zinc blende to wurtzite using a single process parameter: V/III-ratio, or variation of the group V precursor flow. Extensive previous studies have shown that crystal structure is sensitive to V/III-ratio, and even that it is possible to change structure entirely using this single parameter. However, an open question has remained about whether the observed dependencies are related to growth technique or types of precursors used. Specifically, opposite trends have been reported for molecular beam epitaxy (MBE) and metal organic vapour phase epitaxy (MOVPE): while wurtzite GaAs growth is reported for high nominal V/III-ratio in MBE, zinc blende GaAs is formed in MOVPE under apparently the same parameter change (increasing precursor V/III-ratio). Here we show that these observations are not necessarily contradictory, as it may first appear, by providing a consolidated picture covering all regimes in one MOVPE growth machine only. More precisely, we observe wurtzite formation for medium nominal V/III-ratios with a critical sensitivity to the balance between Ga and As supply. Slight deviations from wurtzite conditions will result in zinc blende formation for either low V/III-ratio in the As-limited regime or high V/III-ratio in the Ga-limited regime. Our observations strongly indicate that the applied growth conditions are the crucial ingredients for crystal structure control in GaAs nanowires rather than the growth technique or precursors used. PMID:26160888

  16. Characterization of the regional variability of flood regimes within the Omo-Gibe River Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Yared, Adanech; Demissie, Solomon S.; Sivapalan, Murugesu; Viglione, Alberto; MacAlister, Charlotte

    2014-05-01

    Hydrological variability and seasonality is one of the Ethiopia's primary water resource management challenges. Variability is most obviously manifest in endemic, devastating droughts and floods. While the level of flooding is quite often extremely high and destroys human beings and property, in many cases flooding is of vital importance because the community benefits from flood recession agriculture. This is the case of the lower Omo plain whose agriculture is based on the regularity of the inundations due to flooding of the Omo Gibe River. The big flood in 2006, which caused death for more than 300 people and 2000 cattle, poses a dilemma. Flooding must be controlled and regulated in a way that the damages are reduced as much as possible but the flooding-related benefits are not lost. To this aim, characterization and understanding of hydrological variability of the Omo Gibe River basin is fundamental. The goal of this work is to extract the maximal amount of information on the hydrological variability and specially on the flooding regime from the few data available in the region. Because most of the basin is ungauged, hydrological information is reconstructed using the data from 9 gauged catchments. A daily water balance model has been developed, calibrated and validated for 9 gauged catchments and, subsequently, the parameters have been correlated to catchment characteristics in order to establish a functional relationship that allows to apply the model to ungauged catchments. Daily streamflow has been predicted for 15 ungauged catchments, which are assumed to comprehensively represent the hydrological variability of the Omo-Gibe River Basin. Even though both northern and southern catchments are affected by a strong seasonality of precipitation, with most of the rain falling in less than 3 months, most of the northern catchments are humid, while in the southern part of the Omo-Gibe River basin, the catchments are either humid, dry sub humid, semiarid or arid. As

  17. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    PubMed Central

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J.; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes. PMID:27597846

  18. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth.

    PubMed

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes. PMID:27597846

  19. Process regime variability across growth faults in the Paleogene Lower Wilcox Guadalupe Delta, South Texas Gulf Coast

    NASA Astrophysics Data System (ADS)

    Olariu, Mariana I.; Ambrose, William A.

    2016-07-01

    The Wilcox Group in Texas is a 3000 m thick unit of clastic sediments deposited along the Gulf of Mexico coast during early Paleogene. This study integrates core facies analysis with subsurface well-log correlation to document the sedimentology and stratigraphy of the Lower Wilcox Guadalupe Delta. Core descriptions indicate a transition from wave- and tidally-influenced to wave-dominated deposition. Upward-coarsening facies successions contain current ripples, organic matter, low trace fossil abundance and low diversity, which suggest deposition in a fluvial prodelta to delta front environment. Heterolithic stratification with lenticular, wavy and flaser bedding indicate tidal influence. Pervasively bioturbated sandy mudstones and muddy sandstones with Cruziana ichnofacies and structureless sandstones with Ophiomorpha record deposition in wave-influenced deltas. Tidal channels truncate delta front deposits and display gradational upward-fining facies successions with basal lags and sandy tabular cross-beds passing into heterolithic tidal flats and biologically homogenized mudstones. Growth faults within the lower Wilcox control expanded thickness of sedimentary units (up to 4 times) on the downdip sides of faults. Increased local accommodation due to fault subsidence favors a stronger wave regime on the outer shelf due to unrestricted fetch and water depth. As the shoreline advances during deltaic progradation, successively more sediment is deposited in the downthrown depocenters and reworked along shore by wave processes, resulting in a thick sedimentary unit characterized by repeated stacking of shoreface sequences. Thick and laterally continuous clean sandstone successions in the downthrown compartments represent attractive hydrocarbon reservoirs. As a consequence of the wave dominance and increased accommodation, thick (tens of meters) sandstone-bodies with increased homogeneity and vertical permeability within the stacked shoreface successions are created.

  20. Growth and characterization of semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Philipose, Usha

    This thesis describes a catalytic growth approach to synthesize semiconductor nanowires with good control over their physical dimensions, chemical composition, and optical/electronic properties. Using the Vapour-Liquid-Solid growth mechanism, gold nanoclusters serve as the catalytic sites directing the growth of crystalline Zinc Selenide (ZnSe), Zinc Oxide (ZnO) and Zinc Sulphide (ZnS) nanowires with length of several microns and diameters varying from 15 nm to 100 nm. The morphology and properties of the nanowires were found to be strongly dependent on growth conditions. Optical characterization by photoluminescence spectroscopy show that the spectra is dominated by near band edge emission for low defect density nanowires in contrast to the high level of defect related emission from high defect density nanowires. The growth parameters were optimized leading to the synthesis of nanowires with minimum defect concentration. Electrical transport studies on an array of ZnSe nanowires confirm that there exists a non-uniform carrier distribution along the nanowires leading to 'super-linear' current-voltage behaviour with carrier mobilities comparable to that of bulk material. Photoconductivity measurements on ZnSe nanoribbons show that they are of good quality, enabling realization of a nanoscale photodetector with a peak efficiency of 43%. Spectral response of photoconductivity had a threshold character with edge corresponding to the ZnSe bandgap, which makes it an ideal candidate for blue and ultraviolet light detection. The effect of doping of these nanowires with transition elements such as manganese (Mn) has been studied. In this effort, the first successful attempt at synthesizing room temperature ferromagnetic nanowires has been realized. Above room temperature ferromagnetism has been observed for the first time in dilute Mn-doped crystalline ZnO nanowires. From the observed saturation magnetization, the magnetic moment per Mn atom is estimated to be in the range

  1. Novel Growth Regime of MDCK II Model Tissues on Soft Substrates

    PubMed Central

    Kaliman, Sara; Jayachandran, Christina; Rehfeldt, Florian; Smith, Ana-Sunčana

    2014-01-01

    It is well established that MDCK II cells grow in circular colonies that densify until contact inhibition takes place. Here, we show that this behavior is only typical for colonies developing on hard substrates and report a new growth phase of MDCK II cells on soft gels. At the onset, the new phase is characterized by small, three-dimensional droplets of cells attached to the substrate. When the contact area between the agglomerate and the substrate becomes sufficiently large, a very dense monolayer nucleates in the center of the colony. This monolayer, surrounded by a belt of three-dimensionally packed cells, has a well-defined structure, independent of time and cluster size, as well as a density that is twice the steady-state density found on hard substrates. To release stress in such dense packing, extrusions of viable cells take place several days after seeding. The extruded cells create second-generation clusters, as evidenced by an archipelago of aggregates found in a vicinity of mother colonies, which points to a mechanically regulated migratory behavior. PMID:24703316

  2. Novel growth regime of MDCK II model tissues on soft substrates.

    PubMed

    Kaliman, Sara; Jayachandran, Christina; Rehfeldt, Florian; Smith, Ana-Sunčana

    2014-04-01

    It is well established that MDCK II cells grow in circular colonies that densify until contact inhibition takes place. Here, we show that this behavior is only typical for colonies developing on hard substrates and report a new growth phase of MDCK II cells on soft gels. At the onset, the new phase is characterized by small, three-dimensional droplets of cells attached to the substrate. When the contact area between the agglomerate and the substrate becomes sufficiently large, a very dense monolayer nucleates in the center of the colony. This monolayer, surrounded by a belt of three-dimensionally packed cells, has a well-defined structure, independent of time and cluster size, as well as a density that is twice the steady-state density found on hard substrates. To release stress in such dense packing, extrusions of viable cells take place several days after seeding. The extruded cells create second-generation clusters, as evidenced by an archipelago of aggregates found in a vicinity of mother colonies, which points to a mechanically regulated migratory behavior. PMID:24703316

  3. Characterization of the surface properties of wheat spikelet components grown under different regimes and the biocontrol yeast Cryptococcus flavescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physicochemical surfaces properties of wheat (Triticum aestivum L) spikelet components have been characterized under different environmental growing regimes. Wheat samples grown in a greenhouse environment were compared with samples produced in the field for two wheat cultivars (Freedom and Pion...

  4. Yield and growth characteristics for cotton under various irrigation regimes on sandy soil.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An irrigation experiment was set up to apply water to cotton at six different rates ranging from 33% to 144% of normal, with hopes of identifying the regime that produces maximum yield. Two cultivars, Acala Maxxa and Acala PhytoGen-72 were planted on sandy soil and irrigated daily with a highly effi...

  5. The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis

    NASA Astrophysics Data System (ADS)

    Schutter, M.; Crocker, J.; Paijmans, A.; Janse, M.; Osinga, R.; Verreth, A. J.; Wijffels, R. H.

    2010-09-01

    To study the effect of water flow on coral growth, four series of ten coral nubbins of Galaxea fascicularis were exposed to four different flow regimes (0, 10, 20, and 25 cm s-1, bidirectional flow) for 42 weeks. Buoyant weight, surface area, and polyp number were measured at regular intervals. Net photosynthesis and dark respiration were measured at the corresponding flow speeds, and daily amount of photosynthetic carbon left for coral growth was calculated. Finally, skeletal density and CN content, chlorophyll concentration and dry weight of coral tissue were determined for each coral. Specific growth rate (in day-1) decreased with time in each flow treatment. Absence of flow resulted in significantly lower growth rates. Average specific growth rate calculated over the entire experiment was not significantly different between 10 and 20 cm s-1, while it was significantly higher at 25 cm s-1. From 10 to 25 cm s-1, average net photosynthetic rate decreased and average dark respiration rate did not change significantly. Scope for growth based on phototrophic carbon decreased with increasing flow. Growth was not positively correlated with either photosynthesis or respiration, or scope for growth. It is suggested that higher flow rates reduce the chance of disturbance of coral growth by competing algae or cyanobacteria, allowing corals to grow more readily with the maximum specific growth rate possible under the given environmental conditions. Notably, other effects of increased flow, such as increased respiratory rates and increased (in)organic nutrient uptake, might have been equally responsible for the increased growth of the corals in 25 cm s-1.

  6. Contrasted thermal regimes do not influence digestion and growth rates in a snake from a temperate climate.

    PubMed

    Michel, Catherine Louise; Bonnet, Xavier

    2010-01-01

    Temperature influences almost all life-history traits. For a period of 3 mo, we placed four groups of snakes under four contrasted thermal treatments: (1) a natural regime (NR), based on daily variations (24-h cycle); (2) an accelerated regime (AR), where the thermoperiod fluctuated rapidly (12-h cycle); (3) a slow regime (SR; 48-h cycle); and (4) a cool stable regime (ZR; no fluctuation). The mean temperature, set at 23°C, was identical for the four groups. For the first three groups (NR, AR, SR), ambient temperature fluctuated between 18°C and 28°C. Relative humidity and photoperiod were constant. We recorded feeding success, digestion efficiency, growth rate, activity, and ecdysis events. Differences between groups were expected because of varied exposure to the optimal temperatures, most notably in the ZR group, where the preferred body temperature for digestion (approximately 30°C) would not be reached. Surprisingly, there was no significant effect of the experimental treatment on feeding rate, digestion, body mass increase, and growth rate. Our results do not conform to the paradigm stipulating that maximal body temperature selected by ectotherms necessarily corresponds to the most efficient for resource assimilation and that temperature fluctuations are essential. We propose that increasing the digestive tract's performance through body-temperature elevation trades off against elevated (parasite) energy expenditure from the rest of the body. The main advantage of high body temperatures would be to reduce the amount of time necessary to assimilate prey rather than to improve the net mass gain during digestion. PMID:20969448

  7. Consequence of Continued Growth in the GEO and GEO Disposal Orbital Regimes

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas; Hanada, Toshiya; Krisko, Paula; Anz-Meador, Phillip

    2000-01-01

    To date more than 800 spacecraft, upper stages, and apogee kick motors are known to reside in geosynchronous and nearby orbits, including geosynchronous disposal orbits. An even larger number of debris greater than 10 em in diameter have been detected by U.S. and European groundbased sensors. Using projections of geosynchronous deployment characteristics and disposal rates, NASA and Kyushu University models of the geosynchronous and super-geosynchronous orbital regimes have examined the sensitivity of the long-term satellite population to various scenarios. Emphasis has been placed on the rate of collisions in the geosynchronous orbit and in the higher disposal orbits and on the significance of cross-regime contamination. The sensitivity of the long-term environment on low velocity (0-1 km/s) collision breakup model parameters and on the minimum height of disposal orbits has also been explored. Results are presented in terms of both satellite population and spatial density.

  8. Radial growth of Tamarix ramosissima responds to changes in the water regime in an extremely arid region of northwestern China

    NASA Astrophysics Data System (ADS)

    Xiao, Shengchun; Xiao, Honglang

    2007-11-01

    The response of radial growth of tamarisk ( Tamarix ramosissima) growing on the shore of West-Juyan Lake, on the Heihe River in northwestern China, to changes in the lake’s water regime was studied using tree-ring chronologies, principal components (PC) analysis, and classical correlation analysis. The first PC accounted for 53.3% of the total variance and reflected a common growth response at different sites. Correlation analysis indicated that fluctuations in the lake’s water level during the growing season (May August) was primarily responsible for variations in the radial growth of tamarisk and explained more of the variance at low-lying sites than at higher sites. The second PC accounted for 30.7% of the total variance and revealed distinct differences in growth response between low-lying sites and those on higher ground. Total annual precipitation played an important role in radial growth of tamarisk at the higher sites. The spatial pattern in the tree-ring chronologies for different sites was performed in the temporal pattern of the tree-ring chronology at the same site. Other factors such as microtopography, soil salinity, sand activity, and browsing by herbivores also affected the radial growth of tamarisk. The diversity in responses to the maximum water table depth for tamarisk in the study area appears to have been caused by local variations in precipitation, which can compensate to some degree for the inability of a plant’s roots to reach the water table.

  9. Characterizing Sub-Daily Flow Regimes: Implications of Hydrologic Resolution on Ecohydrology Studies

    DOE PAGESBeta

    Bevelhimer, Mark S.; McManamay, Ryan A.; O'Connor, B.

    2014-05-26

    Natural variability in flow is a primary factor controlling geomorphic and ecological processes in riverine ecosystems. Within the hydropower industry, there is growing pressure from environmental groups and natural resource managers to change reservoir releases from daily peaking to run-of-river operations on the basis of the assumption that downstream biological communities will improve under a more natural flow regime. In this paper, we discuss the importance of assessing sub-daily flows for understanding the physical and ecological dynamics within river systems. We present a variety of metrics for characterizing sub-daily flow variation and use these metrics to evaluate general trends amongmore » streams affected by peaking hydroelectric projects, run-of-river projects and streams that are largely unaffected by flow altering activities. Univariate and multivariate techniques were used to assess similarity among different stream types on the basis of these sub-daily metrics. For comparison, similar analyses were performed using analogous metrics calculated with mean daily flow values. Our results confirm that sub-daily flow metrics reveal variation among and within streams that are not captured by daily flow statistics. Using sub-daily flow statistics, we were able to quantify the degree of difference between unaltered and peaking streams and the amount of similarity between unaltered and run-of-river streams. The sub-daily statistics were largely uncorrelated with daily statistics of similar scope. Furthermore, on short temporal scales, sub-daily statistics reveal the relatively constant nature of unaltered streamreaches and the highly variable nature of hydropower-affected streams, whereas daily statistics show just the opposite over longer temporal scales.« less

  10. Characterizing Sub-Daily Flow Regimes: Implications of Hydrologic Resolution on Ecohydrology Studies

    SciTech Connect

    Bevelhimer, Mark S.; McManamay, Ryan A.; O'Connor, B.

    2014-05-26

    Natural variability in flow is a primary factor controlling geomorphic and ecological processes in riverine ecosystems. Within the hydropower industry, there is growing pressure from environmental groups and natural resource managers to change reservoir releases from daily peaking to run-of-river operations on the basis of the assumption that downstream biological communities will improve under a more natural flow regime. In this paper, we discuss the importance of assessing sub-daily flows for understanding the physical and ecological dynamics within river systems. We present a variety of metrics for characterizing sub-daily flow variation and use these metrics to evaluate general trends among streams affected by peaking hydroelectric projects, run-of-river projects and streams that are largely unaffected by flow altering activities. Univariate and multivariate techniques were used to assess similarity among different stream types on the basis of these sub-daily metrics. For comparison, similar analyses were performed using analogous metrics calculated with mean daily flow values. Our results confirm that sub-daily flow metrics reveal variation among and within streams that are not captured by daily flow statistics. Using sub-daily flow statistics, we were able to quantify the degree of difference between unaltered and peaking streams and the amount of similarity between unaltered and run-of-river streams. The sub-daily statistics were largely uncorrelated with daily statistics of similar scope. Furthermore, on short temporal scales, sub-daily statistics reveal the relatively constant nature of unaltered streamreaches and the highly variable nature of hydropower-affected streams, whereas daily statistics show just the opposite over longer temporal scales.

  11. Characterization of density fluctuations during the search for an I-mode regime on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Marinoni, A.; Rost, J. C.; Porkolab, M.; Hubbard, A. E.; Osborne, T. H.; White, A. E.; Whyte, D. G.; Rhodes, T. L.; Davis, E. M.; Ernst, D. R.; Burrell, K. H.

    2015-09-01

    The I-mode regime, routinely observed on the Alcator C-Mod tokamak, is characterized by an edge energy transport barrier without an accompanying particle barrier and with broadband instabilities, known as weakly coherent modes (WCM), believed to regulate particle transport at the edge. Recent experiments on the DIII-D tokamak exhibit I-mode characteristics in various physical quantities. These DIII-D plasmas evolve over long periods, lasting several energy confinement times, during which the edge electron temperature slowly evolves towards an H-mode-like profile, while maintaining a typical L-mode edge density profile. During these periods, referred to as I-mode phases, the radial electric field at the edge also gradually reaches values typically observed in H-mode. Density fluctuations measured with the phase contrast imaging diagnostic during I-mode phases exhibit three features typically observed in H-mode on DIII-D, although they develop progressively with time and without a sharp transition: the intensity of the fluctuations is reduced; the frequency spectrum is broadened and becomes non-monotonic; two dimensional space-time spectra appear to approach those in H-mode, showing phase velocities of density fluctuations at the edge increasing to about 10 km s-1. However, in DIII-D there is no clear evidence of the WCM. Preliminary linear gyro-kinetic simulations are performed in the pedestal region with the GS2 code and its recently upgraded model collision operator that conserves particles, energy and momentum. The increased bootstrap current and flow shear generated by the temperature pedestal are shown to decrease growth rates, thus possibly generating a feedback mechanism that progressively stabilizes fluctuations.

  12. Rayleigh-Taylor growth measurements of three-dimensional modulations in a nonlinear regime

    SciTech Connect

    Smalyuk, V.A.; Sadot, O.; Betti, R.; Goncharov, V.N.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Shvarts, D.

    2006-05-15

    An understanding of the nonlinear evolution of Rayleigh-Taylor (RT) instability is essential in inertial confinement fusion and astrophysics. The nonlinear RT growth of three-dimensional (3-D) broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial 3-D target modulations were seeded by laser nonuniformities and subsequently amplified by the RT instability. The measured modulation Fourier spectra and nonlinear growth velocities are in excellent agreement with those predicted by Haan's model [S. Haan, Phys. Rev. A 39, 5812 (1989)]. These spectra and growth velocities are insensitive to initial conditions. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions, in agreement with the Alon-Oron-Shvarts theoretical predictions [D. Oron et al. Phys. Plasmas 8, 2883 (2001)].

  13. Experimental characterization of porosity structure and transport properties changes in limestone undergoing different dissolution regimes

    NASA Astrophysics Data System (ADS)

    Gouze, P.; Luquot, L.; Rodriguez, O.; Mangane, P. O.

    2013-12-01

    Limestone rock dissolution induces geometrical parameters changes such as porosity, pore size distribution (connectivity), or tortuosity which may consequently modify transport properties (permeability, diffusion coefficient). Characterizing these changes is essential for modeling flow and CO2 transport during and after the CO2 injection. Indeed, these changes can affect the storage capacity and the injectivity of the formation. We report experimental results from CO2 rich-brine injection into limestone core samples of 9 mm diameter, 18 mm length. Experiments were performed at in situ conditions (T = 100°C and P = 12 MPa) and with four different CO2 partial pressures (PCO2) varying from 0.034 to 3.4 MPa. X-ray microtomography (XMT) images are used to characterize, from pore scale to Darcy scale, the changes in the structural properties induced by the percolation of the CO2-rich brine. Coupling imaging techniques with sample scale measurements of the time-resolved permeability and chemical fluxes, allows determining the change in the chemical and physical parameters of the sample induced by the dissolution processes. The experiment results show localized dissolution features (wormhole formation) for the highest PCO2, whereas homogeneous dissolution is observed for the lower. The higher the CO2 concentration is the more ramifications at macro scale have growth into the sample and consequently the higher the permeability has increased. During low CO2 concentration injections, the dissolution processes may include transport of fine particles, which locally clog the porous space. This process is controlled by the differential dissolution rate of the calcite cement and calcite grains. This mechanism induces a decrease of permeability (while porosity increases) that may alter the CO2 injectivity.

  14. Characterizing Longitude-Dependent Orbital Debris Congestion in the Geosynchronous Orbit Regime

    NASA Astrophysics Data System (ADS)

    Anderson, Paul V.

    The geosynchronous orbit (GEO) is a unique commodity of the satellite industry that is becoming increasingly contaminated with orbital debris, but is heavily populated with high-value assets from the civil, commercial, and defense sectors. The GEO arena is home to hundreds of communications, data transmission, and intelligence satellites collectively insured for an estimated 18.3 billion USD. As the lack of natural cleansing mechanisms at the GEO altitude renders the lifetimes of GEO debris essentially infinite, conjunction and risk assessment must be performed to safeguard operational assets from debris collisions. In this thesis, longitude-dependent debris congestion is characterized by predicting the number of near-miss events per day for every longitude slot at GEO, using custom debris propagation tools and a torus intersection metric. Near-miss events with the present-day debris population are assigned risk levels based on GEO-relative position and speed, and this risk information is used to prioritize the population for debris removal target selection. Long-term projections of debris growth under nominal launch traffic, mitigation practices, and fragmentation events are also discussed, and latitudinal synchronization of the GEO debris population is explained via node variations arising from luni-solar gravity. In addition to characterizing localized debris congestion in the GEO ring, this thesis further investigates the conjunction risk to operational satellites or debris removal systems applying low-thrust propulsion to raise orbit altitude at end-of-life to a super-synchronous disposal orbit. Conjunction risks as a function of thrust level, miss distance, longitude, and semi-major axis are evaluated, and a guidance method for evading conjuncting debris with continuous thrust by means of a thrust heading change via single-shooting is developed.

  15. Characterization of magnetic reconnection in the high-energy-density regime

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Qiao, B.; Chang, H. X.; Yao, W. P.; Wu, S. Z.; Yan, X. Q.; Zhou, C. T.; Wang, X. G.; He, X. T.

    2016-03-01

    The dynamics of magnetic reconnection (MR) in the high-energy-density (HED) regime, where the plasma inflow is strongly driven and the thermal pressure is larger than the magnetic pressure (β >1 ), is reexamined theoretically and by particle-in-cell simulations. Interactions of two colliding laser-produced plasma bubbles with self-generated poloidal magnetic fields of, respectively, antiparallel and parallel field lines are considered. Through comparison, it is found that the quadrupole magnetic field, bipolar poloidal electric field, plasma heating, and even the out-of-plane electric field can appear in both cases due to the mere plasma bubble collision, which may not be individually recognized as evidences of MR in the HED regime separately. The Lorentz-invariant scalar quantity De≃γej .(E +ve×B ) {γe=[1-(ve/c) 2]-1/2 }in the electron dissipation region is proposed as the key sign of MR occurrence in this regime.

  16. Growth and characterization of string ribbon

    SciTech Connect

    Hanoka, J.I.; Behnin, B.; Michel, J.; Symko, M.; Sopori, B.L.

    1995-08-01

    Evergreen Solar, a new photovoltaics company, makes solar cells and modules based on String Ribbon. String Ribbon is a silicon sheet growth method wherein two high temperature strings are pulled through a shallow melt of silicon and a crystalline silicon sheet then grows between the two strings. The strings serve to stabilize the edges of the growing silicon sheet. The growth process is primarily meniscus controlled and, compared to other silicon ribbon growth methods such as d-web and EFG, relatively insensitive to temperature fluctuations as great as {+-}10{degrees}C. Growth speed is about 2 cm/minute.

  17. Fire regimes and tree growth in low rainfall jarrah forest of south-west Australia.

    PubMed

    Burrows, Neil; Ward, Bruce; Robinson, Alex

    2010-06-01

    Regular fuel reduction burning is an important management strategy for reducing the scale and intensity of wildfires in south-west Australian native forests, but the long term effects of this on tree and stand growth are not well understood. Five fire treatments, including application of frequent and infrequent low intensity burns, and 25 years of fire exclusion, were applied to small (4 ha) experimental plots in a low rainfall mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest to investigate the effects of these treatments on tree stem diameter growth, stand basal area increment and tree mortality. Mean tree stem growth measured over 20 years was lowest in the long unburnt treatment compared with the burn treatments, although surface soil nutrient levels were generally higher in the unburnt treatment, suggesting these sites may be moisture limited. There was no clear pattern of the effects of the burn treatments, including the number of fires and the interval between fires, on tree stem growth, stand basal area increment, crown health or mortality. These factors were strongly influenced by dominance condition, with dominant and co-dominant trees growing most and suppressed trees growing least and experiencing the highest mortality levels. There was no evidence of deteriorating tree or stand health that could be attributed to either regular low intensity burning or to a long period (25 years) of fire exclusion. PMID:20405126

  18. Growth and Characterization of Complex Mineral Surfaces

    SciTech Connect

    P. Meakin; E. Jettestuen; B. Jamtveit; Y. Y. Podladchikov; S. deVilliers; H. E. F. Amundsen

    2006-09-01

    Precipitation of mineral aggregates near the Earth's surface or in subsurface fractures and cavities often produces complex microstructures and surface morphologies. Here we demonstrate how a simple surface normal growth (SNG) process may produce microstructures and surface morphologies very similar to those observed in some natural carbonate systems. A simple SNG model was used to fit observed surfaces, thus providing information about the growth history and also about the frequency and spatial distribution of nucleation events during growth. The SNG model can be extended to systems in which the symmetry of precipitation is broken, for example by fluid flow. We show how a simple modification of the SNG model in which the local growth rate depends on the distance from a fluid source and the local slope or fluid flow rate, produces growth structures with many similarities to natural travertine deposits.

  19. [Effects of soil water regimes on the growth of Quercus mongolica seedlings in Changbai Mountains].

    PubMed

    Wang, Miao; Li, Qiurong; Hao, Zhanqing; Dong, Baili

    2004-10-01

    This paper studied the response of the seedlings of Quercus mongolica, one of the dominant tree species in Changbai Mountains, to the artificially controlled three soil water gradients, including their morphology, biomass and photosynthetic characteristics. The results indicated that various water regimes significantly affected the biomass and its distribution pattern in the leaves, branches and roots, as well as the leaf gas exchange. Under soil water stress, the crown structure changed, and the tree height, groundline diameter, single leaf area, and aboveground and belowground biomass were inhibited. As soil water content decreased, the ratio of belowground and aboveground biomass dry weight significantly increased. Water stress had a negative effect on net photosynthetic rate, CO2 use efficiency and carbon use efficiency. The responses of stomatal conductance, transpiration rate and water use efficiency to water stress were complicated. Only at low soil water content, the stomatal conductance and transpiration rate significantly decreased, while water use efficiency increased. It was demonstrated that Quercus mongolica was the tree species with variable resistance to drought, and the resistance could be improved by long-term soil water stress. PMID:15624805

  20. Development of a biocidal treatment regime to inhibit biological growths on cultural heritage: BIODAM

    NASA Astrophysics Data System (ADS)

    Young, M. E.; Alakomi, H.-L.; Fortune, I.; Gorbushina, A. A.; Krumbein, W. E.; Maxwell, I.; McCullagh, C.; Robertson, P.; Saarela, M.; Valero, J.; Vendrell, M.

    2008-12-01

    Existing chemical treatments to prevent biological damage to monuments often involve considerable amounts of potentially dangerous and even poisonous biocides. The scientific approach described in this paper aims at a drastic reduction in the concentration of biocide applications by a polyphasic approach of biocides combined with cell permeabilisers, polysaccharide and pigment inhibitors and a photodynamic treatment. A variety of potential agents were screened to determine the most effective combination. Promising compounds were tested under laboratory conditions with cultures of rock deteriorating bacteria, algae, cyanobacteria and fungi. A subsequent field trial involved two sandstone types with natural biofilms. These were treated with multiple combinations of chemicals and exposed to three different climatic conditions. Although treatments proved successful in the laboratory, field trials were inconclusive and further testing will be required to determine the most effective treatment regime. While the most effective combination of chemicals and their application methodology is still being optimised, results to date indicate that this is a promising and effective treatment for the control of a wide variety of potentially damaging organisms colonising stone substrates.

  1. Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol.

    PubMed

    Paranjape, Kiran; Leite, Gustavo B; Hallenbeck, Patrick C

    2016-08-01

    Mixotrophic growth of microalgae to boost lipid production is currently under active investigation. Such a process could be of practical importance if a cheap source of organic carbon, such as waste glycerol from biodiesel production, could be used. Several previous studies have already demonstrated that this carbon source can be used by different indigenous strains of microalgae. In this study it is shown that different nitrogen limitation strategies can be applied to further increase lipid production during growth with glycerol. In one strategy, cultures were grown in nitrogen replete medium and then resuspended in nitrogen free medium. In a second strategy, cultures were grown with different initial concentrations of nitrate. Lipid production by the two microalgal strains used, Chlorella sorokiniana (PCH02) and Chlorella vulgaris (PCH05), was shown to be boosted by strategies of nitrogen limitation, but they responded differently to how nitrogen limitation was imposed. PMID:27220067

  2. Growth and nutrition of baldcypress families planted under varying salinity regimes in Louisiana, USA

    USGS Publications Warehouse

    Krauss, K.W.; Chambers, J.L.; Allen, J.A.; Soileau, D.M., Jr.; DeBosier, A.S.

    2000-01-01

    Saltwater intrusion from the Gulf of Mexico is one important factor in the destruction of baldcypress (Taxodium distichum (L.) Rich.) swamps along the Louisiana Gulf Coast, USA. Recent restoration efforts have focused on identification of baldcypress genotypes with greater tolerance to saline conditions than previously reported. To date, salt tolerance investigations have not been conducted under saline field conditions. In 1996, therefore, three plantations were established with 10 half-sib genotype collections of baldcypress in mesohaline wetlands. Tree survival and growth were measured at the end of two growing seasons, and foliar ion concentrations of Na, Cl, K, and Ca and available soil nutrients were measured during the 1996 growing season. In general, soil nutrient concentrations exceeded averages found in other baldcypress stands in the southeastern United States. Seedlings differed among sites in all parameters measured, with height, diameter, foliar biomass, and survival decreasing as site salinity increased. Average seedling height at the end of two years, for example, was 196.4 cm on the lowest salinity site and 121.6 cm on the highest. Several half-sib families maintained greater height growth increments (ranging from 25.5 to 54.5 cm on the highest salinity site), as well as lower foliar ion concentrations of K, Cl, and Ca. Results indicate that genotypic screening of baldcypress may improve growth and vigor of seedlings planted within wetlands impacted by saltwater intrusion.

  3. Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime

    SciTech Connect

    Liu, Wanhai; Chen, Yulian; Yu, Changping E-mail: lixl@imech.ac.cn; Li, Xinliang E-mail: lixl@imech.ac.cn

    2015-11-15

    Harmonic growth in classical Rayleigh-Taylor instability (RTI) on a spherical interface is analytically investigated using the method of the parameter expansion up to the third order. Our results show that the amplitudes of the first four harmonics will recover those in planar RTI as the interface radius tends to infinity compared against the initial perturbation wavelength. The initial radius dramatically influences the harmonic development. The appearance of the second-order feedback to the initial unperturbed interface (i.e., the zeroth harmonic) makes the interface move towards the spherical center. For these four harmonics, the smaller the initial radius is, the faster they grow.

  4. Experimental observation of Rayleigh-Taylor growth as a function of wavelength in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Huntington, C. M.; Arsenlis, A.; Maddox, B. R.; Park, H.-S.; Prisbrey, S. T.; Weber, S. V.; Wehrenberg, C. E.; Remington, B. A.

    2014-10-01

    ``Classical'' Rayleigh-Taylor (RT) growth is characterized by a growth rate γ =√{ kgAn } , where k is the wavelength of the unstable mode, g is the acceleration, and the Atwood An number characterizes the magnitude of the density jump at the interface. Here we present the results of a set of experiments using face-on x-ray radiography to measure RT growth in a plastic rippled sample. Acceleration of the sample is provided by the stagnation of a releasing shocked plastic ``reservoir,'' which is directly driven by approximately 1 kJ of laser energy at the OMEGA facility. The growth of pre-imposed ripples is recorded using transmission x-ray radiography of a vanadium Heα source, where the opacity of the sample is calibrated to the ripple amplitude. We report the results of experiments at 30 μm and 60 μm initial wavelengths, and compare the data to 2D hydrodynamic simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Adapting of the Background-Oriented Schlieren (BOS) Technique in the Characterization of the Flow Regimes in Thermal Spraying Processes

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Abdulgader, M.; Rademacher, H. G.; Anjami, N.; Hagen, L.

    2014-01-01

    In thermal spraying technique, the changes in the in-flight particle velocities are considered to be only a function of the drag forces caused by the dominating flow regimes in the spray jet. Therefore, the correct understanding of the aerodynamic phenomena occurred at nozzle out let and at the substrate interface is an important task in the targeted improvement in the nozzle and air-cap design as well as in the spraying process in total. The presented work deals with the adapting of an innovative technique for the flow characterization called background-oriented Schlieren. The flow regimes in twin wire arc spraying (TWAS) and high velocity oxygen fuel (HVOF) were analyzed with this technique. The interfering of the atomization gas flow with the intersected wires causes in case of TWAS process a deformation of the jet shape. It leads also to areas with different aero dynamic forces. The configurations of the outlet air-caps in TWAS effect predominantly the outlet flow characteristics. The ratio between fuel and oxygen determine the dominating flow regimes in the HVOF spraying jet. Enhanced understanding of the aerodynamics at outlet and at the substrate interface could lead to a targeted improvement in thermal spraying processes.

  6. Contribution of silver nanoparticles to extend Salmonella typhimurium growth under various respiration regimes.

    PubMed

    Hidouri, Slah; Yohmes, Mannoubia Ben; Landoulsi, Ahmed

    2016-10-01

    Living cells interact with different forms of metal; the resulted biochemical alteration depends on the dose. Over an average dose in ionic form, metals interact with respiration processes at various levels, and it induces oxidative stress by shifting the whole oxydoreduction equilibrium. To correct the toxicity, cell develops different ways to cancel the effect of the exceeded charges, and it reduces the ion to get a more stable form. In the case of nanoparticles, the reactivity of surface has been enhanced that can alter the biological mechanisms; the cell may develop different strategies to minimize this reactivity. The current study is focused on the pursuing of cell behavior regarding the presence of nanoparticles and their associated metals. Nanoparticles have been synthesized using bio-reducing agents and then were structurally characterized using X-ray diffraction, UV-Vis, and infra-red spectroscopy. The oxydoreduction flexibility of the post-synthesis modified nanoparticles was tested in vitro. Interactions with cells were done using Salmonella under various respiration conditions. The final results show the possible correction of oxidative stress effects and the recuperation of respiration. PMID:27287758

  7. Effects of flooding regime and seedling treatment on early survival and growth of nuttall oak

    USGS Publications Warehouse

    Burkett, V.R.; Draugelis-Dale, R.O.; Williams, H.M.; Schoenholtz, S.H.

    2005-01-01

    Effects of flooding on survival and growth of three different types of Nuttall oak (Quercus texana Buckl.) seedlings were observed at the end of third and fifth growing seasons at Yazoo National Wildlife Refuge, Mississippi, U.S.A. Three types of seedlings were planted in January 1995 in a split-plot design, with four replications at each of two elevations on floodprone, former cropland in Sharkey clay soil. The lower of the two planting elevations was inundated for 21 days during the first growing season, whereas the higher elevation did not flood during the 5-year period of this study. The three types of 1-0 seedlings were bareroot seedlings, seedlings grown in containers (3.8 ?? 21a??cm plastic seedling cones), and container-grown seedlings inoculated with vegetative mycelia of Pisolithus tinctorius (Pers.) Coker. Survival of all the three seedling types was greatest at the lower, intermittently flooded elevation, indicating that drought and related effects on plant competition were more limiting to seedling survival than flooding. At the lower elevation, survival of mycorrhizal-inoculated container seedlings was greater than that of noninoculated container seedlings. Survival among bareroot seedlings and inoculated container seedlings was not significantly different at either elevation. At the higher, nonflooded elevation, however, bareroot seedling survival was greater than the survival of container seedlings without inoculation. Differences were significant among the inoculated and the noninoculated container seedlings, with higher survival of inoculated seedlings at both elevations, though differences were only significant in year 3. At the end of the fifth year, height of bareroot seedlings was significantly greater than the heights of both types of container-grown seedlings at both planting elevations. Because seedlings grown in the plastic seedlings cones did not survive better than the bareroot seedlings at either planting elevation, the bareroot stock

  8. Characterization of forest vegetation-climate feedback regimes by satellite remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    Vegetation and climate interact through a series of complex feedbacks, which are not very well understood.The patterns of forest vegetation are largely determined by temperature, precipitation, solar irradiance, soil conditions and CO2 concentration. Vegetation impacts climate directly through moisture, energy, and momentum exchanges with the atmosphere and indirectly through biogeochemical processes that alter atmospheric CO2 concentration. Changes in forest vegetation landuse-landcover alter the surface albedo and radiation fluxes, leading to a local temperature change and eventually a vegetation response. This albedo (energy) feedback is particularly important when forests mask snow cover. Forest vegetation-climate feedback regimes are designated based on the temporal correlations between the vegetation and and the surface temperature and precipitation. The different feedback regimes are linked to the relative importance of vegetation and soil moisture in determining land-atmosphere interactions. The spatio-temporal dynamics are assessed in terms of the NDVI-surface temperature correlations.Observed vegetation feedbacks on temperature and precipitation are assessed based on Landsat TM, ETM, MODIS and IKONOS satellite data across the forested areas in North/Eastern part of Bucharest town, Romania for a period of 1984 -2007 period. The computed feedback parameters can be used to evaluate vegetation-climate interactions simulated by models with dynamic vegetation. Specific aim of this paper is to assess the forest vegetationclimate feedbacks on forest ecosystem and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the remote sensing spectral information basis.

  9. Characterizing dichotomous fire regimes of southern California: climate, vegetation and topography

    NASA Astrophysics Data System (ADS)

    Kolden, C.; Abatzoglou, J. T.

    2013-12-01

    Southern California Mediterranean ecosystems have long been a subject of wildfire research, in part because of the extensive Wildland Urban Interface in the region. This mix of homes and vegetation at the edge of wildlands has resulted in several of the costliest wildfire events in US history due to the number of homes burned, and its extent is projected to increase significantly over the next 50 years. As such, there has been considerable investment is identifying fire regime characteristics and potential mitigation measures in the region. However, all previous wildfire research in the region has initiated from the assumption that the dominant fire regime is associated with autumn katabatic winds, known locally as Santa Ana winds or Sundowners. To-date, there has been no effort to determine whether this is an accurate assumption, or whether the fire regime is more complex. Here, we utilize a dataset of large wildfires (>40ha) from 1948-2010 and a chronology of Santa Ana (SA) wind occurrence to disaggregate two distinct fire regimes in southwestern California: wildfires associated with SA wind occurrence events, and those not associated with Santa Ana conditions (NSA) that are fuel- and topography-driven instead. By decomposing burned area into SA and NSA fires, significant differences in seasonal, biogeographic and topographic characteristics were found, as well as distinct and significantly stronger climate-fire relationships than previously reported. NSA area burned was associated with summer fires, peaking in July, and significantly higher elevation, greater forested area, steeper slopes, and broadly across all aspects. SA area burned was associated with autumn fires, peaking in October, and significantly lower elevation, greater shrubland area, lower slopes, and more southeastern aspects. Annual burned area in NSA fires was associated with low spring precipitation, high vapor pressure deficit and low fuel moistures during the summer months that increase the

  10. Growth and characterization of GE nanocrystals

    SciTech Connect

    Guha, S., Naval Research Laboratory

    1998-05-01

    We have synthesized Ge nanocrystals of sizes 4, 8, and 12 nm by ion-implanting Ge+ ions into thermally grown Si0{sub 2} films and subsequent annealing of the films at 8300 C for 30 min in nitrogen. These films were characterized by x-ray, transmission electron microscopy (TEM), and Raman spectroscopy. A distribution of particle size was identified by TEM in a 1 00 nm band below the surface. Particle sizes were estimated by these 3 techniques.

  11. Growth and characterization of sidewall graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Baringhaus, J.; Aprojanz, J.; Wiegand, J.; Laube, D.; Halbauer, M.; Hübner, J.; Oestreich, M.; Tegenkamp, C.

    2015-01-01

    We study the growth of epitaxial graphene nanoribbons on silicon carbide mesa sidewalls by means of scanning probe techniques, local transport, and Raman spectroscopy. The sidewall nanoribbons are demonstrated to consist of charge neutral monolayer graphene with a zig-zag type orientation. Two types of roughness, the step density of the substrate and the roughness of the sidewalls, were identified as being detrimental to the transport properties of these ribbons. By means of 4-point probe experiments, single channel ballistic transport was observed with a mean free path limited by the width of the underlying substrate terraces. Moreover, a transition from ballistic to one-dimensional diffusive transport can be obviously triggered by an increased roughness of the sidewall, e.g., by an enlarged depth of the mesa.

  12. The role of density dependence in growth patterns of ceded territory walleye populations of northern Wisconsin: Effects of changing management regimes

    USGS Publications Warehouse

    Sass, G.G.; Hewett, S.W.; Beard, T.D., Jr.; Fayram, A.H.; Kitchell, J.F.

    2004-01-01

    We assessed density-related changes in growth of walleye Sander vitreus in the ceded territory of northern Wisconsin from 1977 to 1999. We used asymptotic length (Lz), growth rate near t0 (??), and body condition as measures of walleye growth to determine the relationship between growth and density. Among lakes, there was weak evidence of density-dependent growth: adult density explained only 0-6% of the variability in the growth metrics. Within lakes, growth was density dependent. Lz, ??, and body condition of walleyes changing with density for 69, 28, and 62% of the populations examined, respectively. Our results suggest that walleye growth was density dependent within individual lakes. However, growth was not coherently density dependent among lakes, which was possibly due to inherent differences in the productivity, surface area, forage base, landscape position, species composition, and management regime of lakes in the ceded territory. Densities of adult walleyes averaged 8.3 fish/ha and did not change significantly during 1990-1999. Mean Lz and body condition of walleyes were signilicantly higher before 1990 than after 1990, which may indicate an increase in density due to changes in management regimes. The observed growth changes do not appear to be a consequence of the statewide 15-in minimum size limit adopted in 1990 but rather a response to the treaty rights management regime. We conclude that walleye growth has the potential to predict regional-scale adult walleye densities if lake-specific variables are included in a model to account for regional-scale differences among walleye populations and lakes.

  13. Cell growth characterization using multi-electrode bioimpedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Yu; Huang, Ji-Jer; Huang, Yu-Jie; Cheng, Kuo-Sheng

    2013-03-01

    Cell growth characterization during culturing is an important issue in a variety of biomedical applications. In this study an electrical bioimpedance spectroscopy-based multi-electrode culture monitoring system was developed to characterize cell growth. A PC12 cell line was cultured for the cell growth study. The bioimpedance variations for PC12 cell growth within the initial 12 h were measured over a range between 1 kHz and 4 MHz at three different medium concentrations. Within this frequency range, the largest bioimpedance value was 1.9 times the smallest bioimpedance value. The phase angle decreased over the range from 1 to 10 kHz when cells were growing. Then, the phase angle approached a constant over the frequency range between 10 kHz and 2 MHz. Thereafter, the phase angle increased rapidly from 20 to 52 degrees during cell culturing between 8 and 12 h at 4 MHz. The maximum cell number after culturing for 12 h increased by 25.8% for the control sites with poly-D-lysine (PDL) pastes. For the normal growth factor, the cell number increased up to 4.78 times from 8 to 12 h, but only 0.96 and 1.60 times for the other two medium growth factors. The correlation coefficients between impedance and cell number were 0.868 (coating with PDL), and 0.836 (without PDL) for the normal concentration medium. Thus, impedance may be used as an index for cell growth characterization.

  14. Mycorrhizal symbiosis effects on growth of chalk false-brome (Brachypodium pinnatum) are dependent on the environmental light regime.

    PubMed

    Füzy, Anna; Bothe, Hermann; Molnár, Edit; Biró, Borbála

    2014-03-01

    AMF (arbuscular mycorrhizal fungi) colonization of the grass chalk false-brome (Brachypodium pinnatum (L.) P. B.) was studied in selected habitats under spatially different light regimes: (a) shade condition under oak trees, (b) half shade in a shrubby area and (c) full-sun conditions on unshaded grassland. This study assessed the variations in AMF colonization of the grass dependent on the light supply in field habitats. Soil, root and shoot samples were collected four times during the vegetation period (in June, July, September and October). Root colonization, root and shoot biomass as well as soil water content were determined. The highest rate of AMF colonization was detected in June under half-sun and full-sun conditions, where about 50% of the roots were colonized. The average amount of arbuscules was less than 20% in the roots at the three sites, with the highest number of arbuscules in June, under half-sun and full-sun conditions, however, not under the trees. Overall, best mycorrhizal colonization occurred during summer, and its rate decreased in autumn. This tendency inversely correlated with the amount of precipitation, and thus with the water content of soils. The high colonization rate of the examined root samples, and also its seasonal fluctuation, might reflect the importance of the symbiosis where inorganic nutrients and water are the growth-limiting factors. The marginal AMF colonization of chalk false-brome under shade conditions indicates that plants do not use AMF under all stress conditions. When low light limits photosynthesis and thus growth of the plants, they dispense with the colonization of AMF in order to save the expenditure of organic carbon. PMID:24484951

  15. Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes.

    PubMed

    Chen, Xiaoying; Song, Fengbin; Liu, Fulai; Tian, Chunjie; Liu, Shengqun; Xu, Hongwen; Zhu, Xiancan

    2014-01-01

    The effect of four different arbuscular mycorrhizal fungi (AMF) on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT) and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress. PMID:24895680

  16. Growth and palmitoleic acid accumulation of filamentous oleaginous microalgae Tribonema minus at varying temperatures and light regimes.

    PubMed

    Wang, Hui; Gao, Lili; Zhou, Wenjun; Liu, Tianzhong

    2016-10-01

    Palmitoleic acid (C16:1Δ9), contributes greatly to human health, industrial chemicals and biodiesel. The filamentous oleaginous microalgae Tribonema sp. has been identified as a highly efficient producer of palmitoleic acid. Temperature and light regime were adapted to regulate the palmitoleic acid content in this study. Strain T. minus was able to grow well at all the tested temperatures, even at 5 °C. The optimum temperature for palmitoleic acid accumulation (54.25 % of total fatty acid) was 25 °C. Moreover, both light intensity and photoperiod affect the growth, lipid content and fatty acid files of T. minus. The culture exposed to 240 μmol photons m(-2) s(-1) with a photoperiod of 24:0 showed the highest biomass (6.87 g L(-1)) and biggest lipid content (61.27 % of dry weight), whereas the most amount of palmitoleic acid (50.47 % of total fatty acid) was detected at 120 μmol photons m(-2) s(-1). These findings make tangible contributions to culture T. minus for commercial production of lipid or palmitoleic acid. PMID:27250652

  17. Characterization and comparison of microstructures in the shaped-charge regime: Copper and tantalum

    SciTech Connect

    Gurevitch, A.C.; Murr, L.E.; Shih, H.K.; Niou, C.S.; Advani, A.H.; Manuel, D. ); Zernow, L. )

    1993-04-01

    Light microscopy, scanning electron microscopy, and transmission electron microscopy techniques were employed, along with a novel technique for building up small, recovered jet fragments using electrodeposition of copper, to examine specific segments of fabricated shaped charge liner cones and corresponding, residual jet fragments. Oxygen-free electronic copper and tantalum shaped charge regimes (liner cones and recovered jet fragments) were compared, and a reduction in the average grain size of recovered jet fragments as compared to the starting liner cones was a consistent observation. The average grain sizes for all cones was 35 [mu]m, and the maximum grain reduction occurred for an annealed, equiaxed tantalum cone, which resulted in a residual jet fragment grain size between 1 and 5 [mu]m. This is indicative of dynamic recrystallization during jet elongation and microstructure evolution. The most recent US military use of shaped charges was in the high explosive antitank shells used in the 1990-1991 conflict with Iraq. Shaped charges are also used in the oil and gas industries, steel industries, mining and quarrying, specialty cutting, and perhaps most prominently in building demolition work within cities.

  18. Growth and characterization of (110) InAs quantum well metamorphic heterostructures

    SciTech Connect

    Podpirka, Adrian A. Katz, Michael B.; Twigg, Mark E.; Mack, Shawn; Bennett, Brian R.; Shabani, Javad; Palmstrøm, Chris J.

    2015-06-28

    An understanding of the growth of (110) quantum wells (QWs) is of great importance to spin systems due to the observed long spin relaxation times. In this article, we report on the metamorphic growth and characterization of high mobility undoped InAs (110) QWs on GaAs (110) substrates. A low-temperature nucleation layer reduces dislocation density, results in tilting of the subsequent buffer layer and increases the electron mobility of the QW structure. The mobility varies widely and systematically (4000–16 000 cm{sup 2}/Vs at room temperature) with deposition temperature and layer thicknesses. Low-temperature transport measurements exhibit Shubnikov de-Haas oscillations and quantized plateaus in the quantum Hall regime.

  19. Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth

    SciTech Connect

    Hanson, P.J.

    2001-09-04

    This numeric data package provides data sets, and accompanying documentation, on site characterization, system performance, weather, species composition, and growth for the Throughfall Displacement Experiment, which was established in the Walker Branch Watershed of East Tennessee to provide data on the responses of forests to altered precipitation regimes. The specific data sets include soil water content and potential, coarse fraction of the soil profile, litter layer temperature, soil temperature, monthly weather, daily weather, hourly weather, species composition of trees and saplings, mature tree and sapling annual growth, and relative leaf area index. Fortran and SAS{trademark} access codes are provided to read the ASCII data files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).

  20. A Regional Hydrologic Classification of Unregulated Rivers: Towards the Development of Natural Flow Regime Characterization and Environmental Flows in California

    NASA Astrophysics Data System (ADS)

    Lane, B.; Sandoval Solis, S.

    2014-12-01

    Alterations to flow regimes from regulation and climate change affect the biophysical functioning of rivers. Re-operating reservoirs to provide environmental flows - the quantity, quality, and timing of water to sustain natural river functions and species - is now widely applied in multi-objective water resources management. However, the absence of a quantitative, transferable framework for evaluating the relationships between hydrologic inputs, geomorphic functions, and ecological responses, remains a major limitation to setting environmental flows standards. This research addresses this gap by developing a hydrologic classification framework for the State of California that balances operational practicality with scientific defensibility. The framework organizes river reaches into: (1) natural flow classes based on (a) a classification model that clusters hydrologic indices calculated directly from unimpaired streamflow data, and (b) a regression model using a set of climatic, landscape, and local geomorphic controls over the flow regime, and (2) functional zones constrained by temporal (seasonal) ranges and hydrologic (average flow percentile-based) thresholds (e.g. summer low flows). The framework is then used to (1) identify major climatic, landscape, and local geomorphic controls over prototypical flow regime signatures, and (2) characterize key natural functions and processes expected of reaches of each flow class and functional zone during wet, dry, and normal water year types. Organizing hydrologic data in this manner provides a means of comparison and transferability of ecologically-significant hydrologic and geomorphic information across reaches of all major flow classes seen in California, both regulated and unregulated. Through this framework, transferable relationships between hydrologic and physiographic conditions, flow alteration, and ecological metrics can be developed and tested on the basis of data obtained from a limited set of study sites.

  1. Evaluation of feed and feeding regime on growth performance, flesh quality and fecal viscosity of Atlantic salmon ( Salmo salar L.) in recirculating aquaculture systems

    NASA Astrophysics Data System (ADS)

    Sun, Guoxiang; Liu, Ying; Li, Yong; Li, Xian; Wang, Shunkui

    2015-10-01

    The effects of different feeds and feeding regimes on growth performance, flesh quality and fecal viscosity of Atlantic salmon ( Salmo salar L.) in recirculating aquaculture systems (RAS) were investigated. Fish (initial body weight of 1677 g ± 157 g) were fed with four commercial feeds (Nosan salmon-NS, Aller gold-AG, Skretting salmon-SS and Han ye-HY) in two feeding regimes (80% and 100% satiation) for 78 d. The results showed that salmon specific growth ratio (SGR) and weight gain ratio (WGR) were significantly affected by feed type and feeding regime ( P < 0.05). Feed conversion ratio (FCR) varied between 0.93 and 3.40, which was significantly affected by feed type ( P < 0.05), and slightly improved with increased satiation degree. The activities of digestive enzymes including protease, lipase and amylase were also significantly affected by feed type and feeding regime ( P < 0.05), increasing with satiation degree. Flesh qualities for vitamin E, hydroxyproline (HYP), liquid loss and muscle pH among all groups showed significant differences ( P < 0.05), ranging from 26.67 to 29.67, while no obvious difference was found in flesh color. Fecal viscosity for different treatments showed no significant difference, though improvement was found in 100% satiation group. From present experiment, it was concluded that both feed type and feeding regime can affect the important quality attributes of Atlantic salmon.

  2. Characterization of delamination onset and growth in a composite laminate

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1981-01-01

    The onset and growth of delaminations in unnotched (+ or - 30/+ or - 30/90/90 bar) sub S graphite epoxy laminates is described quantitatively. These laminates, designed to delaminate at the edges under tensile loads, were tested and analyzed. Delamination growth and stiffness loss were monitored nondestructively. Laminate stiffness decreased linearly with delamination size. The strain energy release rate, G, associated with delamination growth, was calculated from two analyses. A critical G for delamination onset was determined, and then was used to predict the onset of delaminations in (+45 sub n/-45 sub n/o sub n/90 sub n) sub s (n=1,2,3) laminates. A delamination resistance curve (R curve) was developed to characterize the observed stable delamination growth under quasi static loading. A power law correlation between G and delamination growth rates in fatigue was established.

  3. Growth and Characterization of Graphene on Single Crystal Cu Substrates

    NASA Astrophysics Data System (ADS)

    Robinson, Z. R.; Tyagi, P.; Geisler, H.; Ventrice, C. A., Jr.; Bol, A. A.; Hannon, J. B.

    2012-02-01

    One of the key issues for the use of CVD graphene in device applications is the influence of defects on the transport properties of the graphene. Therefore, it is important to understand the influence of the substrate on the orientation of the graphene. Growth of graphene films on Cu(111) has the potential for producing films with a low defect density because of the hexagonal symmetry of the substrate and relatively small lattice mismatch, whereas growth on Cu(100) is expected to result in multi-domain growth because of its square symmetry. In this study, graphene films were grown on Cu single crystal substrates, and characterized with LEEM, LEED, SEM, AFM, and Raman spectroscopy. The clean Cu substrates were prepared by sputtering and annealing in UHV. For the initial growth studies, the samples were transferred to a tube furnace for graphene growth using a technique optimized for Cu foils. The UHV system has recently been modified with a button heater compatible with the conditions needed for graphene growth to enable in-situ growth and characterization.

  4. Survival, development, and growth of fall Chinook salmon embryos, alevin, and fry exposed to variable thermal and dissolved oxygen regimes

    SciTech Connect

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.; Cullinan, Valerie I.; Chandler, James A.; Groves, Philip

    2006-11-15

    Some fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Snake River downstream of Hells Canyon Dam at temperatures that exceed 13?C and at intergravel dissolved oxygen concentrations that are less than 8 mg O2/L. Although water temperature declines and dissolved oxygen increases soon after spawning, these temperature and dissolved oxygen levels do not meet the water quality standards established by the states of Oregon and Idaho for salmonid spawning. Our objective was to determine if temperatures from 13 to 17 C and dissolved oxygen levels from 4 to greater than 8 mg O2/L during the first 40 days of incubation followed by declining temperature and rising dissolved oxygen affected survival, development, and growth of Snake River fall Chinook salmon embryos, alevins, and fry. During the first 40 days of incubation, temperatures were adjusted downward approximately 0.2 C/day and oxygen was increased in increments of 2 mg O2/L to mimic the thermal and oxygen regime of the Snake River where these fish spawn. At 40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal and dissolved oxygen profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures equal to or greater than 17?C, and a rapid decline in survival occurred between 16.5 C and 17 C, with no significant difference in survival at temperatures less than or equal to 16.5 C. Initial dissolved oxygen levels as low as 4 mg O2/L over a range of initial temperatures from 15 to 16.5 C did not affect embryo survival to emergence. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature and dissolved oxygen; it took from 6 to 10 days longer to reach hatch at 4 mg O2/L than at saturation and up to

  5. Physical characterization of Rhipsalis (Cactaceae) fruits and seeds germination in different temperatures and light regimes.

    PubMed

    Lone, A B; Colombo, R C; Andrade, B L G; Takahashi, L S A; Faria, R T

    2016-06-01

    The germination characteristics of the native cactus species are poorly known, being the temperature and the light the factors that the most interferes in that process. Thus, the objective of the present work was to characterize the fruits and evaluate the influence of the temperature and the light in the seed germination of Rhipsalis floccosa, Rhipsalis pilocarpa and Rhipsalis teres. The tested constant temperatures were 15, 20, 25, 30 and 35 °C and the alternate of 20-30 °C and 25-35 °C in a photoperiod of 10 hours, and with determination of the most appropriate temperature, the germination was tested in light absence. The germination percentage, the index of germination speed and medium time of germination were evaluated. For R. floccosa, the highest germination percentage was at 20 °C. For R. pilocarpa and R. teres, the highest germination percentages occurred in 15 °C and 20 °C. There was correlation to germination percentage between the three species, indicating that they had similar germination behavior. Total absence of germination was verified for the three species in condition of light absence. In conclusion, the temperature of 20 °C is the most suitable for the seed germination of R. floccosa. For the species R. pilocarpa and R. teres, the temperatures of 15 and 20 °C are the most suitable. PMID:26934150

  6. Characterization of antirelaxation-coated vapor cells in high-temperature regime

    NASA Astrophysics Data System (ADS)

    Li, Wenhao; Balabas, Mikhail; Pustelny, Szymon; Wickenbrock, Arne; Budker, Dmitry

    2016-05-01

    Antirelaxation-coated vapor cells are widely used in modern atomic physics experiments due to the coating's ability to maintain spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures of up to 90° C. The longitudinal spin relaxation time (τrel) is measured with a modified version of ``relaxation in the dark'' technique and the vapor density (n) is obtained by fitting atomic absorption spectrum with linear absorption function. The spin-projection-noise-limited (or atomic shot noise limited) sensitivity for atomic magnetometers is δBSNL 1 /√{ nτrel T } , where T is measurement time. Therefore, by showing the product of the longitudinal spin relaxation time and the vapor density increases with temperature, we demonstrate the potential of antirelaxation-coated cells in applications of future high-sensitivity magnetometers. W.L. would like to acknowledge support from the China Scholarship Council (CSC) enabling his research at the University of California at Berkeley.

  7. Femtosecond Laser Tagging Characterization of a Sweeping Jet Actuator Operating in the Compressible Regime

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Miles, Richard B.; Burns, Ross A.; Bathel, Brett F.; Jones, Gregory S.; Danehy, Paul M.

    2016-01-01

    A sweeping jet (SWJ) actuator operating over a range of nozzle pressure ratios (NPRs) was characterized with femtosecond laser electronic excitation tagging (FLEET), single hot-wire anemometry (HWA) and high-speed/phase-averaged schlieren. FLEET velocimetry was successfully demonstrated in a highly unsteady, oscillatory flow containing subsonic through supersonic velocities. Qualitative comparisons between FLEET and HWA (which measured mass flux since the flow was compressible) showed relatively good agreement in the external flow profiles. The spreading rate was found to vary from 0.5 to 1.2 depending on the pressure ratio. The precision of FLEET velocity measurements in the external flow field was poorer (is approximately equal to 25 m/s) than reported in a previous study due to the use of relatively low laser fluences, impacting the velocity fluctuation measurements. FLEET enabled velocity measurements inside the device and showed that choking likely occurred for NPR = 2.0, and no internal shockwaves were present. Qualitative oxygen concentration measurements using FLEET were explored in an effort to gauge the jet's mixing with the ambient. The jet was shown to mix well within roughly four throat diameters and mix fully within roughly eight throat diameters. Schlieren provided visualization of the internal and external flow fields and showed that the qualitative structure of the internal flow does not vary with pressure ratio and the sweeping mechanism observed for incompressible NPRs also probably holds for compressible NPRs.

  8. Characterization of radiation regimes in nonrandom forest canopies: theory, measurements, and a simplified modeling approach.

    PubMed

    Kucharik, Christopher J.; Norman, John M.; Gower, Stith T.

    1999-09-01

    We used field measurements and Monte Carlo simulations of canopy gap-size distribution and gap fraction to examine how beam radiation interacts with clumped boreal forest canopies of aspen (Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.). We demonstrate that the Beer-Lambert law can be modified to accommodate transmission of radiation through a clumped forest canopy as a function of path length or sun zenith angle. Multiband Vegetation Imager (MVI) measurements and Monte Carlo simulations showed that values of the zenith element clumping index (Omega(e)(0)) are typically between 0.4 and 0.5 in jack pine and black spruce and 0.65 in aspen. Estimates of LAI obtained from MVI measurements of the canopy gap fraction and adjusted for canopy clumping and branch architecture yielded LAI values of 3.0 in jack pine, 3.3 in aspen, and about 6.0 in black spruce. These LAI estimates were within 10-25% of direct measurements made at the same sites. Data obtained with the MVI, along with numerical simulations, demonstrated that assumptions of random foliage distributions in boreal forests are invalid and could yield erroneous values of LAI measured by indirect techniques and false characterizations of atmosphere-biosphere interactions. Monte Carlo simulations were used to develop a general equation for beam radiation penetration as a function of zenith angle in clumped canopies. The essential measurements included stem spacing, crown diameter, crown depth, and within-crown gap fraction. PMID:12651308

  9. Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets

    NASA Astrophysics Data System (ADS)

    Awange, J. L.; Gebremichael, M.; Forootan, E.; Wakbulcho, G.; Anyah, R.; Ferreira, V. G.; Alemayehu, T.

    2014-12-01

    Understanding the spatio-temporal characteristics of water storage changes is crucial for Ethiopia, a country that is facing a range of challenges in water management caused by anthropogenic impacts as well as climate variability. In addition to this, the scarcity of in situ measurements of soil moisture and groundwater, combined with intrinsic "scale limitations" of traditional methods used in hydrological characterization are further limiting the ability to assess water resource distribution in the region. The primary objective of this study is therefore to apply remotely sensed and model data over Ethiopia in order to (i) test the performance of models and remotely sensed data in modeling water resources distribution in un-gauged arid regions of Ethiopia, (ii) analyze the inter-annual and seasonal variability as well as changes in total water storage (TWS) over Ethiopia, (iii) understand the relationship between TWS changes, rainfall, and soil moisture anomalies over the study region, and (iv) identify the relationship between the characteristics of aquifers and TWS changes. The data used in this study includes; monthly gravity field data from the Gravity Recovery And Climate Experiment (GRACE) mission, rainfall data from the Tropical Rainfall Measuring Mission (TRMM), and soil moisture from the Global Land Data Assimilation System (GLDAS) model. Our investigation covers a period of 8 years from 2003 to 2011. The results of the study show that the western part and the north-eastern lowlands of Ethiopia experienced decrease in TWS water between 2003-2011, whereas all the other regions gained water during the study period. The impact of rainfall seasonality was also seen in the TWS changes. Applying the statistical method of Principal Component Analysis (PCA) to TWS, soil moisture and rainfall variations indentified the dominant annual water variability in the western, north-western, northern, and central regions, and the dominant seasonal variability in the

  10. Material growth and characterization for solid state devices

    NASA Technical Reports Server (NTRS)

    Collis, Ward J.; Abul-Fadl, A.; Iyer, S.

    1987-01-01

    During this period InGaAs and InGaAsP were grown on (100)InP by liquid phase electroepitaxy (LPEE). Results of the epitaxial growth of InGaAs on sputtered quartz masked substrates are presented. The resulting surface morphology can be related to the current density distribution near the edges of a masked pattern. The quaternary InGaAs was grown with compositions corresponding to 1.3 micron and 1.5 micron emission wavelengths. Growth rates were found to be linearly dependent upon current density, and a strong dependence upon composition was noted. These compositions lie in the miscibility gap region of the alloy phase diagram at the 645 C growth temperature. Growths were performed at 685 C to avoid the miscibility gap. Epilayers were characterized by photoluminescence, X-ray diffraction, secondary ion mass spectrometry, and Hall effect measurements. Aluminum oxide was deposited on silicon and InGaAs substrates for the characterization of this material as an insulator in a field effect transistor structure. It was determined that the results did not warrant further work with the deposition from an aluminum isopropoxide source. A metallographic vapor phase epitaxy system installation is nearing completion for use in hybrid III-V semiconductor epilayer growths.

  11. Growth and photosynthetic performance of five tree seedlings species in response to natural light regimes from the Central Pacific of Costa Rica.

    PubMed

    Guzmán, J Antonio; Cordero, Roberto A

    2013-09-01

    Environmental heterogeneity mostly dominated by differing light regimes affects the expression of phenotypic plasticity, which is important for plant growth and survival, especially in the forest understory. The knowledge about these responses to this heterogeneity is a key factor for forest restoration initiatives. In this study, we determine several phenotypic responses to contrasting light conditions in five native tree seedling species of La Cangreja National Park, Central Pacific of Costa Rica, four of them with threatened or relict populations. After 14 weeks at a medium gap condition (24% of full sun), seedlings were transferred and acclimated for 11 weeks to three different natural light regimes: large gap (LG), medium gap (MG) and small gap (SG), corresponding to 52%, 24%, 9% of the mean direct and indirect radiation at each site from full sun. Growth, biomass allocation and leaf gas exchange were measured after the acclimation period. Four species strongly reduced relative growth rate (RGR) in the lower light condition. Total biomass (TB) and RGR were different in Hymenaea courbaril and Platymiscium curiense. H. courbaril and Astronium graveolens had significant changes in the maximum assimilation rate, with a mean value in the LG of 11.02 and 7.70 micromolCO2/m2s, respectively. P. curuense showed the same trend and significant changes in RGR and biomass allocation. Aspidosperma myristicifolium and Plinia puriscalensis showed no adjustments to the light regimes in any of the measured variables. This study remarks the importance of determining the growth and physiological performance of these tree native species. It also demonstrates that the most threatened species are those with the less plastic responses to the light regimes, which stresses the difficult situation of their natural populations. This study highlights an urgent definition of the conservation and restoration needs of the degraded forests of the Costa Rican Central Pacific area, where these

  12. Cloacal and surface temperatures of tom turkeys exposed to different rearing temperature regimes during the first 12 weeks of growth.

    PubMed

    Mayes, S L; Strawford, M L; Noble, S D; Classen, H L; Crowe, T G

    2015-06-01

    Years of genetic selection have caused an increase in growth rate and market body mass in agricultural poultry species compared to earlier genetic strains, potentially altering their physiological requirements. The objective of this study was to expose Hybrid Converter tom turkeys on a weekly basis to the recommended rearing temperature regime (TCON: control) or 4°C below the recommended standard (TTRT: treatment) to determine their thermal responses. Once per week for 12 weeks, 12 turkeys were individually exposed to either TCON or TTRT for a 2-h period. Surface temperatures of the breast (TBREAST), wing (TWING), drumstick (TDRUM), head (THEAD), and shank (TSHANK) were measured at 20-min intervals using an infrared camera, while a thermal data logger measured the skin surface temperature under the wing (TLOGGER) at 30-s intervals. The cloacal temperature (TCORE) was measured using a medical thermometer at the start and end of the exposure period. Regardless of exposure temperature, the TBREAST (TCON: P<0.001 and TTRT: P<0.001), TWING (TCON: P<0.001 and TTRT: P<0.001), and TDRUM (TCON: P<0.001 and TTRT: P<0.001) decreased from weeks 4 to 6 and remained constant from weeks 1 to 3 and 8 to 12. THEAD was elevated in week 2 (TCON: P<0.001) or week 3 (TTRT: P<0.001), TSHANK increased slightly during week 3 for both TCON (P<0.001) and TTRT (P<0.001), and TLOGGER (TCON: P<0.001 and TTRT: P=0.001) and TCORE (TCON: P<0.001 and TTRT: P<0.001) were lower during the first week. Thereafter, THEAD, TSHANK, TLOGGER, and TCORE remained constant. Exposure to TTRT resulted in lower TBREAST, TWING, and TDRUM compared to TCON. Generally, THEAD, TSHANK, TLOGGER, and TCORE were not affected by the different exposure temperatures. The data demonstrated that the degree of thermal response expressed is dependent on the location of measurement, age, and exposure temperature. PMID:25589083

  13. Characterization of Minnesota lunar simulant for plant growth

    NASA Technical Reports Server (NTRS)

    Oglesby, James P.; Lindsay, Willard L.; Sadeh, Willy Z.

    1993-01-01

    Processing of lunar regolith into a plant growth medium is crucial in the development of a regenerative life support system for a lunar base. Plants, which are the core of such a system, produce food and oxygen for humans and, at the same time, consume carbon dioxide. Because of the scarcity of lunar regolith, simulants must be used to infer its properties and to develop procedures for weathering and chemical analyses. The Minnesota Lunar Simulant (MLS) has been identified to date as the best available simulant for lunar regolith. Results of the dissolution studies reveal that appropriately fertilized MLS can be a suitable medium for plant growth. The techniques used in conducting these studies can be extended to investigate the suitability of actual lunar regolith as a plant growth medium. Dissolution experiments were conducted using the MLS to determine its nutritional and toxicity characteristics for plant growth and to develop weathering and chemical analysis techniques. Two weathering regimes, one with water and one with dilute organic acids simulating the root rhizosphere microenvironment, were investigated. Elemental concentrations were measured using inductively-coupled-plasma (ICP) emission spectrometry and ion chromatography (IC). The geochemical speciation model, MINTEQA2, was used to determine the major solution species and the minerals controlling them. Acidification was found to be a useful method for increasing cation concentrations to meaningful levels. Initial results indicate that MLS weathers to give neutral to slightly basic solutions which contain acceptable amounts of the essential elements required for plant nutrition (i.e., potassium, calcium, magnesium, sulfur, zinc, sodium, silicon, manganese, copper, chlorine, boron, molybdenum, and cobalt). Elements that need to be supplemented include carbon, nitrogen, and perhaps phosphorus and iron. Trace metals in solution were present at nontoxic levels.

  14. Growth and Characterization of Bulk GeSi Solid Solutions

    NASA Technical Reports Server (NTRS)

    Ritter, Timothy M.

    1999-01-01

    In this work we have grown and characterized several GeSi samples in order to investigate the effects that Silicon concentration, applied magnetic field, and liquid encapsulation have on crystalline quality. Characterization techniques include NDIC microscopy and microprobe spectroscopy. Two samples were grown with a Silicon concentration of approximately 3% and are compared to previous growths having a Silicon fraction of approximately 5%. Growth conditions for one of these samples was varied with the presence of an external applied magnetic field to investigate the possibility of magnetic field damping. A comparison between these two ingots, and with previously grown material, revealed no clear improvement in sample crystalline quality. Three additional samples were grown using a CaCl2 liquid encapsulation technique that produced GeSi material with improved structural quality over previous samples. Comparisons to prior non-encapsulation grown material, details of our methodology, and suggestions for further improvements are discussed.

  15. High throughput growth and characterization of thin film materials

    NASA Astrophysics Data System (ADS)

    Mao, Samuel S.

    2013-09-01

    It usually takes more than 10 years for a new material from initial research to its first commercial application. Therefore, accelerating the pace of discovery of new materials is critical to tackling challenges in areas ranging from clean energy to national security. As discovery of new materials has not kept pace with the product design cycles in many sectors of industry, there is a pressing need to develop and utilize high throughput screening and discovery technologies for the growth and characterization of new materials. This article presents two distinctive types of high throughput thin film material growth approaches, along with a number of high throughput characterization techniques, established in the author's group. These approaches include a second-generation "discrete" combinatorial semiconductor discovery technology that enables the creation of arrays of individually separated thin film semiconductor materials of different compositions, and a "continuous" high throughput thin film material screening technology that enables the realization of ternary alloy libraries with continuously varying elemental ratios.

  16. In Situ Thin Film Growth and Characterization of Topological Dirac Semimetal Na3Bi

    NASA Astrophysics Data System (ADS)

    Hellerstedt, Jack; Edmonds, Mark; Liu, Chang; Ramakrishnan, Navneeth; Adam, Shaffique; Fuhrer, Michael

    The alkali pnictide Na3Bi is a three-dimensional Dirac semimetal possessing Dirac-like dispersions in kx, ky and kz, that has attracted recent interest as a condensed matter system for realizing the chiral anomaly. The high reactivity of sodium makes conventional synthesis and characterization extremely difficult: we circumvent this issue by combining thin film growth with low temperature STM and magnetotransport in one comprehensive UHV system. We have successfully grown Na3Bi on α-Al2O3 (0001) substrates, achieving low temperature mobilites in excess of 3,500 cm2/Vs and carrier densities as low as 5 × 10 12 cm-2. Perpendicular magnetoresistance up to 1T shows quadratic behavior with weak anti-localization at low field. Quantitative analysis of this data suggests that our samples are in a charge inhomogeneous regime reminiscent of charge puddling in graphene. JH, MTE and MSF are supported by MSF's ARC Laureate Fellowship (FL120100038).

  17. Tuning the Growth Pattern in 2D Confinement Regime of Sm2O3 and the Emerging Room Temperature Unusual Superparamagnetism

    PubMed Central

    Guria, Amit K.; Dey, Koushik; Sarkar, Suresh; Patra, Biplab K.; Giri, Saurav; Pradhan, Narayan

    2014-01-01

    Programming the reaction chemistry for superseding the formation of Sm2O3 in a competitive process of formation and dissolution, the crystal growth patterns are varied and two different nanostructures of Sm2O3 in 2D confinement regime are designed. Among these, the regular and self-assembled square platelets nanostructures exhibit paramagnetic behavior analogous to the bulk Sm2O3. But, the other one, 2D flower like shaped nanostructure, formed by irregular crystal growth, shows superparamagnetism at room temperature which is unusual for bulk paramagnet. It has been noted that the variation in the crystal growth pattern is due to the difference in the binding ability of two organic ligands, oleylamine and oleic acid, used for the synthesis and the magnetic behavior of the nanostructures is related to the defects incorporated during the crystal growth. Herein, we inspect the formation chemistry and plausible origin of contrasting magnetism of these nanostructures of Sm2O3. PMID:25269458

  18. [Characterization of growth-promoting rhizobacteria in Eucalyptus nitens seedlings].

    PubMed

    Angulo, Violeta C; Sanfuentes, Eugenio A; Rodríguez, Francisco; Sossa, Katherine E

    2014-01-01

    Rhizospheric and endophytic bacteria were isolated from the rizosphere and root tissue of Eucalyptus nitens. The objective of this work was to evaluate their capacity to promote growth in seedlings of the same species under greenhouse conditions. The isolates that improved seedling growth were identified and characterized by their capacity to produce indoleacetic acid (IAA), solubilize phosphates and increase 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. One hundred and five morphologically different strains were isolated, 15 of which promoted E. nitens seedling growth, significantly increasing the height (50%), root length (45%) as well as the aerial and root dry weight (142% and 135% respectively) of the plants. Bacteria belonged to the genus Arthrobacter, Lysinibacillus, Rahnella and Bacillus. Isolates A. phenanthrenivorans 21 and B. cereus 113 improved 3.15 times the emergence of E. nitens after 12 days, compared to control samples. Among isolated R. aquatilis, 78 showed the highest production of IAA (97.5±2.87 μg/ml) in the presence of tryptophan and the highest solubilizer index (2.4) for phosphorus, while B. amyloliquefaciens 60 isolate was positive for ACC deaminase activity. Our results reveal the potential of the studied rhizobacteria as promoters of emergence and seedling growth of E. nitens, and their possible use as PGPR inoculants, since they have more than one mechanism associated with plant growth promotion. PMID:25576419

  19. High resolution characterization of northwest Mediterranean coastal waters thermal regimes: To better understand responses of benthic communities to climate change

    NASA Astrophysics Data System (ADS)

    Bensoussan, Nathaniel; Romano, Jean-Claude; Harmelin, Jean-Georges; Garrabou, Joaquim

    2010-04-01

    In the North West Mediterranean (NWM), mass mortality events (MME) of long-lived benthic species that have occurred over the last two decades have been related to regional warming trend. Gaining robust data sets on thermal regimes is critical to assess conditions to which species have adapted, detect extreme events and critically evaluate biological impacts. High resolution temperature ( T) time series obtained during 1999-2006 from 5 to 40 m depth at four contrasted sites of the NWM were analyzed: Area Marina Protegida de les Illes Medes (NE Spain), Riou (Marseilles, France), Parc National de Port-Cros (France), and Réserve Naturelle de Scandola (Corsica, France). The seasonal pattern showed winter T around 11-13 °C, and summer T mainly around 22-24 °C near surface to 18-20 °C at depth. Stratification dynamics showed recurrent downwellings (>40 m) at Medes, frequent observation (1/3rd of the summer) of deep and cold upwelled waters at Riou, while Scandola exhibited stable summer stratification and highest suprathermoclinal T. Port-Cros showed an intermediate regime that oscillated between Riou and Scandola depending on the occurrence of northern winds. Data distribution study permitted to identify and to characterize 3 large scale positive anomalies concomitant with the mass mortality outbreaks of summers 1999, 2003 and 2006. The analysis of biological surveys on gorgonian populations showed significant impacts during the 3 years with temperature anomalies. Besides the degree of impact showed inter-annual differences which could be related to different T conditions concomitant to mortality events, from slight increase in T extreme of only 1-2 °C over short duration, to lengthened more classical summer conditions. Our results therefore support the hypothesis that shallow NWM populations of long-lived benthic species are living near their upper thermal thresholds. Given actual trends and projections in NWM, the repetition of new MMEs in the next decades is

  20. Characterization of secondary phases in modified vertical bridgman growth czt

    SciTech Connect

    Duff, Martine

    2009-07-10

    CdZnTe or 'CZT' crystals are highly suitable for use as a room temperature based spectrometer for the detection and characterization of gamma radiation. Over the last decade, the methods for growing high quality CZT have improved the quality of the produced crystals however there are material features that can influence the performance of these materials as radiation detectors. For example, various structural heterogeneities within the CZT crystals, such as twinning, pipes, grain boundaries (polycrystallinity), and secondary phases (SP) can have a negative impact on the detector performance. In this study, a CZT material was grown by the modified vertical Bridgman growth (MVB) method with zone leveled growth without excess Te in the melt. Visual observations of material from the growth of this material revealed significant voids and SP. Three samples from this material was analyzed using various analytical techniques to evaluate its electrical properties, purity and detector performance as radiation spectrometers and to determine the morphology, dimension and elemental/structural composition of one of the SP in this material. This material was found to have a high resistivity but poor radiation spectrometer performance. It had SP that were rich in polycrystalline aluminum oxide (Al{sub 2}O{sub 3}), metallic Te and polycrystalline CdZnTe and 15 to 50 {micro}m in diameter. Bulk elemental analyses of sister material from elsewhere in the boule did not contain high levels of Al so there is considerable elemental impurity heterogeneity within the boule from this growth.

  1. Growth and characterization of LuAs films and nanostructures

    SciTech Connect

    Krivoy, E. M.; Nair, H. P.; Crook, A. M.; Rahimi, S.; Maddox, S. J.; Salas, R.; Ferrer, D. A.; Dasika, V. D.; Akinwande, D.; Bank, S. R.

    2012-10-01

    We report the growth and characterization of nearly lattice-matched LuAs/GaAs heterostructures. Electrical conductivity, optical transmission, and reflectivity measurements of epitaxial LuAs films indicate that LuAs is semimetallic, with a room-temperature resistivity of 90 {mu}{Omega} cm. Cross-sectional transmission electron microscopy confirms that LuAs nucleates as self-assembled nanoparticles, which can be overgrown with high-quality GaAs. The growth and material properties are very similar to those of the more established ErAs/GaAs system; however, we observe important differences in the magnitude and wavelength of the peak optical transparency, making LuAs superior for certain device applications, particularly for thick epitaxially embedded Ohmic contacts that are transparent in the near-IR telecommunications window around 1.3 {mu}m.

  2. Direct Optical Characterization of Graphene Growth and Domains on Growth Substrates

    PubMed Central

    Jia, Chuancheng; Jiang, Jiaolong; Gan, Lin; Guo, Xuefeng

    2012-01-01

    We detailed a facile detection technique to optically characterize graphene growth and domains directly on growth substrates through a simple thermal annealing process. It was found that thermal annealing transformed the naked Cu to Cu oxides while keeping graphene and graphene-covered Cu intact. This increases the interference color contrast between Cu oxides and Cu, thus making graphene easily visible under an optical microscope. By using this simple method, we studied the factors that affect graphene nucleation and growth and achieved graphene domains with the domain size as large as ~100 μm. The concept of chemically making graphene visible is universal, as demonstrated by the fact that a solution process based on selective H2O2 oxidation has been developed to achieve the similar results in a shorter time. These techniques should be valuable for studies towards elucidating the parameters that control the grains, boundaries, structures and properties of graphene. PMID:23050091

  3. Characterizing the effects of ratchet growth on PBX 9502

    SciTech Connect

    Thompson, Darla Graff; Brown, Geoff W; Mang, Joseph T; De Luca, Racci; Patterson, Brian; Hagelberg, Stephanie

    2009-01-01

    Pressed composites of TATB (2,4,6-trinintro-1,3,5-benzenetriamine) undergo irreversible volume change when subjected to thermal cycling. Using micro x-ray computed tomography and ultra-small angle neutron scattering, we have characterized the micro-structure of as-pressed and ratchet grown specimens of PBX 9502, a TATB-based composite, thereby distinguishing the effects of ratchet growth from the effects of density alone. Porosity differences are shown to effect mechanical properties, presented here, with ongoing efforts to evaluate sensitivity and/or performance effects.

  4. Growth and Characterization of Bismuth and Antimony Thin Films

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Berrios, A. R.; Collazo, R.; Garcia, J. L.; Ducoudray, G. O.

    1996-03-01

    We have grown thin films of bismuth and antimony using hot wall epitaxy. The polycrystalline films were grown onto (111)-silicon substrates. The chemical integrity of the films was established using Auger electron spectroscopy. The crystallographical properties of the films were assessed using x-ray diffraction techniques. We will report on the results of these characterization efforts, as well as, on the growth apparatus and process. Work supported in part by NSWC-CRADA 93-01 and EPSCoR-NSF Grant EHR-9108775

  5. Seasonal marine growth of Bristol Bay sockeye salmon (Oncorhynchus nerka) in relation to competition with Asian pink salmon (O. gorbuscho) and the 1977 ocean regime shift

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Farley, E.; Nielsen, Jennifer L.; Hagen, P.

    2005-01-01

    Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each growth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2. smolts was significantly higher than age-1. smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10-18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean regime shift. During 1977-2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955-1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977-2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd

  6. Revealing the surface and bulk regimes of isothermal graphene growth on Ni with in situ kinetic measurements and modeling

    SciTech Connect

    Puretzky, Alexander A; Merkulov, Igor A; Rouleau, Christopher M; Eres, Gyula; Geohegan, David B

    2014-01-01

    In situ optical diagnostics are used to reveal the isothermal nucleation and growth mechanisms of graphene on Ni across a wide temperature range (560 C < T < 840 C) by chemical vapor deposition from single, sub-second pulses of acetylene. An abrupt, two-orders of magnitude change in growth times (~ 100s to 1s) is revealed at T = 680 C. Below and above this temperature, similar sigmoidal kinetics are measured and attributed to autocatalytic growth reactions but by two different mechanisms, surface assembly and dissolution/precipitation, respectively. These data are used to develop a simple and general kinetic model for graphene growth that includes the nucleation phase and includes the effects of carbon solubility in metals, describes delayed nucleation, and allows the interpretation of the competition between surface and bulk growth modes. The sharp transition in growth kinetics at T = 680 C is explained by a change in defect site density required for nucleation due to a transition in the carbon-induced mobility of the Ni surface. The easily-implemented optical reflectivity diagnostics and the simple kinetic model described here allow a pathway to optimize the growth of graphene on metals with arbitrary carbon solubility.

  7. Growth and invasive potential of Sapium sebiferum (Euphorbiaceae) within the coastal prairie region: the effects of soil and moisture regime

    USGS Publications Warehouse

    Barrilleaux, T.C.; Grace, J.B.

    2000-01-01

    The introduced tree Sapium sebiferum (Euphorbiaceae) is considered a serious threat to the preservation of the coastal prairie region of Louisiana and Texas, although it is currently uncommon in the western part of the region. The objective of this study was to evaluate the potential effects of location, soils, and available moisture on the growth and survival of S. sebiferum in coastal prairie. In a field experiment, S. sebiferum mortality was significantly greater at a western site than at central and eastern sites. The greatest mortality and least growth of surviving plants occurred on a soil from the western region, regardless of site. A greenhouse study also found that S. sebiferum growth was lowest on the western soil. Watering frequency significantly affected S. sebiferum growth, except on the western soil. Sapium sebiferum growth responded to both nitrogen and phosphorum additions for all soils. Soil analyses revealed the highest sand, sodium, and phosphorus contents, and much higher electrical conductivity in the western soil. It is concluded that the soil examined from the western region is unfavorable for S. sebiferum growth, though not to the extent to preclude S. sebiferum completely. Evidence suggests that soil salinity may be the primary cause of the poor S. sebiferum growth at the western site.

  8. Characterization of insulin-like growth factor I and epidermal growth factor receptors in meningioma

    SciTech Connect

    Kurihara, M.; Tokunaga, Y.; Tsutsumi, K.; Kawaguchi, T.; Shigematsu, K.; Niwa, M.; Mori, K. )

    1989-10-01

    Receptors for insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) were localized and characterized in eight samples of human meningioma (four fibrous, two meningothelial, and two angioblastic types), using quantitative autoradiographic techniques. Effects of both growth factors on deoxyribonucleic acid (DNA) synthesis in the cultured meningioma cells were examined. High numbers of specific binding sites for both IGF-I and EGF were homogeneously present in tissue sections derived from fibrous and meningothelial types of meningiomas, whereas binding sites for these growth factors were not detectable in adjacent leptomeninges. While relatively large numbers of IGF-I binding sites were located in the wall of the intratumoral vasculature, the number of binding sites in the stromal component was lower in angioblastic-type meningiomas, including a low number of EGF binding sites detected only in the stromal portion. Scatchard analysis revealed the presence of a single class of high-affinity binding sites for both IGF-I and EGF in the meningiomas examined (dissociation constant (Kd) = 0.6 to 2.9 nM, and the maximum number of binding sites (Bmax) = 16 to 80 fmol/mg for IGF-I; and Kd = 0.6 to 4.0 nM, Bmax = 3 to 39 fmol/mg for EGF). Both growth factors increased the synthesis of DNA, in a dose-dependent manner, as measured by 3H-thymidine incorporation. The combination of IGF-I and EGF synergistically stimulated the synthesis of DNA, and the effects seen with 10% fetal bovine serum could be reproduced at a concentration of 10(-10) M. These observations can be interpreted to mean that both IGF-I and EGF may be involved in the growth modulation of meningiomas, possibly through paracrine or autocrine mechanisms.

  9. Combination of Heat Shock and Enhanced Thermal Regime to Control the Growth of a Persistent Legionella pneumophila Strain

    PubMed Central

    Bédard, Emilie; Boppe, Inès; Kouamé, Serge; Martin, Philippe; Pinsonneault, Linda; Valiquette, Louis; Racine, Jules; Prévost, Michèle

    2016-01-01

    Following nosocomial cases of Legionella pneumophila, the investigation of a hot water system revealed that 81.5% of sampled taps were positive for L. pneumophila, despite the presence of protective levels of copper in the water. A significant reduction of L. pneumophila counts was observed by culture after heat shock disinfection. The following corrective measures were implemented to control L. pneumophila: increasing the hot water temperature (55 to 60 °C), flushing taps weekly with hot water, removing excess lengths of piping and maintaining a water temperature of 55 °C throughout the system. A gradual reduction in L. pneumophila counts was observed using the culture method and qPCR in the 18 months after implementation of the corrective measures. However, low level contamination was retained in areas with hydraulic deficiencies, highlighting the importance of maintaining a good thermal regime at all points within the system to control the population of L. pneumophila. PMID:27092528

  10. Combination of Heat Shock and Enhanced Thermal Regime to Control the Growth of a Persistent Legionella pneumophila Strain.

    PubMed

    Bédard, Emilie; Boppe, Inès; Kouamé, Serge; Martin, Philippe; Pinsonneault, Linda; Valiquette, Louis; Racine, Jules; Prévost, Michèle

    2016-01-01

    Following nosocomial cases of Legionella pneumophila, the investigation of a hot water system revealed that 81.5% of sampled taps were positive for L. pneumophila, despite the presence of protective levels of copper in the water. A significant reduction of L. pneumophila counts was observed by culture after heat shock disinfection. The following corrective measures were implemented to control L. pneumophila: increasing the hot water temperature (55 to 60 °C), flushing taps weekly with hot water, removing excess lengths of piping and maintaining a water temperature of 55 °C throughout the system. A gradual reduction in L. pneumophila counts was observed using the culture method and qPCR in the 18 months after implementation of the corrective measures. However, low level contamination was retained in areas with hydraulic deficiencies, highlighting the importance of maintaining a good thermal regime at all points within the system to control the population of L. pneumophila. PMID:27092528

  11. Progress in characterizing submonolayer island growth: Capture-zone distributions, growth exponents, & hot precursors

    NASA Astrophysics Data System (ADS)

    Einstein, Theodore L.; Pimpinelli, Alberto; González, Diego Luis; Morales-Cifuentes, Josue R.

    2015-09-01

    In studies of epitaxial growth, analysis of the distribution of the areas of capture zones (i.e. proximity polygons or Voronoi tessellations with respect to island centers) is often the best way to extract the critical nucleus size i. For non-random nucleation the normalized areas s of these Voronoi cells are well described by the generalized Wigner distribution (GWD) Pβ(s) = asβ exp(-bs2), particularly in the central region 0.5 < s < 2 where data are least noisy. Extensive Monte Carlo simulations reveal inadequacies of our earlier mean field analysis, suggesting β = i + 2 for diffusion-limited aggregation (DLA). Since simulations generate orders of magnitude more data than experiments, they permit close examination of the tails of the distribution, which differ from the simple GWD form. One refinement is based on a fragmentation model. We also compare island-size distributions. We compare analysis by island-size distribution and by scaling of island density with flux. Modifications appear for attach-limited aggregation (ALA). We focus on the experimental system para-hexaphenyl on amorphous mica, comparing the results of the three analysis techniques and reconciling their results via a novel model of hot precursors based on rate equations, pointing out the existence of intermediate scaling regimes between DLA and ALA.

  12. Synthesis, growth and characterization of cadmium manganese thiocyanate (CMTC) crystal

    NASA Astrophysics Data System (ADS)

    Paramasivam, P.; Raja, C. Ramachandra

    2011-09-01

    Single crystals of cadmium manganese thiocyanate, CdMn(SCN)4 (CMTC) have been successfully synthesized and grown by slow evaporation solution growth technique using water as solvent at room temperature. The crystal was characterized by different techniques for finding its suitability for device fabrications. From the single crystal XRD the crystal system was identified as tetragonal. The functional groups were identified from FTIR analysis. The optical studies have been carried out and found that the tendency of transmission observed from the specimen with respect to the wavelength of light is practically more suitable for the present trends in communication engineering. From the thermal analysis the decomposing temperature of the grown crystal is more significant when compared with the studies performed earlier.

  13. Synthesis, growth and characterization of cadmium manganese thiocyanate (CMTC) crystal.

    PubMed

    Paramasivam, P; Raja, C Ramachandra

    2011-09-01

    Single crystals of cadmium manganese thiocyanate, CdMn(SCN)4 (CMTC) have been successfully synthesized and grown by slow evaporation solution growth technique using water as solvent at room temperature. The crystal was characterized by different techniques for finding its suitability for device fabrications. From the single crystal XRD the crystal system was identified as tetragonal. The functional groups were identified from FTIR analysis. The optical studies have been carried out and found that the tendency of transmission observed from the specimen with respect to the wavelength of light is practically more suitable for the present trends in communication engineering. From the thermal analysis the decomposing temperature of the grown crystal is more significant when compared with the studies performed earlier. PMID:21640636

  14. Growth and characterization of doped LiF crystals

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Kim, H. J.; Rooh, Gul; Kim, Sunghwan

    2014-12-01

    Transparent and crack-free crystals of LiF: x ( x = Ca, Pb, Na, Tl) were successfully grown by using the Czochralski method. Growth parameters such as the pulling and the rotation rates were optimized. The grown crystals were characterized and compared by using X-ray luminescence. Tl- and Na-doped crystals showed better luminescence intensity than crystals with other dopants. Thermoluminescence (TL) glow curves were obtained to study the crystal defects in the grown samples. Activation energies were calculated from the TL glow curves. The temperature dependence of the light yield in the temperature range from 10 to 300 K under alpha particle excitation was also investigated. The light yield was found to be larger at low temperatures. Na- and Tl-doped crystals showed 35% and 20% increases in the light yield, respectively, at low temperatures as compared to room temperature.

  15. Growth, crystalline perfection and characterization of benzophenone oxime crystal

    NASA Astrophysics Data System (ADS)

    Rajasekar, M.; Muthu, K.; Meenatchi, V.; Bhagavannarayana, G.; Mahadevan, C. K.; Meenakshisundaram, SP.

    Single crystals of benzophenone oxime (BPO) have been grown by slow evaporation solution growth technique from ethanol at room temperature. The single crystal X-ray diffraction study reveals that the crystal belongs to monoclinic system and cell parameters are, a = 9.459 Å, b = 8.383 Å, c = 26.690 Å, v = 2115 Å3 and β = 92.807°. The structure and the crystallinity of the materials were further confirmed by powder X-ray diffraction analysis. The various functional groups present in the molecule are confirmed by FT-IR analysis. The TG/DSC studies reveal the purity of the material and the crystals are transparent in the entire visible region having a lower optical cut-off at ˜300 nm. The crystalline perfection was evaluated by high-resolution X-ray diffraction (HRXRD). The crystal is further characterized by Kurtz powder technique, dielectric studies and microhardness analysis.

  16. Characterization of Mo/Si multilayer growth on stepped topographies

    SciTech Connect

    Boogaard, A. J. R. vcan den; Louis, E.; Zoethout, E.; Goldberg, K. A.; Bijkerk, F.

    2011-08-31

    Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the stepedge region was studied by cross section transmission electron microscopy. A transition from a continuous- to columnar layer morphology is observed near the step-edge, as a function of the local angle of incidence of the deposition flux. Taking into account the corresponding kinetics and anisotropy in layer growth, a continuum model has been developed to give a detailed description of the height profiles of the individual continuous layers. Complementary optical characterization of the multilayer system using a microscope operating in the extreme ultraviolet wavelength range, revealed that the influence of the step-edge on the planar multilayer structure is restricted to a region within 300 nm from the step-edge.

  17. Growth and Characterization of Superconducting Indium Thin Films

    NASA Astrophysics Data System (ADS)

    Johnson-Steigelman, H.; Tahar, Mohammed

    2013-03-01

    Vacuum vapor deposition was used to produce nm - μm thick In films on glass slides and industrial and electronic substrates (doped Si, GaAs, and other elements). We report on the methods of synthesis, preparation, and characterization. Film thickness was controlled and determined using an in-situ four-point-probe during deposition on control samples. Samples manufactured alongside the control samples were then characterized using X-ray transmission for thickness determination, and diffraction for structure and morphology analysis. Transport measurements (Hall Effect and resistivity) were performed at room temperature (RT) to determine mobility. Resistivity measurements on portions of some samples were performed from RT down to below the superconducting transition, yielding consistent results for metallic behavior and transition temperature. Using the Matthiessen's rule and the Drude model for conduction in metals, one can determine the grain or crystallite size, which turned out an order of magnitude lower as compared to that obtained from X-ray diffraction, suggesting a preferred direction growth of In on glass.

  18. Acquisition of Single Crystal Growth and Characterization Equipment

    SciTech Connect

    Maple, M. Brian; Zocco, Diego A.

    2008-12-09

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering

  19. Evaluation of vineyard growth under four irrigation regimes using vegetation and soil on-the-go sensors

    NASA Astrophysics Data System (ADS)

    Terrón, J. M.; Blanco, J.; Moral, F. J.; Mancha, L. A.; Uriarte, D.; Marques da Silva, J. R.

    2015-06-01

    Precision agriculture is a useful tool to assess plant growth and development in vineyards. The present study focused on spatial and temporal analysis of vegetation growth variability, in four irrigation treatments with four replicates. The research was carried out in a vineyard located in the southwest of Spain during the 2012 and 2013 growing seasons. Two multispectral sensors mounted on an all-terrain vehicle (ATV) were used in the different growing seasons/stages in order to calculate the vineyard normalized difference vegetation index (NDVI). Soil apparent electrical conductivity (ECa) was also measured up to 0.8 m soil depth using an on-the-go geophysical sensor. All measured data were analysed by means of principal component analysis (PCA). The spatial and temporal NDVI and ECa variations showed relevant differences between irrigation treatments and climatological conditions.

  20. Growth responses of wheat (Triticum aestivum L. var. HD 2329) exposed to ambient air pollution under varying fertility regimes.

    PubMed

    Singh, Anoop; Agrawal, S B; Rathore, Dheeraj

    2003-08-20

    The problem of urban air pollution has attracted special attention in India due to a tremendous increase in the urban population; motor vehicles vis a vis the extent of energy utilization. Field studies were conducted on wheat crops (Triticum aestivum L. var. HD 2329) by keeping the pot-grown plants in similar edaphic conditions at nine different sites in Allahabad City to quantify the effects of ambient air pollution levels on selected growth and yield parameters. Air quality monitoring was done at all the sites for gaseous pollutants viz. SO2, NO2, and O3. Various growth parameters (plant height, biomass, leaf area, NPP, etc.) showed adverse effects at sites receiving higher pollution load. Reduction in test weight and harvest index was found to be directly correlated with the levels of pollutant concentrations. The study clearly showed the negative impact of air pollution on periurban agriculture. PMID:12941977

  1. Growth, structure, and optical characterization of diluted magnetic semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Cooley, Benjamin Joseph

    ˜ 10 nm, with ˜ 15--20 nm being fairly common. Structural characterization done by transmission electron microscopy (TEM) shows that the long nanowires are largely single crystal, though often with many stacking faults, and tend to form in the wurtzite crystal structure with c-axis growth direction. Elemental analysis performed on individual nanowires using X-ray energy dispersive spectroscopy shows that Mn can be incorporated into Zn1-xMn xSe nanowires in high concentrations, up to x ˜ 0.6. Magneto-photoluminescence (magneto-PL) measurements of as-grown samples reveal substantial Zeeman shifts in the nearband edge luminescence, but only partial polarization, indicating the luminescence is originating in a nanostructured environment. Surprisingly, however, nearly all of the PL signal comes from the nanostructured undergrowth rather than the long nanowires, as shown from magneto-PL measurements of samples which were sonicated to remove the long nanowires. The next set of experiments covers ZnSe and (Zn,Mn)Se nanowires grown using a two-stage process. The substrates are prepared in a similar manner as the in the previous samples. The first stage of growth is carried out at lower than normal substrate temperature, which results in highly tapered nanoneedles with narrow tips (˜ 10 nm). The second stage of growth is performed under normal nanowire growth conditions, yielding narrow nanowires growing from the tips of the nanoneedles. These nanowires have far fewer defects than nanowires grown in a single stage process. Magneto-PL measurements carried out in a micro-PL system show many localized emitters and near band edge emission that shifts in a magnetic field. Sonicated samples gave similar results, indicating that the undergrowth is still responsible for much of the luminescence, even though there is much less undergrowth than in the single stage nanowires. Measurements of dispersed samples suggests that some of the luminescence may be coming from nanowires, but

  2. Characterization of Nanoaerosol Size Change During Enhanced Condensational Growth

    PubMed Central

    Longest, P. Worth; McLeskey, James T.; Hindle, Michael

    2010-01-01

    Increasing the size of nanoaerosols may be beneficial in a number of applications including filtration, particle size selection, and targeted respiratory drug delivery. A potential method to increase particle or droplet size is enhanced condensational growth (ECG), which involves combining the aerosol with saturated or supersaturated air. In this study, we characterize the ECG process in a model tubular geometry as a function of initial aerosol size (mean diameters – 150, 560 and 900 nm) and relative humidity conditions using both in vitro experiments and numerical modeling. Relative humidities (99.8 – 104%) and temperatures (25 – 39 °C) were evaluated that can safely be applied to either targeted respiratory drug delivery or personal aerosol filtration systems. For inlet saturated air temperatures above ambient conditions (30 and 39 °C), the initial nanoaerosols grew to a size range of 1000 – 3000 nm (1 – 3 μm) over a time period of 0.2 seconds. The numerical model results were generally consistent with the experimental findings and predicted final to initial diameter ratios of up to 8 after 0.2 s of humidity exposure and 14 at 1 s. Based on these observations, a respiratory drug delivery approach is suggested in which nanoaerosols in the size range of 500 nm are delivered in conjunction with a saturated or supersaturated air stream. The initial nanoaerosol size will ensure minimal deposition and loss in the mouth-throat region while condensational growth in the respiratory tract can be used to ensure maximal lung retention and to potentially target the site of deposition. PMID:20640054

  3. Growth and characterization of ferromagnetic nanostructures for device applications

    NASA Astrophysics Data System (ADS)

    Jugdersuren, Battogtokh

    Nanotechnology offers tremendous potential for future technology. A better understanding of ferromagnetism, half-metallicity and magnetostriction on the smallest scales are expected to improve technological performance. Processing and characterization of nanostructured materials, therefore, are central in modern solid state physics. One of the techniques to grow nanostructures is electrospinning which offers simplicity, low cost and flexibility. This dissertation focuses on functionally different colossal magnetoresistance strontium and calcium doped lanthanum manganites and magnetostrictive iron-gallium nanowires. We have tailored the conventional electrospinning method to grow high quality manganites and iron-gallium nanowires below 100 nm in diameter for the first time. We have shown that these ferromagnetic nanostructures can be grown parallel to one another for understanding the basic physics as well as for fabricating advanced device structures. Single nanowire devices were fabricated by electron-beam lithography. Details of the growth, morphology, structure and magnetic characterization, device fabrication and performance of the devices will be discussed in this thesis. Manganite nanowires have been grown by anodized alumina oxide template and by the pulsed laser deposition methods by other groups, nanowires grown from these techniques are difficult to use for device fabrication. Devices based on electrospun manganite and iron-gallium nanowires have shown improved electrical and magneto-transport properties. Half-metallic lanthanum-strontium manganite nanowires with 80--300 nm in diameters display enhanced magnetoresistance behavior at room temperature and the large magnetoresistance is exhibited at low magnetic field which will play an important role for creation of novel-next generation devices. Although inter-metallic, bulk iron-gallium is one of the highly attractive magnetostrictive materials, at nano level, it is very rarely studied due to difficulty

  4. A new parameter to characterize the charge transport regime in Ni/HfO2/Si-n+-based RRAMs

    NASA Astrophysics Data System (ADS)

    Villena, M. A.; Roldán, J. B.; González, M. B.; González-Rodelas, P.; Jiménez-Molinos, F.; Campabadal, F.; Barrera, D.

    2016-04-01

    In this work, a new parameter is defined to describe the charge transport regime and to understand the physics behind the operation of Ni/HfO2/Si-n+-based RRAMs. An extraction process of the parameter from experimental reset I-V curves is proposed. The new parameter allows to know the relative importance of the two main transport mechanisms involved in the charge conduction in the low resistance state of the device: a tunneling current through a potential barrier and an ohmic component. A complete simulation study on this issue is provided. Furthermore, the reset voltage can be estimated using this new parameter.

  5. Materials growth and characterization of thermoelectric and resistive switching devices

    NASA Astrophysics Data System (ADS)

    Norris, Kate J.

    In the 74 years since diode rectifier based radar technology helped the allied forces win WWII, semiconductors have transformed the world we live in. From our smart phones to semiconductor-based energy conversion, semiconductors touch every aspect of our lives. With this thesis I hope to expand human knowledge of semiconductor thermoelectric devices and resistive switching devices through experimentation with materials growth and subsequent materials characterization. Metal organic chemical vapor deposition (MOCVD) was the primary method of materials growth utilized in these studies. Additionally, plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD),ion beam sputter deposition, reactive sputter deposition and electron-beam (e-beam) evaporation were also used in this research for device fabrication. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Electron energy loss spectroscopy (EELS) were the primary characterization methods utilized for this research. Additional device and materials characterization techniques employed include: current-voltage measurements, thermoelectric measurements, x-ray diffraction (XRD), reflection absorption infra-red spectroscopy (RAIRS), atomic force microscopy (AFM), photoluminescence (PL), and raman spectroscopy. As society has become more aware of its impact on the planet and its limited resources, there has been a push toward developing technologies to sustainably produce the energy we need. Thermoelectric devices convert heat directly into electricity. Thermoelectric devices have the potential to save huge amounts of energy that we currently waste as heat, if we can make them cost-effective. Semiconducting thin films and nanowires appear to be promising avenues of research to attain this goal. Specifically, in this work we will explore the use of ErSb thin films as well as Si and InP nanowire networks for thermoelectric applications. First we will discuss the growth of

  6. Growth and nonlinear optical characterization of organic single crystal films

    NASA Astrophysics Data System (ADS)

    Zhou, Ligui

    1997-12-01

    Organic single crystal films are important for various future applications in photonics and integrated optics. The conventional method for inorganic crystal growth is not suitable for organic materials, and the high temperature melting method is not good for most organic materials due to decomposition problems. We developed a new method-modified shear method-to grow large area organic single crystal thin films which have exceptional nonlinear optical properties and high quality surfaces. Several organic materials (NPP, PNP and DAST) were synthesized and purified before the thin film crystal growth. Organic single crystal thin films were grown from saturated organic solutions using modified shear method. The area of single crystal films were about 1.5 cm2 for PNP, 1 cm2 for NPP and 5 mm2 for DAST. The thickness of the thin films which could be controlled by the applied pressure ranged from 1μm to 10 μm. The single crystal thin films of organic materials were characterized by polarized microscopy, x-ray diffraction, polarized UV-Visible and polarized micro-FTIR spectroscopy. Polarized microscopy showed uniform birefringence and complete extinction with the rotation of the single crystal thin films under crossed- polarization, which indicated high quality single crystals with no scattering. The surface orientation of single crystal thin films was characterized by x-ray diffraction. The molecular orientation within the crystal was further studied by the polarized UV-Visible and Polarized micro-FTIR techniques combined with the x-ray and polarized microscopy results. A Nd:YAG laser with 35 picosecond pulses at 1064nm wavelength was employed to perform the nonlinear optical characterization of the organic single crystal thin films. Two measurement techniques were used to study the crystal films: second harmonic generation (SHG) and electro-optic (EO) effect. SHG results showed that the nonlinear optical coefficient of NPP was 18 times that of LiNbO3, a standard

  7. Regime change?

    SciTech Connect

    Pilat, Joseph F.; Budlong-Sylvester, K. W.

    2004-01-01

    Following the 1998 nuclear tests in South Asia and later reinforced by revelations about North Korean and Iraqi nuclear activities, there has been growing concern about increasing proliferation dangers. At the same time, the prospects of radiological/nuclear terrorism are seen to be rising - since 9/11, concern over a proliferation/terrorism nexus has never been higher. In the face of this growing danger, there are urgent calls for stronger measures to strengthen the current international nuclear nonproliferation regime, including recommendations to place civilian processing of weapon-useable material under multinational control. As well, there are calls for entirely new tools, including military options. As proliferation and terrorism concerns grow, the regime is under pressure and there is a temptation to consider fundamental changes to the regime. In this context, this paper will address the following: Do we need to change the regime centered on the Treaty on the Nonproliferation of Nuclear Weapons (NPT) and the International Atomic Energy Agency (IAEA)? What improvements could ensure it will be the foundation for the proliferation resistance and physical protection needed if nuclear power grows? What will make it a viable centerpiece of future nonproliferation and counterterrorism approaches?

  8. Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes.

    PubMed

    Sánchez-Blanco, Ma Jesús; Alvarez, Sara; Navarro, Alejandra; Bañón, Sebastián

    2009-03-15

    Geranium plants are an important part of urban green areas but suffer from drought, especially when grown in containers with a limited volume of medium. In this experiment, we examined the response of potted geraniums to different irrigation levels. Geranium (Pelargoniumxhortorum L.) seedlings were grown in a growth chamber and exposed to three irrigation treatments, whereby the plants were irrigated to container capacity (control), 60% of the control (moderate deficit irrigation, MDI), or 40% of the control (severe deficit irrigation, SDI). Deficit irrigation was maintained for 2 months, and then all the plants were exposed to a recovery period of 112 month. Exposure to drought induced a decrease in shoot dry weight and leaf area and an increase in the root/shoot ratio. Height and plant width were significantly inhibited by the SDI, while flower color parameters were not affected by deficit treatment. The number of wilting and yellow leaves increased, coinciding with the increase in the number of inflorescences and open flowers. Deficit irrigation led to a leaf water potential of about -0.8MPa at midday, which could have caused an important decrease in stomatal conductance, affecting the photosynthetic rate (Pn). Chlorophyll fluorescence (Fvm) values of 0.80 in all treatments throughout the experiment demonstrate the lack of drought-induced damage to PSII photochemistry. Pressure-volume analysis revealed low osmotic adjustment values of 0.2MPa in the SDI treatment, accompanied by increases in the bulk tissue elastic modulus (epsilon, wall rigidity) and resulting in turgor loss at lower leaf water potential values (-1.38MPa compared with -1.0MPa for the control). Leaf water potential values throughout the experiment below those for Psitlp were not found at any sampling time. By the end of the recovery period, the leaf water potential, stomatal conductance and net photosynthesis had recovered. We infer from these results that moderate deficit irrigation in geranium

  9. Survival, development, and growth of Snake River fall Chinook salmon Embryos, Alevins, and Fry Exposed to Variable Thermal and Dissolved Oxygen Regimes

    SciTech Connect

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.; Cullinan, Valerie I.; Chandler, James A.; Groves, Philip

    2006-11-01

    Fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Hells Canyon reach of the Snake River, Idaho (rkm 240-397), at water temperatures above 16 C. This temperature exceeds the states of Idaho and Oregon water quality standards for salmonid spawning. These standards are consistent with results from studies of embryos exposed to a constant thermal regime, while salmon eggs in the natural environment are rarely exposed to a constant temperature regime. The objective of this study was to assess whether variable temperatures (i.e., declining after spawning) affected embryo survival, development, and growth of Snake River fall Chinook salmon alevins and fry. In 2003, fall Chinook salmon eggs were exposed to initial incubation temperatures ranging from 11-19 C in 2 C increments, and in 2004 eggs were exposed to initial temperatures of 13 C, 15 C, 16 C, 16.5 C, and 17 C. In both years, temperatures were adjusted downward approximately 0.2 C/day to mimic the thermal regime of the Snake River where these fish spawn. At 37-40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures >17 C in both years. A logistic regression model estimated that a 50% reduction in survival from fertilization to emergence would occur at an initial incubation temperature of {approx}16 C. The laboratory results clearly showed a significant reduction in survival between 15 C and 17 C, which supported the model estimate. Results from 2004 showed a rapid decline in survival occurred between 16.5 C and 17 C, with no significant differences in survival at initial incubation temperatures <16.5 C. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. Differences in egg mass among females (notably 2003) most likely masked any

  10. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    SciTech Connect

    Siva Sankari, R.; Perumal, Rajesh Narayana

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a function of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function

  11. Effects of growth irradiance, nitrogen nutrition and watering regime on photosynthesis, leaf conductance and isoprene emission in leaves of Post Oak, Quercus stellata

    SciTech Connect

    Harley, P.; Archer, S.; Guenther, A. Texas A M Univ., College Station )

    1994-06-01

    Seedlings of Post Oak (Quercus stellata), the dominant woody species of oak savannas of east-central Texas, were grown outside in College Station, TX from April to November 1993. Plants were randomly placed in one cell of a 3 [times] 2 [times] 2 factorial experiment, employing 3 nitrogen fertilization (25, 100 and 225 ppm NH[sub 4]NO[sub 23]), 2 light levels (70% and 20% of full sun) and 2 watering regimes (to maintain 80-100% or 30-50% of field capacity). In November, net photosynthesis, leaf conductance and leaf isoprene emission rates at 30[degrees]C and PPFD=1000 [mu]mol m[sup [minus]2]s[sup [minus]1] were determined for two mature leaves on each of four plants from eight growth treatments and data were analyzed stastically. For plants grown under the lower watering regime, photosynthesis and isoprene emission increased with both increasing PPFD and nitrogen (effects significant at p<0.01). For plants grown at 70% full sun, effects of nitrogen treatment on photosynthesis, conductance and isoprene emission were significant (p<0.0001) while effects of watering treatment were not significant (p<0.2). Although watering treatment did not lead to significant differences between treatments, in a short-term drying experiment conducted on four plants, isoprene emissions increased through the drying period in previously well-watered plants, but decreased in previously droughted plants. Measurements were also made on two leaves to determine the effects of varying PPFD and temperature on rates of isoprene emission.

  12. Growth and characterization of group iiinitrides by migration-enhanced afterglow epitaxy

    NASA Astrophysics Data System (ADS)

    Gergova, Rositsa

    The work presented in this thesis investigates the growth and properties of group III- nitride semiconductors that were grown using the Migration Enhanced Afterglow Epitaxy (MEAglow) method. This work was to enhance the understanding of the MEAglow growth process towards the improvement of quality of the layers grown using this technique. The MEAglow technique applies the migration enhanced epitaxy method in a low pressure plasma-based CVD reactor, which has a potential of producing high quality epitaxial group III-nitride layers at relatively low growth temperatures on large deposition areas. The low temperature pulse growth in metal-rich regime, comprising the MME method was employed under growth pressures between 500 mTorr and 3000 mTorr. As the MME method up to this point has been used only for MBE systems, study of the impact of the growth pressure on the materials properties was necessary. In this work the pressure dependence was mapped to an existing surface phase diagram for MBE systems by calculating the number of nitrogen gas phase collisions and the metalorganic bombardment rate, for the specific to the prototype reactor parameters, to a first approximation. This was done in order to achieve an intermediate regime free of metal droplets for growth in metal-rich regime. High quality epitaxial InN layers were accomplished on extremely thin and smooth Ga2O3 buffer layers. These results indicate a potential for the application of Ga2O3 buffers in InN growth. The MEAglow InN layers were further optimized for growth on commercially available GaN buffer layers and excellent two-dimensional growth was achieved for layers grown under metal-rich conditions at 512 °C. Post-growth annealing studies were carried out for InN layers grown at temperatures below 400 °C to study the limiting processes of the removal of excess nitrogen, believed to be a dominant defect in InN films grown in plasma-based systems at very low temperatures. Variations in GaN stoichiometry

  13. A method for characterizing late-season low-flow regime in the upper Grand Ronde River Basin, Oregon

    USGS Publications Warehouse

    Kelly, Valerie J.; White, Seth

    2016-01-01

    This report describes a method for estimating ecologically relevant low-flow metrics that quantify late‑season streamflow regime for ungaged sites in the upper Grande Ronde River Basin, Oregon. The analysis presented here focuses on sites sampled by the Columbia River Inter‑Tribal Fish Commission as part of their efforts to monitor habitat restoration to benefit spring Chinook salmon recovery in the basin. Streamflow data were provided by the U.S. Geological Survey and the Oregon Water Resources Department. Specific guidance was provided for selection of streamgages, development of probabilistic frequency distributions for annual 7-day low-flow events, and regionalization of the frequency curves based on multivariate analysis of watershed characteristics. Evaluation of the uncertainty associated with the various components of this protocol indicates that the results are reliable for the intended purpose of hydrologic classification to support ecological analysis of factors contributing to juvenile salmon success. They should not be considered suitable for more standard water-resource evaluations that require greater precision, especially those focused on management and forecasting of extreme low-flow conditions.

  14. Sequential growth of deformation bands in carbonate grainstones in the hangingwall of an active growth fault: Implications for deformation mechanisms in different tectonic regimes

    NASA Astrophysics Data System (ADS)

    Rotevatn, Atle; Thorsheim, Elin; Bastesen, Eivind; Fossmark, Heidi S. S.; Torabi, Anita; Sælen, Gunnar

    2016-09-01

    Deformation bands in porous sandstones have been extensively studied for four decades, whereas comparatively less is known about deformation bands in porous carbonate rocks, particularly in extensional settings. Here, we investigate porous grainstones of the Globigerina Limestone Formation in Malta, which contain several types of deformation bands in the hangingwall of the Maghlaq Fault: (i) bed-parallel pure compaction bands (PCB); (ii) pressure solution-dominated compactive shear bands (SCSB) and iii) cataclasis-dominated compactive shear bands (CCSB). Geometric and kinematic analyses show that the bands formed sequentially in the hangingwall of the evolving Maghlaq growth fault. PCBs formed first due to fault-controlled subsidence and vertical loading; a (semi-)tectonic control on PCB formation is thus documented for the first time in an extensional setting. Pressure solution (dominating SCSBs) and cataclasis (dominating CCSBs) appear to have operated separately, and not in concert. Our findings therefore suggest that, in some carbonate rocks, cataclasis within deformation bands may develop irrespective of whether pressure solution processes are involved. We suggest this may be related to stress state, and that whereas pressure solution is a significant facilitator of grain size reduction in contractional settings, grain size reduction within deformation bands in extensional settings is less dependent on pressure solution processes.

  15. Lead-lag cross-sectional structure and detection of correlated anticorrelated regime shifts: Application to the volatilities of inflation and economic growth rates

    NASA Astrophysics Data System (ADS)

    Zhou, Wei-Xing; Sornette, Didier

    2007-07-01

    We have recently introduced the “thermal optimal path” (TOP) method to investigate the real-time lead-lag structure between two time series. The TOP method consists in searching for a robust noise-averaged optimal path of the distance matrix along which the two time series have the greatest similarity. Here, we generalize the TOP method by introducing a more general definition of distance which takes into account possible regime shifts between positive and negative correlations. This generalization to track possible changes of correlation signs is able to identify possible transitions from one convention (or consensus) to another. Numerical simulations on synthetic time series verify that the new TOP method performs as expected even in the presence of substantial noise. We then apply it to investigate changes of convention in the dependence structure between the historical volatilities of the USA inflation rate and economic growth rate. Several measures show that the new TOP method significantly outperforms standard cross-correlation methods.

  16. Epitaxial Growth and Characterization of Silicon Carbide Films

    SciTech Connect

    Dhanaraj,G.; Dudley, M.; Chen, Y.; Ragothamachar, B.; Wu, B.; Zhang, H.

    2006-01-01

    Silicon carbide (SiC) epitaxial layers have been grown in a chemical vapor deposition (CVD) system designed and fabricated in our laboratory. Silicon tetrachloride-propane as well as silane-propane were used as precursor gases. The hot zone was designed based on simulation by using numerical modeling. Growth rates up to 200 {mu}m could be achieved. A new growth-assisted hydrogen etching was developed to show the distribution of the micropipes present in the substrate. Higher growth rate was observed on off-axis (0 0 0 1) 4 H SiC compared to the on-axis (0 0 0 1) wafer and growth mechanism was explained.

  17. Novel nanostructured thin film heterostructures: Growth, nanoscale characterization and properties

    NASA Astrophysics Data System (ADS)

    Chugh, Amit

    During my graduate study, I have been involved in the growth of new nano heterostructures grown by Pulsed Laser Deposition and by Laser MBE with the emphasis on understanding the thin film growth process by a new paradigm of Domain Matching Epitaxy (DME) and to integrate them on substrates like silicon, sapphire and new metallic substrates like Ni with exciting technological applications. The DME involves matching of integral multiples of lattice planes (diffracting as well as nondiffracting) between the film and the substrate, and this matching could be different in different directions. The idea of matching planes is derived from the basic fact that during thin film growth lattice relaxation involves generation of dislocations whose Burgers vectors correspond to missing or extra planes, rather than lattice constants. In the DME framework, the conventional lattice matching epitaxy (LME) becomes a special case where matching of lattice constants results from matching of lattice planes with a relatively small misfit of less than 7-8%. In large lattice mismatch systems, epitaxial growth of thin films is possible by matching of domains where integral multiples of lattice planes match across the interface. The work done in my doctoral study is divided into two main segments, (a) Growth of layered nanostructures and (b) growth of nanostructured composite thin films. The three systems studied under the first segment are (1) Growth of epitaxial self-aligned insulating films on metals (Cu) and its integration with Si (100). (2) Growth and integration of LSMO with Si (100). (3) Growth of Si on Ni substrates (highly textured) with TiN as a buffer layer. The heterostructures studied under the second part are (1) Role of Self-assembled Gold Nanodots in Improving the Electrical and Optical Characteristics of Zinc Oxide Films and (2) Growth of high quality epitaxial ZnO-Pt Nanocomposite and ZnO/Pt, Nanolayer Structures on Sapphire (0001). The epitaxial growth of these

  18. Growth and characterization of graphene on CuNi substrates

    NASA Astrophysics Data System (ADS)

    Tyagi, Parul

    Graphene is a single layer of sp2 bonded carbon atoms that crystallizes in the honeycomb structure. Because of its true two-dimensional structure, it has very unique electrical properties, including a very high carrier mobility that is symmetric for holes and electrons. To realize these unique properties, it is important to develop a method for growing graphene films with uniform thickness and low defect density. One of the most popular methods of growth is by chemical vapor deposition on Cu substrates, because it is self-limited. However many applications require the growth of graphene films that are more than one atomic layer thick. In this research project, the growth of graphene on CuNi substrates has been studied. The presence of Ni in the alloy results in an increase in the catalytic activity of the surface. This results in lower deposition pressures than for pure Cu and also increases the carbon solubility, which allows the growth of films that are more than one atomic layer thick. Two types of substrates were used for the growth of the graphene films: CuNi foils with an alloy composition of 90:10 and 70:30 Cu-Ni by weight and a CuNi(111) single crystal with a composition of 90:10 by weight. For the 70:30 substrates, it was very difficult to control the graphene thickness. On the other hand, the controlled growth of graphene films that were more than one layer thick was achieved on the 90:10 substrates. The growth morphology and the crystal structure of graphene grown on the CuNi(111) surface was determined by performing these studies in an ultra-high vacuum chamber to achieve very high purity conditions. The low energy electron diffraction analysis of the graphene films showed that the graphene films always nucleated in more than one rotational orientation with respect to the substrate. The growth was achieved at temperatures as low as 500 °C, which is much lower in temperature than for Cu substrates. Scanning electron microscopy analysis of the graphene

  19. In-situ TEM characterization of Copper Growth

    NASA Astrophysics Data System (ADS)

    Shelberg, Daniel T.

    In-situ liquid experiments in the transmission electron microscope (TEM) allow dynamic phenomena to be imaged at the nanoscale. This opens the opportunity to view electrochemical depositions at the nano scale in real time. However, there are a number of issues regarding in situ imaging that prevent a straightforward approach. This thesis addresses two issues regarding in-situ experiments; the fabrication of electron transparent windows and the nucleation of a metal from an electrolyte as a result of beam damage. Silicon chips that were 2.6mm x 2.6mm with 50mum x 50mum windows consisting of 50nm S3N 4 were fabricated with the goal of minimizing fabrication complexity at a cost significantly below commercial prices. These silicon nitride windows were used to sandwich a small volume of CuSO4 solution and observe copper nucleation as a result of the radiolysis damage of water due to the electron beam. Scanning transmission electron microscopy (STEM) was used to image growth, and reducing species are shown to diffuse on the order of hundreds of nanometers in solution. Copper nanoparticle growth was compared to Oswald ripening, and diffusion limited growth was observed at high electron dose rates. The diffusion limited growth was suppressed and led to a slower growth rate, with a calculated diffusion coefficient for Cu 2+ of 2 x 10--10 m2/s. Low electron dose rates corresponding to low magnifications in STEM yielded kinetic limited or mixed growth and yielded faceted nanoparticles. Atomic resolution was achieved in copper film deposited at low magnifications, and lattice fringes corresponding to the copper <111> were observed.

  20. Characterization and estrogen regulation of uterine growth factor activity

    SciTech Connect

    Beck, C.A.

    1988-01-01

    Acid extracts of rat, bovine and rabbit uterus stimulated glucose transport, measured by phosphorylation of 2-deoxyglucose and DNA synthesis, measured by {sup 3}H-thymidne incorporation, in uterine tumor cells and in primary cultures of rat uterine cells. The stimulation of glucose transport was of the same magnitude and followed the same time course as estradiol stimulation in vivo. Uteri from estradiol-treated rat uteri contained 4 times more glucose transport-stimulating activity as control uteri. DNA synthetic activity in rat uterine homogenates was elevated 3-fold within 18-24 h after estradiol injection. Gel filtration showed molecular weight heterogeneity with activity eluting between 10-30 kDA. Both activities were acid and heat stable, were reduced by trypsin but not by dextran-coated charcoal. The effect of purified growth factors on DNA synthesis in primary cultures of rat uterine cells was examined. Epidermal growth factor (EGF), basic fibroblasts growth factor (bFGF), and transforming growth factor-{beta} (TGF{beta}) had no effect on {sup 3}H-thymidine incorporation.

  1. Characterization of Alcohol-induced Filamentous Growth in Saccharomyces cerevisiae

    PubMed Central

    Lorenz, Michael C.; Cutler, N. Shane; Heitman, Joseph

    2000-01-01

    Diploid cells of the budding yeast Saccharomyces cerevisiae starved for nitrogen differentiate into a filamentous growth form. Poor carbon sources such as starches can also stimulate filamentation, whereas haploid cells undergo a similar invasive growth response in rich medium. Previous work has demonstrated a role for various alcohols, by-products of amino acid metabolism, in altering cellular morphology. We found that several alcohols, notably isoamyl alcohol and 1-butanol, stimulate filamentous growth in haploid cells in which this differentiation is normally repressed. Butanol also induces cell elongation and changes in budding pattern, leading to a pseudohyphal morphology, even in liquid medium. The filamentous colony morphology and cell elongation require elements of the pheromone-responsive MAPK cascade and TEC1, whereas components of the nutrient-sensing machinery, such as MEP2, GPA2, and GPR1, do not affect this phenomenon. A screen for 1-butanol–insensitive mutants identified additional proteins that regulate polarized growth (BUD8, BEM1, BEM4, and FIG1), mitochondrial function (MSM1, MRP21, and HMI1), and a transcriptional regulator (CHD1). Furthermore, we have also found that ethanol stimulates hyperfilamentation in diploid cells, again in a MAPK-dependent manner. Together, these results suggest that yeast may sense a combination of nutrient limitation and metabolic by-products to regulate differentiation. PMID:10637301

  2. Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes.

    PubMed

    Fini, Alessio; Frangi, Piero; Amoroso, Gabriele; Piatti, Riccardo; Faoro, Marco; Bellasio, Chandra; Ferrini, Francesco

    2011-11-01

    The aim of this work was to evaluate the effects of selected mycorrhiza obtained in the urban environment on growth, leaf gas exchange, and drought tolerance of containerized plants growing in the nursery. Two-year-old uniform Acer campestre L., Tilia cordata Mill., and Quercus robur L. were inoculated with a mixture of infected roots and mycelium of selected arbuscular (maple, linden) and/or ectomycorrhiza (linden, oak) fungi and grown in well-watered or water shortage conditions. Plant biomass and leaf area were measured 1 and 2 years after inoculation. Leaf gas exchange, chlorophyll fluorescence, and water relations were measured during the first and second growing seasons after inoculation. Our data suggest that the mycelium-based inoculum used in this experiment was able to colonize the roots of the tree species growing in the nursery. Plant biomass was affected by water shortage, but not by inoculation. Leaf area was affected by water regime and, in oak and linden, by inoculation. Leaf gas exchange was affected by inoculation and water stress. V(cmax) and J(max) were increased by inoculation and decreased by water shortage in all species. F(v)/F(m) was also generally higher in inoculated plants than in control. Changes in PSII photochemistry and photosynthesis may be related to the capacity of inoculated plants to maintain less negative leaf water potential under drought conditions. The overall data suggest that inoculated plants were better able to maintain physiological activity during water stress in comparison to non-inoculated plants. PMID:21472449

  3. Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

    USGS Publications Warehouse

    Hay, M.B.; Stoliker, D.L.; Davis, J.A.; Zachara, J.M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ???1% of the solid volume and intragranular surface areas of ???20%-35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity. Copyright 2011 by the American Geophysical Union.

  4. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    USGS Publications Warehouse

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  5. Temperature control and calibration issues in the growth, processing and characterization of electronic materials

    NASA Technical Reports Server (NTRS)

    Wilson, B. A.

    1989-01-01

    The temperature control and calibration issues encountered in the growth, processing, and characterization of electronic materials are summarized. The primary problem area is identified as temperature control during epitaxial materials growth. While qualitative thermal measurements are feasible and reproducibility is often achievable within a given system, absolute calibration is essentially impossible in many cases, precluding the possibility of portability from one system to another. The procedures utilized for thermal measurements during epitaxial growth are described, and their limitations discussed.

  6. Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

    SciTech Connect

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-10-29

    Although 'intragranular' pore space within grain aggregates, grain fractures, and mineral 24 surface coatings may contain a relatively small fraction of the total porosity within a porous 25 medium, it often contains a significant fraction of the reactive surface area, and can thus strongly 26 affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment 27 procedure using tritium and bromide as high-resolution diffusive tracers to characterize the 28 intragranular pore space. The method was tested using uranium-contaminated sediments from 29 the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site 30 (Washington State, USA). Sediments were contacted with tracers in artificial groundwater, 31 followed by replacement of bulk solution with tracer-free groundwater and monitoring of tracer 32 release. From these data, intragranular pore volumes were calculated and mass transfer rates 33 were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange 34 on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment 35 that was vacuum dried after reaction. The complementary ('wet' and 'dry') techniques allowed 36 for the simultaneous determination of intragranular porosity and surface area using tritium. The 37 Hanford 300A samples exhibited intragranular pore volumes of {approx}1% of the solid volume and 38 intragranular surface areas of {approx}20-30% of the total surface area. Comparison with N2 gas 39 adsorption suggests that this pore space includes both 'micropores' (< 2 nm diameter) and 40 'mesopores' (> 2 nm). Intragranular porosity estimates obtained using bromide were 41 significantly smaller, likely due to anion exclusion of Br- from pores with negatively charged 42 surfaces.

  7. Material growth and characterization for solid state devices

    NASA Technical Reports Server (NTRS)

    Collis, Ward J.; Abul-Fadl, Ali; Iyer, Shanthi

    1988-01-01

    During the period of this research grant, the process of liquid phase electroepitaxy (LPEE) was used to grow ternary and quaternary alloy III-V semiconductor thin films. Selective area growth of InGaAs was performed on InP substrates using a patterned sputtered quartz or spin-on glass layer. The etch back and growth characteristics with respect to substrate orientation were investigated. The etch back behavior is somewhat different from wet chemical etching with respect to the sidewall profiles which are observed. LPEE was also employed to grow epitaxial layers of InGaAsP alloys on InP substrates. The behavior of Mn as an acceptor dopant was investigated with low temperature Hall coefficient and photoluminescence measurements. A metal-organic vapor phase epitaxy system was partially complete within the grant period. This atmospheric pressure system will be used to deposit III-V compound and alloy semiconductor layers in future research efforts.

  8. Growth and characterization of ammonium acid phthalate single crystals

    NASA Astrophysics Data System (ADS)

    Arunkumar, A.; Ramasamy, P.

    2013-04-01

    Ammonium acid phthalate (AAP) has been synthesized and single crystals were grown by slow evaporation solution growth technique. The unit cell parameters were confirmed by single crystal X-ray diffraction analysis and it belongs to orthorhombic system with the space group of Pcab. The high resolution X-ray diffraction studies revealed the crystalline perfection of the grown crystal. The various functional groups of AAP were identified by FT-IR and Raman spectral analyses. Thermal stability of the grown crystals was studied by TGA/DTA. The optical properties of the grown crystals were analyzed by UV-Vis-NIR and photoluminescence spectral studies. The mechanical property of the grown crystal was studied by Vickers microhardness measurement. The growth features of AAP were analyzed by chemical etching.

  9. Morphologic characterization of osteosarcoma growth on the chick chorioallantoic membrane

    PubMed Central

    2010-01-01

    Background The chick chorio-allantoic membrane (CAM) assay is a commonly used method for studying angiogenic or anti-angiogenic activities in vivo. The ease of access allows direct monitoring of tumour growth by biomicroscopy and the possibility to screen many samples in an inexpensive way. The CAM model provides a powerful tool to study effects of molecules, which interfere with physiological angiogenesis, or experimental tumours derived from cancer cell lines. We therefore screened eight osteosarcoma cell lines for their ability to form vascularized tumours on the CAM. Findings We implanted 3-5 million cells of human osteosarcoma lines (HOS, MG63, MNNG-HOS, OST, SAOS, SJSA1, U2OS, ZK58) on the CAM at day 10 of embryonic development. Tumour growth was monitored by in vivo biomicroscopy at different time points and tumours were fixed in paraformaldehyde seven days after cell grafting. The tissue was observed, photographed and selected cases were further analyzed using standard histology. From the eight cell lines the MNNG-HOS, U2OS and SAOS were able to form solid tumours when grafted on the CAM. The MNNG-HOS tumours showed the most reliable and consistent growth and were able to penetrate the chorionic epithelium, grow in the CAM stroma and induce a strong angiogenic response. Conclusions Our results show that the CAM assay is a useful tool for studying osteosarcoma growth. The model provides an excellent alternative to current rodent models and could serve as a preclinical screening assay for anticancer molecules. It might increase the speed and efficacy of the development of new drugs for the treatment of osteosarcoma. PMID:20202196

  10. Single crystal growth and characterization of URu2Si2

    NASA Astrophysics Data System (ADS)

    Haga, Yoshinori; Matsuda, Tatsuma D.; Tateiwa, Naoyuki; Yamamoto, Etsuji; Ōnuki, Yoshichika; Fisk, Zachary

    2014-11-01

    We review recent progress in single crystal growth and study of electronic properties in ?. Czocharalski pulling, using purified uranium metal and subsequent annealing under ultra-high vacuum, is successfully applied to this compound, and it yields the highest residual resistivity ratio. These high-quality single crystals allow us to investigate Fermi surfaces using quantum oscillation and to make detailed transport measurements at low temperature.

  11. Growth and Characterization of Graphene-Boron Nitride Heterostructures

    NASA Astrophysics Data System (ADS)

    Sutter, Peter

    2012-02-01

    Graphene has been used to explore the fascinating properties of two-dimensional sp^2 carbon, and shows great promise for applications. Heterostructures of graphene (G) and hexagonal boron nitride (h-BN) have the potential for extended functionality, e.g., providing high carrier mobilities in graphene devices supported on h-BN and giving rise to emergent electronic behavior near in-plane G/h-BN junctions. While significant progress has been made recently in separate graphene and boron nitride growth on transition metals, the controlled synthesis of high-quality G/h-BN heterostructures poses new challenges. We discuss the fundamental growth mechanisms underlying the synthesis of G/h-BN heterostructures, studied by a combination of in-situ surface microscopy methods. Real-time low-energy electron microscopy (LEEM) provides a mesoscale view of the nucleation and growth of h-BN in the presence of graphene, and vice-versa. LEEM imaging together with diffraction and angle resolved photoemission spectroscopy (micro-ARPES) gives insight into the interaction between graphene and h-BN. Scanning tunneling microscopy has been used to probe intermixing and the atomic-scale structure of interfacial boundaries. Combining real-time and atomic-resolution imaging, we identify successful approaches for achieving atomically sharp G/h-BN junctions.

  12. Growth and characterization of metal/semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Henz, J.; Ospelt, M.; Von Känel, H.

    1989-04-01

    Thanks to recent advances in the growth of CoSi 2-layers on Si(111) it has become possible for the first time to fabricate metal/semiconductor superlattices. This is achieved by a combination of solid phase epitaxy (SPE) and molecular beam epitaxy (MBE). We briefly explain the growth of thin ( < 100 Å) type B oriented (i.e. rotated by 180° with respect to the substrate) CoSi 2 layers. We show the effect of the two different surface structures of CoSi 2 on the morphology of the films. Silicon with a reasonable crystal quality can be grown on top of CoSi 2 by using low substrate temperatures for the first few monolayers of growth. We always find the orientation of Si to be the same as the one of the underlying suicide, when the latter is of high quality. Superlattices of CoSi 2 and Si have two periods, one being given by the different materials and the other by the alternating crystal orientations. We show some TEM cross section images as well as first X-ray investigations of these structures.

  13. Kinematics of cardiac growth: In vivo characterization of growth tensors and strains

    PubMed Central

    Tsamis, Alkiviadis; Cheng, Allen; Nguyen, Tom C.; Langer, Frank; Miller, D. Craig; Kuhl, Ellen

    2012-01-01

    Progressive growth and remodeling of the left ventricle are part of the natural history of chronic heart failure and strong clinical indicators for survival. Accompanied by changes in cardiac form and function, they manifest themselves in alterations of cardiac strains, fiber stretches, and muscle volume. Recent attempts to shed light on the mechanistic origin of heart failure utilize continuum theories of growth to predict the maladaptation of the heart in response to pressure or volume overload. However, despite a general consensus on the representation of growth through a second order tensor, the precise format of this growth tensor remains unknown. Here we show that infarct-induced cardiac dilation is associated with a chronic longitudinal growth, accompanied by a chronic thinning of the ventricular wall. In controlled in vivo experiments throughout a period of seven weeks, we found that the lateral left ventricular wall adjacent to the infarct grows longitudinally by more than 10%, thins by more than 25%, lengthens in fiber direction by more than 5%, and decreases its volume by more than 15%. Our results illustrate how a local loss of blood supply induces chronic alterations in structure and function in adjacent regions of the ventricular wall. We anticipate our findings to be the starting point for a series of in vivo studies to calibrate and validate constitutive models for cardiac growth. Ultimately, these models could be useful to guide the design of novel therapies, which allow us to control the progression of heart failure. PMID:22402163

  14. Second harmonic chalcone crystal: Synthesis, growth and characterization

    NASA Astrophysics Data System (ADS)

    D'silva, E. D.; Narayan Rao, D.; Philip, Reji; Butcher, Ray J.; Rajnikant; Dharmaprakash, S. M.

    2011-05-01

    The novel nonlinear optical chalcone derivative (2 E)-3-[4-(methylsulfanyl)phenyl]-1-(3-bromophenyl)prop-2-en-1-one (3Br4MSP) crystals have been grown by slow evaporation technique at ambient temperature. The crystal was subjected to different types of characterization method in order to study its possible application in nonlinear optics. The structure determination of the grown crystal was done by single crystal X-ray diffraction study. The morphology of the crystal is studied. The crystal was subjected to thermal analysis to find its thermal stability. The grown crystals were characterized for their optical transmission and mechanical hardness. The second harmonic generation (SHG) efficiency of the crystal is obtained by classical powdered technique. The laser damage threshold for 3Br4MSP crystal was determined using Q-switched Nd:YAG laser.

  15. Characterizing growth patterns in longitudinal MRI using image contrast

    NASA Astrophysics Data System (ADS)

    Vardhan, Avantika; Prastawa, Marcel; Vachet, Clement; Piven, Joseph; Gerig, Guido

    2014-03-01

    Understanding the growth patterns of the early brain is crucial to the study of neuro-development. In the early stages of brain growth, a rapid sequence of biophysical and chemical processes take place. A crucial component of these processes, known as myelination, consists of the formation of a myelin sheath around a nerve fiber, enabling the effective transmission of neural impulses. As the brain undergoes myelination, there is a subsequent change in the contrast between gray matter and white matter as observed in MR scans. In this work, gray-white matter contrast is proposed as an effective measure of appearance which is relatively invariant to location, scanner type, and scanning conditions. To validate this, contrast is computed over various cortical regions for an adult human phantom. MR (Magnetic Resonance) images of the phantom were repeatedly generated using different scanners, and at different locations. Contrast displays less variability over changing conditions of scan compared to intensity-based measures, demonstrating that it is less dependent than intensity on external factors. Additionally, contrast is used to analyze longitudinal MR scans of the early brain, belonging to healthy controls and Down's Syndrome (DS) patients. Kernel regression is used to model subject-specific trajectories of contrast changing with time. Trajectories of contrast changing with time, as well as time-based biomarkers extracted from contrast modeling, show large differences between groups. The preliminary applications of contrast based analysis indicate its future potential to reveal new information not covered by conventional volumetric or deformation-based analysis, particularly for distinguishing between normal and abnormal growth patterns.

  16. Growth and characterization of ZnSe nanoparticles

    SciTech Connect

    Sharma, Shail Malik, Mukhtar Ah. Chandel, Tarun Thakur, Vikas Rajaram, P.

    2014-04-24

    ZnSe nanoparticles were prepared using a chemical bath deposition technique. X-ray diffraction study shows that the ZnSe crystallizes in the cubic phase. The crystallite size of the ZnSe samples calculated using the Scherrer’s formula was found to be slightly smaller than the Bohr exciton radius of bulk ZnSe. SEM studies show the growth of a mixture of nanorods and spherical nanoparticles. EDAX analysis confirms that the synthesized ZnSe nanoparticles are of good stiochiometry. Optical studies show the blue shift in the absorption edge for ZnSe nanoparticles caused by quantum confinement.

  17. Growth and Characterization of Silicon at the 2D Limit

    NASA Astrophysics Data System (ADS)

    Mannix, Andrew; Kiraly, Brian; Hersam, Mark; Guisinger, Nathan

    2015-03-01

    Because bulk silicon has dominated the development of microelectronics over the past 50 years, the recent interest in two-dimensional (2D) materials (e.g., graphene, MoS2, phosphorene, etc.) naturally raises questions regarding the growth and properties of silicon at the 2D limit. Utilizing atomic-scale, ultra-high vacuum (UHV) scanning tunneling microscopy (STM), we have investigated the 2D limits of silicon growth on Ag(111). In agreement with previous reports of sp2-bonded silicene phases, we observe the temperature-dependent evolution of ordered 2D phases. However, we attribute these to apparent Ag-Si surface alloys. At sufficiently high silicon coverage, we observe the precipitation of crystalline, sp3-bonded Si(111) domains. These domains are capped with a √3 honeycomb phase that is indistinguishable from the silver-induced √3 honeycomb-chained-trimer reconstruction on bulk Si(111). Further ex-situcharacterization with Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy reveals that these sheets are ultrathin sheets of bulk-like, (111) oriented, sp3 silicon. Even at the 2D limit, scanning tunneling spectroscopy shows that these silicon nanosheets exhibit semiconducting electronic characteristics.

  18. Growth and characterization of epitaxial silver indium diselenide

    NASA Astrophysics Data System (ADS)

    Pena Martin, Pamela

    Photovoltaics (solar cells) are a key player in the renewable energy frontier, and will become increasingly important as their cost per watt continues to drop, especially if fossil fuel costs increase. One particularly promising photovoltaic technology is based on chalcopyrite-structure semiconductors. Within the chalcopyrite compounds the highest efficiency thin film solar cell absorber material to date is Cu(In,Ga)Se2 (CIGS). While current efficiency records are over 21% for single-junction cells, there is still room for improvement. Replacing some of the Cu with Ag has been shown to be beneficial in CIGS devices. However, the Ag- containing chalcopyrites are still relatively unknown in terms of their growth mechanism, energetics, and surface atomic and electronic properties. These are best inferred through study of epitaxial films, yet they have little mention in literature and have not been the subject of a detailed study. This work describes the growth of epitaxial AgInSe2 (AIS) on GaAs substrates, studying the morphology, structure, and surface properties to understand how growth takes place. It also seeks to experimentally determine the surface electronic and atomic structure at the atomic scale to gain insight into the part of the material that forms the heterojunction that collects photon energy in the device. Finally, this work seeks to compare and contrast these findings with what is known about CIGS to determine where similarities and, more importantly, the differences may lie. This study has found that single phase tetragonal AIS can be epitaxially grown on GaAs, as illustrated by x-ray diffraction (XRD), transmission electron microscope (TEM), and surface morphology data. Like CIGS, the close packed polar (112) planes have the lowest energy. The morphology points to a difference in step dynamics, leading to less faceted, straight edged island shapes compared to CIGS. Epitaxial temperature as a function of growth direction shows a different trend in

  19. Characterization of reproduction and growth of American robins at the Fernald Environmental Management Project, 1991

    SciTech Connect

    Osborne, D.R.; Ambrose, D.M.; Simpson, J.C. )

    1992-11-01

    As part of a Biological and Ecological Site Characterization of the Fernald Environmental Management Project (FEMP), suppressed growth in onsite American robin nestlings was discovered in 1987 and in 1990. However, the causal factors relating to suppressed growth were not investigated. This study was initiated to determine if growth suppression still existed, and if so, the possible relationship of FEMP land management practices and soil contaminants through food chains to growth and reproductive fitness. This study was expanded to include five offsite sampling sites, as well as analyses of soils and earthworms for uranium, pesticides/herbicides, and heavy metals.

  20. Rubber Characterization with Fatigue and Crack Growth Analysis

    NASA Astrophysics Data System (ADS)

    Perier, Laurent; Favier, Arnaud

    2010-06-01

    Dynamic Mechanical Analysis brings advanced capabilities to generate quantitative dynamic property data of rubber compounds for modelers and end users. Additionally to the recognized DMA testing benefits, a new METRAVIB Analyzer DMA+300 includes new testing solutions for analyzing rubbers mechanical property data under extended testing conditions closer to the real product's life conditions. The DMA+300 is specifically designed and dimensioned for fatigue tests on elastomers and crack growth tests. Combined with new MULTITEST software, DMA+300 makes possible to generate multi harmonics excitation and to control the application of a specific wave form to the specimen of rubber. This paper presents the main benefits available with this machine in the domain of rubber and elastomer applications.

  1. MOCVD manifold switching effects on growth and characterization

    NASA Astrophysics Data System (ADS)

    Clark, Ivan O.; Fripp, Archibald L.; Jesser, William A.

    1991-02-01

    A combined modeling and experimental approach is used to quantify the effects of various manifold components on the switching speed in metalorganic chemical vapor deposition (MOCVD). In particular, two alternative vent-run high-speed switching manifold designs suitable for either continuous or interrupted growth have been investigated. Both designs are incorporated in a common manifold, instrumented with a mass spectrometer. The experiments have been performed using nitrogen as the transport gas and argon as the simulated source gas. The advantages and limitations of two designs are discussed. It is found that while constant flow manifold switching systems may have fluid dynamic advantages, care must be taken to minimize sections of the supply manifold with low flow rates if rapid changes in alloy composition are required.

  2. Growth and characterization of YAG:Cr4+epitaxial films

    NASA Astrophysics Data System (ADS)

    Ubizskii, Sergii B.; Syvorotka, Igor M.; Melnyk, Sergii S.; Matkovskii, Andrej O.; Kopczynski, Krzysztof; Mierczyk, Zygmunt; Frukacz, Zygmunt

    1999-03-01

    Epitaxial films with thickness of 10 - 250 micrometers of yttrium aluminum garnet (YAG) doped with Cr were grown by liquid phase epitaxy technique on YAG:Nd substrates. Co-doping with Mg2+ is used to force the Cr4+ valent state formation. Dependence of absorption spectra of obtained films on melt-solution composition, growth conditions and thermal treatment in reducing and oxidizing atmospheres is studied. A very intensive absorption band in UV region with maximum at 275 nm was found both in co-doped and YAG:Mg2+ epifilms caused probably by oxygen vacancies compensating the excess charge of Mg2+. Its intensity correlates with Cr4+ content in the film in that way: it decreases with Cr4+ entering in the film. The absorption being characteristic for YAG:Cr4+ crystals is found in co-doped films grown at higher temperatures (1000 - 1100 degree(s)C). The processes occurring during annealing are discussed.

  3. Growth and characterization of CNT–TiO2 heterostructures

    PubMed Central

    Utke, Ivo; Michler, Johann; Ilari, Gabriele; Rossell, Marta D; Erni, Rolf

    2014-01-01

    Summary A thriving field in nanotechnology is to develop synergetic functions of nanomaterials by taking full advantages of unique properties of each component. In this context, combining TiO2 nanocrystals and carbon nanotubes (CNTs) offers enhanced photosensitivity and improved photocatalytic efficiency, which is key to achieving sustainable energy and preventing environmental pollution. Hence, it has aroused a tremendous research interest. This report surveys recent research on the topic of synthesis and characterization of the CNT–TiO2 interface. In particular, atomic layer deposition (ALD) offers a good control of the size, crystallinity and morphology of TiO2 on CNTs. Analytical transmission electron microscopy (TEM) techniques such as electron energy loss spectroscopy (EELS) in scanning transmission mode provides structural, chemical and electronic information with an unprecedented spatial resolution and increasingly superior energy resolution, and hence is a necessary tool to characterize the CNT–TiO2 interface, as well as other technologically relevant CNT–metal/metal oxide material systems. PMID:25161830

  4. Vapour growth and characterization of beta indium sesquitelluride crystals

    NASA Astrophysics Data System (ADS)

    Reshmi, P. M.; Kunjomana, A. G.; Chandrasekharan, K. A.; Teena, M.

    2014-05-01

    Physical Vapour Deposition (PVD) provides stoichiometric crystals of different morphology, depending upon the materials, geometry of ampoules, temperature profiles, growth parameters and kinetics of crystallization. The crystal forms such as needles, platelets and spherulites of beta indium sesquitelluride (β-In2Te3) were produced by controlling the temperature of source and growth zones. The X-Ray Diffraction (XRD) and chemical analysis of the spherulitic crystals confirmed zinc blende structure with beta phase. Their resistivity (135.16 Ω cm) at room temperature (300 K) was determined by van der Pauw method. The temperature dependence of DC conductivity was investigated using the conventional two-probe technique. The variation of dielectric constant (ε1) and dielectric loss (tan δ) with temperature has been studied for different frequencies (1 kHz-1 MHz). The AC conductivity, σac(ω) was found to vary with angular frequency as ωs, where s is the frequency exponent. The values of s lie very close to unity and show a slight decrease with increase in temperature, which indicate a Correlated Barrier Hopping (CBH) between centres forming Intimate Valence Alternation Pairs (IVAP). The activation energy for conduction ranges from 0.187 eV to 0.095 eV. The microhardness of β-In2Te3 spherulites is found to be 353.5 kg/mm2, which is higher than that of other semiconducting chalcogenides. The results thus obtained on crystals grown from vapour phase open up ample possibilities for radiation detector applications.

  5. Growth and characterizations of semipolar (1122) InN

    SciTech Connect

    Dinh, Duc V.; Skuridina, D.; Solopow, S.; Frentrup, M.; Pristovsek, M.; Vogt, P.; Kneissl, M.; Ivaldi, F.; Kret, S.; Szczepanska, A.

    2012-07-01

    We report on metal-organic vapor phase epitaxial growth of (1122) InN on (1122) GaN templates on m-plane (1010) sapphire substrates. The in-plane relationship of the (1122) InN samples is [1123]{sub InN} Double-Vertical-Line Double-Vertical-Line [0001]{sub sapphire} and [1100]{sub InN} Double-Vertical-Line Double-Vertical-Line [1210]{sub sapphire}, replicating the in-plane relationship of the (1122) GaN templates. The surface of the (1122) InN samples and the (1122) GaN templates shows an undulation along [1100]{sub InN,GaN}, which is attributed to anisotropic diffusion of indium/gallium atoms on the (1122) surfaces. The growth rate of the (1122) InN layers was 3-4 times lower compared to c-plane (0001) InN. High resolution transmission electron microscopy showed a relaxed interface between the (1122) InN layers and the (1122) GaN templates, consistent with x-ray diffraction results. Basal plane stacking faults were found in the (1122) GaN templates but they were terminated at the InN/(1122) GaN interface due to the presence of misfit dislocations along the entire InN/GaN interface. The misfit dislocations were contributed to the fully relaxation and the tilts of the (1122) InN layers. X-ray photoelectron spectroscopy was used to determine the polarity of the grown (1122) InN sample, indicating an In-polar (1122) InN. The valence band maximum was determined to be at (1.7 {+-} 0.1) eV for the (1122) InN sample, comparable to In-polar c-plane InN.

  6. Characterization of Tack Strength Based on Cavity-Growth Criterion.

    PubMed

    Takahashi, Kosuke; Yamagata, Yuichiro; Inaba, Kazuaki; Kishimoto, Kikuo; Tomioka, Shiori; Sugizaki, Toshio

    2016-04-12

    The adhesive force generated by a small short-term pressure, called tack, is measured by a probe tack test on pressure-sensitive adhesives (PSAs); the maximum force is evaluated by cavity growth at the interface between the PSA layer and the probe surface. As the PSA layer becomes thinner, it is more difficult to measure the tack with a cylindrical probe because of the uneven contact resulting from misalignment. A spherical probe is preferable to obtain reproducible contact on the PSA layer, but the contact area should be taken into account if the contact pressure affects the tack performance. Tack was measured on PSAs with various thicknesses in different contact areas to clarify their effect. The results showed that a larger contact area on a thinner PSA generated higher adhesive stress with larger strain. It was found that the maximum adhesive stress was not affected by the contact pressure, but it was strongly correlated to the contact radius divided by the PSA thickness. In addition, a video microscope observation showed that, in all of the experimental cases, the adhesive stress always reached the maximum when cavities were generated at the interface between the PSA and probe surface. Therefore, the criterion of cavity growth was introduced for the evaluation of the maximum adhesive stress. As a result, the experimental results, even at different release rates, were in good agreement with the estimation by considering the effect of confining a thin layer. Furthermore, the theoretical estimation indicated the ultimate value, which was not dependent upon the PSA thickness or contact area. It was defined as a material property, referred to as the "ultimate tack strength" of PSAs. PMID:26991212

  7. Anomalous transport regimes and asymptotic concentration distributions in the presence of advection and diffusion on a comb structure

    NASA Astrophysics Data System (ADS)

    Dvoretskaya, Olga A.; Kondratenko, Peter S.

    2009-04-01

    We study the transport of impurity particles on a comb structure in the presence of advection. The main body concentration and asymptotic concentration distributions are obtained. Seven different transport regimes occur on the comb structure with finite teeth: classical diffusion, advection, quasidiffusion, subdiffusion, slow classical diffusion, and two kinds of slow advection. Quasidiffusion deserves special attention. It is characterized by a linear growth of the mean-square displacement. However, quasidiffusion is an anomalous transport regime. We established that a change in transport regimes in time leads to a change in regimes in space. Concentration tails have a cascade structure, namely, consisting of several parts.

  8. Growth and characterization of thiosemicarbazide hydrochloride: A semiorganic NLO material

    NASA Astrophysics Data System (ADS)

    Santhakumari, R.; Ramamurthi, K.; Babu, R. Ramesh; Evans, Helen Stoeckli; Bhagavannarayana, G.; Hema, R.

    2011-11-01

    Thiosemicarbazide hydrochloride (TSCHCL) was synthesized by mixing thiosemicarbazide and hydrochloride in 1:1 molar ratio in double distilled water. Single crystals of TSCHCL were grown by slow evaporation at room temperature and were characterized by single crystal X-ray diffraction study to determine the molecular structure and by FT-IR, 1H and 13C NMR spectral analyses to confirm the synthesized compound. Thermogravimetric and differential thermal analyses reveal the thermal stability of the crystal. The transmission spectrum of TSCHCL showed that the crystal is transparent in the wavelength range 380-1100 nm. High resolution X-ray diffractometry (HRXRD) was employed to evaluate the perfection of the grown crystal. Mechanical properties of the grown crystal were studied using Vickers microhardness test. Second harmonic generation efficiency of the powdered TSCHCL was tested using Nd:YAG laser and is ˜1.5 times that of potassium dihydrogen orthophosphate.

  9. Topological characterization of the transition from laminar regime to fully developed turbulence in the resistive pressure-gradient-driven turbulence model

    SciTech Connect

    Garcia, L.; Carreras, B. A.; Llerena, I.; Calvo, I.

    2009-10-15

    For the resistive pressure-gradient-driven turbulence model, the transition from laminar regime to fully developed turbulence is not simple and goes through several phases. For low values of the plasma parameter {beta}, a single quasicoherent structure forms. As {beta} increases, several of these structures may emerge and in turn take the dominant role. Finally, at high {beta}, fully developed turbulence with a broad spectrum is established. A suitable characterization of this transition can be given in terms of topological properties of the flow. Here, we analyze these properties that provide an understanding of the turbulence-induced transport and give a measure of the breaking of the homogeneity of the turbulence. To this end, an approach is developed that allows discriminating between topological properties of plasma turbulence flows that are relevant to the transport dynamics and the ones that are not. This is done using computational homology tools and leads to a faster convergence of numerical results for a fixed level of resolution than previously presented in Phys. Rev. E 78, 066402 (2008)

  10. Perovskite Oxide Thin Film Growth, Characterization, and Stability

    NASA Astrophysics Data System (ADS)

    Izumi, Andrew

    Studies into a class of materials known as complex oxides have evoked a great deal of interest due to their unique magnetic, ferroelectric, and superconducting properties. In particular, materials with the ABO3 perovskite structure have highly tunable properties because of the high stability of the structure, which allows for large scale doping and strain. This also allows for a large selection of A and B cations and valences, which can further modify the material's electronic structure. Additionally, deposition of these materials as thin films and superlattices through techniques such as pulsed laser deposition (PLD) results in novel properties due to the reduced dimensionality of the material. The novel properties of perovskite oxide heterostructures can be traced to a several sources, including chemical intermixing, strain and defect formation, and electronic reconstruction. The correlations between microstructure and physical properties must be investigated by examining the physical and electronic structure of perovskites in order to understand this class of materials. Some perovskites can undergo phase changes due to temperature, electrical fields, and magnetic fields. In this work we investigated Nd0.5Sr 0.5MnO3 (NSMO), which undergoes a first order magnetic and electronic transition at T=158K in bulk form. Above this temperature NSMO is a ferromagnetic metal, but transitions into an antiferromagnetic insulator as the temperature is decreased. This rapid transition has interesting potential in memory devices. However, when NSMO is deposited on (001)-oriented SrTiO 3 (STO) or (001)-oriented (LaAlO3)0.3-(Sr 2AlTaO6)0.7 (LSAT) substrates, this transition is lost. It has been reported in the literature that depositing NSMO on (110)-oriented STO allows for the transition to reemerge due to the partial epitaxial growth, where the NSMO film is strained along the [001] surface axis and partially relaxed along the [11¯0] surface axis. This allows the NSMO film enough

  11. Functional Characterization of Pseudomonas Contact Dependent Growth Inhibition (CDI) Systems

    PubMed Central

    Mercy, Chryslène; Ize, Bérengère; Salcedo, Suzana P.; de Bentzmann, Sophie; Bigot, Sarah

    2016-01-01

    Contact-dependent inhibition (CDI) toxins, delivered into the cytoplasm of target bacterial cells, confer to host strain a significant competitive advantage. Upon cell contact, the toxic C-terminal region of surface-exposed CdiA protein (CdiA-CT) inhibits the growth of CDI- bacteria. CDI+ cells express a specific immunity protein, CdiI, which protects from autoinhibition by blocking the activity of cognate CdiA-CT. CdiA-CT are separated from the rest of the protein by conserved peptide motifs falling into two distinct classes, the “E. coli”- and “Burkholderia-type”. CDI systems have been described in numerous species except in Pseudomonadaceae. In this study, we identified functional toxin/immunity genes linked to CDI systems in the Pseudomonas genus, which extend beyond the conventional CDI classes by the variability of the peptide motif that delimits the polymorphic CdiA-CT domain. Using P. aeruginosa PAO1 as a model, we identified the translational repressor RsmA as a negative regulator of CDI systems. Our data further suggest that under conditions of expression, P. aeruginosa CDI systems are implicated in adhesion and biofilm formation and provide an advantage in competition assays. All together our data imply that CDI systems could play an important role in niche adaptation of Pseudomonadaceae. PMID:26808644

  12. Single crystal growth and characterization of holmium tartrate trihydrate

    NASA Astrophysics Data System (ADS)

    Want, Basharat; Ahmad, Farooq; Kotru, P. N.

    2007-02-01

    The growth of holmium tartrate trihydrate (HTT) single crystals is achieved in organic (agar-agar) as well as in inorganic (silica) gels by single gel diffusion method. Results of the study on nucleation kinetics of crystals grown in silica gel are described. The crystals exhibit the morphological form of a tetragonal dipyramidal class with {0 0 1} and {1 1 1} as dominant faces. Elemental and thermogravimetric analysis (TGA) supplemented by energy dispersive analysis of X-rays (EDAX) support the suggested chemical formula of the grown crystals to be [Ho (C 4H 4O 6) (C 4H 5O 6)·3H 2O]. Single crystal X-ray diffraction (XRD) studies indicate that the crystals belong to tetragonal system with the cell parameters a=5.97 Å, c=36.09 Å, bearing the space group P4 1. Fourier transform infrared (FT-IR) spectroscopic study indicates the presence of tartrate ligands and suggests that one of the tartrate ions is singly ionized. TGA suggests that the material is thermally stable up to 220 °C.

  13. Growth and characterization of RFe_6Ge6 single crystals

    NASA Astrophysics Data System (ADS)

    Avila, M. A.; Bud'Ko, S. L.; Canfield, P. C.

    2003-03-01

    The RFe_6Ge6 family of magnetic compounds is formed by the positioning of a rare earth element (and a few other metals) in between Fe planes of the parent FeGe structure. The Fe ions are reported to order ferromagnetically within each plane, but anti-ferromagnetically between neighboring planes. Thus, there is a cancellation of the net magnetic field due to Fe at the rare earth site and the compounds display independent ordering of the Fe and R sublattices, the former occurring above 400 K and the latter occurring well below 100 K (Ryan and Cadogan, J. Appl. Phys. 79 (1996) 6004). We have successfully obtained the first flux-grown single crystals for several members of this family, which allow for a better understanding of the anisotropic ground state and other properties of this series. Characterizations by X-Ray diffraction, temperature and field dependent magnetization, specific heat and resistivity will be presented and discussed. We acknowledge the help of R. A. Ribeiro and C. Petrovic in the X-Ray measurements. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences.

  14. Growth and characterization of chalcone derivative single crystal

    NASA Astrophysics Data System (ADS)

    Ravindrachary, V.; Crasta, Vincent; Bhajantri, R. F.; Poojari, Boja

    2005-02-01

    A novel organic non-linear optical material 1-(4-methylphenyl)-3-(4- N, N dimethyl amino phenyl)-2-propen-1-one has been synthesized by the standard method. The synthesized compound was purified by repeated re-crystallization process. To confirm the synthesized compound an FT-IR spectra was recorded and the various functional groups present in the compound were identified. Good quality crystals were grown by slow evaporation technique using acetone as solvent. The grown crystals were characterized by UV-Visible and powder X-ray diffraction (XRD) studies. The XRD study, revealed that the crystals are in the orthorhombic system with a space group P2 12 12 1 and the corresponding lattice parameters are a=7.3710 Å, b=11.6200 Å and c=17.6590 Å. Using optical spectra, the optical energy gap of the crystal is estimated to be 2.40 eV. The refractive index of the crystal is measured using Brewster's angle method and the density using standard method. The second harmonic generation (SHG) efficiency of 0.8 times that of Urea of the crystal was obtained using ND-YAG laser ( λ=1064 nm).

  15. Growth, characterization, modeling and device applications of semiconductor nanowire networks

    NASA Astrophysics Data System (ADS)

    Lohn, Andrew J.

    Semiconducting nanowire networks composed specifically of indium phosphide or silicon are developed with the goal of understanding their electrical, thermal and optoelectronic properties while developing scalable, manufacturable solutions to a number of problems of contemporary interest to society, with particular emphasis on direct conversion of heat to electricity. Nanowire networks are grown by metal organic chemical vapor deposition on non-single crystalline surfaces leading to highly interconnected networks of nanowires capable of long-range three-dimensional transport while retaining many of the unique properties of highly conned nanowire structures and displaying advantageous and unique properties such as mechanical flexibility. Growth of semiconducting nanowire networks is discussed in depth, especially relating to the role of the non-single crystalline surfaces from which they grow and morphological changes associated with doping. Finite element simulations suggest that the physical intersections present within a nanowire network are found to play a complex and potentially useful role in thermal transport and in electrical transport through experiment, demonstrating quantized conductance for the first time at room temperature. Electrical transport over distances far in excess of the dimensions of the individual nanowires is also studied experimentally by applying surface photovoltage techniques for the first time to nanowire networks. The theoretical model developed to analyze data from this, first of its type, experiment reveals insights that can aid in developing improved thermoelectric devices. Such thermoelectric devices were fabricated using a highly scalable and very low cost approach. Thermoelectric testing displays large series electrical resistance but Seebeck voltages comparable to its bulk counterpart. The preliminary results clearly indicate that if series electrical resistance can be decreased, nanowire networks will be an excellent candidate

  16. Thermodynamic characterization of an intermediate state of human growth hormone.

    PubMed Central

    Gomez-Orellana, I.; Variano, B.; Miura-Fraboni, J.; Milstein, S.; Paton, D. R.

    1998-01-01

    The thermal denaturation of recombinant human growth hormone (rhGH) was studied by differential scanning calorimetry and circular dichroism spectroscopy (CD). The thermal unfolding is reversible only below pH 3.5, and under these conditions a single two-state transition was observed between 0 and 100 degrees C. The magnitudes of the deltaH and deltaCp of this transition indicate that it corresponds to a partial unfolding of rhGH. This is also supported by CD data, which show that significant secondary structure remains after the unfolding. Above pH 3.5 the thermal denaturation is irreversible due to the aggregation of rhGH upon unfolding. This aggregation is prevented in aqueous solutions of alcohols such as n-propanol, 2-propanol, or 1,2-propanediol (propylene glycol), which suggests that the self-association of rhGH is caused by hydrophobic interactions. In addition, it was found that the native state of rhGH is stable in relatively high concentrations of propylene glycol (up to 45% v/v at pH 7-8 or 30% at pH 3) and that under these conditions the thermal unfolding is cooperative and corresponds to a transition from the native state to a partially folded state, as observed at acidic pH in the absence of alcohols. In higher concentrations of propylene glycol, the tertiary structure of rhGH is disrupted and the cooperativity of the unfolding decreases. Moreover, the CD and DSC data indicate that a partially folded intermediate with essentially native secondary structure and disordered tertiary structure becomes significantly populated in 70-80% propylene glycol. PMID:9655339

  17. The growth and in situ characterization of chemical vapor deposited SiO2

    NASA Technical Reports Server (NTRS)

    Iyer, R.; Chang, R. R.; Lile, D. L.

    1987-01-01

    This paper reports the results of studies of the kinetics of remote (indirect) plasma enhanced low pressure CVD growth of SiO2 on Si and InP and of the in situ characterization of the electrical surface properties of InP during CVD processing. In the latter case photoluminescence was employed as a convenient and sensitive noninvasive method for characterizing surface trap densities. It was determined that, provided certain precautions are taken, the growth of SiO2 occurs in a reproducible and systematic fashion that can be expressed in an analytic form useful for growth rate prediction. Moreover, the in situ photoluminescence studies have yielded information on sample degradation resulting from heating and chemical exposure during the CVD growth.

  18. Growth and characterization of nanocrystalline zirconium nitride-inconel structures

    NASA Astrophysics Data System (ADS)

    Aouadi, S. M.; Maeruf, T.; Sodergren, M.; Mihut, D. M.; Rohde, S. L.; Xu, J.; Mishra, S. R.

    2005-07-01

    This paper reports on the investigation of the physical, chemical, optical, mechanical, and tribological properties of reactively sputtered zirconium nitride-inconel composite nanocrystalline mixture films. These films were co-sputtered from a Zr and an inconel targets onto Si (111) substrates at room temperature using a fixed power to the Zr target (PZr) and a fixed flow of nitrogen and argon. Two sets of samples were produced by (1) varying the power to the inconel target (Pinc) and using a fixed bias voltage Vb and (2) by varying Vb and keeping Pinc fixed. The elemental composition was deduced from x-ray photoelectron spectroscopy, and was found to be influenced by Pinc and Vb. X-ray diffraction revealed the presence of nanocrystals of ZrN with a pattern typical of the NaCl structure. The grain size was found to decrease with the increase in ``inconel'' content in the film. The optical constants were measured using spectroscopic ellipsometry and were subsequently simulated using a Drude-Lorentz model. A correlation between film structure-composition and optical constants was established. The hardness and elastic modulus of each sample were measured by nanoindentation. The hardest films were produced using a Vb=-130 V bias voltage and Pinc=4 W. Microwear measurements were carried out using positive constant normal loads and the wear tracks were imaged and processed. The measured values for the friction coefficients, residual depth of tip indentations, wear volumes, and surface roughness were reported. The lowest recorded wear volume using a load of 4 mN was 10-3 μm. Finally, the coatings were worn against ball-bearing steel using a ball-on-disk tribotester. Characterization of the wear tracks were performed by profilometry. A low wear coefficient of 1.7×10-7 mm3/s was obtained for a load of 5 N.

  19. Growth and characterization of silicon-based optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Filios, Adam A.

    layers sandwiched between monolayers of oxygen. The key for its fabrication is that epitaxial growth of silicon may be continued beyond the interruption with exposure to oxygen. Prepared by an Ultra High Vacuum (UHV), Molecular Beam Epitaxial (MBE) technique, the multilayer device is extremely stable and robust, and can be readily integrated with conventional silicon VLSI processing. In addition, it exhibits bright, room temperature, visible photoluminescent and electroluminescent emission, at least as strong as that of porous silicon. With its efficient light emission, robustness and stability, the c-Si/O superlattice may hold the promise of a truly integrated silicon-based optoelectronic device.

  20. Unidirectional growth of benzil crystal from solution by Sankaranarayanan-Ramasamy method and its characterization.

    PubMed

    Rajalakshmi, M; Shyju, T S; Indirajith, R; Gopalakrishnan, R

    2012-02-01

    Good quality <100> benzil single crystal with a diameter 18 mm and length 75 mm was successfully grown from solution by the unidirectional growth method of Sankaranarayanan-Ramasamy (SR) for the first time in the literature. The seed crystals have been harvested from conventional solution growth technique and subsequently used for unidirectional growth. The grown crystal was subjected to various characterization studies. The results of UV-vis spectral analysis, photoluminescence, etching and microhardness studies were compared with conventional solution grown crystal to that of SR method grown crystal. The quality of SR method grown benzil crystal is better than conventional solution grown crystal. PMID:22088560

  1. Unidirectional growth of benzil crystal from solution by Sankaranarayanan-Ramasamy method and its characterization

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, M.; Shyju, T. S.; Indirajith, R.; Gopalakrishnan, R.

    2012-02-01

    Good quality <1 0 0> benzil single crystal with a diameter 18 mm and length 75 mm was successfully grown from solution by the unidirectional growth method of Sankaranarayanan-Ramasamy (SR) for the first time in the literature. The seed crystals have been harvested from conventional solution growth technique and subsequently used for unidirectional growth. The grown crystal was subjected to various characterization studies. The results of UV-vis spectral analysis, photoluminescence, etching and microhardness studies were compared with conventional solution grown crystal to that of SR method grown crystal. The quality of SR method grown benzil crystal is better than conventional solution grown crystal.

  2. Characterizing tropical tree species growth strategies: learning from inter-individual variability and scale invariance.

    PubMed

    Le Bec, Jimmy; Courbaud, Benoit; Le Moguédec, Gilles; Pélissier, Raphaël

    2015-01-01

    Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We used a hierarchical linear mixed model and 21-years long tree diameter increment series in a monsoon forest of the Western Ghats, India, to characterize species growth strategies and question whether maximum growth summarizes these strategies. We quantified both species responses to biotic and abiotic factors and individual tree effects unexplained by these factors. Growth responses to competition and tree size appeared highly variable among species which led to reversals in performance ranking along those two gradients. However, species-specific responses largely overlapped due to large unexplained variability resulting mostly from inter-individual growth differences consistent over time. On average one-third of the variability captured by our model was explained by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the fact that trees differ in many dimensions (genetics, life history) influencing their growth response to environmental gradients, some being unmeasured or unmeasurable. In addition, intraspecific variability increased as a power function of species maximum growth partly as a result of higher absolute responses of fast-growing species to competition and tree size. However, covariates explained on average the same proportion of intraspecific variability for slow- and fast-growing species, which showed the same range of relative responses to competition and tree size. These results reflect a scale invariance of the growth process, underlining that slow- and fast-growing species exhibit the same range of growth strategies. PMID

  3. Characterizing Tropical Tree Species Growth Strategies: Learning from Inter-Individual Variability and Scale Invariance

    PubMed Central

    Le Bec, Jimmy; Courbaud, Benoit; Le Moguédec, Gilles; Pélissier, Raphaël

    2015-01-01

    Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We used a hierarchical linear mixed model and 21-years long tree diameter increment series in a monsoon forest of the Western Ghats, India, to characterize species growth strategies and question whether maximum growth summarizes these strategies. We quantified both species responses to biotic and abiotic factors and individual tree effects unexplained by these factors. Growth responses to competition and tree size appeared highly variable among species which led to reversals in performance ranking along those two gradients. However, species-specific responses largely overlapped due to large unexplained variability resulting mostly from inter-individual growth differences consistent over time. On average one-third of the variability captured by our model was explained by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the fact that trees differ in many dimensions (genetics, life history) influencing their growth response to environmental gradients, some being unmeasured or unmeasurable. In addition, intraspecific variability increased as a power function of species maximum growth partly as a result of higher absolute responses of fast-growing species to competition and tree size. However, covariates explained on average the same proportion of intraspecific variability for slow- and fast-growing species, which showed the same range of relative responses to competition and tree size. These results reflect a scale invariance of the growth process, underlining that slow- and fast-growing species exhibit the same range of growth strategies. PMID

  4. Characterizing Submonolayer Growth of 6P on Mica: Capture Zone Distributions vs. Growth Exponents and the Role of Hot Precursors

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Morales-Cifuentes, Josue; Pimpinelli, Alberto

    2015-03-01

    Analyzing capture-zone distributions (CZD) using the generalized Wigner distribution (GWD) has proved a powerful way to access the critical nucleus size i. Of the several systems to which the GWD has been applied, we consider 6P on mica, for which Winkler's group found i ~ 3 . Subsequently they measured the growth exponent α (island density ~Fα , for flux F) of this system and found good scaling but different values at small and large F, which they attributed to DLA and ALA dynamics, but with larger values of i than found from the CZD analysis. We investigate this result in some detail. The third talk of this group describes a new universal relation between α and the characteristic exponent β of the GWD. The second talk reports the results of a proposed model that takes long-known transient ballistic adsorption into account, for the first time in a quantitative way. We find several intermediate scaling regimes, with distinctive values of α and an effective activation energy. One of these, rather than ALA, gives the best fit of the experimental data and a value of i consistent with the CZD analysis. Work at UMD supported by NSF CHE 13-05892.

  5. Photophysical Analysis of the Formation of Organic–Inorganic Trihalide Perovskite Films: Identification and Characterization of Crystal Nucleation and Growth

    PubMed Central

    2016-01-01

    In this work we demonstrate that the different processes occurring during hybrid organic–inorganic lead iodide perovskite film formation can be identified and analyzed by a combined in situ analysis of their photophysical and structural properties. Our observations indicate that this approach permits unambiguously identifying the crystal nucleation and growth regimes that lead to the final material having a cubic crystallographic phase, which stabilizes to the well-known tetragonal phase upon cooling to room temperature. Strong correlation between the dynamic and static photoemission results and the temperature-dependent X-ray diffraction data allows us to provide a description and to establish an approximate time scale for each one of the stages and their evolution. The combined characterization approach herein explored yields key information about the kinetics of the process, such as the link between the evolution of the defect density during film formation, revealed by a fluctuating photoluminescence quantum yield, and the gradual changes observed in the PbI2-related precursor structure. PMID:26949439

  6. Crystal growth and characterization of CdInGaS 4 and related compounds

    NASA Astrophysics Data System (ADS)

    Endo, Saburo; Ando, Shizutoshi; Matsushita, Hiroaki; Nomura, Shigetaka; Irie, Taizo; Nakanishi, Hisayuki; Noda, Yasutoshi; Takizawa, Takeo; Toyoda, Taro

    1990-01-01

    Crystal growth of CdInGaS 4 was performed by normal freezing and Bridgman methods. The characterization of the crystals was done along the growth direction by X-ray diffraction, optical absorption, photoluminescence, compositional analysis and etch pit observation. The physical properties investigated are essentially constant along the growth direction and independent of the method of crystal growth. The X-ray powder diffraction pattern of CdInGaS 4 can roughly be reproduced by a computer simulation based on the structure deduced from that of ZnIn 2S 4. The crystal structure of Cd 3InGaS 6 was found to be a laminated structure composed of CdInGaS 4 and Cds.

  7. Growth and characterization of Cu2ZnSnS4 nanostructures using anodized aluminum as the growth mask

    NASA Astrophysics Data System (ADS)

    Chan, C. P.; Chen, Z.; Lam, H.; Surya, C.

    2009-08-01

    In this paper we report the growth and characterization of Cu2ZnSnS4 (CZTS) nanostructures by co-electrodeposition technique using CuCl2, SnCl2 and ZnCl2 as sources and choline-based ionic liquid (IL) as the electrolyte. X-ray diffraction analysis of CZTS thin films grown by this technique indicated that the films have a kesterite structure with preferred grain orientation along (112). It is found that the energy bandgap of the material is about 1.49eV and the optical absorption coefficient is in the order of 104cm-1. Anodized aluminum oxide (AAO) was used as the growth mask for the growth of the nanostructures. Anodization of the aluminum foil was carried out in phosphoric acid solution at 1°C and a potential of 40 to 100V was applied. Sulfurization of the rods was performed in elemental sulfur vapor at 450°C for four hours using N2 as the ambient gas. Experimental results show that nanotubes were formed using the technique and the diameter can be well controlled by varying the applied potential in the anodization process. Electron diffraction experiments show that a mixture of single- and poly-crystalline nanostructures was found.

  8. Hydrotechnical facilities within the Chernobyl nuclear power plant exclusion zone: impacts on hydrologic regime and plant growth patterns of floodplain water bodies of the Pripyat River.

    PubMed

    Gudkov, D I; Zub, L N; Savitsky, A L

    2003-01-01

    As result of the Chernobyl nuclear power plant accident the territory of the left-bank flood-lands of the Pripyat River have undergone intensive radionuclide contamination. With the purpose of preventing the washing away of radioactive substances, a complex of flood protection dams was constructed. This construction changed the hydrological regime of these territories and caused overgrowth by higher aquatic plants. Absence of a flowing mode of reservoirs, the stagnant phenomena during spring and seasonal high waters on the embank site have caused amplification of eutrophication processes, swamping and, connected with it, increase of water-marsh floristic complex in the structure of the vegetative cover. PMID:14653638

  9. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion.

    PubMed

    Majeed, Afshan; Abbasi, M Kaleem; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK. PMID:25852661

  10. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion

    PubMed Central

    Majeed, Afshan; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK. PMID:25852661

  11. Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion.

    PubMed

    da Silva, J F; Barbosa, R R; de Souza, A N; da Motta, O V; Teixeira, G N; Carvalho, V S; de Souza, A L S R; de Souza Filho, G A

    2015-01-01

    Each year, approximately 170 million metric tons of chemical fertilizer are consumed by global agriculture. Furthermore, some chemical fertilizers contain toxic by-products and their long-term use may contaminate groundwater, lakes, and rivers. The use of plant growth-promoting bacteria may be a cost-effective strategy for partially replacing conventional chemical fertilizers, and may become an integrated plant nutrient solution for sustainable crop production. The main direct bacteria-activated mechanisms of plant growth promotion are based on improvement of nutrient acquisition, siderophore biosynthesis, nitrogen fixation, and hormonal stimulation. The aim of this study was to isolate and identify bacteria with growth-promoting activities from sugarcane. We extracted the bacterial isolate SCB4789F-1 from sugarcane leaves and characterized it with regard to its profile of growth-promoting activities, including its ability to colonize Arabidopsis thaliana. Based on its biochemical characteristics and 16S rDNA sequence analysis, this isolate was identified as Pantoea ananatis. The bacteria were efficient at phosphate and zinc solubilization, and production of siderophores and indole-3-acetic acid in vitro. The isolate was characterized by Gram staining, resistance to antibiotics, and use of carbon sources. This is the first report on zinc solubilization in vitro by this bacterium, and on plant growth promotion following its inoculation into A. thaliana. The beneficial effects to plants of this bacterium justify future analysis of inoculation of economically relevant crops. PMID:26634494

  12. Molecular Beam Epitaxial (MBE) Growth and Characterization of Thin Films of Semiconductor Tin

    NASA Astrophysics Data System (ADS)

    Folkes, P.; Taylor, P.; Rong, C.; Nichols, B.; Hier, H.; Burke, R.; Neupane, M.

    Recent theoretical predictions that a two-dimensional monolayer of semiconductor tin is a two-dimensional topological insulator and experimental evidence of three-dimensional topological insulator behavior in strained ultrathin films of semiconductor tin grown by MBE on InSb has generated intense research interest. This research is primarily focused on the MBE growth and topological characteristics of ultrathin films of semiconductor tin. In this talk we present results of a study on the MBE growth and the transport, structural and optical characterization of thin films of semiconductor tin on several different substrates.

  13. Growth and characterization of CdTe on GaAs/Si substrates

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, G.; Nouhi, A.; Liu, J.

    1988-01-01

    Epitaxial CdTe has been grown on both (100) GaAs/Si and (111) GaAs/Si substrates. A combination of molecular beam epitaxy and metal organic chemical vapor deposition have been employed to achieve this growth. The GaAs layers are grown in Si substrates by molecular beam epitaxy, followed by the growth of CdTe on GaAs/Si substra by metalorganic chemical vapor deposition. X-ray diffraction, photoluminescence, and scanning electron microscopy have been used to characterize the CdTe films.

  14. MBE growth and interfaces characterizations of strained HgTe/CdTe topological insulators

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Baudry, X.; Barnes, J. P.; Veillerot, M.; Jouneau, P. H.; Pouget, S.; Crauste, O.; Meunier, T.; Lévy, L. P.; Ballet, P.

    2015-09-01

    Topological insulator materials like HgTe exhibit unique electronic properties at their interfaces and so peculiar attention has to be paid concerning the growth optimization. Molecular beam epitaxy of tensile-strained HgTe/CdTe is investigated as a function of the growth temperature. Crystal quality is checked by using high resolution X-rays diffraction. By combining several material characterization techniques such as scanning transmission electronic microscopy, time-of-flight secondary ion mass spectroscopy and X-rays reflectivity, we report sharp interface morphology with nanometer-scale Hg/Cd diffusion lengths.

  15. Temporal evolution of flow regimes in urbanizing basins

    NASA Astrophysics Data System (ADS)

    Mejia, A.; Rossel, F.; Gironas, J. A.; Jovanovic, T.

    2014-12-01

    We characterize the temporal evolution of the flow regime of urbanizing basins. By urbanizing basins, we mean basins that have experienced urban growth during their observation period. To represent the flow regime, we use flow duration curves (FDCs). We compute the FDCs using a stochastic model of daily streamflow for urban basins. In this case, the model aids in discerning the influence of key factors (e.g., climate, land use change, stormwater managenment conditions, and the slow and fast properties of the hydrologic response) on streamflow. To implement the model, we first divide the complete observation period of a given urban basin into intervals of equal duration, e.g. 5 years. Subsequently, we apply the model to each interval and this is how we capture the influence of land use changes and climatic fluctuations on the flow regime. We apply this modeling framework to 14 urbanizing basins in the Baltimore-Washington DC region. Results from this application indicate consistent changes in the temporal evolution of the altered flow regimes, which can largely be explained by the progressive redistribution with urban growth of water from slow subsurface runoff and evapotranspiration to fast urban runoff. We also use the modeling framework to determine indicators of ecohydrological alteration for urbanizing basins. The application of these indicators to our study area suggests that the flow regime is sensitive to alterations up to a certain level of urbanization after which sensitivity seems to level off. The flow regime also seems to be relatively more resistant to alterations for both the smaller and larger levels of urbanization considered. In the future, we would like to extend the application of the proposed modeling framework to other metropolitan areas.

  16. Physiological and biochemical characterization of Azospirillum brasilense strains commonly used as plant growth-promoting rhizobacteria.

    PubMed

    Di Salvo, Luciana P; Silva, Esdras; Teixeira, Kátia R S; Cote, Rosalba Esquivel; Pereyra, M Alejandra; García de Salamone, Inés E

    2014-12-01

    Azospirillum is a plant growth-promoting rhizobacteria (PGPR) genus vastly studied and utilized as agriculture inoculants. Isolation of new strains under different environmental conditions allows the access to the genetic diversity and improves the success of inoculation procedures. Historically, the isolation of this genus has been performed by the use of some traditional culture media. In this work we characterized the physiology and biochemistry of five different A. brasilense strains, commonly used as cereal inoculants. The aim of this work is to contribute to pose into revision some concepts concerning the most used protocols to isolate and characterize this bacterium. We characterized their growth in different traditional and non-traditional culture media, evaluated some PGPR mechanisms and characterized their profiles of fatty acid methyl esters and carbon-source utilization. This work shows, for the first time, differences in both profiles, and ACC deaminase activity of A. brasilense strains. Also, we show unexpected results obtained in some of the evaluated culture media. Results obtained here and an exhaustive knowledge revision revealed that it is not appropriate to conclude about bacterial species without analyzing several strains. Also, it is necessary to continue developing studies and laboratory techniques to improve the isolation and characterization protocols. PMID:25138314

  17. The characterization of small fatigue crack growth in PH13-8 molybdenum stainless steel

    NASA Astrophysics Data System (ADS)

    Jin, Ohchang

    The rotor hubs of Navy CH-46 helicopters have been made of 4340 steel and had extensive corrosion fatigue problems. Since these helicopters have to be used until the year 2020, the Navy decided to replace 4340 steel with PH 13-8 Mo stainless steel. Because the rotors are exposed to high frequency high cycle fatigue, small fatigue cracks are important in estimating remaining lifetime of the components. The objective of this study was to characterize the small crack growth behavior in the PH 13-8 Mo stainless steel under various loading conditions. Constant amplitude loading was conducted at the stress ratios, R, 0.1 and 0.4. The crack growth rate was affected by the microstructures in early stage of the growth, mainly by the size of the martensite packets and oscillated up to the crack length of 200 mum. It was found that the crack growth rate was little influenced by the stress amplitudes and stress ratios. In addition, the small crack growth rate was found to be similar to the long crack growth rate at R = 0.1 and 0.4. Overload tests and simple block loading were performed to understand load interaction effects on the small crack growth rate. The overload tests indicated that the crack growth rate was little affected by the overload. This might result from the fact that the overload ratio used in this study was low (<1.3). However, the results of the simple block loading showed overall crack growth retardation. The compressive residual stress present at the notch root of the specimen tested at R = 0.1 may lower the effective stress ratio, Reff, from 0.1 to negative R, and may result in the crack growth retardation. The small crack growth behavior was also examined under the saltwater. There was no difference in the crack growth rate between under air and under saltwater. In addition, the crack growth rate of the specimens tested under the saltwater was not affected by the test frequencies of 10, 1 and 0.1 Hz. It was shown that under the saltwater the PH 13-8 Mo

  18. Growth and characterization of large, high quality single crystal diamond substrates via microwave plasma assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nad, Shreya

    Single crystal diamond (SCD) substrates can be utilized in a wide range of applications. Important issues in the chemical vapor deposition (CVD) of such substrates include: shrinking of the SCD substrate area, stress and cracking, high defect density and hence low electronic quality and low optical quality due to high nitrogen impurities. The primary objective of this thesis is to begin to address these issues and to find possible solutions for enhancing the substrate dimensions and simultaneously improving the quality of the grown substrates. The deposition of SCD substrates is carried out in a microwave cavity plasma reactor via the microwave plasma assisted chemical vapor deposition technique. The operation of the reactor was first optimized to determine the safe and efficient operating regime. By adjusting the matching of the reactor cavity with the help of four internal tuning length variables, the system was further matched to operate at a maximum overall microwave coupling efficiency of ˜ 98%. Even with adjustments in the substrate holder position, the reactor remains well matched with a coupling efficiency of ˜ 95% indicating good experimental performance over a wide range of operating conditions. SCD substrates were synthesized at a high pressure of 240 Torr and with a high absorbed power density of 500 W/cm3. To counter the issue of shrinking substrate size during growth, the effect of different substrate holder designs was studied. An increase in the substrate dimensions (1.23 -- 2.5 times) after growth was achieved when the sides of the seeds were shielded from the intense microwave electromagnetic fields in a pocket holder design. Using such pocket holders, high growth rates of 16 -- 32 mum/hr were obtained for growth times of 8 -- 72 hours. The polycrystalline diamond rim deposition was minimized/eliminated from these growth runs, hence successfully enlarging the substrate size. Several synthesized CVD SCD substrates were laser cut and separated

  19. Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.

    2016-02-01

    Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.

  20. Bubble Size Control to Improve Oxygen-Based Bleaching: Characterization of Flow Regimes in Pulp-Water-Gas Three-Phase Flows

    SciTech Connect

    S.M. Ghiaasiaan and Seppo Karrila

    2006-03-20

    Flow characteristics of fibrous paper pulp-water-air slurries were investigated in a vertical circular column 1.8 m long, with 5.08 cm diameter. Flow structures, gas holdup (void fraction), and the geometric and population characteristics of gas bubbles were experimentally investigated, using visual observation, Gamma-ray densitometry, and flash X-ray photography. Five distinct flow regimes could be visually identified: dispersed bubbly, layered bubbly, plug, churn-turbulent, and slug. Flow regime maps were constructed, and the regime transition lines were found to be sensitive to consistency. The feasibility of using artificial neural networks (ANNs) for the identification of the flow regimes, using the statistical characteristics of pressure fluctuations measured by a single pressure sensor, was demonstrated. Local pressure fluctuations at a station were recorded with a minimally-intrusive transducer. Three-layer, feed-forward ANNs were designed that could identify the four major flow patterns (bubbly, plug, churn, and slug) well. The feasibility of a transportable artificial neural network (ANN) - based technique for the classification of flow regimes was also examined. Local pressures were recorded at three different locations using three independent but similar transducers. An ANN was designed, trained and successfully tested for the classification of the flow regimes using one of the normalized pressure signals (from Sensor 1). The ANN trained and tested for Sensor 1 predicted the flow regimes reasonably well when applied directly to the other two sensors, indicating a good deal of transportability. An ANN-based method was also developed, whereby the power spectrum density characteristics of other sensors were adjusted before they were used as input to the ANN that was based on Sensor 1 alone. The method improved the predictions. The gas-liquid interfacial surface area concentration was also measured in the study. The gas absorption technique was applied

  1. Isolation and characterization of fluorescent pseudomonads and their effect on plant growth promotion.

    PubMed

    Anitha, G; Kumudini, B S

    2014-07-01

    Seven isolates of fluorescent pseudomonads were evaluated for their effect on plant growth promoting traits, both under normal and saline conditions using tomato plants. Fifteen rhizosphere samples from crop fields' of rice, chilly, ragi, beans and garden soils from different regions of India were collected and used for further study. They were characterized morphologically and biochemically which led to a conclusion that they may belong to genus Pseudomonas. They were also analyzed for their plant growth promoting activities such as production of indole acetic acid, siderophore, hydrogen cyanide and ammonia. It was observed that all the isolates were able to produce these compounds, but to varying extent. But, isolate JUPF37 produced highest followed by JUPF32. Study showed that out of seven isolates of fluorescent pseudomonads, JUPF37 showed highest plant growth promoting traits both under normal and saline conditions. PMID:25004745

  2. Computer modeling of dendritic web growth processes and characterization of the material

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Kothmann, R. E.; Mchugh, J. P.; Duncan, C. S.; Hopkins, R. H.; Blais, P. D.; Davis, J. R.; Rohatgi, A.

    1978-01-01

    High area throughput rate will be required for the economical production of silicon dendritic web for solar cells. Web width depends largely on the temperature distribution on the melt surface while growth speed is controlled by the dissipation of the latent heat of fusion. Thermal models were developed to investigate each of these aspects, and were used to engineer the design of laboratory equipment capable of producing crystals over 4 cm wide; growth speeds up to 10 cm/min were achieved. The web crystals were characterized by resistivity, lifetime and etch pit density data as well as by detailed solar cell I-V data. Solar cells ranged in efficiency from about 10 to 14.5% (AM-1) depending on growth conditions. Cells with lower efficiency displayed lowered bulk lifetime believed to be due to surface contamination.

  3. Growth and characterization of uniform ZnO films as piezoelectric materials using a hydrothermal growth technique

    NASA Astrophysics Data System (ADS)

    Makarona, E.; Fritz, C.; Niarchos, G.; Speliotis, Th.; Arapoyanni, A.; Tsamis, C.

    2011-06-01

    ZnO nanostructures, especially in the form of dense arrays of nanorods or belts have the ability to efficiently convert mechanical energy to electrical energy. One of the drawbacks though for the exploitation of nanorod technology for commercial devices is the ability to make the electrical contacts to these nanostructured piezoelectric converting elements. Although technologies have been developed that provide solutions for electrical contact issues, metal contact on uniform thin films are much simpler, and can readily be implemented to commercial mass-produced applications. At the same time it is known that high piezoelectric coefficients ZnO uniform films with columnar grains having their c-axis perpendicular to the substrate are required. In this work, we investigate the growth of uniform ZnO films, using a low temperature, low cost hydrothermal process typically used for the fabrication of ZnO nanorods. Under appropriate conditions coalescence of the nanorods occur resulting in uniform films with a columnar structure. The study focuses on understanding the role of the growth factors in order to be able to fully control the proposed process. Moreover, the hydrothermal method is further exploited for the fabrication of uniform ZnO nanostructures on patterned substrates with Au interdigitated electrodes (IDE) using standard lithography as a proof-of-concept of the applicability of the method to standard microfabrication techniques. The piezoelectric films with the IDEs are electrically characterized in order to assess the electrical properties of the grown films. From this analysis, process conditions have been identified for the growth of uniform nanostructured ZnO films, suitable for piezoelectric microgenerators.

  4. Effects of antibiotic growth promoter and characterization of ecological succession in Swine gut microbiota.

    PubMed

    Unno, Tatsuya; Kim, Jung-Man; Guevarra, Robin B; Nguyen, Son G

    2015-04-01

    Ever since the ban on antibiotic growth promoters (AGPs), the livestock death rate has increased owing to pathogenic bacterial infections. There is a need of developing AGP alternatives; however, the mechanisms by which AGP enhances livestock growth performance are not clearly understood. In this study, we fed 3-week-old swine for 9 weeks with and without AGPs containing chlortetracycline, sulfathiazole, and penicillin to investigate the effects of AGPs on swine gut microbiota. Microbial community analysis was done based on bacterial 16S rRNA genes using MiSeq. The use of AGP showed no growth promoting effect, but inhibited the growth of potential pathogens during the early growth stage. Our results showed the significant increase in species richness after the stabilization of gut microbiota during the post-weaning period (4-week-old). Moreover, the swine gut microbiota was divided into four clusters based on the distribution of operational taxonomic units, which was significantly correlated to the swine weight regardless of AGP treatments. Taxonomic abundance analysis indicated a negative correlation between host weight and the abundance of the family Prevotellaceae species, but showed positive correlation to the abundance of the family Spirochaetaceae, Clostridiaceae_1, and Peptostreptococcaeae species. Although no growth performance enhancement was observed, the use of AGP inhibited the potential pathogens in the early growth stage of swine. In addition, our results indicated the ecological succession of swine gut microbiota according to swine weight. Here, we present a characterization of swine gut microbiota with respect to the effects of AGPs on growth performance. PMID:25370726

  5. Evaluation of Delamination Growth Characterization Methods Under Mode I Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2012-01-01

    Reliable delamination characterization data for laminated composites are needed for input to analytical models of structures to predict delamination. The double-cantilevered beam (DCB) specimen is used with laminated composites to measure fracture toughness, G(sub Ic), delamination onset strain energy release rate, and growth rate data under cyclic loading. In the current study, DCB specimens of IM7/8552 graphite/epoxy supplied by two different manufacturers were tested in static and fatigue to compare the measured characterization data from the two sources, and to evaluate a proposed ASTM standard for generating Paris Law equations. Static results were used to generate compliance calibration constants for the fatigue data, and a delamination resistance curve, G(sub IR), which was used to determine the effects of fiber-bridging on delamination growth. Specimens were tested in fatigue at a cyclic G(sub Imax) level equal to 50, 40 or 30% of G(sub Ic), to determine a delamination onset curve and delamination growth rate. The delamination onset curve equations had similar exponents and the same trends. Delamination growth rate was calculated by fitting a Paris Law to the da/dN versus G(sub Imax) data. Both a 2-point and a 7-point data reduction method were used and the Paris Law equations were compared. To determine the effects of fiber-bridging, growth rate results were normalized by the delamination resistance curve for each material and compared to the non-normalized results. Paris Law exponents were found to decrease by 31% to 37% due to normalizing the growth data. Normalizing the data also greatly reduced the amount of scatter between the different specimens. Visual data records from the fatigue testing were used to calculate individual compliance calibration constants from the fatigue data for some of the specimens. The resulting da/dN versus G(sub Imax) plots showed much improved repeatability between specimens. Gretchen

  6. Cloud regimes as phase transitions

    NASA Astrophysics Data System (ADS)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  7. THE DYNAMIC REGIME CONCEPT FOR ECOSYSTEM MANAGEMENT AND RESTORATION

    EPA Science Inventory

    Dynamic regimes of ecosystems are multidimensional basis of attraction, characterized by particular species communities and ecosystems processes. Ecosystem patterns and processes rarely respond linerarly to disturbances, and the nonlinear cynamic regime concept offers a more real...

  8. In-situ characterization of growth and interfaces in a-Si:H devices

    SciTech Connect

    Collins, R.W.; Wronski, C.R.; An, I.; Li, Y. )

    1992-12-01

    This report describes the in-situ characterization of growth and interfaces in amorphous silicon (a-Si:H) devices. The growth of a-Si:H by plasma-enhanced chemical vapor deposition (PECVD) is complex and involves many gas-phase and solid-surface chemical and physical processes, which are influenced by charged particle bombardment, ultraviolet light exposure, etc. The research consisted of two broad components. The first involved preparing a-Si:H by optimum'' PECVD and exposing the film to atomic hydrogen in-situ at the growth temperature. The processes of H-diffusion and incorporation in the exposed film were studied by spectroscopic ellipsometry, giving a picture of the processes by which the chemical potential in the film equilibrates with that in the gas phase. The properties of thin films were then prepared by alternating optimum'' PECVD growth and hydrogen exposure. Film properties were then studied again. The second component of the research is discussed only briefly in this report, as it is an outgrowth of previous work on single-wavelength ellipsometry. With the new spectroscopic capability developed at Penn State, it is now possible to quantify the nucleation and growth process of a-Si:H films.

  9. Characterization of Mode 1 and Mode 2 delamination growth and thresholds in graphite/peek composites

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.; Murri, Gretchen B.

    1988-01-01

    Composite materials often fail by delamination. The onset and growth of delamination in AS4/PEEK, a tough thermoplastic matrix composite, was characterized for mode 1 and mode 2 loadings, using the Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) test specimens. Delamination growth per fatigue cycle, da/dN, was related to strain energy release rate, G, by means of a power law. However, the exponents of these power laws were too large for them to be adequately used as a life prediction tool. A small error in the estimated applied loads could lead to large errors in the delamination growth rates. Hence strain energy release rate thresholds, G sub th, below which no delamination would occur were also measured. Mode 1 and 2 threshold G values for no delamination growth were found by monitoring the number of cycles to delamination onset in the DCB and ENF specimens. The maximum applied G for which no delamination growth had occurred until at least 1,000,000 cycles was considered the threshold strain energy release rate. Comments are given on how testing effects, facial interference or delamination front damage, may invalidate the experimental determination of the constants in the expression.

  10. Atomically flat areas on silicon (001) and (111): Fabrication by evaporation or growth and defect characterization

    NASA Astrophysics Data System (ADS)

    Lee, Doohan

    As the dimensions of devices such as field effect transistors, optical devices and layered quantum well structures are decreased, it may be critical to have surfaces and interfaces that are extremely smooth and have no atomic steps at those locations on a wafer where devices will be fabricated and to understand the characteristics of those surfaces. For this work, we have eliminated the atomic steps on Si(111) and Si(001) vicinal surfaces by high temperature annealing and epitaxial growth in the step flow regime on patterned Si substrates with ridges and mesas respectively. In both the annealing and growth cases, the characteristics of the step clearing process as well as the stability of the step free areas are different for Si(111) and Si(001). It is more difficult to make step free regions on Si(001) than on Si(111) mainly due to the smaller adatom diffusivity on Si(001). Excessive annealing (or growth) on large step free areas leads to the formation of circular vacancy pits (or adatom islands). Anisotropic surface diffusion and stress on Si(001) due to the (1 x 2) and (2 x 1) reconstructions lead to interesting step distributions on quenched and slowly cooled Si(001) surfaces which are initially step free. Quenching experiments can give information about the nature and concentrations of point defects on the step free terraces. The result of the quenching experiments are very dependent on quenching conditions such as quenching rate, applied stress, and temperature from which the samples are quenched. The quenched Si(111) surfaces may exhibit some degree of disorder in the reconstructed regions or island formation. A series of experiments have been performed to try to relate the room temperature observations to the defect characteristics at high temperature.

  11. Propagation Regime of Iron Dust Flames

    NASA Technical Reports Server (NTRS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew J.

    2012-01-01

    A flame propagating through an iron-dust mixture can propagate in two asymptotic regimes. When the characteristic time of heat transfer between particles is much smaller than the characteristic time of particle combustion, the flame propagates in the continuum regime where the heat released by reacting particles can be modelled as a space-averaged function. In contrast, when the characteristic time of heat transfer is much larger than the particle reaction time, the flame can no longer be treated as a continuum due to dominating effects associated with the discrete nature of the particle reaction. The discrete regime is characterized by weak dependence of the flame speed on the oxygen concentration compared to the continuum regime. The discrete regime is observed in flames propagating through an iron dust cloud within a gas mixture containing xenon, while the continuum regime is obtained when xenon is substituted with helium.

  12. Material growth and characterization directed toward improving III-V heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Stefanakos, E. K.; Alexander, W. E.; Collis, W.; Abul-Fadl, A.

    1979-01-01

    In addition to the existing materials growth laboratory, the photolithographic facility and the device testing facility were completed. The majority of equipment for data acquisition, solar cell testing, materials growth and device characterization were received and are being put into operation. In the research part of the program, GaAs and GaA1As layers were grown reproducibly on GaAs substrates. These grown layers were characterized as to surface morphology, thickness and thickness uniformity. The liquid phase epitaxial growth process was used to fabricate p-n junctions in Ga(1-x)A1(x)As. Sequential deposition of two alloy layers was accomplished and detailed analysis of the effect of substrate quality and dopant on the GaA1As layer quality is presented. Finally, solar cell structures were formed by growing a thin p-GaA1As layer upon an epitaxial n-GaA1As layer. The energy gap corresponding to the long wavelength cutoff of the spectral response characteristic was 1.51-1.63 eV. Theoretical calculations of the spectral response were matched to the measured response.

  13. Integral parameters for characterizing water, energy, and aeration properties of soilless plant growth media

    NASA Astrophysics Data System (ADS)

    Chamindu Deepagoda, T. K. K.; Chen Lopez, Jose Choc; Møldrup, Per; de Jonge, Lis Wollesen; Tuller, Markus

    2013-10-01

    Over the last decade there has been a significant shift in global agricultural practice. Because the rapid increase of human population poses unprecedented challenges to production of an adequate and economically feasible food supply for undernourished populations, soilless greenhouse production systems are regaining increased worldwide attention. The optimal control of water availability and aeration is an essential prerequisite to successfully operate plant growth systems with soilless substrates such as aggregated foamed glass, perlite, rockwool, coconut coir, or mixtures thereof. While there are considerable empirical and theoretical efforts devoted to characterize water retention and aeration substrate properties, a holistic, physically-based approach considering water retention and aeration concurrently is lacking. In this study, the previously developed concept of integral water storage and energy was expanded to dual-porosity substrates and an analog integral oxygen diffusivity parameter was introduced to simultaneously characterize aeration properties of four common soilless greenhouse growth media. Integral parameters were derived for greenhouse crops in general, as well as for tomatoes. The integral approach provided important insights for irrigation management and for potential optimization of substrate properties. Furthermore, an observed relationship between the integral parameters for water availability and oxygen diffusivity can be potentially applied for the design of advanced irrigation and management strategies to ensure stress-free growth conditions, while conserving water resources.

  14. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    NASA Astrophysics Data System (ADS)

    Krishna, Ramesh M.

    crystal homogeneity of other modern CZT growth techniques. However, information about crystals grown with this method has not been undertaken in a comprehensive way thus far. In this work, Cd0.9Zn0.1Te is grown using the solvent-growth method using zone-refined precursor materials loaded into carbon-coated quartz ampoules. Ampoules were sealed and crystal growth was performed using crystal growth furnaces built in-house at USC. Ingots 1-2" in diameter produced using the solvent-growth method were wafered, processed, and polished for characterization. Semiconductor characterization is performed on the CZT crystals to determine band gap, elemental stoichiometry, and electrical resistivity. Surface modification studies were undertaken to determine if surface leakage current can be reduced using sulfur passivation. XPS studies were used to confirm the effects of passivation on the surface states, and electrical characterization was performed to measure the effects of passivation on the CZT crystals. Deep-level and surface defect studies were conducted on the CZT samples to determine the type and intensity of defects present in the crystals which may affect detector performance. Finally, nuclear detectors were fabricated and characterized using analog and digital radiation detection systems to measure their performance and energy resolution.

  15. STING Promotes the Growth of Tumors Characterized by Low Antigenicity via IDO Activation.

    PubMed

    Lemos, Henrique; Mohamed, Eslam; Huang, Lei; Ou, Rong; Pacholczyk, Gabriela; Arbab, Ali S; Munn, David; Mellor, Andrew L

    2016-04-15

    Cytosolic DNA sensing is an important process during the innate immune response that activates the stimulator of interferon genes (STING) adaptor and induces IFN-I. STING incites spontaneous immunity during immunogenic tumor growth and accordingly, STING agonists induce regression of therapy-resistant tumors. However DNA, STING agonists, and apoptotic cells can also promote tolerogenic responses via STING by activating immunoregulatory mechanisms such as indoleamine 2,3 dioxygenase (IDO). Here, we show that IDO activity induced by STING activity in the tumor microenvironment (TME) promoted the growth of Lewis lung carcinoma (LLC). Although STING also induced IDO in tumor-draining lymph nodes (TDLN) during EL4 thymoma growth, this event was insufficient to promote tumorigenesis. In the LLC model, STING ablation enhanced CD8(+) T-cell infiltration and tumor cell killing while decreasing myeloid-derived suppressor cell infiltration and IL10 production in the TME. Depletion of CD8(+) T cells also eliminated the growth disadvantage of LLC tumors in STING-deficient mice, indicating that STING signaling attenuated CD8(+) T-cell effector functions during tumorigenesis. In contrast with native LLC tumors, STING signaling neither promoted growth of neoantigen-expressing LLC, nor did it induce IDO in TDLN. Similarly, STING failed to promote growth of B16 melanoma or to induce IDO activity in TDLN in this setting. Thus, our results show how STING-dependent DNA sensing can enhance tolerogenic states in tumors characterized by low antigenicity and how IDO inhibition can overcome this state by attenuating tumor tolerance. Furthermore, our results reveal a greater complexity in the role of STING signaling in cancer, underscoring how innate immune pathways in the TME modify tumorigenesis in distinct tumor settings, with implications for designing effective immunotherapy trials. Cancer Res; 76(8); 2076-81. ©2016 AACR. PMID:26964621

  16. Effect of different feeding regimes on pre-weaning growth rumen fermentation and its influence on post-weaning performance of lambs.

    PubMed

    Bhatt, R S; Tripathi, M K; Verma, D L; Karim, S A

    2009-10-01

    Influence of pre-weaning live weight on post-weaning growth performance was assessed on thirty-nine 15-day-old Indian native lambs, randomly fed in three equal groups until 180 days of age. During pre-weaning phase lambs were maintained under feeding regimen of grazing (C-0; Control), grazing and ad lib creep mixture supplementation (C-AL) or grazing, with ad lib creep mixture and milk replacer supplementation (C-ALMR). Lambs were allowed to suckle respective dam in morning and evening till 90 days of age, and fed ad lib green leaves of Ailanthus excelsa after grazing. After weaning all lambs were maintained on grazing and ad lib finisher concentrates supplementation. Pre-weaning performance of lambs in terms of weaning weight (17.2 kg), average daily gain (ADG; 154 g) and feed conversion ratio 3.73 was higher (p < 0.01) in C-ALMR lambs but total gain and ADG were similar among three groups during post-weaning phase. However, improved pre-weaning plane of nutrition and growth rate increased (p < 0.01) finishing weight (FW) of lambs in C-AL, 33 kg and C-ALMR, 32 kg. Dry matter intake was significantly (p < 0.01) higher in C-AL and C-ALMR lambs due to combined effect of feeding. Rumen pH was lowest (p = 0.049) in C-AL lambs. Rumen ciliate protozoa population (10(4)/ml) decreased in C-ALMR lambs (4.3) but increased in C-AL lambs (50.0) more so in C-0 Lambs (19.8). Concentrate feeding of C-AL lamb improved nutrient digestibility. Lambs of C-0 group consumed more DM during post-weaning phase that improved growth performance, while nutrient digestibility was not affected by pre-weaning nutrition. Thus, pre-weaning nutrition has significant influence on FW, however influence of milk replacer feeding on lamb growth need further studies. PMID:19141102

  17. Dynamic Characterization of Dendrite Deposition and Growth in Li-Surface by Electrochemical Impedance Spectroscopy

    SciTech Connect

    Hernandez-Maya, R; Rosas, O; Saunders, J; Castaneda, H

    2015-01-13

    The evolution of dendrite formation is characterized by DC and AC electrochemical techniques. Interfacial mechanisms for lithium deposition are described and quantified by electrochemical impedance spectroscopy (EIS) between a lithium electrode and a graphite electrode. The initiation and growth of dendrites in the lithium surface due to the cathodic polarization conditions following anodic dissolution emulate long term cycling process occurring in the lithium electrodes. The dendrite initiation at the lithium/organic electrolyte interface is proposed to be performed through a combination of layering and interfacial reactions during different cathodic conditions. The growth is proposed to be performed by surface geometrical deposition. In this work, we use EIS in galvanostatic mode to assess the initiation and growth stages of dendrites by the accumulation of precipitates formed under different current conditions. The lithium/organic solvent experimental system using frequency domain techniques is validated by the theoretical approach using a deterministic model that accounts for the faradaic processes at the interface assuming a coverage fraction of the electrodic surface affected by the dendritic growth. (C) 2015 The Electrochemical Society. All rights reserved.

  18. Synthesis and Characterization of High-Purity Tellurium Nanowires via Self-seed-Assisted Growth Approach

    NASA Astrophysics Data System (ADS)

    Li, Ying; Zhao, Wen-yu; Mu, Xin; Liu, Xing; He, Dan-qi; Zhu, Wan-ting; Zhang, Qing-jie

    2016-03-01

    Nanowires have attracted intense attention in recent years due to their novel physical properties. In this work, we prepare high-purity tellurium nanowires through the self-seed-assisted growth method previously developed by us. The tellurium seeds were firstly synthesized by reducing Na2TeO3 in the ice water with NaBH4. The high-purity tellurium nanowires with a diameter of 40-50 nm and a length of several tens of micrometers were then grown on tellurium seeds by reducing Na2TeO3 with hydrazine hydrate. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were employed to characterize the crystal structure, microstructure, and growth direction of tellurium seeds and nanowires. The effects of temperature, time, surfactant and tellurium seeds on microstructures of tellurium nanowires has also been investigated. The synthesis conditions of tellurium seeds and nanowires was optimized. The selected area electron diffraction pattern confirms that the growth direction of tellurium nanowires is parallel to [0001] direction. It was discovered that high-purity tellurium nanowires with high aspect ratio can be synthesized by precisely controlling the temperature to adjust the nucleation rate of the tellurium nuclei, selecting the appropriate surfactant to induce the coordination along the macromolecular chain, and using tellurium seeds as the templates of the epitaxial growth of tellurium nuclei.

  19. Synthesis and Characterization of High-Purity Bismuth Nanowires via Seed-Assisted Growth Approach

    NASA Astrophysics Data System (ADS)

    Mu, Xin; Zhao, Wen-Yu; He, Dan-Qi; Zhou, Hong-Yu; Zhu, Wan-Ting; Zhang, Qing-Jie

    2015-06-01

    Nanowires are considered as high-performance thermoelectric materials with large Seebeck coefficients due to quantum confinement and low thermal conductivity because of enhanced boundary scattering of phonons. In this work, a seed-assisted growth method has been developed to synthesize high-purity bismuth nanowires. The bismuth seeds were first synthesized by reducing BiCl3 in the ice water with NaBH4. The high-purity bismuth nanowires about 40-50 nm in diameter and several tens of micrometers in length were then grown on bismuth seeds by reducing NaBiO3 with ethylene glycol. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were employed to characterize the crystal structure, microstructure, and growth direction of the bismuth seeds and nanowires. The effects of temperature, reductant, and bismuth seeds template on the microstructures of the bismuth nanowires were also investigated. The synthesis conditions of bismuth seeds and nanowires were optimized. The selected area electron diffraction pattern confirms that the growth direction of bismuth nanowires is parallel to [] direction. It was discovered that high-purity bismuth nanowires with high aspect ratio can be synthesized by precisely controlling the temperature to adjust the nucleation rate of the bismuth nuclei, selecting the appropriate reductant to maintain a low nucleation rate, and using bismuth seeds as the template of the epitaxial growth of the bismuth nuclei.

  20. The Incompatibility of Living Systems: Characterizing Growth-Induced Incompatibilities in Expanded Skin.

    PubMed

    Buganza Tepole, Adrian; Gart, Michael; Purnell, Chad A; Gosain, Arun K; Kuhl, Ellen

    2016-05-01

    Skin expansion is a common surgical technique to correct large cutaneous defects. Selecting a successful expansion protocol is solely based on the experience and personal preference of the operating surgeon. Skin expansion could be improved by predictive computational simulations. Towards this goal, we model skin expansion using the continuum framework of finite growth. This approach crucially relies on the concept of incompatible configurations. However, aside from the classical opening angle experiment, our current understanding of growth-induced incompatibilities remains rather vague. Here we visualize and characterize incompatibilities in living systems using skin expansion in a porcine model: We implanted and inflated two expanders, crescent, and spherical, and filled them to 225 cc throughout a period of 21 days. To quantify the residual strains developed during this period, we excised the expanded skin patches and subdivided them into smaller pieces. Skin growth averaged 1.17 times the original area for the spherical and 1.10 for the crescent expander, and displayed significant regional variations. When subdivided into smaller pieces, the grown skin patches retracted heterogeneously and confirmed the existence of incompatibilities. Understanding skin growth through mechanical stretch will allow surgeons to improve-and ultimately personalize-preoperative treatment planning in plastic and reconstructive surgery. PMID:26416721

  1. Characterizing the growth to detonation in PETN and HNS with small-scale PDV cutback experiments

    NASA Astrophysics Data System (ADS)

    Wixom, Ryan; Yarrington, Cole; Knepper, Robert; Tappan, Alexander; Olles, Joseph; Zelenok, Matthew; A-Team

    2015-06-01

    For many decades, cutback experiments have been used to characterize the equation of state and growth to steady detonation in explosive formulations. More recently, embedded gauges have been used to capture the growth to steady detonation in gas-gun impacted samples. Data resulting from these experiments are extremely valuable for parameterizing equation of state and reaction models used in hydrocode simulations. Due to the extremely fast growth to detonation in typical detonator explosives, cutback and embedded gauge experiments are extremely difficult, if not impossible. Using frequency shifted photonic Doppler velocimetry (PDV) we have measured particle velocity histories from explosive films impacted with electrically driven flyers. By varying the sample thickness and impact conditions we were able to capture the growth from inert shock to full detonation pressure within distances as short as 100 μm. These data were used to assess and improve burn-model parameterization and equations of state for simulating shock initiation. Additionally, we discuss details of the experiment and data analysis regarding the most accurate possible determination of the velocity spike.

  2. Evaluation of Delamination Onset and Growth Characterization Methods under Mode I Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2013-01-01

    Double-cantilevered beam specimens of IM7/8552 graphite/epoxy from two different manufacturers were tested in static and fatigue to compare the material characterization data and to evaluate a proposed ASTM standard for generating Paris Law equations for delamination growth. Static results were used to generate compliance calibration constants for reducing the fatigue data, and a delamination resistance curve, GIR, for each material. Specimens were tested in fatigue at different initial cyclic GImax levels to determine a delamination onset curve and the delamination growth rate. The delamination onset curve equations were similar for the two sources. Delamination growth rate was calculated by plotting da/dN versus GImax on a log-log scale and fitting a Paris Law. Two different data reduction methods were used to calculate da/dN. To determine the effects of fiber-bridging, growth results were normalized by the delamination resistance curves. Paris Law exponents decreased by 31% to 37% after normalizing the data. Visual data records from the fatigue tests were used to calculate individual compliance constants from the fatigue data. The resulting da/dN versus GImax plots showed improved repeatability for each source, compared to using averaged static data. The Paris Law expressions for the two sources showed the closest agreement using the individually fit compliance data.

  3. ZnO:HCl single crystals: Thermodynamic analysis of CVT system, feature of growth and characterization

    NASA Astrophysics Data System (ADS)

    Colibaba, G. V.

    2016-06-01

    The full thermodynamic analysis of using HCl as a chemical vapor transport (CVT) agent (TA) for ZnO single crystals growth in closed growth chambers, including 16 chemical species, is carried out for wide temperature and loaded TA pressure ranges. The influence of the growth temperature, of the TA density and of the undercooling on the rate of ZnO mass transport was investigated theoretically and experimentally. It is shown that the mass transport is diffusion-limited at about 1050 °C, and it is limited by kinetics of the CVT reaction at lower temperatures. It is experimentally shown that using HCl favors obtaining void-free n-ZnO crystals with controllable electrical parameters, it reduces the effect of adhesiveness to the walls of the growth chamber. The characterization by the photoluminescence spectra, the transmission spectra and the electrical properties in the wide temperature range allowed analyzing energy spectra of Cl-containing stable defects in ZnO and electrical activity of Cl donors. Some methods of activation energy correction for Cl-containing centers are discussed.

  4. Supplying materials needed for grain growth characterizations of nano-grained UO2

    SciTech Connect

    Mo, Kun; Miao, Yinbin; Yun, Di; Jamison, Laura M.; Lian, Jie; Yao, Tiankei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.

  5. Synchrotron characterization of nanograined UO2 grain growth

    SciTech Connect

    Mo, Kun; Miao, Yinbin; Yun, Di; Jamison, Laura M.; Lian, Jie; Yao, Tiankei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.

  6. ZnO:HCl single crystals: Thermodynamic analysis of CVT system, feature of growth and characterization

    NASA Astrophysics Data System (ADS)

    Colibaba, G. V.

    2016-06-01

    The full thermodynamic analysis of using HCl as a chemical vapor transport (CVT) agent (TA) for ZnO single crystals growth in closed growth chambers, including 16 chemical species, is carried out for wide temperature and loaded TA pressure ranges. The influence of the growth temperature, of the TA density and of the undercooling on the rate of ZnO mass transport was investigated theoretically and experimentally. It is shown that the mass transport is diffusion-limited at about 1050 °C, and it is limited by kinetics of the CVT reaction at lower temperatures. It is experimentally shown that using HCl favors obtaining void-free n-ZnO crystals with controllable electrical parameters, it reduces the effect of adhesiveness to the walls of the growth chamber. The characterization by the photoluminescence spectra, the transmission spectra and the electrical properties in the wide temperature range allowed analyzing energy spectra of Cl-containing stable defects in ZnO and electrical activity of Cl donors. Some methods of activation energy correction for Cl-containing centers are discussed.

  7. A Novel Method for Characterizing Fatigue Delamination Growth Under Mode I Using the Double Cantilever Beam Specimen

    NASA Technical Reports Server (NTRS)

    Carvalho, Nelson; Murri, G.

    2014-01-01

    A novel method is proposed to obtain Mode I delamination growth rate from a Double Cantilever Beam (DCB) specimen. In the proposed method, Unidirectional (UD) DCB specimens are tested in fatigue at different initial maximum energy release rates levels. The growth rate data obtained in the first increments of crack growth at each maximum energy release rate level are used to generate a Paris Law equation, which characterizes delamination growth rate without fiber-bridging, and can also be used to determine a delamination onset curve. The remaining delamination growth rate data from each test are used to determine a modified Paris law, which characterizes the delamination growth rate in a DCB specimen, explicitly accounting for fiber-bridging. The proposed expression captures well the scatter in experimental data obtained using the DCB specimens, suggesting its adequacy. The Paris Law characterizing delamination growth rate without fiber-bridging predicts higher delamination growth rates for the same maximum energy release rate applied, leading to a conservative estimate for delamination growth. This is particularly relevant, since in generic ply interfaces, fiber-bridging is less predominant than in UD DCB specimens. Failing to account for fiber-bridging in UD DCB specimens may underestimate the delamination growth rate, yielding non-conservative predictions.

  8. Characterizing the snorkeling respiration and growth of Shewanella decolorationis S12.

    PubMed

    Yang, Yonggang; Guo, Jun; Sun, Guoping; Xu, Meiying

    2013-01-01

    Microbial electrochemical snorkel (MES) reactor is a simplified bioreactor based on microbial fuel cells (MFCs) and has been suggested to be a promising approach to solve many environmental problems. However, the microbial processes in MES reactors have not yet been characterized. This study shows that Shewanella decolorationis S12 can use the conductive snorkel as direct electron acceptor for respiration and growth. Similar with current-generating biofilms, cellular viability in MES biofilms decreased with the distance from snorkel. MES reactors showed more rapid cell growth and substrate consumption than MFCs. Although the biomass density of MES biofilm was higher than that of anode biofilms, the current-generating capacity and electrochemical activity of MES biofilm were lower, which could be attributed to the lower cytochrome c expression in MES biofilm caused by the higher redox potential of MES. These microbiological and electrochemical properties are essential for the further development of MES reactors. PMID:23201531

  9. Flux growth and characterization of cuprorivaite: the influence of temperature, flux, and silica source

    NASA Astrophysics Data System (ADS)

    Bloise, A.; Abd El Salam, S.; De Luca, R.; Crisci, G. M.; Miriello, D.

    2016-07-01

    Single crystals of cuprorivaite (CaCuSi4O10), one of the oldest synthetic color pigments of Egyptian history, have been synthesized by slow-cooling flux method. Several runs were carried out at temperatures between 800 and 960 °C and with reaction times ranging from 10 to 72 h. The starting materials and run products were characterized by binocular microscope, X-ray powder diffraction, scanning electron microscopy with annexed energy-dispersive spectrometry, and μ-Raman spectroscopy. The effects of growth parameters (temperature, flux, silica source) on yield and size of crystals were studied. The growth of cuprorivaite depends greatly on the starting materials: they are observed as run products only using natron as flux. Furthermore, colorimetric analysis performed on the synthesizing pigment was compared with the archeological samples present in the literature in order to value similarities and differences.

  10. Co and Sn substituted barium M-hexaferrites: single crystal growth and magnetic characterization

    NASA Astrophysics Data System (ADS)

    Solé, R.; Ruiz, X.; Cabré, R.; Aguiló, M.; Díaz, F.; Nikolov, V.

    1996-09-01

    In this work, single crystals with a BaFe 12 - ( x + y) Sn xCo yO 19, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 composition, were grown by slow cooling and the TSSG technique, using a mixture of 0.4Na 2O-0.6B 2O 3 as solvent. Taking into account previous results about primary crystallization regions, saturation temperatures, physical properties of the solutions, digital simulations and several previous growth experiments, suitable growth conditions were proposed and used. Crystals grown under these conditions were characterized from the point of view of their perfection and compositional homogeneity. Magnetic properties were also investigated and their evolution as a function of the level of substitution stated.

  11. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization

    PubMed Central

    Abad, Sergi; Turon, Xavier

    2015-01-01

    Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA) when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM) with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1), biomass (0.7–0.8 g cells/g Substrate) and product (0.14–0.15 g DHA/g cells) yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct. PMID:26690180

  12. Characterization of essential oil and effects on growth of Verbena gratissima plants treated with homeopathic phosphorus.

    PubMed

    Santos, Fúlvia M; Monfort, Lucila E F; Castro, Daniel M; Pinto, José E B P; Leonardi, Michele; Pistelli, Luisa

    2011-10-01

    Plant models offer a method to examine the efficacy of homeopathic solutions. Homeopathic Phosphorus (P) dynamizations were evaluated on the linear growth and dry biomass of Verbena gratissima, a plant native to Brazil. The yields and chemical characterization of the essential oil are also given. Plants exhibited phenotypic plasticity after the homeopathic Phosphorus treatments. The dynamization 9CH, in particular, interfered with plant growth, height, diameter of stems and total dry mass. 9CH treatment showed the highest yield of essential oil. The essential oil composition of V. gratissima varied according to the different dynamization used. Homeopathic Phosphorus provided the greatest amount of beta-pinene, trans-pinocarveol, trans-pinocamphone and trans-pinocarvyl acetate in comparison with controls. PMID:22164793

  13. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization.

    PubMed

    Abad, Sergi; Turon, Xavier

    2015-12-01

    Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA) when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM) with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10-0.12 h(-1)), biomass (0.7-0.8 g cells/g Substrate) and product (0.14-0.15 g DHA/g cells) yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct. PMID:26690180

  14. Growth of ring ripple in a collisionless plasma in relativistic-ponderomotive regime and its effect on stimulated Raman backscattering process

    SciTech Connect

    Rawat, Priyanka; Purohit, Gunjan; Gauniyal, Rakhi

    2014-06-15

    A theoretical and numerical study has been made of the propagation of a ring rippled laser beam in collisionless plasma with dominant relativistic ponderomotive nonlinearity and its effect on the excitation of electron plasma wave and stimulated Raman backscattering process. The growth of ring ripple, riding on an intense Gaussian laser beam in plasma has also been studied. A paraxial-ray and WKB approximation has been invoked to understand the nature of propagation of the ring rippled Gaussian laser beam in plasma, electron plasma wave and back reflectivity under the influence of both nonlinearities. The growth rate and focusing of a ring rippled beam is found to be considerably affected by the power of the main beam and the phase angle between the electric vectors of the main beam and the ring ripple. It has also been observed that the focusing is released by the coupling of relativistic and ponderomotive nonlinearities, which significantly affected the dynamics of the excitation of electron plasma wave and back reflectivity of stimulated Raman scattering (SRS). Due to the strong coupling between ring rippled laser beam and the excited electron plasma wave, back reflectivity of SRS is enhanced. It has been observed from the computational results that the effect of the increased intensity leads to suppression of SRS back reflectivity. The results have been presented for established laser and plasma parameters.

  15. Studies on Growth and Characterization of bis Thiourea Lead Chloride:. a Novel Nonlinear Optical Crystal

    NASA Astrophysics Data System (ADS)

    Kirubavathi, K.; Selvaraju, K.; Kumararaman, S.

    Single crystals of the metal-organic nonlinear optical material bis thiourea lead chloride were grown from solution growth technique for the first time. The grown crystals were characterized by single crystal X-ray diffraction analysis to confirm the crystal structure. The presence of various functional groups and the coordination of metal ions to thiourea were confirmed by Fourier transform infrared analysis. UV-Vis. spectrum was recorded to study the optical transparency of the grown crystals. The second order nonlinear optical property of the grown crystal was examined by Kurtz powder technique and mechanical behavior was studied by Vickers micro hardness test.

  16. Seeded Physical Vapor Transport of Cadmium-Zinc Telluride Crystals: Growth and Characterization

    NASA Technical Reports Server (NTRS)

    Palosz, W.; George, M. A.; Collins, E. E.; Chen, K.-T.; Zhang, Y.; Burger, A.

    1997-01-01

    Crystals of Cd(1-x)Zn(x)Te with x = 0.2 and 40 g in weight were grown on monocrystalline cadmium-zinc telluride seeds by closed-ampoule physical vapor transport with or without excess (Cd + Zn) in the vapor phase. Two post-growth cool-down rates were used. The crystals were characterized using low temperature photoluminescence, atomic force microscopy, chemical etching, X-ray diffraction and electrical measurements. No formation of a second, ZnTe-rich phase was observed.

  17. Growth and characterization of large, high quality MoSe2 single crystals

    NASA Astrophysics Data System (ADS)

    Bougouma, Moussa; Batan, Abdelkrim; Guel, Boubié; Segato, Tiriana; Legma, Jean B.; Reniers, Francois; Delplancke-Ogletree, Marie-Paule; Buess-Herman, Claudine; Doneux, Thomas

    2013-01-01

    MoSe2 single crystals were grown by chemical vapor transport using TeCl4 as transport agents in the temperature gradient 1020-980 °C. They were characterized by scanning electron microscopy (SEM), optical microscopy, image analysis coupled with SEM, microanalysis by SEM-EDX, X-ray fluorescence, inductively coupled plasma (ICP), X-ray photoelectron spectroscopy (XPS) and electrical conductivity. The characterizations showed that single crystals are perfectly homogeneous, stoichiometric and have very few defects and clean surfaces with areas in the range of 35-100 mm2. Single crystals grown by TeCl4 showed a high electrical conductivity. Their properties were highly dependent on the quality of the polycrystalline powders used for the growth.

  18. Semiconductor nanowires for future electronics: Growth, characterization, device fabrication, and integration

    NASA Astrophysics Data System (ADS)

    Dayeh, Shadi A.

    This dissertation concerns with fundamental aspects of organo-metallic vapor phase epitaxy (OMVPE) of III-V semiconductor nanowires (NWs), and their structural and electrical properties inferred from a variety of device schemes. An historical perspective on the NW growth techniques and mechanisms, and an overview of demonstrated NW devices and their performance is summarized in chapter 1. In part I of the dissertation, OMVPE synthesis of InAs NWs on SiO 2/Si and InAs (111)B surfaces is discussed and their growth mechanism is resolved. Nucleation, evolution, and the role of Au nanoparticles in the growth of InAs NWs on SiO2/Si surfaces are presented in chapter 2. Our results indicate that In droplets can lead to InAs NW growth and that Au nanoparticles are necessary for efficient AsH3 pyrolysis. Chapter 3 discusses the key thermodynamic and kinetic processes that contribute to the InAs NW growth on InAs (111)B surfaces. Controversy in the interpretation of III-V NW growth is overviewed. Experimental evidence on the nucleation of InAs NWs from In droplets as well as the catalytic effect of Au nanoparticles on the InAs (111)B surfaces are described. NW cessation at high growth temperatures or at increased input molar V/III ratios is explained via a switch-over from vapor-liquid-solid (VLS) NW growth to vapor-solid thin film growth, in contrast to previous interpretation of vapor-solid-solid growth of III-V NWs. The substrate-NW adatom exchange is also treated, and experimental distinction of two NW growth regimes depending on this exchange is demonstrated for the first time. Our results indicate that when growing extremely uniform InAs NWs, solid-phase diffusion of In adatoms on the NW sidewalls is the dominant material incorporation process with surface diffusion lengths of ˜ 1 mum. This understanding was further utilized for the growth of axial and radial InAs-InP heterostructure NWs. Polymorphism in III-V NW crystal structure is also discussed and growth

  19. Growth and characterization of group IV-based alloys on silicon

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Durvasulu

    Group IV based alloys have recently received much attention because of the possibility of tailoring the band gap with respect to that of silicon. Significant results have already been achieved with the Sisb1-xGesbx/Si system. But a major drawback is the large lattice mismatch and thermal instability. Hence, alternate material systems, such as Si-Ge-C alloys, are under active investigation. The research presented here focuses on the growth and characterization of Sisb1-x-yGesbxCsby and Sisb1-yCsby films. Group IV alloys were grown on silicon substrates by atmospheric-pressure chemical vapor deposition (APCVD), molecular beam epitaxy (MBE), and ultrahigh-vacuum chemical vapor deposition (UHV-CVD) employing novel precursor molecules. The films were characterized extensively using Rutherford backscattering spectrometry, secondary ion mass spectrometry, transmission electron microscopy, and Fourier transform infrared spectroscopy. Sisb1-x-yGesbxCsby films grown by APCVD between 600 to 700sp°C had compositions in the range: 0.2 < x < 0.5 and 0 < y < 0.12. Layers with less than 3 at. % C were of device quality and defect-free. Increase in carbon led to the formation of a bilayer structure, initial crystalline growth followed by amorphous growth: this behavior was attributed to carbon floating on the surface. Periodic interruptions of the Sisb1-x-yGesbxCsby growth by deposition of a thin Si layer prevented amorphous growth. Sisb1-x-yGesbxCsby/Si heterostructures (0.1 < x < 0.4; 0 < y < 0.045) were deposited by MBE at 450 to 550sp°C, using two different sources for carbon: graphite and silicon carbide (SiC). Introduction of carbon using graphite resulted in non-homogeneous incorporation and rough film growth morphology. Use of Sb surfactant led to abrupt interfaces with more homogeneous incorporation of the elements. Using SiC as the carbon source, led to stabilization of the surface morphology without the need for Sb surfactant. Sisb1-yCsby films (0.04 < y < 0.2) were

  20. Adiabatic release measurements in aluminum between 400 and 1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime

    DOE PAGESBeta

    Knudson, Marcus D.; Desjarlais, Michael P.; Pribram-Jones, Aurora

    2015-06-15

    Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements of aluminum from ~400–1200 GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ~190 and ~110 mg/cc silica aerogel standards. Additionally, these data were analyzed within the frameworkmore » of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. Furthermore, as an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.« less

  1. Adiabatic release measurements in aluminum between 400 and 1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime

    NASA Astrophysics Data System (ADS)

    Knudson, M. D.; Desjarlais, M. P.; Pribram-Jones, Aurora

    2015-06-01

    Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements of aluminum from ˜400 -1200 GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ˜190 and ˜110 mg/cc silica aerogel standards. These data were analyzed within the framework of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. As an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.

  2. Adiabatic release measurements in aluminum between 400-1200 GPa. Characterization of aluminum as a shock standard in the multimegabar regime

    SciTech Connect

    Knudson, Marcus D.; Desjarlais, Michael P.; Pribram-Jones, Aurora

    2015-06-15

    Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements of aluminum from ~400–1200 GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ~190 and ~110 mg/cc silica aerogel standards. Additionally, these data were analyzed within the framework of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. Furthermore, as an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.

  3. Adiabatic release measurements in aluminum between 400 and 1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime

    SciTech Connect

    Knudson, Marcus D.; Desjarlais, Michael P.; Pribram-Jones, Aurora

    2015-06-15

    Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar = 100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments. The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements of aluminum from ~400–1200 GPa states along the principal Hugoniot using full density polymethylpentene (commonly known as TPX), and both ~190 and ~110 mg/cc silica aerogel standards. Additionally, these data were analyzed within the framework of a simple, analytical model that was motivated by a first-principles molecular dynamics investigation into the release response of aluminum, as well as by a survey of the release response determined from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides a method to perform impedance matching calculations without the need to appeal to any tabular equation of state for aluminum. Furthermore, as an analytical model, this method allows for propagation of all uncertainty, including the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the multimegabar regime.

  4. Growth and characterization of bismuth tri-iodide single crystals by modified vertical Bridgman method

    NASA Astrophysics Data System (ADS)

    Qui, Wei

    Bismuth tri-iodide (Bil3) is a wide band gap semiconductor material with potential for room temperature gamma-ray detection applications. The inability to produce high quality, pure, and large single crystals is one of the major challenges for this material preventing its use in gamma-ray detection. This work presents the growth and characterization of Bil3 single crystals by a modified vertical Bridgman (MVB) method. The growth parameters to produce Bil3 single crystals were explored by adjusting growth rate and temperature gradient at the solid-liquid interface. Single crystals of Bil3 have been successfully grown in Pyrex glass ampoule at different growth conditions. Through etch pit density (EPD) and X-ray rocking curve measurement, the crystal with the best quality was determined to be obtained at 0.5 mm/h growth rate and 10oC/cm temperature gradient. Single crystal (001) oriented slabs up to 18 x 13 x 5 mm 3 (the largest Bil3 single crystal ever reported) were obtained under this condition. Impurity characterization on the starting Bil 3 powder and the grown crystals indicated a relatively high total impurity concentration up to 1017 cm-3, and the crystal growth using Pyrex glass does not introduce additional impurities to the crystal. The energy band gap is an important parameter for materials used as a room temperature gamma-ray detector, as it determines the energy to produce an electron-hole pair which is the source of the signal for the detector. Remarkably, very different band gap characteristics and values of Bil 3 have been reported in literature. This study characterized the band gap of Bil3 through Ultraviolet-visible spectroscopy (UV-Vis), which yielded an indirect band gap of 1.68 +/- 0.09 eV at room temperature. Impurity and temperature effects, as commonly observed in many semiconductors, have been investigated as the major extrinsic factors that influence the band gap value of Bil3. Three different metals, Au, Pd, and Pt were sputtered on the

  5. Growth and characterization of high proficient second order nonlinear optical material: L-Valinium Picrate

    NASA Astrophysics Data System (ADS)

    Saravanan, M.; Abraham Rajasekar, S.

    2016-02-01

    High-quality translucent solitary crystals of L-Valinium Picrate (LVAP) were lucratively grown by a conventional solution growth method and unidirectional growth technique of Sankaranarayanan-Ramasamy. The as grown organic LVAP crystal belongs to monoclinic crystal system with noncentrosymmetric space group P21. The seed crystal acquired by conventional solution growth method was slash along the (0 1 0) direction and consequently employed for unidirectional growth. A bulky extent single crystal was fully fledged by slow cooling procedure with facilitate of solubility data. The unit cell parameters were resolved from single crystal X-ray diffraction studies. The grown crystals by both conventional solution growth (SEST) and SR methods were subjected to assorted characterization processes such as HRXRD, UV-Vis, dielectric, Hardness and Laser damage threshold studies to investigate the properties. The etching and high resolution X-ray diffraction studies designate that the unidirectional grown LVAP crystal encompass good crystalline excellence and lesser amount of imperfections. The UV-Visible study reveals the ocular excellence of the SR grown LVAP crystal is superior to SEST grown crystal. The laser damage threshold of SEST and SR grown LVAP crystals has been examined and SR grown LVAP crystal boast higher damage threshold than the conventional method grown crystal. Microhardness measurements at dissimilar temperatures show that crystals fully fledged by SR method contain elevated mechanical steadiness than the crystals grown by SEST method. Dielectric dispersion is soaring in SR grown crystal compared to SEST grown LVAP crystal. The piezoelectric nature and the relative Second Harmonic Generation (for various particle sizes) of the material were also studied.

  6. Snowpack regimes of the Western United States

    NASA Astrophysics Data System (ADS)

    Trujillo, Ernesto; Molotch, Noah P.

    2014-07-01

    Snow accumulation and melt patterns play a significant role in the water, energy, carbon, and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at 766 snow pillow stations in the Western United States, focusing on several metrics of the yearly SWE curves and the relationships between the different metrics. The metrics are the initial snow accumulation and snow disappearance dates, the peak snow accumulation and date of peak, the length of the snow accumulation season, the length of the snowmelt season, and the snow accumulation and snowmelt slopes. Three snow regimes emerge from these results: a maritime, an intermountain, and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days. Conversely, the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intermountain regime lies in between. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intermountain regime includes the Eastern Cascades slopes and foothills, the Blue Mountains, Northern and Central basins and ranges, the Columbia Mountains/Northern Rockies, the Idaho Batholith, and the Canadian Rockies. Lastly, the continental regime includes the Middle and Southern Rockies, and the Wasatch and Uinta Mountains. The implications of snow regime

  7. The Growth and Characterization of the Bismuth Strontium-Calcium 2212 Superconductor

    NASA Astrophysics Data System (ADS)

    Moulton, Linda Vidale

    A miniaturized float zone technique, sometimes referred to as the Laser-heated Pedestal Growth (LHPG) method, was used to produce high quality crystals of the incongruently melting rm Bi_2Sr_2CaCu _2O_{8+delta} (2212) superconductor. The main focus of this research was to (1) produce superconducting samples having different compositions, (2) identify the melt compositions and growth temperatures which produced these samples, and (3) determine the variation of their superconducting transition temperature (T _{rm C}) with composition and processing conditions. The rm Bi_2(Sr,Ca) _3Cu_2O_{8+delta} crystallization experiments were supplemented by a series of similar experiments on the incongruently melting compound rm Ca_3Al_2O_6. The phase equilibria in the CaO-rm Al_2O _3 system has been thoroughly studied, and by analyzing the float-zone growth of this simpler and better-characterized material, it was verified that phase equilibria information and solidification behavior could be extracted from and explained by these solidification experiments. Two different types of nonplanar, crystal/melt interface morphologies were observed in the rm Ca_3Al_2O_6 experiments. Each reflected the influence of the phase equilibria in the CaO-rm Al_2O_3 system and component segregation in the melt. The molten zone compositions were found to approach those predicted by the CaO-rm Al_2O_3 phase diagram as the growth rate decreased, in accordance with the Burton-Prim Slichter relationship. Excellent agreement was obtained between actual phases found to coexist at the rm Ca_3Al_2O_6 /melt interface and the predictions of classical crystal growth theory. Based on the results of the rm Ca _3Al_2O_6 crystallization study, the crystal/melt equilibria in the far more complex rm Bi_2O_3-SrO-CaO-CuO system was evaluated by determining the phases formed during the superconductor growth experiments. The melt compositions were found to be rm Bi_2O_3 -rich and SrO-poor relative to the compositions

  8. Molecular Characterization of Growth Hormone-producing Tumors in the GC Rat Model of Acromegaly

    PubMed Central

    Martín-Rodríguez, Juan F.; Muñoz-Bravo, Jose L.; Ibañez-Costa, Alejandro; Fernandez-Maza, Laura; Balcerzyk, Marcin; Leal-Campanario, Rocío; Luque, Raúl M.; Castaño, Justo P.; Venegas-Moreno, Eva; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso; Cano, David A.

    2015-01-01

    Acromegaly is a disorder resulting from excessive production of growth hormone (GH) and consequent increase of insulin-like growth factor 1 (IGF-I), most frequently caused by pituitary adenomas. Elevated GH and IGF-I levels results in wide range of somatic, cardiovascular, endocrine, metabolic, and gastrointestinal morbidities. Subcutaneous implantation of the GH-secreting GC cell line in rats leads to the formation of tumors. GC tumor-bearing rats develop characteristics that resemble human acromegaly including gigantism and visceromegaly. However, GC tumors remain poorly characterized at a molecular level. In the present work, we report a detailed histological and molecular characterization of GC tumors using immunohistochemistry, molecular biology and imaging techniques. GC tumors display histopathological and molecular features of human GH-producing tumors, including hormone production, cell architecture, senescence activation and alterations in cell cycle gene expression. Furthermore, GC tumors cells displayed sensitivity to somatostatin analogues, drugs that are currently used in the treatment of human GH-producing adenomas, thus supporting the GC tumor model as a translational tool to evaluate therapeutic agents. The information obtained would help to maximize the usefulness of the GC rat model for research and preclinical studies in GH-secreting tumors. PMID:26549306

  9. The emerging climate change regime

    SciTech Connect

    Bodansky, D.M.

    1995-11-01

    The emerging climate change regime--with the UN Framework Convention on Climate Change (FCCC) at its core--reflects the substantial uncertainties, high stakes and complicated politics of the greenhouse warming issue. The regime represents a hedging strategy. On the one hand, it treats climate change as a potentially serious problem, and in response, creates a long-term, evolutionary process to encourage further research, promote national planning, increase public awareness, and help create a sense of community among states. But it requires very little by way of substantive--and potentially costly--mitigation or adaptation measures. Although the FCCC parties have agreed to negotiate additional commitments, substantial progress is unlikely without further developments in science, technology, and public opinion. The FCCC encourages such developments, and is capable of evolution and growth, should the political will to take stronger international action emerge. 120 refs., 3 tabs.

  10. In vitro crystallization, characterization and growth-inhibition study of urinary type struvite crystals

    NASA Astrophysics Data System (ADS)

    Chauhan, Chetan K.; Joshi, Mihir J.

    2013-01-01

    The formation of urinary stones, known as nephrolithiasis or urolithiasis, is a serious, debilitating problem throughout the world. Struvite—NH4MgPO4·6H2O, ammonium magnesium phosphate hexahydrate, is one of the components of urinary stones (calculi). Struvite crystals with different morphologies were grown by in vitro single diffusion gel growth technique with different growth parameters. The crystals were characterized by powder XRD, FT-IR, thermal analysis and dielectric study. The powder XRD results of struvite confirmed the orthorhombic crystal structure. The FT-IR spectrum proved the presence of water of hydration, metal-oxygen bond, N-H bond and P-O bond. For thermal analysis TGA, DTA and DSC were carried out simultaneously. The kinetic and thermodynamic parameters of dehydration/decomposition process were calculated. Vickers micro-hardness and related mechanical parameters were also calculated. The in vitro growth inhibition studies of struvite by the juice of Citrus medica Linn as well as the herbal extracts of Commiphora wightii, Boerhaavia diffusa Linn and Rotula aquatica Lour were carried out and found potent inhibitors of struvite.

  11. Occurrence and Characterization of Steroid Growth Promoters Associated with Particulate Matter Originating from Beef Cattle Feedyards.

    PubMed

    Blackwell, Brett R; Wooten, Kimberly J; Buser, Michael D; Johnson, Bradley J; Cobb, George P; Smith, Philip N

    2015-07-21

    Studies of steroid growth promoters from beef cattle feedyards have previously focused on effluent or surface runoff as the primary route of transport from animal feeding operations. There is potential for steroid transport via fugitive airborne particulate matter (PM) from cattle feedyards; therefore, the objective of this study was to characterize the occurrence and concentration of steroid growth promoters in PM from feedyards. Air sampling was conducted at commercial feedyards (n = 5) across the Southern Great Plains from 2010 to 2012. Total suspended particulates (TSP), PM10, and PM2.5 were collected for particle size analysis and steroid growth promoter analysis. Particle size distributions were generated from TSP samples only, while steroid analysis was conducted on extracts of PM samples using liquid chromatography mass spectrometry. Of seven targeted steroids, 17α-estradiol and estrone were the most commonly detected, identified in over 94% of samples at median concentrations of 20.6 and 10.8 ng/g, respectively. Melengestrol acetate and 17α-trenbolone were detected in 31% and 39% of all PM samples at median concentrations of 1.3 and 1.9 ng/g, respectively. Results demonstrate PM is a viable route of steroid transportation and may be a significant contributor to environmental steroid hormone loading from cattle feedyards. PMID:26098147

  12. Growth and characterization of GaAs nanowires on carbon nanotube composite films: toward flexible nanodevices.

    PubMed

    Mohseni, Parsian K; Lawson, Gregor; Couteau, Christophe; Weihs, Gregor; Adronov, Alex; LaPierre, Ray R

    2008-11-01

    Poly(ethylene imine) functionalized carbon nanotube thin films, prepared using the vacuum filtration method, were decorated with Au nanoparticles by in situ reduction of HAuCl4 under mild conditions. These Au nanoparticles were subsequently employed for the growth of GaAs nanowires (NWs) by the vapor-liquid-solid process in a gas source molecular beam epitaxy system. The process resulted in the dense growth of GaAs NWs across the entire surface of the single-walled nanotube (SWNT) films. The NWs, which were orientated in a variety of angles with respect to the SWNT films, ranged in diameter between 20 to 200 nm, with heights up to 2.5 microm. Transmission electron microscopy analysis of the NW-SWNT interface indicated that NW growth was initiated upon the surface of the nanotube composite films. Photoluminescence characterization of a single NW specimen showed high optical quality. Rectifying asymmetric current-voltage behavior was observed from contacted NW ensembles and attributed to the core-shell pn-junction within the NWs. Potential applications of such novel hybrid architectures include flexible solar cells, displays, and sensors. PMID:18954120

  13. In-depth characterization of wastewater bacterial community in response to algal growth using pyrosequencing.

    PubMed

    Lee, Jangho; Lee, Juyoun; Lee, Tae Kwon; Woo, Sung-Geun; Baek, Gyu Seok; Park, Joonhong

    2013-10-28

    Microalgae have been regarded as a natural resource for sustainable materials and fuels, as well as for removal of nutrients and micropollutants from wastewater, and their interaction with bacteria in wastewater is a critical factor to consider because of the microbial diversity and complexity in a variety of wastewater conditions. Despite their importance, very little is known about the ecological interactions between algae and bacteria in a wastewater environment. In this study, we characterized the wastewater bacterial community in response to the growth of a Selenastrum gracile UTEX 325 population in a real municipal wastewater environment. The Roche 454 GS-FLX Titanium pyrosequencing technique was used for indepth analysis of amplicons of 16S rRNA genes from different conditions in each reactor, with and without the algal population. The algal growth reduced the bacterial diversity and affected the bacterial community structure in the wastewater. The following in-depth analysis of the deep-sequenced amplicons showed that the algal growth selectively stimulated Sphingobacteria class members, especially the Sediminibacterium genus population, in the municipal wastewater environment. PMID:23867704

  14. Growth and characterization of indium gallium arsenide photocathodes for extended near infrared imaging

    NASA Astrophysics Data System (ADS)

    Bourree, Loig Erwan Richard

    Near infrared InGaAs photocathodes were designed and grown using molecular beam epitaxy (MBE), a high quality semiconductor growth technique, for the purpose of expanding the current spectral range of generation 3 image intensifier tubes to a 1000nm wavelength while maintaining a high quantum efficiency. Previous authors who have attempted this task have reported low sensitivity compared to the standard GaAs photocathodes and associated this drawback with the compositional mismatch from growing InGaAs epilayers onto GaAs substrates. Our approach differed from these previous authors by using MBE for the semiconductor growth instead of a vapor phase epitaxy technique that had been employed. In addition, to reduce the inherent lattice mismatch between the InGaAs photoemissive layer and the substrate, structures deviating from standard GaAs photocathodes were created, to include lattice-mismatch reducing buffers. These buffers are composed of ternary alloys with graded composition. Utilizing a variety of characterization techniques to determine growth parameters (thickness, doping, composition, crystallinity) a high level of control and reproducibility was achieved on our photocathode structures. Overall, negative electron affinity activation performed on our InGaAs photocathodes showed improvements in their white light photoresponse (PR) resulting from the inclusion of these buffers. Studies performed using room temperature photoluminescence, Raman spectroscopy and atomic force microscopy were employed to attempt relating these increases in PR to changes in material parameters and are presented in this dissertation.

  15. Real-time characterization of film growth on transparent substrates by rotating-compensator multichannel ellipsometry.

    PubMed

    Lee, J; Collins, R W

    1998-07-01

    A multichannel spectroscopic ellipsometer in the fixed-polarizer-sample-rotating-compensator-fixed-analyzer (PSC(R)A) configuration has been developed and applied for real-time characterization of the nucleation and growth of thin films on transparent substrates. This rotating-compensator design overcomes the major disadvantages of the multichannel ellipsometer in the rotating-polarizer-sample-fixed-analyzer (P(R)SA) configuration while retaining its high speed and precision for the characterization of thin-film processes in real time. The advantages of the PSC(R)A configuration include (i) its high accuracy and precision for the detection of low-ellipticity polarization states that are generated upon reflection of linearly polarized light from transparent film-substrate systems, and (ii) the ability to characterize depolarization of the reflected light, an effect that leads to errors in ellipticity when measured with the P(R)SA configuration. A comparison of the index of refraction spectra for a glass substrate obtained in the real-time PSC(R)A mode in 2.5 s and in the ex situ fixed-polarizer-fixed-compensator-sample-rotating-analyzer (PCSA(R)) mode in ~10 min show excellent agreement, with a standard deviation between the two data sets of 8 x 10(-4), computed over the photon energy range from 1.5 to 3.5 eV. First, we describe the PSC(R)A ellipsometer calibration procedures developed specifically for transparent substrates. In addition, we describe the application of the multichannel PSC(R)A instrument for a study of thin-film diamond nucleation and growth on glass in a low-temperature microwave plasma-enhanced chemical vapor deposition process. PMID:18285868

  16. Blowout regimes of plasma wakefield acceleration.

    PubMed

    Lotov, K V

    2004-04-01

    A wide region of beam parameters is numerically scanned and the dependence of wakefield properties on the beam length and current is clarified for the blowout regime of beam-plasma interaction. The main regimes of the plasma response are found, which qualitatively differ in the plasma behavior. To characterize the efficiency of the energy exchange between the beam and the plasma, the energy flux through the comoving window is introduced. Scalings of the energy flux for the linear plasma response and the main blowout regimes are studied. The most efficient energy transfer occurs in the so-called "strong beam" regime of interaction. For this regime, analytical approximations for various aspects of the plasma response are obtained. PMID:15169104

  17. Discrete fluorescent saturation regimes in multilevel systems

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1988-01-01

    Using models of multilevel atoms, the fluorescent process was examined for the ratio of the photooxidation rate, Pij, to the collisional oxidation rate, Cij, in the pumped resonance transition i-j. It is shown that, in the full range of the parameter Pij/Cij, there exist three distinct regimes (I, II, and III) which may be usefully exploited. These regimes are defined, respectively, by the following conditions: Pij/Cij smaller than about 1; Pij/Cij much greater than 1 and Pij much lower than Cki; and Pij/Cij much greater than 1 and Pij much higher than Cki, where Cki is the collisional rate populating the source level i. The only regime which is characterized by the sensitivity of fluorescent-fluorescent line intensity ratios to Pij is regime I. If regime III is reached, even fluorescent-nonfluorescent line ratios become independent of Pij. The analysis is applied to the resonant photoexcitation of a carbonlike ion.

  18. Population Growth and Characterization of Plant Injuries of Steneotarsonemus spinki Smiley (Acari: Tarsonemidae) on Rice.

    PubMed

    Jaimez-Ruiz, I A; Otero-Colina, G; Valdovinos-Ponce, G; Villanueva-Jiménez, J A; Vera-Graziano, J

    2015-06-01

    Rice is attacked by Steneotarsonemus spinki Smiley, a mite that has dispersed throughout many countries causing important loss on rice production. Rice plants of the variety Morelos A-92 were infested with S. spinki, and its population growth was estimated along plant development. Further, the morphological and histological injuries associated to the mite attack were characterized. The highest infestation level was obtained 13 weeks after plant infestation, with an average of 58.5 mites per plant, predominantly females. Morphological injuries were categorized from level 0 (no injuries from uninfested plants) to level 3, characterized by the highest injuries represented by blotches on the adaxial epidermis of the leaf sheath and on panicles and grains. Plants ranked within levels 0, 1, and 2 for morphological injury did not exhibit clear histological injuries, while those at level 3 exhibited histological injury characterized by destruction of cells of the adaxial epidermis, disorder, color change, and hypertrophy in the mesophyll cells, as well as color change in the abaxial epidermis. Thus, it presented a significant correlation between morphological injuries and mite density level, which can be further adopted to help the control decision-making process for this mite on rice. PMID:26013275

  19. Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: From controllable growth to material characterization

    PubMed Central

    Yen, Wen-Chun; Chen, Yu-Ze; Yeh, Chao-Hui; He, Jr-Hau; Chiu, Po-Wen; Chueh, Yu-Lun

    2014-01-01

    A directly self-crystallized graphene layer with transfer-free process on arbitrary insulator by Ni vapor-assisted growth at growth temperatures between 950 to 1100°C via conventional chemical vapor deposition (CVD) system was developed and demonstrated. Domain sizes of graphene were confirmed by Raman spectra from ~12 nm at growth temperature of 1000°C to ~32 nm at growth temperature of 1100°C, respectively. Furthermore, the thickness of the graphene is controllable, depending on deposition time and growth temperature. By increasing growth pressure, the growth of graphite nano-balls was preferred rather than graphene growth. The detailed formation mechanisms of graphene and graphite nanoballs were proposed and investigated in detail. Optical and electrical properties of graphene layer were measured. The direct growth of the carbon-based materials with free of the transfer process provides a promising application at nanoelectronics. PMID:24810224

  20. Growth and characterization of nonpolar and semipolar group-III nitrides-based heterostructures and devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arpan

    Conventional state-of-the-art wurtzite nitrides based light-emitters, grown along the polar c-direction, are characterized by the presence of polarization-induced electrostatic fields in the quantum wells. These built-in fields are detrimental to the performance of optoelectronic devices. Growth of light-emitters along nonpolar and semipolar directions is an effective means to circumvent the adverse effects of polarization. This dissertation focuses on the growth and characterization of nonpolar and semipolar (Al, Ga, In)N based heterostructures and devices. Two nonpolar planes, a- and m-, and two semipolar planes, (10 11) and (1013), have been investigated in this thesis. Initially, the growth of n-type and p-type nonpolar a-plane GaN was optimized to yield cladding layers of the highest possible conductivity in the devices. Various interesting observations, e.g. low acceptor activation energy, anisotropic conductivity, etc, were made during the course of this study. In order to achieve defect reduction in planar a-plane GaN films, in-situ SiNx interlayers were used as nano-mask. The effect of SiNx interlayer on the structural and optical properties of the overgrown GaN layer was investigated. Growth of InGaN/GaN multiple-quantum wells (MQWs) along nonpolar and semipolar planes was investigated and their structural and optical properties were studied. The effect of defects on the emission properties of the MQWs has been addressed. Optical measurements revealed the absence of polarization in the MQWs. Based on the MQW optimization, light-emitting diodes were grown on nonpolar and semipolar templates and their electrical and optical properties were studied. Electroluminescence measurement confirmed the absence of built-in electric fields in the quantum well. We demonstrated the first nonpolar and semipolar light-emitting diodes with milliwatt-range output power. DC output power as high as 0.6 mW at 20 mA and pulsed output power as high as 23.5 mW at 1 A were

  1. Fundamental understanding of the growth, doping and characterization of aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Gang

    Zinc oxide (ZnO) is a II-VI semiconductor whose wide direct bandgap (3.37 eV) and large exciton binding energy (60 meV) make it compelling for optoelectronic devices such as light emitting diodes, lasers, photodetectors, solar cells, and mechanical energy harvesting devices. One dimensional structures of ZnO (nanowires) have become significant due to their unique physical properties arising from quantum confinement, and they are ideal for studying transport mechanisms in one-dimensional systems. In this doctoral research work, ZnO nanowire (NW) arrays were synthesized on sapphire substrates through carbo-thermal reduction of ZnO powders, and the effects of growth parameters on the properties of ZnO NW arrays were studied by scanning and transmission electron microscopy, X-ray diffraction, photoluminescence and Raman spectroscopy. Based on the phonon mode selection rules in wurtzite ZnO, confocal Raman spectroscopy was used to assess the alignment of ZnO NWs in an array, thereby complementing X-ray diffraction. Al doped ZnO NW arrays were achieved by mixing Al powder into the ZnO and graphite source mixture, and the presence of Al was confirmed by Energy-dispersive X-ray spectroscopy. The incorporation of Al had the effects of lowering the electrical resistivity, slightly deteriorating crystal quality and suppressing defect related green emission. Two models of ZnO NW growth were developed by establishing the relationship between NW length and diameter for undoped and Al doped ZnO NWs separately. The growth of undoped ZnO NWs followed the diffusion-induced model which was characterized by thin wires being longer than thick wires, while the growth of Al doped ZnO was controlled by Gibbs-Thomson effect which was characterized by thin wires being shorter than thin wires. Local electrode atom probe analysis of ZnO NWs was carried out to study the crystal stoichiometry and Al incorporation. Undoped ZnO NWs were found to be high purity with no detectable impurities

  2. Transient regimes and crossover for epitaxial surfaces.

    PubMed

    Haselwandter, Christoph A; Vvedensky, Dimitri D

    2010-02-01

    We apply a formalism for deriving stochastic continuum equations associated with lattice models to obtain equations governing the transient regimes of epitaxial growth for various experimental scenarios and growth conditions. The first step of our methodology is the systematic transformation of the lattice model into a regularized stochastic equation of motion that provides initial conditions for differential renormalization-group (RG) equations for the coefficients in the regularized equation. The solutions of the RG equations then yield trajectories that describe the original model from the transient regimes, which are of primary experimental interest, to the eventual crossover to the asymptotically stable fixed point. We first consider regimes defined by the relative magnitude of deposition noise and diffusion noise. If the diffusion noise dominates, then the early stages of growth are described by the Mullins-Herring (MH) equation with conservative noise. This is the classic regime of molecular-beam epitaxy. If the diffusion and deposition noise are of comparable magnitude, the transient equation is the MH equation with nonconservative noise. This behavior has been observed in a recent report on the growth of aluminum on silicone oil surfaces [Z.-N. Fang, Thin Solid Films 517, 3408 (2009)]. Finally, the regime where deposition noise dominates over diffusion noise has been observed in computer simulations, but does not appear to have any direct experimental relevance. For initial conditions that consist of a flat surface, the Villain-Lai-Das Sarma (VLDS) equation with nonconservative noise is not appropriate for any transient regime. If, however, the initial surface is corrugated, the relative magnitudes of terms can be altered to the point where the VLDS equation with conservative noise does indeed describe transient growth. This is consistent with the experimental analysis of growth on patterned surfaces [H.-C. Kan, Phys. Rev. Lett. 92, 146101 (2004); T

  3. Characterization of the release response of alpha-quartz in the multi-Mbar regime for use as an impedance match standard

    NASA Astrophysics Data System (ADS)

    Knudson, Marcus; Desjarlias, Michael

    2013-06-01

    Alpha-quartz has been used prolifically in recent years as an impedance match standard in the multi-Mbar regime. This is due to the fact that above about 90 GPa quartz becomes reflective, and thus shock velocities can be measured to high precision using velocity interferometry. This property allows for high precision measurements, however, the accuracy of such measurements depends upon the knowledge of both the Hugoniot and the release or re-shock response of alpha-quartz. In previous work, we accurately determined the Hugoniot response of alpha-quartz through numerous plate-impact Hugoniot experiments on the Sandia Z machine. Here we present the results of several adiabatic release measurements of alpha-quartz over the range of 2-10 Mbar using 110 and 200 mg/cc silica aerogels, and full density polymethylpentene (commonly known as TPX). These data were used to determine a simple method to perform impedance matching calculations without the need to appeal to any tabular equation of state for quartz. The method also allows for propagation of all uncertainty, including the random measurement uncertainty and the uncertainty of the Hugoniot and release response of alpha-quartz. This model and several examples of its use will be discussed. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-ACO4-94AL85000.

  4. Improvements to III-nitride light-emitting diodes through characterization and material growth

    NASA Astrophysics Data System (ADS)

    Getty, Amorette Rose Klug

    A variety of experiments were conducted to improve or aid the improvement of the efficiency of III-nitride light-emitting diodes (LEDs), which are a critical area of research for multiple applications, including high-efficiency solid state lighting. To enhance the light extraction in ultraviolet LEDs grown on SiC substrates, a distributed Bragg reflector (DBR) optimized for operation in the range from 250 to 280 nm has been developed using MBE growth techniques. The best devices had a peak reflectivity of 80% with 19.5 periods, which is acceptable for the intended application. DBR surfaces were sufficiently smooth for subsequent epitaxy of the LED device. During the course of this work, pros and cons of AlGaN growth techniques, including analog versus digital alloying, were examined. This work highlighted a need for more accurate values of the refractive index of high-Al-content AlxGa1-xNin the UV wavelength range. We present refractive index results for a wide variety of materials pertinent to the fabrication of optical III-nitride devices. Characterization was done using Variable-Angle Spectroscopic Ellipsometry. The three binary nitrides, and all three ternaries, have been characterized to a greater or lesser extent depending on material compositions available. Semi-transparent p-contact materials and other thin metals for reflecting contacts have been examined to allow optimization of deposition conditions and to allow highly accurate modeling of the behavior of light within these devices. Standard substrate materials have also been characterized for completeness and as an indicator of the accuracy of our modeling technique. We have demonstrated a new technique for estimating the internal quantum efficiency (IQE) of nitride light-emitting diodes. This method is advantageous over the standard low-temperature photoluminescence-based method of estimating IQE, as the new method is conducted under the same conditions as normal device operation. We have developed

  5. Growth and characterization of nanostructured aerosol produced by diffusion flame and spray pyrolysis methods

    NASA Astrophysics Data System (ADS)

    Kim, Soo Hyung

    The present research is aimed at developing methods to characterize and study the growth of nano-particles and nano-structured materials. The thesis is divided into two parts. One part deals with the development of the tandem differential mobility analyzer (TDMA), which is the principal method used in this study to characterize the size and electrical charge of particles formed in a high temperature flame. The second part of the thesis deals with the formation of nano-structured materials with zeolite-type structures. The particles are characterized to determine their size, porosity and surface area. It is well known that nano-sized aerosol particles from combustion sources are charged. Even though the basic charging mechanisms are reasonably well understood qualitatively, techniques for characterizing the charge and size distribution of aerosols from combustion sources are not well developed. In the present study, a method is developed to accurately measure the charge and size distribution of nano-sized combustion aerosols by means of a TDMA. From a series of TDMA measurements, the charge fraction of nano-sized soot particles from a flame is obtained as a function of equivalent mobility particle diameter ranging from 50 to 200nm. The method is then used to characterize the size and charge of combustion aerosols. The results are compared to theory, including the new theory developed in this study. To develop a new synthetic method of nano-structured aerosol particles, a thermal tubular reactor is employed. New spray-pyrolytic and aerosol-gel methods are developed to form nanoporous metal oxides, in which thermally stable and easily leached inorganic matrix is employed to extend the porosity of zeolite-typed materials. The characteristics of the nanoporous material, such as surface area and particle morphology are investigated as a function of relative humidity, temperature, and precursor fractions. The physical and chemical properties of materials synthesized are

  6. ZnO Nanoporous Structure Growth, Optical and Structural Characterization by Aqueous Solution Route

    NASA Astrophysics Data System (ADS)

    Kashif, M.; Ali, Syed M. Usman; Foo, K. L.; Hashim, U.; Willander, Magnus

    2011-05-01

    In this study, we have demonstrated the structural and optical characterization of ZnO nanoporous structure grown on gold coated plastic substrate using low temperature aqueous chemical growth (ACG) technique and the annealing temperature was kept at 150° C. ZnO nanoporous structures were fabricated using hydrolysis process by reacting zinc acetate dehydrate with anhydrous ethanol. The crystalline morphology of ZnO nanoporous structures were investigated by using X-ray diffraction (XRD), surface morphology was observed by field emission scanning electron microscope (FESEM). The optical characteristics of ZnO nanoporous structures were investigated at room temperature, PL was observed using UV-Vis Spectrophotometer and the chemical composition is analyzed using Fourier Transform Infra-Red spectrometer (FTIR).

  7. Growth and characterization of N,N-diethyl anilinium picrate (NNDEAP) single crystals

    NASA Astrophysics Data System (ADS)

    Subramaniyan, R.; Anandha, G. Babu; Ramasamy, P.

    2013-02-01

    Crystalline substance of N,N-diethyl anilinium picrate (NNDEAP) has been synthesized and single crystals of NNDEAP were successfully grown for the first time by the slow evaporation solution growth technique at room temperature with dimensions 14×14×10 mm3. The formation of new crystal has been confirmed by single crystal X-ray diffraction. The grown crystals were characterized by HRXRD and UV-Vis NIR transmission analysis. The third order nonlinear optical parameters (nonlinear refractive index and nonlinear absorption coefficient) were determined by the Z-scan technique. It was found to be in the order of -7.91×10-8cm2/W and -5.71×10-4cm/W.

  8. Characterization of epidermal growth factor receptors on plasma membranes isolated from rat gastric mucosa

    SciTech Connect

    Hori, R.; Nomura, H.; Iwakawa, S.; Okumura, K. )

    1990-06-01

    The binding of human epidermal growth factor (hEGF), beta-urogastrone, to plasma membranes isolated from rat gastric mucosa was studied to characterize gastric EGF receptors. The binding of ({sup 125}I)hEGF was temperature dependent, reversible, and saturable. A single class of binding sites for EGF with a dissociation constant of 0.42 nM and maximal binding capacity of 42 fmol/mg protein was suggested. There was little change in the binding of ({sup 125}I)hEGF upon addition of peptide hormones (secretin, insulin), antiulcer drugs (cimetidine), or an ulcer-inducing reagent (aspirin). Cross-linking of ({sup 125}I)hEGF to gastric plasma membranes with the use of disuccinimidyl suberate resulted in the labeling of a protein of 150 kDa. These results indicate the presence of EGF receptors on plasma membranes of rat gastric mucosa.

  9. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    SciTech Connect

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, John S.

    2015-02-21

    Initially, the alkaline-earth scintillator, CaI2:Eu2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, at least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the

  10. Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth

    DOE PAGESBeta

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, John S.

    2015-02-21

    Initially, the alkaline-earth scintillator, CaI2:Eu2+, was discovered around 1964 by Hofstadter, Odell, and Schmidt. Serious practical problems quickly arose, however, that were associated with the growth of large monolithic single crystals of this material due to its lamellar, mica-like structure. As a result of its theoretically higher light yield, CaI2:Eu2+ has the potential to exceed the excellent scintillation performance of SrI2:Eu2+. In fact, theoretical predictions for the light yield of CaI2:Eu2+ scintillators suggested that an energy resolution approaching 2% at 662 keV could be achievable. Like the early SrI2:Eu2+ scintillator, the performance of CaI2:Eu2+ scintillators has traditionally suffered due, atmore » least in part, to outdated materials synthesis, component stoichiometry/purity, and single-crystal-growth techniques. Based on our recent work on SrI2:Eu2+ scintillators in single-crystal form, we have developed new techniques that are applied here to CaI2:Eu2+ and pure CaI2 with the goal of growing large un-cracked crystals and, potentially, realizing the theoretically predicted performance of the CaI2:Eu2+ form of this material. Calcium iodide does not adhere to modern glassy carbon Bridgman crucibles - so there should be no differential thermal-contraction-induced crystal/crucible stresses on cooling that would result in crystal cracking of the lamellar structure of CaI2. Here we apply glassy carbon crucible Bridgman growth, high-purity growth-charge compounds, our molten salt processing/filtration technique, and extended vacuum-melt-pumping methods to the growth of both CaI2:Eu2+ and un-doped CaI2. Moreover, large scintillating single crystals were obtained, and detailed characterization studies of the scintillation properties of CaI2:Eu2+ and pure CaI2 single crystals are presented that include studies of the effects of plastic deformation of the crystals on the scintillator performance.« less

  11. Growth hormone receptors in the atherinid Odontesthes bonariensis: characterization and expression profile after fasting-refeeding and growth hormone administration.

    PubMed

    Botta, P E; Simó, I; Sciara, A A; Arranz, S E

    2016-05-01

    In order to improve the understanding of pejerrey Odontesthes bonariensis, growth hormone (Gh)-insulin-like growth factor-1(Igf1) axis, O. bonariensis growth hormone receptor type 1 (ghr1) and type 2 (ghr2) mRNA sequences were obtained. Both transcripts were ubiquitously expressed except in kidney, encephalon and anterior intestine. Alternative transcripts of both receptors were found in muscle. Interestingly, two different ghr2 transcripts with alternative polyadenylation (APA) sites located in the long 3' untranslated region (UTR-APA) were also found in liver. Hepatic ghr1, ghr2 and insulin-like growth factor type 1 (igf1) transcript levels were examined under two different metabolic conditions. In the first experimental condition, fish were fasted for 2 weeks and then re-fed for another 2 weeks. Despite igf1 mRNA relative expression did not show significant differences under the experimental period of time examined, both ghr transcripts decreased their expression levels after the fasting period and returned to their control levels after re-feeding. In the second treatment, recombinant O. bonariensis growth hormone (r-pjGh) was orally administered once a week. After 4 weeks of treatment, liver igf1, ghr1 and ghr2 mRNA relative expression increased (13, 4·5 and 2·1 fold, P < 0·05) compared to control values. These results add novel information to the growth hormone-insulin-like growth factor system in teleosts. PMID:27097742

  12. Epitaxial graphene on silicon carbide: Low-vacuum growth, characterization, and device fabrication

    NASA Astrophysics Data System (ADS)

    Sprinkle, Michael W.

    In the past several years, epitaxial graphene on silicon carbide has been transformed from an academic curiosity of social scientists to a leading candidate material to replace silicon in post-CMOS electronics. This has come with rapid development of growth technologies, improved understanding of epitaxial graphene on the polar faces of silicon carbide, and new device fabrication techniques. The contributions of this thesis include refinement and improved understanding of graphene growth on the silicon- and carbon-faces in the context of managed local silicon partial pressure, high-throughput epitaxial graphene thickness measurement and uniformity characterization by ellipsometry, observations of nearly ideal graphene band structures on rotationally stacked carbon-face multilayer epitaxial graphene, presentation of initial experiments on localized in situ chemical modification of epitaxial graphene for an alternate path to semiconducting behavior, and novel device fabrication methods to exploit the crystal structure of the silicon carbide substrate. The latter is a particularly exciting foray into three dimensional patterning of the substrate that may eliminate the critical problem of edge roughness in graphene nanoribbons.

  13. Functional characterization of a soybean growth stimulator Bradyrhizobium sp. strain SR-6 showing acylhomoserine lactone production.

    PubMed

    Ali, Amanat; Ayesha; Hameed, Sohail; Imran, Asma; Iqbal, Mazhar; Iqbal, Javed; Oresnik, Ivan J

    2016-09-01

    A soybean nodule endophytic bacterium Bradyrhizobium sp. strain SR-6 was characterized for production of acyl homoserine lactones (AHLs) as quorum sensing molecules. Mass spectrometry analysis of AHLs revealed the presence of C6-HSL, 3OH-C6-HSL, C8-HSL, C10-HSL, 3oxoC10-HSL, 3oxo-C12-HSL and 3OH-C12-HSL which are significantly different from those reported earlier in soybean symbionts. Purified AHL extracts significantly improved wheat and soybean seedling growth and root hair development along with increased soybean nodulation under axenic conditions. A positive correlation was observed among in vivo nitrogenase and catalase enzyme activities of the strain SR-6. Transmission electron microscopic analysis showed the cytochemical localization of catalase activity within the bacteroids, specifically attached to the peribacteroidal membrane. Root and nodule colonization proved rhizosphere competence of SR-6. The inoculation of SR-6 resulted in increased shoot length (13%), plant dry matter (50%), grain weight (16%), seed yield (20%) and N-uptake (14%) as compared to non-inoculated soybean plants. The symbiotic bacterium SR-6 has potential to improve soybean growth and yield in sub-humid climate of Azad Jammu and Kashmir region of Pakistan. The production and mass spectrometric profiling of AHLs as well as in vivo cytochemical localization of catalase enzyme activity in soybean Bradyrhizobium sp. have never been reported earlier elsewhere before our these investigations. PMID:27242370

  14. Waste Water Derived Electroactive Microbial Biofilms: Growth, Maintenance, and Basic Characterization

    PubMed Central

    Gimkiewicz, Carla; Harnisch, Falk

    2013-01-01

    The growth of anodic electroactive microbial biofilms from waste water inocula in a fed-batch reactor is demonstrated using a three-electrode setup controlled by a potentiostat. Thereby the use of potentiostats allows an exact adjustment of the electrode potential and ensures reproducible microbial culturing conditions. During growth the current production is monitored using chronoamperometry (CA). Based on these data the maximum current density (jmax) and the coulombic efficiency (CE) are discussed as measures for characterization of the bioelectrocatalytic performance. Cyclic voltammetry (CV), a nondestructive, i.e. noninvasive, method, is used to study the extracellular electron transfer (EET) of electroactive bacteria. CV measurements are performed on anodic biofilm electrodes in the presence of the microbial substrate, i.e. turnover conditions, and in the absence of the substrate, i.e. nonturnover conditions, using different scan rates. Subsequently, data analysis is exemplified and fundamental thermodynamic parameters of the microbial EET are derived and explained: peak potential (Ep), peak current density (jp), formal potential (Ef) and peak separation (ΔEp). Additionally the limits of the method and the state-of the art data analysis are addressed. Thereby this video-article shall provide a guide for the basic experimental steps and the fundamental data analysis. PMID:24430581

  15. Characterization of Xylanolytic Enzymes in Clostridium cellulovorans: Expression of Xylanase Activity Dependent on Growth Substrates

    PubMed Central

    Kosugi, Akihiko; Murashima, Koichiro; Doi, Roy H.

    2001-01-01

    Xylanase activity of Clostridium cellulovorans, an anaerobic, mesophilic, cellulolytic bacterium, was characterized. Most of the activity was secreted into the growth medium when the bacterium was grown on xylan. Furthermore, when the extracellular material was separated into cellulosomal and noncellulosomal fractions, the activity was present in both fractions. Each of these fractions contained at least two major and three minor xylanase activities. In both fractions, the pattern of xylan hydrolysis products was almost identical based on thin-layer chromatography analysis. The major xylanase activities in both fractions were associated with proteins with molecular weights of about 57,000 and 47,000 according to zymogram analyses, and the minor xylanases had molecular weights ranging from 45,000 to 28,000. High α-arabinofuranosidase activity was detected exclusively in the noncellulosomal fraction. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that cellulosomes derived from xylan-, cellobiose-, and cellulose-grown cultures had different subunit compositions. Also, when xylanase activity in the cellulosomes from the xylan-grown cultures was compared with that of cellobiose- and cellulose-grown cultures, the two major xylanases were dramatically increased in the presence of xylan. These results strongly indicated that C. cellulovorans is able to regulate the expression of xylanase activity and to vary the cellulosome composition depending on the growth substrate. PMID:11717260

  16. Epigenetic Characterization of CDKN1C in Placenta Samples from Non-syndromic Intrauterine Growth Restriction.

    PubMed

    López-Abad, Miriam; Iglesias-Platas, Isabel; Monk, David

    2016-01-01

    The cyclin-dependent kinase (CDK)-inhibitor 1C (CDKN1C) gene is expressed from the maternal allele and is located within the centromeric imprinted domain at chromosome 11p15. It is a negative regulator of proliferation, with loss-of-function mutations associated with the overgrowth disorder Beckwith-Wiedemann syndrome. Recently, gain-of-function mutations within the PCNA domain have been described in two disorders characterized by growth failure, namely IMAGe (intra-uterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital abnormalities) syndrome and Silver-Russell syndrome (SRS). Over-expression of CDKN1C by maternally inherited microduplications also results in SRS, suggesting that in addition to activating mutations this gene may regulate growth by changes in dosage. To determine if CDKN1C is involved in non-syndromic IUGR we compared the expression and DNA methylation levels in a large cohort of placental biopsies from IUGR and uneventful pregnancies. We observe higher levels of expression of CDKN1C in IUGR placentas compared to those of controls. All placenta biopsies heterozygous for the PAPA repeat sequence in exon 2 showed appropriate monoallelic expression and no mutations in the PCNA domain were observed. The expression profile was independent of both genetic or methylation variation in the minimal CDKN1C promoter interval and of methylation of the cis-acting maternally methylated region associated with the neighboring KCNQ1OT1 non-coding RNA. Chromatin immunoprecipitation revealed binding sites for CTCF within the unmethylated CDKN1C gene body CpG island and putative enhancer regions, associated with the canonical enhancer histone signature, H3K4me1 and H3K27ac, located ∼58 and 360 kb away. Using 3C-PCR we identify constitutive higher-order chromatin loops that occur between one of these putative enhancer regions and CDKN1C in human placenta tissues, which we propose facilitates expression. PMID:27200075

  17. Epigenetic Characterization of CDKN1C in Placenta Samples from Non-syndromic Intrauterine Growth Restriction

    PubMed Central

    López-Abad, Miriam; Iglesias-Platas, Isabel; Monk, David

    2016-01-01

    The cyclin-dependent kinase (CDK)-inhibitor 1C (CDKN1C) gene is expressed from the maternal allele and is located within the centromeric imprinted domain at chromosome 11p15. It is a negative regulator of proliferation, with loss-of-function mutations associated with the overgrowth disorder Beckwith–Wiedemann syndrome. Recently, gain-of-function mutations within the PCNA domain have been described in two disorders characterized by growth failure, namely IMAGe (intra-uterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital abnormalities) syndrome and Silver–Russell syndrome (SRS). Over-expression of CDKN1C by maternally inherited microduplications also results in SRS, suggesting that in addition to activating mutations this gene may regulate growth by changes in dosage. To determine if CDKN1C is involved in non-syndromic IUGR we compared the expression and DNA methylation levels in a large cohort of placental biopsies from IUGR and uneventful pregnancies. We observe higher levels of expression of CDKN1C in IUGR placentas compared to those of controls. All placenta biopsies heterozygous for the PAPA repeat sequence in exon 2 showed appropriate monoallelic expression and no mutations in the PCNA domain were observed. The expression profile was independent of both genetic or methylation variation in the minimal CDKN1C promoter interval and of methylation of the cis-acting maternally methylated region associated with the neighboring KCNQ1OT1 non-coding RNA. Chromatin immunoprecipitation revealed binding sites for CTCF within the unmethylated CDKN1C gene body CpG island and putative enhancer regions, associated with the canonical enhancer histone signature, H3K4me1 and H3K27ac, located ∼58 and 360 kb away. Using 3C-PCR we identify constitutive higher-order chromatin loops that occur between one of these putative enhancer regions and CDKN1C in human placenta tissues, which we propose facilitates expression. PMID:27200075

  18. Growth and characterization of an organometallic tri-allylthiourea complex nonlinear optical crystals

    NASA Astrophysics Data System (ADS)

    Perumal, R.; Moorthy Babu, S.

    2008-04-01

    A novel family of allylthiourea metal complexes was identified for photonic applications with allylthiourea serving as a double ligand, and II (B) group metals were chosen as a co-ordination metal. This family belongs to an island-type organometallic category. A series of optically negative nonlinear optical (NLO) crystals (ATCC, ATCB, ATMC and ATMB) have been prepared. Their SHG efficiency was an order of magnitude higher than that of the well-known organic crystal, urea. The properties of allylthiourea complex with central atom Cd were compared with the crystals with another central atom Hg. The latter has longer transparency cut-off wavelength, higher thermal stability and SHG efficiencies. These organometallic tri-allylthiourea complex crystals were grown from the aqueous solution by temperature-lowering technique. Comprehensive studies of synthesis, solubility, crystal growth and the general properties including structural, spectral, optical and thermal properties were analyzed by conducting various characterization techniques. They were synthesized in the de-ionized water and the solubilities of each material were determined by employing thermogravimetric analysis. The growth conditions were analyzed in terms of the pH value of the mother solution because it plays a vital role during the growth. Their structural properties were examined by recording the powder X-ray diffraction pattern. The crystal formation and the metal co-ordination were confirmed by the spectral analysis. The transmission spectrum of these crystals shows a wide transparent UV-vis-NIR band. The thermal behavior of these complexes was studied from the thermal studies. Their NLO efficiencies were analyzed through the Kurt'z technique.

  19. Growth Kinetics, Characterization, and Plasticity of Human Menstrual Blood Stem Cells.

    PubMed

    Mehrabani, Davood; Nazarabadi, Roshanak Bahrami; Kasraeian, Maryam; Tamadon, Amin; Dianatpour, Mehdi; Vahdati, Akbar; Zare, Shahrokh; Ghobadi, Farnaz

    2016-03-01

    One of the readily available sources of mesenchymal stem cells (MSCs) is menstrual blood-derived stem cells (Men-SCs), which exhibit characteristics similar to other types of MSCs. This study was performed to determine the growth kinetics, plasticity, and characterization of Men-SCs in women. During spring 2014 in the southern Iranian city of Shiraz, menstrual blood (5 mL) was obtained from 10 women on their third day of menstruation in 2 age groups of 30 to 40 and 40 to 50 years old. Ficoll was used to separate the mononuclear cell fraction. After the Men-SCs were cultured, they were subcultured up to passage 4. Growth behavior and population doubling time were evaluated by seeding 5×10(4) cells into 12- and 24-well culture plates, and the colonies were enumerated. The expression of CD44, CD90, and CD34 was evaluated. The osteogenic potential was assessed by alizarin red staining. The Men-SCs were shown to be plastic adherent and spindle-shaped. Regarding the growth curves in the 12- and 24-well culture plates, it was demonstrated that in the women aged between 30 and 40 years, population doubling time was 55.5 and 62 hours, respectively, while these values in the women aged between 40 and 50 years were 70.4 and 72.4 hours, correspondingly. Positive expression of CD44 and CD90 and negative expression of CD34 were noted. In the osteogenic differentiation medium, the cells differentiated toward osteoblasts. As human Men-SCs are easily collectable without any invasive procedure and are a safe and rapid source of MSCs, they can be a good candidate for stem cell banking and cell transplantation in women. PMID:26989284

  20. Molecular Characterization of Babesia bovis M17 Leucine Aminopeptidase and Inhibition of Babesia Growth by Bestatin.

    PubMed

    Aboge, Gabriel Oluga; Cao, Shinuo; Terkawi, Mohamad Alaa; Masatani, Tatsunori; Goo, Younkyoung; AbouLaila, Mahmoud; Nishikawa, Yoshifumi; Igarashi, Ikuo; Suzuki, Hiroshi; Xuan, Xuenan

    2015-10-01

    The M17 leucine aminopeptidase (M17LAP) enzymes of the other apicomplexan parasites have been characterized and shown to be inhibited by bestatin. Though Babesia bovis also belongs to the apicomplexan group, it is not known whether its M17LAP could display similar biochemical properties as well as inhibition profile. To unravel this uncertainty, a B. bovis M17LAP (BbM17LAP) gene was expressed in Escherichia coli , and activity of the recombinant enzyme as well as its inhibition by bestatin were evaluated. The inhibitory effect of the compound on growths of B. bovis and Babesia gibsoni in vitro was also determined. The expression of the gene fused with glutathione S-transferase (GST) yielded approximately 81-kDa recombinant BbM17LAP (rBbM17LAP). On probing with mouse anti-rBbM17LAP serum, a green fluorescence was observed on the parasite cytosol on confocal laser microscopy, and a specific band greater than the predicted molecular mass was seen on Western blotting. The Km and Vmax values of the recombinant enzyme were 139.3 ± 30.25 and 64.83 ± 4.6 μM, respectively, while the Ki was 2210 ± 358 μM after the inhibition. Bestatin was a more potent inhibitor of the growth of B. bovis [IC50 (50% inhibition concentration) = 131.7 ± 51.43 μM] than B. gibsoni [IC50 = 460.8 ± 114.45 μM] in vitro. The modest inhibition of both the rBbM17LAP activity and Babesia parasites' growth in vitro suggests that this inhibition may involve the endogenous enzyme in live parasites. Therefore, BbM17LAP may be a target of bestatin, though more studies with other aminopeptidase inhibitors are required to confirm this. PMID:26057618

  1. Growth Kinetics, Characterization, and Plasticity of Human Menstrual Blood Stem Cells

    PubMed Central

    Mehrabani, Davood; Nazarabadi, Roshanak Bahrami; Kasraeian, Maryam; Tamadon, Amin; Dianatpour, Mehdi; Vahdati, Akbar; Zare, Shahrokh; Ghobadi, Farnaz

    2016-01-01

    One of the readily available sources of mesenchymal stem cells (MSCs) is menstrual blood-derived stem cells (Men-SCs), which exhibit characteristics similar to other types of MSCs. This study was performed to determine the growth kinetics, plasticity, and characterization of Men-SCs in women. During spring 2014 in the southern Iranian city of Shiraz, menstrual blood (5 mL) was obtained from 10 women on their third day of menstruation in 2 age groups of 30 to 40 and 40 to 50 years old. Ficoll was used to separate the mononuclear cell fraction. After the Men-SCs were cultured, they were subcultured up to passage 4. Growth behavior and population doubling time were evaluated by seeding 5×104 cells into 12- and 24-well culture plates, and the colonies were enumerated. The expression of CD44, CD90, and CD34 was evaluated. The osteogenic potential was assessed by alizarin red staining. The Men-SCs were shown to be plastic adherent and spindle-shaped. Regarding the growth curves in the 12- and 24-well culture plates, it was demonstrated that in the women aged between 30 and 40 years, population doubling time was 55.5 and 62 hours, respectively, while these values in the women aged between 40 and 50 years were 70.4 and 72.4 hours, correspondingly. Positive expression of CD44 and CD90 and negative expression of CD34 were noted. In the osteogenic differentiation medium, the cells differentiated toward osteoblasts. As human Men-SCs are easily collectable without any invasive procedure and are a safe and rapid source of MSCs, they can be a good candidate for stem cell banking and cell transplantation in women. PMID:26989284

  2. Growth and spectroscopic characterization of monolayer and few-layer hexagonal boron nitride on metal substrates.

    PubMed

    Feigelson, Boris N; Bermudez, Victor M; Hite, Jennifer K; Robinson, Zachary R; Wheeler, Virginia D; Sridhara, Karthik; Hernández, Sandra C

    2015-02-28

    Atomically thin two dimensional hexagonal boron nitride (2D h-BN) is one of the key materials in the development of new van der Waals heterostructures due to its outstanding properties including an atomically smooth surface, high thermal conductivity, high mechanical strength, chemical inertness and high electrical resistance. The development of 2D h-BN growth is still in the early stages and largely depends on rapid and accurate characterization of the grown monolayer or few layers h-BN films. This paper demonstrates a new approach to characterizing monolayer h-BN films directly on metal substrates by grazing-incidence infrared reflection absorption spectroscopy (IRRAS). Using h-BN films grown by atmospheric-pressure chemical vapor deposition on Cu and Ni substrates, two new sub-bands are found for the A2u out-of-plane stretching mode. It is shown, using both experimental and computational methods, that the lower-energy sub-band is related to 2D h-BN coupled with substrate, while the higher energy sub-band is related to decoupled (or free-standing) 2D h-BN. It is further shown that this newly-observed fine structure in the A2u mode can be used to assess, quickly and easily, the homogeneity of the h-BN-metal interface and the effects of metal surface contamination on adhesion of the layer. PMID:25640166

  3. Synthesis, growth and characterization of a new nonlinear optical material: 4-phenylpyridinium hydrogen squarate (4PHS).

    PubMed

    Raja, C Ramachandra; Paramasivam, P; Vijayan, N

    2008-04-01

    A novel organic non-linear optical organic single crystal of 4-phenylpyridinium hydrogen squarate (4PHS) has been synthesized and successfully grown from aqueous solutions by slow evaporation solution growth method. In the present investigation the title compound has been synthesized by taking equimolar quantity of 4-phenylpyridine and squaric acid and mixed thoroughly using double distilled water as the solvent. The prepared concentrated solution was placed in an undisturbed condition, and then the solution was periodically inspected. The good quality single crystals have been harvested in a time span of 3 weeks. Then the grown crystal was characterized as single crystal XRD, differential thermal analysis, thermogravimetric analysis, FTIR, UV-vis-NIR, SHG, (1)H NMR and (13)C NMR analyses, respectively. The observed results from the characterization analyses show its suitability for NLO applications when compared with some of the existing organic crystals. The relative second harmonic generation of this grown crystal was found to be five times higher than that of KDP crystal. The UV cut-off wavelength and decomposition temperature of this grown crystal were also comparatively better. (1)H NMR and (13)C NMR spectroscopic studies were employed to elucidate the structure of the grown specimen. PMID:17652013

  4. Growth and spectroscopic characterization of monolayer and few-layer hexagonal boron nitride on metal substrates

    NASA Astrophysics Data System (ADS)

    Feigelson, Boris N.; Bermudez, Victor M.; Hite, Jennifer K.; Robinson, Zachary R.; Wheeler, Virginia D.; Sridhara, Karthik; Hernández, Sandra C.

    2015-02-01

    Atomically thin two dimensional hexagonal boron nitride (2D h-BN) is one of the key materials in the development of new van der Waals heterostructures due to its outstanding properties including an atomically smooth surface, high thermal conductivity, high mechanical strength, chemical inertness and high electrical resistance. The development of 2D h-BN growth is still in the early stages and largely depends on rapid and accurate characterization of the grown monolayer or few layers h-BN films. This paper demonstrates a new approach to characterizing monolayer h-BN films directly on metal substrates by grazing-incidence infrared reflection absorption spectroscopy (IRRAS). Using h-BN films grown by atmospheric-pressure chemical vapor deposition on Cu and Ni substrates, two new sub-bands are found for the A2u out-of-plane stretching mode. It is shown, using both experimental and computational methods, that the lower-energy sub-band is related to 2D h-BN coupled with substrate, while the higher energy sub-band is related to decoupled (or free-standing) 2D h-BN. It is further shown that this newly-observed fine structure in the A2u mode can be used to assess, quickly and easily, the homogeneity of the h-BN-metal interface and the effects of metal surface contamination on adhesion of the layer.

  5. Characterizing continuous urban growth using composited time-series Landsat data

    NASA Astrophysics Data System (ADS)

    Song, X. P.; Sexton, J. O.; Huang, C.; Feng, M.; Channan, S.; Baker, M. E.; Townshend, J. R.

    2014-12-01

    Impervious surfaces are land cover features through which water cannot penetrate into the soil. As an indicator of urban land use, impervious surface cover (ISC) is disproportionally important to human beings-although covering only 0.5% of the Earth's terrestrial surface, cities support over 50% the Earth's population. The increasing demand for built-up space by a growing urban population has been driving land use change in urban areas worldwide. An increase in ISC can significantly impact the biophysical characteristics of land surface, such as altering the local surface energy balance, or transforming regional hydrological systems. Remotely sensed data is commonly used as the primary data source for extracting impervious surface information for monitoring urban growth, but current studies often lack the sufficient temporal resolution or thematic detail to reveal the long-term, nonlinear development of impervious surfaces over time. In a previous study (Sexton et al. 2013), we created an annual stack of 30-m percent ISC estimates for the Washington DC-Baltimore metropolitan region from 1984 to 2010 by compositing all available Landsat images in the USGS archive. Here we developed a robust time-series method to detect impervious surface change. The method employs a customized logistic function for every pixel to model the continuous process of urban growth. It quantifies the fractional intensity of ISC change at the sub-pixel level and also characterizes the timing and length (in years) of urban development. The new method detects change based on a sequence of observations before, during and after change and thus is highly resistant to random noises. Our results showed that the DC-Baltimore metropolitan region experienced an accelerated growth pathway from the late 1980s to the late 2000s. The majority of urban and sub-urban development occurred at scales finer than the Landsat resolution (30 m), with a region-wide mean intensity of 46% ISC increase. Our study

  6. The growth and characterization of alkylphosphonic acid self-assembled nanofibers

    NASA Astrophysics Data System (ADS)

    Salmon, Michael Edward

    The focus of this research was to investigate the formation and properties of novel Self-Assembled Nanofibers (SANs) created by the treatment of aluminum with solutions of short chain-length alkylphosphonic acids (APAs) in ethanol. A special emphasis was placed on the creation of APA SANs isolated from the immersed aluminum source and development of analysis techniques for artifact reduced characterization of as-grown individual SANs. Novel immersion growth techniques were devised for the reproducible creation of supported and unsupported isolated methylphosphonic acid (C1), propylphosphonic acid (C3), and pentylphosphonic acid (C5) SANs on Si3N4 and aluminum coated ProtoChips(TM) DuraSiN(TM) Si3N 4 meshes respectively. Additionally, a novel biased immersion growth technique was developed, increasing growth rates as well as allowing for APA SAN deposition onto a variety of substrates including Au microelectrodes. A combination of complementary analysis techniques including: Atomic force microscopy (AFM), Scanning Transmission Electron Microscopy (STEM), Energy Dispersive Spectrometry (EDS), X-Ray Photoelectron Spectroscopy (XPS), and Electron Energy Loss Spectroscopy (EELS) were utilized to characterize the morphology, composition and chemistry of isolated individual APA SANs. STEM and AFM revealed individual APA SANs are actually composed of layered fibril bundles. Qualitative compositional analysis showed APA SANs were primarily composed of oxygen, carbon, phosphorus, and aluminum with phosphorus:aluminum ratios determined to be between 1.5 and 4.2. Quantitative XPS and EELS analysis provided further evidence that the detected aluminum was non-metallic and likely oxidized. STEM with EELS was utilized to definitively correlate the presence of aluminum, phosphorus, oxygen, and carbon to a 5 nm region of several overlapping unsupported C1 SANs. Thermal analysis of APA SANs on Al as well as isolated on Si3N 4 revealed a nearly 5X increase in thermal stability as

  7. Characterization of the bioactive metabolites from a plant growth-promoting rhizobacteria and their exploitation as antimicrobial and plant growth-promoting agents.

    PubMed

    George, Emrin; Kumar, S Nishanth; Jacob, Jubi; Bommasani, Bhaskara; Lankalapalli, Ravi S; Morang, P; Kumar, B S Dileep

    2015-05-01

    A plant growth-promoting bacterial strain, PM 105, isolated from a tea plantation soil from the North Eastern region of India was identified as Pseudomonas aeruginosa through classical and 16S ribosomal DNA (rDNA) gene sequencing. Further studies with this strain confirmed broad spectrum antifungal activity against ten human and plant pathogenic fungal pathogens viz. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus tubingensis, Candida albicans, Colletotrichum gloeosporioides, Fusarium oxysporum, Pencillium expansum, Rhizoctonia solani, Trichophyton rubrum besides growth-promoting property in cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan). However, no antibacterial property was exhibited by this strain against the four test bacterial pathogens tested in agar overlay method. The crude bioactive metabolites produced by this strain were isolated with three different solvents that exhibited significant antimicrobial and plant growth-promoting activity. Chloroform extract recorded significant antimicrobial and plant growth-promoting activity. Three major compounds viz. 1-hydroxyphenazine, pyocyanin, and phenazine-1-carboxamide were purified and characterized from crude extracts of this strain by various spectral data. The purified compounds recorded prominent antimicrobial activity but failed to establish the plant growth promotion activity in test crop plants under gnotobiotic conditions. Pyocyanin recorded significant antimicrobial activity, and best activity was recorded against T. rubrum (29 mm), followed by P. expansum (28 mm). These results suggest the use of PM 105 as plant growth-promoting agent in crop plants after successful field trials. PMID:25832181

  8. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  9. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  10. Crystal growth and characterization of Tm doped mixed rare-earth aluminum perovskite

    SciTech Connect

    Totsuka, Daisuke; Yanagida, Takayuki; Sugiyama, Makoto; Fujimoto, Yutaka; Yokota, Yuui; Yoshikawa, Akira

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer (Lu{sub x}Gd{sub y}Y{sub 0.99-x-y}Tm{sub 0.01})AP single crystals were grown by the {mu}-PD method. Black-Right-Pointing-Pointer The grown crystals were single phase with perovskite structure (Pbnm). Significant segregation of Lu and Gd was detected in the growth direction. Black-Right-Pointing-Pointer Some absorption bands due to Tm{sup 3+}, Gd{sup 3+} and color centers were exhibited. Black-Right-Pointing-Pointer Radioluminescence spectra showed several emission peaks ascribed to Tm{sup 3+} and Gd{sup 3+}. -- Abstract: In this work, we present results of structural characterization and optical properties including radio luminescence of (Lu{sub x}Gd{sub y}Y{sub 0.99-x-y}Tm{sub 0.01})AP single crystal scintillators for (x, y) = (0.30, 0.19), (0, 0.19) and (0, 0) grown by the micro-pulling-down ({mu}-PD) method. The grown crystals were single phase materials with perovskite structure (Pbnm) as confirmed by XRD and had a good crystallinity. The distribution of the crystal constituents in growth direction was evaluated, and significant segregation of Lu and Gd was detected in (Lu{sub 0.30}Gd{sub 0.19}Y{sub 0.50}Tm{sub 0.01})AP sample. The crystals demonstrated 70% transmittance in visible wavelength range and some absorption bands due to Tm{sup 3+}, Gd{sup 3+} and color centers were exhibited in 190-900 nm. The radioluminescence measurement under X-ray irradiation demonstrated several emission peaks ascribed to 4f-4f transitions of Tm{sup 3+} and Gd{sup 3+}. The ratio of emission intensity in longer wavelength range was increased when Y was replaced by Lu or Gd.

  11. Hydrothermal growth and characterization of titanium dioxide nanostructures for use in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sorge, Judith D.

    As the world's energy needs continue to grow, next generation photovoltaic cells are in high demand because they offer the possibility of an inexpensive alternative to current energy production techniques. Dye sensitized solar cells (DSSC's), utilize common materials and low cost commercialization techniques, which make them a compelling choice for research in this area. This research focuses on the titanium dioxide coating, which transfers electrons from the photoactive dye to the electrode. 3-4% efficient DSSC's using doctor bladed titanium dioxide coatings with a specific surface area of 55-60m2/g have been demonstrated in our laboratory. To enhance the efficiency of these cells, both the surface area and the electron conduction of the titania layer must be optimized. This has been done by utilizing high aspect ratio nanoparticles of titania instead of mesoporous layers formed with spherical particles. Anodization of titanium metal or anodic alumina membrane templating are common ways to produce nanorods, but involve complex processes leading toward expensive commercialization. This research instead focuses on the hydrothermal growth of nanofibrous titania on a titanium metal substrate, removing the need for dispersion and deposition procedures as well as using a low temperature processing method. Depending upon the formulation utilized, a variety of structures can be produced, from thick carpets of nanofiber strands to large platelets. The composition and morphology of the products have been characterized with respect to the growth conditions using electron microscopy, energy dispersive spectroscopy and x-ray diffraction. The compositional analysis is used to investigate the complicated reaction mechanisms in the system. Coatings of titania nanotubes were then tested in the DSSC's, as were those with the titanium metal substrate acting as the photo anode. Modeling the geometric parameters of the different pore structures of the coatings helps us to understand

  12. Synthesis, crystal growth and characterization of nonlinear optical organic crystal: p-Toluidinium p-toluenesulphonate

    SciTech Connect

    Vijayakumar, P.; Anandha Babu, G.; Ramasamy, P.

    2012-04-15

    Graphical abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. p-TTS single crystal belongs to negative birefringence crystal. Second harmonic conversion efficiency of p-TTS has been found to be 1.3 times higher than that of KDP. Multiple shot surface laser damage threshold is determined to be 0.30 GW/cm{sup 2} at 1064 nm laser radiation. Highlights: Black-Right-Pointing-Pointer It deals with the synthesis, growth and characterization of p-TTS an organic NLO crystal. Black-Right-Pointing-Pointer Wide optical transparency window between 280 nm and 1100 nm. Black-Right-Pointing-Pointer Negative birefringence crystal and dispersion of birefringence is negligibly small. Black-Right-Pointing-Pointer Thermal study reveals that the grown crystal is stable up to 210 Degree-Sign C. Black-Right-Pointing-Pointer Multiple shot surface laser damage threshold is 0.30 GW/cm{sup 2} at 1064 nm laser radiation. -- Abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. The structural perfection of the grown p-TTS single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. Fourier transform infrared spectral studies have been performed to identify the functional groups. The optical transmittance window and the lower cutoff wavelength of the grown crystals have been identified by UV-vis-IR studies. Birefringence of p-TTS crystal has been studied using channel spectrum measurement. The laser damage threshold value was measured using Nd:YAG laser. The second harmonic conversion efficiency of p-TTS has

  13. Horizontal Ampoule Growth and Characterization of Mercuric Iodide at Controlled Gas Pressures for X-Ray and Gamma Ray Spectrometers

    SciTech Connect

    McGregor, Douglas S.; Ariesanti, Elsa; Corcoran, Bridget

    2004-04-30

    The project developed a new method for producing high quality mercuric iodide crystals of x-ray and gamma spectrometers. Included are characterization of mercuric iodide crystal properties as a function of growth environment and fabrication and demonstration of room-temperature-operated high-resolution mercuric iodide spectrometers.

  14. Characterization of Salmonella enterica isolates from turkeys in commercial processing plants for resistance to antibiotics, disinfectants, and a growth promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella enterica serovars isolated from turkeys in commercial processing plants were characterized for susceptibility to antibiotics, disinfectants, disinfectant components, and the organoarsenical growth promotant 4-hydroxy-3-nitrophenylarsonic acid (3-NHPAA) and its metabolites NaAsO2 (As[III])...

  15. Identifying natural flow regimes using fish communities

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Tsai, Wen-Ping; Wu, Tzu-Ching; Chen, Hung-kwai; Herricks, Edwin E.

    2011-10-01

    SummaryModern water resources management has adopted natural flow regimes as reasonable targets for river restoration and conservation. The characterization of a natural flow regime begins with the development of hydrologic statistics from flow records. However, little guidance exists for defining the period of record needed for regime determination. In Taiwan, the Taiwan Eco-hydrological Indicator System (TEIS), a group of hydrologic statistics selected for fisheries relevance, is being used to evaluate ecological flows. The TEIS consists of a group of hydrologic statistics selected to characterize the relationships between flow and the life history of indigenous species. Using the TEIS and biosurvey data for Taiwan, this paper identifies the length of hydrologic record sufficient for natural flow regime characterization. To define the ecological hydrology of fish communities, this study connected hydrologic statistics to fish communities by using methods to define antecedent conditions that influence existing community composition. A moving average method was applied to TEIS statistics to reflect the effects of antecedent flow condition and a point-biserial correlation method was used to relate fisheries collections with TEIS statistics. The resulting fish species-TEIS (FISH-TEIS) hydrologic statistics matrix takes full advantage of historical flows and fisheries data. The analysis indicates that, in the watersheds analyzed, averaging TEIS statistics for the present year and 3 years prior to the sampling date, termed MA(4), is sufficient to develop a natural flow regime. This result suggests that flow regimes based on hydrologic statistics for the period of record can be replaced by regimes developed for sampled fish communities.

  16. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  17. Synthesis, growth, structure and characterization of chalcone crystal: A novel organic NLO material

    NASA Astrophysics Data System (ADS)

    Agilandeshwari, R.; Meenatchi, V.; Meenakshisundaram, S. P.

    2016-08-01

    Single crystals of a chalcone, (E)-3-(4-bromophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (BHP), were grown by the slow evaporation solution growth technique. The structure is elucidated by single-crystal X-ray diffraction analysis and the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. Optical studies reveal that the absorption is minimum in the visible region and the cut-off wavelength is at ∼468 nm. The band-gap energy was estimated by the application of the Kubelka-Munk algorithm. The powder X-ray diffraction pattern reveals the good crystallinity of the as-grown specimen. The vibrational patterns in FT-IR are used to identify the functional groups and thermal studies indicate the stability of the material. The second harmonic generation efficiency (SHG), as estimated by Kurtz and Perry powder technique, reveals the superior nonlinear optical character of this material. Hirshfeld surface analysis is done to quantify the intermolecular interactions, responsible for developing a nonlinear atmosphere. As-grown crystals were further characterized by SEM, NMR, mass spectrometry and elemental analysis.

  18. Preparation, characterization and molecular modeling of PEGylated human growth hormone with agonist activity.

    PubMed

    Khameneh, Bahman; Jaafari, Mahmoud Reza; Hassanzadeh-Khayyat, Mohammad; Varasteh, AbdolReza; Chamani, JamshidKhan; Iranshahi, Mehrdad; Mohammadpanah, Hamid; Abnous, Khalil; Saberi, Mohammad Reza

    2015-09-01

    In this study, site-specific PEGylated human growth hormone (hGH) was prepared by microbial transglutaminase, modeled and characterized. To this end, the effects of different reaction parameters including reaction media, PEG:protein ratios, reaction time and pH value were investigated. PEG-hGH was purified by size exclusion chromatography method and analyzed by SDS-PAGE, BCA, peptide mapping, ESI and MALDI-TOF-TOF mass spectroscopy methods. Biophysical and biological properties of PEG-hGH were evaluated. Molecular simulation was utilized to provide molecular insight into the protein-receptor interaction. The optimum conditions that were obtained for PEGylation were phosphate buffer with pH of 7.4, 48 h of stirring and PEG:protein ratio of 40:1. By this method, mono-PEG-hGH with high reaction yield was obtained and PEGylation site was at Gln-40 residue. The circular dichroism and fluorescence spectrum indicated that PEGylation did not change the secondary structure while tertiary structure was altered. Upon enzymatic PEGylation, agonistic activity of hGH was preserved; however, Somavert(®), which is prepared by chemical PEGylation, is an antagonist form of protein. These data were confirmed by the total energy of affinity obtained by computational protein-receptor interaction. In conclusion, PEGylation of hGH was led to prepare a novel form of hormone with an agonist activity which merits further investigations. PMID:26116386

  19. Characterization of the action of epidermal growth factor in three different biological systems

    SciTech Connect

    Woost, P.G.

    1986-01-01

    In general, these studies characterized in each system one or more of the following aspects of EGF's biological action: EGF binding, EGF-induced phosphorylation, or EGF-stimulated DNA synthesis. In human corneal fibroblasts (HCF), EGF binds to specific, saturable, high affinity receptors and stimulated (/sup 3/H)-thymidine incorporation, and in vitro measurement of DNA synthesis, approximately 2.5 fold above control cultures, with maximal stimulation occurring at approximately 1 nM EGF. In addition, fibroblasts growth factor (FGF) and insulin stimulated maximal (/sup 3/H)-thymidine incorporation in HCF at approximately 100 ng ml/sup -1/ and 1 nM, respectively. In combination with dexamethasone (5 nM), the stimulation of (/sup 3/H)-thymidine incorporation by EGF was maintained. However, dexamethasone abolished the stimulatory action of FGF. Highly purified preparations of human placental outer cell membranes and intracellular organelles were assayed for functional EGF binding proteins (EGF-receptors). Functionality of a protein was determined by covalent labeling with (/sup 125/I)-EGF and EGF-stimulated autophosphorylation.

  20. Synthesis, growth, structure and characterization of chalcone crystal: A novel organic NLO material

    NASA Astrophysics Data System (ADS)

    Agilandeshwari, R.; Meenatchi, V.; Meenakshisundaram, S. P.

    2016-08-01

    Single crystals of a chalcone, (E)-3-(4-bromophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (BHP), were grown by the slow evaporation solution growth technique. The structure is elucidated by single-crystal X-ray diffraction analysis and the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. Optical studies reveal that the absorption is minimum in the visible region and the cut-off wavelength is at ∼468 nm. The band-gap energy was estimated by the application of the Kubelka-Munk algorithm. The powder X-ray diffraction pattern reveals the good crystallinity of the as-grown specimen. The vibrational patterns in FT-IR are used to identify the functional groups and thermal studies indicate the stability of the material. The second harmonic generation efficiency (SHG), as estimated by Kurtz and Perry powder technique, reveals the superior nonlinear optical character of this material. Hirshfeld surface analysis is done to quantify the intermolecular interactions, responsible for developing a nonlinear atmosphere. As-grown crystals were further characterized by SEM, NMR, mass spectrometry and elemental analysis.

  1. Characterization of the viral fibroblast growth factor homolog of Helicoverpa armigera single nucleopolyhedrovirus.

    PubMed

    Yin, Feifei; Du, Ruikun; Kuang, Wenhua; Yang, Guang; Wang, Hualin; Deng, Fei; Hu, Zhihong; Wang, Manli

    2016-06-01

    Fibroblast growth factor (FGF) is found throughout multicellular organisms; however, fgf homologs (vfgf) have only been identified among viruses in lepidopteran baculoviruses. The function of vFGFs from Group I alphabaculoviruses, including Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV), involves accelerated killing of infected larvae by both viruses. The vFGF of Group II alphabaculovirus is structurally different from that of Group I alphabaculovirus, with a larger C-terminal region and additional N-linked glycosylation sites. In this study, we characterized the Group II alphabaculovirus vFGF of Helicoverpa armigera single nucleopolyhedrovirus (HearNPV). The transcription and expression of vfgf was detected at 3 h and 16 h post-infection in HearNPV-infected cells. To further study vFGF function, we constructed vfgf-knockout and -repaired HearNPV bacmids and investigated their affect in both cultured cells and insects. Deletion of vfgf had no effect on budded-virus production or viral DNA replication in cultured HzAM1 cells. However, bioassays showed that HearNPV vfgf deletion significantly increased the median lethal dose and delayed the median lethal time by ∼12 h in the host insect when the virus was delivered orally. These results suggested that vFGF is an important virulent factor for HearNPV infection and propagation in vivo. PMID:27142667

  2. Characterization of New Virulence Factors Involved in the Intracellular Growth and Survival of Burkholderia pseudomallei.

    PubMed

    Moule, Madeleine G; Spink, Natasha; Willcocks, Sam; Lim, Jiali; Guerra-Assunção, José Afonso; Cia, Felipe; Champion, Olivia L; Senior, Nicola J; Atkins, Helen S; Clark, Taane; Bancroft, Gregory J; Cuccui, Jon; Wren, Brendan W

    2015-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, has complex and poorly understood extracellular and intracellular lifestyles. We used transposon-directed insertion site sequencing (TraDIS) to retrospectively analyze a transposon library that had previously been screened through a BALB/c mouse model to identify genes important for growth and survival in vivo. This allowed us to identify the insertion sites and phenotypes of negatively selected mutants that were previously overlooked due to technical constraints. All 23 unique genes identified in the original screen were confirmed by TraDIS, and an additional 105 mutants with various degrees of attenuation in vivo were identified. Five of the newly identified genes were chosen for further characterization, and clean, unmarked bpsl2248, tex, rpiR, bpsl1728, and bpss1528 deletion mutants were constructed from the wild-type strain K96243. Each of these mutants was tested in vitro and in vivo to confirm their attenuated phenotypes and investigate the nature of the attenuation. Our results confirm that we have identified new genes important to in vivo virulence with roles in different stages of B. pseudomallei pathogenesis, including extracellular and intracellular survival. Of particular interest, deletion of the transcription accessory protein Tex was shown to be highly attenuating, and the tex mutant was capable of providing protective immunity against challenge with wild-type B. pseudomallei, suggesting that the genes identified in our TraDIS screen have the potential to be investigated as live vaccine candidates. PMID:26712202

  3. Growth and characterization of TiO2 nanotubes from sputtered Ti film on Si substrate

    NASA Astrophysics Data System (ADS)

    Chappanda, Karumbaiah N.; Smith, York R.; Mohanty, Swomitra K.; Rieth, Loren W.; Tathireddy, Prashant; Misra, Mano

    2012-07-01

    In this paper, we present the synthesis of self-organized TiO2 nanotube arrays formed by anodization of thin Ti film deposited on Si wafers by direct current (D.C.) sputtering. Organic electrolyte was used to demonstrate the growth of stable nanotubes at room temperature with voltages varying from 10 to 60 V (D.C.). The tubes were about 1.4 times longer than the thickness of the sputtered Ti film, showing little undesired dissolution of the metal in the electrolyte during anodization. By varying the thickness of the deposited Ti film, the length of the nanotubes could be controlled precisely irrespective of longer anodization time and/or anodization voltage. Scanning electron microscopy, atomic force microscopy, diffuse-reflectance UV-vis spectroscopy, and X-ray diffraction were used to characterize the thin film nanotubes. The tubes exhibited good adhesion to the wafer and did not peel off after annealing in air at 350 °C to form anatase TiO2. With TiO2 nanotubes on planar/stable Si substrates, one can envision their integration with the current micro-fabrication technique large-scale fabrication of TiO2 nanotube-based devices.

  4. Characterization of pituitary growth hormone and its receptor in the green iguana (Iguana iguana).

    PubMed

    Ávila-Mendoza, José; Carranza, Martha; Pérez-Rueda, Ernesto; Luna, Maricela; Arámburo, Carlos

    2014-07-01

    Pituitary growth hormone (GH) has been studied in most vertebrate groups; however, only a few studies have been carried out in reptiles. Little is known about pituitary hormones in the order Squamata, to which the green iguana (gi) belongs. In this work, we characterized the hypophysis of Iguana iguana morphologically. The somatotrophs (round cells of 7.6-10 μm containing 250- to 300-nm secretory granules where the giGH is stored) were found, by immunohistochemistry and in situ hybridization, exclusively in the caudal lobe of the pars distalis, whereas the lactotrophs were distributed only in the rostral lobe. A pituitary giGH-like protein was obtained by immuno-affinity chromatography employing a heterologous antibody against chicken GH. giGH showed molecular heterogeneity (22, 44, and 88 kDa by SDS-PAGE/Western blot under non-reducing conditions and at least four charge variants (pIs 6.2, 6.5, 6.9, 7.4) by isoelectric focusing. The pituitary giGH cDNA (1016 bp), amplified by PCR and RACE, encodes a pre-hormone of 218 aa, of which 190 aa correspond to the mature protein and 28 aa to the signal peptide. The giGH receptor cDNA was also partially sequenced. Phylogenetic analyses of the amino acid sequences of giGH and giGHR homologs in vertebrates suggest a parallel evolution and functional relationship between the GH and its receptor. PMID:24769041

  5. Characterization of nitrogen substrate limitation on Escherichia coli's growth by parameter identification tools.

    PubMed

    Rios-Lozano, M; Guerrero-Torres, V; Badillo-Corona, A; Chairez, I; Garibay-Orijel, C

    2016-07-01

    Carbon-to-nitrogen ratio (CNR) has shown to be a relevant factor in microorganisms growth and metabolites production. It is usual that this factor compromises the productivity yield of different microorganisms. However, CNR has been rarely modeled and therefore the nature of its specific influence on metabolites production has not been understood clearly. This paper describes a parametric characterization of the CNR effect on the Escherichia coli metabolism. A set of parameters was proposed to introduce a mathematical model that considers the biomass, substrate and several byproducts dynamical behavior under batch regimen and CNR influence. Identification algorithm used to calculate the parameters considers a novel least mean square strategy that formalizes the CNR influence in E. coli metabolism. This scheme produced a step-by-step method that was suitable for obtaining the set of parameters that describes the model. This method was evaluated under two scenarios: (a) using the data from a set of numerical simulations where the model was tested under the presence of artificial noises and (b) the information obtained from a set of experiments under different CNR. In both cases, a leave-one-experiment-out cross-validation study was considered to evaluate the model prediction capabilities. Feasibility of the parametric identification method was proven in both considered scenarios. PMID:27021346

  6. Characterizing the nonlinear growth of large-scale structure in the Universe

    PubMed

    Coles; Chiang

    2000-07-27

    The local Universe displays a rich hierarchical pattern of galaxy clusters and superclusters. The early Universe, however, was almost smooth, with only slight 'ripples' as seen in the cosmic microwave background radiation. Models of the evolution of cosmic structure link these observations through the effect of gravity, because the small initially overdense fluctuations are predicted to attract additional mass as the Universe expands. During the early stages of this expansion, the ripples evolve independently, like linear waves on the surface of deep water. As the structures grow in mass, they interact with each other in nonlinear ways, more like waves breaking in shallow water. We have recently shown how cosmic structure can be characterized by phase correlations associated with these nonlinear interactions, but it was not clear how to use that information to obtain quantitative insights into the growth of structures. Here we report a method of revealing phase information, and show quantitatively how this relates to the formation of filaments, sheets and clusters of galaxies by nonlinear collapse. We develop a statistical method based on information entropy to separate linear from nonlinear effects, and thereby are able to disentangle those aspects of galaxy clustering that arise from initial conditions (the ripples) from the subsequent dynamical evolution. PMID:10935627

  7. Characterization of defect growth structures in ion plated films by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Gold and copper films (0.2-2 micron thick) are ion plated on very smooth stainless steel 304 and mica surfaces. The deposited films are examined by SEM to identify the morphological growth of defects. Three types of coating defects are distinguished: nodular growth, abnormal or runaway growth, and spits. The potential nucleation sites for defect growth are analyzed to determine the cause of defect formation. It is found that nuclear growth is due to inherent surface microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation and ejection of droplets. All these defects have adverse effects on the coatings.

  8. Evaluating temperature regimes for protection of brown trout

    USGS Publications Warehouse

    Armour, Carl L.

    1994-01-01

    Geographic distribution and population success of brown trout (Salmo trutta) are affected by temperature regimes. Concepts are presented for evaluating alternative temperature regimes for brown trout based on published temperature information and professional judgment. Temperature information from the literature is included for spawning runs, spawning, egg and larval development, growth, and other subjects. The objective is to aid biologists in evaluating alternative temperature regimes so as to select those that will protect and enhance environmental quality for brown trout.

  9. Characterization of burden on growth due to the nutritional state of media and pre-induced gene expression.

    PubMed

    Malakar, Pushkar; Venkatesh, K V

    2013-04-01

    Studies have shown that the production of unnecessary proteins burdens the cellular growth mainly due to allocation of cellular resources to unnecessary protein synthesis, thereby limiting the resources available for growth. In the current study, we focus on the effect of pre-induction and nutritional status of the medium on the burden imposed on growth due to the synthesis of unnecessary protein. Escherichia coli cells with different history were grown in a glycerol media with and without IPTG to characterize the burden imposed due to the synthesis of β-galactosidase. Effect of pre-induced lac operon on growth and β-galactosidase expression on lactose milieu was also investigated. The study demonstrates that pre-induction has a strong influence on the extent of burden and is sustained in several generations. Further, the burden was much lower in a rich media relative to that observed in a minimal media. PMID:23354326

  10. Morphological Characterization and Quantification of the Mycelial Growth of the Brown-Rot Fungus Postia placenta for Modeling Purposes.

    PubMed

    Du, Huan; Lv, Pin; Ayouz, Mehdi; Besserer, Arnaud; Perré, Patrick

    2016-01-01

    Continuous observation was performed using confocal laser scanning microscopy to visualize the three-dimensional microscopic growth of the brown-rot fungus, Postia placenta, for seventeen days. The morphological characterization of Postia placenta was quantitatively determined, including the tip extension rate, branch angle and branching length, (hyphal length between two adjacent branch sites). A voxel method has been developed to measure the growth of the biomass. Additionally, the tip extension rate distribution, the branch angle distribution and the branching length distribution, which quantified the hyphal growth characteristics, were evaluated. Statistical analysis revealed that the extension rate of tips was randomly distributed in space. The branch angle distribution did not change with the development of the colony, however, the branching length distribution did vary with the development of the colony. The experimental data will be incorporated into a lattice-based model simulating the growth of Postia placenta. PMID:27602575

  11. Regimes of Helium Burning

    SciTech Connect

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-10

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Doering [ZND] detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of {approx}108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at {approx}107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below {approx}107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at {approx}5x10{sup 4} g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. (c) 2000 The American Astronomical Society.

  12. Growth and characterization of methyl p-hydroxybenzoate (p-MHB)

    NASA Astrophysics Data System (ADS)

    Zhengdong, Li; Genbo, Su; Baichang, Wu

    1992-07-01

    Bulk crystals of p-MHB 30x40x55 mm 3 in size have been successfully grown using solution growth technique. The growth habits and defects were observed and discussed. Some optical characteristics were measured and reported.

  13. A surfactant film spreading regime

    SciTech Connect

    Nikishov, V.I.

    1984-06-01

    Interest has recently increased in the study of the mechanisms whereby oil spills spread over sea and ocean surfaces. In the later stages of this process, when the petroleum film thickness becomes sufficiently small, the main forces determining the growth of its horizontal dimensions are surface tension and viscosity. In this case the flow characteristics do not depend on total quantity of spreading substance nor its surface concentration distribution. However, in the final stages of the spreading process the film becomes so thin that it is necessary to consider the effect of surface concentration distribution of the material on the process. Similar problems occur in the study of the spreading of a surfactant in the case where the total quantity of material is small and the surface tension regime sets in quickly. Therefore, the author examines here the spreading of a film in a regime wherein it is necessary to consider the total quantity of surfactant present, initially located on the surface of a viscous incompressible liquid.

  14. The growth, characterization, and application of highly ordered small molecule semiconducting thin films

    NASA Astrophysics Data System (ADS)

    Lunt, Richard Royal, III

    Organic semiconductors have gained tremendous attention recently as their use in field effect transistors, sensors, solar cells, lasers, and organic light emitting diodes have been demonstrated, offering the potential for low-cost alternatives. Since renewable energy remains one the greatest challenges of the 21st century, the possibility for low-cost and flexible organic photovoltaics is particularly exciting. In the first part of this thesis, we demonstrate a route to the controlled growth of oriented crystalline films through organic vapor-phase deposition (OVPD), in conjunction with organic-inorganic, and organic-organic quasi-epitaxy. This method for producing highly ordered crystalline thin-film heterostructures combines the control of film growth with the electronic properties expected to approach that of organic single crystals, making them potentially useful for high efficiency organic thin-film devices and solar cells. We further demonstrate OVPD as a method for the deposition of large-scale organic electronics with low material waste, a key ability in fulfilling the promise of low-cost organic devices. The second part of this thesis is focused on understanding factors that govern energy (i.e. exciton) transport. The two single most important and fundamental properties of organic semiconductors are the transport of charge and energy. While charge mobility has been extensively studied and convincingly linked to the degree of crystalline order and orientation, the principles governing energy transport, i.e. exciton migration, in this class of materials and the subsequent connection to crystalline properties still remain ambiguous. Therefore, we aim to understand key aspects governing exciton motion in organic materials to better engineer materials, film morphologies, and film architectures for organic electronics with improved performance. To this end, we have developed a new method for measuring exciton diffusion and characterize a range of archetypal

  15. Growth

    NASA Astrophysics Data System (ADS)

    Waag, Andreas

    This chapter is devoted to the growth of ZnO. It starts with various techniques to grow bulk samples and presents in some detail the growth of epitaxial layers by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). The last section is devoted to the growth of nanorods. Some properties of the resulting samples are also presented. If a comparison between GaN and ZnO is made, very often the huge variety of different growth techniques available to fabricate ZnO is said to be an advantage of this material system. Indeed, growth techniques range from low cost wet chemical growth at almost room temperature to high quality MOCVD growth at temperatures above 1, 000∘C. In most cases, there is a very strong tendency of c-axis oriented growth, with a much higher growth rate in c-direction as compared to other crystal directions. This often leads to columnar structures, even at relatively low temperatures. However, it is, in general, not straight forward to fabricate smooth ZnO thin films with flat surfaces. Another advantage of a potential ZnO technology is said to be the possibility to grow thin films homoepitaxially on ZnO substrates. ZnO substrates are mostly fabricated by vapor phase transport (VPT) or hydrothermal growth. These techniques are enabling high volume manufacturing at reasonable cost, at least in principle. The availability of homoepitaxial substrates should be beneficial to the development of ZnO technology and devices and is in contrast to the situation of GaN. However, even though a number of companies are developing ZnO substrates, only recently good quality substrates have been demonstrated. However, these substrates are not yet widely available. Still, the situation concerning ZnO substrates seems to be far from low-cost, high-volume production. The fabrication of dense, single crystal thin films is, in general, surprisingly difficult, even when ZnO is grown on a ZnO substrate. However

  16. Physical and biological characterization of a growth-inhibitory activity purified from the neuroepithelioma cell line A673.

    PubMed Central

    Stam, K; Stewart, A A; Qu, G Y; Iwata, K K; Fenyö, D; Chait, B T; Marshak, D R; Haley, J D

    1995-01-01

    Epithelial- and haematopoietic-cell growth-inhibitory activities have been identified in the conditioned medium of the human peripheral neuroepithelioma cell line A673. An A673-cell-derived growth-inhibitory activity was previously fractionated into two distinct components which inhibited the proliferation of human carcinoma and leukaemia cells in culture. One inhibitory activity was shown to comprise interleukin-1 alpha (IL-1 alpha). Here, we have purified to homogeneity a distinct activity which inhibited the growth of the epithelial cells in vitro. Using a combination of protein-sequence analysis and mass spectrometry, we demonstrated that biological activity can be assigned to a dimeric protein with a molecular mass of 25,576 (+/- 4) Da and an N-terminal sequence identical with that of transforming growth factor-beta 1 (TGF-beta 1). Further characterization of the growth inhibitor with TGF-beta-isoform-specific antibodies showed that > 90% of the bioactivity consists of TGF-beta 1 and not TGF-beta 2 or TGF-beta 3. Although A673 cells were growth-inhibited by exogenous TGF-beta 1, we showed that TGF-beta 1 in A673-cell-conditioned media was present in the latent, biologically inactive, form which did not act as an autocrine growth modulator of A673 cells in vitro. Images Figure 2 Figure 3 PMID:7826358

  17. Biochemical characterization of the Drosophila dpp protein, a member of the transforming growth factor beta family of growth factors.

    PubMed Central

    Panganiban, G E; Rashka, K E; Neitzel, M D; Hoffmann, F M

    1990-01-01

    The decapentaplegic (dpp) gene of Drosophila melanogaster is required for pattern formation in the embryo and for viability of the epithelial cells in the imaginal disks. The dpp protein product predicted from the DNA sequence is similar to members of a family of growth factors that includes transforming growth factor beta (TGF-beta). We have produced polyclonal antibodies to a recombinant dpp protein made in bacteria and used a metallothionein promoter to express a dpp cDNA in Drosophila S2 cells. Similar to other proteins in the TGF-beta family, the dpp protein produced by the Drosophila cells was proteolytically cleaved, and both portions of the protein were secreted from the cells. The amino-terminal 47-kilodalton (kDa) peptide was found in the medium and in the proteins adhering to the plastic petri dish. The carboxy-terminal peptide, the region with sequence similarity to the active ligand portion of TGF-beta, was found extracellularly as a 30-kDa homodimer. Most of the 30-kDa homodimer was in the S2 cell protein adsorbed onto the surface of the plastic dish. The dpp protein could be released into solution by increased salt concentration and nonionic detergent. Under these conditions, the amino-terminal and carboxy-terminal portions of dpp were not associated in a stable complex. Images PMID:1692958

  18. From Exploratory Synthesis to Hard Radiation Detection: Crystal Growth and Characterization of Chalcogenide and Chalcohalide Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Sandy Linhsa

    In the first half of this thesis work, exploratory synthesis of materials using mixed polychalcogenide fluxes yielded four quaternary mixed Te/S compounds, with the respective chalcogen atoms residing in different crystallographic sites. Two-dimensional thiotellurite compounds (Ag2TeS3) 2·A2S6 (A = Rb, Cs), containing the trigonal pyramidal [TeS 3]2- unit, were synthesized and characterized. These structures are composed of layers of neutral [Ag2TeS3] alternating with charge-balanced salt layers containing the polysulfide chain [S6]2- and alkali metal ions. Using mixed Te/S polychalcogenide fluxes for compound discovery, we then investigated a new set of layered metal dichalcogenides, Ag2Te(MS2)3 (M = V, Nb) crystallizing in the P-62m space group. Ag2Te(MS2)3 contains layers of [Ag2Te] sandwiched between layers of [MS2] (M = V, Nb). The Ag and, more interestingly, Te atoms are linearly coordinated by S atoms in the [MS2] layers. This linear coordination of the Te atom by S atoms is unprecedented in the literature and stabilized by charge transfer within the [Ag2Te] layers. In the latter half, we report the bulk crystal growth and characterization of Tl-based chalcogenide and chalcohalide materials for hard radiation (X- and gamma-ray) detection, which requires high density, wide band gaps, and high resistivity. Lattice hybridization was applied to identify materials with optimal properties for hard radiation detection, resulting in the chalcohalide compound Tl6SI4. Tl6SI4 exhibits low effective mass of carriers, high resistivity, optimal band gap, and large hardness values. The figure of merit mutau products, (mutau) e = 2.1 x 10-3 cm2V-1 and (mutau)h = 2.3 x 10-5 cm2V -1, are comparable to state-of-the-art commercially used materials. Furthermore, high resolution detection of Ag X-rays by Tl6SI 4 was seen at 22 keV (2.6%). Dimensional reduction was used to identify Tl-based chalcogenide materials Tl2MS3 (M = Ge, Sn). Tl2MS3 show great potential for use as hard

  19. Growth and Characterization of Hydrogenated Amorphous Silicon and Hydrogenated Amorphous Silicon Carbide with Liquid Organometallic Sources.

    NASA Astrophysics Data System (ADS)

    Gaughan, Kevin David

    The growth and characterization of hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon -carbon (rm a-rm Si _{1-X}C_{X}: H) alloys employing liquid organometallic sources are described. N -type a-Si:H films were grown using a mixture of silane and tertiarybutylphosphine (TBP-rm C_4H _9P_2) vapor in a plasma enhanced chemical vapor deposition system. Impurity levels from parts per million to about 5 at. % phosphorus have been incorporated into the film with this method. Tertiarybutylphosphine is less toxic and less pyrophoric than phosphine which is usually used in n-type doping of a-Si:H films. Optical and electronic properties were characterized by room temperature as well as temperature dependent dark conductivity, photothermal deflection spectroscopy, infrared vibrational spectroscopy, electron spin resonance, and electron microprobe analysis. The gross doping properties of a-Si:H doped with TBP are the same as those obtained with phosphine. The experimental results are compared with the predictions of several models that describe the chemical equilibrium between active dopants and deep defects. A pronounced decrease in the effects of doping, such as an increase in the activation energy of electrical conductivity and an decrease in the conductivity of the sample, were seen in heavily doped films (TBP/SiH _4> 0.5%), perhaps influenced by the increased carbon and/or phosphorus concentrations. Amorphous silicon-carbide alloys have been grown by the plasma decomposition of ditertiarybutylsilane ( rm DTBS-rm SiH_2(C _4H_9)_2). The optical bandgaps, which varied from 2.2 to 3.3 eV, are strongly dependent upon the deposition conditions. The carbon concentrations in these films varied from 60 to 95 at. %. The optical band-edge is very broad compared to that which is found in a-Si:H and this breadth is essentially independent of the deposition conditions. The plasma decomposition of admixtures of DTBS and silane has produced rm a- rm Si_{1-X

  20. Growth and characterization of GaP nanowires on Si substrate

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Tateno, K.; Sogawa, T.; Nakano, H.

    2008-01-01

    The integration of III-V semiconductor materials with Si technology is of great interest for optoelectronic integration circuits. We have studied the growth and structural aspects of GaP nanowires (NWs) grown on Si substrate in a metalorganic vapor phase epitaxy system. Au colloid particles dispersed on Si substrate were used as catalysts to conduct the NW growth. The growth temperature considerably affected the growth rate and shape of GaP NWs. The growth rate showed a maximum value of 14.69nm/s at 480°C. When growth temperature increased the radial growth on NW sides was enhanced and the NWs therefore exhibited a tapering shape. GaP NWs with a uniform diameter could be grown at a growth temperature as low as 420°C using a two-temperature process. The NW diameter could be well controlled by using size-selective Au colloid particles. The growth rate dependence showed that the thin NWs grew more slowly than thick ones and the V/III source ratio had a significant effect on the growth rate dependence. An analysis of the GaP/Si interface by transmission electron microscopy indicated that the NWs were epitaxially grown on the Si(111) substrate. Based on these experimental results, the growth mechanism of the GaP NWs on Si was discussed.

  1. Ultrasonic tissue characterization for monitoring nanostructured TiO2-induced bone growth.

    PubMed

    Rus, G; García-Martínez, J

    2007-06-21

    The use of bioactive nanostructured TiO2 has recently been proposed for improving orthopaedic implant adhesion due to its improved biocompatibility with bone, since it induces: (i) osteoblast function, (ii) apatite nucleation and (iii) protein adsorption. The present work focuses on a non-ionizing radiation emitting technique for quantifying in real time the improvement in terms of mechanical properties of the surrounding bone due to the presence of the nanostructured TiO2 prepared by controlled precipitation and acid ageing. The mechanical strength is the ultimate goal of a bone implant and is directly related to the elastic moduli. Ultrasonics are high frequency mechanical waves and are therefore suited for characterizing elastic moduli. As opposed to echographic techniques, which are not correlated to elastic properties and are not able to penetrate bone, a low frequency ultrasonic transmission test is proposed, in which a P-wave is transmitted through the specimen and recorded. The problem is posed as an inverse problem, in which the unknown is a set of parameters that describe the mechanical constants of the sequence of layers. A finite element numerical model that depends on these parameters is used to predict the transformation of the waveform and compare to the measurement. The parameters that best describe the real tissue are obtained by minimizing the discrepancy between the real and numerically predicted waveforms. A sensitivity study to the uncertainties of the model is performed for establishing the feasibility of using this technique to investigate the macroscopic effect on bone growth of nanostructured TiO2 and its beneficial effect on implant adhesion. PMID:17664558

  2. Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation

    SciTech Connect

    Yang, Ruiguo; Chen, Jennifer Y.; Xi, Ning; Lai, King Wai Chiu; Qu, Chengeng; Fung, Carmen Kar Man; Penn, Lynn S.; Xi, Jun

    2012-03-10

    Cell signaling often causes changes in cellular mechanical properties. Knowledge of such changes can ultimately lead to insight into the complex network of cell signaling. In the current study, we employed a combination of atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) to characterize the mechanical behavior of A431 cells in response to epidermal growth factor receptor (EGFR) signaling. From AFM, which probes the upper portion of an individual cell in a monolayer of cells, we observed increases in energy dissipation, Young's modulus, and hysteresivity. Increases in hysteresivity imply a shift toward a more fluid-like mechanical ordering state in the bodies of the cells. From QCM-D, which probes the basal area of the monolayer of cells collectively, we observed decreases in energy dissipation factor. This result suggests a shift toward a more solid-like state in the basal areas of the cells. The comparative analysis of these results indicates a regionally specific mechanical behavior of the cell in response to EGFR signaling and suggests a correlation between the time-dependent mechanical responses and the dynamic process of EGFR signaling. This study also demonstrates that a combination of AFM and QCM-D is able to provide a more complete and refined mechanical profile of the cells during cell signaling. -- Highlights: Black-Right-Pointing-Pointer The EGF-induced cellular mechanical response is regionally specific. Black-Right-Pointing-Pointer The EGF-induced cellular mechanical response is time and dose dependent. Black-Right-Pointing-Pointer A combination of AFM and QCM-D provides a more complete mechanical profile of cells.

  3. Evolution of insulin-like growth factor (IGF) function: production and characterization of recombinant hagfish IGF.

    PubMed

    Upton, Z; Francis, G L; Chan, S J; Steiner, D F; Wallace, J C; Ballard, F J

    1997-01-01

    While there is considerable structural evidence that insulin-like growth factors (IGFs) share a long evolutionary history, little is known about the conservation of IGF function. In order to address this, we have made recombinant hagfish IGF, hence allowing characterization of an IGF from a representative of the primitive vertebrate class, Agnatha. The production of recombinant hagfish IGF has been complicated by a number of factors including the requirement of a longer leader peptide for fusion protein expression, reduced solubility of the protein, as well as problems in the refolding procedure. However, we were able to produce a small quantity of hagfish IGF with an N-terminal glycine addition which is biologically active. Furthermore, N-terminal amino acid sequencing and mass spectrometry confirm that we have produced hagfish IGF. In vitro assessment of recombinant hagfish IGF in cultured cells indicates that hagfish IGF indeed shares functional properties with mammalian IGFs. Thus, hagfish IGF stimulates protein synthesis in rat myoblasts, but 20- and 5-fold more peptide, respectively, is required to achieve the same half-maximal responses as with human IGF-I (hIGF-I) or IGF-II (hIGF-II). Hagfish IGF also competes for binding to the type-1 IGF receptor present both on rat myoblasts and on salmon embryo fibroblasts, though with somewhat lower affinity than either hIGF-I or hIGF-II. However, studies investigating binding to the IGF-II-specific type-2 receptor suggest that hagfish IGF may in fact be more closely related to IGF-I than to IGF-II. These results indicate that motifs important for functions associated with mammalian IGFs appear to have evolved prior to the Agnathans diverging from the main line of vertebrate evolution 550 million years ago. Accordingly, we now have functional as well as structural evidence that the IGFs have a long evolutionary history. PMID:9000470

  4. Adaptation in Collaborative Governance Regimes

    NASA Astrophysics Data System (ADS)

    Emerson, Kirk; Gerlak, Andrea K.

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  5. Adaptation in collaborative governance regimes.

    PubMed

    Emerson, Kirk; Gerlak, Andrea K

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program. PMID:25073764

  6. Growth and Characterization of alpha-PbO for Room Temperature Radiation Detection

    NASA Astrophysics Data System (ADS)

    Ford, Erin Leigh

    A global trading structure and high throughput of shipping containers into ports around the world increases the chance of nuclear terrorism via cargo containers. Harmless radioactive sources confuse and impede detection of the materials that pose a real threat, making spectroscopy difficult and requiring detectors with high resolution. The current methods that are used to check containers in ports have security flaws, and only 5% of all shipping containers are checked. The development of semiconductor gamma-ray detectors is one of the protocols being advanced to alleviate this risk because they can function at room temperature and they are cost effective, easily produced, and have high resolution. This dissertation has addressed the current lack of "perfect" room temperature detector materials by investigating alpha-PbO, a novel material in this field. This includes the development of a growth process for alpha-PbO thin films, as well as its structural and performance characterization as a detector material. Because we intend alpha-PbO to be a photoconductive detector, it should have certain properties. A photoconductive detector consists of a highly resistive material with a voltage bias across it. It absorbs incident gamma-rays, creating electron-hole pairs that provide a signal. To function well, it must have a high atomic number and a high density in order to absorb high-energy photons via the photoelectric effect. It should also have a large resistivity and a wide band gap to avoid large leakage currents at room temperature. Finally, it must have good charge carrier transport properties and detector resolution in order to be able to determine the characteristic energy peaks of the radiation-emitting source. We chose alpha-PbO because it has a very high Z and a very high density and a band gap in the correct range. It also has a rich history of use as a photoconductor that reaches back to the 1950s. Numerous methods have been used to grow thin films of alpha

  7. Proceedings of the Flat-plate Solar Array Project Research Forum on the High-speed Growth and Characterization of Crystals for Solar Cells

    NASA Technical Reports Server (NTRS)

    Dumas, K. A. (Editor)

    1984-01-01

    Theoretical and experimental phenomena, applications, and characterization including stress/strain and other problem areas that limit the rate of growth of crystals suitable for processing into efficient, cost-effective solar cells are discussed. Melt spinning, ribbon growth, rapid solidification, laser recrystallization, and ignot growth of silicon and metals are also discussed.

  8. Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires.

    PubMed

    Potié, Alexis; Baron, Thierry; Dhalluin, Florian; Rosaz, Guillaume; Salem, Bassem; Latu-Romain, Laurence; Kogelschatz, Martin; Gentile, Pascal; Oehler, Fabrice; Montès, Laurent; Kreisel, Jens; Roussel, Hervé

    2011-01-01

    The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement. PMID:21711709

  9. Dynamic Treatment Regimes

    PubMed Central

    Chakraborty, Bibhas; Murphy, Susan A.

    2014-01-01

    A dynamic treatment regime consists of a sequence of decision rules, one per stage of intervention, that dictate how to individualize treatments to patients based on evolving treatment and covariate history. These regimes are particularly useful for managing chronic disorders, and fit well into the larger paradigm of personalized medicine. They provide one way to operationalize a clinical decision support system. Statistics plays a key role in the construction of evidence-based dynamic treatment regimes – informing best study design as well as efficient estimation and valid inference. Due to the many novel methodological challenges it offers, this area has been growing in popularity among statisticians in recent years. In this article, we review the key developments in this exciting field of research. In particular, we discuss the sequential multiple assignment randomized trial designs, estimation techniques like Q-learning and marginal structural models, and several inference techniques designed to address the associated non-standard asymptotics. We reference software, whenever available. We also outline some important future directions. PMID:25401119

  10. M = 1 internal kink mode in the plateau and banana regimes in tokamaks

    SciTech Connect

    Mikhailovskii, A.B.; Tsypin, V.S.

    1983-01-01

    A theory is derived for the m = 1 internal kink mode of a tokamak in the plateau and banana regimes. The growth rate for this mode in the plateau regime is shown to be smaller by a factor of a/R than the MHD prediction (a and R are the minor and major radii of the torus). The growth rate in the banana regime is higher than in the plateau regime and approaches the standard MHD value.

  11. Kinetics of laser-assisted carbon nanotube growth.

    PubMed

    van de Burgt, Y; Bellouard, Y; Mandamparambil, R

    2014-03-21

    Laser-assisted chemical vapour deposition (CVD) growth is an attractive mask-less process for growing locally aligned carbon nanotubes (CNTs) in selected places on temperature sensitive substrates. The nature of the localized process results in fast carbon nanotube growth with high experimental throughput. Here, we report on the detailed investigation of growth kinetics related to physical and chemical process characteristics. Specifically, the growth kinetics is investigated by monitoring the dynamical changes in reflected laser beam intensity during growth. Benefiting from the fast growth and high experimental throughput, we investigate a wide range of experimental conditions and propose several growth regimes. Rate-limiting steps are determined using rate equations linked to the proposed growth regimes, which are further characterized by Raman spectroscopy and Scanning Electron Microscopy (SEM), therefore directly linking growth regimes to the structural quality of the CNTs. Activation energies for the different regimes are found to be in the range of 0.3-0.8 eV. PMID:24481313

  12. Growth and Characterization of Telecommunication-Wavelength Quantum Dots Using Bi as a Surfactant

    NASA Astrophysics Data System (ADS)

    Okamoto, Hiroshi; Tawara, Takehiko; Gotoh, Hideki; Kamada, Hidehiko; Sogawa, Tetsuomi

    2010-06-01

    Telecommunication-wavelength quantum dots (QDs) were successfully grown by metalorganic vapor phase epitaxy using a novel growth method in which trimethylbismuth (TMBi) was supplied during the growth. Supplying TMBi during the growth was confirmed to have a surfactant effect, but did not result in the formation of a bismuth-containing alloy. Using this growth method, the photoluminescence intensity and wavelength of the QDs were much improved. It was found that the QD size was increased during the growth of the InGaAs covering layer; this effect partly resembled activated alloy phase separation reported for molecular-beam-epitaxy-grown QDs. For the realization of high density and multilayer QDs, we confirmed that a much higher V/III ratio than that of usual growth conditions and a strain-compensation structure are effective, respectively.

  13. Stirring-induced bifurcation driven by the chaotic regime in the Belousov—Zhabotinsky reaction in a CSTR

    NASA Astrophysics Data System (ADS)

    Strizhak, Peter E.

    1995-09-01

    The stirring-induced bifurcation at low stirring rate S 0 = 23 rpm of the reaction volume has been observed for the chaotic regime in the Belousov—Zhabotinsky oscillating chemical reaction (malonic acidbromatecerium(III)sulfuric acid) in a continuously stirred tank reactor in premixing mode. This bifurcation is characterized by a stepwise growth of the macroscopic spatial concentration gradients that is shown by the use of the time dependencies of the potential difference between two platinum electrodes.

  14. Flow regimes and heat transfer in vertical narrow annuli

    SciTech Connect

    Ulke, A.; Goldberg, I.

    1993-11-01

    In shell side boiling heat exchangers narrow crevices that are formed between the tubes and the tube support structure provide areas for local thermal-hydraulic conditions which differ significantly from bulk fluid conditions. Understanding of the processes of boiling and dryout in flow restricted crevices can help in designing of tube support geometries to minimize the likelihood of tube support plate and tube corrosion observed in commercial power plant steam generators. This paper describes a one dimensional thermal-hydraulic model of a vertical crevice between a tube and a support plate with cylindrical holes. The annulus formed by the support plate hole and an eccentrically located tube has been represented by vertical strips. The formation, growth and collapse of a steam bubble in each strip has been determined. Based on the bubble history, and flow regimes characterized by ``isolated`` bubbles, ``coalesced`` bubbles and liquid deficient regions have been defined.

  15. Growth and electrical characterization of Al0.24Ga0.76As/AlxGa1-xAs/Al0.24Ga0.76As modulation-doped quantum wells with extremely low x

    NASA Astrophysics Data System (ADS)

    Gardner, Geoffrey C.; Watson, John D.; Mondal, Sumit; Deng, Nianpei; Csáthy, Gabor A.; Manfra, Michael J.

    2013-06-01

    We report on the growth and electrical characterization of modulation-doped Al0.24Ga0.76As/AlxGa1-xAs/Al0.24Ga0.76As quantum wells with mole fractions as low as x = 0.00057. Such structures will permit detailed studies of the impact of alloy disorder in the fractional quantum Hall regime. At zero magnetic field, we extract an alloy scattering rate of 24 ns-1 per%Al. Additionally, we find that for x as low as 0.00057 in the quantum well, alloy scattering becomes the dominant mobility-limiting scattering mechanism in ultra-high purity two-dimensional electron gases typically used to study the fragile ν = 5/2 and ν = 12/5 fractional quantum Hall states.

  16. Growth and Characterization of alpha-PbO for Room Temperature Radiation Detection

    NASA Astrophysics Data System (ADS)

    Ford, Erin Leigh

    A global trading structure and high throughput of shipping containers into ports around the world increases the chance of nuclear terrorism via cargo containers. Harmless radioactive sources confuse and impede detection of the materials that pose a real threat, making spectroscopy difficult and requiring detectors with high resolution. The current methods that are used to check containers in ports have security flaws, and only 5% of all shipping containers are checked. The development of semiconductor gamma-ray detectors is one of the protocols being advanced to alleviate this risk because they can function at room temperature and they are cost effective, easily produced, and have high resolution. This dissertation has addressed the current lack of "perfect" room temperature detector materials by investigating alpha-PbO, a novel material in this field. This includes the development of a growth process for alpha-PbO thin films, as well as its structural and performance characterization as a detector material. Because we intend alpha-PbO to be a photoconductive detector, it should have certain properties. A photoconductive detector consists of a highly resistive material with a voltage bias across it. It absorbs incident gamma-rays, creating electron-hole pairs that provide a signal. To function well, it must have a high atomic number and a high density in order to absorb high-energy photons via the photoelectric effect. It should also have a large resistivity and a wide band gap to avoid large leakage currents at room temperature. Finally, it must have good charge carrier transport properties and detector resolution in order to be able to determine the characteristic energy peaks of the radiation-emitting source. We chose alpha-PbO because it has a very high Z and a very high density and a band gap in the correct range. It also has a rich history of use as a photoconductor that reaches back to the 1950s. Numerous methods have been used to grow thin films of alpha

  17. Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66

    PubMed Central

    Naveed, Muhammad; Ahmed, Iftikhar; Khalid, Nauman; Mumtaz, Abdul Samad

    2014-01-01

    Glucose dehydrogenase (GDH; EC 1.1. 5.2) is the member of quinoproteins group that use the redox cofactor pyrroloquinoline quinoine, calcium ions and glucose as substrate for its activity. In present study, Leclercia sp. QAU-66, isolated from rhizosphere of Vigna mungo, was characterized for phosphate solubilization and the role of GDH in plant growth promotion of Phaseolus vulgaris. The strain QAU-66 had ability to solubilize phosphorus and significantly (p ≤ 0.05) promoted the shoot and root lengths of Phaseolus vulgaris. The structural determination of GDH protein was carried out using bioinformatics tools like Pfam, InterProScan, I-TASSER and COFACTOR. These tools predicted the structural based functional homology of pyrroloquinoline quinone domains in GDH. GDH of Leclercia sp. QAU-66 is one of the main factor that involved in plant growth promotion and provides a solid background for further research in plant growth promoting activities. PMID:25242947

  18. A non-destructive method for characterizing phenotypes and growth of a Bacillus subtilis biofilm using fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Koehler, Stephan; Wang, Xiaoling; Wilking, James; Weitz, Dave

    2015-11-01

    We develop an imaging technique for characterizing growth of biofilms using a triple fluorescent labeled strain for the three main phenotypes of a Bacillus subtilis biofilm on an agar substrate. We find that the biofilm does not flow across the substrate and thus growth is due to colonization at the periphery and thickening of the interior regions. We obtain local height and its composition of the three main phenotypes, which are motile, matrix-producing and sporulating, as well as the non-fluorescent material, which can be spores, dormant or dead cells or extracellular matrix. This technique is suitable for the study of biofilm growth and inhibition for different conditions such as biocides or bioremediation.

  19. Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66.

    PubMed

    Naveed, Muhammad; Ahmed, Iftikhar; Khalid, Nauman; Mumtaz, Abdul Samad

    2014-01-01

    Glucose dehydrogenase (GDH; EC 1.1. 5.2) is the member of quinoproteins group that use the redox cofactor pyrroloquinoline quinoine, calcium ions and glucose as substrate for its activity. In present study, Leclercia sp. QAU-66, isolated from rhizosphere of Vigna mungo, was characterized for phosphate solubilization and the role of GDH in plant growth promotion of Phaseolus vulgaris. The strain QAU-66 had ability to solubilize phosphorus and significantly (p ≤ 0.05) promoted the shoot and root lengths of Phaseolus vulgaris. The structural determination of GDH protein was carried out using bioinformatics tools like Pfam, InterProScan, I-TASSER and COFACTOR. These tools predicted the structural based functional homology of pyrroloquinoline quinone domains in GDH. GDH of Leclercia sp. QAU-66 is one of the main factor that involved in plant growth promotion and provides a solid background for further research in plant growth promoting activities. PMID:25242947

  20. Solution Growth and Characterization of Single Crystals on Earth and in Microgravity

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Crystal growth has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high-technology devices, and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this Technical Memorandum (TM) an attempt is made to give the fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, the authors proposed a new cooled-sting technique to grow crystals in space. The authors experience from conducting two Space Shuttle solution crystal growth experiments are also detailed in this TM and the complexity of solution growth experiments to grow crystals in space are also discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that shares basic principles of the solution growth technique is given, along with some flight hardware information for growth in microgravity.

  1. Characterization of defect growth structure in ion plated films by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Copper and gold films (0.2 to 2 microns) were ion plated onto polished 304-stainless-steel surfaces. These coatings were examined by scanning electron microscopy for coating growth defects. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause and origin for each type of defect was traced. Nodular growth is primarily due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation. All these defects have adverse effects on the coatings. They induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. Friction and wear characteristics are affected by coating defects, since the large nodules are pulled out and additional wear debris is generated.

  2. Growth kinetics and characterizations of gallium nitride thin films by remote PECVD

    NASA Technical Reports Server (NTRS)

    Choi, S. W.; Bachmann, K. J.; Lucovsky, G.

    1993-01-01

    Thin films of GaN have been deposited at relatively low growth temperatures by remote plasma-enhanced chemical-vapor deposition (RPECVD), using a plasma excited NH3, and trimethylgallium (TMG), injected downstream from the plasma. The activation energy for GaN growth has been tentatively assigned to the dissociation of NH groups as the primary N-atom precursors in the surface reaction with adsorbed TMG, or TMG fragments. At high He flow rates, an abrupt increase in the growth rate is observed and corresponds to a change in the reaction mechanism attributed to the formation of atomic N. XRD reveals an increased tendency to ordered growth in the (0001) direction with increasing growth temperature, He flow rate, and RF plasma power. IR spectra show the fundamental lattice mode of GaN at 530 cm without evidence for vibrational modes of hydrocarbon groups.

  3. Growth and surface characterization of tin-doped indium oxide thin films

    NASA Astrophysics Data System (ADS)

    Morales, Erie

    The geometrical and electronic surface properties of In2O 3 and Sn-doped In2O3 (ITO) have been investigated. Sn-doped In2O3 is widely used as a transparent conducting oxide in flat panel displays, organic-light-emitting-diodes, solar cells, and electrochromic windows. Despite the fact that surface and interfaces are important in all these applications, a fundamental understanding of the surface properties of this material is lacking. Meaningful surface investigations are best conducted on single-crystalline samples, thus epitaxial thin films of In2O3 and ITO were grown and used as samples for the surface investigations. This work focuses on two low-index surfaces of ITO, the non-polar (111) orientation and the (100) orientation, which, in its bulk-terminated form, is polar. The epitaxial films were grown with oxygen-plasma assisted molecular beam epitaxy (MBE) on yttria-stabilized zirconia, which exhibits a cube-on-cube epitaxy as well as a small lattice mismatch with respect to In2O 3. The YSZ(111) substrate was characterized with Re ection-high-electron-energy-diffraction (RHEED) and Low-energy-electron-diffraction (LEED) and its surface was found to be (1x1) terminated. RHEED and LEED measurements on the substrate were possible if the substrate was kept at 300°C in order to avoid charging effects of this insulating material. RHEED exhibited 2-dimensional growth mode for the Sn-doped In2O3 thin films. Using LEED it was found that the surface of In2O3 and Sn-doped In 2O3 poses a (1x1) terminated surface. A de-convolution of X-ray core level photoemission (XPS) of In 3d peaks; into one component that is due to regular photoemission and one that is due to interaction of core holes with electronic plasmons, provided the plasmon energy, E p; From Ep the electron density n of the doped films was obtained. For an ITO film with 6.2 at% of Sn, it was found that 1/3 of the Sn atoms contribute one electron to the conduction band. Scanning-tunneling-microscopy (STM) was

  4. Kinetic and stoichiometric characterization of organoautotrophic growth of Ralstonia eutropha on formic acid in fed-batch and continuous cultures

    PubMed Central

    Grunwald, Stephan; Mottet, Alexis; Grousseau, Estelle; Plassmeier, Jens K; Popović, Milan K; Uribelarrea, Jean-Louis; Gorret, Nathalie; Guillouet, Stéphane E; Sinskey, Anthony

    2015-01-01

    Formic acid, acting as both carbon and energy source, is a safe alternative to a carbon dioxide, hydrogen and dioxygen mix for studying the conversion of carbon through the Calvin–Benson–Bassham (CBB) cycle into value-added chemical compounds by non-photosynthetic microorganisms. In this work, organoautotrophic growth of Ralstonia eutropha on formic acid was studied using an approach combining stoichiometric modeling and controlled cultures in bioreactors. A strain deleted of its polyhydroxyalkanoate production pathway was used in order to carry out a physiological characterization. The maximal growth yield was determined at 0.16 Cmole Cmole−1 in a formate-limited continuous culture. The measured yield corresponded to 76% to 85% of the theoretical yield (later confirmed in pH-controlled fed-batch cultures). The stoichiometric study highlighted the imbalance between carbon and energy provided by formic acid and explained the low growth yields measured. Fed-batch cultures were also used to determine the maximum specific growth rate (μmax = 0.18 h−1) and to study the impact of increasing formic acid concentrations on growth yields. High formic acid sensitivity was found in R eutropha since a linear decrease in the biomass yield with increasing residual formic acid concentrations was observed between 0 and 1.5 g l−1. PMID:25123319

  5. Growth and characterization of ultra-long ZnO nanocombs

    NASA Astrophysics Data System (ADS)

    Yang, Shuming; Wang, Yiming; Wang, Liangjun; Zhang, Guofeng; Vazinishayan, Ali; Duongthipthewa, Anchalee

    2016-06-01

    ZnO nanocombs with 25 μm comb teeth were synthesized by chemical vapor deposition (CVD) method. Experiments were carried out to investigate the influence of carrier gas flow rate and temperature on ZnO comb teeth growth. The growth mechanism was demonstrated according to the morphology of prepared nanocombs under different growth parameters. The experimental results showed that the intensity of green emission significantly increased when the ZnO nanocombs became thinner and longer. It attributed to much more hanging bonds and oxygen vacancy on the surfaces of comb teeth.

  6. Growth and characterization of crystals for IR detectors and second harmonic gereration devices

    NASA Technical Reports Server (NTRS)

    Lal, Ravi B.; Batra, Ashok K.; Rao, Sistla M.; Bhatia, S. S.; Chunduru, Kunar P.; Paulson, Ron; Moorkherji, Tripty K.

    1989-01-01

    Two types of materials, L-arginine phosphate (LAP) and doped triglycine sulfate (TGS), are examined for their growth characteristics and relevant properties for second harmonic generation and IR detector applications, respectively.

  7. Growth and characterization of materials for tunable lasers in the near infrared spectral region

    NASA Technical Reports Server (NTRS)

    Powell, Richard C.; Martin, Joel J.

    1988-01-01

    During this reporting period, work proceeded in two directions. The first was the development of crystal growth procedures for rare earth doped LiYF4 crystals. The procedures for growth and pre-growth treatment of starting materials for undoped LiYF4 crystals were established and good optical quality materials were grown. A significant amount of time was spent trying to establish the optimum growth parameters for Yb(3+)-doped crystals. Unfortunately, it has proven difficult to obtain large size boules of high optical quality crystals of LiYF4 with doping concentrations of Yb(3+) of several percent. Because of these problems, this research is to be changed to attempt doping with other trivalent rare earth ions such as Ho, Er, and Tm. The second research area was investigating the potential of LiNbO3:Mg,Cr and LiNbO3:Mg,Cr,Yb as possible laser materials. The results are summarized.

  8. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice.

    PubMed

    Yan, Ping; Bero, Adam W; Cirrito, John R; Xiao, Qingli; Hu, Xiaoyan; Wang, Yan; Gonzales, Ernesto; Holtzman, David M; Lee, Jin-Moo

    2009-08-26

    Amyloid plaques are primarily composed of extracellular aggregates of amyloid-beta (Abeta) peptide and are a pathological signature of Alzheimer's disease. However, the factors that influence the dynamics of amyloid plaque formation and growth in vivo are largely unknown. Using serial intravital multiphoton microscopy through a thinned-skull cranial window in APP/PS1 transgenic mice, we found that amyloid plaques appear and grow over a period of weeks before reaching a mature size. Growth was more prominent early after initial plaque formation: plaques grew faster in 6-month-old compared with 10-month-old mice. Plaque growth rate was also size-related, as smaller plaques exhibited more rapid growth relative to larger plaques. Alterations in interstitial Abeta concentrations were associated with changes in plaque growth. Parallel studies using multiphoton microscopy and in vivo microdialysis revealed that pharmacological reduction of soluble extracellular Abeta by as little as 20-25% was associated with a dramatic decrease in plaque formation and growth. Furthermore, this small reduction in Abeta synthesis was sufficient to reduce amyloid plaque load in 6-month-old but not 10-month-old mice, suggesting that treatment early in disease pathogenesis may be more effective than later treatment. In contrast to thinned-skull windows, no significant plaque growth was observed under open-skull windows, which demonstrated extensive microglial and astrocytic activation. Together, these findings indicate that individual amyloid plaque growth in vivo occurs over a period of weeks and may be influenced by interstitial Abeta concentration as well as reactive gliosis. PMID:19710322

  9. Growth, delta-doping and characterization of diamond films by hot filament chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Mtengi, Bokani

    The synthesis of high-quality heteroepitaxial diamond films continues to attract interesting research possibilities for the development of diamond devices. Diamond has great properties; mechanical, optical, electrical and its natural impurities that can be explored for various applications. The color centers are widely recognized as promising solid-state platform for quantum computing applications. We report successful heteroepitaxial growth and delta doping of color centers in hot filament chemical vapor deposited diamond films composed of nitrogen, germanium and silicon indicated by the strong photoluminescence intensity peaks obtained using the confocal microscope. We studied the effect of hot-filament chemical vapor deposition conditions on the quality of diamond films grown on silicon and silicon carbide substrates. The effect of substrate distance, the methane (CH4) and hydrogen (H2) gases flow rates and ratios, substrate growth and filament temperature, growth time and growth termination procedures on diamond film quality are discussed. The relatively good quality of these films was confirmed by several spectroscopic techniques including, Raman spectroscopy that gave insights into the relative sp2/sp3 bonding configurations, the residual strain and the crystalline quality. The scanning electron microscopy (SEM) was used to examine the grain size and morphology. In-situ growth monitoring was studied using the laser reflectance interferometer (LRI) tool, which provides data for thickness, growth rate measurements and guidance for nitrogen doping. Optimal growth conditions that lead to synthesis of high quality heteroepitaxial diamond layer at growth rate of 0.5microm/hr were determined. The delta-doped samples have been analyzed using the confocal optical microscope to measure their spin-dependent photoluminescence intensity (IPL). Electrical properties of the undoped diamond films have been measured using the Hall effects measurement for resistivity and

  10. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  11. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications.

    PubMed

    Sun, Enwei; Cao, Wenwu

    2014-08-01

    , crystal growth techniques, domain engineering concept, and full-matrix property characterization all the way to device innovations. It outlines a truly encouraging story in materials science in the modern era. All key references are provided and 30 complete sets of material parameters for different types of relaxor-PT single crystals are listed in the Appendix. It is the intension of this review article to serve as a resource for those who are interested in basic research and practical applications of these relaxor-PT single crystals. In addition, possible mechanisms of giant piezoelectric properties in these domain-engineered relaxor-PT systems will be discussed based on contributions from polarization rotation and charged domain walls. PMID:25061239

  12. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications

    PubMed Central

    Sun, Enwei; Cao, Wenwu

    2014-01-01

    , crystal growth techniques, domain engineering concept, and full-matrix property characterization all the way to device innovations. It outlines a truly encouraging story in materials science in the modern era. All key references are provided and 30 complete sets of material parameters for different types of relaxor-PT single crystals are listed in the Appendix. It is the intension of this review article to serve as a resource for those who are interested in basic research and practical applications of these relaxor-PT single crystals. In addition, possible mechanisms of giant piezoelectric properties in these domain-engineered relaxor-PT systems will be discussed based on contributions from polarization rotation and charged domain walls. PMID:25061239

  13. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa

    PubMed Central

    Khalifa, Ashraf Y.Z.; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A.; Saleh, Farag A.

    2015-01-01

    The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future. PMID:26858542

  14. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa.

    PubMed

    Khalifa, Ashraf Y Z; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A; Saleh, Farag A

    2016-01-01

    The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future. PMID:26858542

  15. Molecular and Functional Characterization of a Wheat B2 Protein Imparting Adverse Temperature Tolerance and Influencing Plant Growth.

    PubMed

    Singh, Akanksha; Khurana, Paramjit

    2016-01-01

    Genomic attempts were undertaken to elucidate the plant developmental responses to heat stress, and to characterize the roles of B2 protein in mediating those responses. A wheat expressed sequence tag for B2 protein was identified which was cloned and characterized to assess its functional relevance causing plant growth and development during stress adaptation. Here, we show that wheat B2 protein is highly expressed in root and shoot tissues as well as in developing seed tissues under high temperature stress conditions. Morphological studies of transgenic Arabidopsis overexpressing gene encoding wheat B2 protein and Δb2 mutant plants were studied at major developmental stages. The stunted growth phenotype of mutant plants, together with hypocotyl and root elongation analysis of transgenic plants showed that B2 protein exhibits a crucial role in plant growth and development. Additional physiological analyses highlights the role of B2 protein in increased tolerance to heat and cold stresses by maintaining high chlorophyll content, strong activity of photosystem II and less membrane damage of overexpression transgenics as compared with the wild-type. Furthermore, the constitutive overexpression of TaB2 in Arabidopsis resulted in ABA hypersensitivity. Taken together, these studies suggest a novel perspectives of B2 protein in plant development and in mediating the thermal stress tolerance. PMID:27242843

  16. Molecular and Functional Characterization of a Wheat B2 Protein Imparting Adverse Temperature Tolerance and Influencing Plant Growth

    PubMed Central

    Singh, Akanksha; Khurana, Paramjit

    2016-01-01

    Genomic attempts were undertaken to elucidate the plant developmental responses to heat stress, and to characterize the roles of B2 protein in mediating those responses. A wheat expressed sequence tag for B2 protein was identified which was cloned and characterized to assess its functional relevance causing plant growth and development during stress adaptation. Here, we show that wheat B2 protein is highly expressed in root and shoot tissues as well as in developing seed tissues under high temperature stress conditions. Morphological studies of transgenic Arabidopsis overexpressing gene encoding wheat B2 protein and Δb2 mutant plants were studied at major developmental stages. The stunted growth phenotype of mutant plants, together with hypocotyl and root elongation analysis of transgenic plants showed that B2 protein exhibits a crucial role in plant growth and development. Additional physiological analyses highlights the role of B2 protein in increased tolerance to heat and cold stresses by maintaining high chlorophyll content, strong activity of photosystem II and less membrane damage of overexpression transgenics as compared with the wild-type. Furthermore, the constitutive overexpression of TaB2 in Arabidopsis resulted in ABA hypersensitivity. Taken together, these studies suggest a novel perspectives of B2 protein in plant development and in mediating the thermal stress tolerance. PMID:27242843

  17. Growth and characterization of ultrathin epitaxial MnO film on Ag(001)

    NASA Astrophysics Data System (ADS)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-07-01

    We present here a comprehensive growth procedure to obtain a well-ordered MnO(001) ultrathin film on Ag(001) substrate. Depending upon the oxygen partial pressure during the growth, different phases of manganese oxide have been detected by Low Energy Electron Diffraction (LEED) and X-ray Photoelectron Spectroscopic (XPS) studies. A modified growth scheme has been adopted to get well-ordered and stoichiometric MnO(001) ultrathin film. The detailed growth mechanism of epitaxial MnO film on Ag(001) has been studied step by step, using LEED and XPS techniques. Observation of sharp (1 × 1) LEED pattern with a low inelastic background, corresponds to a long-range atomic order with low defect densities indicating the high structural quality of the film. The Mn 2p and Mn 3s core-level spectra confirm the oxidation state as well as the stoichiometry of the grown MnO films. Apart from the growth optimization, the evolution of strain relaxation of the MnO(001) film with film thickness has been explored.

  18. Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules

    PubMed Central

    Zhao, Long Fei; Xu, Ya Jun; Ma, Zhan Qiang; Deng, Zhen Shan; Shan, Chang Juan; Wei, Ge Hong

    2013-01-01

    The endophytic strain Zong1 isolated from root nodules of the legume Sophora alopecuroides was characterized by conducting physiological and biochemical tests employing gfp-marking, observing their plant growth promoting characteristics (PGPC) and detecting plant growth parameters of inoculation assays under greenhouse conditions. Results showed that strain Zong1 had an effective growth at 28 ºC after placed at 4–60 ºC for 15 min, had a wide range pH tolerance of 6.0–11.0 and salt tolerance up to 5% of NaCl. Zong1 was resistant to the following antibiotics (μg/mL): Phosphonomycin (100), Penicillin (100) and Ampicillin (100). It could grow in the medium supplemented with 1.2 mmol/L Cu, 0.1% (w/v) methylene blue and 0.1–0.2% (w/v) methyl red, respectively. Zong1 is closely related to Pseudomonas chlororaphis based on analysis the sequence of 16S rRNA gene. Its expression of the gfp gene indicated that strain Zong1 may colonize in root or root nodules and verified by microscopic observation. Furthermore, co-inoculation with Zong1 and SQ1 (Mesorhizobium sp.) showed significant effects compared to single inoculation for the following PGPC parameters: siderophore production, phosphate solubilization, organic acid production, IAA production and antifungal activity in vitro. These results suggest strains P. chlororaphi Zong1 and Mesorhizobium sp. SQ1 have better synergistic or addictive effect. It was noteworthy that each growth index of co-inoculated Zong1+SQ1 in growth assays under greenhouse conditions is higher than those of single inoculation, and showed a significant difference (p < 0.05) when compared to a negative control. Therefore, as an endophyte P. chlororaphis Zong1 may play important roles as a potential plant-growth promoting agent. PMID:24294262

  19. Investigation and characterization of constraint effects on flaw growth during fatigue loading of composite materials

    NASA Technical Reports Server (NTRS)

    Stinchcomb, W. W.; Reifsnider, K. L.; Yeung, P.; Gibbins, M. N.

    1979-01-01

    An investigative program is presented in an attempt to add to the current understanding of constraint effects on the response of composite materials under cyclic loading. The objectives were: (1) to use existing data and to develop additional data in order to establish an understanding and quantitative description of flaw growth in unidirectional lamina under cyclic loading at different load direction to fiber direction angles; (2) to establish a similar understanding and description of flaw growth in lamina which are embedded in laminates between other unflawed lamina; (3) to determine the nature of the influence of constraint on flaw growth by quantitatively comparing the results of the tests; and (4) to develop a model and philosophy of constraints effects based on our investigative results.

  20. Dynamic Characterization of Growth and Gene Expression Using High-throughput Automated Flow cytometry

    PubMed Central

    Zuleta, Ignacio A.; Aranda-Díaz, Andrés; Li, Hao; El-Samad, Hana

    2014-01-01

    Cells adjust to changes in environmental conditions using complex regulatory programs. These cellular programs are the result of an intricate interplay between gene expression, cellular growth rate, and protein degradation fluxes. New technologies that enable simultaneous and time-resolved measurements of these variables are necessary to dissect cellular homeostatic strategies. Here, we report the development of a novel automated flow-cytometry robotic setup that enables real-time measurement of precise and simultaneous relative growth and protein synthesis rates of multiplexed microbial populations across many conditions. These measurements generate quantitative profiles of dynamically-evolving protein synthesis and degradation rates. We demonstrate this setup in the context of gene regulation of the unfolded protein response (UPR) and uncover a dynamic and complex landscape of gene expression, growth dynamics, and proteolysis following perturbations. PMID:24608180

  1. Rapid growth and short life spans characterize pipefish populations in vulnerable seagrass beds.

    PubMed

    Parkinson, K L; Booth, D J

    2016-05-01

    The life-history traits of two species of pipefish (Syngnathidae) from seagrass meadows in New South Wales, Australia, were examined to understand whether they enhance resilience to habitat degradation. The spotted pipefish Stigmatopora argus and wide-bodied pipefish Stigmatopora nigra exhibit some of the shortest life spans known for vertebrates (longevity up to 150 days) and rapid maturity (male S. argus 35 days after hatching (DAH) and male S. nigra at 16-19 DAH), key characteristics of opportunistic species. Growth rates of both species were extremely rapid (up to 2 mm day(-1) ), with seasonal and sex differences in growth rate. It is argued that short life spans and high growth rates may be advantageous for these species, which inhabit one of the most threatened marine ecosystems on earth. PMID:27005315

  2. Ground based experiments on the growth and characterization of L-Arginine Phosphate (LAP) crystals

    NASA Technical Reports Server (NTRS)

    Rao, S. M.; Cao, C.; Batra, A. K.; Lal, R. B.; Mookherji, T. K.

    1991-01-01

    L-Arginine Phosphate (LAP) is a new nonlinear optical material with higher efficiency for harmonic generation compared to KDP. Crystals of LAP were grown in the laboratory from supersaturated solutions by temperature lowering technique. Investigations revealed the presence of large dislocation densities inside the crystals which are observed to produce refractive index changes causing damage at high laser powers. This is a result of the convection during crystal growth from supersaturated solutions. It is proposed to grow these crystals in a diffusion controlled growth condition under microgravity environment and compare the crystals grown in space with those grown on ground. Physical properties of the solutions needed for modelling of crystal growth are also presented.

  3. Vapor Growth and Characterization of Cr-Doped ZnSe Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, Shari; Volz, M. P.; Matyi, R.; George, M. A.; Chattopadhyay, K.; Burger, A.; Lehoczky, S. L.

    1999-01-01

    Cr-doped ZnSe single crystals were grown by a self-seeded physical vapor transport technique in both vertical (stabilized) and horizontal configurations. The source materials were mixtures of ZnSe and CrSe. Growth temperatures were in the range of 1140-1150 C and the furnace translation rates were 1.9-2.2 mm/day. The surface morphology of the as-grown crystals was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Different features of the as-grown surface of the vertically and horizontally grown crystals suggest that different growth mechanisms were involved in the two growth configurations. The [Cr] doping levels were determined to be in the range of 1.8-8.3 x 10 (exp 19) cm (exp -3) from optical absorption measurements. The crystalline quality of the grown crystals were examined by high-resolution triple-crystal X-ray diffraction (HRTXD) analysis.

  4. The growth and characterization of GaN films on cone-shaped patterned sapphire by MOCVD

    NASA Astrophysics Data System (ADS)

    Liang, Jing; Hongling, Xiao; Xiaoliang, Wang; Cuimei, Wang; Qingwen, Deng; Zhidong, Li; Jieqin, Ding; Zhanguo, Wang; Xun, Hou

    2013-11-01

    GaN films are grown on cone-shaped patterned sapphire substrates (CPSSs) by metal-organic chemical vapor deposition, and the influence of the temperature during the middle stage of GaN growth on the threading dislocation (TD) density of GaN is investigated. High-resolution X-ray diffraction (XRD) and cathode-luminescence (CL) were used to characterize the GaN films. The XRD results showed that the edge-type dislocation density of GaN grown on CPSS is remarkably reduced compared to that of GaN grown on conventional sapphire substrates (CSSs). Furthermore, when the growth temperature in the middle stage of GaN grown on CPSS decreases, the full width at half maximum of the asymmetry (102) plane of GaN is reduced. This reduction is attributed to the enhancement of vertical growth in the middle stage with a more triangular-like shape and the bending of TDs. The CL intensity spatial mapping results also showed the superior optical properties of GaN grown on CPSS to those of GaN on CSS, and that the density of dark spots of GaN grown on CPSS induced by nonradiative recombination is reduced when the growth temperature in the middle stage decreases.

  5. In situ characterization of formation and growth of high-pressure phases in single-crystal silicon during nanoindentation

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Yan, Jiwang

    2016-04-01

    Pressure-induced intermediate phases of silicon exhibit unique characteristics in mechanics, chemistry, optics, and electrics. Clarifying the formation and growth processes of these new phases is essential for the preparation and application of them. For in situ characterization of the formation and growth of high-pressure phases in single-crystal silicon, a quantitative parameter, namely displacement change of indenter (Δ h) during the unloading holding process in nanoindentation, was proposed. Nanoindentation experiments under various unloading holding loads and loading/unloading rates were performed to investigate their effects on Δ h. Results indicate that Δ h varies significantly before and after the occurrence of pop-out; for the same maximum indentation load, it tends to increase with the decrease in the holding load and to increase with the increase in the loading/unloading rate. Thus, the value of Δ h can be regarded as an indicator that reflects the formation and growth processes of the high-pressure phases. Using Δ h, the initial position for the nucleation of the high-pressure phases, their growth, and their correlation to the loading/unloading rate were predictable.

  6. Isolation, screening, and molecular characterization of plant growth promoting rhizobacteria isolates of Azotobacter and Trichoderma and their beneficial activities

    PubMed Central

    Kasa, Parameswari; Modugapalem, Hemalatha; Battini, Kishori

    2015-01-01

    Objectives: The present study was conducted for isolation, screening, and identification of Azotobacter and Trichoderma from different soil samples. Methods: A total of 10 isolates of Azotobacter and Trichoderma were isolated from rhizospheric soils. The test isolates were biochemically characterized and screened in in-vitro conditions for their plant growth promoting properties. DNA polymorphism of isolates was studied using randomly amplified polymorphic DNA analysis. Results: A total of 41 bands were scored, out of which 35 bands were found to be 85.59% polymorphic in Azotobacter and in Trichoderma among total 37 bands scored of which 29 were found to be 78.37% polymorphic. The influence of isolated plant growth promoting rhizobacteria (PGPR) strains on plant growth was studied using different parameters such as height of the plant, number of leaves, and number of branches, and bio-control activity was studied. Conclusion: The present results concluded that the multiple beneficial activities of PGPR traits increase the plant growth and bio-control activity. PMID:26283830

  7. Growth and electrical characterization of type II InAs/GaSb superlattices for midwave infrared detection

    NASA Astrophysics Data System (ADS)

    Zhang, Lixue; Sun, Weiguo; Xu, Yingqiang; Zhang, Lei; Zhang, Liang; Si, Junjie

    2014-07-01

    Herein, we report a type II InAs/GaSb superlattice structure (SLS) grown on GaSb(1 0 0) substrates by molecular beam epitaxy (MBE) and its electrical characterization for mid-wavelength infrared detection. A GaSb buffer layer was grown under optimized SLS growth conditions, which can decrease the occurrence of defects for similar pyramidal structures. The complications associated with these conditions include oxide desorption of the substrate, growth temperature of the SLS, the V/III ratio during superlattice growth and the shutter sequence. High-resolution X-ray diffraction (HRXRD) shows the sixth satellite peak, and the period of the SLS was 52.9 Å. The atomic force microscopy (AFM) images indicated that the roughness was less than 2.8 nm. High-resolution transmission electron microscopy (HRTEM) images indicated that the SLS contains few structural defects related to interface dislocations or strain relaxation during the growth of the superlattice layer. The photoresponse spectra indicated that the cutoff wavelength was 4.8 μm at 300 K. The SLS photodiode surface was passivated by a zinc sulfide (ZnS) coating after anodic sulfide.

  8. Characterization of the growth of murine fibroblasts that express human insulin receptors. I. The effect of insulin in the absence of other growth factors

    SciTech Connect

    Randazzo, P.A.; Morey, V.A.; Polishook, A.K.; Jarett, L. )

    1990-09-01

    The effect of insulin on the growth of murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental cells (NIH/3T3) was characterized. Insulin in the absence of other mitogens increased the rate of incorporation of thymidine into NIH 3T3/HIR cells with a half-maximal response occurring at an insulin concentration of 35 ng/ml and a maximal response that was equivalent to that elicited by 10% fetal calf serum. The thymidine incorporation rate was increased by 12 h, was maximal at approximately 16 h, and returned to basal rates at 24 h after the addition of insulin. Insulin induced a maximum of 65% of cells to incorporate thymidine. The increased DNA synthesis was accompanied by net growth. Addition of insulin to the NIH 3T3/HIR cells resulted in increased DNA content with a half-maximal response occurring at approximately 30 ng/ml insulin and a maximal response equivalent to that elicited by serum. An increase in cell number detected after the addition of insulin to the NIH 3T3/HIR suggests that the cells had progressed through mitosis. Insulin did not increase the rate of thymidine incorporation, DNA content, or number of the parental NIH 3T3 cells. These data show that insulin, in the absence of a second mitogen, is able to induce NIH 3T3/HIR fibroblasts to traverse the cell cycle.

  9. Molecular beam epitaxial growth of ultrathin CdTe-CdMnTe quantum wells and their characterization

    NASA Astrophysics Data System (ADS)

    Waag, A.; Schmeusser, S.; Bicknell-Tassius, R. N.; Yakovlev, D. R.; Ossau, W.; Landwehr, G.; Uraltsev, I. N.

    1991-12-01

    We report the growth and optical characterization of CdTe/CdMnTe single quantum wells with well thicknesses ranging from 60 down to 6 Å. The single quantum wells were grown by standard molecular beam epitaxy without growth interruption and investigated by reflection, photoluminescence (PL), and excitation PL. All structures including the 6-Å-thick quantum well exhibit extraordinarily narrow photoluminescence lines. From an analysis of linewidth and Stokes shift of the photoluminescence lines informations on the structure of the CdTe/CdMnTe interfaces are derived. The good quality of those structures made it possible to identify for the first time recombination of two-dimensional free exciton magnetic polarons.

  10. Single crystal growth and characterization of Na3Bi and Bi2Te2Se topological materials

    NASA Astrophysics Data System (ADS)

    Kushwaha, Satya K.; Krizan, Jason W.; Cava, R. J.

    2015-03-01

    In recent years, the discoveries of topological insulators (TI) and three-dimensional (3D) Dirac semimetals (TDS) have been of significant interest in condensed matter science. To study these materials experimentally, it is of great importance to grow them in the form of high quality single crystals. Na3Bi is recently discovered TDS and Bi2Te2Se3 (BTS) is one of the interesting TI materials. Na3Bi is extremely air sensitive and shows nontrivial crystallization behavior. BTS crystals usually grow with various point defects and typically exhibit metallic behavior. Here we will report the crystal growth of high quality Na3Bi and insulating BTS single crystals. The characterization of their electronic properties by our collaborators in physics at Princeton and Brookhaven National Laboratory will be briefly described. The growth of single crystals of TIs and TDS is supported at Princeton by grants from the ARO MURI and DARPA.

  11. Growth and characterization of III-nitrides materials system for photonic and electronic devices by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yoo, Dongwon

    A wide variety of group III-Nitride-based photonic and electronic devices have opened a new era in the field of semiconductor research in the past ten years. The direct and large bandgap nature, intrinsic high carrier mobility, and the capability of forming heterostructures allow them to dominate photonic and electronic device market such as light emitters, photodiodes, or high-speed/high-power electronic devices. Avalanche photodiodes (APDs) based on group III-Nitrides materials are of interest due to potential capabilities for low dark current densities, high sensitivities and high optical gains in the ultraviolet (UV) spectral region. Wide-bandgap GaN-based APDs are excellent candidates for short-wavelength photodetectors because they have the capability for cut-off wavelengths in the UV spectral region (lambda < 290 nm). These intrinsically solar-blind UV APDs will not require filters to operate in the solar-blind spectral regime of lambda < 290 nm. For the growth of GaN-based heteroepitaxial layers on lattice-mismatched substrates, a high density of defects is usually introduced during the growth; thereby, causing a device failure by premature microplasma, which has been a major issue for GaN-based APDs. The extensive research on epitaxial growth and optimization of AlxGa 1-xN (0 ≤ x ≤ 1) grown on low dislocation density native bulk III-N substrates have brought UV APDs into realization. GaN and AlGaN UV p-i-n APDs demonstrated first and record-high true avalanche gain of > 10,000 and 50, respectively. The large stable optical gains are attributed to the improved crystalline quality of epitaxial layers grown on low dislocation density bulk substrates. GaN p-i-n rectifiers have brought much research interest due to its superior physical properties. The AIN-free full-vertical GaN p-i-n rectifiers on n-type 6H-SiC substrates by employing a conducting AIGaN:Si buffer layer provides the advantages of the reduction of sidewall damage from plasma etching and

  12. Analysis of Future Streamflow Regimes under Global Change Scenarios in Central Chile for Ecosystem Sustainability

    NASA Astrophysics Data System (ADS)

    Henriquez Dole, L. E.; Gironas, J. A.; Vicuna, S.

    2015-12-01

    Given the critical role of the streamflow regime for ecosystem sustainability, modeling long term effects of climate change and land use change on streamflow is important to predict possible impacts in stream ecosystems. Because flow duration curves are largely used to characterize the streamflow regime and define indices of ecosystem health, they were used to represent and analyze in this study the stream regime in the Maipo River Basin in Central Chile. Water and Environmental Assessment and Planning (WEAP) model and the Plant Growth Model (PGM) were used to simulate water distribution, consumption in rural areas and stream flows on a weekly basis. Historical data (1990-2014), future land use scenarios (2030/2050) and climate change scenarios were included in the process. Historical data show a declining trend in flows mainly by unprecedented climatic conditions, increasing interest among users on future streamflow scenarios. In the future, under an expected decline in water availability coupled with changes in crop water demand, water users will be forced to adapt by changing water allocation rules. Such adaptation actions would in turns affect the streamflow regime. Future scenarios for streamflow regime show dramatic changes in water availability and temporal distribution. Annual weekly mean flows can reduce in 19% in the worst scenario and increase in 3.3% in the best of them, and variability in streamflow increases nearly 90% in all scenarios under evaluation. The occurrence of maximum and minimum monthly flows changes, as June instead of July becomes the driest month, and December instead of January becomes the month with maximum flows. Overall, results show that under future scenarios streamflow is affected and altered by water allocation rules to satisfy water demands, and thus decisions will need to consider the streamflow regime (and habitat) in order to be sustainable.

  13. Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme.

    PubMed

    Howard, Gary T; Norton, William N; Burks, Timothy

    2012-07-01

    A soil microorganism, designated as P7, was characterized and investigated for its ability to degrade polyurethane (PU). This bacterial isolate was identified as Acinetobacter gerneri on the basis of 16 s rRNA sequencing and biochemical phenotype analysis. The ability of this organism to degrade polyurethane was characterized by the measurement of growth, SEM observation, measurement of electrophoretic mobility and the purification and characterization of a polyurethane degrading enzyme. The purified protein has a molecular weight of approximately 66 kDa as determined by SDS-PAGE. Substrate specificity was examined using p-nitrophenyl substrates with varying carbon lengths. The highest substrate specificity was observed using p-nitrophenyl-propanate with an activity of 37.58 ± 0.21 U mg(-1). Additionally, the enzyme is inhibited by phenylmethylsulfonylfluoride and by ethylenediamine-tetra acetic acid. When grown on Impranil DLN(™) YES medium, a lag phase was noted for the first 3 h which was followed by logarithmic growth for 5 h. For the linear portion of growth between 5 and 9 h, a μ value of 0.413 doublings h(-1) was calculated. After 9 h of incubation the cell number dramatically decreased resulting in a chalky precipitate. Measurements of electrophoretic mobility indicated the formation of a complex between the PU and A. gerneri P7 cells. A hybrid zeta potential had been generated between the cells and polyurethane. Further evidence for a complex was provided by SEM observation where cells appeared to cluster along the surface of polyurethane particles and along edges of polyurethane films. Occasionally, the cells established an anchor-like structure that connected the cells to polyurethane particles. PMID:22228300

  14. Parameterized Beyond-Einstein Growth

    SciTech Connect

    Linder, Eric; Linder, Eric V.; Cahn, Robert N.

    2007-09-17

    A single parameter, the gravitational growth index gamma, succeeds in characterizing the growth of density perturbations in the linear regime separately from the effects of the cosmic expansion. The parameter is restricted to a very narrow range for models of dark energy obeying the laws of general relativity but can take on distinctly different values in models of beyond-Einstein gravity. Motivated by the parameterized post-Newtonian (PPN) formalism for testing gravity, we analytically derive and extend the gravitational growth index, or Minimal Modified Gravity, approach to parameterizing beyond-Einstein cosmology. The analytic formalism demonstrates how to apply the growth index parameter to early dark energy, time-varying gravity, DGP braneworld gravity, and some scalar-tensor gravity.

  15. Flux growth of high-quality CoFe 2O 4 single crystals and their characterization

    NASA Astrophysics Data System (ADS)

    Wang, W. H.; Ren, X.

    2006-04-01

    We report the growth of high-quality CoFe 2O 4 single crystals using a borax flux method. The crystals were characterized by powder X-ray diffraction, electron probe microanalysis and Raman spectroscopy. We found the crystals are flux-free and highly homogeneous in composition. X-ray rocking curves of the CoFe 2O 4 single crystals showed a full-width at half-maximum of 0.15°. The saturation magnetization of the CoFe 2O 4 single crystals was measured to be 90 emu/g or equivalently 3.65 μ B/f.u. at 5 K.

  16. Development of new techniques for the characterization of crystals and their growth solutions: Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.; Reiss, Donald A.

    1989-01-01

    The solubility measurement system and the laser scattering microscope system were designed, built, and utilized for the study of crystal growth solutions and crystal characterization measurements. Solubility measurements and crystal defect maps were made with this equipment for a number of new materials. In some cases, where there have been published solubility data (i.e., TGS), more accurate measurements were made and discrepancies in the published data were resolved. The design of these instruments is presented along with a description of their use and some typical data generated using them.

  17. Growth and characterization of tunable solid state lasers in the near infrared spectral region

    NASA Technical Reports Server (NTRS)

    Powell, Richard C.; Martin, Joel J.

    1990-01-01

    This research resulted in the publication of two major papers. The major results include the development of improved crystal growth techniques for rare earth-doped LiYF4 crystals and the determination of laser-pumped laser characteristics of Tm:Ho:Y3Al5O12 crystals.

  18. Phenotypic Characterization and Genetic Dissection of Growth Period Traits in Soybean (Glycine max) Using Association Mapping

    PubMed Central

    Huang, Wen; Yang, Jiyu; Li, Candong; Wen, Zixiang; Li, Yinghui; Guan, Rongxia; Guo, Yong; Chang, Ruzhen; Wang, Dechun; Wang, Shuming; Qiu, Li-Juan

    2016-01-01

    The growth period traits are important traits that affect soybean yield. The insights into the genetic basis of growth period traits can provide theoretical basis for cultivated area division, rational distribution, and molecular breeding for soybean varieties. In this study, genome-wide association analysis (GWAS) was exploited to detect the quantitative trait loci (QTL) for number of days to flowering (ETF), number of days from flowering to maturity (FTM), and number of days to maturity (ETM) using 4032 single nucleotide polymorphism (SNP) markers with 146 cultivars mainly from Northeast China. Results showed that abundant phenotypic variation was presented in the population, and variation explained by genotype, environment, and genotype by environment interaction were all significant for each trait. The whole accessions could be clearly clustered into two subpopulations based on their genetic relatedness, and accessions in the same group were almost from the same province. GWAS based on the unified mixed model identified 19 significant SNPs distributed on 11 soybean chromosomes, 12 of which can be consistently detected in both planting densities, and 5 of which were pleotropic QTL. Of 19 SNPs, 7 SNPs located in or close to the previously reported QTL or genes controlling growth period traits. The QTL identified with high resolution in this study will enrich our genomic understanding of growth period traits and could then be explored as genetic markers to be used in genomic applications in soybean breeding. PMID:27367048

  19. Characterization of PXK as a Protein Involved in Epidermal Growth Factor Receptor Trafficking ▿

    PubMed Central

    Takeuchi, Hiroshi; Takeuchi, Takako; Gao, Jing; Cantley, Lewis C.; Hirata, Masato

    2010-01-01

    The phox homology (PX) domain is a phosphoinositide-binding module that typically binds phosphatidylinositol 3-phosphate. Out of 47 mammalian proteins containing PX domains, more than 30 are denoted sorting nexins and several of these have been implicated in internalization of cell surface proteins to the endosome, where phosphatidylinositol-3-phosphate is concentrated. Here we investigated a multimodular protein termed PXK, composed of a PX domain, a protein kinase-like domain, and a WASP homology 2 domain. We show that the PX domain of PXK localizes this protein to the endosomal membrane via binding to phosphatidylinositol 3-phosphate. PXK expression in COS7 cells accelerated the ligand-induced internalization and degradation of epidermal growth factor receptors by a mechanism requiring phosphatidylinositol 3-phosphate binding but not involving the WASP homology 2 domain. Conversely, depletion of PXK using RNA interference decreased the rate of epidermal growth factor receptor internalization and degradation. Ubiquitination of epidermal growth factor receptor by the ligand stimulation was enhanced in PXK-expressing cells. These results indicate that PXK plays a critical role in epidermal growth factor receptor trafficking through modulating ligand-induced ubiquitination of the receptor. PMID:20086096

  20. Statistical characterization of the growth and spatial scales of the substorm onset arc

    NASA Astrophysics Data System (ADS)

    Kalmoni, N. M. E.; Rae, I. J.; Watt, C. E. J.; Murphy, K. R.; Forsyth, C.; Owen, C. J.

    2015-10-01

    We present the first multievent study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near-Earth plasma instability which causes the substorm onset arc. Using data from ground-based auroral imagers, we study repeatable signatures of along-arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near-Earth plasma sheet. We show that the growth and spatial scales of these wave-like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wave number with the most unstable spatial scales mapping to an azimuthal wavelength λ≈ 1700-2500 km in the equatorial magnetosphere at around 9-12 RE. We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the Cross-Field Current Instability and the Shear Flow Ballooning Instability. We conclude that, although the Cross-Field Current instability can generate similar magnitude of growth rates, the range of unstable wave numbers indicates that the Shear Flow Ballooning Instability is the most likely explanation for our observations.

  1. PARTIAL PURIFICATION AND CHARACTERIZATION OF A HEPATOCYTE GROWTH FACTOR PRODUCED BY RAT HEPATOCELLULAR CARCINOMA CELLS

    EPA Science Inventory

    Serum-free medium conditioned by confluent cultures of JM1 or JM2 rat hepatocellular carcinoma cells stimulated DNA synthesis in primary cultures of adult rat hepatocytes in a dose-dependent, saturable manner and in the absence of epidermal growth factor. The hepatotrophic activi...

  2. Vibrational spectroscopic characterization of growth bands in Porites coral from South China Sea

    NASA Astrophysics Data System (ADS)

    Song, Yinxian; Yu, Kefu; Ayoko, Godwin A.; Frost, Ray L.; Shi, Qi; Feng, Yuexing; Zhao, Jianxin

    2013-08-01

    A series of samples from different growth bands of Porites coral skeleton were studied using Raman, infrared reflectance methods. The Raman spectra proved that skeleton samples from different growth bands have the same mineral phase as aragonite, but a band at 133 cm-1 for the top layer shows a transition from ˜120 cm-1 for vaterite to ˜141 cm-1 for aragonite. It is inferred that the vaterite should be the precursor of aragonite of coral skeleton. The positional shift in the infrared spectra of the skeleton samples from growth bands correlate significantly to their minor elements (Li, Mg, Sr, Mn, Fe and U) contents. Mg, Sr and U especially have significant negative correlations with the positions of the antisymmetric stretching band ν3 at ˜1469 cm-1. And Li shows a high negative correlation with ν2 band (˜855 cm-1), while Sr and Mn show similar negative correlation with ν4 band (˜712 cm-1). And Mn also shows a negative correlation with ν1 band (˜1082 cm-1). A significantly negative correlation is observed for U with ν1 + ν4 band (˜1786 cm-1). However, Fe shows positive correlation with ν1, ν2, ν3, ν4 and ν1 + ν4 bands shifts, especially a significant correlation with ν1 band (˜1082 cm-1). New insights into the characteristics of coral at different growth bands of skeleton are given in present work.

  3. Dynamic Models of Learning That Characterize Parent-Child Exchanges Predict Vocabulary Growth

    ERIC Educational Resources Information Center

    Ober, David R.; Beekman, John A.

    2016-01-01

    Cumulative vocabulary models for infants and toddlers were developed from models of learning that predict trajectories associated with low, average, and high vocabulary growth rates (14 to 46 months). It was hypothesized that models derived from rates of learning mirror the type of exchanges provided to infants and toddlers by parents and…

  4. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    SciTech Connect

    Tao, Jun; Xiang, Jun-Jian; Li, Dan; Deng, Ning; Wang, Hong; Gong, Yi-Ping

    2010-04-09

    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10{sup -9} M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  5. Characterization of Optical Lenses to be Considered for the Imaging of Crystal Dendrite Growth

    NASA Technical Reports Server (NTRS)

    Wing, Frank M.

    1999-01-01

    Dynamic fracture is a phenomenon that is extremely sensitive to small perturbations in system parameters. This phenomenon is, in some ways, similar to that of dendritic crystal growth, although it is governed by different physical principles. Crystal dendrite growth patterns are affected by parameters such as temperature, pressure, and gravity. By studying the behavior of crystal dendrites in a controlled, microgravity environment, a greater understanding of dynamic fracture could be revealed. A sealed cubical container contains four stingers, which facilitate the growth of crystal dendrites. The container has five windows and is emersed in a liquid, for thermal isolation. The tip of a dendrite can advance in any direction, therefore three-dimensional images of the process are desired. Furthermore, because of the rapid growth rate, a fast image frame rate is required for accurate tracking of dendrite tip velocity. In addition, optical parameters such as field of view, depth of focus, and resolution are examined, as well as the working distance between a lens and the target of observation.

  6. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Incharoensakdi, Aran

    2015-02-01

    Alkaliphilic halotolerant cyanobacterium Aphanothece halophytica showed optimal growth in the medium containing 0.5 M NaCl. The increase of exogenously added glycine to the medium up to 10 mM significantly promoted cell growth under both normal (0.5 M NaCl) and salt stress (2.0 M NaCl) conditions. Salt stress imposed by either 2.0 or 3.0 M NaCl retarded cell growth; however, exogenously added glycine at 10 mM concentration to salt-stress medium resulted in the reduction of growth inhibition particularly under 3.0 M NaCl condition. The uptake of glycine by intact A. halophytica was shown to exhibit saturation kinetics with an apparent K s of 160 μM and V max of 3.9 nmol/min/mg protein. The optimal pH for glycine uptake was at pH 8.0. The uptake activity was decreased in the presence of high concentration of NaCl. Both metabolic inhibitors and ionophores decreased glycine uptake in A. halophytica suggesting an energy-dependent glycine uptake. Several neutral amino acids showed considerable inhibition of glycine uptake with higher than 50 % inhibition observed with serine, cysteine and alanine whereas acidic, basic and aromatic amino acids showed only slight inhibition of glycine uptake. PMID:25536900

  7. ASSESSMENT OF FUNGAL GROWTH ON CEILING TILES UNDER ENVIRONMENTALLY CHARACTERIZED CONDITIONS

    EPA Science Inventory

    The paper discusses investigation of the impact of the building environment on the ability of building materials to support microbial growth, using static chambers with defined relative humidity, temperature, and light conditions. he ability of fungi to grow on materials is well ...

  8. Growth of Co-doped (Ba,Sr)TiO 3 single crystals and their characterization

    NASA Astrophysics Data System (ADS)

    Madeswaran, S.; Giridharan, N. V.; Jayavel, R.; Subramanian, C.

    2002-04-01

    Single crystals of Co-doped B 1- xSr xTiO 3 (Co:BST) have been grown by high-temperature solution growth technique. The dopant has significant effect on the growth parameters and considerably reduced the twin formation in the grown crystal. Bulk single crystals of dimensions 5×5×4 mm 3 have been grown with optimized growth parameters. Layer growth and vein-like structure patterns, indicative of 2D nucleation mechanism, have been observed on the grown crystals. The presence of dopant in the grown crystals was confirmed by EDX analysis. For lower doping concentration (0.1 mol%), the crystal possesses tetragonal structure and changes to cubic for higher dopant level (1 and 5 mol%) Co doping in BST increases the dielectric constant values and decreases the Curie temperature ( Tc). The spontaneous polarization ( Ps) value for 0.1 mol% of Co-doped BST crystal is measured to be 22 μc/cm 2 and the value decreases with increasing Co concentration.

  9. Controlled growth and characterization of one-dimensional nano-structured materials

    NASA Astrophysics Data System (ADS)

    Qiu, Yongfu

    As the research in nanomaterials is progressing at a rapid pace, it has become increasingly clear that the functionalization of the nanomaterials largely depends on the level of control in the fabrication of the nanomaterials. The main theme of this thesis is to develop a number of new techniques to fabricate one-dimensional nanostructured materials, study the growth processes and understand the growth mechanisms of the nanomaterials. The control over the nanomaterials growth was imparted by judiciously designing the synthesis experiments. Firstly, the ultra-thin beta--Bi2O3 nanowires with a diameter down to 7 nm and a length of several mum have been successfully prepared for the first time using an oxidative metal vapor transport deposition technique. We also extended this technique for the controlled growth of thin ZnO nano-tetrapods. Secondly, the Kirkendall approach was first used to prepare ultra-thin, single crystalline ZnO nanotubes with inner and outer diameters of about 3 and 13 nm respectively. Thirdly, gold hollow tetrapods were prepared using ZnO tetrapods as the template, HAuCl4 as the gold source and ascorbic acid as the reducing reagent. Fourthly, we have successfully synthesized aligned ZnO nanowires and Cu(OH)2 nanoribbons on the corresponding Zn and Cu substrates through the gas-solution-solid method. Finally, the application of ZnO tetrapods and ultra-thin tube as humidity sensor was explored.

  10. Growth and characterization of CNT Forests using Bimetallic Nanoparticles as Catalyst

    NASA Astrophysics Data System (ADS)

    Lee, Kyung-Hwan; Sra, A.; Jang, H.; Choi, B.; Overzet, L.; Lee, G.; Yang, D.

    2008-10-01

    We study the growth of Multiwall carbon nanotubes (MWCNT) using bimetallic nanoparticles (NP) as catalyst rather than zerovalent metal ions such as Fe, Ni, Co. One advantage of using bimetallic NP is that both the size and shape and composition (atomic ordering) can be controlled. We will describe a simple method of producing bimetallic Fe-Pt, Fe-Co alloy nanoparticles and compare MWCNT growth using them to Fe catalyst growth. The synthesis of Fe, Fe-Pt, Fe-Co NP was carried out using a bottom-up polyol process. Subsequent growth of MWCNT forests was accomplished by PECVD using acetylene as precursor. TEM and SEM analysis of the sample cross-section grown at substrate temperature of 680 ^oC indicates that the diameters of the CNTs are ˜ 10-20 nm while height of the forest varies from 30 μm for Fe to 5 μm for Fe-Pt and 80-100 μm for Fe-Co. The number of walls in the CNTs and the graphitization content could be manipulated by varying the temperature (increasing to 760 ^oC) or by pre-treatment of the nanoparticles with oxygen plasma.

  11. PURIFICATION AND BIOLOGICAL CHARACTERIZATION OF HUMAN HEPATOPOETIN A: A POLYPEPTIDE GROWTH FACTOR FOR HEPATOCYTES

    EPA Science Inventory

    We have previously reported that the presence of a high molecular weight polypeptide growth factor in the plasma of normal human or rat serum which stimulates DNA synthesis in primary cultures of normal rat hepatocytes. e referred to this activity as Hepatopoietin A (HPTA) (6,7)....

  12. Directional growth and characterization of Fe?Al?Nb eutectic alloys

    NASA Astrophysics Data System (ADS)

    Mota, M. A.; Coelho, A. A.; Bejarano, J. M. Z.; Gama, S.; Caram, R.

    1999-03-01

    The manufacturing of components for operation at high temperatures requires the use of metallic materials which can keep satisfactory mechanical and chemical properties, even at temperatures beyond 1000°C. An interesting alternative to solve such a problem is the use of directionally solidified eutectic alloys. A potentially promising system for the manufacture of structural materials, and so far not totally studied, is the eutectic based on the Fe-Al-Nb system, which involves the (FeAl) 2Nb phase and the FeAl solid solution. Eutectic samples from this system were directionally solidified in a vertical Bridgman crystal growth unit. The objective of the experiments was to determine the influence of the growth rate on the eutectic microstructure. The ingots obtained were investigated by using optical and electron scanning microscopy. At low growth rate, the eutectic microstructure remained regular, even though it showed several types of microstructure defects. As the growth rate was increased, a transition from lamellar to fibrous morphology was observed.

  13. Synthesis and characterization of group IV semiconductor nanowires by vapor-liquid-solid growth

    NASA Astrophysics Data System (ADS)

    Lew, Kok-Keong

    There is currently intense interest in one-dimensional nanostructures, such as nanotubes and nanowires, due to their potential to test fundamental concepts of dimensionality and to serve as building blocks for nanoscale devices. Vapor-liquid-solid (VLS) growth, which is one of the most common fabrication methods, has been used to produce single crystal semiconductor nanowires such as silicon (Si), germanium (Ge), and gallium arsenide (GaAs). In the VLS growth of Group IV semiconductor nanowires, a metal, such as gold (Au) is used as a catalyst agent to nucleate whisker growth from a Si-containing (silane (SIH4)) or Ge-containing vapor (germane (GeH 4)). Au and Si/Ge form a liquid alloy that has a eutectic temperature of around 360°C, which, upon supersaturation, nucleates the growth of a Si or Ge wire. The goal of this work is to develop a more fundamental understanding of VLS growth kinetics and intentional doping of Group IV semiconductor nanowires in order to better control the properties of the nanowires. The fabrication of p-type and n-type Si nanowires will be studied via the addition of dopant gases such as diborane (B2H 6), trimethylboron (TMB), and phosphine (PH3) during growth. The use of gaseous dopant sources provides more flexibility in growth, particularly for the fabrication of p-n junctions and structures with axial dopant variations (e.g. p+-p- p+). The study is then extended to fabricate SiGe alloy nanowires by mixing SiH4 and GeH4. Bandgap engineering in Si/SiGe heterostructures can lead to novel devices with improved performance compared to those made entirely of Si. The scientific findings will lead to a better understanding of the fabrication of Si/SiGe axial and radial heterostructure nanowires for functional nanowire device structures, such as heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs). Eventually, the central theme of this research is to provide a scientific knowledge base and foundation for

  14. Characterization of selective epitaxial graphene growth on silicon carbide: Limitations and opportunities

    NASA Astrophysics Data System (ADS)

    Zaman, Farhana

    The need for post-CMOS nanoelectronics has led to the investigation of innovative device structures and materials. Graphene, a zero bandgap semiconductor with ballistic transport properties, has great potential to extend diversification and miniaturization beyond the limits of CMOS. The goal of this work is to study the growth of graphene on SiC using the novel method of selective graphitization. The major contributions of this research are as follows — First, epitaxial graphene is successfully grown on selected regions of SiC not capped by AlN deposited by molecular beam epitaxy. This contribution enables the formation of electronic-grade graphene in desired patterns without having to etch the graphene or expose it to any detrimental contact with external chemicals. Etching of AlN opens up windows to the SiC in desirable patterns for subsequent graphitization without leaving etch-residues (determined by XPS). Second, the impact of process parameters on the growth of graphene is investigated. Temperature, time, and argon pressure are the primary growth-conditions altered. A temperature of 1400°C in 1 mbar argon for 20 min produced the most optimal graphene growth without significant damage to the AlN capping-layer. Third, first-ever electronic transport measurements are achieved on the selective epitaxial graphene. Hall mobility of about 1550 cm2/Vs has been obtained to date. Finally, the critical limitations of the selective epitaxial graphene growth are enumerated. The advent of enhanced processing techniques that will overcome these limitations will create a multitude of opportunities for applications for graphene grown in this manner. It is envisaged to be a viable approach to fabrication of radio-frequency field-effect transistors.

  15. Comparative studies of thin film growth on aluminium by AFM, TEM and GDOES characterization

    NASA Astrophysics Data System (ADS)

    Qi, Jiantao; Thompson, George E.

    2016-07-01

    In this present study, comparative studies of trivalent chromium conversion coating formation, associated with aluminium dissolution process, have been investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and glow-discharge optical emission spectroscopy (GDOES). High-resolution electron micrographs revealed the evident and uniform coating initiation on the whole surface after conversion treatment for only 30 s, although a network of metal ridges was created by HF etching pre-treatment. In terms of conversion treatment process on electropolished aluminium, constant kinetics of coating growth, ∼0.30 ± 0.2 nm/s, were found after the prolonged conversion treatment for 600 s. The availability of electrolyte anions for coating deposition determined the growth process. Simultaneously, a proceeding process of aluminium dissolution during conversion treatment, of ∼0.11 ± 0.02 nm/s, was found for the first time, indicating constant kinetics of anodic reactions. The distinct process of aluminium consumption was assigned with loss of corrosion protection of the deposited coating material as evidenced in the electrochemical impedance spectroscopy. Based on the present data, a new mechanism of coating growth on aluminium was proposed, and it consisted of an activation period (0-30 s), a linear growth period (0.30 nm/s, up for 600 s) and limited growth period (0.17 nm/s, 600-1200 s). In addition, the air-drying post-treatment and a high-vacuum environment in the microscope revealed a coating shrinkage, especially in the coatings after conversion treatments for longer time.

  16. OMVPE growth and characterization of GaInAsSb for thermophotovoltaics

    SciTech Connect

    Wang, C.A.; Charache, G.W.

    1998-06-01

    Studies on the materials development of Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} alloys for thermophotovoltaic (TPV) devices are reviewed. Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} epilayers were grown lattice matched to GaSb substrates by organometallic vapor phase epitaxy (OMVPE) using all organometallic precursors including triethylgallium, trimethylindium, tertiarybutylarsine, and trimethylantimony with diethyltellurium and dimethylzinc as the n- and p-type dopants, respectively. The overall material quality of these alloys depends on growth temperature, In content, V/III ratio, substrate misorientation, and to a lesser extent, growth rate. A mirror-like surface morphology and room temperature photoluminescence (PL) are obtained for GaInAsSb layers with peak emission in the wavelength range between 2 and 2.5 {micro}m. The crystal quality improves for growth temperature decreasing from 575 to 525 C, and with decreasing In content, as based on epilayer surface morphology and low temperature PL spectra. A trend of smaller full width at half-maximum for low temperature PL spectra is observed as the growth rate is increased from 1.5 to 2.5 and 5 {micro}m/h. In general, GaInAsSb layers grown on (100) GaSb substrates with a 6{degree} toward (111)B misorientation exhibited overall better material quality than layers grown on the more standard substrate (100) 2{degree} toward (110). Consistent growth of high performance lattice-matched GaInAsSb TPV devices is also demonstrated.

  17. Characterization of growth hormone enhanced donor site healing in patients with large cutaneous burns.

    PubMed Central

    Herndon, D N; Hawkins, H K; Nguyen, T T; Pierre, E; Cox, R; Barrow, R E

    1995-01-01

    BACKGROUND: Human growth hormone is an anabolic agent that attenuates injury-induced catabolism and stimulates protein synthesis. Recombinant human growth hormone (rhGH) administered therapeutically to patients with massive burns has been shown to increase the rate of skin graft donor site healing. It has been postulated that growth hormone affects wound healing and tissue repair by stimulating the production of insulin-like growth factor-1 (IGF-1) by the liver to increase circulating IGF-1 concentrations. The mechanism by which it improves wound healing, however, remains in question. The authors hypothesize that rhGH up-regulates IGF-1 receptors and IGF-1 levels both systemically and locally in the wound site to stimulate cell mitosis and increase synthesis of laminin, collagen types IV and VII, and cytokeratin. This hypothesis was tested in nine patients with burns covering > 40% of total body surface area. OBJECTIVE: The authors assessed the efficacy of rhGH in promoting several major building materials in the donor site of patients with massive burns. METHODS: Ten massively burned patients with full-thickness burns covering more than 40% of total body surface area were participants in a placebo-controlled prospective study to determine the efficacy of 0.2 mg/kg/day rhGH on donor site wound healing and to identify some of the major components involved in wound healing and its integrity. RESULTS: Donor sites in burn patients receiving rhGH showed an increased coverage by the basal lamina of 26% for placebo to 68% coverage of the dermal-epidermal junction. Insulin-like growth factor-1 receptors and laminin, types IV and VII collagen, and cytokeratin-14 all increased significantly. Healing times of the donor sites were significantly decreased compared with patients receiving placebo. CONCLUSION: Results indicate that growth hormone or its secondary mediators may directly stimulate the cells of the epidermis and dermis during wound healing to produce the structural

  18. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase.

    PubMed

    Belimov, A A; Safronova, V I; Sergeyeva, T A; Egorova, T N; Matveyeva, V A; Tsyganov, V E; Borisov, A Y; Tikhonovich, I A; Kluge, C; Preisfeld, A; Dietz, K J; Stepanok, V V

    2001-07-01

    Fifteen bacterial strains containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were isolated from the rhizoplane of pea (Pisum sativum L.) and Indian mustard (Brassica juncea L.) grown in different soils and a long-standing sewage sludge contaminated with heavy metals. The isolated strains were characterized and assigned to various genera and species, such as Pseudomonas brassicacearum, Pseudomonas marginalis, Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. by determination of 16S rRNA gene sequences. The root elongation of Indian mustard and rape (Brassica napus var. oleifera L.) germinating seedlings was stimulated by inoculation with 8 and 13 isolated strains, respectively. The bacteria were tolerant to cadmium toxicity and stimulated root elongation of rape seedlings in the presence of 300 microM CdCl2 in the nutrient solution. The effect of ACC-utilising bacteria on root elongation correlated with the impact of aminoethoxyvinylglycine and silver ions, chemical inhibitors of ethylene biosynthesis. A significant improvement in the growth of rape caused by inoculation with certain selected strains was also observed in pot experiments, when the plants were cultivated in cadmium-supplemented soil. The biomass of pea cv. Sparkle and its ethylene sensitive mutant E2 (sym5), in particular, was increased through inoculation with certain strains of ACC-utilising bacteria in pot experiments in quartz sand culture. The beneficial effect of the bacteria on plant growth varied significantly depending on individual bacterial strains, plant genotype, and growth conditions. The results suggest that plant growth promoting rhizobacteria containing ACC deaminase are present in various soils and offer promise as a bacterial inoculum for improvement of plant growth, particularly under unfavourable environmental conditions. PMID:11547884

  19. Magnetic, optical and electrical characterization of SiC doped with scandium during the PVT growth

    NASA Astrophysics Data System (ADS)

    Racka, K.; Avdonin, A.; Sochacki, M.; Tymicki, E.; Grasza, K.; Jakieła, R.; Surma, B.; Dobrowolski, W.

    2015-03-01

    Scandium is introduced into bulk SiC during the physical vapor transport (PVT) growth. SiC crystals grown with different Sc contents (from 0.5 wt% up to 2.5 wt%, added to the SiC source material) are studied. Magnetic properties of SiC doped with scandium during the PVT growth are reported for the first time. The presence of antiferromagnetic interactions between magnetic moments of Sc ions is concluded from the temperature dependence of magnetic susceptibility. Detailed PL spectra of 4H-/6H-SiC:B and 4H-/6H-SiC:Sc crystals are presented. A new energy level of 35-37 meV is found on SiC:Sc samples and its possible assignment to a complex defect, consisting of nitrogen donor and scandium acceptor, is proposed.

  20. Reactive Ballistic Deposition of Porous TiO2 Films: Growth and Characterization

    SciTech Connect

    Flaherty, David W.; Dohnalek, Zdenek; Dohnalkova, Alice; Arey, Bruce W.; McCready, David E.; Ponnusany, Nachimuthu; Mullins, C. Buddie; Kay, Bruce D.

    2007-03-29

    Nanoporous, high-surface area films of TiO2 are synthesized by reactive ballistic deposition of titanium metal in an oxygen ambient. Auger electron spectroscopy (AES) is used to investigate the stoichiometric dependence of the films on growth conditions (surface temperature and partial pressure of oxygen). Scanning and transmission electron microscopy show that the films consist of arrays of separated filaments. The surface area and the distribution of binding site energies of the films are measured as functions of growth temperature, deposition angle, and annealing conditions using temperature programmed desorption (TPD) of N2. TiO2 films deposited at 50 K at 70º from substrate normal display the greatest specific surface area of ~100 m2/g. In addition, the films retain greater than 70% of their original surface area after annealing to 600 K. The combination of high surface area and thermal stability suggest that these films could serve as supports for applications in heterogeneous catalysis.

  1. Growth kinetics and complex characterization of PECVD SiO x N y dielectric films

    NASA Astrophysics Data System (ADS)

    Pereyaslavtsev, A.; Sokolov, I.

    2016-05-01

    This paper is devoted to the study of patterns of dielectric film growth depending on the parameters of the plasma chemical deposition process. The study has revealed the influence of the basic reagents’ content on the changes in surface morphology, breakdown voltage and stoichiometry (transition to the intermediate oxidation states of silicon) of dielectric films. Furthermore, an exponential pattern of the change in the films’ growth rate has been registered. When increasing the N/Si ratio, a nonlinear dependence of the change in the dielectric films’ band gap has been recorded. When increasing the SiH4/N2O ratio, a shift of the peak positions of the interband interactions relative to the band gap boundaries has been detected. The dataset on breakdown voltage and band structure suggests a certain optimum of barrier properties of SiO x N y dielectric films at the basic reagents’ ratio close to 0.3–0.4.

  2. Growth and characterization of thin film zinc-silicon-arsenide for solar cells

    NASA Astrophysics Data System (ADS)

    Igwe, G. A.

    Conditions for good morphology synthesis and epilayer growth of thin film Zinc Silicon Arsenide (ZnSiAs2) by the metallorganic chemical vapor deposition (MO-CVD) technique have been investigated. Structural, electrical and optical properties of such ZnSiAs2 layers were studied using several diverse methods including electron microprobe, X-ray diffraction, auger electron spectroscopy, secondary ion mass spectrometry, electron beam induced currents, photovoltaic spectral response, current-voltage and capacitance-voltage characteristics of heterostructures. Many problems generally associated with heteroepitaxial growth of semiconducting materials were much in evidence. In particular, interfacial diffusion resulting in autodoping of both substrate and the grown epilayer precluded rectifying heterojunction formation for ZnSiAs2 layers grown on Ge, GaAs or Si substrate. The lattice mismatch of about three percent between silicon and ZnSiAs2 provided additional problems of microcracks in and nonadherence of the epilayers.

  3. New optical approaches to the quantitative characterization of crystal growth, segregation and defect formation

    NASA Technical Reports Server (NTRS)

    Carlson, D. J.; Wargo, M. J.; Cao, X. Z.; Witt, A. F.

    1991-01-01

    Elemental and compound semiconductors were characterized using new optical approach based on NIR microscopy in conjunction with computational image analysis and contrast enhancement. The approach made it possible to perform a quantitative microsegregation analysis of GaAs and InP. NIR dark file illumination in transmission mode makes it possible to detect submicron precipitates in semiinsulating GaAs.

  4. Growth and characterization of macroscopic reduced graphene oxide paper for device application

    NASA Astrophysics Data System (ADS)

    Singh, Rajinder; Kumar, Sanjeev; Mahajan, Aman; Bedi, R. K.

    2016-05-01

    A simple and economical method has been used to grow macroscopically reduced graphene oxide (rGO) paper for device application. Synthesized paper has been characterized by different experimental techniques namely SEM, TEM, Raman and UV-Vis spectroscopy respectively. Besides these, temperature dependent electrical studies of rGO paper have also been carried out.

  5. Growth and characterization of large CdSiP 2 single crystals

    NASA Astrophysics Data System (ADS)

    Zawilski, Kevin T.; Schunemann, Peter G.; Pollak, Thomas C.; Zelmon, David E.; Fernelius, Nils C.; Kenneth Hopkins, F.

    2010-04-01

    Large, optically transparent crystals of CdSiP 2 (CSP) have been grown for the first time from a stoichiometric melt. The material is a high temperature analog to ZnGeP 2 with promising characteristics for IR frequency conversion. Crystals are birefringent and are transparent from 0.5 to 9 μm. Polycrystalline charges were successfully synthesized from high purity elemental starting materials by two-temperature vapor transport despite the very high equilibrium vapor pressure (˜22 atm) at the melting point of CdSiP 2 (1133 °C). Single crystals were grown using the horizontal gradient freeze (HGF) technique in high-temperature transparent furnaces. Over the course of several growth runs, the material proved to be prone to cracking and to twinning along (1 1 2) planes. Twinning was eliminated by seeded growth along directions normal to the 112 planar boundaries. Further modifications to growth conditions resulted in high optical quality, crack- and twin-free single crystals 70×25×8 mm 3. The largest CdSiP 2 single crystals previously reported in the literature were grown through either halogen assisted vapor transport or from a molten Sn flux and measured 2×2×0.2 mm 3. The HGF growth of large CdSiP 2 crystals has allowed several bulk properties to be measured for the first time, including the thermal expansion coefficients, thermal conductivity, and wavelength dependent birefringence and dispersion. Measurements of the optical and thermal properties reveal this to be an extremely promising material for 1-, 1.5-, and 2 μm-pumped mid-IR lasers.

  6. Metal free growth and characterization of InAs1-xPx nanowires

    SciTech Connect

    Mandl, Bernhard; Stangl, Julian; Brehm, Moritz; Fromherz, Thomas; Bauer, Guenther; Maartensson, Thomas; Samuelson, Lars; Seifert, Werner

    2007-04-10

    InAs nanowires have been grown without the use of Au or other metal particles as catalyst by metal-organic vapor phase epitaxy. The nanowires growth is initiated by a thin layer of SiOx. The wires exhibit a non-tapered shape with a hexagonal cross section. In addition to InAs also InAs1-xPx wires are grown and the incorporation of P is studied by photoluminescence.

  7. Purification, growth, and characterization of Zn(x)Cd(1-x)Se crystals

    NASA Technical Reports Server (NTRS)

    Silberman, E.; Burger, A.; Chen, W.; Henderson, D. O.; Morgan, S. H.; Springer, John M.; Yao, Y.

    1989-01-01

    The purification of starting materials which were used in the growth of Zn(x)Cd(1-x)Se (x = 0.2) single crystals using the traveling solution method (TSM) is reported. Up to 13 cm long single crystals and as grown resistivities of 6 x 10(exp 12) ohm/cm could be achieved. Infrared and Raman spectra of Zn(0.2)Cd(0.8)Se are also presented and discussed.

  8. Characterization of the E. coli proteome and its modifications during growth and ethanol stress

    PubMed Central

    Soufi, Boumediene; Krug, Karsten; Harst, Andreas; Macek, Boris

    2015-01-01

    We set out to provide a resource to the microbiology community especially with respect to systems biology based endeavors. To this end, we generated a comprehensive dataset monitoring the changes in protein expression, copy number, and post translational modifications in a systematic fashion during growth and ethanol stress in E. coli. We utilized high-resolution mass spectrometry (MS) combined with the Super-SILAC approach. In a single experiment, we have identified over 2300 proteins, which represent approximately 88% of the estimated expressed proteome of E. coli and estimated protein copy numbers using the Intensity Based Absolute Quantitation (iBAQ). The dynamic range of protein expression spanned up to six orders of magnitude, with the highest protein copy per cell estimated at approximately 300,000. We focused on the proteome dynamics involved during stationary phase growth. A global up-regulation of proteins related to stress response was detected in later stages of growth. We observed the down-regulation of the methyl directed mismatch repair system containing MutS and MutL of E. coli growing in long term growth cultures, confirming that higher incidence of mutations presents an important mechanism in the increase in genetic diversity and stationary phase survival in E. coli. During ethanol stress, known markers such as alcohol dehydrogenase and aldehyde dehydrogenase were induced, further validating the dataset. Finally, we performed unbiased protein modification detection and revealed changes of many known and unknown protein modifications in both experimental conditions. Data are available via ProteomeXchange with identifier PXD001648. PMID:25741329

  9. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Lomax, T. L.; Rayle, D. L.

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.

  10. Multidisciplinary characterization of the long-bone cortex growth patterns through sheep's ontogeny.

    PubMed

    Cambra-Moo, Oscar; Nacarino-Meneses, Carmen; Díaz-Güemes, Idoia; Enciso, Silvia; García Gil, Orosia; Llorente Rodríguez, Laura; Rodríguez Barbero, Miguel Ángel; de Aza, Antonio H; González Martín, Armando

    2015-07-01

    Bone researches have studied extant and extinct taxa extensively trying to disclose a complete view of the complex structural and chemical transformations that model and remodel the macro and microstructure of bone during growth. However, to approach bone growth variations is not an easy task, and many aspects related with histological transformations during ontogeny remain unresolved. In the present study, we conduct a holistic approach using different techniques (polarized microscopy, Raman spectroscopy and X-ray diffraction) to examine the histomorphological and histochemical variations in the cortical bone of sheep specimens from intrauterine to adult stages, using environmentally controlled specimens from the same species. Our results suggest that during sheep bone development, the most important morphological (shape and size) and chemical transformations in the cortical bone occur during the first weeks of life; synchronized but dissimilar variations are established in the forelimb and hind limb cortical bone; and the patterns of bone tissue maturation in both extremities are differentiated in the adult stage. All of these results indicate that standardized histological models are useful not only for evaluating many aspects of normal bone growth but also to understand other important influences on the bones, such as pathologies that remain unknown. PMID:26091739

  11. Growth and characterization of Mn 2+-activated magnesium aluminate spinel single crystals

    NASA Astrophysics Data System (ADS)

    Jouini, Anis; Yoshikawa, Akira; Fukuda, Tsuguo; Boulon, Georges

    2006-08-01

    Several concentrations of Mn 2+-doped MgAl 2O 4 single crystals have been successfully grown using the micro-pulling-down (μ-PD) method. Due to their high melting temperature, the use of special Ir-Re crucibles was necessary. Because of the wide solubility range, the dependence of the behavior of the solid-liquid interface on the growth parameters was carefully studied to establish the growth conditions of stoichiometric MgAl 2O 4 spinel. Rod shaped <1 0 0> oriented single crystals of undoped and manganese doped MgAl 2O 4 spinel with 3 mm in diameter and a few centimeters in length were obtained in reducing argon atmosphere. The composition of Mn ions along the growth a-axis was controlled by the electron probe micro-analysis (EPMA). The optical transmission, crystallinity and thermal expansion of the grown crystals are investigated as well the annealing effect under oxidizing atmosphere will be detailed.

  12. Synthesis and characterization of phosphocitric acid, a potent inhibitor of hydroxylapatite crystal growth.

    PubMed

    Tew, W P; Mahle, C; Benavides, J; Howard, J E; Lehninger, A L

    1980-04-29

    Human urine and extracts of rat liver mitochondria contain apparently identical agents capable of inhibiting the precipitation or crystallization of calcium phosphate. Its general properties, as well as 1H NMR and mass spectra, have suggested that the agent is phosphocitric acid. This paper reports the synthesis of phosphocitric acid via the phosphorylation of triethyl citrate with o-phenylene phosphochloridate, hydrogenolysis of the product to yield triethyl phosphocitrate, hydrolytic removal of the blocking ethyl groups and also chromatographic purification. An enzymatic assay of phosphocitrate is described. Synthetic phosphocitrate was found to be an exceedingly potent inhibitor of the growth of hydroxylapatite seed crystals in a medium supersaturated with respect to Ca2+ and phosphate. Comparative assays showed phosphocitrate to be much more potent than the most active precipitation-crystallization inhibitors previously reported, which include pyrophosphate and ATP. 14C-Labeled phosphocitrate was bound very tightly to hydroxylapatite crystals. Such binding appeared to be essential for its inhibitory activity on crystal growth. Citrate added before but not after, phosphocitrate greatly enhanced the inhibitory potency of the latter. This enhancement effect was not given by other tricarboxylic acids. The monoethyl ester of phosphocitrate had no inhibitory effect on hydroxylapatite crystal growth. PMID:7378389

  13. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica.

    PubMed

    Muday, G K; Lomax, T L; Rayle, D L

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action. PMID:11536692

  14. Establishment and characterization of a novel, spontaneously immortalized retinoblastoma cell line with adherent growth.

    PubMed

    Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk; Kim, Dong Hun; Kim, Chong Jai; Kim, Kyu-Won

    2007-09-01

    Retinoblastoma is the most common intraocular cancer of childhood, however, only a few cultured retinoblastoma cell lines are available to date. In the present study, we established a new human retinoblastoma cell line with adherent growth, named SNUOT-Rb1. The SNUOT-Rb1 cell line was established from an eye with retinoblastoma, which was enucleated from a 3-year-old Korean child. SNUOT-Rb1 has morphological and biochemical characteristics common to previous human retinoblastoma cell line, Y79: morphological features of fibroblast- or ganglion-like cells, and biochemical features of expression of glial fibrillary acidic protein and neuron-specific enolase. However, compared to Y79, SNUOT-Rb1 has a unique characteristic of growing in adherence, and the doubling time of SNUOT-Rb1 is shorter than Y79 in adherent or floating growth. In analysis of the tumorigenic potential of SNUOT-Rb1 in nude mice, orthotopic implantation of SNUOT-Rb1 mimics the pattern of local growth of retinoblastoma. In comparative genomic hybridization analysis, we found that SNUOT-Rb1 has significant chromosomal imbalances on chromosome 3, 9, 10, 11, 14, 16, 17, and 22. Therefore, SNUOT-Rb1 could be useful in studying the biological and genetic characteristics of retinoblastoma for insights into the heredity and genetics of childhood cancer. PMID:17671685

  15. Why in situ, real-time characterization of thin film growth processes?

    SciTech Connect

    Auciello, O.; Krauss, A.R.

    1995-08-01

    Since thin-film growth occurs at the surface, the analytical methods should be highly surface-specific. although subsurface diffusion and chemical processes also affect film properties. Sampling depth and ambient-gas is compatibility are key factors which must be considered when choosing in situ probes of thin-film growth phenomena. In most cases, the sampling depth depends on the mean range of the exit species (ion, photon, or electron) in the sample. The techniques that are discussed in this issue of the MRS Bulletin (1) have been chosen because they may be used for in situ, real-time analysis of film-growth phenomena in vacuum and in the presence of ambient gases resulting either from the deposition process or as a requirement for the production of the desired chemical phase. A second criterion for inclusion is that the instrumentation be sufficiently compact and inexpensive to permit use as a dedicated tool in a thin-film deposition system.

  16. Growth and characterization of Hg(1-x)Zn(x)Se

    NASA Technical Reports Server (NTRS)

    Andrews, R. N.

    1986-01-01

    Hg sub 1-xZn sub xSe alloys of composition x=0.10 were grown in a Bridgman-Stockbarger growth furnace at translation rates of 0.3 and 0.1 micron sec. The axial and radial composition profiles were determined using precision density measurements and IR transmission-edge-mapping, respectively. A more radially homogeneous alloy was produced at the slower growth rate, while the faster growth rate produced more axially homogeneous alloys. A determination of the electrical properties of the Hg sub 1-xZn sub xSe samples in the temperature range 300K-20K was also made. Typical carrier concentrations were on the order of magnitude of 10 to the 18th power cu/cm, and remained fairly constant as a function of temperature. A study was also made of the temperature dependence of the resistivity and Hall mobility. The effect of annealing in a selenium vapor on both the IR transmission and the electrical properties was determined. Annealing was effective in reducing the number of native donor defects and at the resulting lower carrier concentrations, charge carrier concentration was shown to be a function of temperature. Annealing caused the mobility to increase, primarily at the lower temperature, and the room temperature resistivity to increase. Annealing was also observed to greatly enhance the % IR transmittance of the samples. This was due primarily to the effect of annealing on decreasing the charge carrier concentration.

  17. Characterization of Transcriptome Remodeling during Cambium Formation Identifies MOL1 and RUL1 As Opposing Regulators of Secondary Growth

    PubMed Central

    Agusti, Javier; Lichtenberger, Raffael; Schwarz, Martina; Nehlin, Lilian; Greb, Thomas

    2011-01-01

    Cell-to-cell communication is crucial for the development of multicellular organisms, especially during the generation of new tissues and organs. Secondary growth—the lateral expansion of plant growth axes—is a highly dynamic process that depends on the activity of the cambium. The cambium is a stem cell–like tissue whose activity is responsible for wood production and, thus, for the establishment of extended shoot and root systems. Attempts to study cambium regulation at the molecular level have been hampered by the limitations of performing genetic analyses in trees and by the difficulty of accessing this tissue in model systems such as Arabidopsis thaliana. Here, we describe the roles of two receptor-like kinases, REDUCED IN LATERAL GROWTH1 (RUL1) and MORE LATERAL GROWTH1 (MOL1), as opposing regulators of cambium activity. Their identification was facilitated by a novel in vitro system in which cambium formation is induced in isolated Arabidopsis stem fragments. By combining this system with laser capture microdissection, we characterized transcriptome remodeling in a tissue- and stage-specific manner and identified series of genes induced during different phases of cambium formation. In summary, we provide a means for investigating cambium regulation in unprecedented depth and present two signaling components that control a process responsible for the accumulation of a large proportion of terrestrial biomass. PMID:21379334

  18. Identification and characterization of the endophytic plant growth prompter Bacillus Cereus strain mq23 isolated from Sophora Alopecuroides root nodules

    PubMed Central

    Zhao, Longfei; Xu, Yajun; Sun, Ran; Deng, Zhenshan; Yang, Wenquan; Wei, Gehong

    2011-01-01

    Endophytes MQ23 and MQ23R isolated from Sophora alopecuroides root nodules were characterized by observing their ability to promote plant growth and employing molecular analysis techniques. Results showed that MQ23 and MQ23R are potential N2-fixing endophytes and belong to the same species as Bacillus cereus. MQ23 was shown to be able to produce siderophores, IAA, and demonstrate certain antifungal activity to plant pathogenic fungi. Co-inoculation with MQ23+MQ23II showed a more significant effect than inoculation alone in vitro for most of positive actions suggesting they have a cooperative interaction. Results of plant inoculation with endophytes indicated that the growth indexes of co-inoculated MQ23+MQ23II were higher than those of inoculated alone (p<0.05) (the exception being for root fresh weight) when compared to negative control. There have been little of any studies of nonrhizobial putative endophytes with growth-promotion attributes in S. alopecuroides root nodules. This could be exploited as potential bio-inoculants and biocontrol agents in agriculture. PMID:24031669

  19. Identification and characterization of the endophytic plant growth prompter Bacillus Cereus strain mq23 isolated from Sophora Alopecuroides root nodules.

    PubMed

    Zhao, Longfei; Xu, Yajun; Sun, Ran; Deng, Zhenshan; Yang, Wenquan; Wei, Gehong

    2011-04-01

    Endophytes MQ23 and MQ23R isolated from Sophora alopecuroides root nodules were characterized by observing their ability to promote plant growth and employing molecular analysis techniques. Results showed that MQ23 and MQ23R are potential N2-fixing endophytes and belong to the same species as Bacillus cereus. MQ23 was shown to be able to produce siderophores, IAA, and demonstrate certain antifungal activity to plant pathogenic fungi. Co-inoculation with MQ23+MQ23II showed a more significant effect than inoculation alone in vitro for most of positive actions suggesting they have a cooperative interaction. Results of plant inoculation with endophytes indicated that the growth indexes of co-inoculated MQ23+MQ23II were higher than those of inoculated alone (p<0.05) (the exception being for root fresh weight) when compared to negative control. There have been little of any studies of nonrhizobial putative endophytes with growth-promotion attributes in S. alopecuroides root nodules. This could be exploited as potential bio-inoculants and biocontrol agents in agriculture. PMID:24031669

  20. VLS-like growth and characterizations of dense ZnO nanorods grown by e-beam process

    NASA Astrophysics Data System (ADS)

    Agarwal, D. C.; Chauhan, R. S.; Avasthi, D. K.; Sulania, I.; Kabiraj, D.; Thakur, P.; Chae, K. H.; Chawla, Amit; Chandra, R.; Ogale, S. B.; Pellegrini, G.; Mazzoldi, P.

    2009-02-01

    We present a new approach to produce ZnO nanorods in a reproducible manner at a temperature lower than other physical vapour deposition techniques, such as the vapour-liquid-solid mechanism. Arrays of well-aligned ZnO nanorods of uniform diameter have been synthesized on the Si substrate precoated with Au, using a simple electron beam evaporation method without the flow of any carrier gas. Scanning electron microscopy and atomic force microscopy characterizations show that as-grown nanorods are well aligned and uniform in diameter. X-ray diffraction measurements and clear lattice fringes in high-resolution transmission electron microscopy image show the growth of good quality polycrystalline hexagonal ZnO nanorods and a lang0 0 2rang growth direction. The polarization-dependent studies of near edge x-ray absorption fine structure (NEXAFS) are performed to investigate the electronic structure of the zinc and oxygen ions. The analysis of NEXAFS spectra at different angles of incidence of photon flux indicates the formation of ZnO nanorods having anisotropic behaviour of O and Zn states. The photoluminescence spectrum exhibits strong ultraviolet emission at 385 nm and the UV-visible spectrum also shows a band-gap transition around 390 nm indicating the good quality of nanorods. The catalytic growth mechanism of the ZnO nanorods is discussed on the basis of experimental results in this work.

  1. Characterization of Cracking and Crack Growth Properties of the C5A Aircraft Tie-Box Forging

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Smith, Stephen W.; Newman, John A.; Willard, Scott A.

    2003-01-01

    Detailed destructive examinations were conducted to characterize the integrity and material properties of two aluminum alloy (7075-T6) horizontal stabilizer tie box forgings removed.from US. Air Force C5A and C5B transport aircraft. The C5B tie box forging was,found to contain no evidence of cracking. Thirteen cracks were found in the CSA,forging. All but one of the cracks observed in the C5A component were located along the top cap region (one crack was located in the bottom cap region). The cracks in the C5A component initiated at fastener holes and propagated along a highly tunneled intergranular crack path. The tunneled crack growth configuration is a likelv result of surface compressive stress produced during peening of the .forging suijace. The tie box forging ,fatigue crack growth, fracture and stress corrosion cracking (SCC) properties were characterized. Reported herein are the results of laboratory air ,fatigue crack growth tests and 95% relative humidity SCC tests conducted using specimens machined from the C5A ,forging. SCC test results revealed that the C5A ,forging material was susceptible to intergranular environmental assisted cracking: the C5A forging material exhibited a SCC crack-tip stress-intensity factor threshold of less than 6 MPadn. Fracture toughness tests revealed that the C5A forging material exhibited a fracture toughness that was 25% less than the C5B forging. The C5A forging exhibited rapid laboratory air fatigue crack growth rates having a threshold crack-tip stress-intensity factor range of less than 0.8 MPa sup m. Detailed fractographic examinations revealed that the ,fatigue crack intergranular growth crack path was similar to the cracking observed in the C5A tie box forging. Because both fatigue crack propagation and SCC exhibit similar intergranular crack path behavior, the damage mechanism resulting in multi-site cracking of tie box forgings cannot be determined unless local cyclic stresses can be quantified.

  2. Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes

    SciTech Connect

    Chung, Kunook; Beak, Hyeonjun; Tchoe, Youngbin; Oh, Hongseok; Yi, Gyu-Chul; Yoo, Hyobin; Kim, Miyoung

    2014-09-01

    We report the growth of GaN micro-rods and coaxial quantum-well heterostructures on graphene films, together with structural and optical characterization, for applications in flexible optical devices. Graphene films were grown on Cu foil by means of chemical vapor deposition, and used as the substrates for the growth of the GaN micro-rods, which were subsequently transferred onto SiO{sub 2}/Si substrates. Highly Si-doped, n-type GaN micro-rods were grown on the graphene films using metal–organic chemical vapor deposition. The growth and vertical alignment of the GaN micro-rods, which is a critical factor for the fabrication of high-performance light-emitting diodes (LEDs), were characterized using electron microscopy and X-ray diffraction. The GaN micro-rods exhibited promising photoluminescence characteristics for optoelectronic device applications, including room-temperature stimulated emission. To fabricate flexible LEDs, In{sub x}Ga{sub 1–x}N/GaN multiple quantum wells and a p-type GaN layer were deposited coaxially on the GaN micro-rods, and transferred onto Ag-coated polymer substrates using lift-off. Ti/Au and Ni/Au metal layers were formed to provide electrical contacts to the n-type and p-type GaN regions, respectively. The micro-rod LEDs exhibited intense emission of visible light, even after transfer onto the flexible polymer substrate, and reliable operation was achieved following numerous cycles of mechanical deformation.

  3. Growth and characterization of high-density mats of single-walled carbon nanotubes for interconnects

    SciTech Connect

    Robertson, J.; Zhong, G.; Telg, H.; Thomsen, C.; Warner, J. H.; Briggs, G. A. D.; Dettlaff-Weglikowska, U.; Roth, S.

    2008-10-20

    We grow high-density, aligned single wall carbon nanotube mats for use as interconnects in integrated circuits by remote plasma chemical vapor deposition from a Fe-Al{sub 2}O{sub 3} thin film catalyst. We carry out extensive Raman characterization of the resulting mats, and find that this catalyst system gives rise to a broad range of nanotube diameters, with no preferential selectivity of semiconducting tubes, but with at least 1/3 of metallic tubes.

  4. GROWTH, SURFACE CHARACTERIZATION, AND REACTIVITY OF TIO2 ANATASE FILMS-EPSCOR

    SciTech Connect

    Diebold, Ulrike

    2004-12-15

    TiO2 is as promising photocatalyst for environmental degradation of organic compounds and solar energy conversion. Commercial titania is a mixture of rutile and anatase phases, and, for as of yet unknown reasons, anatase is the photocatalytically more active form. In contrast to rutile, atomic-scale information on well-characterized anatase surfaces and their chemical properties was virtually absent at the beginning of this project. We have performed surface science investigations of anatase with the goal to understand, and ultimately control, the surface chemistry underlying its diverse applications. We have of (1) characterized all main crystallographic surface orientations of anatase, namely the (101), (100), (001), and (103) surfaces (2) have investigated the influence of surface imperfections such as defects and steps; (3) have investigated the influence of dopants on epitaxial (001) anatase films; and (3) have investigated the chemical and adsorption and reaction processes of simple molecules (water and methanol) on anatase surfaces. The experiments were performed in collaboration with Pacific Northwest National Laboratory (PNNL) using a variety of complementary surface science techniques. They have lead to a thorough characterization of this model system and have provided a more complete understanding of TiO2, which could possibly lead to improved efficiency in of photocatalytic applications.

  5. Investigations on the growth and characterization of vertically aligned zinc oxide nanowires by radio frequency magnetronsputtering

    SciTech Connect

    Venkatesh, P. Sundara; Jeganathan, K.

    2013-04-15

    Undoped vertically aligned ZnO nanowires have been grown on silicon (111) substrates by the rf magnetron sputtering technique without metal catalyst. The diameter, length and density distributions of the nanowires have been analyzed with respect to the different growth durations. The tapering of the nanowires is observed for the growth duration of 120 min owing to the insufficient adatoms on the growth front. In the X-ray diffraction pattern, the dominant (002) peak with narrow full width at half maximum (FWHM) of ZnO nanowires indicates the c-axis orientation and high crystalline nature with hexagonal wurtzite crystal structure. The narrow FWHM of E{sub 2}{sup low} and E{sub 2}{sup high} phonon modes (1.4 and 9.1 cm{sup −1}) provide an additional evidence for the high crystalline and optical properties of the nanowires. The low temperature photoluminescence spectra are dominated by the green emission at∼2.28 eV induced by the electron transitions between shallow donor and acceptor energy levels. - Graphical abstract: Coalescence free vertically aligned ZnO nanowires have been grown on silicon (111) substrate by the radio frequency magnetron sputtering technique. Highlights: ► ZnO nanowires have been grown by rf magnetron sputtering. ► A morphologically superior and coalescence free ZnO nanowires have been realized. ► ZnO nanowires exhibit hexagonal wurtzite crystal structure. ► A dominant visible emission indicates the presence of point defects in nanowires.

  6. Identification and partial characterization of the fibroblast growth factor receptor of baby hamster kidney cells

    SciTech Connect

    Neufeld, G.; Gospodarowicz, D.

    1985-11-05

    The binding of biologically active, SVI-labeled basic fibroblast growth factor (FGF) to baby hamster kidney-derived cell line cells (BHK-21) was studied at 4 degrees C. Unlabeled FGF displaced cell surface bound SVI-FGF, but platelet-derived growth factor, epidermal growth factor, insulin, or transferrin did not. Binding was saturable both as a function of time and as a function of increasing SVI-FGF concentrations. Scatchard analysis of the binding data revealed the presence of about 1.2 X 10(5) binding sites/cell with an apparent KD of 270 pM. The number of the binding sites was down-regulated following preincubation of the cells with FGF. The density of binding sites/cell also decreased as an inverse function of cell density. When SVI-FGF binding was studied in a BHK-21 cell membrane preparation, it was found that the membranal binding site displayed a lower KD of 21 pM. SVI-FGF was covalently cross-linked to its cell surface receptor on intact BHK-21 cells using the homobifunctional agent disuccinimidyl suberate. Two macromolecular species with an apparent molecular weight of 145,000 and SV,000, respectively, were labeled under both reducing and nonreducing conditions. Unlabeled FGF competed with SVI-FGF for binding to both macromolecular species. The labeling of the macromolecules was also inhibited by heparin. No labeling was observed in the absence of the cross-linkers or when heat-inactivated SVI-FGF was used instead of radiolabeled, biologically active FGF.

  7. Discovery and characterization of nutritionally regulated genes associated with muscle growth in Atlantic salmon.

    PubMed

    Bower, Neil I; Johnston, Ian A

    2010-10-01

    A genomics approach was used to identify nutritionally regulated genes involved in growth of fast skeletal muscle in Atlantic salmon (Salmo salar L.). Forward and reverse subtractive cDNA libraries were prepared comparing fish with zero growth rates to fish growing rapidly. We produced 7,420 ESTs and assembled them into nonredundant clusters prior to annotation. Contigs representing 40 potentially unrecognized nutritionally responsive candidate genes were identified. Twenty-three of the subtractive library candidates were also differentially regulated by nutritional state in an independent fasting-refeeding experiment and their expression placed in the context of 26 genes with established roles in muscle growth regulation. The expression of these genes was also determined during the maturation of a primary myocyte culture, identifying 13 candidates from the subtractive cDNA libraries with putative roles in the myogenic program. During early stages of refeeding DNAJA4, HSPA1B, HSP90A, and CHAC1 expression increased, indicating activation of unfolded protein response pathways. Four genes were considered inhibitory to myogenesis based on their in vivo and in vitro expression profiles (CEBPD, ASB2, HSP30, novel transcript GE623928). Other genes showed increased expression with feeding and highest in vitro expression during the proliferative phase of the culture (FOXD1, DRG1) or as cells differentiated (SMYD1, RTN1, MID1IP1, HSP90A, novel transcript GE617747). The genes identified were associated with chromatin modification (SMYD1, RTN1), microtubule stabilization (MID1IP1), cell cycle regulation (FOXD1, CEBPD, DRG1), and negative regulation of signaling (ASB2) and may play a role in the stimulation of myogenesis during the transition from a catabolic to anabolic state in skeletal muscle. PMID:20663983

  8. Examination Regimes and Student Achievement

    ERIC Educational Resources Information Center

    Cosentino de Cohen, Clemencia

    2010-01-01

    Examination regimes at the end of secondary school vary greatly intra- and cross-nationally, and in recent years have undergone important reforms often geared towards increasing student achievement. This research presents a comparative analysis of the relationship between examination regimes and student achievement in the OECD. Using a micro…

  9. Characterization and growth of epitaxial layers of Gs exhibiting high resistivity for ionic implantation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Either classical or low temperature epitaxial growth techniques can be used to control the deposition of buffer layers of GaAs on semiconducting substrates and to obtain the resistivity and purity desired. Techniques developed to study, as a function of thickness, the evolution of mobilities by photoHall, and the spectroscopy of shallow and deep centers by cathodoluminescence and current transients reveal one very pure layer of medium resistivity and high mobility, and another "dead layer" of elevated resistivity far from the surface. The highly resistive layer remains pure over several microns, which appears interesting for implantation.

  10. Growth and characterization of CdMnTe by the vertical Bridgman technique

    NASA Astrophysics Data System (ADS)

    Roy, U. N.; Camarda, G. S.; Cui, Y.; Gu, G.; Gul, R.; Hossain, A.; Yang, G.; Egarievwe, S. U.; James, R. B.

    2016-03-01

    We grew Cd1-xMnx Te crystals with a nominal Mn concentration of 5% by the vertical Bridgman growth technique. The structural quality of the crystal was evaluated by white beam X-ray topography in the National Synchrotron Light Source (NSLS) facility at Brookhaven National Laboratory (BNL). We observed that the crystal was free from a sub-grain boundary network, as revealed by X-ray topography and verified by our etching study. The concentration of the secondary phases, averaged over the entire ingot, was 2-3 times lower than in conventional Bridgman grown cadmium zinc telluride (CZT) crystals.

  11. Characterization of Interlaminar Crack Growth in Composites with the Double Cantilever Beam Specimen

    NASA Technical Reports Server (NTRS)

    Hunston, D. L.

    1984-01-01

    A project to examine the double cantilever beam specimen as a quantitative test method to assess the resistance of various composite materials to interlaminar crack growth is discussed. A second objective is to investigate the micromechanics of failure for composites with tough matrix resins from certain generic types of polymeric systems: brittle thermosets, toughened thermosets, and thermoplastics. Emphasis is given to a discussion of preliminary results in two areas: the effects of temperature and loading rate for woven composites, and the effects of matrix toughening in woven and unidirectional composites.

  12. Characterization and regulation of insulin-like growth factor binding proteins in human hepatic stellate cells.

    PubMed

    Gentilini, A; Feliers, D; Pinzani, M; Woodruff, K; Abboud, S

    1998-02-01

    Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-beta (TGF-beta) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-beta stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-beta is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal

  13. Liquid phase epitaxial growth and characterization of germanium far infrared blocked impurity band detectors

    SciTech Connect

    Bandaru, Jordana

    2001-05-12

    Germanium Blocked Impurity Band (BIB) detectors require a high purity blocking layer (< 10{sup 13} cm{sup -3}) approximately 1 mm thick grown on a heavily doped active layer ({approx} 10{sup 16} cm{sup -3}) approximately 20 mm thick. Epilayers were grown using liquid phase epitaxy (LPE) of germanium out of lead solution. The effects of the crystallographic orientation of the germanium substrate on LPE growth modes were explored. Growth was studied on substrates oriented by Laue x-ray diffraction between 0.02{sup o} and 10{sup o} from the {l_brace}111{r_brace} toward the {l_brace}100{r_brace}. Terrace growth was observed, with increasing terrace height for larger misorientation angles. It was found that the purity of the blocking layer was limited by the presence of phosphorus in the lead solvent. Unintentionally doped Ge layers contained {approx}10{sup 15} cm{sup -3} phosphorus as determined by Hall effect measurements and Photothermal Ionization Spectroscopy (PTIS). Lead purification by vacuum distillation and dilution reduced the phosphorus concentration in the layers to {approx} 10{sup 14} cm{sup -3} but further reduction was not observed with successive distillation runs. The graphite distillation and growth components as an additional phosphorus source cannot be ruled out. Antimony ({approx}10{sup 16} cm{sup -3}) was used as a dopant for the active BIB layer. A reduction in the donor binding energy due to impurity banding was observed by variable temperature Hall effect measurements. A BIB detector fabricated from an Sb-doped Ge layer grown on a pure substrate showed a low energy photoconductive onset ({approx}6 meV). Spreading resistance measurements on doped layers revealed a nonuniform dopant distribution with Sb pile-up at the layer surface, which must be removed by chemomechanical polishing. Sb diffusion into the pure substrate was observed by Secondary Ion Mass Spectroscopy (SIMS) for epilayers grown at 650 C. The Sb concentration at the interface

  14. Growth mechanisms and characterization of hydrogenated amorphous- silicon-alloy films

    SciTech Connect

    Gallagher, A.; Ostrom, R.: Stutzin, G.; Tanenbaum, D. )

    1993-02-01

    This report describes an apparatus, constructed and tested, that allows measurement of the surface morphology of as-grown hydrogenated amorphous silicon films with atomic resolution using a scanning tunneling microscope. Surface topologies of 100-[degree][Lambda]-thick intrinsic films, deposited on atomically flat, crystalline Si and GaAs, are reported. These films surfaces are relatively flat on the atomic scale, indicating fairly homogeneous, compact initial film growth. The effect of probe-tip size on the observed topology and the development of atomically sharp probes is discussed. 17 refs, 9 figs.

  15. Polystyrene-microsphere-assisted patterning of ZnO nanostructures: growth and characterization.

    PubMed

    Dong, J J; Zhang, X W; Zhang, S G; Tan, H R; Yin, Z G; Gao, Y; Wang, J X

    2013-02-01

    In this work, periodic arrays of various ZnO nanostructures were fabricated on both Si and GaN substrates via a facile hydrothermal process. To realize the site-specific growth, two kinds of masks were introduced. The polystyrene (PS) microsphere self-assembled monolayer (SAM) was employed as the mask to create a patterned seed layer to guide the growth of ZnO nanostructures. However, the resulting ZnO nanostructures are non-equidistant, and the diameter of the ZnO nanostructures is uncontrollable. As an alternative, TiO2 sol was used to replicate the PS microsphere SAM, and the inverted SAM (ISAM) mask was obtained by extracting the PS microspheres with toluene. By using the ISAM mask, the hexagonal periodic array of ZnO nanostructures with high uniformity were readily produced. Furthermore, the effect of the underlying substrates on the morphology of ZnO nanostructures has been investigated. It is found that the highly ordered and vertically aligned ZnO nanorods epitaxially grow on the GaN substrate, while the ZnO nanoflowers on Si substrates are random oriented. PMID:23646580

  16. Characterization of Photorhabdus luminescens Growth for the Rearing of the Beneficial Nematode Heterorhabditis bacteriophora.

    PubMed

    Singh, Sunita; Eric, Moreau; Floyd, Inman; Leonard, Holmes D

    2012-09-01

    Culturing the bioluminescent bacterium Photorhabdus luminescens in nutrient broth (NB) is used to recover phase I cells. These phase I cells were highly luminescent for up to 7 h in this media and the luminosity could also be seen with the naked eye after a 15 min eye adjustment period in a dark room. Red pigmentation is a known trait of phase I cells and was visually distinct within the culture media. The color shade of the red pigment varied on nutrient agar and in NB suggesting that the concentration of the pigment produced is dependent upon density of phase I cells within a specified area. The specific growth rate (μ) and doubling time (g) was determined during the logarithmic growth phase to be 0.36 h(-1) and 2.1 h, respectively in NB medium. The nematode-bacterium suspension was injected into larvae of Galleria mellonella to test for entomopathogencity. Within 24 h post-injection insect mortality was seen along with dark red pigmentation and extremely high luminosity indicating infection with P. luminescens. PMID:23997320

  17. Crystal growth and magnetic characterization of a tetragonal polymorph of NiNb2O6

    NASA Astrophysics Data System (ADS)

    Munsie, T. J. S.; Millington, A.; Dube, P. A.; Dabkowska, H. A.; Britten, J.; Luke, G. M.; Greedan, J. E.

    2016-04-01

    A previously unidentified polymorph of nickel niobate, NiNb2O6, was grown and stabilized in single crystalline form using an optical floating zone furnace. Key parameters of the growth procedure involved use of a slight excess of NiO (1.2% by mol), an O2 atmosphere and a growth rate of 25 mm/h. The resulting boule consisted of a polycrystalline exterior shell of the columbite structure - columbite is the thermodynamically stable form of NiNb2O6 under ambient conditions - and a core region consisting of transparent yellow-green single crystals up to 5 mm×2 mm×1 mm in dimension of the previously unidentified phase. The crystal structure, solved from single crystal x-ray diffraction data, is described in the P42/n space group. Interestingly, this is not a subgroup of P42/mnm, the rutile space group. The Ni2+ ions form layers which are displaced such that interlayer magnetic frustration is anticipated. Magnetic susceptibility data shows a broad maximum at approximately 22 K and evidence for long range antiferromagnetic order at approximately 14 K, obtained by Fisher heat capacity analysis as well as heat capacity measurements. The susceptibility data for T > 25 K are well fit by a square lattice S = 1 model, consistent with the Ni sublattice topology.

  18. Characterization of secondary phases formed during MOVPE growth of InSbBi mixed crystals

    NASA Astrophysics Data System (ADS)

    Wagener, M. C.; Botha, J. R.; Leitch, A. W. R.

    2000-05-01

    Secondary phases, formed during the growth of InSbBi, a III-V compound with potential for infrared applications in the 8-12 μm range, are reported. Layers were prepared by atmospheric pressure metal-organic vapour-phase epitaxy at 455°C in a horizontal quartz reactor. The source materials used were trimethylindium (TMIn), trimethylantimony (TMSb), and trimethylbismuth (TMBi). Scanning electron microscopy and X-ray diffraction spectra showed the formation of extra phases on the surfaces of the layers. The compositions of these condensed phases were influenced by the V/III ratio at the growth interface. Bi precipitates were observed by cross-sectional transmission electron microscopy for layers grown on InSb substrates. Attempts to grow InSbBi on GaAs substrates produced InAsSb layers. The As composition showed a dependence on the availability of Bi, increasing from 7.5 to 26 mol% InAs when increasing the Bi/V ratio from 0.04 to 2%. The incorporation of As has been related to the formation of Bi-Ga inclusions at the GaAs interface.

  19. In-situ ellipsometric characterization of the growth of porous anisotropic nanocrystalline ZnO layers

    SciTech Connect

    Laha, P. Terryn, H.; Ustarroz, J.; Nazarkin, M. Y. Gavrilov, S. A.; Volkova, A. V.; Simunin, M. M.

    2015-03-09

    ZnO films have increasingly been in the spotlight due to their largely varied electro-physical and optical properties. For several applications, porous anisotropic nanocrystalline layers are especially interesting. To study the growth kinetics of such films during different fabrication processes, a powerful non-destructive in-situ technique is required. In this work, both ex-situ and in-situ spectroscopic ellipsometry are used along with advanced modelling techniques that are able to take both the anisotropy and the porosity of the films into account. Scanning electron microscopy, along with nitrogen absorption methods for measuring porosity, validated the ellipsometric data and proposed model. The film, grown by chemical bath deposition, was monitored from around 700 to 1800 nm in thickness. This same principle can now be used to monitor any other porous and/or anisotropic structure in an effective in-situ manner, e.g., growth of porous anodic aluminium oxides, nano-porous silica films, etc.

  20. Battle of the Bacteria: Characterizing the Evolutionary Advantage of Stationary Phase Growth

    PubMed Central

    Kram, Karin E.; Yim, Kristina M.; Coleman, Aaron B.; Sato, Brian K.

    2016-01-01

    Providing students with authentic research opportunities has been shown to enhance learning and increase retention in STEM majors. Accordingly, we have developed a novel microbiology lab module, which focuses on the molecular mechanisms of evolution in E. coli, by examining the growth advantage in stationary phase (GASP) phenotype. The GASP phenotype is demonstrated by growing cells into long-term stationary phase (LTSP) and then competing them against un-aged cells in a fresh culture. This module includes learning goals related to strengthening practical laboratory skills and improving student understanding of evolution. In addition, the students generate novel data regarding the effects of different environmental stresses on GASP and the relationship between evolution, genotypic change, mutation frequency, and cell stress. Pairs of students are provided with the experimental background, select a specific aspect of the growth medium to modify, and generate a hypothesis regarding how this alteration will impact the GASP phenotype. From this module, we have demonstrated that students are able to achieve the established learning goals and have produced data that has furthered our understanding of the GASP phenotype. Journal of Microbiology & Biology Education PMID:27158307

  1. Growth and characterization of Fe{sub 3}O{sub 4} films

    SciTech Connect

    Ding, Jian; Zhang, Di; Arita, Makoto; Ikoma, Yoshifumi; Nakamura, Kazuki; Saito, Katsuhiko; Guo, Qixin

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Pulsed laser deposition is the promising technique for growing high quality single phase Fe{sub 3}O{sub 4}. Black-Right-Pointing-Pointer Crystal quality and magnetic properties of the Fe{sub 3}O{sub 4} films strongly depend on the substrate temperature during the growth. Black-Right-Pointing-Pointer Optimum of the substrate temperature leads high crystal quality of single phase Fe{sub 3}O{sub 4}. -- Abstract: Iron oxide films were grown on sapphire substrates by pulsed laser deposition at substrate temperatures between 100 and 700 Degree-Sign C. X-ray diffraction, Raman spectroscopy, and vibrational sample magnetometer analysis revealed that structural and magnetic properties of the iron oxide films strongly depend on the substrate temperature during growth. Single phase Fe{sub 3}O{sub 4} film was successfully grown on sapphire substrate at a substrate temperature of 500 Degree-Sign C. The saturation magnetic moment of the single phase Fe{sub 3}O{sub 4} film is 499 emu/cm{sup 3}, which is in good agreement with the value reported for bulk magnetite, suggesting the Fe{sub 3}O{sub 4} film is of high crystal quality without antiphase boundaries.

  2. Battle of the Bacteria: Characterizing the Evolutionary Advantage of Stationary Phase Growth.

    PubMed

    Kram, Karin E; Yim, Kristina M; Coleman, Aaron B; Sato, Brian K

    2016-05-01

    Providing students with authentic research opportunities has been shown to enhance learning and increase retention in STEM majors. Accordingly, we have developed a novel microbiology lab module, which focuses on the molecular mechanisms of evolution in E. coli, by examining the growth advantage in stationary phase (GASP) phenotype. The GASP phenotype is demonstrated by growing cells into long-term stationary phase (LTSP) and then competing them against un-aged cells in a fresh culture. This module includes learning goals related to strengthening practical laboratory skills and improving student understanding of evolution. In addition, the students generate novel data regarding the effects of different environmental stresses on GASP and the relationship between evolution, genotypic change, mutation frequency, and cell stress. Pairs of students are provided with the experimental background, select a specific aspect of the growth medium to modify, and generate a hypothesis regarding how this alteration will impact the GASP phenotype. From this module, we have demonstrated that students are able to achieve the established learning goals and have produced data that has furthered our understanding of the GASP phenotype. Journal of Microbiology & Biology Education. PMID:27158307

  3. Gallium-doped indium oxide nanoleaves: Structural characterization, growth mechanism and optical properties

    NASA Astrophysics Data System (ADS)

    Liu, Lizhu; Chen, Yiqing; Guo, Linliang; Guo, Taibo; Zhu, Yunqing; Su, Yong; Jia, Chong; Wei, Meiqin; Cheng, Yinfen

    2011-11-01

    The novel two-dimensional (2-D) Ga-doped In2O3 nanoleaves are synthesized by a simple one-step carbonthermal evaporation method using Cu-Sn alloy as the substrates. Two basic parts construct this leaf-like nanostructure: a long central trunk and two tapered nanoribbons in symmetric distribution in relation to the trunk. The Ga-In-O alloy particles are located at or close to the tips of the central trunks and serve as catalysts for the central trunk growth by the self-catalytic vapor-liquid-solid (VLS) mechanism. And the homoepitaxial growth of tapered nanoribbon on the surface of the central trunk can be explained by vapor-solid (VS) mechanism. The room-temperature photoluminescence (PL) measurement of this nanoscaled Ga-doped In2O3 transparent conducting oxide (TCO) detected two blue peaks located at 432 nm and 481 nm, respectively, which can be used by Ru-based dye and indicates potential application in dye-sensitized solar cells (DSSCs). The successful preparation of this novel 2-D Ga-doped In2O3 nanoleaves not only enriches the synthesis of TCO materials, but also provides new blocks in future architecture of functional nano-devices.

  4. Growth and characterization of V-shaped IrO(2) nanowedges via metal-organic vapor deposition.

    PubMed

    Chen, C A; Chen, Y M; Huang, Y S; Tsai, D S; Tiong, K K; Du, C H

    2008-11-19

    We report in detail the synthesis and characterization of V-shaped IrO(2) nanowedges (NWs) with an angle of 110° between the two arms. The NWs were grown on top of rutile (R) phase TiO(2) nanorods (NRs) sitting on a sapphire (SA)(100) substrate via metal-organic chemical vapor deposition (MOCVD) by using (C(6)H(7))(C(8)H(12))Ir and titanium-tetraisopropoxide (TTIP, Ti[OCH(CH(3))(2)](4)) as the source reagents. The surface morphology, structural, and spectroscopic properties of the as-deposited nanocrystals (NCs) were characterized by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), micro-Raman spectroscopy, transmission electron microscopy (TEM), and selected-area electron diffractometry (SAED). The FESEM images and XRD patterns indicated growth of V-shaped IrO(2)(101) NWs on top of R-TiO(2) NRs. The Raman spectrum showed the nanosize induced redshift and peak broadening of the IrO(2) and rutile phase of TiO(2) signatures with respect to that of the bulk counterparts. TEM and SAED characterizations of IrO(2) NCs showed that the nanowedges were crystalline IrO(2) with a twin plane of (101) and twin direction of [Formula: see text] at the V-junction. The probable mechanisms for the formation of well-aligned IrO(2) NWs are discussed. PMID:21836254

  5. Growth and characterization of V-shaped IrO2 nanowedges via metal-organic vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, C. A.; Chen, Y. M.; Huang, Y. S.; Tsai, D. S.; Tiong, K. K.; Du, C. H.

    2008-11-01

    We report in detail the synthesis and characterization of V-shaped IrO2 nanowedges (NWs) with an angle of 110° between the two arms. The NWs were grown on top of rutile (R) phase TiO2 nanorods (NRs) sitting on a sapphire (SA)(100) substrate via metal-organic chemical vapor deposition (MOCVD) by using (C6H7)(C8H12)Ir and titanium-tetraisopropoxide (TTIP, Ti[OCH(CH3)2]4) as the source reagents. The surface morphology, structural, and spectroscopic properties of the as-deposited nanocrystals (NCs) were characterized by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), micro-Raman spectroscopy, transmission electron microscopy (TEM), and selected-area electron diffractometry (SAED). The FESEM images and XRD patterns indicated growth of V-shaped IrO2(101) NWs on top of R-TiO2 NRs. The Raman spectrum showed the nanosize induced redshift and peak broadening of the IrO2 and rutile phase of TiO2 signatures with respect to that of the bulk counterparts. TEM and SAED characterizations of IrO2 NCs showed that the nanowedges were crystalline IrO2 with a twin plane of (101) and twin direction of [\\bar {1} 01] at the V-junction. The probable mechanisms for the formation of well-aligned IrO2 NWs are discussed.

  6. High-yield bacterial expression and structural characterization of recombinant human insulin-like growth factor binding protein-2

    PubMed Central

    Swain, Monalisa; Slomiany, Mark G.; Rosenzweig, Steven A.; Atreya, Hanudatta S.

    2010-01-01

    The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-IR). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1–6; 22–31 kDa) that via high affinity binding to the IGFs (KD ~ 300–700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in E. coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP. PMID:20541521

  7. Characterization of a variety of standard collagen substrates: ultrastructure, uniformity, and capacity to bind and promote growth of neurons

    SciTech Connect

    Iversen, P.L.; Partlow, L.M.; Stensaas, L.J.; Moatamed, F.

    1981-06-01

    Collagen substrates were characterized after preparation by the four methods most commonly used for tissue culture (saline precipitation, exposure to ammonium hydroxide vapor, exposure to ultraviolet light, and air drying). Although roughly equivalent percentages of collagen were precipitated by each technique (87 to 97%), marked differences were found in surface uniformity and ultrastructure. Substrates were quite uniform if precipitated by exposure to ammonium hydroxide or ultraviolet light, of intermediate uniformity if saline precipitated, and not at all uniform if air dried. Scanning electron microscopy revealed that (a) ammonium hydroxide and saline precipitation primarily resulted in formation of collagen fibrils, (b) air drying produced a small number of fibrils plus a large amount of amorphous material, and (c) exposure to ultraviolet light only resulted in the formation of globular, nonfibrillar collagen aggregates. The capacity of collagen substrates to bind and grow neurons differed markedly with the method of preparation and the amount of collagen plated per unit area. Quantifications of binding and growth of both cerebral and sympathetic neurons revealed that these are separate measures of the biocompatibility of a surface and that growth was uniformly inferior on globular collagen that had been precipitated by ultraviolet light. Long-term (greater than or equal to 2 wk) growth of sympathetic neurons was optimal on thick beds of saline-precipitated collagen, whereas short-term growth was best on thin layers of either saline or ammonium hydroxide-precipitated collagen. Cerebral neurons bound and grew optimally on thick collagen beds after both short- and long-term culture. In addition, cerebral neurons were found to be more dependent on the method of precipitation of the thin collagen substrates than were sympathetic neurons.

  8. Synthesis, floating zone crystal growth and characterization of the quantum spin ice Pr2Zr2O7 pyrochlore

    NASA Astrophysics Data System (ADS)

    Koohpayeh, S. M.; Wen, J.-J.; Trump, B. A.; Broholm, C. L.; McQueen, T. M.

    2014-09-01

    Pyrochlore Pr3+2+xZr4+2-xO7-x/2 samples in the form of both powders (-0.02≤x≤0.02) and bulk single crystals have been studied to elucidate the dependence of their magnetic, compositional and structural properties on synthesis and growth conditions. All samples were characterized using X-ray diffraction, specific heat, and DC magnetization measurements. The crystals were also studied using the X-ray Laue technique and scanning electron microscopy. Increasing the Pr content for the Pr2+xZr2-xO7-x/2 powders enlarged the lattice parameter, and resulted in systematic changes in magnetic susceptibility and specific heat. Stoichiometric and high quality single crystals of Pr2Zr2O7 were grown using the optical floating zone technique under a high purity static argon atmosphere, to avoid inclusions of Pr4+ and limit Pr vaporization. Increasing the growth speed was found to significantly reduce Pr vaporization for better control of stoichiometry. Scanning electron microscopy provided direct evidence of spinodal decomposition during growth that is controllable via rotation rate. An intermediate rotation rate of 3-6 rpm was found to produce the best microstructure. The magnetic susceptibility of crystals grown at rates from 1 to 20 mm/h revealed changes that were consistent with Pr vaporization. Further, we report indications of local off-centering of Pr3+ ions from the ideal pyrochlore sites, similar to what is known for the trivalent cation in Bi2Ti2O7 and La2Zr2O7. The effect varies with Pr content and radically modulates the low temperature specific heat. Overall, the results clearly demonstrate important correlations between the growth conditions and physical properties of Pr2Zr2O7 crystals.

  9. Recent advances in the growth, doping and characterization of III V nitride thin films

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Ailey, K. S.; Bremser, M. D.; Carlson, E.; Kern, R. S.; Kester, D. J.; Perry, W. G.; Tanaka, S.; Weeks, T. W.

    Boron nitride thin films have been grown on the (100) surfaces of Si and diamond via ion beam assisted deposition (IBAD) using electron beam evaporation of B in tandem with N and Ar ion bombardment within the ranges of substrate temperature and ion flux of 200-700°C and 0.20-0.30 mA/cm2, respectively. Fourier-transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) revealed a growth sequence of amorphous (a-BN), hexagonal (h-BN) and cubic (c-BN) layers under most conditions. This sequence is attributed primarily to increasing biaxial compressive stress with film thickness due to ion bombardment and some interstitial Ar incorporation. A minimum substrate temperature of 200-300° C is required for nucleation and growth of single phase c-BN by this technique. The initial stage of AlN film growth on α(6H)-SiC(0001) substrates by plasma-assisted, gas source molecular beam epitaxy has been investigated in terms of growth mode and interface defects. Essentially atomically flat AlN surfaces, indicative of two-dimensional growth, were obtained using on-axis substrates. Island-like features were observed on the vicinal surfaces. The coalescence of latter features gave rise to double positioning boundaries as a result of the misalignment of the Si/C bilayer steps with the Al/N bilayers in the growing films. The quality of the thicker AlN films was strongly influenced by the concentration of these boundaries. Monocrystalline GaN and AlxGa1-x N(0001) (0≤x≤1) films, void of oriented domain structures and associated low-angle grain boundaries and with smooth surface morphologies, have been grown via OMVPE on high-temperature monocrystalline AlN(0001) buffer layers, previously deposited on vicinal α(6H)-SiC(0001) wafers, using TEG, TEA and ammonia in a cold-wall, vertical, pancake-style reactor. Abrupt heterojunctions were demonstrated. The PL spectrum of the pure GaN showed strong near band-edge emissions with a FWHM value of 4 me

  10. Surface characterization of Ti-Si-C-ON coatings for orthopedic devices: XPS and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliveira, Cristina; Galindo, R. Escobar; Palacio, C.; Calderon V, S.; Almeida, B. G.; Henriques, M.; Espinosa, A.; Carvalho, S.

    2011-01-01

    Ti-Si-C-ON films were deposited by DC reactive magnetron sputtering and their chemical properties, biofilm formation and toxicity were characterized. Based on the films composition three different growth regimes were identified on the films; (I) N/Ti = 2.11 (high atomic ratio) and low oxygen content; (II) 0.77 ≤ N/Ti ≤ 1.86 (intermediate atomic ratio) and (III) N/Ti ≤ 0.12 (low ratio) and high oxygen content. The phase composition varied from mainly TiN on regime I to TiCN on regime 2 and titanium oxides on regime III. Taking into account the results of biological characterization (biofilm formation and cytotoxicity), it was possible to conclude that samples with a high TiN content (regime I) presented more favorable biocompatibility, since it was less prone to microbial colonization and also displayed a low cytotoxicity.

  11. Delinating Thermohaline Double-Diffusive Rayleigh Regimes

    NASA Astrophysics Data System (ADS)

    Graf, T.; Walther, M.; Kolditz, O.; Liedl, R.

    2013-12-01

    the regimes within the double-diffusive system and boundaries similar to the relation postulated by Nield (1998). Research on the existence of different regimes and the possiblity to predict and estimate a system's specific regime apriori (without numerical simulation) will aid in easy characterization of such thermohaline systems. Literature KOLDITZ, O., BAUER, S., BILKE, L., BÖTTCHER, N., DELFS, J. O., FISCHER, T., GÖRKE, U. J., ET AL. (2012). OPENGEOSYS: AN OPEN-SOURCE INITIATIVE FOR NUMERICAL SIMULATION OF THERMO-HYDRO-MECHANICAL/CHEMICAL (THM/C) PROCESSES IN POROUS MEDIA. ENVIRONMENTAL EARTH SCIENCES, 67(2), 589-599. DOI:10.1007/S12665-012-1546-X THERRIEN, R., MCLAREN, R.G., SUDICKY, E.A. AND PANDAY, S.M. (2010): HYDROGEOSPHERE--A THREE-DIMENSIONAL NUMERICAL MODEL DESCRIBING FULLY INTEGRATED SUBSURFACE AND SURFACE FLOW AND SOLUTE TRANSPORT; UNIVERSITÉ LAVAL AND UNIVERSITY OF WATERLOO, CANADA NIELD, D. A., & BEJAN, A. (1998). CONVECTION IN POROUS MEDIA (P. 546). SPRINGER.

  12. Growth and characterization of periodically polarity-inverted ZnO structures on sapphire substrates

    SciTech Connect

    Park, Jinsub; Yao, Takafumi

    2012-10-15

    We report on the fabrication and characterization of periodically polarity inverted (PPI) ZnO heterostructures on (0 0 0 1) Al{sub 2}O{sub 3} substrates. For the periodically inverted array of ZnO polarity, CrN and Cr{sub 2}O{sub 3} polarity selection buffer layers are used for the Zn- and O-polar ZnO films, respectively. The change of polarity and period in fabricated ZnO structures is evaluated by diffraction patterns and polarity sensitive piezo-response microscopy. Finally, PPI ZnO structures with subnanometer scale period are demonstrated by using holographic lithography and regrowth techniques.

  13. Growth and characterization of L-histidine cadmium chloride monohydrate a semiorganic nonlinear optical crystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, J.; Ilayabarathi, P.; Maadeswaran, P.; Mohamed Kutty, P.; Pari, S.

    2012-04-01

    L-histidine cadmium chloride monohydrate (LHCCM), a semiorganic nonlinear optical material was grown from aqueous solution by slow solvent evaporation method at room temperature. The LHCCM crystals were characterized by X-ray powder diffraction analysis. The presence of functional groups was identified through fourier transform infrared spectroscopy. Thermogravimetric and differential thermal analysis confirms that the crystal is stable up to 277 °C. The dielectric constant was studied as a function of frequency for various temperatures. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. The second harmonic generation behavior of LHCCM crystal was tested by modified Kurtz-Perry powder technique.

  14. Molecular characterization of the lignin-forming peroxidase: Role in growth, development and response to stress

    SciTech Connect

    Lagrimini, L.M.

    1993-01-01

    This laboratory has continued its comprehensive study of the structure and function of plant peroxidases and their genes. Specifically, we are characterizing the anionic peroxidase of tobacco. During the past year we have completed the nucleotide sequence of the tobacco anionic peroxidase gene, joined the anionic peroxidase promoter to [Beta]-glucuronidase and demonstrated expression in transformed plants, measured lignin, auxin, and ethylene levels in transgenic tobacco plants over-expressing the anionic peroxidase, developed chimeric peroxidase genes to over-or under-express the anionic peroxidase in tissue specific manner in transgenic plants, and over-expressed the tobacco anionic peroxidase in transgenic tomato and sweetgum plants.

  15. Cloning and characterization of a novel RNA involved in cellular growth regulation.

    PubMed Central

    Moats-Staats, B M; Jarvis, H W; D'Ercole, A J; Stiles, A D

    1994-01-01

    During the course of antisense oligodeoxynucleotide (oligo) inhibition experiments investigating the role of insulin-like growth factor I (IGF-I) in the WI-38 cell cycle, we found that a sense-strand oligo (S oligo), used as a control, inhibited DNA synthesis 90 to 95%. S1 nuclease protection assays demonstrated that this S oligo formed intracellular duplexes with WI-38 RNA, and Northern (RNA) hybridization analyses demonstrated specific hybridization of this 32P-labeled S oligo to 1.8-, 2.3-, and 3.2-kb RNAs. We have cloned and sequenced a 2,251-bp cDNA, designated BB1, corresponding to the 2.3-kb RNA. Decoding of the BB1 cDNA sequence reveals several open reading frames arranged in a motif similar to that seen in proteins subject to translational control mechanisms. Homology searches of nucleic acid and protein data bases reveal no significant homology of BB1 with known sequences other than a 234-bp region in the BB1 5' untranslated region that shared 97% homology with a region in the 3' untranslated region of the human cdc42 mRNA. S1 nuclease protection analyses performed with IGF-I gene fragments and computer homology searches demonstrated that the BB1 RNA does not derive from transcription from the opposite strand of the IGF-I gene. Northern hybridization analyses of RNA extracted from serum-starved HeLa S3 cells demonstrated that steady-state BB1 RNA levels increased upon serum growth stimulation, with steady-state levels peaking 4 h after release from the block induced by serum starvation. Antisense oligo inhibition experiments using specific BB1 antisense oligos targeted to the putative open reading frames of the BB1 RNA reduce DNA synthesis of HeLa S3 cells to 15% of control levels, indicating that the BB1 RNA is essential for cell cycle traversal and, as such, encodes a growth-reguLating gene product. Images PMID:7513047

  16. Phase growth in bistable systems with impurities.

    PubMed

    Echeverria, C; Tucci, K; Cosenza, M G

    2008-01-01

    A system of coupled chaotic bistable maps on a lattice with randomly distributed impurities is investigated as a model for studying the phenomenon of phase growth in nonuniform media. The statistical properties of the system are characterized by means of the average size of spatial domains of equivalent spin variables that define the phases. It is found that the rate at which phase domains grow becomes smaller when impurities are present and that the average size of the resulting domains in the inhomogeneous state of the system decreases when the density of impurities is increased. The phase diagram showing regions where homogeneous, heterogeneous, and chessboard patterns occur on the space of parameters of the system is obtained. A critical boundary that separates the regime of slow growth of domains from the regime of fast growth in the heterogeneous region of the phase diagram is calculated. The transition between these two growth regimes is explained in terms of the stability properties of the local phase configurations. Our results show that the inclusion of spatial inhomogeneities can be used as a control mechanism for the size and growth velocity of phase domains forming in spatiotemporal systems. PMID:18351923

  17. In situ characterization of initial growth of HfO{sub 2}

    SciTech Connect

    Wang, L.; Chu, Paul K.; Xue, K.; Xu, J. B.

    2009-01-19

    The initial growth of HfO{sub 2} on Si (111) is monitored in situ by ultrahigh vacuum (UHV) scanning probe microscopy. UHV scanning tunneling microscopy and UHV atomic force microscopy reveal the topography of HfO{sub 2} films in the initial stage. The chemical composition is further confirmed by x-ray photoelectron spectroscopy. Scanning tunneling spectroscopy is utilized to inspect the evolution of the bandgap. When the film thickness is less than 0.6 nm, the bandgap of HfO{sub 2} is not completely formed. A continuous usable HfO{sub 2} film with thickness of about 1.2 nm is presented in this work.

  18. Phase selective growth and characterization of vanadium dioxide films on silicon substrates

    SciTech Connect

    Watanabe, Tomo; Okimura, Kunio; Hajiri, Tetsuya; Kimura, Shin-ichi; Sakai, Joe

    2013-04-28

    We report on selective growth of VO{sub 2} films with M1, M2, and intermediate T phases on silicon (Si) substrates by using inductively coupled plasma (ICP)-assisted sputtering (ICPS) under particular conditions. The film composed of M2 phase was proved to be under strong in-plane compressive stress, which is consistent with stress-induced M2 phase. Crystalline structural phase transition (SPT) properties of these films were demonstrated together with infrared light transmittance as a measure of insulator-metal transition (IMT) against temperature. Characteristic correlations between SPT and IMT for films with M2 and intermediate-T phases were reported. Ultraviolet photoelectron spectroscopy measurements probed an energy gap of the film in the M2 phase at around 0.4 eV from the Fermi level indicating the presence of a Mott gap.

  19. Nucleation, growth and characterization of LiB 3O 5 single crystals

    NASA Astrophysics Data System (ADS)

    Kannan, C. V.; Kimura, H.; Miyazaki, A.; Ramasamy, P.

    2005-02-01

    Nucleation parameters of LiB 3O 5 (LBO) that crystallized from high-temperature solution using two different solvents, namely boron oxide (B 2O 3) and molybdate (MoO 3), have been studied for better understanding of the growth process. Our results showed that B 2O 3 solvent yielded a larger value of metastable zone width than that of molybdate flux, thus giving more stability to the solution. Based on our theoretical considerations, inclusion-free LBO crystals have been grown by spontaneous nucleation and TSSG techniques using B 2O 3 solvent. Variation of optical absorption coefficient and refractive indices with wavelength has been studied. Results of optical and mechanical properties showed that the grown crystals are highly transparent and possesses hardness higher than that of KTP crystal.

  20. Metastable gamma-MnS hierarchical architectures: synthesis, characterization, and growth mechanism.

    PubMed

    Zheng, Yuanhui; Cheng, Yao; Wang, Yuansheng; Zhou, Lihua; Bao, Feng; Jia, Chong

    2006-04-27

    Preparation of shape-controlled metastable gamma-MnS semiconductor nanocrystals has been achieved on a large scale through a simple solvothermal method in the presence of PVP. The key strategy is the use of sulfur powder as sulfur source in ethylene glycol (EG) solvent that also acted as a weak reducing agent. Reaction parameters such as reaction time and temperature are found to be important in controlling various hierarchical architectures, such as homogeneous semi-hollow core-shell, hollow nanospheres, and nanowires. Transmission electron microscopy observations indicate that these hierarchical architectures are formed mainly via Ostwald ripening. The optical absorption measurements reveal that these novel architectures exhibit remarkable shift of absorption peak during the course of structural compaction and grain growth. PMID:16623509

  1. Synthesis, growth and characterization of a new organic three dimensional framework: Piperazin-1-ium 4-aminobenzenesulfonate

    NASA Astrophysics Data System (ADS)

    Rekha, P.; Peramaiyan, G.; NizamMohideen, M.; Mohan Kumar, R.; Kanagadurai, R.

    2016-05-01

    Piperazinium p-aminobenzenesulfonate (PPABS), a new nonlinear optical material was synthesized and crystals were grown from the methanol solvent by slow evaporation solution growth method. Single crystal X-ray diffraction study elucidated the crystal structure of PPABS. It crystallizes in orthorhombic crystal system with space group of Pbca. UV-vis-NIR spectral study was performed to analyze optical transparency of PPABS crystal and found that the grown crystal has sufficient transparency in the entire visible region with lower cutoff wavelength of 321 nm. The thermal stability and decomposition stages of the sample were studied by TG/DTA analyses. The different environmental carbon and hydrogen atoms of the proposed structure were identified by NMR spectral studies. The electric field response of crystal was determined from the dielectric studies. From the Z-scan measurements, the third order nonlinear optical properties of grown crystal were studied.

  2. Growth and characterization of L-arginine sulphate: A new nanocrystal with non linear optical behaviour

    NASA Astrophysics Data System (ADS)

    Khandpekar, M. M.; Patil, Smita S.

    2013-06-01

    L-arginine combines with a variety of salts and acids to form a potential non-linear optical material. Nano crystals of L-arginine-Sulphate (LAS) have been grown from solution by the slow evaporation technique for the first time. The single phase formation has been verified by XRD studies. TEM studies confirm the formation of nanocrystallites of particle size of about 34nm. The optical absorption studies shows presence of a sharp UV cut-off region at 239.57nm. Further the presence of wide transparency window in the entire visible region shows its use for optoelectronic applications. Energy Dispersive X-ray Analysis (EDAX) confirms the presence of potassium and sulphur in the grown nanocrystal of LAS. Fungus growth has been avoided by subjecting the solution to pre-heat treatment. Preliminary studies indicate presence of non-linear optical (NLO) response.

  3. Growth and characterization of Cadmium Thiosemicarbazide Bromide crystals for antibacterial and nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Thomas Joseph Prakash, J.; Martin Sam Gnanaraj, J.

    2015-01-01

    Semiorganic nonlinear optical crystals of Cadmium Thiosemicarbazide Bromide was grown by slow evaporation solution growth technique. The unit cell parameters were estimated by subjecting the crystals to single crystal X-ray diffraction. The grown crystals were subjected to Powder X-ray diffraction for analyzing the crystalline nature of the sample. FTIR studies reveal the functional groups and the optical characters were analyzed by UV-Vis spectral studies. Mechanical stability of the sample was assessed by Vicker's micro hardness test. The presence of surface dislocations was identified by chemical etching technique. Antibacterial study was carried out against ACDP declared harmful pathogens. SHG efficiency of CTSB crystal was tested using Nd: YAG laser and it was found to be ∼1.8 times that of potassium dihydrogen phosphate.

  4. Growth and characterization of Cadmium Thiosemicarbazide Bromide crystals for antibacterial and nonlinear optical applications.

    PubMed

    Thomas Joseph Prakash, J; Martin Sam Gnanaraj, J

    2015-01-25

    Semiorganic nonlinear optical crystals of Cadmium Thiosemicarbazide Bromide was grown by slow evaporation solution growth technique. The unit cell parameters were estimated by subjecting the crystals to single crystal X-ray diffraction. The grown crystals were subjected to Powder X-ray diffraction for analyzing the crystalline nature of the sample. FTIR studies reveal the functional groups and the optical characters were analyzed by UV-Vis spectral studies. Mechanical stability of the sample was assessed by Vicker's micro hardness test. The presence of surface dislocations was identified by chemical etching technique. Antibacterial study was carried out against ACDP declared harmful pathogens. SHG efficiency of CTSB crystal was tested using Nd: YAG laser and it was found to be ∼1.8 times that of potassium dihydrogen phosphate. PMID:25048404

  5. Initial stages of organic film growth characterized by thermal desorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Winkler, Adolf

    2016-01-01

    In the wake of the increasing importance of organic electronics, a more in-depth understanding of the early stages of organic film growth is indispensable. In this review a survey of several rod-like and plate-like organic molecules (p-quaterphenyl, p-sexiphenyl, hexaazatriphenylene-hexacarbonitrile (HATCN), rubicene, indigo) deposited on various application relevant substrates (gold, silver, mica, silicon dioxide) is given. The focus is particularly put on the application of thermal desorption spectroscopy to shed light on the kinetics and energetics of the molecule-substrate interaction. While each adsorption system reveals a manifold of features that are specific for the individual system, one can draw some general statements on the early stages of organic film formation from the available datasets. Among the important issues in this context is the formation of wetting layers and the dewetting as a function of the substrate surface conditions, organic film thickness and temperature.

  6. The growth and characterization of Al(x)Ga(1-x)As/Ge heterostructures

    NASA Technical Reports Server (NTRS)

    Choi, S. W.; Bachmann, K. J.; Timmons, M. L.; Colpitts, T. S.; Posthill, J. B.

    1992-01-01

    The effects of the growth temperature and the Al(x)Ga(1-x)As layer thickness on the structural, optical, and electrical properties of Al(x)Ga(1-x)As/Ge heterostructures grown for photovoltaic applications were investigated using different-thickness (between 1 micron and 5 microns) Al(x)Ga(1-x)As layers grown by MOCVD in the temperature range between 660 and 780 C. Results obtained from double-crystal X-ray rocking curve measurements, electron beam induced current, cross-sectional TEM, Raman spectroscopy, SIMS, and steady-state and time-resolved photoluminescence measurements are presented. It was found that the highest minority carrier lifetime, 2.41 ns, was obtained for T(G) = 780 C, but the lowest interfacial recombination velocity, 1.6 x 10 exp 4, was obtained at 660 C.

  7. 3D characterization of leading-edge vortex formation and growth

    NASA Astrophysics Data System (ADS)

    Onoue, Kyohei; Breuer, Kenneth

    2015-11-01

    We examine the vorticity transport mechanisms responsible for regulating the stability and strength of the leading-edge vortex (LEV) on rapidly pitching plates with different planforms (swept vs. rectangular) in a uniform airflow. All experiments are carried out using a cyber-physical experimental setup (Onoue et al., 2015, JFS vol. 55) and synchronized 3D PIV measurements. In the case of a swept wing, two distinct regions of intense spanwise flow are observed around the LEV centroid--a feature conspicuously absent on a rectangular pitching plate. The interaction between these spanwise flows and the LEV core seems to play a role in prolonging the LEV residence time at the cost of the vortex circulation growth rate and magnitude. Detailed control volume analysis is performed to elucidate the flow physics at work. This research is funded by the Air Force Office of Scientific Research (AFOSR).

  8. Flux growth and characterization of Sr2NiWO6 single crystals

    NASA Astrophysics Data System (ADS)

    Blum, C. G. F.; Holcombe, A.; Gellesch, M.; Sturza, M. I.; Rodan, S.; Morrow, R.; Maljuk, A.; Woodward, P.; Morris, P.; Wolter, A. U. B.; Büchner, B.; Wurmehl, S.

    2015-07-01

    Single crystals of the double perovskite Sr2NiWO6 were synthesized via SrCl2 flux growth using high quality, phase-pure polycrystalline Sr2NiWO6 as precursor material. This high quality precursor enabled us to grow large and phase pure crystals with sizes up to 1 mm ×1 mm in the basal plane and octahedral morphology. We measured the temperature dependence of the magnetization along the c-axis and along the ab plane. The analysis of the data allows a precise determination of the effective magnetic moment and the Curie-Weiss temperature. Sr2NiWO6 orders antiferromagnetically at TN=54 K as revealed by magnetization and specific heat data.

  9. Initial stages of organic film growth characterized by thermal desorption spectroscopy

    PubMed Central

    Winkler, Adolf

    2015-01-01

    In the wake of the increasing importance of organic electronics, a more in-depth understanding of the early stages of organic film growth is indispensable. In this review a survey of several rod-like and plate-like organic molecules (p-quaterphenyl, p-sexiphenyl, hexaazatriphenylene-hexacarbonitrile (HATCN), rubicene, indigo) deposited on various application relevant substrates (gold, silver, mica, silicon dioxide) is given. The focus is particularly put on the application of thermal desorption spectroscopy to shed light on the kinetics and energetics of the molecule-substrate interaction. While each adsorption system reveals a manifold of features that are specific for the individual system, one can draw some general statements on the early stages of organic film formation from the available datasets. Among the important issues in this context is the formation of wetting layers and the dewetting as a function of the substrate surface conditions, organic film thickness and temperature. PMID:26778860

  10. Buffer-enhanced room-temperature growth and characterization of epitaxial ZnO thin films

    SciTech Connect

    Sasaki, Atsushi; Hara, Wakana; Matsuda, Akifumi; Tateda, Norihiro; Otaka, Sei; Akiba, Shusaku; Saito, Keisuke; Yodo, Tokuo; Yoshimoto, Mamoru

    2005-06-06

    The room-temperature epitaxial growth of ZnO thin films on NiO buffered sapphire (0001) substrate was achieved by using the laser molecular-beam-epitaxy method. The obtained ZnO films had the ultrasmooth surface reflecting the nanostepped structure of the sapphire substrate. The crystal structure at the surface was investigated in situ by means of coaxial impact-collision ion scattering spectroscopy. It was proved that the buffer-enhanced epitaxial ZnO thin films grown at room temperature had +c polarity, while the polarity of high-temperature grown ZnO thin films on the sapphire was -c. Photoluminescence spectra at room temperature were measured for the epitaxial ZnO films, showing only the strong ultraviolet emission near 380 nm.

  11. Structure characterization and strain relief analysis in CVD growth of boron phosphide on silicon carbide

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Abbott, Julia K. C.; Brasfield, John D.; Liu, Peizhi; Dale, Alexis; Duscher, Gerd; Rack, Philip D.; Feigerle, Charles S.

    2015-02-01

    Boron phosphide (BP) is a material of interest for development of a high-efficiency solid-state thermal neutron detector. For a thick film-based device, microstructure evolution is key to the engineering of material synthesis. Here, we report epitaxial BP films grown on silicon carbide with vicinal steps and provide a detailed analysis of the microstructure evolution and strain relief. The BP film is epitaxial in the near-interface region but deviates from epitaxial growth as the film develops. Defects such as coherent and incoherent twin boundaries, dislocation loops, stacking faults concentrate in the near-interface region and segment this region into small domains. The formation of defects in this region do not fully release the strain originated from the lattice mismatch. Large grains emerge above the near-interface region and grain boundaries become the main defects in the upper part of the BP film.

  12. Photoreflectance for in-situ characterization of MOCVD growth of semiconductors under micro-gravity conditions

    NASA Technical Reports Server (NTRS)

    Pollak, Fred H.

    1990-01-01

    A contactless electromodulation technique of photoreflectance (PR) was developed for in-situ monitoring of metal-organic chemical vapor deposition (MOCVD) semiconductor growth for micro-gravity applications. PR can be employed in a real MOCVD reactor including rotating substrate (approximately 500 rev/min) in flowing gases and through a diffuser plate. Measurements on GaAs and Ga(0.82)Al(0.18)As were made up to 690 C. The direct band gaps of In(x)Ga(1-x)As (x = 0.07 and 0.16) were evaluated up to 600 C. In order to address the question of real time measurement, the spectra of the direct gap of GaAs at 650 C was obtained in 30 seconds and 15 seconds seems feasible.

  13. Growth and Characterization of III-V Semiconductors for Device Applications

    NASA Technical Reports Server (NTRS)

    Williams, Michael D.

    2000-01-01

    The research goal was to achieve a fundamental understanding of the physical processes occurring at the surfaces and interfaces of epitaxially grown InGaAs/GaAs (100) heterostructures. This will facilitate the development of quantum well devices for infrared optical applications and provide quantitative descriptions of key phenomena which impact their performance. Devices impacted include high-speed laser diodes and modulators for fiber optic communications at 1.55 micron wavelengths and intersub-band lasers for longer infrared wavelengths. The phenomenon of interest studied was the migration of indium in InGaAs structures. This work centered on the molecular beam epitaxy reactor and characterization apparatus donated to CAU by AT&T Bell Laboratories. The material characterization tool employed was secondary ion mass spectrometry. The training of graduate and undergraduate students was an integral part of this program. The graduate students received a thorough exposure to state-of-the-art techniques and equipment for semiconductor materials analysis as part of the Master''s degree requirement in physics. The undergraduates were exposed to a minority scientist who has an excellent track record in this area. They also had the opportunity to explore surface physics as a career option. The results of the scientific work was published in a refereed journal and several talks were presented professional conferences and academic seminars.

  14. Cloning, expression, and characterization of a cellobiose dehydrogenase from Thielavia terrestris induced under cellulose growth conditions.

    PubMed

    Langston, James A; Brown, Kimberly; Xu, Feng; Borch, Kim; Garner, Ashley; Sweeney, Matt D

    2012-06-01

    The enzyme cellobiose dehydrogenase (CDH) is of considerable interest, not only for its biotechnological applications, but also its potential biological role in lignocellulosic biomass breakdown. The enzyme catalyzes the oxidation of cellobiose and other cellodextrins, utilizing a variety of one- and two-electron acceptors, although the electron acceptor employed in nature is still unknown. In this study we show that a CDH is present in the secretome of the thermophilic ascomycete Thielavia terrestris when grown with cellulose, along with a mixture of cellulases and hemicellulases capable of breaking down lignocellulosic biomass. We report the cloning of this T. terrestris CDH gene (cbdA), its recombinant expression in Aspergillus oryzae, and purification and characterization of the T. terrestris CDH protein (TtCDH). The TtCDH shows spectral properties and enzyme activity similar to other characterized CDH enzymes. Substrate specificity was determined for a number of carbohydrate electron donors in the presence of the two-electron acceptor 2,6-dichlorophenol-indophenol. The TtCDH also shows dramatic synergy with Thermoascus aurantiacus glycoside hydrolase family 61A protein in the presence of a β-glucosidase for the cleavage of cellulose. PMID:22484439

  15. Growth and characterization of boron doped graphene by Hot Filament Chemical Vapor Deposition Technique (HFCVD)

    NASA Astrophysics Data System (ADS)

    Jafari, A.; Ghoranneviss, M.; Salar Elahi, A.

    2016-03-01

    Large-area boron doped graphene was synthesized on Cu foil (as a catalyst) by Hot Filament Chemical Vapor Deposition (HFCVD) using boron oxide powder and ethanol vapor. To investigate the effect of different boron percentages, grow time and the growth mechanism of boron-doped graphene, scanning electron microscopy (SEM), Raman scattering and X-ray photoelectron spectroscopy (XPS) were applied. Also in this experiment, the I-V characteristic carried out for study of electrical property of graphene with keithley 2361 system. Nucleation of graphene domains with an average domain size of ~20 μm was observed when the growth time is 9 min that has full covered on the Cu surface. The Raman spectroscopy show that the frequency of the 2D band down-shifts with B doping, consistent with the increase of the in-plane lattice constant, and a weakening of the B-C in-plane bond strength relative to that of C-C bond. Also the shifts of the G-band frequencies can be interpreted in terms of the size of the C-C ring and the changes in the electronic structure of graphene in the presence of boron atoms. The study of electrical property shows that by increasing the grow time the conductance increases which this result in agree with SEM images and graphene grain boundary. Also by increasing the boron percentage in gas mixer the conductance decreases since doping graphene with boron creates a band-gap in graphene band structure. The XPS results of B doped graphene confirm the existence of boron in doped graphene, which indicates the boron atoms doped in the graphene lattice are mainly in the form of BC3. The results showed that boron-doped graphene can be successfully synthesized using boron oxide powder and ethanol vapor via a HFCVD method and also chemical boron doping can be change the electrical conductivity of the graphene.

  16. Expression, purification, and in vitro characterization of recombinant salmon insulin-like growth factor-II.

    PubMed

    Wilkinson, Ryan J; Elliott, Phillip; Carragher, John F; Francis, Geoffrey

    2004-06-01

    The insulin-like growth factors, IGF-I and IGF-II, are single chain polypeptides, which are structurally related to proinsulin and promote proliferation and differentiation of cells in many vertebrate species. Previous attempts to produce recombinant salmon IGF-II (rsIGF-II) were compromised by low expression levels and co-purification of incorrectly cleaved protein with the authentic recombinant product. In this study, a gene containing the coding region for Atlantic salmon (Salmo salar) IGF-II was cloned into a modified pET32a expression vector and transformed into Escherichia coli BL21 trxB (DE3) cells. Upon growth and induction (with IPTG) of the transformant, recombinant salmon IGF-II (rsIGF-II) was expressed as an insoluble, 28kDa thioredoxin.sIGF-II fusion protein linked by a protease cleavage motif (trx.FAHY.sIGF-II) in inclusion bodies. The inclusion bodies were subsequently solubilized and the fusion protein was purified by Ni-affinity chromatography. Recombinant IGF-II (7.8kDa) was then released from the fusion partner using H64A subtilisin BPN' protease and purified by reversed-phase HPLC. Homogeneity of the final recombinant product was confirmed by N-terminal amino acid sequencing, ion-spray mass spectrometry, SDS-polyacrylamide gel electrophoresis, and analytical reversed-phase HPLC. The biological activity of rsIGF-II was demonstrated in cultured rat L6 myoblasts and was found to be approximately 9- and 5-fold less potent than recombinant human IGF-I and recombinant salmon IGF-I, respectively, a result similar to that demonstrated previously with other recombinant fish IGF-II's in non-homologous cell lines. PMID:15135411

  17. Single crystal growth and characterization of pure and sodium-modified copper tartrate

    NASA Astrophysics Data System (ADS)

    Quasim, I.; Firdous, A.; Want, B.; Khosa, S. K.; Kotru, P. N.

    2008-12-01

    Single crystal growth of pure and modified copper tartrate crystals bearing composition (Cu) x(Na) yC 4H 4O 6· nH 2O (where x=1, 0.77, 0.65; y=0, 0.23, 0.35) is achieved using gel technique. The optimum conditions required for the growth of these crystals are worked out. The morphological development of these crystals is studied using optical and scanning electron microscopy. The dominant habit faces of the grown copper tartrate crystals are (0 0 1) and (1 1 1). Calculation of the cell parameters using CRYSFIRE software suggests that the pure copper tartr