Science.gov

Sample records for grupo mutans em

  1. Aquisição de Estreptococos Mutans e Desenvolvimento de Cárie Dental em Primogênitos

    PubMed Central

    NOCE, Erica; RUBIRA, Cassia Maria Fischer; da Silva ROSA, Odila Pereira; da SILVA, Salete Moura Bonifácio; BRETZ, Walter Antonio

    2011-01-01

    Objetivo Avaliar o momento de aquisição de estreptococos mutans (EM), desenvolvimento de cárie dental e as variáveis a eles associadas no decorrer de 23 meses, em primogênitos de famílias de baixo nível socioeconômico, desde os sete meses de idade. Método A amostra foi selecionada com base em mães densamente colonizadas por EM, incluindo todos os membros de 14 famílias que conviviam na mesma casa. Foram envolvidos no estudo 14 mães, pais e primogênitos e 8 parentes, na maioria avós. Exames clínicos e radiográficos iniciais determinaram os índices de cárie e condição periodontal dos adultos. Contagens de EM foram feitas em todos os adultos nas duas primeiras visitas. Nas crianças foram avaliados os níveis de EM, o número de dentes e de cáries, em quatro visitas. Resultados A prevalência de EM nos adultos foi alta, estando ausente em apenas um dos pais. EM foram detectados em 1, 2, 3 e 10 crianças, respectivamente nas visitas #1, 2, 3 e 4. A cárie dental foi detectada em apenas três crianças na última visita (aos 30 meses de idade), as quais apresentaram escores de EM significantemente maiores que as crianças sem cárie, na mesma visita. Conclusão Exclusivamente a condição social de baixa renda e mães densamente colonizadas por EM não são sinônimo de colonização precoce e alta atividade de cárie em crianças cuidadas em casa. O desenvolvimento de cárie está significantemente associado a escores elevados de EM nas crianças. PMID:22022218

  2. Detecção inesperada de efeitos de lentes fracas em grupos de galáxias pouco luminosos em raios-X

    NASA Astrophysics Data System (ADS)

    Carrasco, R.; Mendes de Oliveira, C.; Sodrã©, L., Jr.; Lima Neto, G. B.; Cypriano, E. S.; Lengruber, L. L.; Cuevas, H.; Ramirez, A.

    2003-08-01

    Obtivemos, como parte do programa de verificação científica do GMOS Sul, imagens profundas de três grupos de galáxias: G97 e G102 (z~0,4) e G124 (z = 0,17). Esses alvos foram selecionados a partir do catálogo de fontes extensas de Vikhlinin (1998), por terem luminosidades em raios X menores que 3´1043 ergs s-1, valor cerca de uma ou duas ordens de grandeza inferior ao de aglomerados de galáxias. O objetivo primário dessas observações é o estudo da evolução de galáxias em grupos. Grupos são ambientes menos densos que aglomerados, contêm a grande maioria das galáxias do Universo mas que, até o momento, foram estudados detalhadamente apenas no Universo local (z~0). Com esses dados efetuamos uma análise estatística da distorção na forma das galáxias de fundo (lentes gravitacionais fracas) como forma de inferir o conteúdo e a distribuição de massa nesses grupos apesar de que, em princípio, esse efeito não deveria ser detectado uma vez que os critérios de seleção adotados previlegiam sistemas de baixa massa. De fato, para G124 obtivemos apenas um limite superior para sua massa que é compatível com sua luminosidade em raios X. De modo contrário e surpreendente, os objetos G102 e G097, aparentam ter massas que resultariam em dispersões de velocidade maiores que 1000 km s-1, muito maiores do que se espera para grupos de galáxias. Com efeito, para G097 obtivemos, a partir de dados do satélite XMM, uma estimativa para a temperatura do gás intragrupo de kT = 2,6 keV, que é tipica de sistemas com dispersões de velocidade de ~ 600 km s-1, bem característica de grupos. Essas contradições aparentes entre lentes fracas e raios X podem ser explicadas de dois modos: i) a massa obtida por lentes estaria sobreestimada devido à superposição de estruturas massivas ao longo da linha de visada ou ii) a temperatura do gás do meio intra-grupo reflete o potencial gravitacional de estruturas menores que estariam se fundindo para formar uma

  3. Mutacins of Streptococcus mutans

    PubMed Central

    Kamiya, Regianne Umeko; Taiete, Tiago; Gonçalves, Reginaldo Bruno

    2011-01-01

    The colonization and accumulation of Streptococcus mutans are influenced by various factors in the oral cavity, such as nutrition and hygiene conditions of the host, salivary components, cleaning power and salivary flow and characteristics related with microbial virulence factors. Among these virulence factors, the ability to synthesize glucan of adhesion, glucan-binding proteins, lactic acid and bacteriocins could modify the infection process and pathogenesis of this species in the dental biofilm. This review will describe the role of mutacins in transmission, colonization, and/or establishment of S. mutans, the major etiological agent of human dental caries. In addition, we will describe the method for detecting the production of these inhibitory substances in vitro (mutacin typing), classification and diversity of mutacins and the regulatory mechanisms related to its synthesis. PMID:24031748

  4. Mannitol transport in Streptococcus mutans.

    PubMed Central

    Maryanski, J H; Wittenberger, C L

    1975-01-01

    A hexitol-inducible, phosphoenolpyruvate-dependent phosphotransferase system was demonstrated in Streptococcus mutans. Cell-free extracts obtained from mannitol-grown cells from a representative strain of each of the five S. mutans serotypes (AHT, BHT, C-67-1, 6715, and LM7) were capable of converting mannitol to mannitol-1-phosphate by a reaction which required phosphoenolpyruvate and Mg2+. Mannitol and sorbitol phosphotransferase activities were found in cell-free extracts prepared from cells grown on the respective substrate, but neither hexitol phosphotransferase activity was present in extracts obtained from cells grown on other substrates examined. A heat-stable, low-molecular-weight component was partially purified from glucose-grown cells and found to stimulate the mannitol phosphotransferase system. Divalent cations Mn2+ and Ca2+ partially replaced Mg2+, while Zn2+ was found to be highly inhibitory. PMID:1194241

  5. Galactose metabolism by Streptococcus mutans.

    PubMed

    Abranches, Jacqueline; Chen, Yi-Ywan M; Burne, Robert A

    2004-10-01

    The galK gene, encoding galactokinase of the Leloir pathway, was insertionally inactivated in Streptococcus mutans UA159. The galK knockout strain displayed only marginal growth on galactose, but growth on glucose or lactose was not affected. In strain UA159, the sugar phosphotransferase system (PTS) for lactose and the PTS for galactose were induced by growth in lactose and galactose, although galactose PTS activity was very low, suggesting that S. mutans does not have a galactose-specific PTS and that the lactose PTS may transport galactose, albeit poorly. To determine if the galactose growth defect of the galK mutant could be overcome by enhancing lactose PTS activity, the gene encoding a putative repressor of the operon for lactose PTS and phospho-beta-galactosidase, lacR, was insertionally inactivated. A galK and lacR mutant still could not grow on galactose, although the strain had constitutively elevated lactose PTS activity. The glucose PTS activity of lacR mutants grown in glucose was lower than in the wild-type strain, revealing an influence of LacR or the lactose PTS on the regulation of the glucose PTS. Mutation of the lacA gene of the tagatose pathway caused impaired growth in lactose and galactose, suggesting that galactose can only be efficiently utilized when both the Leloir and tagatose pathways are functional. A mutation of the permease in the multiple sugar metabolism operon did not affect growth on galactose. Thus, the galactose permease of S. mutans is not present in the gal, lac, or msm operons. PMID:15466549

  6. Phenotypic heterogeneity of Streptococcus mutans in dentin.

    PubMed

    Rupf, S; Hannig, M; Breitung, K; Schellenberger, W; Eschrich, K; Remmerbach, T; Kneist, S

    2008-12-01

    Information concerning phenotypic heterogeneity of Streptococcus mutans in carious dentin is sparse. Matrix-assisted laser-desorption/ionization-time-of-flight mass-spectrometry (MALDI-TOF-MS) facilitates the phenotypic differentiation of bacteria to the subspecies level. To verify a supposed influence of restorative treatment on the phenotypic heterogeneity of S. mutans, we isolated and compared a total of 222 S. mutans strains from dentin samples of 21 human deciduous molars during caries excavation (T(1)) and 8 wks (T(2)) after removal of the temporary restoration. Phenotypic heterogeneity was determined by MALDI-TOF-MS and hierarchical clustering. Thirty-six distinct S. mutans phenotypes could be identified. Although indistinguishable phenotypes were found in the same teeth at T(1) and T(2), as well as in different teeth of individual participants, the phenotypic heterogeneity increased significantly, from 1.4 phenotypes per S. mutans-positive dentin sample at T(1) to 2.2 phenotypes at T(2). We attribute this to an adaptation of S. mutans to the modified environment under the restoration following caries excavation. PMID:19029088

  7. Intracellular α-Amylase of Streptococcus mutans

    PubMed Central

    Simpson, Christine L.; Russell, Roy R. B.

    1998-01-01

    Sequencing upstream of the Streptococcus mutans gene for a CcpA gene homolog, regM, revealed an open reading frame, named amy, with homology to genes encoding α-amylases. The deduced amino acid sequence showed a strong similarity (60% amino acid identity) to the intracellular α-amylase of Streptococcus bovis and, in common with this enzyme, lacked a signal sequence. Amylase activity was found only in S. mutans cell extracts, with no activity detected in culture supernatants. Inactivation of amy by insertion of an antibiotic resistance marker confirmed that S. mutans has a single α-amylase activity. The amylase activity was induced by maltose but not by starch, and no acid was produced from starch. S. mutans can, however, transport limit dextrins and maltooligosaccharides generated by salivary amylase, but inactivation of amy did not affect growth on these substrates or acid production. The amylase digested the glycogen-like intracellular polysaccharide (IPS) purified from S. mutans, but the amy mutant was able to digest and produce acid from IPS; thus, amylase does not appear to be essential for IPS breakdown. However, when grown on excess maltose, the amy mutant produced nearly threefold the amount of IPS produced by the parent strain. The role of Amy has not been established, but Amy appears to be important in the accumulation of IPS in S. mutans grown on maltose. PMID:9721315

  8. Intracellular alpha-amylase of Streptococcus mutans.

    PubMed

    Simpson, C L; Russell, R R

    1998-09-01

    Sequencing upstream of the Streptococcus mutans gene for a CcpA gene homolog, regM, revealed an open reading frame, named amy, with homology to genes encoding alpha-amylases. The deduced amino acid sequence showed a strong similarity (60% amino acid identity) to the intracellular alpha-amylase of Streptococcus bovis and, in common with this enzyme, lacked a signal sequence. Amylase activity was found only in S. mutans cell extracts, with no activity detected in culture supernatants. Inactivation of amy by insertion of an antibiotic resistance marker confirmed that S. mutans has a single alpha-amylase activity. The amylase activity was induced by maltose but not by starch, and no acid was produced from starch. S. mutans can, however, transport limit dextrins and maltooligosaccharides generated by salivary amylase, but inactivation of amy did not affect growth on these substrates or acid production. The amylase digested the glycogen-like intracellular polysaccharide (IPS) purified from S. mutans, but the amy mutant was able to digest and produce acid from IPS; thus, amylase does not appear to be essential for IPS breakdown. However, when grown on excess maltose, the amy mutant produced nearly threefold the amount of IPS produced by the parent strain. The role of Amy has not been established, but Amy appears to be important in the accumulation of IPS in S. mutans grown on maltose. PMID:9721315

  9. Ferrous iron transport in Streptococcus mutans

    SciTech Connect

    Evans, S.L.; Arcenaeux, J.E.L.; Byers, B.R.; Martin, M.E.; Aranha, H.

    1986-12-01

    Radioiron uptake from /sup 59/FeCl/sub 3/ by Streptococcus mutans OMZ176 was increased by anaerobiosis, sodium ascorbate, and phenazine methosulfate (PMS), although there was a 10-min lag before PMS stimulation was evident. The reductant ascorbate may have provided ferrous iron. The PMS was reduced by the cells, and the reduced PMS then may have generated ferrous iron for transport; reduced PMS also may have depleted dissolved oxygen. It was concluded that S. mutans transports only ferrous iron, utilizing reductants furnished by glucose metabolism to reduce iron prior to its uptake.

  10. Immunochemical Properties of Glucosyltransferases from Streptococcus mutans

    PubMed Central

    Fukui, Kazuhiro; Kokeguchi, Susumu; Kato, Keijiro; Miyake, Yoichiro; Nogami, Ryuzo; Moriyama, Takafumi

    1983-01-01

    Antiserum against purified mutansynthetase (EC 2.4.1.?) of Streptococcus mutans 6715 (serotype g), which is responsible for the synthesis of water-insoluble glucan (ISG) in the presence of both sucrose and water-soluble glucan, was prepared. The specificity of the antiserum was tested by using crude enzyme preparations (CEPs) of S. mutans strains of various serotypes. On immunodiffusion, the antiserum cross-reacted with CEPs from strains of serotypes a (HS-6 and AHT), d (OMZ176), and g (OMZ65 and KIR), but not with those from strains of serotypes b (BHT and FA-1) and c (GS-5 and Ingbritt). The antiserum inhibited the synthesis of ISG by crude or purified mutansynthetase of S. mutans 6715. The activities of ISG synthesis by CEPs from the strains antigenically related in the foregoing immunodiffusion were inhibited by the antiserum against strain 6715 mutansynthetase. The antiserum, however, also inhibited the enzyme activity of the strains of serotype b. The finding that the antiserum against purified dextransucrase of S. mutans HS-6 inhibited ISG synthesis by a CEP of strain HS-6 and also by CEPs of antigenically related strains suggested that dextransucrase activity is involved in ISG synthesis. Images PMID:6187685

  11. Glucosyltransferase gene polymorphism among Streptococcus mutans strains.

    PubMed Central

    Chia, J S; Hsu, T Y; Teng, L J; Chen, J Y; Hahn, L J; Yang, C S

    1991-01-01

    Genetic polymorphisms in genes coding for the glucosyltransferases were detected among Streptococcus mutans serotype c strains by Southern blot analysis with DNA probes located within the gtfB gene (H. Aoki, T. Shiroza, M. Hayakawa, S. Sato, and H. K. Kuramitsu, Infect. Immun. 53:587-594, 1986). Restriction endonucleases were used to examine genomic DNAs isolated from serotype a to h strains. The variations were readily detected among 33 strains of serotype c by EcoRI and PstI restriction enzyme digestions. Serotypes e and f, which are genetically similar to serotype c, also had comparable polymorphism; however, serotypes a, b, d, g, and h did not hybridize to the same DNA probes in parallel experiments. Further analysis of enzymatic activities for glucan synthesis and sucrose-dependent adherence revealed no significant differences among the serotype c strains. Our results suggested that genetic polymorphisms existing in S. mutans serotype c strains may reflect a complexity in genes coding for the glucosyltransferases, which are produced ubiquitously in members of the S. mutans group. Images PMID:1826894

  12. Mutan: A mixed linkage α-[(1,3)- and (1,6)]-d-glucan from Streptococcus mutans, that induces osteoclast differentiation and promotes alveolar bone loss.

    PubMed

    Kwon, Hyun-Jung; Kim, Jung Min; Han, Kook-Il; Jung, Eui-Gil; Kim, Yong Hyun; Patnaik, Bharat Bhusan; Yoon, Mi Sook; Chung, Sung Kyun; Kim, Wan Jong; Han, Man-Deuk

    2016-02-10

    Mutan is an extracellular polysaccharide of Streptococcus mutans (S. mutans) that consists of α-(1,3)-linked glucose residues in main chains and α-(1,6) bonds in side chains. In the present study, mutan was isolated from S. mutans, and its structural characteristics were determined using Fourier-transform infrared spectroscopy (FT-IR) and (13)C nuclear magnetic resonance (NMR) spectroscopy. The effects of mutan on RANKL-induced osteoclast differentiation in RAW 264.7 cells were examined. Furthermore, microCT and morphometric analyses were used to determine the contribution of mutan to alveolar bone loss in the maxilla of a rat periodontitis model. Mutan increased (more than 2-fold) RANKL-induced osteoclast differentiation in a dose-dependent manner. Mutan also enhanced the alveolar bone loss in the rat maxilla 2.3-fold. In mutan-treated rats, the bone mineral density, bone volume, trabecular number, and trabecular thickness decreased, whereas trabecular separation significantly increased. In addition, mutan and lipopolysaccharide (LPS) induced similar microarray profiles in RAW 264.7 cells. A total of 43 genes related to osteoclastogenesis were differentially expressed after either mutan or LPS treatment. Five-fold increases in the expression of several genes, including IL-1β, IL-1α, IL-6, and chemokine ligands, were observed in mutan-treated RAW 264.7 cells. These results suggest a molecular mechanism for the inflammation induced by S. mutans during the establishment of periodontal disease. PMID:26686164

  13. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140

    PubMed Central

    Escano, Jerome; Deng, Peng; Lu, Shi-En

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain’s superior colonization properties and its utility in replacement therapy. PMID:27257196

  14. Association of Streptococcus mutans with Human Dental Decay

    PubMed Central

    Loesche, W. J.; Rowan, J.; Straffon, L. H.; Loos, P. J.

    1975-01-01

    The association of Streptococcus mutans with human dental decay was investigated by using several types of samples: (i) paraffin-stimulated saliva samples taken from children with from 0 to 15 decayed teeth; (ii) pooled occlusal and approximal plaque taken from children with no decayed or filled teeth, or from children with rampant caries of 10 or more teeth; (iii) plaque removed from single occlusal fissures that were either carious or noncarious. The results showed a significant association between plaque levels of S. mutans and caries. The strongest association, P < 0.0001, was found when plaque was removed from single occlusal fissures. Seventy-one percent of the carious fissures had S. mutans accounting for more than 10% of the viable flora, whereas 70% of the fissures that were caries free had no detectable S. mutans. Sixty-five percent of the pooled plaque samples from the children with rampant caries had S. mutans accounting for more than 10% of the viable flora, whereas 40% of the pooled samples from children that were caries free had no detectable S. mutans. Saliva samples tended to have low levels of S. mutans and were equivocal in demonstrating a relationship between S. mutans and caries. PMID:1140847

  15. Effect of Lactobacillus species on Streptococcus mutans biofilm formation.

    PubMed

    Ahmed, Ayaz; Dachang, Wu; Lei, Zhou; Jianjun, Liu; Juanjuan, Qiu; Yi, Xin

    2014-09-01

    Streptococcus mutans is the primary pathogen responsible for initiating dental caries and decay. The presence of sucrose, stimulates S. mutans to produce insoluble glucans to form oral biofilm also known as dental plaque to initiate caries lesion. The GtfB and LuxS genes of S. mutans are responsible for formation and maturation of biofilm. Lactobacillus species as probiotic can reduces the count of S. mutans. In this study effect of different Lactobacillus species against the formation of S. mutans biofilm was observed. Growing biofilm in the presence of sucrose was detected using 96 well microtiter plate crystal violet assay and biofilm formation by S. mutans in the presence of Lactobacillus was detected. Gene expression of biofilm forming genes (GtfB and LuxS) was quantified through Real-time PCR. All strains of Lactobacillus potently reduced the formation of S. mutans biofilm whereas Lactobacillus acidophilus reduced the genetic expression by 60-80%. Therefore, probiotic Lactobacillus species can be used as an alternative instead of antibiotics to decrease the chance of dental caries by reducing the count of S. mutans and their gene expression to maintain good oral health. PMID:25176247

  16. Anticariogenic activity of some tropical medicinal plants against Streptococcus mutans.

    PubMed

    Hwang, Jae-Kwan; Shim, Jae-Seok; Chung, Jae-Youn

    2004-09-01

    The methanol extracts of five tropical plants, Baeckea frutescens, Glycyrrhiza glabra, Kaempferia pandurata, Physalis angulata and Quercus infectoria, exhibited potent antibacterial activity against the cariogenic bacterium Streptococcus mutans. In particular, G. glabra, K. pandurata and P. angulata conferred fast killing bactericidal effect against S. mutans in 2 min at 50 microg/ml of extract concentration. PMID:15351117

  17. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140.

    PubMed

    Escano, Jerome; Deng, Peng; Lu, Shi-En; Smith, Lief

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain's superior colonization properties and its utility in replacement therapy. PMID:27257196

  18. Effect of topical anti-Streptococcus mutans IgY gel on quantity of S. mutans on rats' tooth surface.

    PubMed

    Bachtiar, Endang W; Afdhal, Anggraeni; Meidyawati, Ratna; Soejoedono, Retno D; Poerwaningsih, Erni

    2016-06-01

    This study aims to evaluate the effect of anti-Streptococcus mutans IgY gel on quantity of S. mutans on rats' tooth surface. Sprague Dawley rats were exposed intra-orally with S. mutans Xc and were fed a caries-inducing diet 2000. The 24 rats were divided into four groups: group A had their teeth coated with IgY gel; group B received sterilized water as a control; group C had their teeth coated with IgY gel starting on the 29(th) day; and group D had their teeth coated with a gel without IgY. Plaque samples were swabbed from the anterior teeth for S. mutans colony quantification, and saliva was collected to measure immunoreactivity by enzyme-linked immunosorbent assay. The results indicated that the quantity of S. mutans in rats treated with IgY gel showed significant difference compared with the controls. After coating with IgY anti-S. mutans gel, the mean immunoreactivity in rat saliva was higher than that of the no treatment group. In conclusion, topical application with anti-S. mutans IgY gel reduced the quantity of S. mutans on the tooth surface. PMID:27352970

  19. Acid tolerance mechanisms utilized by Streptococcus mutans

    PubMed Central

    Matsui, Robert; Cvitkovitch, Dennis

    2010-01-01

    Since its discovery in 1924 by J Clarke, Streptococcus mutans has been the focus of rigorous research efforts due to its involvement in caries initiation and progression. Its ability to ferment a range of dietary carbohydrates can rapidly drop the external environmental pH, thereby making dental plaque inhabitable to many competing species and can ultimately lead to tooth decay. Acid production by this oral pathogen would prove suicidal if not for its remarkable ability to withstand the acid onslaught by utilizing a wide variety of highly evolved acid-tolerance mechanisms. The elucidation of these mechanisms will be discussed, serving as the focus of this review. PMID:20210551

  20. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    PubMed

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. PMID:24961744

  1. Effect of a chlorhexidine varnish on Streptococcus mutans in saliva.

    PubMed

    Piovano, Susana; Marcantoni, Mabel; Doño, Raquel; Bellagamba, Hebe

    2005-01-01

    The aim of the present work was to evaluate the effect of a thymol/chlorhexidine varnish at 1% on Streptococcus mutans (S. mutans) in saliva applied after teaching and evaluating an oral hygiene technique and dressing the cavities to reduce the bacterial load. Streptococcus mutans levels in saliva samples and dental status were evaluated in 38 girls between 6 and 13 years of age with high risk of caries. The girls were then trained and assessed in oral hygiene. On day seven, oral hygiene assessment was repeated and supragingival plaque control was performed. After 15 days (day 21) another culture was performed and the level of S. mutans in saliva samples was determined. Evaluation and reinforcement of the oral hygiene technique were repeated and the cavities were dressed to reduce the bacterial load. At 36 days from the onset of the experiment, culture S. mutans counts were performed; evaluation and reinforcement of the oral hygiene technique were undertaken and the girls were divided randomly into two groups: 1 The teeth of the experimental group were painted with a varnish containing 1% chlorhexidine and thymol. 2 The teeth of the control group were painted with a placebo varnish containing only thymol. After a further 15 days (day 51), another culture and S. mutans counts were performed. The results showed a gradual reduction in the S. mutans counts in saliva in each subsequent experimental period analyzed. Significant differences between the experimental group and the control group were recorded after treatment. It can be concluded that the levels of S. mutans decreased in each subsequent experimental period and that the application of a 1% chlorhexidine varnish elicited a significant reduction in S. mutans levels. PMID:16302455

  2. Streptococcus mutans in a wild, sucrose-eating rat population.

    PubMed

    Coykendall, A L; Specht, P A; Samol, H H

    1974-07-01

    Streptococcus mutans, an organism implicated in dental caries and not previously found outside of man and certain laboratory animals, was isolated from the mouths of wild rats which ate sugar cane. The strains isolated fermented mannitol and sorbitol, and failed to grow in 6.5% NaCl or at 45 C. They formed in vitro plaques on nichrome wires when grown in sucrose broth. They also stored intracellular polysaccharide which could be catabolized by washed, resting cells. Deoxyribonucleic acid-deoxyribonucleic acid reassociations revealed two genetic types. One type shared extensive deoxyribonucleic acid base sequences with S. mutans strains HS6 and OMZ61, two members of a genetic type found in man and laboratory hamsters. The other type seemed unrelated to any S. mutans genetic type previously encountered. It is concluded that the ecological triad of tooth-sucrose-S. mutans is not a phenomenon unique to man and experimental animals. PMID:4601769

  3. Genetic regulation of fructosyltransferase in Streptococcus mutans.

    PubMed Central

    Kiska, D L; Macrina, F L

    1994-01-01

    Streptococcus mutans possesses several extracellular sucrose-metabolizing enzymes which have been implicated as important virulence factors in dental caries. This study was initiated to investigate the genetic regulation of one of these enzymes, the extracellular fructosyltransferase (Ftf). Fusions were constructed with the region upstream of the S. mutans GS5 Ftf gene (ftf) and a promoterless chloramphenicol acetyltransferase (CAT) gene. The fusions were integrated at a remote site in the chromosome, and transcriptional activity in response to the addition of various carbohydrates to the growth medium was measured. A significant increase in CAT activity was observed when glucose-grown cells were shifted to sucrose-containing medium. Sucrose-induced expression was repressed immediately upon addition of phosphoenolpyruvate phosphotransferase system sugars to the growth media. Deletion analysis of the ftf upstream region revealed that an inverted repeat structure was involved in the control of ftf expression in response to carbohydrate. However, the control of the level of ftf transcription appeared to involve a region distinct from that mediating carbohydrate regulation. CAT gene fusions also were constructed with the ftf upstream region from S. mutans V403, a fructan-hyperproducing strain which synthesizes increased levels of Ftf. Sequence analysis of the upstream ftf region in this strain revealed several nucleotide sequence changes which were associated with high-level ftf expression. Comparison of the GS5 and V403 ftf expression patterns suggested the presence of a trans-acting factor(s) involved in modulation of ftf expression in response to carbohydrate. This factor(s) was either absent or altered in V403, resulting in the inability of this organism to respond to the presence of carbohydrate. The sequences of the ftf regions from three additional fructan-hyperproducing strains were determined and compared with that of V403. Only one strain displayed nucleotide

  4. Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm formation.

    PubMed

    Lee, Kwang-Hee; Kim, Beom-Su; Keum, Ki-Suk; Yu, Hyeon-Hee; Kim, Young-Hoi; Chang, Byoung-Soo; Ra, Ji-Young; Moon, Hae-Dalma; Seo, Bo-Ra; Choi, Na-Young; You, Yong-Ouk

    2011-01-01

    Curcuma longa (C. longa) has been used as a spice in foods and as an antimicrobial in Oriental medicine. In this study, we evaluated the inhibitory effects of an essential oil isolated from C. longa on the cariogenic properties of Streptococcus mutans (S. mutans), which is an important bacterium in dental plaque and dental caries formation. First, the inhibitory effects of C. longa essential oil on the growth and acid production of S. mutans were tested. Next, the effect of C. longa essential oil on adhesion to saliva-coated hydroxyapatite beads (S-HAs) was investigated. C. longa essential oil inhibited the growth and acid production of S. mutans at concentrations from 0.5 to 4 mg/mL. The essential oil also exhibited significant inhibition of S. mutans adherence to S-HAs at concentrations higher than 0.5 mg/mL. S. mutans biofilm formation was determined by scanning electron microscopy (SEM) and safranin staining. The essential oil of C. longa inhibited the formation of S. mutans biofilms at concentrations higher than 0.5 mg/mL. The components of C. longa essential oil were then analyzed by GC and GC-MS, and the major components were α-turmerone (35.59%), germacrone (19.02%), α-zingiberene (8.74%), αr-turmerone (6.31%), trans-β-elemenone (5.65%), curlone (5.45%), and β-sesquiphellandrene (4.73%). These results suggest that C. longa may inhibit the cariogenic properties of S. mutans. PMID:22416707

  5. On the Formation of a Study Group to the Realization of Workshops for Teachers: Astronomy in Basic Education in Umuarama-Pr (Spanish Title: De la Formación de un Grupo de Estudios a la Realización de los Talleres Para los Profesores: la Astronomía en la Educación Básica en Umuarama-Pr ) Da Formação de um Grupo de Estudos À Realização de Oficinas Para Professores: a Astronomia na Educação Básica em Umuarama-Pr

    NASA Astrophysics Data System (ADS)

    Belusso, Diane; Akira Sakai, Otávio

    2013-12-01

    In this article, we aimed to present the activities developed by the Astronomy Study Group (ASG) to contribute to the dissemination and improvement of the astronomy teaching-learning. The results of a research carried out in schools of Umuarama-PR are shown, with the intention of checking the students' knowledge and interest in relation to Astronomy. It is reported the realization of workshops for Science teachers linked to the Education Regional Nucleus. The research and the workshop execution promoted the direct contact of the study group with the community; the results were used to diagnose the state of astronomy teaching-learning, in the basic education in Umuarama-PR. En este artículo se intenta presentar las actividades desarrolladas por el Grupo de Estudios de Astronomía (GEA) y contribuir para la divulgación y mejoría de la enseñanza-aprendizaje de la Astronomía. Se presentan los resultados de una investigación realizada en las escuelas de Umuarama-PR, con la intención de determinar el grado de conocimiento y el interés de los estudiantes en relación a la astronomía. Se relata la realización de talleres de capacitación para los profesores de ciencias vinculados al Núcleo Regional del Educación. La ejecución de la investigación y de los talleres promovió el contacto directo del grupo de estudios con la comunidad; los resultados sirvieron de diagnóstico de la enseñanza aprendizaje de la astronomía en la educación básica en Umuarama-PR. Neste artigo, objetiva-se apresentar as atividades desenvolvidas pelo Grupo de Estudos de Astronomia (GEA) e contribuir para a divulgação e melhoria do ensino-aprendizagem de astronomia. São apresentados os resultados de uma pesquisa realizada nas escolas de Umuarama-PR, com o intuito de averiguar o conhecimento e o interesse dos estudantes em relação à astronomia. Relata-se a realização de oficinas de capacitação para professores de ciências vinculados ao Núcleo Regional de Educação. A

  6. Lactam inhibiting Streptococcus mutans growth on titanium.

    PubMed

    Xavier, J G; Geremias, T C; Montero, J F D; Vahey, B R; Benfatti, C A M; Souza, J C M; Magini, R S; Pimenta, A L

    2016-11-01

    The aim of this work was to analyze the activity of novel synthetic lactams on preventing biofilm formation on titanium surfaces. Titanium (Ti6Al4V) samples were exposed to Streptococcus mutans cultures in the presence or absence of a synthetic lactam. After 48h incubation, planktonic growth was determined by spectrophotometry. Biofilm was evaluated by crystal violet staining and colony forming units (CFU·ml(-)(1)), followed by scanning electron microscopy (SEM). Results showed that the average of adhered viable cells was approximately 1.5×10(2)CFU/ml in the presence of lactam and 4×10(2)CFU/ml in its absence. This novel compound was considerable active in reducing biofilm formation over titanium surfaces, indicating its potential for the development of antimicrobial drugs targeting the inhibition of the initial stages of bacterial biofilms on dental implants abutments. PMID:27524086

  7. Expression of the Streptococcus mutans fructosyltransferase gene within a mammalian host.

    PubMed Central

    Grey, W T; Curtiss, R; Hudson, M C

    1997-01-01

    In vivo expression of the virulence-associated fructosyltransferase gene (ftf) of Streptococcus mutans has been examined. S. mutans ftf expression is affected by both the specific carbohydrate consumed and the age of the host animal. PMID:9169798

  8. Influence of a fluoride mouthrinse on mutans streptococci in schoolchildren.

    PubMed

    Kaneko, Noboru; Yoshihara, Akihiro; Ida, Hirohisa; Nomura, Yoshiaki; Imai, Susumu; Nisizawa, Toshiki; Sakuma, Shihoko; Hanada, Nobuhiro; Miyazaki, Hideo

    2006-01-01

    This study aimed to determine whether the long-term use of a fluoride mouthrinse affects the salivary levels of mutans streptococci. Two hundred and fifteen schoolchildren (aged 9-10 years) participated. One hundred and forty-nine of these children had used a fluoride mouthrinse since 5 years of age at nursery school, and the remaining 66 children had not. DFT (decayed and filled teeth) was recorded, and the salivary levels of Streptococcus mutans and Streptococcus sobrinus were measured using mitis salivarius bacitracin agar. The group that had used a fluoride mouthrinse had a significantly lower prevalence of both S. mutans and S. sobrinus (p = 0.038) and a significantly lower DFT score (p < 0.001) than the other group. Using logistic regression analysis including caries experience at baseline as a dependent variable, the odds ratio of carrying S. mutans alone was 8.0 (p = 0.066) and that of carrying both S. mutans and S. sobrinus was 16.5 (p = 0.022) in the group that had not used the fluoride mouthrinse. Children carrying both S. mutans and S. sobrinus had a higher caries incidence in 1 year than the others, with odds ratios of 5.73 (p = 0.067) in the group with a fluoride mouthrinse and 3.47 (p = 0.035) in the group without it. These results show that the long-term use of a fluoride mouthrinse is associated with reduced salivary levels of mutans streptococci and this bacterial reduction may partly contribute to the suppression of dental caries in children using a long-term fluoride mouthrinse. PMID:17063021

  9. Inhibition of Streptococcus mutans strains by different mitis-salivarius agar preparations.

    PubMed Central

    Staat, R H

    1976-01-01

    Several Streptococcus mutans strains were markedly inhibited by mitis-salivarius agar manufactured by Baltimore Biological Laboratories, but little, if any, inhibition was noted using Difco Laboratories' mitis-salivarius agar. Supplementation of the basic medium with sucrose and bacitracin for specific selection of S. mutans resulted in suppression of representative S. mutans type a strains regardless of manufacturer. PMID:1270597

  10. Secretory immunity in defense against cariogenic mutans streptococci.

    PubMed

    Russell, M W; Hajishengallis, G; Childers, N K; Michalek, S M

    1999-01-01

    Specific immune defense against cariogenic mutans streptococci is provided largely by salivary secretory IgA antibodies, which are generated by the common mucosal immune system. This system is functional in newborn infants, who develop salivary IgA antibodies as they become colonized by oral microorganisms. The mechanisms of action of salivary IgA antibodies include interference with sucrose-independent and sucrose- dependent attachment of mutans streptococci to tooth surfaces, as well as possible inhibition of metabolic activities. The goal of protecting infants against colonization by mutans streptococci might be accomplished by applying new strategies of mucosal immunization that would induce salivary IgA antibodies without the complications of parenteral immunization. Strategies of mucosal immunization against mutans streptococci currently under development include the use of surface adhesins and glucosyltransferase as key antigens, which are being incorporated into novel mucosal vaccine delivery systems and adjuvants. The oral application of preformed, genetically engineered antibodies to mutans streptococcal antigens also offers new prospects for passive immunization against dental caries. PMID:9831775

  11. Characteristics of Streptococcus mutans genotypes and dental caries in children.

    PubMed

    Cheon, Kyounga; Moser, Stephen A; Wiener, Howard W; Whiddon, Jennifer; Momeni, Stephanie S; Ruby, John D; Cutter, Gary R; Childers, Noel K

    2013-06-01

    This longitudinal cohort study evaluated the diversity, commonality, and stability of Streptococcus mutans genotypes associated with dental caries history. Sixty-seven 5- and 6-yr-old children, considered as being at high caries risk, had plaque collected from baseline through 36 months for S. mutans isolation and genotyping using repetitive extragenic palindromic-PCR (4,392 total isolates). Decayed, missing, or filled surfaces (dmfs (primary teeth)/DMFS (secondary teeth)) for each child were recorded at baseline. At baseline, 18 distinct genotypes were found among 911 S. mutans isolates from 67 children (diversity), and 13 genotypes were shared by at least two children (commonality). The number of genotypes per individual was positively associated with the proportion of decayed surfaces (p-ds) at baseline. Twenty-four of the 39 children who were available at follow-up visits maintained a predominant genotype for the follow-up periods (stability) and this was negatively associated with the p-ds. The observed diversity, commonality, and stability of S. mutans genotypes represent a pattern of dental caries epidemiology in this high-caries-risk community, which suggests that fewer decayed surfaces are significantly associated with lower diversity and higher stability of S. mutans genotypes. PMID:23659236

  12. Binding of Todd-Hewitt broth antigens by Streptococcus mutans.

    PubMed Central

    Stinson, M W; Jones, C A

    1983-01-01

    Streptococcus mutans 10449, grown in chemically defined culture medium, was tested for its ability to bind 3H-labeled Todd-Hewitt broth components (greater than 12,000 Mr). Maximum adsorption of radioactivity occurred within 5 min at room temperature, and cell-bound material was not completely removed by extended washing with buffer. Heat-killed, arsenate-inhibited, and viable bacteria bound similar quantities. Only 0.09% of the radioactivity in the preparation of high Mr Todd-Hewitt broth components was removed by absorption with excess numbers of S. mutans 10449 cells. Binding followed saturation kinetics and was competitively inhibited by unlabeled medium components, both the dialyzable and nondialyzable fractions. Other oral streptococci were also found to bind these complex medium components. Rabbit antiserum elicited to the high-molecular-weight Todd-Hewitt broth components reacted with monkey cardiac muscle and with S. mutans coated with medium components. Absorption of the anti-Todd-Hewitt broth serum with homogenized heart removed antibodies that reacted with Todd-Hewitt broth-coated S. mutans. Therefore, the tissue-specific antigens of this beef heart infusion medium that adsorb to S. mutans can interfere with the detection and characterization of antigens shared by these bacteria and animal tissues. Images PMID:6852915

  13. Characterization and Streptococcus mutans adhesion on air polishing dentin.

    PubMed

    Tada, Kazuhiro; Oda, Hirotake; Inatomi, Michitomo; Sato, Soh

    2014-07-01

    Air polishing is known as an effective and time saving tooth cleaning method. However, this method increased surface roughness and bacterial adhesion on dentin surface. The aim of this study was to characterize and examine Streptococcus mutans adhesion on dentin surface after air polishing as compared to the conventional method. The dentin blocks (4 × 4 × 1 mm) were polished by a rubber cup with polishing material (Polishing) and air-polished by 25 μm glycine (G25), 65 μm glycine (G65), and 65 μm sodium bicarbonate (NHC65) microparticles. Surface roughness (Ra) was measured by a laser electron microscope. The amount of adhered S. mutans was quantified using a resazurin reduction assay (alamarBlue(®)). The Ra of G25 and G65 was significantly (p < 0.01) smaller than that of NHC65 and greater than that of Polishing. However, there was no significant difference in S. mutans adhesion among Polishing, G25, and G65, while NHC65 showed significantly (p < 0.01) higher S. mutans adhesion. Within the limitations of this in vitro study, air polishing using glycine microparticles conditioned S. mutans adhesion on dentin surface in a similar fashion than the conventional method, and less than air polishing using sodium bicarbonate microparticles. PMID:23744363

  14. Mutans Streptococci Dose Response to Xylitol Chewing Gum

    PubMed Central

    Milgrom, P.; Ly, K.A.; Roberts, M.C.; Rothen, M.; Mueller, G.; Yamaguchi, D.K.

    2008-01-01

    Xylitol is promoted in caries-preventive strategies, yet its effective dose range is unclear. This study determined the dose-response of mutans streptococci in plaque and unstimulated saliva to xylitol gum. Participants (n = 132) were randomized: controls (G1) (sorbitol/maltitol), or combinations giving xylitol 3.44 g/day (G2), 6.88 g/day (G3), or 10.32 g/day (G4). Groups chewed 3 pellets/4 times/d. Samples were taken at baseline, 5 wks, and 6 mos, and were cultured on modified Mitis Salivarius agar for mutans streptococci and on blood agar for total culturable flora. At 5 wks, mutans streptococci levels in plaque were 10x lower than baseline in G3 and G4 (P = 0.007/0.003). There were no differences in saliva. At 6 mos, mutans streptococci in plaque for G3 and G4 remained 10x lower than baseline (P = 0.007/0.04). Saliva for G3 and G4 was lower than baseline by 8 to 9x (P = 0.011/0.038). Xylitol at 6.44 g/day and 10.32 g/day reduces mutans streptococci in plaque at 5 wks, and in plaque and unstimulated saliva at 6 mos. A plateau effect is suggested between 6.44 g and 10.32 g xylitol/day. PMID:16434738

  15. Fluoride uptake by Streptococcus mutans 6715.

    PubMed Central

    Whitford, G M; Schuster, G S; Pashley, D H; Venkateswarlu, P

    1977-01-01

    The short-term kinetics of fluoride uptake by cells from 20- to 22-h cultures of Streptococcus mutans strain 6715 were studied using rapid filtration and centrifugation techniques. Saline-suspended organisms were diluted with fluoride-containing solutions buffered at four different pH values (2.0, 4.0, 5.5, and 8.2). Fluoride disappearance from the medium was inversely related to pH and to the duration of the exposure at any given pH. The uptake was rapid and extensive at the lower pH values and decreased as the pH increased. Media fluoride concentrations subsequently increased; i.e., fluoride was released from the cells. The presence of glucose, cyanide, or iodoacetate did not influence the results. However, preincubation of the cells in fluoride-free buffers, followed by the addition of fluoride, reduced fluoride uptake markedly. Cell-to-media pH gradients were determined by the distribution of 14C-labeled 5,5-dimethyl-2,4-oxazolidinedione. Fluoride uptake was found to be a function of the magnitude of the pH gradient (P less than 0.001). It is hypothesized that fluoride uptake occurs by the diffusion of hydrogen fluoride and the subsequent trapping of ionic fluoride. PMID:22490

  16. Treatment of Streptococcus mutans bacteria by a plasma needle

    SciTech Connect

    Zhang Xianhui; Huang Jun; Lv Guohua; Liu Xiaodi; Peng Lei; Guo Lihong; Chen Wei; Feng Kecheng; Yang Size

    2009-03-15

    A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O{sub 2} does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals.

  17. Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence

    PubMed Central

    Ren, Zhi; Cui, Tao; Zeng, Jumei; Chen, Lulu; Zhang, Wenling; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Zhou, Xuedong

    2015-01-01

    Dental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation in Streptococcus mutans is promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibiting S. mutans biofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein from S. mutans resulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor. In vitro assays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation in S. mutans by selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, the in vivo anti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo with a concomitant reduction in the percentage of S. mutans in the animals' dental plaque (P < 0.05). Taken together, these results represent the first description of a compound that targets Gtfs and that has the capacity to inhibit biofilm formation and the cariogenicity of S. mutans. PMID:26482298

  18. Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence.

    PubMed

    Ren, Zhi; Cui, Tao; Zeng, Jumei; Chen, Lulu; Zhang, Wenling; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Zhou, Xuedong; Li, Yuqing

    2016-01-01

    Dental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation in Streptococcus mutans is promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibiting S. mutans biofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein from S. mutans resulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor. In vitro assays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation in S. mutans by selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, the in vivo anti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo with a concomitant reduction in the percentage of S. mutans in the animals' dental plaque (P < 0.05). Taken together, these results represent the first description of a compound that targets Gtfs and that has the capacity to inhibit biofilm formation and the cariogenicity of S. mutans. PMID:26482298

  19. Fotometria de grupos compactos de galáxias no infravermelho próximo

    NASA Astrophysics Data System (ADS)

    Brasileiro, F.; Mendes de Oliveira, C.

    2003-08-01

    Apresentamos medidas nas bandas J, H e K de cerca de 90 galáxias em 34 grupos compactos. Através da combinação dos novos dados, com dados obtidos na literatura para a banda B, investigamos como as luminosidades, cores, tamanhos e massas das galáxias em grupos compactos foram afetadas por processos dinâmicos, e como essas diferem de galáxias em ambientes menos densos. Uma comparação dos novos valores obtidos com aqueles listados no catálogo 2MASS, mostram que para 50 galáxias estudadas em comum, as diferenças nas magnitudes J, H e K estão dentro dos erros fotométricos. Através da construção dos diagramas de cor (J-H x H-K e B-H x J-K), percebemos que as galáxias em grupos compactos ocupam posições no diagrama diferentes das posições de galáxias em campo ou em aglomerados, sendo mais parecidas com as posições ocupadas por galáxias HII, ou com excesso de poeira, acreditamos que tal deslocamento é derivado do aumento da taxa de formação estelar.

  20. Proteases of an early colonizer can hinder Streptococcus mutans colonization in vitro.

    PubMed

    Wang, B-Y; Deutch, A; Hong, J; Kuramitsu, H K

    2011-04-01

    Streptococcus mutans is the primary cariogen that produces several virulence factors that are modulated by a competence-stimulating peptide (CSP) signaling system. In this study, we sought to determine if proteases produced by early dental plaque colonizers such as Streptococcus gordonii interfere with the subsequent colonization of S. mutans BM71 on the existing streptococcal biofilms. We demonstrated that S. mutans BM71 colonized much less efficiently in vitro on streptococcal biofilms than on Actinomyces naeslundii biofilms. Several oral streptococci, relative to A. naeslundii, produced proteases that inactivated the S. mutans CSP. We further demonstrated that cell protein extracts from S. gordonii, but not from A. naeslundii, interfered with S. mutans BM71 colonization. In addition, S. mutans BM71 colonized more efficiently on the sgc protease knockout mutant of S. gordonii than on the parent biofilms. In conclusion, proteases of early colonizers can interfere with subsequent colonization by S. mutans in vitro. PMID:21088146

  1. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms.

    PubMed

    Klein, Marlise I; Hwang, Geelsu; Santos, Paulo H S; Campanella, Osvaldo H; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases. PMID:25763359

  2. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    PubMed Central

    Klein, Marlise I.; Hwang, Geelsu; Santos, Paulo H. S.; Campanella, Osvaldo H.; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases. PMID:25763359

  3. β-Phosphoglucomutase contributes to aciduricity in Streptococcus mutans

    PubMed Central

    Buckley, Andrew A.; Faustoferri, Roberta C.

    2014-01-01

    Streptococcus mutans encounters an array of sugar moieties within the oral cavity due to a varied human diet. One such sugar is β-d-glucose 1-phosphate (βDG1P), which must be converted to glucose 6-phosphate (G6P) before further metabolism to lactic acid. The conversion of βDG1P to G6P is mediated by β-phosphoglucomutase, which has not been previously observed in any oral streptococci, but has been extensively characterized and the gene designated pgmB in Lactococcus lactis. An orthologue was identified in S. mutans, SMU.1747c, and deletion of the gene resulted in the inability of the deletion strain to convert βDG1P to G6P, indicating that SMU.1747c is a β-phosphoglucomutase and should be designated pgmB. In this study, we sought to characterize how deletion of pgmB affected known virulence factors of S. mutans, specifically acid tolerance. The ΔpgmB strain showed a decreased ability to survive acid challenge. Additionally, the strain lacking β-phosphoglucomutase had a diminished glycolytic profile compared with the parental strain. Deletion of pgmB had a negative impact on the virulence of S. mutans in the Galleria mellonella (greater wax worm) animal model. Our results indicate that pgmB plays a role at the juncture of carbohydrate metabolism and virulence. PMID:24509501

  4. Development of species-specific primers for detection of Streptococcus mutans in mixed bacterial samples

    PubMed Central

    Chen, Zhou; Saxena, Deepak; Caufield, Page W.; Ge, Yao; Wang, Minqi; Li, Yihong

    2009-01-01

    Streptococcus mutans is the major microbial pathogen associated with dental caries in children. The objectives of this study were to design and evaluate species-specific primers for the identification of S. mutans. Validation of the best primer set, Sm479F/R, was performed using 7 S. mutans reference strains, 48 ATCC non-S. mutans strains, 92 S. mutans clinical isolates, DNA samples of S. mutans-S. sobrinus or S. mutans-S. sanguinis, and mixed bacterial DNA of saliva samples from 33 18-month-old children. All of the S. mutans samples tested positive, and no PCR products were amplified from members of the other streptococci or non-streptococci strains examined. The lowest detection level for PCR was 10−2 nanograms of S. mutans DNA (approximately 4.6 × 103 copies) in the test samples. The results of our study suggest that the Sm479F/R primer pair is highly specific and sensitive for identification of S. mutans in either purified or mixed DNA samples. PMID:17521362

  5. A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans.

    PubMed

    Huang, Xuelian; Palmer, Sara R; Ahn, Sang-Joon; Richards, Vincent P; Williams, Matthew L; Nascimento, Marcelle M; Burne, Robert A

    2016-04-01

    The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)-ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens. PMID:26826230

  6. Chlorhexidine susceptibilities of mutans streptococcal serotypes and ribotypes.

    PubMed Central

    Grönroos, L; Mättö, J; Saarela, M; Luoma, A R; Luoma, H; Jousimies-Somer, H; Pyhälä, L; Asikainen, S; Alaluusua, S

    1995-01-01

    The susceptibilities of 379 clinical mutans streptococcal isolates to chlorhexidine (CHX) were tested by agar dilution according to the standards of the National Committee for Clinical Laboratory Standards. Isolates were obtained from saliva samples of 34 young mothers who had high or moderate salivary levels of mutans streptococci at baseline. Samples were collected on three occasions, before childbirth, when each child was 6 months old, and 1 year later. Of these isolates, 50% were inhibited at 1 microgram of CHX per ml, 90% were inhibited at 2.0 micrograms/ml, and all were inhibited at 4.0 micrograms/ml. The MICs for Streptococcus mutans isolates (serotypes c, e, and f) were lower than those for Streptococcus sobrinus isolates (serotypes d and g). In some subjects, the MICs for isolates of the same serotype were different. This phenomenon was studied by ribotyping isolates (n = 45) from selected subjects (n = 7). It was found that if there were intraindividual differences in the MICs for isolates of the same serotype, then the ribotypes of these isolates were different. In order to decrease the mutans streptococcal infection risk for children, 24 mothers (test group) brushed their teeth periodically with a gel that contained 0.3% CHX digluconate and 0.2% NaF, pH 5.8, between the second and third sampling occasions. The gel was used twice a day for the first 10 days of each month. Development of resistant strains during CHX-NaF gel use was not detected. The serotype distribution of isolates from the test group after 1 year of periodic CHX-NaF gel use did not differ from that at baseline. Periodic CHX-NaF gel brushing did not lead to lower salivary mutans streptococcal counts. PMID:7785991

  7. Purification and certain properties of a bacteriocin from Streptococcus mutans.

    PubMed Central

    Ikeda, T; Iwanami, T; Hirasawa, M; Watanabe, C; McGhee, J R; Shiota, T

    1982-01-01

    An inhibition factor from Streptococcus mutans strain C3603 (serotype c) was purified and isolated, and its properties indicated that it was a bacteriocin. Bacteriocin C3603 is a basic protein with a pI value of 10 and a molecular weight of 4,800. The activity of this bacteriocin was not affected by pH over a range of 1.0 to 12.0 or by storage at 100 degrees C for 10 min at pH 2.0 to 7.0 or storage at 121 degrees C for 15 min at pH 4.0. Pronase; papain, phospholipase C, trypsin, and alpha-amylase had no effect on the activity of the bacteriocin, whereas alpha-chymotrypsin and pancreatin were partially active against it. Bacteriocin activity was greater against certain S. mutans strains of serotypes b, c, e, and f than against certain S. mutans strains of serotypes a, d, and g. Bacteriocin C3603 was also effective against selected strains of S. sanguis, S. salivarius, S. bovis, S. faecium, S. lactis, Lactobacillus casei, L. plantarum, L. fermentum, Bifidobacterium bifidum, Bifidobacterium longum, Propionibacterium acnes, and Bacteroides melaninogenicus, but it was not effective against certain strains of Escherichia coli, Klebsiella pneumoniae, Corynebacterium parvum, and Candida albicans. The inhibition of S. mutans strains BHT and PS-14 by bacteriocin C3603 was found to be due to the bacteriocidal activity of the bacteriocin. When water or a diet containing bacteriocin C3603 was consumed by gnotobiotic and specific pathogen-free rats infected with S. mutans PS-14, the caries score was found to be significantly reduced. Images PMID:7068219

  8. Purification and certain properties of a bacteriocin from Streptococcus mutans.

    PubMed

    Ikeda, T; Iwanami, T; Hirasawa, M; Watanabe, C; McGhee, J R; Shiota, T

    1982-03-01

    An inhibition factor from Streptococcus mutans strain C3603 (serotype c) was purified and isolated, and its properties indicated that it was a bacteriocin. Bacteriocin C3603 is a basic protein with a pI value of 10 and a molecular weight of 4,800. The activity of this bacteriocin was not affected by pH over a range of 1.0 to 12.0 or by storage at 100 degrees C for 10 min at pH 2.0 to 7.0 or storage at 121 degrees C for 15 min at pH 4.0. Pronase; papain, phospholipase C, trypsin, and alpha-amylase had no effect on the activity of the bacteriocin, whereas alpha-chymotrypsin and pancreatin were partially active against it. Bacteriocin activity was greater against certain S. mutans strains of serotypes b, c, e, and f than against certain S. mutans strains of serotypes a, d, and g. Bacteriocin C3603 was also effective against selected strains of S. sanguis, S. salivarius, S. bovis, S. faecium, S. lactis, Lactobacillus casei, L. plantarum, L. fermentum, Bifidobacterium bifidum, Bifidobacterium longum, Propionibacterium acnes, and Bacteroides melaninogenicus, but it was not effective against certain strains of Escherichia coli, Klebsiella pneumoniae, Corynebacterium parvum, and Candida albicans. The inhibition of S. mutans strains BHT and PS-14 by bacteriocin C3603 was found to be due to the bacteriocidal activity of the bacteriocin. When water or a diet containing bacteriocin C3603 was consumed by gnotobiotic and specific pathogen-free rats infected with S. mutans PS-14, the caries score was found to be significantly reduced. PMID:7068219

  9. Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism

    PubMed Central

    Liu, Chengcheng; Niu, Yulong; Zhou, Xuedong; Zheng, Xin; Wang, Shida; Guo, Qiang; Li, Yuqing; Li, Mingyun; Li, Jiyao; Yang, Yi; Ding, Yi; Lamont, Richard J.; Xu, Xin

    2015-01-01

    Dental caries is closely associated with the virulence of Streptococcus mutans. The virulence expression of S. mutans is linked to its stress adaptation to the changes in the oral environment. In this work we used whole-genome microarrays to profile the dynamic transcriptomic responses of S. mutans during physiological heat stress. In addition, we evaluated the phenotypic changes, including, eDNA release, initial biofilm formation, extracellular polysaccharides generation, acid production/acid tolerance, and ATP turnover of S. mutans during heat stress. There were distinct patterns observed in the way that S. mutans responded to heat stress that included 66 transcription factors for the expression of functional genes being differentially expressed. Especially, response regulators of two component systems (TCSs), the repressors of heat shock proteins and regulators involved in sugar transporting and metabolism co-ordinated to enhance the cell’s survival and energy generation against heat stress in S. mutans. PMID:26251057

  10. Complete genome sequence of Streptococcus mutans GS-5, a serotype c strain.

    PubMed

    Biswas, Saswati; Biswas, Indranil

    2012-09-01

    Streptococcus mutans, a principal causative agent of dental caries, is considered to be the most cariogenic among all oral streptococci. Of the four S. mutans serotypes (c, e, f, and k), serotype c strains predominate in the oral cavity. Here, we present the complete genome sequence of S. mutans GS-5, a serotype c strain originally isolated from human carious lesions, which is extensively used as a laboratory strain worldwide. PMID:22887682

  11. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    PubMed Central

    Lombardo Bedran, Telma Blanca; Azelmat, Jabrane; Palomari Spolidorio, Denise

    2013-01-01

    Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis. PMID:24222906

  12. Streptococcus mutans endocarditis: report of three cases and review of the literature.

    PubMed

    Ullman, R F; Miller, S J; Strampfer, M J; Cunha, B A

    1988-03-01

    Our findings indicate that S. mutans endocarditis is capable of causing significant morbidity and mortality, as exemplified by the prolonged and complicated hospital course of our patients and the ultimate death of one of them. S. mutans endocarditis is probably underreported because most clinical laboratories do not speciate the viridans streptococci. Isolates of S. mutans should be tested for tolerance that would require the addition of an aminoglycoside to the penicillin regimen. Our experience agrees with the literature and indicates that S. mutans is primarily a pathogen in elderly patients with heart disease and may be associated with IHSS. PMID:3350687

  13. Virulence of Streptococcus mutans: a sensitive method for evaluating cariogenicity in young gnotobiotic rats.

    PubMed Central

    Michalek, S M; McGhee, J R; Navia, J M

    1975-01-01

    Gnotobiotic rats infected with Streptococcus mutans 6715 at 19 days of age and fed a purified diet (305) containing 5% sucrose developed extensive caries lesions on all molar surfaces within 16 days (35 days of age). Approximately twice as many lesions developed when infected rats were maintained until 45 days of age, whereas noninfected rats did not develop caries when fed diet 305. Gnotobiotic rats infected with S. mutans 6715 and fed a purified diet containing no sucrose (300) until day 25 and subsequently fed diet 305 for 10 days developed lesions similar to rats fed diet 305 for 16 days. Furthermore, rats infected with S. mutans 6715 and fed diet 300 until 45 days of age developed approximately one-half the smooth surface lesions as infected rats fed diet 305 for the same length of time. The level of caries on buccal and proximal molar surfaces in 45-day-old gnotobiotic rats varied when animals were infected with S. mutans AHT, BHT, NCTC 10449, 6715, or LM-7. Animals infected with S. mutans AHT showed more severe lesions on the buccal surfaces than those observed in animals infected with the other strains of S. mutans tested, whereas S. mutans 6715 caused significantly more caries on proximal surfaces. On the other hand, rats infected with S. mutans LM-7 exhibited the lowest level of caries on all molar surfaces of the five strains of S. mutans tested. Images PMID:1140853

  14. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  15. Inhibition of dextran and mutan synthesis by cycloisomaltooligosaccharides.

    PubMed

    Kobayashi, M; Funane, K; Oguma, T

    1995-10-01

    Novel cyclic isomaltooligosaccharides, cyclodextran, strongly inhibited the dextransucrase reaction. The inhibition was dependent on the cyclodextran concentration and greatly enhanced by the first incubation at 30 degrees for 30 min. Cyclodextran-heptaose and -octaose were competitive inhibitors for sucrose yielding Ki's of 0.25 and 0.64 mM, respectively. Both reducing sugar and dextran producing activities of dextransucrase were almost equally inhibited by the cyclodextrans. Although gamma-cyclodextrin, palatinose, sucrose-monocaprate, and maltitol gave 5-35% inhibition, cyclodextran-heptaose gave 95% inhibition. Moreover, water-insoluble glucan (mutan) synthesis by the glucosyltransferase from Streptococcus mutans was significantly repressed by the addition of cyclodextran. PMID:8534976

  16. Evaluation of Melia azedarach extracts against Streptococcus mutans.

    PubMed

    Della Bona, Alvaro; Nedel, Fernanda

    2015-02-01

    Although the incidence of caries worldwide has declined in recent years, it is necessary to search for new means to overcome this disease and its microbiological agents. Phytochemistry can become an effective alternative to antibiotics, offering a promising strategy in the prevention and therapy of dental caries. This study aimed to evaluate in vitro the bactericide activity of a bioactive phytocomponent from Melia azedarach against Streptococcus mutans. The crude extract (CEx) from leaves and stem barks of M. azedarach in chloroform, petroleum ether, acetate ethyl, butanol, and aqueous fractions was evaluated using seven different concentrations. Disk diffusion and minimum inhibitory concentration assays were used to evaluate the antibacterial activity. 0.12% chlorhexidine was used as a positive control. The CEx and the petroleum ether fraction from M. azedarach showed significant antibacterial activity against S. mutans, confirming its antibiotic potential. PMID:25069066

  17. Effect of Fluoride Varnish on Streptococcus mutans Count in Saliva of Caries Free Children Using Dentocult SM Strip Mutans Test: A Randomized Controlled Triple Blind Study

    PubMed Central

    A, Deepti; Jeevarathan, J; Muthu, MS; Prabhu V, Rathna; Chamundeswari

    2008-01-01

    Aims: The aim of this study was to estimate the count of Streptococcus mutans in saliva of caries free children using Dentocult SM strip mutans and to evaluate the effect of fluoride varnish on the Streptococcus mutans count in saliva of these caries free children. Methods and material: Thirty caries free children were selected for the study based on the information obtained from a questionnaire prepared. They were randomly assigned into the control group and the study group consisting of ten and twenty children respectively. Samples of saliva were collected using the saliva strips from the Dentocult SM kit and after incubation the presence of the Streptococcus mutans was evaluated using the manufacturers’ chart. The study group was subjected to Fluor Protector fluoride varnish application after 24 hours following which the samples were collected again. Results: The average Streptococcus mutans count in primary dentition of caries free children was in the range of 104 to 105 colony forming units/ml. The average Streptococcus mutans count in primary dentition of caries free children after Fluor Protector fluoride varnish application was below 104 colony forming units/ml. Conclusion: Fluor Protector fluoride varnish application showed a statistically significant reduction in the Streptococcus mutans count in saliva of the caries free children in the study group. PMID:25206081

  18. Binding Forces of Streptococcus mutans P1 Adhesin

    PubMed Central

    Sullan, Ruby May A.; Li, James K.; Crowley, Paula J.; Brady, L. Jeannine; Dufrêne, Yves F.

    2015-01-01

    Streptococcus mutans is a Gram-positive oral bacterium that is a primary etiological agent associated with human dental caries. In the oral cavity, S. mutans adheres to immobilized salivary agglutinin (SAG) contained within the salivary pellicle on the tooth surface. Binding to SAG is mediated by cell surface P1, a multifunctional adhesin that is also capable of interacting with extracellular matrix proteins. This may be of particular importance outside of the oral cavity as S. mutans has been associated with infective endocarditis and detected in atherosclerotic plaque. Despite the biomedical importance of P1, its binding mechanisms are not completely understood. In this work, we use atomic force microscopy-based single-molecule and single-cell force spectroscopy to quantify the nanoscale forces driving P1-mediated adhesion. Single-molecule experiments show that full-length P1, as well as fragments containing only the P1 globular head or C-terminal region, binds to SAG with relatively weak forces (~50 pN). In contrast, single-cell analyses reveal that adhesion of a single S. mutans cell to SAG is mediated by strong (~500 pN) and long-range (up to 6000 nm) forces. This is likely due to the binding of multiple P1 adhesins to self-associated gp340 glycoproteins. Such a cooperative, long-range character of the S. mutans–SAG interaction would therefore dramatically increase the strength and duration of cell adhesion. We also demonstrate, at single-molecule and single-cell levels, the interaction of P1 with fibronectin and collagen, as well as with hydrophobic, but not hydrophilic, substrates. The binding mechanism (strong forces, cooperativity, broad specificity) of P1 provides a molecular basis for its multifunctional adhesion properties. Our methodology represents a valuable approach to probe the binding forces of bacterial adhesins and offers a tractable methodology to assess anti-adhesion therapy. PMID:25671413

  19. Magnetic response in cultures of Streptococcus mutans ATCC-27607.

    PubMed

    Adamkiewicz, V W; Bassous, C; Morency, D; Lorrain, P; Lepage, J L

    1987-01-01

    Streptococcus mutans ATCC-27607 produces exopolysaccharides that adhere to glass. In the normal geomagnetic field about 50% more polysaccharide adhere preferentially to glass surfaces facing North as compared to South facing surfaces. Reversal of the direction of the magnetic field by 180 degrees produces a similar reversal in the direction of the preferential accumulation. Reduction of the field by 90% abolishes the preferential accumulation. PMID:3582582

  20. Streptococcus mutans: Fructose Transport, Xylitol Resistance, and Virulence

    PubMed Central

    Tanzer, J.M.; Thompson, A.; Wen, Z.T.; Burne, R.A.

    2008-01-01

    Streptococcus mutans, the primary etiological agent of human dental caries, possesses at least two fructose phosphotransferase systems (PTSs), encoded by fruI and fruCD. fruI is also responsible for xylitol transport. We hypothesized that fructose and xylitol transport systems do not affect virulence. Thus, colonization and cariogenicity of fruI− and fruCD− single and double mutants, their WT (UA159), and xylitol resistance (Xr) of S. mutans were studied in rats fed a high-sucrose diet. A sucrose phosphorylase (gtfA−) mutant and a reference strain (NCTC-10449S) were additional controls. Recoveries of fruI mutant from the teeth were decreased, unlike those for the other strains. The fruCD mutation was associated with a slight loss of cariogenicity on enamel, whereas mutation of fruI was associated with a loss of cariogenicity in dentin. These results also suggest why xylitol inhibition of caries is paradoxically associated with spontaneous emergence of so-called Xr S. mutans in habitual human xylitol users. PMID:16567561

  1. Effect of Honey on Streptococcus mutans Growth and Biofilm Formation

    PubMed Central

    Li, Mingyun

    2012-01-01

    Because of the tradition of using honey as an antimicrobial medicament, we investigated the effect of natural honey (NH) on Streptococcus mutans growth, viability, and biofilm formation compared to that of an artificial honey (AH). AH contained the sugars at the concentrations reported for NH. NH and AH concentrations were obtained by serial dilution with tryptic soy broth (TSB). Several concentrations of NH and AH were tested for inhibition of bacterial growth, viability, and biofilm formation after inoculation with S. mutans UA159 in 96-well microtiter plates to obtain absorbance and CFU values. Overall, NH supported significantly less (P < 0.05) bacterial growth than AH at 25 and 12.5% concentrations. At 50 and 25% concentrations, both honey groups provided significantly less bacterial growth and biofilm formation than the TSB control. For bacterial viability, the results for all honey concentrations except 50% NH were not significantly different from those for the TSB control. NH was able to decrease the maximum velocity of S. mutans growth compared to AH. In summary, NH demonstrated more inhibition of bacterial growth, viability, and biofilm formation than AH. This study highlights the potential antibacterial properties of NH and could suggest that the antimicrobial mechanism of NH is not solely due to its high sugar content. PMID:22038612

  2. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans

    PubMed Central

    Barbosa, Júnia Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; de Alvarenga, Janaína Araújo; Velloso, Marisol dos Santos; Prata, Márcia Cristina de Azevedo; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model. PMID:26934196

  3. Mutanase from Paenibacillus sp. MP-1 produced inductively by fungal α-1,3-glucan and its potential for the degradation of mutan and Streptococcus mutans biofilm

    PubMed Central

    Wiater, A.; Szczodrak, J.

    2010-01-01

    Laetiporus sulphureus is a source of α-1,3-glucan that can substitute for the commercially-unavailable streptococcal mutan used to induce microbial mutanases. The water-insoluble fraction of its fruiting bodies from 0.15 to 0.2% (w/v) induced mutanase activity in Paenibacillus sp. MP-1 at 0.35 μ ml−1. The mutanase extensively hydrolyzed streptococcal mutan, giving 23% of saccharification, and 83% of solubilization of glucan after 6 h. It also degraded α-1,3-polymers of biofilms, formed in vitro by Streptococcus mutans, even after only 3 min of contact. PMID:20623316

  4. Mutanase from Paenibacillus sp. MP-1 produced inductively by fungal α-1,3-glucan and its potential for the degradation of mutan and Streptococcus mutans biofilm.

    PubMed

    Pleszczyńska, M; Wiater, A; Szczodrak, J

    2010-11-01

    Laetiporus sulphureus is a source of α-1,3-glucan that can substitute for the commercially-unavailable streptococcal mutan used to induce microbial mutanases. The water-insoluble fraction of its fruiting bodies from 0.15 to 0.2% (w/v) induced mutanase activity in Paenibacillus sp. MP-1 at 0.35 μ ml(-1). The mutanase extensively hydrolyzed streptococcal mutan, giving 23% of saccharification, and 83% of solubilization of glucan after 6 h. It also degraded α-1,3-polymers of biofilms, formed in vitro by Streptococcus mutans, even after only 3 min of contact. PMID:20623316

  5. Differential recovery of Streptococcus mutans from various mitis-salivarius agar preparations.

    PubMed Central

    Liljemark, W F; Okrent, D H; Bloomquist, C G

    1976-01-01

    Recoveries of Streptococcus mutans from human dental plaque were lower when plated on mitis-salivarius agar obtained from Baltimore Biological Laboratories as compared with mitis-salivarius agar obtained from Difco Laboratories. However, no difference in recoveries of established laboratory strains of S. mutans was observed between these two agar preparations. PMID:956358

  6. Binding of Streptococcus mutans antigens to heart and kidney basement membranes.

    PubMed Central

    Stinson, M W; Barua, P K; Bergey, E J; Nisengard, R J; Neiders, M E; Albini, B

    1984-01-01

    Using indirect immunofluorescence, alkali-extracted components of Streptococcus mutans were found to bind in vitro to capillary walls and sarcolemmal sheaths of monkey cardiac muscle and to glomerular and tubular basement membranes of monkey kidney. Adsorption of S. mutans components to tissue fragments was also detected by indirect radioimmunoassay and immunoblotting on nitrocellulose paper. Antibodies did not bind to untreated, control tissues in these experiments, proving that antigens shared by S. mutans and tissue components were not involved. Rabbit and monkey heart and kidney components bound S. mutans antigens of 24,000, 35,000, and 65,000 Mr. Monkey heart also bound molecules of 90,000 and 120,000 Mr. Rabbits immunized by intravenous injection of disrupted S. mutans cells developed severe nephritis that was characterized by the deposition of immunoglobulins, complement component C3, and S. mutans antigens in the glomeruli. Immunoglobulin G eluted from nephritic kidneys reacted in immunoblots with the 24,000, 35,000, and 65,000 Mr components of S. mutans extract, indicating that the antigens that bound to tissue in vitro also bound in vivo and reacted with antibodies in situ. Antibodies to other S. mutans antigens were not detected in the kidney eluate, although they were present in the serum of the same rabbit. Images PMID:6384042

  7. Biological and Immunogenicity Property of IgY Anti S. mutans ComD

    PubMed Central

    Bachtiar, E.W.; Bachtiar, B.M.; Soejoedono, R.D.; Wibawan, I.W.; Afdhal, A.

    2016-01-01

    Objective: This study aims to elucidate the effect of IgY anti ComD on the biological properties of Streptococcus mutans. (S. mutans) ComD is an interspecies quorum-sensing signaling receptor that plays an important role in biofilm formation by S. mutans. Materials and Methodology: Egg yolk IgY was produced by the immunization of chickens with a DNA vaccine containing the ComD DNA coding region. We evaluated the effect of the antibody on biofilm formation by S. mutans isolated from subjects with or without dental caries. We also assessed the immunoreactivity of the antibody against all isolates, and analyzed the protein profile of S. mutans by SDS-PAGE. Results: The ComD antibody was successfully induced in the hens’ eggs. It inhibited biofilm formation by all S. mutans isolates. In addition, the expression of some protein bands was affected after exposure to the antibody. Conclusion: IgY anti-S. mutans ComD reduces biofilm formation by this bacterium and alters the protein profile of S. mutans. PMID:27386013

  8. New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans.

    PubMed

    Zhang, Qiong; Nguyen, Thao; McMichael, Megan; Velu, Sadanandan E; Zou, Jing; Zhou, Xuedong; Wu, Hui

    2015-08-01

    Streptococcus mutans is a major aetiological agent of dental caries. Formation of biofilms is a key virulence factor of S. mutans. Drugs that inhibit S. mutans biofilms may have therapeutic potential. Dihydrofolate reductase (DHFR) plays a critical role in regulating the metabolism of folate. DHFR inhibitors are thus potent drugs and have been explored as anticancer and antimicrobial agents. In this study, a library of analogues based on a DHFR inhibitor, trimetrexate (TMQ), an FDA-approved drug, was screened and three new analogues that selectively inhibited S. mutans were identified. The most potent inhibitor had a 50% inhibitory concentration (IC50) of 454.0±10.2nM for the biofilm and 8.7±1.9nM for DHFR of S. mutans. In contrast, the IC50 of this compound for human DHFR was ca. 1000nM, a >100-fold decrease in its potency, demonstrating the high selectivity of the analogue. An analogue that exhibited the least potency for the S. mutans biofilm also had the lowest activity towards inhibiting S. mutans DHFR, further indicating that inhibition of biofilms is related to reduced DHFR activity. These data, along with docking of the most potent analogue to the modelled DHFR structure, suggested that the TMQ analogues indeed selectively inhibited S. mutans through targeting DHFR. These potent and selective small molecules are thus promising lead compounds to develop new effective therapeutics to prevent and treat dental caries. PMID:26022931

  9. The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke

    PubMed Central

    Nakano, Kazuhiko; Hokamura, Kazuya; Taniguchi, Naho; Wada, Koichiro; Kudo, Chiho; Nomura, Ryota; Kojima, Ayuchi; Naka, Shuhei; Muranaka, Yoshinori; Thura, Min; Nakajima, Atsushi; Masuda, Katsuhiko; Nakagawa, Ichiro; Speziale, Pietro; Shimada, Nobumitsu; Amano, Atsuo; Kamisaki, Yoshinori; Tanaka, Tokutaro; Umemura, Kazuo; Ooshima, Takashi

    2011-01-01

    Although several risk factors for stroke have been identified, one-third remain unexplained. Here we show that infection with Streptococcus mutans expressing collagen-binding protein (CBP) is a potential risk factor for haemorrhagic stroke. Infection with serotype k S. mutans, but not a standard strain, aggravates cerebral haemorrhage in mice. Serotype k S. mutans accumulates in the damaged, but not the contralateral hemisphere, indicating an interaction of bacteria with injured blood vessels. The most important factor for high-virulence is expression of CBP, which is a common property of most serotype k strains. The detection frequency of CBP-expressing S. mutans in haemorrhagic stroke patients is significantly higher than in control subjects. Strains isolated from haemorrhagic stroke patients aggravate haemorrhage in a mouse model, indicating that they are haemorrhagic stroke-associated. Administration of recombinant CBP causes aggravation of haemorrhage. Our data suggest that CBP of S. mutans is directly involved in haemorrhagic stroke. PMID:21952219

  10. Genotypic characterization of initial acquisition of Streptococcus mutans in American Indian children

    PubMed Central

    Lynch, David J.; Villhauer, Alissa L.; Warren, John J.; Marshall, Teresa A.; Dawson, Deborah V.; Blanchette, Derek R.; Phipps, Kathy R.; Starr, Delores E.; Drake, David R.

    2015-01-01

    Background Severe-early childhood caries (S-ECC) is one of the most common infectious diseases in children and is prevalent in lower socio-economic populations. American Indian children suffer from the highest levels of S-ECC in the United States. Members of the mutans streptococci, Streptococcus mutans, in particular, are key etiologic agents in the development of caries. Children typically acquire S. mutans from their mothers and early acquisition is often associated with higher levels of tooth decay. Methods We have conducted a 5-year birth cohort study with a Northern Plains Tribe to determine the temporality and fidelity of S. mutans transmission from mother to child in addition to the genotypic diversity of S. mutans in this community. Plaque samples were collected from 239 mother/child dyads at regular intervals from birth to 36 months and S. mutans were isolated and genotyped by arbitrarily primed-polymerase chain reaction (AP-PCR). Results Here we present preliminary findings from a subset of the cohort. The focus for this paper is on initial acquisition events in the children. We identified 17 unique genotypes in 711 S. mutans isolates in our subset of 40 children, 40 mothers and 14 primary caregivers. Twelve of these genotypes were identified in more than one individual. S. mutans colonization occurred by 16 months in 57.5% of the children and early colonization was associated with higher decayed, missing and filled surface (DMFS) scores (p=0.0007). Children colonized by S. mutans shared a common genotype with their mothers 47.8% of the time. While multiple genotypes were common in adults, only 10% of children harbored multiple genotypes. Conclusion These children acquire S. mutans at an earlier age than the originally described ‘window of infectivity’ and often, but not exclusively, from their mothers. Early acquisition is associated with both the caries status of the children and the mothers. PMID:25840611

  11. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression.

    PubMed

    Zhang, Songmei; Qiu, Jing; Ren, Yanfang; Yu, Weiqiang; Zhang, Fuqiang; Liu, Xiuxin

    2016-04-01

    Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans. PMID:26896953

  12. Discovery of Novel Peptides Regulating Competence Development in Streptococcus mutans

    PubMed Central

    Ahn, Sang-Joon; Kaspar, Justin; Kim, Jeong Nam; Seaton, Kinda

    2014-01-01

    A MarR-like transcriptional repressor (RcrR) and two predicted ABC efflux pumps (RcrPQ) encoded by a single operon were recently shown to be dominant regulators of stress tolerance and development of genetic competence in the oral pathogen Streptococcus mutans. Here, we focused on polar (ΔrcrR-P) and nonpolar (ΔrcrR-NP) rcrR mutants, which are hyper- and nontransformable, respectively, to dissect the mechanisms by which these mutations impact competence. We discovered two open reading frames (ORFs) in the 3′ end of the rcrQ gene that encode peptides of 27 and 42 amino acids (aa) which are also dramatically upregulated in the ΔrcrR-NP strain. Deletion of, or start codon mutations in, the ORFs for the peptides in the ΔrcrR-NP background restored competence and sensitivity to competence-stimulating peptide (CSP) to levels seen in the ΔrcrR-P strain. Overexpression of the peptides adversely affected competence development. Importantly, overexpression of mutant derivatives of the ABC exporters that lacked the peptides also resulted in impaired competence. FLAG-tagged versions of the peptides could be detected in S. mutans, and FLAG tagging of the peptides impaired their function. The competence phenotypes associated with the various mutations, and with overexpression of the peptides and ABC transporters, were correlated with the levels of ComX protein in cells. Collectively, these studies revealed multiple novel mechanisms for regulation of competence development by the components of the rcrRPQ operon. Given their intimate role in competence and stress tolerance, the rcrRPQ-encoded peptides may prove to be useful targets for therapeutics to diminish the virulence of S. mutans. PMID:25135217

  13. Phenotypic heterogeneity of genomically-diverse isolates of Streptococcus mutans.

    PubMed

    Palmer, Sara R; Miller, James H; Abranches, Jacqueline; Zeng, Lin; Lefebure, Tristan; Richards, Vincent P; Lemos, José A; Stanhope, Michael J; Burne, Robert A

    2013-01-01

    High coverage, whole genome shotgun (WGS) sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat) and exposure to competence stimulating peptide (CSP). Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease. PMID:23613838

  14. Phenotypic Heterogeneity of Genomically-Diverse Isolates of Streptococcus mutans

    PubMed Central

    Palmer, Sara R.; Miller, James H.; Abranches, Jacqueline; Zeng, Lin; Lefebure, Tristan; Richards, Vincent P.; Lemos, José A.; Stanhope, Michael J.; Burne, Robert A.

    2013-01-01

    High coverage, whole genome shotgun (WGS) sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat) and exposure to competence stimulating peptide (CSP). Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease. PMID:23613838

  15. Genetic analysis of fructan-hyperproducing strains of Streptococcus mutans.

    PubMed Central

    Kiska, D L; Macrina, F L

    1994-01-01

    Fructan polymer, synthesized from sucrose by the extracellular fructosyltransferase of Streptococcus mutans, is thought to contribute to the progression of dental caries. It may serve as an extracellular storage polysaccharide facilitating survival and acid production. It may also have a role in adherence or accumulation of bacterial cells on the tooth surface. A number of clinical isolates of S. mutans which produce large, mucoid colonies on sucrose-containing agar as a result of increased production of fructan have been discovered. By using eight independent isolates, we sought to determine if such fructan-hyperproducing strains represented a genetically homogeneous group of organisms. Restriction fragment patterns of total cellular DNA were examined by using pulsed-field and conventional gel electrophoresis. Four genetic types which appeared to correlate with the serotype of the organism and the geographic site of isolation were evident. Southern blot analysis of several genetic loci for extracellular enzymes revealed some minor differences between the strains, but the basic genomic organizations of these loci were similar. To evaluate whether the excess fructan produced by these strains enhanced the virulence of these organisms in the oral cavity, it was of interest to create mutants deficient in fructosidase (FruA), the extracellular enzyme which degrades this polymer. The fruA gene was inactivated by allelic exchange in two fructan-hyperproducing strains as well as in S. mutans GS5, a strain which does not hyperproduce fructan. All of the fruA mutant strains were devoid of fructan hydrolase activity when levan was used as a substrate. However, the fructan-hyperproducing strains retained the ability to hydrolyze inulin, suggesting the presence of a second fructosidase with specificity for inulin in these strains. Images PMID:7911782

  16. Antibacterial effects of several current orthodontic materials against Streptococcus mutans.

    PubMed

    Catalbaş, B; Kamak, H; Demir, A; Nur, M; Hadimli, H H

    2012-11-01

    The aim of this study was to examine the antibacterial effect of several current orthodontic materials against a certain oral bacterium. The antibacterial activities of six orthodontic composite resins (Transbond LR, Light Cure Retainer (LCR), Light Bond, System 1+, Kurasper F, Transbond XT adhesive), two orthodontic bonding materials (Transbond XT primer and System 1+ activator) and two glass ionomer cements (GIC) [Multicure Glass Ionomer and Ketac Cem GIC] were evaluated against Streptococcus mutans. The hard materials were put into the Teflon mould. The liquid materials were put on a paper disc. All materials were handled under aseptic conditions and placed on agar culture plates. All plates were incubated at 5% CO2 and 37 degrees C for 48 hours. The bacterial growth inhibition zones including the diameter of the sample were measured in millimetres. As a result of this study, the multicure GIC showed the highest antibacterial effectiveness, but no inhibition zones were noted for ketac cem GIC. The light bond adhesive of the Reliance orthodontic bonding system produced high antibacterial effect against S mutans, while the Reliance composite (LCR) did not show any antibacterial effect (p < 0.05). Both composite and primer of the transbond XT system demonstrated significant antibacterial effect against the test bacterium when compared to transbond LR (p < 0.05). Among the materials tested, kurasper F, Ormco system 1+ and system 1+ activator showed slight or no inhibitory effect against the test bacterium in this study In patients who have relatively high salivary levels of Streptococci mutans before treatment, the multicure GIC, the Reliance light bond adhesive, and transbond XT system which had high level antibacterial properties could be applied. PMID:23757904

  17. The influence of Brazilian plant extracts on Streptococcus mutans biofilm

    PubMed Central

    BARNABÉ, Michele; SARACENI, Cíntia Helena Coury; DUTRA-CORREA, Maristela; SUFFREDINI, Ivana Barbosa

    2014-01-01

    Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Objective Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Material and Methods Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC). Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Results Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry. PMID:25466471

  18. Chamaecyparis obtusa Suppresses Virulence Genes in Streptococcus mutans

    PubMed Central

    Kim, Eun-Hee; Kang, Sun-Young; Park, Bog-Im; Kim, Young-Hoi; Lee, Young-Rae; Hoe, Jin-Hee; Choi, Na-Young; Ra, Ji-Young; An, So-Youn; You, Yong-Ouk

    2016-01-01

    Chamaecyparis obtusa (C. obtusa) is known to have antimicrobial effects and has been used as a medicinal plant and in forest bathing. This study aimed to evaluate the anticariogenic activity of essential oil of C. obtusa on Streptococcus mutans, which is one of the most important bacterial causes of dental caries and dental biofilm formation. Essential oil from C. obtusa was extracted, and its effect on bacterial growth, acid production, and biofilm formation was evaluated. C. obtusa essential oil exhibited concentration-dependent inhibition of bacterial growth over 0.025 mg/mL, with 99% inhibition at a concentration of 0.2 mg/mL. The bacterial biofilm formation and acid production were also significantly inhibited at the concentration greater than 0.025 mg/mL. The result of LIVE/DEAD® BacLight™ Bacterial Viability Kit showed a concentration-dependent bactericidal effect on S. mutans and almost all bacteria were dead over 0.8 mg/mL. Real-time PCR analysis showed that gene expression of some virulence factors such as brpA, gbpB, gtfC, and gtfD was also inhibited. In GC and GC-MS analysis, the major components were found to be α-terpinene (40.60%), bornyl acetate (12.45%), α-pinene (11.38%), β-pinene (7.22%), β-phellandrene (3.45%), and α-terpinolene (3.40%). These results show that C. obtusa essential oil has anticariogenic effect on S. mutans. PMID:27293453

  19. Assessment of clonality and serotypes of Streptococcus mutans among children by multilocus sequence typing.

    PubMed

    Momeni, Stephanie S; Whiddon, Jennifer; Cheon, Kyounga; Moser, Stephen A; Childers, Noel K

    2015-12-01

    Studies using multilocus sequence typing (MLST) have demonstrated that Streptococcus mutans isolates are genetically diverse. Our laboratory previously demonstrated clonality of S. mutans using MLST but could not discount the possibility of sampling bias. In this study, the clonality of randomly selected S. mutans plaque isolates from African-American children was examined using MLST. Serotype and the presence of collagen-binding proteins (CBPs) encoded by cnm/cbm were also assessed. One-hundred S. mutans isolates were randomly selected for MLST analysis. Sequence analysis was performed and phylogenetic trees were generated using start2 and mega. Thirty-four sequence types were identified, of which 27 were unique to this population. Seventy-five per cent of the isolates clustered into 16 clonal groups. The serotypes observed were c (n = 84), e (n = 3), and k (n = 11). The prevalence of S. mutans isolates of serotype k was notably high, at 17.5%. All isolates were cnm/cbm negative. The clonality of S. mutans demonstrated in this study illustrates the importance of localized population studies and are consistent with transmission. The prevalence of serotype k, a recently proposed systemic pathogen, observed in this study, is higher than reported in most populations and is the first report of S. mutans serotype k in a United States population. PMID:26443288

  20. Effects of sub-minimum inhibitory concentrations of antimicrobial agents on Streptococcus mutans biofilm formation.

    PubMed

    Dong, Liping; Tong, Zhongchun; Linghu, Dake; Lin, Yuan; Tao, Rui; Liu, Jun; Tian, Yu; Ni, Longxing

    2012-05-01

    Many studies have demonstrated that sub-minimum inhibitory concentrations (sub-MICs) of antimicrobial agents can inhibit bacterial biofilm formation. However, the mechanisms by which antimicrobial agents at sub-MICs inhibit biofilm formation remain unclear. At present, most studies are focused on Gram-negative bacteria; however, the effects of sub-MICs of antimicrobial agents on Gram-positive bacteria may be more complex. Streptococcus mutans is a major cariogenic bacterium. In this study, the S. mutans growth curve as well as the expression of genes related to S. mutans biofilm formation were evaluated following treatment with 0.5× MIC of chlorhexidine (CHX), tea polyphenols and sodium fluoride (NaF), which are common anticaries agents. The BioFlux system was employed to generate a biofilm under a controlled flow. Morphological changes of the S. mutans biofilm were observed and analysed using field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that these three common anticaries agents could significantly upregulate expression of the genes related to S. mutans biofilm formation, and S. mutans exhibited a dense biofilm with an extensive extracellular matrix following treatment with sub-MICs of NaF and CHX. These findings suggest that sub-MICs of anticaries agents favour S. mutans biofilm formation, which might encourage dental caries progression. PMID:22421330

  1. Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms

    PubMed Central

    Dalmasso, Marion; de Haas, Eric; Neve, Horst; Strain, Ronan; Cousin, Fabien J.; Stockdale, Stephen R.; Ross, R. Paul; Hill, Colin

    2015-01-01

    Streptococcus mutans is one of the principal agents of caries formation mainly, because of its ability to form biofilms at the tooth surface. Bacteriophages (phages) are promising antimicrobial agents that could be used to prevent or treat caries formation by S. mutans. The aim of this study was to isolate new S. mutans phages and to characterize their antimicrobial properties. A new phage, ɸAPCM01, was isolated from a human saliva sample. Its genome was closely related to the only two other available S. mutans phage genomes, M102 and M102AD. ɸAPCM01 inhibited the growth of S. mutans strain DPC6143 within hours in broth and in artificial saliva at multiplicity of infections as low as 2.5x10-5. In the presence of phage ɸAPCM01 the metabolic activity of a S. mutans biofilm was reduced after 24 h of contact and did not increased again after 48 h, and the live cells in the biofilm decreased by at least 5 log cfu/ml. Despite its narrow host range, this newly isolated S. mutans phage exhibits promising antimicrobial properties. PMID:26398909

  2. Oral ecology and virulence of Lactobacillus casei and Streptococcus mutans in gnotobiotic rats.

    PubMed Central

    Michalek, S M; Hirasawa, M; Kiyono, H; Ochiai, K; McGhee, J R

    1981-01-01

    Lactobacilli comprise a small percentage of the normal oral microbial flora of humans and are isolated commonly from saliva and frequently from an active caries lesion. We have compared the pathogenesis and colonization pattern of Lactobacillus casei with that of Streptococcus mutans strain 6715 in gnotobiotic rats. Of the two L. casei strains tested, L. casei strain ATCC 4646 caused slightly more caries than L. casei strain ATCC 11578. However, the level of caries induced by either L. casei strain was significantly lower (P less than 0.01) than that observed in similar-aged rats monoassociated with S. mutans strain 6715. When groups of rats were infected with mixtures of L. casei strain ATCC 4646 and S. mutans strain 6715, or with L. casei followed by S. mutans, higher numbers of L. casei than S. mutans were found associated with the tongue and in saliva; S. mutans always predominated in plaque. The level of caries observed in these groups of rats was similar to that seen with rats monoassociated with S. mutans except when L. casei comprised greater than 1% of the plaque microflora. In this latter situation, the level of caries was significantly lower (P less than or equal to 0.05) than that obtained in S. mutans-monoassociated rats. The results of this study suggest that L. casei colonizes sites in the oral cavity (including the tongue and saliva) other than the tooth surface in rats. The effect of L. casei in plaque toward reduction of S. mutans-induced dental caries in rats is discussed. PMID:6793515

  3. Functional analysis of glucan binding protein B from Streptococcus mutans.

    PubMed

    Mattos-Graner, Renata O; Porter, Kristen A; Smith, Daniel J; Hosogi, Yumiko; Duncan, Margaret J

    2006-06-01

    Mutans streptococci are major etiological agents of dental caries, and several of their secreted products contribute to bacterial accumulation on teeth. Of these, Streptococcus mutans glucan binding protein B (GbpB) is a novel, immunologically dominant protein. Its biological function is unclear, although GbpB shares homology with a putative peptidoglycan hydrolase from S. agalactiae and S. pneumoniae, indicative of a role in murein biosynthesis. To determine the cellular function of GbpB, we used several approaches to inactivate the gene, analyze its expression, and identify interacting proteins. None of the transformants analyzed were true gbpB mutants, since they all contained both disrupted and wild-type gene copies, and expression of functional GbpB was always conserved. Thus, the inability to obtain viable gbpB null mutants supports the notion that gbpB is an essential gene. Northern blot and real-time PCR analyses suggested that induction of gbpB expression in response to stress was a strain-dependent phenomenon. Proteins that interacted with GbpB were identified in pull-down and coimmunoprecipitation assays, and these data suggest that GbpB interacts with ribosomal protein L7/L12, possibly as part of a protein complex involved in peptidoglycan synthesis and cell division. PMID:16707674

  4. Mutan produced in potato amyloplasts adheres to starch granules.

    PubMed

    Kok-Jacon, Géraldine A; Vincken, Jean-Paul; Suurs, Luc C J M; Visser, Richard G F

    2005-05-01

    Production of water-insoluble mutan polymers in Kardal potato tubers was investigated after expression of a full-length (GtfI) and a truncated mutansucrase gene referred to as GtfICAT (GtfI without glucan-binding domain) from Streptococcus downei. Subsequent effects on starch biosynthesis at the molecular and biochemical levels were studied. Expression of the GtfICAT gene resulted in the adhesion of mutan material on starch granules, which stained red with erythrosine, and which was hydrolysed by exo-mutanase. In addition, GtfICAT-expressing plants exhibited a severely altered tuber phenotype and starch granule morphology in comparison to those expressing the full-length GtfI gene. In spite of that, no structural changes at the starch level were observed. Expression levels of the sucrose-regulated, AGPase and GBSSI genes were down-regulated in only the GTFICAT transformants, showing that GtfICAT expression interfered with the starch biosynthetic pathway. In accordance with the down-regulated AGPase gene, a lower starch content was observed in the GTFICAT transformants. Finally, the rheological properties of the GTFICAT starches were modified; they showed a higher retrogradation during cooling of the starch paste. PMID:17129316

  5. Growth of Streptococcus mutans protoplasts is not inhibited by penicillin.

    PubMed Central

    Parks, L C; Shockman, G D; Higgins, M L

    1980-01-01

    A method is described in which cells of Streptococcus mutans BHT can be converted to spherical, osmotically fragile protoplasts. Exponential-phase cells were suspended in a solution containing 0.5 M melezitose, and their cell walls were hydrolyzed with mutanolysin (M-1 enzyme). When the resultant protoplasts were incubated in a chemically defined growth medium containing 0.5 M NH4Cl, the protoplast suspensions increased in turbidity, protein, ribonucleic acid, and deoxyribonucleic acid in a balanced fashion. In the presence of benzylpenicillin (5 microgram/ml), balanced growth of protoplasts was indistinguishable from untreated controls. This absence of inhibition of protoplast growth in the presence of benzylpenicillin was apparently not due to inactivation of the antibiotic. When exponential-phase cells of S. mutans BHT were first exposed to 5 microgram of benzyl-penicillin per ml for 1 h and then converted to protoplasts, these protoplasts were also able to grow in chemically defined, osmotically stabilized medium. The ability of wall-free protoplasts to grow and to synthesize ribonucleic acid and protein in the presence of a relatively high concentration of benzylpenicillin contrasts with the previously reported rapid inhibition of ribonucleic acid and protein synthesis in intact streptococci. These data suggest that this secondary inhibition of ribonucleic acid and protein synthesis in whole cells is due to factors involved with the continued assembly of an intact, insoluble cell wall rather than with earlier stages of peptidoglycan synthesis. Images PMID:6997274

  6. Identification of essential amino acids in the Streptococcus mutans glucosyltransferases.

    PubMed Central

    Tsumori, H; Minami, T; Kuramitsu, H K

    1997-01-01

    A comparison of the amino acid sequences of the glucosyltransferases (GTFs) of mutans streptococci with those from the alpha-amylase family of enzymes revealed a number of conserved amino acid positions which have been implicated as essential in catalysis. Utilizing a site-directed mutagenesis approach with the GTF-I enzyme of Streptococcus mutans GS-5, we identified three of these conserved amino acid positions, Asp413, Trp491, and His561, as being important in enzymatic activity. Mutagenesis of Asp413 to Thr resulted in a GTF which expressed only about 12% of the wild-type activity. In contrast, mutagenesis of Asp411 did not inhibit enzyme activity. In addition, the D413T mutant was less stable than was the parental enzyme when expressed in Escherichia coli. Moreover, conversion of Trp491 or His561 to either Gly or Ala resulted in enzymes devoid of GTF activity, indicating the essential nature of these two amino acids for activity. Furthermore, mutagenesis of the four Tyr residues present at positions 169 to 172 which are part of a subdomain with homology to the direct repeating sequences present in the glucan-binding domain of the GTFs had little overall effect on enzymatic activity, although the glucan products appeared to be less adhesive. These results are discussed relative to the mechanisms of catalysis proposed for the GTFs and related enzymes. PMID:9171379

  7. In vitro evaluation of antibacterial activity of an herbal dentifrice against Streptococcus mutans and Lactobacillus acidophilus.

    PubMed

    Vyas, Yogesh Kumar; Bhatnagar, Maheep; Sharma, Kanika

    2008-01-01

    Antibacterial activity of a herbal dentifrice Arodent against Streptococcus mutans and Lactobacillus acidophilus was evaluated using Colgate as standard. Both bacterial strains were isolated from the oral cavity on selective media and identified by standard methods. The antibacterial activity was assayed by cup-well method. The bacterial lawn of facultative anaerobe S. mutans was established between two layers of agar under microaerophilic conditions. Five and a half millimeters and 10 mm zones of inhibition were produced by Arodent against S. mutans and L. acidophilus , respectively, under microaerophilic conditions. On the other hand, the standard dentifrice Colgate produced 5.83 mm and 10.17 mm zones of inhibition against S. mutans and L. acidophilus , respectively, under microaerophilic condition. The results suggest that Arodent is an effective antibacterial herbal dentifrice. PMID:18245920

  8. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms.

    PubMed

    Koo, H; Xiao, J; Klein, M I; Jeon, J G

    2010-06-01

    Streptococcus mutans is a key contributor to the formation of the extracellular polysaccharide (EPS) matrix in dental biofilms. The exopolysaccharides, which are mostly glucans synthesized by streptococcal glucosyltransferases (Gtfs), provide binding sites that promote accumulation of microorganisms on the tooth surface and further establishment of pathogenic biofilms. This study explored (i) the role of S. mutans Gtfs in the development of the EPS matrix and microcolonies in biofilms, (ii) the influence of exopolysaccharides on formation of microcolonies, and (iii) establishment of S. mutans in a multispecies biofilm in vitro using a novel fluorescence labeling technique. Our data show that the ability of S. mutans strains defective in the gtfB gene or the gtfB and gtfC genes to form microcolonies on saliva-coated hydroxyapatite surfaces was markedly disrupted. However, deletion of both gtfB (associated with insoluble glucan synthesis) and gtfC (associated with insoluble and soluble glucan synthesis) is required for the maximum reduction in EPS matrix and biofilm formation. S. mutans grown with sucrose in the presence of Streptococcus oralis and Actinomyces naeslundii steadily formed exopolysaccharides, which allowed the initial clustering of bacterial cells and further development into highly structured microcolonies. Concomitantly, S. mutans became the major species in the mature biofilm. Neither the EPS matrix nor microcolonies were formed in the presence of glucose in the multispecies biofilm. Our data show that GtfB and GtfC are essential for establishment of the EPS matrix, but GtfB appears to be responsible for formation of microcolonies by S. mutans; these Gtf-mediated processes may enhance the competitiveness of S. mutans in the multispecies environment in biofilms on tooth surfaces. PMID:20233920

  9. Effects of simulated microgravity on Streptococcus mutans physiology and biofilm structure.

    PubMed

    Cheng, Xingqun; Xu, Xin; Chen, Jing; Zhou, Xuedong; Cheng, Lei; Li, Mingyun; Li, Jiyao; Wang, Renke; Jia, Wenxiang; Li, Yu-Qing

    2014-10-01

    Long-term spaceflights will eventually become an inevitable occurrence. Previous studies have indicated that oral infectious diseases, including dental caries, were more prevalent in astronauts due to the effect of microgravity. However, the impact of the space environment, especially the microgravity environment, on the virulence factors of Streptococcus mutans, a major caries-associated bacterium, is yet to be explored. In the present study, we investigated the impact of simulated microgravity on the physiology and biofilm structure of S. mutans. We also explored the dual-species interaction between S. mutans and Streptococcus sanguinis under a simulated microgravity condition. Results indicated that the simulated microgravity condition can enhance the acid tolerance ability, modify the biofilm architecture and extracellular polysaccharide distribution of S. mutans, and increase the proportion of S. mutans within a dual-species biofilm, probably through the regulation of various gene expressions. We hypothesize that the enhanced competitiveness of S. mutans under simulated microgravity may cause a multispecies micro-ecological imbalance, which would result in the initiation of dental caries. Our current findings are consistent with previous studies, which revealed a higher astronaut-associated incidence of caries. Further research is required to explore the detailed mechanisms. PMID:25109245

  10. Intracerebral hemorrhage and deep microbleeds associated with cnm-positive Streptococcus mutans; a hospital cohort study

    PubMed Central

    Tonomura, Shuichi; Ihara, Masafumi; Kawano, Tomohiro; Tanaka, Tomotaka; Okuno, Yoshinori; Saito, Satoshi; Friedland, Robert P.; Kuriyama, Nagato; Nomura, Ryota; Watanabe, Yoshiyuki; Nakano, Kazuhiko; Toyoda, Kazunori; Nagatsuka, Kazuyuki

    2016-01-01

    Oral infectious diseases are epidemiologically associated with stroke. We previously showed that oral Streptococcus mutans with the cnm gene encoding a collagen-binding Cnm protein induced intracerebral hemorrhage (ICH) experimentally and was also associated with cerebral microbleeds (CMBs) in our population-based cohort study. We therefore investigated the roles of cnm-positive Streptococcus mutans in this single hospital-based, observational study that enrolled 100 acute stroke subjects. The cnm gene in Streptococcus mutans isolated from saliva was screened using PCR techniques and its collagen-binding activities examined. CMBs were evaluated on T2* gradient-recalled echo MRI. One subject withdrew informed consent and 99 subjects (63 males) were analyzed, consisting of 67 subjects with ischemic stroke, 5 with transient ischemic attack, and 27 with ICH. Eleven cases showed Streptococcus mutans strains positive for cnm. The presence of cnm-positive Streptococcus mutans was significantly associated with ICH [OR vs. ischemic stroke, 4.5; 95% CI, 1.17–19.1] and increased number of deep CMBs [median (IQR), 3 (2–9) vs. 0 (0–1), p = 0.0002]. In subjects positive for Streptococcus mutans, collagen binding activity was positively correlated with the number of deep CMBs (R2 = 0.405; p < 0.0001). These results provide further evidence for the key role of oral health in stroke. PMID:26847666

  11. The usefulness of biotyping in the determination of selected pathogenicity determinants in Streptococcus mutans

    PubMed Central

    2014-01-01

    Background Streptococcus mutans is known to be a primary etiological factor of dental caries, a widespread and growing disease in Polish children. Recognition of novel features determining the pathogenicity of this pathogen may contribute to understanding the mechanisms of bacterial infections. The goal of the study was to determine the activity of prephenate dehydrogenase (PHD) and to illuminate the role of the enzyme in S. mutans pathogenicity. The strains were biotyped based on STREPTOtest 24 biochemical identification tests and the usefulness of biotyping in the determination of S. mutans pathogenicity determinants was examined. Results Out of ninety strains isolated from children with deciduous teeth fifty three were classified as S. mutans species. PDH activity was higher (21.69 U/mg on average) in the experimental group compared to the control group (5.74 U/mg on average) (P <0.001). Moreover, it was demonstrated that biotype I, established basing on the biochemical characterization of the strain, was predominant (58.5%) in oral cavity streptococcosis. Its dominance was determined by higher PDH activity compared to biotypes II and III (P = 0.0019). Conclusions The usefulness of biotyping in the determination of Streptococcus mutans pathogenicity determinants was demonstrated. The obtained results allow for better differentiation of S. mutans species and thus may contribute to recognition of pathogenic bacteria transmission mechanisms and facilitate treatment. PMID:25096795

  12. Competitive displacement of mutans streptococci and inhibition of tooth decay by Streptococcus salivarius TOVE-R.

    PubMed Central

    Tanzer, J M; Kurasz, A B; Clive, J

    1985-01-01

    The ability of Streptococcus salivarius TOVE-R to displace virulent representatives of the most prevalent human mutans streptococci from the teeth of rats, and thereby to inhibit caries, was studied. Streptococcus mutans 10449S- or Streptococcus sobrinus 6715-13WT-infected specific-pathogen-free rats consuming a high-sucrose diet were inoculated by TOVE-R. The infectants were differentially recovered from swabs of the teeth over the time course of infection and from sonically treated material of extracted teeth and excised tongues. Despite initial colonization of the teeth by the mutans streptococci, TOVE-R colonized the teeth, unlike other essentially nonvirulent plaque formers already described. It did not colonize the tongues of the rats. TOVE-R emerged and persisted as a prominent member of the plaque ecology. There was an associated decline in the mutans streptococci on the teeth, and this decline was associated with significant inhibition of the caries component attributable to 10449S infection (56%) and to 6715-13WT infection (52%). TOVE-R did not reliably inhibit the component of fissure caries attributable to the nonmutans indigenous flora of the rats. TOVE-R itself induced no detectable decay. The data suggest the potential therapeutic utility of TOVE-R to inhibit caries by displacement of mutans streptococci from the teeth. These results supplement the already reported ability of TOVE-R to preempt initial colonization of teeth by the mutans streptococci. PMID:3980093

  13. The Collagen Binding Protein Cnm Contributes to Oral Colonization and Cariogenicity of Streptococcus mutans OMZ175

    PubMed Central

    Miller, James H.; Avilés-Reyes, Alejandro; Scott-Anne, Kathy; Gregoire, Stacy; Watson, Gene E.; Sampson, Edith; Progulske-Fox, Ann; Koo, Hyun; Bowen, William H.; Lemos, José A.

    2015-01-01

    Streptococcus mutans is the etiological agent of dental caries and one of the many bacterial species implicated in infective endocarditis. The expression of the collagen-binding protein Cnm by S. mutans has been associated with extraoral infections, but its relevance for dental caries has only been theorized to date. Due to the collagenous composition of dentinal and root tissues, we hypothesized that Cnm may facilitate the colonization of these surfaces, thereby enhancing the pathogenic potential of S. mutans in advancing carious lesions. As shown for extraoral endothelial cell lines, Cnm mediates the invasion of oral keratinocytes and fibroblasts by S. mutans. In this study, we show that in the Cnm+ native strain, OMZ175, Cnm mediates stringent adhesion to dentinal and root tissues as well as collagen-coated surfaces and promotes both cariogenicity and carriage in vivo. In vitro, ex vivo, and in vivo experiments revealed that while Cnm is not universally required for S. mutans cariogenicity, it contributes to (i) the invasion of the oral epithelium, (ii) enhanced binding on collagenous surfaces, (iii) implantation of oral biofilms, and (IV) the severity of caries due to a native Cnm+ isolate. Taken together, our findings reveal that Cnm is a colonization factor that contributes to the pathogenicity of certain S. mutans strains in their native habitat, the oral cavity. PMID:25733523

  14. Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans.

    PubMed

    Pereira, Cristiane A; Costa, Anna Carolina B Pereira; Liporoni, Priscila Christiane S; Rego, Marcos A; Jorge, Antonio Olavo C

    2016-01-01

    Streptococcus mutans is an important cariogenic microorganism, and alternative methods for its elimination are required. Different concentrations of Baccharis dracunculifolia essential oil (EO) were tested to determine its minimal inhibitory concentration (MIC) in planktonic cultures, and this concentration was used in S. mutans biofilms. Additionally, we assessed the effect of a 0.12% chlorhexidine (CHX) and saline solution in S. mutans biofilms. The biofilms were grown in discs of composite resin for 48h and exposed to B. dracunculifolia, CHX or saline solution for 5min. The viability of the biofilms was determined by counting the colony-forming units per milliliter (CFU/ml) in agar, which was statistically significant (P<0.05). The MIC of the B. dracunculifolia EO to planktonic growth of S. mutans was 6%. In biofilms of S. mutans clinical isolates, B. dracunculifolia EO (6%) and CHX resulted in reductions of 53.3-91.1% and 79.1-96.6%, respectively. For the biofilm formed by the S. mutans reference strain, the reductions achieved with B. dracunculifolia EO and CHX were, respectively, 39.3% and 88.1%. It was concluded that B. dracunculifolia EO showed antibacterial activity and was able to control this oral microorganism, which otherwise causes dental caries. PMID:26614752

  15. Effect of LongZhang Gargle on Biofilm Formation and Acidogenicity of Streptococcus mutans In Vitro

    PubMed Central

    Yang, Yutao; Liu, Shiyu; He, Yuanli

    2016-01-01

    Streptococcus mutans, with the ability of high-rate acid production and strong biofilm formation, is considered the predominant bacterial species in the pathogenesis of human dental caries. Natural products which may be bioactive against S. mutans have become a hot spot to researches to control dental caries. LongZhang Gargle, completely made from Chinese herbs, was investigated for its effects on acid production and biofilm formation by S. mutans in this study. The results showed an antimicrobial activity of LongZhang Gargle against S. mutans planktonic growth at the minimum inhibitory concentration (MIC) of 16% and minimum bactericidal concentration (MBC) of 32%. Acid production was significantly inhibited at sub-MIC concentrations. Biofilm formation was also significantly disrupted, and 8% was the minimum concentration that resulted in at least 50% inhibition of biofilm formation (MBIC50). A scanning electron microscopy (SEM) showed an effective disruption of LongZhang Gargle on S. mutans biofilm integrity. In addition, a confocal laser scanning microscopy (CLSM) suggested that the extracellular polysaccharides (EPS) synthesis could be inhibited by LongZhang Gargle at a relatively low concentration. These findings suggest that LongZhang Gargle may be a promising natural anticariogenic agent in that it suppresses planktonic growth, acid production, and biofilm formation against S. mutans. PMID:27314029

  16. Identification of a fourth gene involved in dTDP-rhamnose synthesis in Streptococcus mutans.

    PubMed Central

    Tsukioka, Y; Yamashita, Y; Nakano, Y; Oho, T; Koga, T

    1997-01-01

    We had isolated three genes (rmlA, rmlB, and rmlC) involved in dTDP-rhamnose synthesis in Streptococcus mutans and found that three genes were insufficient for dTDP-rhamnose synthesis (Y. Tsukioka, Y. Yamashita, T. Oho, Y. Nakano, and T. Koga, J. Bacteriol. 179:1126-1134, 1997). The rmlD gene of S. mutans, encoding the enzyme which catalyzes the last step of dTDP-rhamnose synthesis, has been cloned and sequenced. The cell extract of Escherichia coli expressing the rmlD gene of S. mutans exhibited enzymatic activity corresponding to its counterpart in Shigella flexneri, a gram-negative bacterium. Rhamnose was not detected in the cell wall preparation purified from the mutant in which the cloned gene was insertionally inactivated. Rabbit antiserum against S. mutans serotype c-specific antigen did not react with autoclaved extracts from the mutant. The rmlD gene product of S. mutans compensated for the incompleteness of dTDP-rhamnose synthesis by the three previously isolated genes. These results indicate that the rmlD gene product is indispensable for the dTDP-rhamnose pathway and subsequently for the synthesis of serotype-specific antigen in S. mutans. Furthermore, conservation of the rmlD gene in Streptococcus species was demonstrated by Southern blot analysis. PMID:9209063

  17. Evaluation of antibacterial activity of Calotropis gigentica against Streptococcus mutans and Lactobacillus acidophilus: An in vitro comparative study

    PubMed Central

    Sharma, Meenakshi; Tandon, Sandeep; Aggarwal, Vishal; Bhat, Kishore G; Kappadi, Damodhar; Chandrashekhar, Pavitra; Dorwal, Rakesh

    2015-01-01

    Background: This study was conducted to evaluate in vitro antibacterial potential of ethanolic extract of Calotropis gigentica. Materials and Methods: The inhibitory effect of the ethanolic extract was tested against Streptococcus mutans and Lactobacilli casei by using disc diffusion method. Results: Ethanolic extract of Calotropis gigentica showed 16 mm and 14 mm of minimum inhibition zone at 1.25% concentration for S. mutans and lactobacilli, respectively. Conclusion: Calotropis gigentica was found to effective against S. mutans and lactobacilli. PMID:26752839

  18. Xylitol gum and maternal transmission of mutans streptococci.

    PubMed

    Nakai, Y; Shinga-Ishihara, C; Kaji, M; Moriya, K; Murakami-Yamanaka, K; Takimura, M

    2010-01-01

    An important caries prevention strategy for children includes measures to interfere with transmission of mutans streptococci (MS). This study confirmed the effectiveness of maternal early exposure to xylitol chewing gum on mother-child transmission of MS. After screening, 107 pregnant women with high salivary MS were randomized into two groups: xylitol gum (Xylitol; n = 56) and no gum (Control; n = 51) groups. Maternal chewing started at the sixth month of pregnancy and terminated 13 months later in the Xylitol group. Outcome measures were the presence of MS in saliva or plaque of the children until age 24 months. The Xylitol-group children were significantly less likely to show MS colonization than Control-group children aged 9-24 months. The Control-group children acquired MS 8.8 months earlier than those in the Xylitol group, suggesting that maternal xylitol gum chewing in Japan shows beneficial effects similar to those demonstrated in Nordic countries. PMID:19948944

  19. Regulation of gbpC expression in Streptococcus mutans.

    PubMed

    Biswas, Indranil; Drake, Laura; Biswas, Saswati

    2007-09-01

    Streptococcus mutans, the principal causative agent of dental caries, produces four glucan-binding proteins (Gbp) that play major roles in bacterial adherence and pathogenesis. One of these proteins, GbpC, is an important cell surface protein involved in biofilm formation. GbpC is also important for cariogenesis, bacteremia, and infective endocarditis. In this study, we examined the regulation of gbpC expression in S. mutans strain UA159. We found that gbpC expression attains the maximum level at mid-exponential growth phase, and the half-life of the transcript is less than 2 min. Expression from PgbpC was measured using a PgbpC-gusA transcriptional fusion reporter and was analyzed under various stress conditions, including thermal, osmotic, and acid stresses. Expression of gbpC is induced under conditions of thermal stress but is repressed during growth at low pH, whereas osmotic stress had no effect on expression from PgbpC. The results from the expression analyses were further confirmed using semiquantitative reverse transcription-PCR analysis. Our results also reveal that CovR, a global response regulator in many Streptococcus spp., represses gbpC expression at the transcriptional level. We demonstrated that purified CovR protein binds directly to the promoter region of PgbpC to repress gbpC expression. Using a DNase I protection assay, we showed that CovR binds to DNA sequences surrounding PgbpC from bases -68 to 28 (where base 1 is the start of transcription). In summary, our results indicate that various stress conditions modulate the expression of gbpC and that CovR negatively regulates the expression of the gbpC gene by directly binding to the promoter region. PMID:17616585

  20. Specificity of monoclonal antibodies in local passive immunization against Streptococcus mutans.

    PubMed Central

    Ma, J K; Hunjan, M; Smith, R; Lehner, T

    1989-01-01

    Local oral passive immunization in human subjects with a monoclonal antibody (MoAb) raised against the 185-kD antigen I/II from S. mutans significantly reduced or prevented oral colonization of an exogenous strain of the organism. In subjects sham-immunized with either saline or an unrelated MoAb, however, significantly greater proportions of S. mutans persisted for a longer duration than in those immunized with the specific anti-streptococcal MoAb. Recolonization of indigenous S. mutans after this organism was reduced to undetectable levels by an antimicrobial agent has also been completely prevented with specific MoAb. Indeed, S. mutans was not detected for a period of over 1 year, as compared with recolonization within 10-82 days in the control subjects. The specificity of MoAb in preventing colonization of the streptococci was studied with four MoAb. This revealed that: (1) the sub-class of antibody is not an essential factor, as both MoAb Guy's 1 and 13 prevented colonization, although Guy's 1 is an IgG2a and Guy's 13 is an IgG1 class of antibody; (2) serotype specificity is important, as MoAb Guy's 9, which only recognizes S. sobrinus (serotypes d and g), does not prevent colonisation by S. mutans (serotype c); (3) neither protein nor carbohydrate nature of the putative adhesin was a determining factor, because MoAb Guy's 1 recognizes a carbohydrate and Guy's 13 a protein determinant and both MoAb prevented adherence of S. mutans; and (4) epitope specificity appears to be the most important factor in preventing adherence of S. mutans, as MoAb Guy's 11 and 13 share the same serotype specificity and both recognize a protein determinant, yet only Guy's 13 prevents colonisation. The long duration of protection from re-colonization by indigenous S. mutans, lasting about 1 year after application of the specific MoAb was stopped, cannot be accounted for by functional MoAb remaining on the teeth. We suggest that initially the MoAb prevents colonization by S. mutans

  1. Scanning Electron Microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175

    PubMed Central

    RAHIM, Zubaidah Haji Abdul; THURAIRAJAH, Nalina

    2011-01-01

    Introduction Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. Objectives: In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. Material and Methods S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL-1 and 4 mg mL-1); with sucrose containing the extract (2 mg mL-1 and 4 mg mL-1)]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. Results It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm2 glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL-1 corresponded to that of 0.12% chlorhexidine. At 4 mg mL-1 of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. Conclusion The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved. PMID

  2. MecA Protein Acts as a Negative Regulator of Genetic Competence in Streptococcus mutans

    PubMed Central

    Tian, Xiao-Lin; Dong, Gaofeng; Liu, Tianlei; Gomez, Zubelda A.; Wahl, Astrid; Hols, Pascal

    2013-01-01

    Streptococcus mutans develops competence for genetic transformation through a complex network that receives inputs from at least two signaling peptides, competence-stimulating peptide (CSP) and sigX-inducing peptide (XIP). The key step of competence induction is the transcriptional activation of comX, which encodes an alternative sigma factor, SigX (σX), controlling the expression of late competence genes essential for DNA uptake and recombination. In this study, we provide evidence that MecA acts as a negative regulator in the posttranslational regulation of SigX in S. mutans. Using luxAB transcriptional reporter strains, we demonstrate that MecA represses the expression of late competence genes in S. mutans grown in a complex medium that is subpermissive for competence induction by CSP. The negative regulation of competence by MecA requires the presence of a functional SigX. Accordingly, inactivation of MecA results in a prolonged competence state of S. mutans under this condition. We have also found that the AAA+ protease ClpC displays a similar repressing effect on late competence genes, suggesting that both MecA and ClpC function coordinately to regulate competence in the same regulatory circuit in S. mutans. This suggestion is strongly supported by the results of bacterial two-hybrid assays, which demonstrate that MecA interacts with both SigX and ClpC, forming a ternary SigX-MecA-ClpC complex. Western blot analysis also confirms that inactivation of MecA or ClpC results in the intracellular accumulation of the SigX in S. mutans. Together, our data support the notion that MecA mediates the formation of a ternary SigX-MecA-ClpC complex that sequesters SigX and thereby negatively regulates genetic competence in S. mutans. PMID:24039267

  3. Evaluation of biofilm removal activity of Quercus infectoria galls against Streptococcus mutans

    PubMed Central

    Mohammadi-Sichani, Maryam; Karbasizadeh, Vajihe; Dokhaharani, Samaneh Chaharmiri

    2016-01-01

    Background: Dental caries is one of the most prevalent infectious diseases affecting humans of all ages. Streptococcus mutans has an important role in the development of dental caries by acid production. The purpose of this study was to evaluate the antibacterial and biofilm disinfective effects of the oak tree Quercus infectoria galls against S. mutans. Materials and Methods: The bacterial strain used in this study was S. mutans (ATCC: 35668). Two kinds of galls, Mazouj and Ghalghaf were examined. Galls were extracted by methanol, ethanol and acetone by Soxhlet apparatus, separately. Extracts were dissolved in sterile distilled water to a final concentration of 10.00, 5.00, 2.50, 1.25, 0.63, 0.31, and 0.16 mg/ml. Microdilution determined antibacterial activities. The biofilm removal activities of the extracts were examined using crystal violet-stained microtiter plate method. One-way ANOVA was used to compare biofilm formation in the presence or absence of the extracts. Results: The methanolic, ethanolic, and acetonic extracts of Q. infectoria galls showed the strong inhibitory effects on S. mutans (P < 0.05). The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values for the Mazouj and Ghalghaf gall extracts against S. mutans were identical. The MIC values ranged from 160 μg/ml to 320 μg/ml, whereas the MBC values ranged from 320 μg/ml to 640 μg/ml. All extracts of Q. infectoria galls significantly (P < 0.05) reduced biofilm biomass of S. mutans at the concentrations higher than 9.8 μg/ml. Conclusion: Three different extracts of Q. infectoria galls were similar in their antibacterial activity against S. mutans. These extracts had the highest biofilm removal activities at 312.5 μg/ml concentration. The galls of Q. infectoria are potentially good sources of antibacterial and biofilm disinfection agent. PMID:26962315

  4. Genome-wide characterization of the SloR metalloregulome in Streptococcus mutans.

    PubMed

    O'Rourke, Kevin P; Shaw, Jeremy D; Pesesky, Mitchell W; Cook, Brian T; Roberts, Susanne M; Bond, Jeffrey P; Spatafora, Grace A

    2010-03-01

    Streptococcus mutans is the primary causative agent of human dental caries, a ubiquitous infectious disease for which effective treatment strategies remain elusive. We investigated a 25-kDa SloR metalloregulatory protein in this oral pathogen, along with its target genes that contribute to cariogenesis. Previous studies have demonstrated manganese- and SloR-dependent repression of the sloABCR metal ion transport operon in S. mutans. In the present study, we demonstrate that S. mutans coordinates this repression with that of certain virulence attributes. Specifically, we noted virulence gene repression in a manganese-containing medium when SloR binds to promoter-proximal sequence palindromes on the S. mutans chromosome. We applied a genome-wide approach to elucidate the sequences to which SloR binds and to reveal additional "class I" genes that are subject to SloR- and manganese-dependent repression. These analyses identified 204 S. mutans genes that are preceded by one or more conserved palindromic SloR recognition elements (SREs). We cross-referenced these genes with those that we had identified previously as SloR and/or manganese modulated in microarray and real-time quantitative reverse transcription-PCR (qRT-PCR) experiments. From this analysis, we identified a number of S. mutans virulence genes that are subject to transcriptional upregulation by SloR and noted that such "class II"-type regulation is dependent on direct SloR binding to promoter-distal SREs. These observations are consistent with a bifunctional role for the SloR metalloregulator and implicate it as a target for the development of therapies aimed at alleviating S. mutans-induced caries formation. PMID:19915021

  5. Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions

    PubMed Central

    Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries. PMID:26114758

  6. Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions.

    PubMed

    Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries. PMID:26114758

  7. Antimicrobial Activity of Peganum Harmala L. on Streptococcus mutans Compared to 0.2% Chlorhexidine

    PubMed Central

    Motamedifar, Mohammad; Khosropanah, Hengameh; Dabiri, Shima

    2016-01-01

    Statement of the Problem Dental caries is one the most prevalent diseases that affects humans throughout their lives. Streptococcus mutans (S. mutans) is recognized as the most important microorganism during tooth cariogenicity. Reducing this germ in oral cavity can reduce the rate of tooth decays in humans. Purpose The present study compared the antimicrobial activity of ethanolic extract of Peganum harmala L. seeds and 0.2% chlorhexidine on S. mutans. Materials and Method Agar diffusion technique and micro broth dilution method were employed to test the antimicrobial effects of these two agents on S. mutans. Moreover, the cytotoxicity of ethanolic extract of P. harmala was studied on Vero cells by MTT (thiazolyl blue tetrazolium dye) colorimetric method. The data were analyzed with descriptive methods. Results Concentrations of 50, 25, and 12.5 mg/mL of the extract made inhibition zones of bacterial growth around the wells; but, lower concentrations could not inhibit the growth of S. mutans. Besides, the antimicrobial effect of 0.2% chlorhexidine was more than 50 mg/mL of the extract. Minimum inhibitory concentration (MIC) of the extract on S. mutans was 1.83±0.6 mg/mL and minimum bactericidal concentration (MBC) was 4.3±1 mg/mL. The MIC and MBC for 0.2% chlorhexidine were reported to be 0.19 mg/mL, and 0.78 mg/mL, respectively. The extract concentrations more than 0.5 mg/mL were toxic and caused more than 50% Vero cell death. Conclusion Despite the remarkable antimicrobial effects of high concentrations of P. harmala on S. mutans, high cell toxicity of this plant would restrict its in vivo therapeutic use. PMID:27602397

  8. Evaluation of changes in Streptococcus mutans colonies in microflora of the Indian population with fixed orthodontics appliances

    PubMed Central

    Shukla, Chandresh; Maurya, Raj Kumar; Singh, Vinod; Tijare, Manisha

    2016-01-01

    Background: Orthodontic therapy has oral ecological changes causing increased numbers of mutans streptococci in saliva and plaque. The purpose of this study was to estimate counts and colonization pattern of Streptococcus mutans after application of fixed orthodontic appliances. Materials and Methods: Plaque samples of randomly selected sixty patients were collected before placement of orthodontic appliances from buccal and labial aspects of the anterior teeth and four first molars and readings were recorded as T0. After placement of appliances (0.22 MBT preadjusted Gemini), i.e., 2nd and 3rd month, the plaque samples were collected again from same site and readings were recorded as T1 and T2, respectively. Counts of S. mutans in these patients were determined by using DM Strips (Orion Diagnostic, Espoo, Finland). Kruskal–Wallis test and Mann–Whitney U-test were used to find out significant differences between different time interval for Dentocult score for S. mutans in orthodontic patients (P < 0.001). Results: Prior to the treatment, 46 patients (76%) showed mild and 14 patients (24%) showed moderate colonization of S. mutans. After treatment, the severity of colonization increased showing fifty patients (84%) moderate and six patients (10%) showing severe colonization of S. mutans at T1, which further increased in severity at T2 with 54 patients (90%) showing severe colonization with S. mutans. Conclusion: Results showed that fixed orthodontic appliance increases colonization of S. mutans during orthodontic treatment. PMID:27605987

  9. Role of interbacterial adherence in colonization of the oral cavities of gnotobiotic rats infected with Streptococcus mutans and Veillonella alcalescens.

    PubMed Central

    McBride, B C; Van der Hoeven, J S

    1981-01-01

    The role of interbacterial adherence in the colonization of the rate oral cavity was investigated with aggregating and nonaggregating strains of Veillonella alcalescens and Streptococcus mutans. V. alcalescens V-1 and S. mutans M-7 rapidly formed large stable aggregates when mixed in vitro. Aggregates could be reduced in size by sonication, but they could not be completely dispersed, indicating that bonding between the organisms was strong. V. alcalescens V-1 did not coaggregate with S. mutans C67-1, and V. alcalescens OMZ193 did not coaggregate with either S. mutans strain C67-1 or M-7. Osborne-Mendel rats monoassociated with either S. mutans C67-1 or M-7 were inoculated with veillonellae, molar teeth were removed at 2 h and at 14 days, and the number of veillonellae was determined. At 2 h post-inoculation there were 600 times as many colony-forming units of V. alcalescens V-1 adherent to the teeth of animals monoassociated with S. mutans M-7 when compared with animals monoassociated with the nonaggregating S. mutans C67-1. The number of colony-forming units of V. alcalescens V-1 was 1,000 times greater than the number of nonaggregating V. alcalescens OMZ193 in S. mutans M-7-infected animals. Similar results were obtained when teeth were samples 14 days after inoculation. Veillonellae inoculated into the mouths of germfree animals rapidly disappeared from tooth surfaces. PMID:7275312

  10. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach.

    PubMed

    Kulshrestha, Shatavari; Khan, Shakir; Hasan, Sadaf; Khan, M Ehtisham; Misba, Lama; Khan, Asad U

    2016-02-01

    Biofilm formation on the tooth surface is the root cause of dental caries and periodontal diseases. Streptococcus mutans is known to produce biofilm which is one of the primary causes of dental caries. Acid production and acid tolerance along with exopolysaccharide (EPS) formation are major virulence factors of S. mutans biofilm. In the current study, calcium fluoride nanoparticles (CaF2-NPs) were evaluated for their effect on the biofilm forming ability of S. mutans in vivo and in vitro. The in vitro studies revealed 89 % and 90 % reduction in biofilm formation and EPS production, respectively. Moreover, acid production and acid tolerance abilities of S. mutans were also reduced considerably in the presence of CaF2-NPs. Confocal laser scanning microscopy and transmission electron microscopy images were in accordance with the other results indicating inhibition of biofilm without affecting bacterial viability. The qRT-PCR gene expression analysis showed significant downregulation of various virulence genes (vicR, gtfC, ftf, spaP, comDE) associated with biofilm formation. Furthermore, CaF2-NPs were found to substantially decrease the caries in treated rat groups as compared to the untreated groups in in vivo studies. Scanning electron micrographs of rat's teeth further validated our results. These findings suggest that the CaF2-NPs may be used as a potential antibiofilm applicant against S. mutans and may be applied as a topical agent to reduce dental caries. PMID:26610805

  11. Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level

    PubMed Central

    Conrads, Georg; de Soet, Johannes J.; Song, Lifu; Henne, Karsten; Sztajer, Helena; Wagner-Döbler, Irene; Zeng, An-Ping

    2014-01-01

    Background Two closely related species of mutans streptococci, namely Streptococcus mutans and Streptococcus sobrinus, are associated with dental caries in humans. Their acidogenic and aciduric capacity is directly associated with the cariogenic potential of these bacteria. To survive acidic and temporarily harsh conditions in the human oral cavity with hundreds of other microbial co-colonizers as competitors, both species have developed numerous mechanisms for adaptation. Objectives The recently published novel genome information for both species is used to elucidate genetic similarities but especially differences and to discuss the impact on cariogenicity of the corresponding phenotypic properties including adhesion, carbohydrate uptake and fermentation, acid tolerance, signaling by two component systems, competence, and oxidative stress resistance. Conclusions S. sobrinus can down-regulate the SpaA-mediated adherence to the pellicle. It has a smaller number of two-component signaling systems and bacteriocin-related genes than S. mutans, but all or even more immunity proteins. It lacks the central competence genes comC, comS, and comR. There are more genes coding for glucosyltransferases and a novel energy production pathway formed by lactate oxidase, which is not found in S. mutans. Both species show considerable differences in the regulation of fructan catabolism. However, both S. mutans and S. sobrinus share most of these traits and should therefore be considered as equally virulent with regard to dental caries. PMID:25475081

  12. Effect of citrus lemon oil on growth and adherence of Streptococcus mutans.

    PubMed

    Liu, Ying; Zhang, Xiangyu; Wang, Yuzhi; Chen, Feifei; Yu, Zhifen; Wang, Li; Chen, Shuanglu; Guo, Maoding

    2013-07-01

    In order to exploit novel anticaries agents, we investigated the effects of citrus lemon oil (CLO), a type of natural product, on growth and adherence of the primary oral cariogenic bacteria Streptococcus mutans (S. mutans). The growth inhibitory effect was explored with a micro-dilution assay. Adherence was analyzed by colony counts on the respective surfaces and the adherence inhibition rate (AIR). Real time-PCR was used to investigate the effects of CLO on transcription of glucosyltransferase (Gtf) encoding genes, gtfB, C and D. Neson-Somogyi method was used to measure the effects of CLO on Gtf activity. The minimum inhibitory concentration of CLO against S. mutans was 4.5 mg/ml. The CLO effectively reduced the adherence of S. mutans on glass surface (the AIR were from 98.3 to 100 %, P > 0.05) and saliva-coated enamel surface (the AIR were from 54.8 to 79.2 %, P < 0.05). CLO effectively reduced the activity of Gtf and the transcription of gtfs in a dose dependent manner (P < 0.05). In conclusion, CLO can effectively inhibit the growth and the adherence to glass and saliva-coated enamel surfaces of S. mutans. It can also inhibit the transcription of gtfs, as well as the Gtf enzyme activity. PMID:23381618

  13. Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm.

    PubMed

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H K; Weir, Michael D; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-01-01

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives. PMID:25046750

  14. Effect of Punica granatum on the virulence factors of cariogenic bacteria Streptococcus mutans.

    PubMed

    Gulube, Zandiswa; Patel, Mrudula

    2016-09-01

    Dental caries is caused by acids produced by biofilm-forming Streptococcus mutans from fermentable carbohydrates and bacterial byproducts. Control of these bacteria is important in the prevention of dental caries. This study investigated the effect of the fruit peel of Punica granatum on biofilm formation, acid and extracellular polysaccharides production (EPS) by S. mutans. Pomegranate fruit peels crude extracts were prepared. The Minimum bactericidal concentrations (MBC) were determined against S. mutans. At 3 sub-bactericidal concentrations, the effect on the acid production, biofilm formation and EPS production was determined. The results were analysed using Kruskal-Wallis and Wilcoxon Rank Sum Tests. The lowest MBC was 6.25 mg/mL. Punica granatum significantly inhibited acid production (p < 0.01). After 6 and 24 h, it significantly reduced biofilm-formation by 91% and 65% respectively (p < 0.01). The plant extract did not inhibit the production of soluble EPS in either the biofilm or the planktonic growth. However, it significantly reduced the insoluble EPS in the biofilm and the plantktonic (p = < 0.01) form of S. mutans. The crude extract of P. granatum killed cariogenic S. mutans at high concentrations. At sub-bactericidal concentrations, it reduced biofilm formation, acid and EPS production. This suggests that P. granatum extract has the potential to prevent dental caries. PMID:27354207

  15. Antibacterial Effect of Dental Adhesive Containing Dimethylaminododecyl Methacrylate on the Development of Streptococcus mutans Biofilm

    PubMed Central

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H. K.; Weir, Michael D.; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-01-01

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives. PMID:25046750

  16. Coaggregation of Candida albicans, Actinomyces naeslundii and Streptococcus mutans is Candida albicans strain dependent.

    PubMed

    Arzmi, Mohd Hafiz; Dashper, Stuart; Catmull, Deanne; Cirillo, Nicola; Reynolds, Eric C; McCullough, Michael

    2015-08-01

    Microbial interactions are necessarily associated with the development of polymicrobial oral biofilms. The objective of this study was to determine the coaggregation of eight strains of Candida albicans with Actinomyces naeslundii and Streptococcus mutans. In autoaggregation assays, C. albicans strains were grown in RPMI-1640 and artificial saliva medium (ASM) whereas bacteria were grown in heart infusion broth. C. albicans, A. naeslundii and S. mutans were suspended to give 10(6), 10(7) and 10(8) cells mL(-1) respectively, in coaggregation buffer followed by a 1 h incubation. The absorbance difference at 620 nm (ΔAbs) between 0 h and 1 h was recorded. To study coaggregation, the same protocol was used, except combinations of microorganisms were incubated together. The mean ΔAbs% of autoaggregation of the majority of RPMI-1640-grown C. albicans was higher than in ASM grown. Coaggregation of C. albicans with A. naeslundii and/or S. mutans was variable among C. albicans strains. Scanning electron microscopy images showed that A. naeslundii and S. mutans coaggregated with C. albicans in dual- and triculture. In conclusion, the coaggregation of C. albicans, A. naeslundii and S. mutans is C. albicans strain dependent. PMID:26054855

  17. Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects

    PubMed Central

    Galvão, Lívia Câmara de Carvalho; Furletti, Vivian Fernandes; Bersan, Salete Meyre Fernandes; da Cunha, Marcos Guilherme; Ruiz, Ana Lúcia Tasca Góis; de Carvalho, João Ernesto; Sartoratto, Adilson; Rehder, Vera Lúcia Garcia; Figueira, Glyn Mara; Teixeira Duarte, Marta Cristina; Ikegaki, Masarahu; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2012-01-01

    This study aimed to evaluate the activity of essential oils (EOs) against Streptococcus mutans biofilm by chemically characterizing their fractions responsible for biological and antiproliferative activity. Twenty EO were obtained by hydrodistillation and submitted to the antimicrobial assay (minimum inhibitory (MIC) and bactericidal (MBC) concentrations) against S. mutans UA159. Thin-layer chromatography and gas chromatography/mass spectrometry were used for phytochemical analyses. EOs were selected according to predetermined criteria and fractionated using dry column; the resulting fractions were assessed by MIC and MBC, selected as active fractions, and evaluated against S. mutans biofilm. Biofilms formed were examined using scanning electron microscopy. Selected EOs and their selected active fractions were evaluated for their antiproliferative activity against keratinocytes and seven human tumor cell lines. MIC and MBC values obtained for EO and their active fractions showed strong antimicrobial activity. Chemical analyses mainly showed the presence of terpenes. The selected active fractions inhibited S. mutans biofilm formation (P < 0.05) did not affect glycolytic pH drop and were inactive against keratinocytes, normal cell line. In conclusion, EO showed activity at low concentrations, and their selected active fractions were also effective against biofilm formed by S. mutans and human tumor cell lines. PMID:22685486

  18. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect.

    PubMed

    Pérez-Díaz, Mario Alberto; Boegli, Laura; James, Garth; Velasquillo, Cristina; Sánchez-Sánchez, Roberto; Martínez-Martínez, Rita-Elizabeth; Martínez-Castañón, Gabriel Alejandro; Martinez-Gutierrez, Fidel

    2015-10-01

    Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. The goal of this research was to evaluate the antimicrobial activity of silver nanoparticles (AgNPs) against a clinical isolate of Streptococcus mutans, antibiofilm activity against mature S. mutans biofilms and the compatibility with human fibroblasts. The antimicrobial activity of AgNPs against the planktonic clinical isolate was size and concentration dependent, with smaller AgNPs having a lower minimum inhibitory concentration. A reduction of 2.3 log in the number of colony-forming units of S. mutans was observed when biofilms grown in a CDC reactor were exposed to 100 ppm of AgNPs of 9.5±1.1 nm. However, AgNPs at high concentrations (>10 ppm) showed a cytotoxic effect upon human dermal fibroblasts. AgNPs effectively inhibited the growth of a planktonic S. mutans clinical isolate and killed established S. mutans biofilms, which suggests that AgNPs could be used for prevention and treatment of dental caries. Further research and development are necessary to translate this technology into therapeutic and preventive strategies. PMID:26117766

  19. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans.

    PubMed

    Murata, Takatoshi; Hanada, Nobuhiro

    2016-06-01

    Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic Streptococcus mutans bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of S. mutans The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout S. mutans UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout S. mutans strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted E. coli cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in S. mutans. PMID:27190286

  20. Effect of Propolis on Streptococcus mutans Counts: An in vivo Study

    PubMed Central

    Hegde, K Sundeep; Rao, Ajay; Sain, Shaniya

    2013-01-01

    ABSTRACT Propolis, a natural antibiotic, is a resinous substance that honey bees (Apis mellifera) produce. The main chemical classes present in propolis are flavonoids, phenolics and other various aromatic compounds. Aim: To evaluate the antibacterial action of propolis on the concentration of Streptococcus mutans colonizing the oral cavity of children. Materials and methods: Thirty children performed the rinses, with no other changes in their oral hygiene and dietary habits. Saliva was collected at two time points: Before using the product, 1 hour after the rinse. Results: Paired t-test was used for analysis of the results. A reduction in the concentration of Streptococcus mutans was observed in samples collected after use of the extract. There was a reduction in Streptococcus mutans count when compared to samples obtained in baseline. Significant reductions were seen at the end of 1 hour. The result was statistically significant. There were no side effects in soft and hard tissues of mouth. Conclusion and clinical implication: The propolis possesses in vivo antimicrobial activity against Streptococcus mutans present in the oral cavity and might be used as a measure to prevent dental caries. How to cite this article: Hegde KS, Bhat SS, Rao A, Sain S. Effect of Propolis on Streptococcus mutans Counts: An in vivo Study. Int J Clin Pediatr Dent 2013;6(1):22-25. PMID:25206182

  1. Optimization of conditions for the efficient production of mutan in streptococcal cultures and post-culture liquids.

    PubMed

    Wiater, A; Szczodrak, J; Pleszczyńska, M

    2005-01-01

    The strain Streptococcus sobrinus CCUG 21020 was found to produce water-insoluble and adhesive mutan. The factors influencing both stages of the mutan production, i.e. streptococcal cultures and glucan synthesis in post-culture supernatants were standardized. The application of optimized process parameters for mutan production on a larger scale made it possible to obtain approximately 2.2 g of water-insoluble glucan per 11 of culture supernate--this productivity was higher than the best reported in the literature. It was shown that some of the tested beet sugars might be successfully utilized as substitutes for pure sucrose in the process of mutan synthesis. Nuclear magnetic resonance analyses confirmed that the insoluble biopolymer synthesized by a mixture of crude glucosyltransferases was a mixed-linkage (1-->3), (1-->6)-alpha-D-glucan (the so-called mutan) with a greater proportion of 1,3 to 1,6 linkages. PMID:15813222

  2. Aspartokinase of Streptococcus mutans: purification, properties, and regulation.

    PubMed Central

    McCarron, R M; Chang, Y F

    1978-01-01

    Aspartokinase from Streptococcus mutans BHT was purified to homogeneity and characterized. The molecular weight of the native enzyme was estimated to be 242,000 by gel filtration. Cross-linking of aspartokinase with dimethyl suberimidate and polyacrylamide gel electrophoresis of the amidinated enzyme in the presence of sodium dodecyl sulfate showed the enzyme to be composed of six identical subunits with a molecular wieght of 40,000. The optimal pH range for enzyme activity was 6.5 to 8.5. The apparent Michaelis-Menten constants for aspartate and ATP were 5.5 and 2.2 mM, respectively. The enzyme was stable within the temperature range of 10 to 35 degrees C. Aspartokinase was not feedback inhibited by individual amino acids, but was concertedly inhibited by L-lysine and L-threonine (93.5% inhibition at 10 mM each). The inhibition was noncompetitive with respect to aspartate (Ki = 10 mM) and mixed with respect to ATP. L-Threonine methyl ester and L-threonine amide were able to substitute for L-threonine in feedback inhibition, but the requirement for L-lysine uas strict. The feedback inhibitor pair protected the enzyme against heat denaturation. Aspartokinase synthesis was repressed by L-threonine; this repression was enhanced by L-lysine, but was slightly attenuated by L-methionine. Images PMID:26656

  3. Efficacy of xylitol and fluoride mouthrinses on salivary mutans streptococci

    PubMed Central

    Arunakul, Malee; Thaweboon, Boonyanit; Thaweboon, Sroisiri; Asvanund, Yuwadee; Charoenchaikorn, Kesinee

    2011-01-01

    Objective To evaluate the level of salivary Mutans streptococci (MS) after rinsing with xylitol, fluoride, and a combination of xylitol and fluoride solutions, compared with distilled water. Methods Eighty healthy 8-9 years old subjects with high level of MS (> 105 CFU/mL) were equally divided into 4 groups. Subjects rinsed their mouths for 1 min with 10 mL of 0.05% (w/v) sodium fluoride (NaF), 12.5% (w/v) xylitol or 0.05% (w/v) NaF + 12.5% (w/v) xylitol 3 times daily over 10 weeks. Distilled water rinsed group served as a control. Paraffin-stimulated whole saliva samples were collected at baseline, 5 weeks, and 10 weeks after rinsing to determine the level of salivary MS by culturing on Mitis Salivarius Bacitracin agar. The statistical significance was calculated by Kruskal Wallis, Mann Whitney U, and Wilcoxon signed-rank tests at a significant level of P< 0.05. Results Significant reductions in MS count were observed in subjects using 0.05% NaF + 12.5% xylitol over other groups within 5 weeks and after 10 weeks and 12.5% xylitol alone after 10 weeks compared with baseline. Conclusions The present study provides evidence for the inhibitory effect of xylitol, used in combination with fluoride, delivered in the form of mouthrinse, on salivary MS in the group of schoolchildren. PMID:23569819

  4. Genome editing by natural genetic transformation in Streptococcus mutans.

    PubMed

    Morrison, D A; Khan, R; Junges, R; Åmdal, H A; Petersen, F C

    2015-12-01

    Classical mutagenesis strategies using selective markers linked to designed mutations are powerful and widely applicable tools for targeted mutagenesis via natural genetic transformation in bacteria and archaea. However, the markers that confer power are also potentially problematic as they can be cumbersome, risk phenotypic effects of the inserted genes, and accumulate as unwanted genes during successive mutagenesis cycles. Alternative mutagenesis strategies use temporary plasmid or cassette insertions and can in principle achieve equally flexible mutation designs, but design of suitable counter-selected markers can be complex. All these drawbacks are eased by use of direct genome editing. Here we describe a strategy for directly editing the genome of S. mutans, which is applied to the widely studied reference strain UA159 (ATCC 700610) and has the advantage of extreme simplicity, requiring construction of only one synthetic donor amplicon and a single transformation step, followed by a simple PCR screen among a few dozen clones to identify the desired mutant. The donor amplicon carries the mutant sequence and extensive flanking segments of homology, which ensure efficient and precise integration by the recombination machinery specific to competent cells. The recipients are highly competent cells, in a state achieved by treatment with a synthetic competence pheromone. PMID:26481669

  5. Antibiofilm Activity of Chilean Propolis on Streptococcus mutans Is Influenced by the Year of Collection

    PubMed Central

    Veloz, Jorge Jesús; Saavedra, Nicolás; Lillo, Alexis; Alvear, Marysol; Barrientos, Leticia; Salazar, Luis A.

    2015-01-01

    The chemical composition of propolis varies according to factors that could have an influence on its biological properties. Polyphenols from propolis have demonstrated an inhibitory effect on Streptococcus mutans growth. However, it is not known if different years of propolis collection may affect its activity. We aimed to elucidate if the year of collection of propolis influences its activity on Streptococcus mutans. Polyphenol-rich extracts were prepared from propolis collected in three different years, characterized by LC-MS and quantified the content of total polyphenols and flavonoids groups. Finally, was evaluated the antibacterial effect on Streptococcus mutans and the biofilm formation. Qualitative differences were observed in total polyphenols, flavones, and flavonols and the chemical composition between the extracts, affecting the strength of inhibition of biofilm formation but not the antimicrobial assays. In conclusion, chemical composition of propolis depends on the year of collection and influences the strength of the inhibition of biofilm formation. PMID:26247015

  6. Lack of effect of chlorhexidine varnish on Streptococcus mutans transmission and caries in mothers and children.

    PubMed

    Dasanayake, A P; Wiener, H W; Li, Y; Vermund, S H; Vermund, S V; Caufield, P W

    2002-01-01

    In a randomized clinical trial, we evaluated the effect of a 10% chlorhexidine varnish (Chlorzoin) on the mother-child transmission of Streptococcus mutans and on subsequent caries experience. Chlorhexidine (n = 38) or a placebo varnish (n = 37) was applied to the dentitions of 75 mothers at a time when their first babies were about 6 months old (approximate time of first tooth emergence). Three more applications at weekly intervals and subsequent applications at 6-month intervals followed the initial application. The mother-child pairs were followed up until the child's fourth birthday. Maternal salivary S. mutans levels in the treatment group remained significantly lower (p < 0.05) compared to the control group up to 12 months after the initial application. However, this intervention did not significantly alter the S. mutans colonization in children or the caries increment in either the mother or the child. PMID:12218279

  7. Photo Inactivation of Streptococcus mutans Biofilm by Violet-Blue light.

    PubMed

    Gomez, Grace F; Huang, Ruijie; MacPherson, Meoghan; Ferreira Zandona, Andrea G; Gregory, Richard L

    2016-09-01

    Among various preventive approaches, non-invasive phototherapy/photodynamic therapy is one of the methods used to control oral biofilm. Studies indicate that light at specific wavelengths has a potent antibacterial effect. The objective of this study was to determine the effectiveness of violet-blue light at 380-440 nm to inhibit biofilm formation of Streptococcus mutans or kill S. mutans. S. mutans UA159 biofilm cells were grown for 12-16 h in 96-well flat-bottom microtiter plates using tryptic soy broth (TSB) or TSB with 1 % sucrose (TSBS). Biofilm was irradiated with violet-blue light for 5 min. After exposure, plates were re-incubated at 37 °C for either 2 or 6 h to allow the bacteria to recover. A crystal violet biofilm assay was used to determine relative densities of the biofilm cells grown in TSB, but not in TSBS, exposed to violet-blue light. The results indicated a statistically significant (P < 0.05) decrease compared to the non-treated groups after the 2 or 6 h recovery period. Growth rates of planktonic and biofilm cells indicated a significant reduction in the growth rate of the violet-blue light-treated groups grown in TSB and TSBS. Biofilm viability assays confirmed a statistically significant difference between violet-blue light-treated and non-treated groups in TSB and TSBS. Visible violet-blue light of the electromagnetic spectrum has the ability to inhibit S. mutans growth and reduce the formation of S. mutans biofilm. This in vitro study demonstrated that violet-blue light has the capacity to inhibit S. mutans biofilm formation. Potential clinical applications of light therapy in the future remain bright in preventing the development and progression of dental caries. PMID:27278805

  8. The Antibacterial Effects of Apacaries Gel on Streptococcus mutans: An in vitro Study

    PubMed Central

    Peerapattana, Jomjai; Ratanathongkam, Ariya; Nualkaew, Nartsajee; Chatchiwiwattana, Supaporn; Treesuwan, Panta

    2014-01-01

    ABSTRACT Background: New approaches for chemomechanical caries removal require effective materials with antibacterial properties for removal of infected dentin. Apacaries gel is a newly developed material comprised polyphenol from mangosteen extracts and papain mixed in gel preparation. Aim: This study evaluated the antibacterial effects of Apacaries gel on Streptococcus mutans in vitro. Materials and methods: Mangosteen pericarp powder was extracted. The amount of phenolic compounds was determined using the Folin-Ciocalteu method. The time-kill kinetics were investigated. Mangosteen extract and papain were mixed with gel base to develop Apacaries gel. The inhibition zone of the Apacaries gel was determined using agar well diffusion methods. Results: The mangosteen pericarp extract, which contains α-mangostin, was active against S. mutans strain ATCC25175. The time-kill kinetics curve showed that applying 1 mg/ml of mangosteen extract can reduce S. mutans by 50% within approximately 5 seconds; after this reduction, the bacterial count rapidly dropped to 0 within 60 seconds. Using mangosteen extract and papain mixture gel preparation resulted in a larger inhibition zone than using the mangosteen extract gel or papain gel separately. Conclusion: Apacaries gel can effectively inhibit S. mutans strain ATCC25175. Apacaries is capable of S. mutans inhibition better than both mangosteen extract or papain separately. How to cite this article: Juntavee A, Peerapattana J, Ratanathongkam A, Nualkaew N, Chatchiwiwattana S, Treesuwan P. The Antibacterial Effects of Apacaries Gel on Streptococcus mutans: An in vitro Study. Int J Clin Pediatr Dent 2014;7(2):77-81. PMID:25356004

  9. Phylogenetic analysis of glucosyltransferases and implications for the coevolution of mutans streptococci with their mammalian hosts.

    PubMed

    Argimón, Silvia; Alekseyenko, Alexander V; DeSalle, Rob; Caufield, Page W

    2013-01-01

    Glucosyltransferases (Gtfs) catalyze the synthesis of glucans from sucrose and are produced by several species of lactic-acid bacteria. The oral bacterium Streptococcus mutans produces large amounts of glucans through the action of three Gtfs. GtfD produces water-soluble glucan (WSG), GtfB synthesizes water-insoluble glucans (WIG) and GtfC produces mainly WIG but also WSG. These enzymes, especially those synthesizing WIG, are of particular interest because of their role in the formation of dental plaque, an environment where S. mutans can thrive and produce lactic acid, promoting the formation of dental caries. We sequenced the gtfB, gtfC and gtfD genes from several mutans streptococcal strains isolated from the oral cavity of humans and searched for their homologues in strains isolated from chimpanzees and macaque monkeys. The sequence data were analyzed in conjunction with the available Gtf sequences from other bacteria in the genera Streptococcus, Lactobacillus and Leuconostoc to gain insights into the evolutionary history of this family of enzymes, with a particular emphasis on S. mutans Gtfs. Our analyses indicate that streptococcal Gtfs arose from a common ancestral progenitor gene, and that they expanded to form two clades according to the type of glucan they synthesize. We also show that the clade of streptococcal Gtfs synthesizing WIG appeared shortly after the divergence of viviparous, dentate mammals, which potentially contributed to the formation of dental plaque and the establishment of several streptococci in the oral cavity. The two S. mutans Gtfs capable of WIG synthesis, GtfB and GtfC, are likely the product of a gene duplication event. We dated this event to coincide with the divergence of the genomes of ancestral early primates. Thus, the acquisition and diversification of S. mutans Gtfs predates modern humans and is unrelated to the increase in dietary sucrose consumption. PMID:23457545

  10. Differential localization of the Streptococcus mutans GS-5 fructan hydrolase enzyme, FruA.

    PubMed

    Burne, R A; Penders, J E

    1994-08-15

    Streptococcus mutans GS-5 synthesizes an exo-beta-D-fructosidase, FruA, capable of degrading levans, inulins, sucrose and raffinose, with the greatest activity on levans. A previous analysis of the deduced amino acid sequence of the FruA protein revealed the presence of a C-terminus with an LPXTGX membrane sorting sequence and membrane spanning domain, characteristic of many Gram-positive cocci surface proteins. Here it is demonstrated that FruA, which had been previously shown to exist almost exclusively as an extracellular enzyme, can be detected in significant proportions at the surface of S. mutans cells. Moreover, growth of S. mutans GS-5 at steady state in continuous culture at pH values of 7.0, 6.0, or 5.0 revealed that the amount of cell-associated enzyme increased with decreasing pH values, such that roughly 50% of the total fructanase activity of pH 5.0-grown organisms was cell-associated. This result was confirmed using anti-recombinant-FruA antisera in Western blotting of culture supernate and cell-associated enzyme preparations from chemostat-grown cells. Incubation of S. mutans at pH values of 5.0, 6.0 or 7.0 in buffered media yielded results similar to those observed in the chemostat experiments. The release of FruA from S. mutans was also shown to be inhibitable by copper, which is known to interfere with the release of the surface adhesin, P1, from intact cells and protoplasts of S. mutans. These data provide evidence for a unique post-translational mechanism for the regulation of the catabolism of polysaccharides by bacteria.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7926677

  11. Genetic Diversity and Evidence for Transmission of Streptococcus mutans by DiversiLab rep-PCR.

    PubMed

    Momeni, Stephanie S; Whiddon, Jennifer; Cheon, Kyounga; Ghazal, Tariq; Moser, Stephen A; Childers, Noel K

    2016-09-01

    This two-part study investigated the genetic diversity and transmission of Streptococcus mutans using the DiversiLab repetitive extragenic palindromic PCR (rep-PCR) approach. For children with S. mutans and participating household members, analysis for evidence of unrelated child-to-child as well as intra-familial transmission was evaluated based on commonality of genotypes. A total of 169 index children and 425 household family members from Uniontown, Alabama were evaluated for genetic diversity using rep-PCR. Thirty-four unique rep-PCR genotypes were observed for 13,906 S. mutans isolates. For transmission, 117 child and household isolates were evaluated for shared genotype (by child and by genotype cases, multiple matches possible for each child). Overall, children had 1-9 genotypes and those with multiple genotypes were 2.3 times more likely to have caries experience (decayed, missing and filled teeth/surfaces>0). Only 28% of children shared all genotypes within the household, while 72% had at least 1 genotype not shared with anyone in the household. Children had genotype(s) not shared with any household members in 157 cases. In 158 cases children and household members shared a genotype in which 55% (87/158 cases) were shared with more than one family member. Children most frequently shared genotypes with their mothers (54%; 85/158), siblings (46%; 72/158) and cousins (23%; 37/158). A reference library for S. mutans for epidemiological surveillance using the DiversiLab rep-PCR approach is detailed. The genetic diversity of S. mutans in this population demonstrated frequent commonality of genotypes. Evidence for both child-to-child and intra-familial transmission of S. mutans was observed by rep-PCR. PMID:27432341

  12. Hydroxychalcone inhibitors of Streptococcus mutans glucosyl transferases and biofilms as potential anticaries agents.

    PubMed

    Nijampatnam, Bhavitavya; Casals, Luke; Zheng, Ruowen; Wu, Hui; Velu, Sadanandan E

    2016-08-01

    Streptococcus mutans has been implicated as the major etiological agent in the initiation and the development of dental caries due to its robust capacity to form tenacious biofilms. Ideal therapeutics for this disease will aim to selectively inhibit the biofilm formation process while preserving the natural bacterial flora of the mouth. Several studies have demonstrated the efficacies of flavonols on S. mutans biofilms and have suggested the mechanism of action through their effect on S. mutans glucosyltransferases (Gtfs). These enzymes metabolize sucrose into water insoluble and soluble glucans, which are an integral measure of the dental caries pathogenesis. Numerous studies have shown that flavonols and polyphenols can inhibit Gtf and biofilm formation at millimolar concentrations. We have screened a group of 14 hydroxychalcones, synthetic precursors of flavonols, in an S. mutans biofilm assay. Several of these compounds emerged to be biofilm inhibitors at low micro-molar concentrations. Chalcones that contained a 3-OH group on ring A exhibited selectivity for biofilm inhibition. Moreover, we synthesized 6 additional analogs of the lead compound and evaluated their potential activity and selectivity against S. mutans biofilms. The most active compound identified from these studies had an IC50 value of 44μM against biofilm and MIC50 value of 468μM against growth displaying >10-fold selectivity inhibition towards biofilm. The lead compound displayed a dose dependent inhibition of S. mutans Gtfs. The lead compound also did not affect the growth of two commensal species (Streptococcus sanguinis and Streptococcus gordonii) at least up to 200μM, indicating that it can selectively inhibit cariogenic biofilms, while leaving commensal and/or beneficial microbes intact. Thus non-toxic compounds have the potential utility in public oral health regimes. PMID:27371109

  13. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans.

    PubMed Central

    Schilling, K M; Bowen, W H

    1992-01-01

    Many researchers have suggested that the role of glucan-mediated interactions in the adherence of Streptococcus mutans is restricted to accumulation of this cariogenic bacterium following its sucrose (i.e., glucan)-independent binding to saliva-coated tooth surfaces. However, the presence of enzymatically active glucosyltransferase in salivary pellicle suggests that glucans could also promote the initial adherence of S. mutans to the teeth. In the present study, the commonly used hydroxyapatite adherence assay was modified to include the incorporation of glucosyltransferase and the synthesis of glucans in situ on saliva-coated hydroxyapatite beads. Several laboratory strains and clinical isolates of S. mutans were examined for their ability to adhere to experimental pellicles, either with or without the prior formation of glucans in situ. Results showed that most strains of S. mutans bound stereospecifically to glucans synthesized in pellicle. Inhibition studies with various polysaccharides and fungal dextranase indicated that alpha 1,6-linked glucose residues were of primary importance in the glucan binding observed. Scanning electron microscopic analysis showed direct binding of S. mutans to hydroxyapatite surface-associated polysaccharide and revealed no evidence of trapping or cell-to-cell binding. S. mutans strains also attached to host-derived structures in experimental pellicles, and the data suggest that the bacterial adhesins which recognize salivary binding sites were distinct from glucan-binding adhesins. Furthermore, glucans formed in experimental pellicles appeared to mask the host-derived components. These results support the concept that glucans synthesized in salivary pellicle can promote the selective adherence of the cariogenic streptococci which colonize human teeth. Images PMID:1530843

  14. Phylogenetic Analysis of Glucosyltransferases and Implications for the Coevolution of Mutans Streptococci with Their Mammalian Hosts

    PubMed Central

    Argimón, Silvia; Alekseyenko, Alexander V.; DeSalle, Rob; Caufield, Page W.

    2013-01-01

    Glucosyltransferases (Gtfs) catalyze the synthesis of glucans from sucrose and are produced by several species of lactic-acid bacteria. The oral bacterium Streptococcus mutans produces large amounts of glucans through the action of three Gtfs. GtfD produces water-soluble glucan (WSG), GtfB synthesizes water-insoluble glucans (WIG) and GtfC produces mainly WIG but also WSG. These enzymes, especially those synthesizing WIG, are of particular interest because of their role in the formation of dental plaque, an environment where S. mutans can thrive and produce lactic acid, promoting the formation of dental caries. We sequenced the gtfB, gtfC and gtfD genes from several mutans streptococcal strains isolated from the oral cavity of humans and searched for their homologues in strains isolated from chimpanzees and macaque monkeys. The sequence data were analyzed in conjunction with the available Gtf sequences from other bacteria in the genera Streptococcus, Lactobacillus and Leuconostoc to gain insights into the evolutionary history of this family of enzymes, with a particular emphasis on S. mutans Gtfs. Our analyses indicate that streptococcal Gtfs arose from a common ancestral progenitor gene, and that they expanded to form two clades according to the type of glucan they synthesize. We also show that the clade of streptococcal Gtfs synthesizing WIG appeared shortly after the divergence of viviparous, dentate mammals, which potentially contributed to the formation of dental plaque and the establishment of several streptococci in the oral cavity. The two S. mutans Gtfs capable of WIG synthesis, GtfB and GtfC, are likely the product of a gene duplication event. We dated this event to coincide with the divergence of the genomes of ancestral early primates. Thus, the acquisition and diversification of S. mutans Gtfs predates modern humans and is unrelated to the increase in dietary sucrose consumption. PMID:23457545

  15. Relationship of bacteriocin-like inhibitor production to the pigmentation and hemolytic activity of mutans streptococci.

    PubMed

    Crooks, M; James, S M; Tagg, J R

    1987-03-01

    An inhibitor production typing (P-typing) scheme originally devised for hemolytic streptococci of Lancefield groups A-G has been successfully applied to 35 mutans streptococcus isolates recovered from plaque cultures of 60 Dunedin schoolchildren. Thirteen different P-type designations were identified. Although 11 (31%) of the isolates failed to produce detectable inhibitory activity on the conventional blood agar medium used for P-typing, four of these isolates were inhibitor-positive on Trypticase Soy agar supplemented with 2% yeast extract and 0.5% calcium carbonate (TSYCa). Four mutans strains displayed strong beta-hemolysis on Columbia agar base containing human blood when incubated in a 5% CO2 in air atmosphere. Three of these also produced weak beta-hemolysis on sheep blood-supplemented medium and were further distinctive in that they were the only inhibitor P-type 767 strains to be detected in the present study. Five mutans isolates were pigment producers and this property seemed to occur independently of both the beta-hemolytic activity and the P-type designation. Upon testing an additional collection of 18 mutans strains of various serotypes, only seven (39%) were inhibitor-positive. However, three of the four serotype c strains were inhibitor producers. Two strains of serotype d and one of serotype g were more hemolytic on sheep than on human blood agar medium. In general, it seems that the most common human mutans streptococci (serotype c strains) are more likely than are other mutans strains to produce bacteriocin-like inhibitory activity and to be hemolytic for human rather than sheep erythrocytes. PMID:3604497

  16. Genetic variability of mutans streptococci revealed by wide whole-genome sequencing

    PubMed Central

    2013-01-01

    Background Mutans streptococci are a group of bacteria significantly contributing to tooth decay. Their genetic variability is however still not well understood. Results Genomes of 6 clinical S. mutans isolates of different origins, one isolate of S. sobrinus (DSM 20742) and one isolate of S. ratti (DSM 20564) were sequenced and comparatively analyzed. Genome alignment revealed a mosaic-like structure of genome arrangement. Genes related to pathogenicity are found to have high variations among the strains, whereas genes for oxidative stress resistance are well conserved, indicating the importance of this trait in the dental biofilm community. Analysis of genome-scale metabolic networks revealed significant differences in 42 pathways. A striking dissimilarity is the unique presence of two lactate oxidases in S. sobrinus DSM 20742, probably indicating an unusual capability of this strain in producing H2O2 and expanding its ecological niche. In addition, lactate oxidases may form with other enzymes a novel energetic pathway in S. sobrinus DSM 20742 that can remedy its deficiency in citrate utilization pathway. Using 67 S. mutans genomes currently available including the strains sequenced in this study, we estimates the theoretical core genome size of S. mutans, and performed modeling of S. mutans pan-genome by applying different fitting models. An “open” pan-genome was inferred. Conclusions The comparative genome analyses revealed diversities in the mutans streptococci group, especially with respect to the virulence related genes and metabolic pathways. The results are helpful for better understanding the evolution and adaptive mechanisms of these oral pathogen microorganisms and for combating them. PMID:23805886

  17. Glucose uptake by Streptococcus mutans, Streptococcus mitis, and Actinomyces viscosus in the presence of human saliva.

    PubMed

    Germaine, G R; Tellefson, L M

    1982-12-01

    Glucose uptake was examined by using whole-cell suspensions of Streptococcus mutans (strains BHT, Ingbritt, and GS-5), Streptococcus mitis (strains 9811 and 72x41), and Actinomyces viscosus (strains T6 and WVU626) incubated for up to 90 min in 0 to 82% (vol/vol) human whole salivary supernatant. Glucose uptake by the S. mutans strains was completely inhibited at all saliva concentrations. Dithiothreitol (DTT), present during saliva incubation, prevented saliva inhibition. Glucose uptake was also restored when saliva-inhibited cells were subsequently exposed to DTT. The inclusion of catalase in the saliva incubation mixtures resulted in protection equal to that obtained with DTT. The S. mitis strains were also inhibited by saliva but to a far lesser extent that S. mutans. DTT and catalase also protected S. mitis from saliva inhibition. Both A. viscosus strains were completely refractory to saliva inhibition of glucose uptake. Based on (i) the sensitivity of the catalase-negative streptococci and the resistance of catalase-positive actinomyces to saliva inhibition and (ii) the equal and complete protection to saliva inhibition afforded by DTT and catalase, we conclude that the lactoperoxidase-SCN(-)-H(2)O(2) system in saliva was the only antibacterial system expressed under our experimental conditions. The relative resistance of S. mitis 9811 (compared with S. mutans BHT) to saliva inhibition was shown not to result from poor H(2)O(2) production in either glucose-supplemented buffer or saliva solutions. S. mitis produced inhibitory quantities of H(2)O(2) that equaled or exceeded S. mutans H(2)O(2) accumulation. It is suggested that S. mitis might possess a greater ability to repair lactoperoxidase-mediated damage than does S. mutans. Every organism studied exhibited a saliva concentration-dependent, cell growth-independent stimulation of glucose uptake after 60 to 90 min of incubation. The A. viscosus and S. mitis strains showed saliva stimulation (or stabilization

  18. Glucose Uptake by Streptococcus mutans, Streptococcus mitis, and Actinomyces viscosus in the Presence of Human Saliva

    PubMed Central

    Germaine, Greg, R.; Tellefson, Lois M.

    1982-01-01

    Glucose uptake was examined by using whole-cell suspensions of Streptococcus mutans (strains BHT, Ingbritt, and GS-5), Streptococcus mitis (strains 9811 and 72×41), and Actinomyces viscosus (strains T6 and WVU626) incubated for up to 90 min in 0 to 82% (vol/vol) human whole salivary supernatant. Glucose uptake by the S. mutans strains was completely inhibited at all saliva concentrations. Dithiothreitol (DTT), present during saliva incubation, prevented saliva inhibition. Glucose uptake was also restored when saliva-inhibited cells were subsequently exposed to DTT. The inclusion of catalase in the saliva incubation mixtures resulted in protection equal to that obtained with DTT. The S. mitis strains were also inhibited by saliva but to a far lesser extent that S. mutans. DTT and catalase also protected S. mitis from saliva inhibition. Both A. viscosus strains were completely refractory to saliva inhibition of glucose uptake. Based on (i) the sensitivity of the catalase-negative streptococci and the resistance of catalase-positive actinomyces to saliva inhibition and (ii) the equal and complete protection to saliva inhibition afforded by DTT and catalase, we conclude that the lactoperoxidase-SCN−-H2O2 system in saliva was the only antibacterial system expressed under our experimental conditions. The relative resistance of S. mitis 9811 (compared with S. mutans BHT) to saliva inhibition was shown not to result from poor H2O2 production in either glucose-supplemented buffer or saliva solutions. S. mitis produced inhibitory quantities of H2O2 that equaled or exceeded S. mutans H2O2 accumulation. It is suggested that S. mitis might possess a greater ability to repair lactoperoxidase-mediated damage than does S. mutans. Every organism studied exhibited a saliva concentration-dependent, cell growth-independent stimulation of glucose uptake after 60 to 90 min of incubation. The A. viscosus and S. mitis strains showed saliva stimulation (or stabilization) of glucose

  19. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    PubMed

    Klein, Marlise I; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M; Yates, John R; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the

  20. Identification of ssDNA aptamers specific to clinical isolates of Streptococcus mutans strains with different cariogenicity.

    PubMed

    Cui, Wei; Liu, Jiaojiao; Su, Donghua; Hu, Danyang; Hou, Shuai; Hu, Tongnan; Yang, Jiyong; Luo, Yanping; Xi, Qing; Chu, Bingfeng; Wang, Chenglong

    2016-06-01

    Streptococcus mutans, a Gram-positive facultative anaerobic bacterium, is considered to be a major etiological factor for dental caries. In this study, plaques from dental enamel surfaces of caries-active and caries-free individuals were obtained and cultivated for S. mutans isolation. Morphology examination, biochemical characterization, and polymerase chain reaction were performed to identify S. mutans The cariogenicity of S. mutans strains isolated from clinical specimens was evaluated by testing the acidogenicity, aciduricity, extracellular polysaccharide production, and adhesion ability of the bacteria. Finally, subtractive SELEX (systematic evolution of ligands by exponential enrichment) technology targeting whole intact cells was used to screen for ssDNA aptamers specific to the strains with high cariogenicity. After nine rounds of subtractive SELEX, sufficient pool enrichment was achieved as shown by radioactive isotope analysis. The enriched pool was cloned and sequenced randomly, followed by MEME online and RNA structure software analysis of the sequences. Results from the flow cytometry indicated that aptamers H1, H16, H4, L1, L10, and H19 could discriminate highly cariogenic S. mutans strains from poorly cariogenic strains. Among these, Aptamer H19 had the strongest binding capacity with cariogenic S. mutans strains with a dissociation constant of 69.45 ± 38.53 nM. In conclusion, ssDNA aptamers specific to highly cariogenic clinical S. mutans strains were successfully obtained. These ssDNA aptamers might be used for the early diagnosis and treatment of dental caries. PMID:27151293

  1. Contribution of the Collagen-Binding Proteins of Streptococcus mutans to Bacterial Colonization of Inflamed Dental Pulp

    PubMed Central

    Nomura, Ryota; Ogaya, Yuko; Nakano, Kazuhiko

    2016-01-01

    Streptococcus mutans is a major pathogen of dental caries. Collagen-binding proteins (CBPs) (approximately 120 kDa), termed Cnm and Cbm, are regarded as important cell surface antigens related to the adherence of S. mutans to collagenous tissue. Furthermore, CBP-positive S. mutans strains are associated with various systemic diseases involving bacteremia, such as infective endocarditis. Endodontic infection is considered to be an important cause of bacteremia, but little is known regarding the presence of S. mutans in dental pulp tissue. In the present study, the distribution and virulence of S. mutans in dental pulp tissues were investigated by focusing on CBPs. Adhesion and invasion properties of various S. mutans strains were analyzed using human dental pulp fibroblasts (HDPFs). CBP-positive strains had a significantly higher rate of adhesion to HDPFs compared with CBP-defective isogenic mutant strains (P<0.001). In addition, CBP-positive strains induced HDPF proliferation, which is a possible mechanism related to development of hyperplastic pulpitis. The distribution of S. mutans strains isolated from infected root canal specimens was then analyzed by PCR. We found that approximately 50% of the root canal specimens were positive for S. mutans. Approximately 20% of these strains were Cnm-positive, while no Cbm-positive strains were isolated. The Cnm-positive strains isolated from the specimens showed adhesion to HDPFs. Our results suggest that CBP-positive S. mutans strains exhibit high colonization in dental pulp. This could be a possible virulence factor for various systemic diseases. PMID:27442266

  2. Surface Lipoprotein PpiA of Streptococcus mutans Suppresses Scavenger Receptor MARCO-Dependent Phagocytosis by Macrophages ▿

    PubMed Central

    Mukouhara, Tadashi; Arimoto, Takafumi; Cho, Kasei; Yamamoto, Matsuo; Igarashi, Takeshi

    2011-01-01

    Streptococcus mutans is associated with the initiation and progression of human dental caries and is occasionally isolated from the blood of patients with bacteremia and infective endocarditis. For the pathogen to survive in the infected host, surface lipoproteins of S. mutans are likely to play important roles in interactions with the innate immune system. To clarify the role that a putative lipoprotein, peptidyl-prolyl cis/trans-isomerase (PpiA), of S. mutans plays in the macrophage response, we investigated the response of THP-1-derived macrophages to S. mutans challenge. The deletion of the gene encoding Lgt eliminated PpiA on the cell surface of S. mutans, which implies that PpiA is a lipoprotein that is lipid anchored in the cell membrane by Lgt. Human and murine peritoneal macrophages both showed higher phagocytic activities for the ppiA and lgt mutants than the wild type, which indicates that the presence of PpiA reduces S. mutans phagocytosis. In addition, infection with S. mutans markedly induced mRNAs of macrophage receptor with collagenous structure (MARCO) and scavenger receptor A (SR-A) in human macrophages. In particular, transcriptional and translational levels of MARCO in human macrophages infected with the ppiA mutant were higher than those in macrophages infected with the wild type. Phagocytosis of S. mutans by human macrophages markedly decreased after treatment with anti-MARCO IgG. These results demonstrate that the S. mutans lipoprotein PpiA contributes to suppression of MARCO-mediated phagocytosis of this bacterium by macrophages. PMID:21986627

  3. Clinical Efficacy of a Specifically Targeted Antimicrobial Peptide Mouth Rinse: Targeted Elimination of Streptococcus mutans and Prevention of Demineralization

    PubMed Central

    Sullivan, R.; Santarpia, P.; Lavender, S.; Gittins, E.; Liu, Z.; Anderson, M.H.; He, J.; Shi, W.; Eckert, R.

    2011-01-01

    Background/Aims Streptococcus mutans, the major etiological agent of dental caries, has a measurable impact on domestic and global health care costs. Though persistent in the oral cavity despite conventional oral hygiene, S. mutans can be excluded from intact oral biofilms through competitive exclusion by other microorganisms. This suggests that therapies capable of selectively eliminating S. mutans while limiting the damage to the normal oral flora might be effective long-term interventions to fight cariogenesis. To meet this challenge, we designed C16G2, a novel synthetic specifically targeted antimicrobial peptide with specificity for S. mutans. C16G2 consists of a S. mutans-selective ‘targeting region’ comprised of a fragment from S. mutans competence stimulation peptide (CSP) conjoined to a ‘killing region’ consisting of a broad-spectrum antimicrobial peptide (G2). In vitro studies have indicated that C16G2 has robust efficacy and selectivity for S. mutans, and not other oral bacteria, and affects targeted bacteria within seconds of contact. Methods In the present study, we evaluated C16G2 for clinical utility in vitro, followed by a pilot efficacy study to examine the impact of a 0.04% (w/v) C16G2 rinse in an intra-oral remineralization/demineralization model. Results and Conclusions C16G2 rinse usage was associated with reductions in plaque and salivary S. mutans, lactic acid production, and enamel demineralization. The impact on total plaque bacteria was minimal. These results suggest that C16G2 is effective against S. mutans in vivo and should be evaluated further in the clinic. PMID:21860239

  4. Detection of Streptococcus mutans Genomic DNA in Human DNA Samples Extracted from Saliva and Blood

    PubMed Central

    Vieira, Alexandre R.; Deeley, Kathleen B.; Callahan, Nicholas F.; Noel, Jacqueline B.; Anjomshoaa, Ida; Carricato, Wendy M.; Schulhof, Louise P.; DeSensi, Rebecca S.; Gandhi, Pooja; Resick, Judith M.; Brandon, Carla A.; Rozhon, Christopher; Patir, Asli; Yildirim, Mine; Poletta, Fernando A.; Mereb, Juan C.; Letra, Ariadne; Menezes, Renato; Wendell, Steven; Lopez-Camelo, Jorge S.; Castilla, Eduardo E.; Orioli, Iêda M.; Seymen, Figen; Weyant, Robert J.; Crout, Richard; McNeil, Daniel W.; Modesto, Adriana; Marazita, Mary L.

    2011-01-01

    Caries is a multifactorial disease, and studies aiming to unravel the factors modulating its etiology must consider all known predisposing factors. One major factor is bacterial colonization, and Streptococcus mutans is the main microorganism associated with the initiation of the disease. In our studies, we have access to DNA samples extracted from human saliva and blood. In this report, we tested a real-time PCR assay developed to detect copies of genomic DNA from Streptococcus mutans in 1,424 DNA samples from humans. Our results suggest that we can determine the presence of genomic DNA copies of Streptococcus mutans in both DNA samples from caries-free and caries-affected individuals. However, we were not able to detect the presence of genomic DNA copies of Streptococcus mutans in any DNA samples extracted from peripheral blood, which suggests the assay may not be sensitive enough for this goal. Values of the threshold cycle of the real-time PCR reaction correlate with higher levels of caries experience in children, but this correlation could not be detected for adults. PMID:21731912

  5. Effect of fluoride on glucose incorporation and metabolism in biofilm cells of Streptococcus mutans.

    PubMed

    Balzar Ekenbäck, S; Linder, L E; Sund, M L; Lönnies, H

    2001-06-01

    The aim of this study was two-fold: firstly, to study the effect of high fluoride concentrations on carbohydrate metabolism in Streptococcus mutans present in biofilms on hydroxyapatite; and, secondly, to evaluate the effect of fluoride-bound hydroxyapatite on lactic acid formation in growing biofilms of Strep. mutans. Biofilms of a clinical strain of Strep. mutans on saliva-coated hydroxyapatite beads were incubated with sodium fluoride over a wide range of concentrations. At high fluoride concentrations (>10 mM) the incorporation of [14C]-labeled glucose decreased by 80-85%, at both pH 7.0 and 5.6. At lower fluoride concentrations, the effect of fluoride on the incorporation of labeled glucose was pH-dependent in both biofilm cells and in planktonic cells. At pH 7.0, fluoride at concentrations < 10 mM had little or no effect. Pretreatment of hydroxyapatite discs with fluoride varnish (Fluor Protector) or fluoride solutions caused a statistically significant reduction of lactic acid formation in associated, growing biofilms of Strep. mutans. Fluoride varnish and 0.2% (47.6 mM) sodium fluoride solution exhibited a statistically significant inhibitory effect on lactate production. PMID:11456349

  6. Conserved and divergent functions of RcrRPQ in Streptococcus gordonii and S. mutans.

    PubMed

    Shields, Robert C; Burne, Robert A

    2015-08-01

    In the dental caries pathogen Streptococcus mutans, an MarR-like transcriptional regulator (RcrR), two ABC efflux pumps (RcrPQ) and two effector peptides encoded in the rcrRPQ operon provide molecular connections between stress tolerance, (p)ppGpp metabolism and genetic competence. Here, we examined the role of RcrRPQ in the oral commensal S. gordonii. Unlike in S. mutans, introduction of polar or non-polar rcrR mutations into S. gordonii elicited no significant changes in transformation efficiency. However, S. gordonii rcrR mutants were markedly impaired in their ability to grow in the presence of hydrogen peroxide, paraquat, low pH or elevated temperature. Sensitivity to paraquat could also be conferred by mutation of cysteine residues that are present in the RcrR protein of S. gordonii, but not in S. mutans RcrR. Thus, stress tolerance is a conserved function of RcrRPQ in a commensal and pathogenic streptococcus, but the study reveals additional differences in regulation of genetic competence development between S. mutans and S. gordonii. PMID:26229070

  7. Typing of Streptococcus mutans strains isolated from caries free and susceptible subjects by multilocus enzyme electrophoresis

    PubMed Central

    Tahmourespour, Arezoo; Nabinejad, Abdolreza; Shirian, Hannaneh; Rosa, Edvaldo Antonio Ribeiro; Tahmourespour, Sanaz

    2013-01-01

    This study was evaluated the clonal diversity of Streptococcus mutans in caries-free and caries-active subjects using MLEE. Strains from caries-free subjects were grouped in a single taxon. Unrooted dendrogram showed that different strains clustered in four different clades, also showed that more than one clonal type can be found in a same individual. PMID:24516455

  8. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    ERIC Educational Resources Information Center

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  9. Typing of Streptococcus mutans strains isolated from caries free and susceptible subjects by multilocus enzyme electrophoresis.

    PubMed

    Tahmourespour, Arezoo; Nabinejad, Abdolreza; Shirian, Hannaneh; Rosa, Edvaldo Antonio Ribeiro; Tahmourespour, Sanaz

    2013-01-01

    This study was evaluated the clonal diversity of Streptococcus mutans in caries-free and caries-active subjects using MLEE. Strains from caries-free subjects were grouped in a single taxon. Unrooted dendrogram showed that different strains clustered in four different clades, also showed that more than one clonal type can be found in a same individual. PMID:24516455

  10. EFFECT OF A PROPOLIS EXTRACT ON STREPTOCOCCUS MUTANS COUNTS IN VIVO

    PubMed Central

    Duailibe, Silvana Alves de Carvalho; Gonçalves, Azizedite Guedes; Ahid, Fernando Jorge Mendes

    2007-01-01

    Objective: To evaluate the antibacterial action of an extract of geopropolis produced by the bee Melipona compressipes fasciculata on the concentration of Streptococcus mutans colonizing the oral cavity of young patients. Forty-one young volunteers performed 21 mouth rinses divided into three rinses per day for 7 days, with no other changes in their oral hygiene and dietary habits. Saliva was collected at three time points: before the first rinse, and one hour and 7 days after the first rinse. A reduction in the concentration of S. mutans was observed in 49% of all samples collected after use of the extract, 26% showed no alterations, and an increasing in S. mutans was observed in 25%. Was performed with the Statistica for Windows 5.9 program using the Kruskal-Wallis test for analysis of variance and the Mann-Whitney U test, with the level of significance set at 5%. The propolis extract possesses in vivo antimicrobial activity against S. mutans present in the oral cavity and might be used as an alternative measure to prevent dental caries. PMID:19089172

  11. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis.

    PubMed

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms. PMID:26347778

  12. In Vitro Effect of Zingiber officinale Extract on Growth of Streptococcus mutans and Streptococcus sanguinis

    PubMed Central

    Azizi, Arash; Aghayan, Shabnam; Zaker, Saeed; Shakeri, Mahdieh; Entezari, Navid; Lawaf, Shirin

    2015-01-01

    Background and Objectives. Tooth decay is an infectious disease of microbial origin. Considering the increasing prevalence of antibiotic resistance due to their overuse and also their side effects, medicinal plants are now considered for use against bacterial infections. This study aimed to assess the effects of different concentrations of Zingiber officinale extract on proliferation of Streptococcus mutans and Streptococcus sanguinis in vitro. Materials and Methods. In this experimental study, serial dilutions of the extract were prepared in two sets of 10 test tubes for each bacterium (total of 20). Standard amounts of bacterial suspension were added; 100ƛ of each tube was cultured on prepared solid agar plates and incubated at 37°C for 24 hours. Serial dilutions of the extract were prepared in another 20 tubes and 100ƛ of each tube was added to blood agar culture medium while being prepared. The mixture was transferred to the plates. The bacteria were inoculated on plates and incubated as described. Results. The minimum inhibitory concentration (MIC) was 0.02 mg/mL for S. mutans and 0.3 mg/mL for S. sanguinis. The minimum bactericidal concentration (MBC) was 0.04 mg for S. mutans and 0.6 mg for S. sanguinis. Conclusion. Zingiber officinale extract has significant antibacterial activity against S. mutans and S. sanguinis cariogenic microorganisms. PMID:26347778

  13. Susceptibility of Porphyromonas gingivalis and Streptococcus mutans to Antibacterial Effect from Mammea americana

    PubMed Central

    Herrera Herrera, Alejandra; Franco Ospina, Luis; Fang, Luis; Díaz Caballero, Antonio

    2014-01-01

    The development of periodontal disease and dental caries is influenced by several factors, such as microorganisms of bacterial biofilm or commensal bacteria in the mouth. These microorganisms trigger inflammatory and immune responses in the host. Currently, medicinal plants are treatment options for these oral diseases. Mammea americana extracts have reported antimicrobial effects against several microorganisms. Nevertheless, this effect is unknown against oral bacteria. Therefore, the aim of this study was to evaluate the antibacterial effect of M. americana extract against Porphyromonas gingivalis and Streptococcus mutans. For this, an experimental study was conducted. Ethanolic extract was obtained from seeds of M. americana (one oil phase and one ethanolic phase). The strains of Porphyromonas gingivalis ATCC 33277 and Streptococcus mutans ATCC 25175 were exposed to this extract to evaluate its antibacterial effect. Antibacterial activity was observed with the two phases of M. americana extract on P. gingivalis and S. mutans with lower MICs (minimum inhibitory concentration). Also, bactericidal and bacteriostatic activity was detected against S. mutans, depending on the concentration of the extract, while on M. americana extract presented only bacteriostatic activity against P. gingivalis. These findings provide important and promising information allowing for further exploration in the future. PMID:24864137

  14. The SloR/Dlg Metalloregulator Modulates Streptococcus mutans Virulence Gene Expression

    PubMed Central

    Rolerson, Elizabeth; Swick, Adam; Newlon, Lindsay; Palmer, Cameron; Pan, Yong; Keeshan, Britton; Spatafora, Grace

    2006-01-01

    Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease. PMID:16816176

  15. EVALUATION OF GENOTYPIC DIVERSITY OF Streptococcus mutans USING DISTINCT ARBITRARY PRIMERS

    PubMed Central

    Tabchoury, Cínthia Pereira Machado; Sousa, Maria Clara K.; Arthur, Rodrigo Alex; Mattos-Graner, Renata Oliveira; Cury, Altair Antoninha Del Bel; Cury, Jaime Aparecido

    2008-01-01

    Streptococcus mutans has been considered one of the main etiological agents of dental caries and the genotypic diversity rather than its salivary counts may be considered as a virulence factor of this bacterium. For genotyping with polymerase chain reaction (PCR) with arbitrary primers, several primers have been used in order to improve complexity and specificity of amplicon patterns. Thus, the aim of this study was to evaluate the degree of agreement of genotypic identification among AP-PCR reactions performed with 5 distinct arbitrary primers of S. mutans isolated from saliva. Stimulated saliva was collected from 11 adult volunteers for isolation of S. mutans, and a total of 88 isolates were genotyped with arbitrary primers OPA 02, 03, 05, 13 and 18. Fourteen distinct genotypes were identified in the saliva samples. Most volunteers (9 out of 11) presented only one genotype. The results of the present study suggest that primers OPA 02, 03, 05 and 13 were suitable for genotypic identification of S. mutans isolates of saliva from adult volunteers. PMID:19082399

  16. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm.

    PubMed

    da Cunha, Marcos Guilherme; Franchin, Marcelo; Galvão, Lívia Câmara de Carvalho; Bueno-Silva, Bruno; Ikegaki, Masaharu; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250  μ g/mL and 400  μ g/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P < 0.05) subsequently observed at SEM images, and this reduction was noticed in the amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides, and proteins. In addition, the S. mutans viability (killing assay) and acid production by glycolytic pH drop were not affected (P > 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix. PMID:23843868

  17. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm

    PubMed Central

    da Cunha, Marcos Guilherme; Galvão, Lívia Câmara de Carvalho; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250 μg/mL and 400 μg/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P < 0.05) subsequently observed at SEM images, and this reduction was noticed in the amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides, and proteins. In addition, the S. mutans viability (killing assay) and acid production by glycolytic pH drop were not affected (P > 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix. PMID:23843868

  18. Gene regulation in S. mutans: complex control in a complex environment.

    PubMed

    Smith, E G; Spatafora, G A

    2012-02-01

    Dental caries is a chronic infectious disease of multifactorial etiology that derives from the interplay among cariogenic bacteria on the dentition, the host diet, and other environmental exposures. Streptococcus mutans proliferates as a biofilm on the tooth surface, where it obtains nutrients and metabolizes fermentable dietary carbohydrates. The accumulation of lactic acid as a by-product of fermentation results in acidification of the plaque biofilm and demineralization of tooth enamel, marking the onset of decay. The ability of S. mutans to respond to environmental stresses presented by salivary flow, acid pH, oxidative stress, and changes in carbohydrate source and availability is essential for its survival and predominance in caries lesions. Importantly, S. mutans has evolved a network of regulators to integrate its cellular response to environmental change. Herein we describe the latest insights into global gene regulation in S. mutans, including mechanisms of signal transduction, carbon catabolite repression, and quorum-sensing. An improved understanding of these regulatory networks can provide a basis for novel therapeutic applications aimed at treating and/or preventing caries. PMID:21743034

  19. The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression.

    PubMed

    Rolerson, Elizabeth; Swick, Adam; Newlon, Lindsay; Palmer, Cameron; Pan, Yong; Keeshan, Britton; Spatafora, Grace

    2006-07-01

    Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease. PMID:16816176

  20. Conserved and divergent functions of RcrRPQ in Streptococcus gordonii and S. mutans

    PubMed Central

    Shields, Robert C.; Burne, Robert A.

    2015-01-01

    In the dental caries pathogen Streptococcus mutans, an MarR-like transcriptional regulator (RcrR), two ABC efflux pumps (RcrPQ) and two effector peptides encoded in the rcrRPQ operon provide molecular connections between stress tolerance, (p)ppGpp metabolism and genetic competence. Here, we examined the role of RcrRPQ in the oral commensal S. gordonii. Unlike in S. mutans, introduction of polar or non-polar rcrR mutations into S. gordonii elicited no significant changes in transformation efficiency. However, S. gordonii rcrR mutants were markedly impaired in their ability to grow in the presence of hydrogen peroxide, paraquat, low pH or elevated temperature. Sensitivity to paraquat could also be conferred by mutation of cysteine residues that are present in the RcrR protein of S. gordonii, but not in S. mutans RcrR. Thus, stress tolerance is a conserved function of RcrRPQ in a commensal and pathogenic streptococcus, but the study reveals additional differences in regulation of genetic competence development between S. mutans and S. gordonii. PMID:26229070

  1. Effects of oral environment stabilization procedures on Streptococcus mutans counts in pregnant women.

    PubMed

    Volpato, Flavia Cristina; Jeremias, Fabiano; Spolidório, Denise Madalena Palomari; Silva, Silvio Rocha Corrêa da; Valsecki Junior, Aylton; Rosell, Fernanda Lopez

    2011-01-01

    The aim of this study was to determine the effect of oral environment stabilization (OES) on the counting of Streptococcus mutans in high-caries-risk pregnant women participants of a prevention program in a public teaching institution. The sample was composed of 30 pregnant women aged 18 to 43 years, who looked for treatment at the Preventive Dentistry Clinic of the Araraquara Dental School, UNESP. Saliva samples were collected before and after the OES procedures and were forwarded to the pathology for observation and quantification of S. mutans CFU. There was a decrease in the number of S. mutans CFU, which was significantly different (p<0.0001) between samples. Considering the age group, 70.0% were between 18 to 30 years old and 30.0% belonged to the 31-43-year-old age group. Data related to the pregnancy period showed that 73.4% were in the second trimester, 13.3% in the first and 13.3% in third trimester. OES showed to be an effective clinical procedure in diminishing the number of S. mutans CFU in the saliva of high-caries-risk pregnant women. This management is simple and effective, corresponding to the basic treatment needs of pregnant women that search dental care in this public service. PMID:21861025

  2. Effect of an antibacterial varnish on mutans streptococci in plaque from enamel adjacent to orthodontic appliances.

    PubMed

    Twetman, S; Hallgren, A; Petersson, L G

    1995-01-01

    The effect of an antibacterial varnish (Cervitec) on the levels of mutans streptococci in plaque adjacent to bonded orthodontic brackets was evaluated in 18 children using a split-mouth technique with a placebo varnish control. The test varnish contained 1% chlorhexidine and 1% thymol as active ingredients. Both varnishes were applied on four occasions during a 3-month period, and plaque was subsequently collected between 1 week and 6 months after the onset of treatment. All teeth involved in the study were carefully examined and clinically assessed for enamel demineralization prior to onset of the fixed appliances and immediately after debonding. The results showed a more frequent growth of mutans streptococci in the dental plaque collected from placebo-treated quadrants as compared with the test quadrants on all sampling occasions. The proportion of mutans streptococci within the plaque microflora was significantly (p < 0.05-0.01) lower on the test sides than on the opposite sides at the 1-week and 1-month examinations. The incidence of incipient enamel lesions around the brackets and along the gingival margin was generally low, and no differences were found between the test and placebo varnish treated quandrants at the time of debonding. The results suggest that mutans streptococci in plaque from orthodontic patients can be suppressed effectively by topical applications of an antibacterial varnish. PMID:7621493

  3. Interaction of structural isomers of sucrose in the reaction between sucrose and glucosyltransferases from mutans streptococci.

    PubMed

    Minami, T; Fujiwara, T; Ooshima, T; Nakajima, Y; Hamada, S

    1990-08-01

    Structural isomers of sucrose, i.e. disaccharides composed of glucose and fructose molecules with different glucosidic linkages, were examined for their effect on the reaction between sucrose and various glucosyltransferases (GTases) from Streptococcus mutans MT8148 and Streptococcus sobrinus 6715. Trehalulose (alpha 1-1), turanose (alpha 1-3), maltulose (alpha 1-4), and palatinose (alpha 1-6) were used as the sucrose analogues. Mutans streptococci were found not to utilize these sucrose analogues. Analysis of enzymatic products of GTase and sucrose with thin layer chromatography clearly revealed that glucan synthesis from [14C]sucrose by the various purified GTase preparations from S. mutans and S. sobrinus was inhibited in the presence of these sucrose analogues except turanose, resulting in the release of increased amounts of [14C]fructose and [14C]oligosaccharides. It was also found that the fructose residues in the oligosaccharides were derived from those of sucrose analogues but not sucrose itself. The Lineweaver-Burk plots of the substrate saturation kinetics of GTase vs sucrose indicated increased Km and Vmax in the presence of sucrose analogue, as compared with sucrose alone. Finally, these sucrose analogues except turanose inhibited sucrose dependent cellular adherence of S. sobrinus 6715 to a glass surface, while they scarcely inhibited the adherence of S. mutans MT8148. Among the analogues, maltulose appeared the most effective inhibitor against GTases in general. PMID:2150553

  4. Effects of 7-Epiclusianone on Streptococcus mutans and Caries Development in Rats

    PubMed Central

    Branco-de-Almeida, Luciana Salles; Murata, Ramiro Mendonça; Franco, Eliane Melo; dos Santos, Marcelo Henrique; de Alencar, Severino Matias; Koo, Hyun; Rosalen, Pedro Luiz

    2011-01-01

    The aim of this study was to evaluate the effects of 7-epiclusianone (7-epi) on specific virulence attributes of Streptococcus mutans in vitro and on development of dental caries in vivo. 7-Epi was obtained and purified from fruits of Rheedia brasiliensis. We investigated its influence on surface-adsorbed glucosyltransferase (Gtf) B activity, acid production, and viability of S. mutans in biofilms, as well as on caries development using a rodent model. 7-Epi (100 μg/mL) significantly reduced the activity of surface-adsorbed GtfB (up to 48.0 ± 1.8 of inhibition at 100 μg/mL) and glycolytic pH-drop by S. mutans in biofilms (125 and 250 μg/mL) (vs. vehicle control, p < 0.05). In contrast, the test compound did not significantly affect the bacterial viability when compared to vehicle control (15% ethanol, p > 0.05). Wistar rats treated topically with 7-epi (twice daily, 60-s exposure) showed significantly smaller number of and less severe smooth- and sulcal-surface carious lesions (p < 0.05), without reducing the S. mutans viable population from the animals’ dental biofilms. In conclusion, the natural compound 7-epiclusianone may be a potentially novel pharmacological agent to prevent and control dental caries disease. PMID:20665370

  5. Uptake of saccharin and related intense sweeteners by Streptococcus mutans NCTC 10449.

    PubMed

    Ziesenitz, S C; Siebert, G

    1988-09-01

    In a 1-octanol/phosphate buffer system, saccharin was much more lipophilic than would be inferred from its dissociation constant which, however, determined the partition behavior of acesulfame and cyclamate. The uptake of saccharin into Streptococcus mutans led to a 30 to 40-fold higher concentration of this intense sweetener within cells than in the incubation medium. Acesulfame and cyclamate were distributed between cells and medium essentially in a diffusion-controlled manner. The uptake of saccharin into S. mutans was found to depend strongly on simultaneous sugar fermentation, and in addition, on external pH, sweetener concentrations, and cell densities. Without glycolysis, caused, for example, by an exhaustion of added sucrose, too acidic external pH, or the addition of glycolysis inhibitors, the uptake of saccharin was diffusion-controlled as in the case of acesulfame and cyclamate. The uptake of saccharin was inhibited by a reversal of the direction of the lactate gradient from in----out to out----in. The activation energy of saccharin uptake into glycolyzing S. mutans was near 18 kJ/mol, while glycolysis itself required 82-98 kJ/mol as activation energy, depending somewhat on experimental conditions. Up to 100 attomol of saccharin per bacterial cell was observed. It was concluded that the cytomembrane of S. mutans was involved in mediating the inhibitory effects of saccharin by an antiport of saccharin into cells in exchange for lactate. PMID:2467446

  6. Effects of 7-epiclusianone on Streptococcus mutans and caries development in rats.

    PubMed

    Branco-de-Almeida, Luciana Salles; Murata, Ramiro Mendonça; Franco, Eliane Melo; dos Santos, Marcelo Henrique; de Alencar, Severino Matias; Koo, Hyun; Rosalen, Pedro Luiz

    2011-01-01

    The aim of this study was to evaluate the effects of 7-epiclusianone (7-epi) on specific virulence attributes of Streptococcus mutans in vitro and on development of dental caries in vivo. 7-Epi was obtained and purified from fruits of Rheedia brasiliensis. We investigated its influence on surface-adsorbed glucosyltransferase (Gtf) B activity, acid production, and viability of S. MUTANS in biofilms, as well as on caries development using a rodent model. 7-Epi (100 µg/mL) significantly reduced the activity of surface-adsorbed GtfB (up to 48.0 ± 1.8 of inhibition at 100 µg/mL) and glycolytic pH-drop by S. mutans in biofilms (125 and 250 µg/mL) (vs. vehicle control, p < 0.05). In contrast, the test compound did not significantly affect the bacterial viability when compared to vehicle control (15 % ethanol, p > 0.05). Wistar rats treated topically with 7-epi (twice daily, 60-s exposure) showed significantly smaller number of and less severe smooth- and sulcal-surface carious lesions (p < 0.05), without reducing the S. mutans viable population from the animals' dental biofilms. In conclusion, the natural compound 7-epiclusianone may be a potentially novel pharmacological agent to prevent and control dental caries disease. PMID:20665370

  7. Zoocin A and lauricidin in combination reduce Streptococcus mutans growth in a multispecies biofilm.

    PubMed

    Lester, K; Simmonds, R S

    2012-01-01

    Dental caries is the most prevalent human infection. It is a multifactorial disease in which the microbial composition of dental plaque plays a major role in the development of clinical symptoms. The bacteria most often implicated in the development of caries are that group of streptococci referred to as the mutans streptococci, in particular Streptococcus mutans and Streptococcus sobrinus. One approach to the prevention of caries is to reduce the numbers of mutans streptococci in plaque to a level insufficient to support demineralization of the tooth. In this study, zoocin A, a peptidoglycan hydrolase, combined with lauricidin, a cell membrane active lipid, was shown over a 72 h period to selectively suppress the growth of S. mutans in a triple species biofilm. Growth of the non-target species Streptococcus oralis and Actinomyces viscosus was not inhibited. In treated systems the amount of extracellular polysaccharide matrix produced was much reduced as determined by use of fluorescein isothiocyanate conjugated wheat germ agglutinin. The pH of treated biofilms remained above neutral as opposed to a value of 4.3 in untreated controls. We conclude that use of antimicrobial compounds that specifically target cariogenic bacteria should be further explored. PMID:22508519

  8. Susceptibility of Porphyromonas gingivalis and Streptococcus mutans to Antibacterial Effect from Mammea americana.

    PubMed

    Herrera Herrera, Alejandra; Franco Ospina, Luis; Fang, Luis; Díaz Caballero, Antonio

    2014-01-01

    The development of periodontal disease and dental caries is influenced by several factors, such as microorganisms of bacterial biofilm or commensal bacteria in the mouth. These microorganisms trigger inflammatory and immune responses in the host. Currently, medicinal plants are treatment options for these oral diseases. Mammea americana extracts have reported antimicrobial effects against several microorganisms. Nevertheless, this effect is unknown against oral bacteria. Therefore, the aim of this study was to evaluate the antibacterial effect of M. americana extract against Porphyromonas gingivalis and Streptococcus mutans. For this, an experimental study was conducted. Ethanolic extract was obtained from seeds of M. americana (one oil phase and one ethanolic phase). The strains of Porphyromonas gingivalis ATCC 33277 and Streptococcus mutans ATCC 25175 were exposed to this extract to evaluate its antibacterial effect. Antibacterial activity was observed with the two phases of M. americana extract on P. gingivalis and S. mutans with lower MICs (minimum inhibitory concentration). Also, bactericidal and bacteriostatic activity was detected against S. mutans, depending on the concentration of the extract, while on M. americana extract presented only bacteriostatic activity against P. gingivalis. These findings provide important and promising information allowing for further exploration in the future. PMID:24864137

  9. Biological function of the dTDP-rhamnose synthesis pathway in Streptococcus mutans.

    PubMed Central

    Tsukioka, Y; Yamashita, Y; Oho, T; Nakano, Y; Koga, T

    1997-01-01

    We have cloned a new gene locus that comprises three genes concerned with the biosynthesis of the serotype c-specific polysaccharide antigen in Streptococcus mutans. The genes encode proteins exhibiting significant homology to the rfbA, rfbB, and rfbD gene products that are involved in the anabolism of dTDP-L-rhamnose from D-glucose-1-phosphate. This anabolism pathway pertains to biosynthesis of the O antigen of lipopolysaccharide in gram-negative bacteria. The cell extract of Escherichia coli expressing each of the cloned genes of S. mutans exhibited enzymatic activity corresponding to the homologous counterpart of the rfb gene products. Rhamnose was not detected in the cell wall preparation purified from the mutant in which each of the three cloned genes was insertionally inactivated. Rabbit antiserum against S. mutans serotype c-specific antigen did not react with the autoclaved extracts from these mutants. These results indicate that the gene products identified in the present study are involved in the dTDP-L-rhamnose synthesis pathway and that the pathway relates to the biosynthesis of the serotype-specific polysaccharide antigen of S. mutans. Southern hybridization analysis revealed that genes homologous to the cloned genes involved in the dTDP-L-rhamnose synthesis pathway were widely distributed in a variety of streptococci. This is the first report of the biological function of the dTDP-rhamnose pathway in streptococci. PMID:9023194

  10. Effect of sustained-release chlorhexidine varnish on Streptococcus mutans and Actinomyces viscosus in orthodontic patients.

    PubMed

    Beyth, Nurit; Redlich, Meir; Harari, Doron; Friedman, Michael; Steinberg, Doron

    2003-03-01

    This study evaluated the effect of sustained-release chlorhexidine varnish on orthodontic patients. Ten children, ages 10 to 16 years, participated. Bacterial levels of Streptococcus mutans and Actinomyces viscosus and total counts were evaluated in sputum samples. These counts were evaluated at 4 stages: before orthodontic treatment, at least 2 weeks after bonding of the brackets, 1 week after application of chlorhexidine varnish, and 3 weeks after application of chlorhexidine varnish. Increases in bacterial levels of S mutans and in the total bacterial count were detected after the brackets were bonded. One week after the sustained-release chlorhexidine varnish was applied, a significant decrease of total bacterial levels and S mutans was observed. This decrease persisted for 3 weeks after the first application. No significant change in A viscosus levels occurred during that period. The results provide additional evidence that sustained-release chlorhexidine varnish decreases S mutans levels in orthodontic patients with fixed appliances and therefore might be useful in preventing caries lesions. PMID:12637907

  11. Effect of Weissella cibaria isolates on the formation of Streptococcus mutans biofilm.

    PubMed

    Kang, M-S; Chung, J; Kim, S-M; Yang, K-H; Oh, J-S

    2006-01-01

    The objective of this study was to isolate and identify lactic acid bacteria able to inhibit the in vitro formation of Streptococcus mutans biofilm as well as the in vivo formation of oral biofilm. Two strains, CMS1 and CMS3, exhibiting profound inhibitory effects on the formation of S. mutans biofilm and the proliferation of S. mutans, were isolated from children's saliva and identified as Weissella cibaria by 16S rDNA sequencing. The water-soluble polymers produced from sucrose by the W. cibaria isolates also inhibited the formation of S. mutans biofilm. According to the results of thin-layer chromatographic analysis, the hydrolysates of water-soluble polymers produced by the isolates were identical to those of dextran, forming mostly alpha-(1-6) glucose linkages. In the clinical study, the subjects mouthrinsed with a solution containing W. cibaria CMS1 evidenced plaque index reduction of approximately 20.7% (p < 0.001). These results indicate that the W. cibaria isolates possess the ability to inhibit biofilm formation, both in vitro and in vivo. PMID:16946611

  12. Regulation of Streptococcus mutans PTS Bio by the transcriptional repressor NigR.

    PubMed

    Vujanac, M; Iyer, V S; Sengupta, M; Ajdic, D

    2015-08-01

    Streptococcus mutans is implicated in human dental caries, and the carbohydrate metabolism of this organism plays an important role in the formation of this disease. Carbohydrate transport and metabolism are essential for the survival of S. mutans in the oral cavity. It is known that a unique phosphoenolpyruvate-sugar phosphotransferase system PTS(B) (io) of S. mutans UA159 is expressed in sucrose-grown biofilms (Mol Oral Microbiol 28: 2013; 114). In this study we analyzed the transcriptional regulation of the operon (O(B) (io) ) encoding the PTS(B) (io) and showed that it was repressed by NigR, a LacI-like transcriptional regulator. Using electro-mobility shift assay, we described two operators to which NigR bound with different affinities. We also identified the transcriptional start site and showed that one of the operators overlaps with the promoter and presumably represses initiation of transcription. Mutational analyses revealed the key nucleotides in the operators required for high-affinity binding of NigR. PTS(B) (io) is expressed in S. mutans biofilms so understanding its regulation may provide improved strategies for caries treatment and prevention. PMID:25580872

  13. Lectin-Like Constituents of Foods Which React with Components of Serum, Saliva, and Streptococcus mutans

    PubMed Central

    Gibbons, R. J.; Dankers, I.

    1981-01-01

    Hot and cold aqueous extracts were prepared from 22 commonly ingested fruits, vegetables, and seeds. When tested by agar diffusion, extracts from 13 and 10 of the foods formed precipitin bands with samples of normal rabbit serum and human saliva, respectively; extracts from four of the foods also reacted with antigen extracts of strains of Streptococcus mutans. When added to rabbit antiserum, extracts from 18 of 21 foods tested inhibited reactivity with antigen extracts derived from S. mutans MT3. Extracts from 16 foods agglutinated whole S. mutans cells, whereas those from 10 foods agglutinated human erythrocytes of blood types A and B. The lectin-like activities of extracts which reacted with human saliva were studied further. Pretreatment of saliva-coated hydroxyapatite (S-HA) beads with extracts of bananas, coconuts, carrots, alfalfa, and sunflower seeds markedly reduced the subsequent adsorption of S. mutans MT3. Pretreatment of S-HA with banana extract also strongly inhibited adsorption of S. mutans H12 and S. sanguis C1, but it had little effect on attachment of Actinomyces naeslundii L13 or A. viscosus LY7. Absorption experiments indicated that the component(s) in banana extract responsible for inhibiting streptococcal adsorption to S-HA was identical to that which bound to human erythrocytes. The banana hemagglutinin exhibited highest activity between pH 7 and 8, and it was inhibited by high concentrations of glucosamine, galactosamine, and, to a lesser extent, mannosamine. Other sugars tested had no effect. The selective bacterial adsorption-inhibiting effect noted for banana extract was also observed in studies with purified lectins. Thus, pretreating S-HA with wheat germ agglutinin and concanavalin A inhibited adsorption of S. mutans MT3 cells, whereas peanut agglutinin, Ulex agglutinin, Dolichos agglutinin, and soybean agglutinin had little effect; none of these lectins affected attachment of A. viscosus LY7. Collectively, the observations suggest that

  14. Adherence of Streptococcus mutans to Fiber-Reinforced Filling Composite and Conventional Restorative Materials.

    PubMed

    Lassila, Lippo V J; Garoushi, Sufyan; Tanner, Johanna; Vallittu, Pekka K; Söderling, Eva

    2009-01-01

    OBJECTIVES.: The aim was to investigate the adhesion of Streptococcus mutans (S. mutans) to a short glass fibers reinforced semi-IPN polymer matrix composite resin. The effect of surface roughness on adhesion was also studied. For comparison, different commercial restorative materials were also evaluated. MATERIALS AND METHODS.: Experimental composite FC resin was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of IPN-resin and 55 wt% of silane treated silica fillers using high speed mixing machine. Three direct composite resins (Z250, Grandio and Nulite), resin-modified glass ionomers (Fuji II LC), amalgam (ANA 2000), fiber-reinforced composite (FRC) (everStick and Ribbond), and pre-fabricated ceramic filling insert (Cerana class 1) were tested in this study. Enamel and dentin were used as controls. The specimens (n=3/group) with or without saliva were incubated in a suspension of S. mutans allowing initial adhesion to occur. For the enumeration of cells on the disc surfaces as colony forming units (CFU) the vials with the microbe samples were thoroughly Vortex-treated and after serial dilutions grown anaerobically for 2 days at +37 degrees C on Mitis salivarius agars (Difco) containing bacitracin. Bacterial adhesion was also evaluated by using scanning electron microscopy. Surface roughness (Ra) of the materials was also determined using a surface profilometer. All results were statistically analyzed with one-way analysis of variance (ANOVA). RESULTS.: Composite FC resin and other commercial restorative materials showed similar adhesion of S. mutans, while adhesion to dentin and enamel was significantly higher (p<0.05). Surface roughness had no effect on bacterial adhesion. Saliva coating significantly decreased the adhesion for all materials (p<0.05). Composite FC resin had a significantly higher Ra value than control groups (p<0.05). CONCLUSIONS.: Short fiber-reinforced composite with semi-IPN polymer matrix revealed similar S. mutans adhesion

  15. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid

    PubMed Central

    Kim, Soohyeon; Song, Minju; Roh, Byoung-Duck; Park, Sung-Ho

    2013-01-01

    Objectives To evaluate the inhibitory effect of ursolic acid (UA)-containing composites on Streptococcus mutans (S. mutans) biofilm. Materials and Methods Composite resins with five different concentrations (0.04, 0.1, 0.2, 0.5, and 1.0 wt%) of UA (U6753, Sigma Aldrich) were prepared, and their flexural strengths were measured according to ISO 4049. To evaluate the effect of carbohydrate source on biofilm formation, either glucose or sucrose was used as a nutrient source, and to investigate the effect of saliva treatment, the specimen were treated with either unstimulated whole saliva or phosphate-buffered saline (PBS). For biofilm assay, composite disks were transferred to S. mutans suspension and incubated for 24 hr. Afterwards, the specimens were rinsed with PBS and sonicated. The colony forming units (CFU) of the disrupted biofilm cultures were enumerated. For growth inhibition test, the composites were placed on a polystyrene well cluster, and S. mutans suspension was inoculated. The optical density at 600 nm (OD600) was recorded by Infinite F200 pro apparatus (TECAN). One-way ANOVA and two-way ANOVA followed by Bonferroni correction were used for the data analyses. Results The flexural strength values did not show significant difference at any concentration (p > 0.01). In biofilm assay, the CFU score decreased as the concentration of UA increased. The influence of saliva pretreatment was conflicting. The sucrose groups exhibited higher CFU score than glucose group (p < 0.05). In bacterial growth inhibition test, all experimental groups containing UA resulted in complete inhibition. Conclusions Within the limitations of the experiments, UA included in the composite showed inhibitory effect on S. mutans biofilm formation and growth. PMID:23741708

  16. Modulation of covR expression in Streptococcus mutans UA159.

    PubMed

    Chong, Patrick; Drake, Laura; Biswas, Indranil

    2008-07-01

    The biofilm-forming Streptococcus mutans is a gram-positive bacterium that resides in the human oral cavity and is considered to be the primary etiological agent in the formation of dental caries. The global response regulator CovR, which lacks a cognate sensor kinase, is essential for the pathogenesis and biofilm formation of this bacterium, but it is not clear how covR expression is regulated in S. mutans. In this communication, we present the results of our studies examining various factors that regulate the expression of covR in S. mutans UA159. The results of Southern hybridization and PCR analysis indicated that CovR is an orphan response regulator in various isolates of S. mutans. The transcriptional start site for covR was found to be 221 base pairs upstream of the ATG start codon, and site-directed mutagenesis of the upstream TATAAT box confirmed our findings. The expression of covR is growth phase dependent, with maximal expression observed during exponential-growth phase. While changes to the growth temperature did not significantly affect the expression of covR, increasing the pH or the concentration of Mg(2+) in the growth medium leads to an increase in covR expression. The results of semiquantitative reverse transcriptase PCR analysis and in vivo transcriptional-fusion reporter assays indicated that CovR autoregulates its own expression; this was verified by the results of electrophoretic mobility shift assays and DNase I protection assays, which demonstrated direct binding of CovR to the promoter region. Apparently, regulation by Mg(2+) and the autoregulation of covR are not linked. A detailed analysis of the regulation of CovR may lead to a better understanding of the pathogenesis of S. mutans, as well as providing further insight into the prevention of dental caries. PMID:18469111

  17. Identification and Functional Analysis of an Ammonium Transporter in Streptococcus mutans

    PubMed Central

    Ardin, Arifah Chieko; Fujita, Kazuyo; Nagayama, Kayoko; Takashima, Yukiko; Nomura, Ryota; Nakano, Kazuhiko; Ooshima, Takashi; Matsumoto-Nakano, Michiyo

    2014-01-01

    Streptococcus mutans, a Gram-positive bacterium, is considered to be a major etiologic agent of human dental caries and reported to form biofilms known as dental plaque on tooth surfaces. This organism is also known to possess a large number of transport proteins in the cell membrane for export and import of molecules. Nitrogen is an essential nutrient for Gram-positive bacteria, though alternative sources such as ammonium can also be utilized. In order to obtain nitrogen for macromolecular synthesis, nitrogen-containing compounds must be transported into the cell. However, the ammonium transporter in S. mutans remains to be characterized. The present study focused on characterizing the ammonium transporter gene of S. mutans and its operon, while related regulatory genes were also analyzed. The SMU.1658 gene corresponding to nrgA in S. mutans is homologous to the ammonium transporter gene in Bacillus subtilis and SMU.1657, located upstream of the nrgA gene and predicted to be glnB, is a member of the PII protein family. Using a nrgA-deficient mutant strain (NRGD), we examined bacterial growth in the presence of ammonium, calcium chloride, and manganese sulfate. Fluorescent efflux assays were also performed to reveal export molecules associated with the ammonium transporter. The growth rate of NRGD was lower, while its fluorescent intensity was much higher as compared to the parental strain. In addition, confocal laser scanning microscopy revealed that the structure of biofilms formed by NRGD was drastically different than that of the parental strain. Furthermore, transcriptional analysis showed that the nrgA gene was co-transcribed with the glnB gene. These results suggest that the nrgA gene in S. mutans is essential for export of molecules and biofilm formation. PMID:25229891

  18. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

    PubMed Central

    Kasraei, Shahin; Sami, Lida; Hendi, Sareh; AliKhani, Mohammad-Yousef; Rezaei-Soufi, Loghman

    2014-01-01

    Objectives Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30). The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683) and Lactobacillus (PTCC 1643) were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at 37℃ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05). The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05). There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus. PMID:24790923

  19. Comparative genotyping of Streptococcus mutans by repetitive extragenic palindromic polymerase chain reaction and multilocus sequence typing.

    PubMed

    Momeni, S S; Whiddon, J; Moser, S A; Cheon, K; Ruby, J D; Childers, N K

    2013-02-01

    The genetic diversity of Streptococcus mutans has been extensively studied using a variety of genotyping methods. Repetitive extragenic palindromic-polymerase chain reaction (rep-PCR) is a genotyping approach used for screening large numbers of bacterial isolates. This two-part study used multilocus sequence typing (MLST) analysis to evaluate genotypes previously identified as unique using rep-PCR. In part one, an isolate was selected from each of the 22 S. mutans rep-PCR genotype groups representing 8000 clinical isolates. For part two, four additional isolates were selected from the six most commonly occurring genotype groups (GG) for further analysis. Real-time PCR was performed using eight housekeeping S. mutans gene loci and the amplicons were sequenced. Sequence data analysis was performed using CLC DNA Workbench and alleles were compared with the PubMLST database for Oral Streptococcus using the Nakano scheme. Concatenated sequences were evaluated with MEGA using a minimum evolution method with bootstrap. All 22 rep-PCR genotypes were unique by MLST analysis. Within rep-PCR GGs, MLST matched rep-PCR in three groups demonstrating clonality; three groups exhibited more diversity with MLST. The discovery of three clonal groups is unique to this study and suggests that S. mutans genotypes are shared between unrelated subjects. Furthermore, MLST defined 19 new alleles and 26 new sequence types that have been confirmed and registered with PubMLST. Methods for processing were streamlined and a process for using MLST with rep-PCR is suggested. In conclusion, MLST verified that rep-PCR is a reliable and cost-effective method for screening large numbers of S. mutans strains for epidemiological study. PMID:23194334

  20. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose.

    PubMed

    Decker, Eva-Maria; Klein, Christian; Schwindt, Dimitri; von Ohle, Christiane

    2014-12-01

    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the

  1. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats.

    PubMed Central

    Fitzgerald, R J; Adams, B O; Sandham, H J; Abhyankar, S

    1989-01-01

    A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation was slightly but not significantly (P greater than or equal to 0.2) less. Multiple oral or fecal samples plated on 2,3,5-triphenyltetrazolium indicator medium revealed no evidence of back mutation from Ldh- to Ldh+ in vivo. Both Ldh+ strain 041 and Ldh- strain 044 demonstrated bacteriocinlike activity in vitro against a number of human strains of mutans streptococci representing serotype a (S. cricetus) and serotypes c and e (S. mutans). Serotypes b (S. rattus) and f (S. mutans) and strains of S. mitior, S. sanguis, and S. salivarius were not inhibited. Thus, Ldh mutant strain 044 possesses a number of desirable traits that suggest it should be investigated further as a possible effector strain for replacement therapy of dental caries. These traits include its stability and low cariogenicity in the sensitive gnotobiotic rat caries model, its bacteriocinlike activity against certain other cariogenic S. mutans (but not against more inocuous indigenous oral streptococci), and the fact that it is a member of the most prevalent human serotype of cariogenic streptococci. PMID:2917788

  2. Adherence of Streptococcus mutans to Fiber-Reinforced Filling Composite and Conventional Restorative Materials

    PubMed Central

    Lassila, Lippo V.J; Garoushi, Sufyan; Tanner, Johanna; Vallittu, Pekka K; Söderling, Eva

    2009-01-01

    Objectives. The aim was to investigate the adhesion of Streptococcus mutans (S. mutans) to a short glass fibers reinforced semi-IPN polymer matrix composite resin. The effect of surface roughness on adhesion was also studied. For comparison, different commercial restorative materials were also evaluated. Materials and Methods. Experimental composite FC resin was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of IPN-resin and 55 wt% of silane treated silica fillers using high speed mixing machine. Three direct composite resins (Z250, Grandio and Nulite), resin-modified glass ionomers (Fuji II LC), amalgam (ANA 2000), fiber-reinforced composite (FRC) (everStick and Ribbond), and pre-fabricated ceramic filling insert (Cerana class 1) were tested in this study. Enamel and dentin were used as controls. The specimens (n=3/group) with or without saliva were incubated in a suspension of S. mutans allowing initial adhesion to occur. For the enumeration of cells on the disc surfaces as colony forming units (CFU) the vials with the microbe samples were thoroughly Vortex-treated and after serial dilutions grown anaerobically for 2 days at +37°C on Mitis salivarius agars (Difco) containing bacitracin. Bacterial adhesion was also evaluated by using scanning electron microscopy. Surface roughness (Ra) of the materials was also determined using a surface profilometer. All results were statistically analyzed with one-way analysis of variance (ANOVA). Results. Composite FC resin and other commercial restorative materials showed similar adhesion of S. mutans, while adhesion to dentin and enamel was significantly higher (p<0.05). Surface roughness had no effect on bacterial adhesion. Saliva coating significantly decreased the adhesion for all materials (p<0.05). Composite FC resin had a significantly higher Ra value than control groups (p<0.05). Conclusions. Short fiber-reinforced composite with semi-IPN polymer matrix revealed similar S. mutans adhesion than

  3. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation

    PubMed Central

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-01-01

    Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666

  4. Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces

    PubMed Central

    2010-01-01

    Background Adhesion and successful colonization of bacteria onto solid surfaces play a key role in biofilm formation. The initial adhesion and the colonization of bacteria may differ between the various types of surfaces found in oral cavity. Therefore, it is conceivable that diverse biofilms are developed on those various surfaces. The aim of the study was to investigate the molecular modifications occurring during in vitro biofilm development of Streptococcus mutans UA159 on several different dental surfaces. Results Growth analysis of the immobilized bacterial populations generated on the different surfaces shows that the bacteria constructed a more confluent and thick biofilms on a hydroxyapatite surface compared to the other tested surfaces. Using DNA-microarray technology we identified the differentially expressed genes of S. mutans, reflecting the physiological state of biofilms formed on the different biomaterials tested. Eight selected genes were further analyzed by real time RT-PCR. To further determine the impact of the tested material surfaces on the physiology of the bacteria, we tested the secretion of AI-2 signal by S. mutans embedded on those biofilms. Comparative transcriptome analyses indicated on changes in the S. mutans genome in biofilms formed onto different types of surfaces and enabled us to identify genes most differentially expressed on those surfaces. In addition, the levels of autoinducer-2 in biofilms from the various tested surfaces were different. Conclusions Our results demonstrate that gene expression of S. mutans differs in biofilms formed on tested surfaces, which manifest the physiological state of bacteria influenced by the type of surface material they accumulate onto. Moreover, the stressful circumstances of adjustment to the surface may persist in the bacteria enhancing intercellular signaling and surface dependent biofilm formation. PMID:20167085

  5. Effect of Chewing Xylitol Containing and Herbal Chewing Gums on Salivary Mutans Streptococcus Count among School Children

    PubMed Central

    Chavan, Sangeeta; Lakashminarayan, Nagesh; Kemparaj, Umesh

    2015-01-01

    Background: The present study aims to assess and compare the reduction in salivary Mutans Streptococci counts after chewing Xylitol, herbal and placebo gums among high school children. Methods: The study was conducted among 72 school children (12–15 years) from 3 randomly selected schools (blocks). Xylitol, herbal and placebo gums were randomly allocated to 3 blocks. Subjects were instructed to chew one pellet four times a day for 21 days. The mean reduction in salivary Streptococcus mutans count was assessed. Results: The 100% Xylitol sweetened chewing gum “Xylitol”has shown statistically significant reduction in salivary Mutans Streptococci colony forming units at the end of 21 days (P < 0.01). The reduction was not statistically significant in herbal and placebo chewing gum. Conclusions: Hundred percentage Xylitol sweetened chewing gum was found to be more effective in reducing salivary Mutans Streptococci count when compared to herbal and placebo chewing gums. PMID:26097673

  6. A Novel PTS of Streptococcus mutans is Responsible for Transport of Carbohydrates with α-1,3 linkage

    PubMed Central

    Ajdic, Dragana; Chen, Zhiyun

    2012-01-01

    SUMMARY The most common type of carbohydrate-transport system in Streptococcus mutans is the phosphoenolpyruvate (PEP)-sugar phosphotransferase system (PTS). We previously showed that fourteen PTSs exist in S. mutans UA159 (Ajdic et al., 2002). Several studies have shown that microorganisms growing in biofilms express different genes as compared to their planktonic counterparts. In this study, we showed that one PTS of S. mutans was expressed in sucrose-grown biofilms. Furthermore, the same PTS was also responsible for the transport and metabolism of disaccharide nigerose (3-O-α-D-glucopyranosyl-D-glucose). Additionally, the results indicate that the studied PTS might be involved in the transport and metabolism of carbohydrates synthesized by glucosyltransferase B (GtfB) and glucosyltransferase C (GtfC) of S. mutans. To our knowledge, this is the first report that shows PTS transport of a disaccharide (and possibly extracellular oligosaccharides) with α-1,3 linkage. PMID:23193985

  7. The Effects of Chlorhexidine and Persica Mouthwashes on Colonization of Streptococcus mutans on Fixed Orthodontics O-rings

    PubMed Central

    Saffari, Fereshteh; Danesh Ardakani, Mohammad; Zandi, Hengameh; Heidarzadeh, Hamed; Moshafi, Mohammad Hassan

    2015-01-01

    Statement of the Problem Fixed orthodontic appliances predispose patients to dental caries. Use of mouthrinses has been introduced as the effective way for reducing dental plaque accumulation. Purpose The aim of this study was to compare the effects of Persica mouthwash and Chlorhexidine (CHX) on colonization of Streptococcus mutans (S. mutans) on fixed orthodontic O-rings. Materials and Method Thirty patients with fixed orthodontic appliances and proper oral hygiene were randomly provided by CHX and Persica and trained to use these mouthwashes according to the manufacturer’s instruction. Sampling was carried out right before and 4 weeks after mouthrinsing treatment. The mean amounts of S. mutans colonies in these groups were compared. Results Comparison of S. mutans colonization within each group revealed both mouthrinses to be efficient. However, this difference was found to be significant only in CHX group. Conclusion Persica cannot be a good alternative mouthwash and patients on orthodontic treatment are still recommended to use CHX. PMID:25759859

  8. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    PubMed

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge. PMID:27589264

  9. [Inhibitory effects of a hot water extract from Japanese tea on the cell growth of mutans streptococci].

    PubMed

    Kitamura, K; Loyola, J P; Sobue, S

    1990-01-01

    This study was undertaken to examine the effect of a hot water extract from Japanese tea on the cellular growth of mutans streptococci in vitro. The extract contained polyphenol compounds, mainly catechin derivatives. Few fluoride components were contained in the extract. Streptococcus mutans MT8148R (serotype c) and S. sobrinus MT6715 (serotype g) strains were used in the present study. The organisms (10-10(7) CFU/ml) were cultured in brain heart infusion (BHI) and tryptose phosphate (TP) broths containing the tea extract (0-8 mg/ml). After incubation for 24-48 hours the cell numbers in the cultures were determined. Furthermore, cell growth of these strains on BHI agar plates containing the extract (0-2 mg/ml) were examined. The results obtained were as follows: 1. The tea extract (2-8 mg/ml) in BHI broth inhibited remarkably the growth of S. mutans and S. sobrinus (inoculum size; 10(6) CFU/ml). No difference in susceptibility to the tea extract between S. mutans and S. sobrinus was noted. 2. The cell growth of both strains in TP broth was inhibited by the tea extract. However S. sobrinus was found to be more sensitive to the extract than S. mutans. 3. Growth of S. sobrinus cells on the BHI agar plate was suppressed by the tea extract more effectively than that of S. mutans. These results suggest that the tea extract would be useful as an anti-cariogenic agent. PMID:2133962

  10. Combinatorial Effects of Aromatic 1,3-Disubstituted Ureas and Fluoride on In vitro Inhibition of Streptococcus mutans Biofilm Formation

    PubMed Central

    Kaur, Gurmeet; Balamurugan, P.; Uma Maheswari, C.; Anitha, A.; Princy, S. Adline

    2016-01-01

    Dental caries occur as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque). Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of S. mutans due to over use of various antibiotics are a rising problem and prompted the researchers worldwide to search for alternative therapies. In this perspective, the present study was aimed to screen selective inhibitors against ComA, a bacteriocin associated ABC transporter, involved in the quorum sensing of S. mutans. In light of our present in silico findings, 1,3-disubstituted urea derivatives which had better affinity to ComA were chemically synthesized in the present study for in vitro evaluation of S. mutans biofilm inhibition. The results revealed that 1,3-disubstituted urea derivatives showed good biofilm inhibition. In addition, synthesized compounds exhibited potent synergy with a very low concentration of fluoride (31.25–62.5 ppm) in inhibiting the biofilm formation of S. mutans without affecting the bacterial growth. Further, the results were supported by confocal laser scanning microscopy. On the whole, from our experimental results we conclude that the combinatorial application of fluoride and disubstituted ureas has a potential synergistic effect which has a promising approach in combating multidrug resistant and fluoride resistant S. mutans in dental caries management. PMID:27375583

  11. The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans

    PubMed Central

    Guo, Lihong; McLean, Jeffrey S.; Lux, Renate; He, Xuesong; Shi, Wenyuan

    2015-01-01

    Streptococcus mutans is considered the principal cariogenic bacterium for dental caries. Despite the recognition of their importance for cariogenesis, the possible coordination among S. mutans’ main virulence factors, including glucan production, acidogenicity and aciduricity, has been less well studied. In the present study, using S. mutans strains with surface-displayed pH-sensitive pHluorin, we revealed sucrose availability- and Gtf functionality-dependent proton accumulation on S. mutans surface. Consistent with this, using a pH-sensitive dye, we demonstrated that both in vivo cell-produced and in vitro enzymatically synthesized insoluble glucans displayed proton-concentrating ability. Global transcriptomics revealed proton accumulation triggers the up-regulation of genes encoding functions involved in acid tolerance response in a glucan-dependent manner. Our data suggested that this proton enrichment around S. mutans could pre-condition the bacterium for acid-stress. Consistent with this hypothesis, we found S. mutans strains defective in glucan production were more acid sensitive. Our study revealed for the first time that insoluble glucans is likely an essential factor linking acidogenicity with aciduricity. The coordination of these key virulence factors could provide new insights on how S. mutans may have become a major cariogenic pathogen. PMID:26657939

  12. Structural diversity of streptococcal mutans synthesized under different culture and environmental conditions and its effect on mutanase synthesis.

    PubMed

    Wiater, Adrian; Pleszczyńska, Małgorzata; Próchniak, Katarzyna; Szczodrak, Janusz

    2012-01-01

    Streptococcal mutans synthesized under different conditions by growing cultures or by their glucosyltransferases were shown to exhibit a great structural and property diversity. Culturing and environmental factors causing structural differences in mutans were specified. All of the obtained biopolymers (76 samples) were water-insoluble and most of them (72) had a structure with a predominance of α-(1→3)-linked glucose (i.e., the content of α-(1→3)-linkages in the glucan was always higher than 50%, but did not exceed 76%). An exception were four glucans containing more than 50% of α-(1→6)-sequences. In these structurally unique mutans, the ratio of α-(1→3)- to α-(1→6)-bonds ranged from 0.75 to 0.97. Aside from one polymer, all others had a heavily branched structures and differed in the number of α-(1→3), α-(1→6), and α-(1→3,6) linkages and their mutual proportion. The induction of mutanase production in shaken flask cultures of Trichoderma harzianum by the structurally diverse mutans resulted in enzyme activities ranging from 0.144 to 1.051 U/mL. No statistical correlation was found between the total percentage content of α-(1→3)-linkages in the α-glucan and mutanase activity. Thus, despite biosynthetic differences causing structural variation in the mutans, it did not matter which mutan structures were used to induce mutanase production. PMID:23047481

  13. Adsorption of parotid saliva proteins and adhesion of Streptococcus mutans ATCC 21752 to dental fiber-reinforced composites.

    PubMed

    Tanner, Johanna; Carlén, Anette; Söderling, Eva; Vallittu, Pekka K

    2003-07-15

    The use of fiber-reinforced composites (FRC) in dentistry has increased during recent years. In marginal areas of crowns and removable partial dentures the fibers may become exposed and come into contact with oral tissues, saliva, and microbes. To date, few articles have been published on oral microbial adhesion to FRCs. The aim of this study was to compare different FRCs, their components, and conventional restorative materials with respect to S. mutans ATCC 21752 adhesion and adsorption of specific S. mutans binding proteins. Surface roughness of the materials was also determined. Four different FRCs, a restorative composite, and a high-leucite ceramic material were studied. Polyethylene FRC was found to be significantly rougher than all other materials. Aramid FRC also showed higher surface roughness in comparison with all materials but polyethylene FRC. Without a saliva pellicle, adhesion of S. mutans coincided with surface roughness and polyethylene and aramid FRC promoted S. mutans adhesion better than the other smoother materials. In the presence of salivary pellicle, ceramic and polyethylene FRC bound more bacteria than the other materials studied. Higher quantities of S. mutans binding proteins in the pellicles may in part account for the higher S. mutans adhesion to saliva-coated ceramic and polyethylene FRC. PMID:12808599

  14. Impact of Streptococcus mutans on the generation of fluorescence from artificially induced enamel and dentin carious lesions in vitro.

    PubMed

    Shigetani, Yoshimi; Takenaka, Shoji; Okamoto, Akira; Abu-Bakr, Neamat; Iwaku, Masaaki; Okiji, Takashi

    2008-07-01

    The purpose of this study was to examine whether Streptococcus mutans is implicated in the generation of fluorescence detected in carious lesions. Enamel surfaces and dentin cavities of extracted human teeth were subjected to artificial caries generation by exposing them either to a culture medium containing S. mutans or to a lactic acid buffer for 2 weeks. Fluorescence from the lesions was detected with confocal laser scanning microscopy or fluorescence microscopy at various excitation wavelengths, and maximum fluorescence radiance was computed using imageanalyzing software. Culture media of S. mutans were also examined for fluorescence generation. The results demonstrated that S. mutans-induced enamel and dentin lesions exhibited increased fluorescence in the red and green spectral regions, with the signal stronger in the red region. In the blue region, however, fluorescence signals in the corresponding area were below the background level. Significantly weaker or virtually no fluorescence was detected in lactic acid-demineralized lesions at all excitation wavelengths. Neither bacterial cells nor culture media generated any fluorescence. These results indicate that, although the presence of S. mutans may be a prerequisite for the emission of fluorescence from carious lesions, some interaction of S. mutans with exposed tooth matrix elements may also be required for the generation or unmasking of fluorophores. PMID:18661200

  15. The effect of two types chewing gum containing casein phosphopeptide-amorphous calcium phosphate and xylitol on salivary Streptococcus mutans

    PubMed Central

    Emamieh, Shila; Khaterizadeh, Yosra; Goudarzi, Hossein; Ghasemi, Amir; Baghban, Alireza Akbarzadeh; Torabzadeh, Hasan

    2015-01-01

    Aim: The aim was to evaluate the effect of sugar-free chewing gum containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and xylitol on salivary Streptococcus mutans. Materials and Methods: A total of 60 dental students of 20-25 years old, who volunteered after checking their health condition and signing an informed consent, were randomly allocated to receive one of the following interventions: (A) Chewing gum containing CPP-ACP; (B) containing xylitol. Subjects within the experimental groups were taken the gums 3 times daily, after each meal for a period of 3 weeks. Pre- and post-intervention unstimulated saliva samples were quantified for S. mutans counts. Results: A statistically significant reduction of salivary S. mutans was displayed in both groups A and B after the intervention when compared with baseline (P < 0.001), and group A shows more statistically significant reduction of salivary S. mutans than group B (P = 0.011). Conclusion: Daily consumption of chewing gum containing CPP-ACP and xylitol significantly reduces the level of salivary S. mutans, but chewing gum containing CPP-ACP can reduce the level of salivary S. mutans in more than xylitol chewing gum. PMID:26069402

  16. An in vitro synergetic evaluation of the use of nisin and sodium fluoride or chlorhexidine against Streptococcus mutans.

    PubMed

    Tong, Zhongchun; Zhou, Lin; Jiang, Wenkai; Kuang, Rong; Li, Jie; Tao, Rui; Ni, Longxing

    2011-10-01

    The objective of this study is to investigate the synergetic action between nisin and sodium fluoride or chlorhexidine against Streptococcus mutans, a primary cariogenic pathogen. In the antibacterial assay, a synergetic effect on S. mutans was found between nisin and sodium fluoride, but there was no interaction between nisin and chlorhexidine by the checkerboard, the fractional inhibitory concentration (FIC) and the fractional bactericidal concentration (FBC) tests. S. mutans survival rates showed a significant decline after treatment with a combination of nisin and sodium fluoride in a time-kill study. Scanning electron microscopy showed that the damage to S. mutans with the combined nisin and sodium fluoride treatment was the most severe among all of the different single and combined antimicrobial treatments. Furthermore, in the antibiofilm test, nisin in combination with sodium fluoride produced a stronger bactericidal effect on a S. mutans biofilm for 4 h and 16 h compared with sodium fluoride alone by confocal laser scanning microscopy. Nisin in combination with sodium fluoride exerted a high bactericidal effect on S. mutans and thereby has the potential to be used as an effective drug combination to prevent dental caries. PMID:21930172

  17. Polyphenol-Rich Extract from Propolis Reduces the Expression and Activity of Streptococcus mutans Glucosyltransferases at Subinhibitory Concentrations.

    PubMed

    Veloz, Jorge Jesús; Saavedra, Nicolás; Alvear, Marysol; Zambrano, Tomás; Barrientos, Leticia; Salazar, Luis A

    2016-01-01

    Tooth decay is an infectious disease, whose main causative agent identified is Streptococcus mutans (S. mutans). Diverse treatments have been used to eradicate this microorganism, including propolis. To date, it has been shown that polyphenols from Chilean propolis inhibit S. mutans growth and biofilm formation. However, the molecular mechanisms underlying this process are unclear. In the present study, we assessed the effect of Chilean propolis on the expression and activity of the glycosyltransferases enzymes and their related genes. Polyphenol-rich extract from propolis inhibited gene expression of glycosyltransferases (GtfB, GtfC, and GtfD) and their related regulatory genes, for example, VicK, VicR, and CcpA. Moreover, the treatment inhibited glucosyltransferases activity measured by the formation of sucrose-derived glucans. Additionally, an inhibitory effect was observed in the expression of SpaP involved in sucrose-independent virulence of S. mutans. In summary, our results suggest that Chilean propolis has a dose-dependent effect on the inhibition of genes involved in S. mutans virulence and adherence through the inhibition of glucosyltransferases, showing an anticariogenic potential of polyphenols from propolis beyond S. mutans growth inhibition. PMID:27110563

  18. Polyphenol-Rich Extract from Propolis Reduces the Expression and Activity of Streptococcus mutans Glucosyltransferases at Subinhibitory Concentrations

    PubMed Central

    Veloz, Jorge Jesús; Saavedra, Nicolás; Alvear, Marysol; Zambrano, Tomás; Barrientos, Leticia; Salazar, Luis A.

    2016-01-01

    Tooth decay is an infectious disease, whose main causative agent identified is Streptococcus mutans (S. mutans). Diverse treatments have been used to eradicate this microorganism, including propolis. To date, it has been shown that polyphenols from Chilean propolis inhibit S. mutans growth and biofilm formation. However, the molecular mechanisms underlying this process are unclear. In the present study, we assessed the effect of Chilean propolis on the expression and activity of the glycosyltransferases enzymes and their related genes. Polyphenol-rich extract from propolis inhibited gene expression of glycosyltransferases (GtfB, GtfC, and GtfD) and their related regulatory genes, for example, VicK, VicR, and CcpA. Moreover, the treatment inhibited glucosyltransferases activity measured by the formation of sucrose-derived glucans. Additionally, an inhibitory effect was observed in the expression of SpaP involved in sucrose-independent virulence of S. mutans. In summary, our results suggest that Chilean propolis has a dose-dependent effect on the inhibition of genes involved in S. mutans virulence and adherence through the inhibition of glucosyltransferases, showing an anticariogenic potential of polyphenols from propolis beyond S. mutans growth inhibition. PMID:27110563

  19. Effect of an Orphan Response Regulator on Streptococcus mutans Sucrose-Dependent Adherence and Cariogenesis

    PubMed Central

    Idone, Vincent; Brendtro, Stacy; Gillespie, Robert; Kocaj, Steve; Peterson, Erica; Rendi, Mara; Warren, Wayne; Michalek, Suzanne; Krastel, Kirsten; Cvitkovitch, Dennis; Spatafora, Grace

    2003-01-01

    Streptococcus mutans is the principal acidogenic component of dental plaque that demineralizes tooth enamel, leading to dental decay. Cell-associated glucosyltransferases catalyze the sucrose-dependent synthesis of sticky glucan polymers that, together with glucan binding proteins, promote S. mutans adherence to teeth and cell aggregation. We generated an S. mutans Tn916 transposon mutant, GMS315, which is defective in sucrose-dependent adherence and significantly less cariogenic than the UA130 wild-type progenitor in germfree rats. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and N-terminal sequence analysis confirmed the absence of a 155-kDa glucosyltransferase S (Gtf-S) from GMS315 protein profiles. Mapping of the unique transposon insertion in GMS315 revealed disruption of a putative regulatory region located upstream of gcrR, a gene previously described by Sato et al. that shares significant amino acid identity with other bacterial response regulators (Y. Sato, Y. Yamamoto, and H. Kizaki, FEMS Microbiol. Lett. 186: 187-191, 2000). The gcrR regulator, which we call “tarC,” does not align with any of the 13 proposed two-component signal transduction systems derived from in silico analysis of the S. mutans genome, but rather represents one of several orphan response regulators in the genome. The results of Northern hybridization and/or real-time reverse transcription-PCR experiments reveal increased expression of both Gtf-S and glucan binding protein C (GbpC) in a tarC knockout mutant (GMS900), thereby supporting the notion that TarC acts as a negative transcriptional regulator. In addition, we noted that GMS900 has altered biofilm architecture relative to the wild type and is hypocariogenic in germfree rats. Taken collectively, these findings support a role for signal transduction in S. mutans sucrose-dependent adherence and aggregation and implicate TarC as a potential target for controlling S. mutans

  20. Effects of xylitol on xylitol-sensitive versus xylitol-resistant Streptococcus mutans strains in a three-species in vitro biofilm.

    PubMed

    Marttinen, Aino M; Ruas-Madiedo, Patricia; Hidalgo-Cantabrana, Claudio; Saari, Markku A; Ihalin, Riikka A; Söderling, Eva M

    2012-09-01

    We studied the effects of xylitol on biofilms containing xylitol-resistant (Xr) and xylitol-sensitive (Xs) Streptococcus mutans, Actinomyces naeslundii and S. sanguinis. The biofilms were grown for 8 and 24 h on hydroxyapatite discs. The viable microorganisms were determined by plate culturing techniques and fluorescence in situ hybridization (FISH) was performed using a S. mutans-specific probe. Extracellular cell-bound polysaccharides (EPS) were determined by spectrofluorometry from single-species S. mutans biofilms. In the presence of 5 % xylitol, the counts of the Xs S. mutans decreased tenfold in the young (8 h) biofilm (p < 0.05) but no effect was seen in the mature (24 h) biofilm. No decrease was observed for the Xr strains, and FISH confirmed these results. No differences were detected in the EPS production of the Xs S. mutans grown with or without xylitol, nor between Xr and Xs S. mutans strains. Thus, it seems that xylitol did not affect the EPS synthesis of the S. mutans strains. Since the Xr S. mutans strains, not inhibited by xylitol, showed no xylitol-induced decrease in the biofilms, we conclude that growth inhibition could be responsible for the decrease of the counts of the Xs S. mutans strains in the clinically relevant young biofilms. PMID:22645015

  1. Antibacterial activity of Capsicum annuum extract and synthetic capsaicinoid derivatives against Streptococcus mutans.

    PubMed

    Santos, Moema Mocaiber Peralva; Vieira-da-Motta, Olney; Vieira, Ivo José Curcino; Braz-Filho, Raimundo; Gonçalves, Paula Santos; Maria, Edmilsom José; Terra, Wagner Silva; Rodrigues, Rosana; Souza, Claudio Luiz Melo

    2012-04-01

    The inhibitory effects of the ethyl acetate extract and capsaicin (1) and dihydrocapsaicin (2) isolated from fruits of Capsicum annuum chili pepper type, and synthetic capsaicinoid derivatives (N-(4-hydroxyphenylethyl)decamide (3), (E)-N-(4-hydroxy-3-methoxybenzyl)-3,7-dimethylocta- 2,6-dienamide (4), 4-hydroxy-3-methoxy-N-((E)-3, 7-dimethylocta-2,6-dienyl)benzamide (5) andN-(4-hydroxy- 3-methoxybenzyl)decamide (6) at different concentrations were evaluated against Streptococcus mutans. The minimum inhibitory concentration at which the ethyl acetate extract prevented the growth of S. mutans was 2.5 mg/mL; those of the isolated compounds 1 and 2 were 1.25 μg/mL, while 3 was 5.0 μg/mL, and 4, 5 and 6 were 2.5 μg/mL, respectively. PMID:21858615

  2. Disinfection of S. mutans Bacteria Using a Plasma Needle at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Hansen, S.; Goree, J.; Liu, Bin; Drake, D.

    2007-11-01

    The plasma needle device produces a millimeter-size low-power glow discharge at atmospheric-pressure. It is intended for dental or medical applications. Radio-frequency high voltage is applied to a single needle electrode located inside a concentric gas-flow nozzle. A low-speed helium plasma jet flows out of the nozzle and mixes with ambient air. The jet is impinges on a surface that is to be treated, which in our test was a suspension of S. mutans bacteria that was plated onto the surface of agar nutrient in a Petri dish. S. mutans is the most important microorganism for causing dental caries. Imaging the sample after plasma treatment and incubation reveal the conditions where bacteria are killed, and the size of the treated spot.

  3. Activity of two Streptococcus mutans bacteriocins in the presence of saliva, levan, and dextran.

    PubMed Central

    Delisle, A L

    1976-01-01

    The extracellular dextrans produced from sucrose by Streptococcus mutans strains BHT and GS-5 did not prevent the synthesis or release of active bacteriocins by these two strains. In addition, several streptococci that were genetically sensitive to these bacteriocins, and that could synthesize a variety of extracellular dextrans and levans from sucrose, remained phenotypically sensitive when grown in the presence of sucrose. Bacteriocin activity was not altered by treatment with high-molecular-weight dextran or by human saliva. The bacteriocins produced by, and active against, S. mutans thus appear to be capable of acting in vivo and may play a role in regulating the bacterial ecology of the oral cavity. Images PMID:4376

  4. Crystallization and preliminary X-ray analysis of Streptococcus mutans dextran glucosidase

    SciTech Connect

    Saburi, Wataru; Hondoh, Hironori; Unno, Hideaki; Okuyama, Masayuki; Mori, Haruhide; Nakada, Toshitaka; Matsuura, Yoshiki; Kimura, Atsuo

    2007-09-01

    Dextran glucosidase from S. mutans was crystallized using the hanging-drop vapour-diffusion method. The crystals diffracted to 2.2 Å resolution. Dextran glucosidase from Streptococcus mutans is an exo-hydrolase that acts on the nonreducing terminal α-1,6-glucosidic linkage of oligosaccharides and dextran with a high degree of transglucosylation. Based on amino-acid sequence similarity, this enzyme is classified into glycoside hydrolase family 13. Recombinant dextran glucosidase was purified and crystallized by the hanging-drop vapour-diffusion technique using polyethylene glycol 6000 as a precipitant. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 72.72, b = 86.47, c = 104.30 Å. A native data set was collected to 2.2 Å resolution from a single crystal.

  5. Preliminary X-ray crystallographic analysis of SMU.573, a putative sugar kinase from Streptococcus mutans

    SciTech Connect

    Zhou, Yan-Feng; Li, Lan-Fen; Yang, Cheng; Su, Xiao-Dong

    2008-01-01

    SMU.573 from S. mutans was expressed in E. coli and crystallized. The crystals belong to space group I4 and 2.5 Å resolution diffraction data were collected at an in-house chromium radiation source. SMU.573 from Streptococcus mutans is a structurally and functionally uncharacterized protein that was selected for structural biology studies. Native and SeMet-labelled proteins were expressed with an N-His tag in Escherichia coli BL21 (DE3) and purified by Ni{sup 2+}-chelating and size-exclusion chromatography. Crystals of the SeMet-labelled protein were obtained by the hanging-drop vapour-diffusion method and a 2.5 Å resolution diffraction data set was collected using an in-house chromium radiation source. The crystals belong to space group I4, with unit-cell parameters a = b = 96.53, c = 56.26 Å, α = β = γ = 90°.

  6. Effect of gallium on growth of Streptococcus mutans NCTC 10449 and dental tissues.

    PubMed

    Valappil, S P; Owens, G J; Miles, E J; Farmer, N L; Cooper, L; Miller, G; Clowes, R; Lynch, R J M; Higham, S M

    2014-01-01

    Gallium-doped phosphate-based glasses (Ga-PBG) were assessed for their impact on Streptococcus mutans and dental mineralisation, firstly by disc diffusion assays followed by biofilms grown on nitrocellulose filter membrane (NFM) and constant-depth film fermentor (CDFF). Short-time exposure (10 min) effects of Ga-PBG on S. mutans biofilm were compared with that of 0.2% chlorhexidine. The effects of Ga-PBG on bovine enamel (which was investigated under pH-cycling condition) and dentine were analysed using transverse microradiography (TMR), profilometry and inductively coupled plasma optical-emission spectrometry (ICP-OES). The disc diffusion assays showed inhibition zones of 24.5 ± 0.5 mm for Ga-PBG compared with controls (C-PBG). Ga-PBG showed statistically significant growth inhibition of S. mutans biofilms on NFM (p = 0.001) and CDFF (p < 0.046) compared with hydroxyapatite (HA) and C-PBG. The CDFF assay revealed a maximum of 2.11 log colony-forming unit (CFU) reduction at 48 h, but short-time exposure effects were comparable with that of 0.2% chlorhexidine only on older biofilms (maximum of 0.59 vs. 0.69 log CFU reduction at 120 h). TMR analyses of the enamel revealed non-significant mineral loss (p = 0.37) only in the case of Ga-PBG samples compared with controls including sodium fluoride. ICP-OES analyses indicated transient gallium adsorption into dentine by calcium displacement. The results confirmed that gallium inhibited S. mutans growth and appears to have the potential to protect the enamel surface under conditions representative of the oral environment. Further work is needed to establish whether it has an application in daily oral hygiene procedures to prevent or reduce caries. PMID:24335164

  7. Effect of sodium fluoride, ampicillin, and chlorhexidine on Streptococcus mutans biofilm detachment.

    PubMed

    Liu, Jia; Ling, Jun-Qi; Zhang, Kai; Huo, Li-Jun; Ning, Yang

    2012-08-01

    We examined the effect of three clinically used antimicrobials on Streptococcus mutans UA159 biofilm detachment under flow conditions. Sodium fluoride (NaF) and chlorhexidine at MIC levels promoted biofilm detachment and inhibited detachment when concentrations were higher than the MIC and reduced detached-cell viability only at high concentrations. Ampicillin at all concentrations tested inhibited detachment and reduced the percentage of viable biofilm-detached cells. All the three antimicrobial treatments reduced biofilm live/dead cell ratios. PMID:22664966

  8. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    PubMed

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans. PMID:26850107

  9. Antimicrobial effects of GL13K peptide coatings on S. mutans and L. casei

    NASA Astrophysics Data System (ADS)

    Schnitt, Rebecca Ann

    Background: Enamel breakdown around orthodontic brackets, so-called "white spot lesions", is the most common complication of orthodontic treatment. White spot lesions are caused by bacteria such as Streptococci and Lactobacilli, whose acidic byproducts cause demineralization of enamel crystals. Aims: The aim of this project was to develop an antimicrobial peptide coating for titanium alloy that is capable of killing acidogenic bacteria, specifically Streptococcus mutans and Lactobacillus casei. The long-term goal is to create an antimicrobial-coated orthodontic bracket with the ability to reduce or prevent the formation of white spot lesions in orthodontic patients thereby improving clinical outcomes. Methods: First, an alkaline etching method with NaOH was established to allow effective coating of titanium discs with GL13K, an antimicrobial peptide derived from human saliva. Coatings were verified by contact angle measures, and treated discs were characterized using scanning electron microscopy. Secondly, GL13K coatings were tested against hydrolytic, proteolytic and mechanical challenges to ensure robust coatings. Third, a series of qualitative and quantitative microbiology experiments were performed to determine the effects of GL13K--L and GL13K--D on S. mutans and L. casei, both in solution and coated on titanium. Results: GL13K-coated discs were stable after two weeks of challenges. GL13K--D was effective at killing S. mutans in vitro at low doses. GL13K--D also demonstrated a bactericidal effect on L. casei, however, in contrast to S. mutans, the effect on L. casei was not statistically significant. Conclusion: GL13K--D is a promising candidate for antimicrobial therapy with possible applications for prevention of white spot lesions in orthodontics.

  10. Variation of expression defects in cell surface 190-kDa protein antigen of Streptococcus mutans.

    PubMed

    Lapirattanakul, Jinthana; Nomura, Ryota; Matsumoto-Nakano, Michiyo; Srisatjaluk, Ratchapin; Ooshima, Takashi; Nakano, Kazuhiko

    2015-05-01

    Streptococcus mutans, which consists of four serotypes, c, e, f, and k, possesses a 190-kDa cell surface protein antigen (PA) for initial tooth adhesion. We used Western blot analysis to determine PA expression in 750 S. mutans isolates from 150 subjects and found a significantly higher prevalence of the isolates with PA expression defects in serotypes f and k compared to serotypes c and e. Moreover, the defect patterns could be classified into three types; no PA expression on whole bacterial cells and in their supernatant samples (Type N1), PA expression mainly seen in supernatant samples (Type N2), and only low expression of PA in the samples of whole bacterial cells (Type W). The underlying reasons for the defects were mutations in the gene encoding PA as well as in the transcriptional processing of this gene for Type N1, defects in the sortase gene for Type N2, and low mRNA expression of PA for Type W. Since cellular hydrophobicity and phagocytosis susceptibility of the PA-defective isolates were significantly lower than those of the normal expression isolates, the potential implication of such defective isolates in systemic diseases involving bacteremia other than dental caries was suggested. Additionally, multilocus sequence typing was utilized to characterize S. mutans clones that represented a proportion of isolates with PA defects of 65-100%. Therefore, we described the molecular basis for variation defects in PA expression of S. mutans. Furthermore, we also emphasized the strong association between PA expression defects and serotypes f and k as well as the clonal relationships among these isolates. PMID:25792295

  11. Laser light scattering measurement of dextran-induced Streptococcus mutans aggregation.

    PubMed Central

    Ryan, V; Hart, T R; Schiller, R

    1980-01-01

    Intensity fluctuation spectroscopy was used to study dextran-induced aggregation of Streptococcus mutans bacteria. Smoluchowski's theory of colloidal flocculation provided a consistent model of the agglutination process. Our experiments indicated that aggregation was inhibited by the negatively charged surfaces of the cells, while dextran polymers effectively bound organisms together. Our experimental data were consistent with the quantitative predictions of a polymer bridge model of agglutination. PMID:6168309

  12. Are self-ligating brackets related to less formation of Streptococcus mutans colonies? A systematic review

    PubMed Central

    do Nascimento, Leonard Euler Andrade Gomes; de Souza, Margareth Maria Gomes; Azevedo, Angela Rita Pontes; Maia, Lucianne Cople

    2014-01-01

    Objective To verify, by means of a systematic review, whether the design of brackets (conventional or self-ligating) influences adhesion and formation of Streptococcus mutans colonies. Methods Search strategy: four databases (Cochrane Central Register of Controlled Trials, Ovid ALL EMB Reviews, PubMed and BIREME) were selected to search relevant articles covering the period from January 1965 to December 2012. Selection Criteria: in first consensus by reading the title and abstract. The full text was obtained from publications that met the inclusion criteria. Data collection and analysis: Two reviewers independently extracted data using the keywords: conventional, self-ligating, biofilm, Streptococcus mutans, and systematic review; and independently evaluated the quality of the studies. In case of divergence, the technique of consensus was adopted. Results The search strategy resulted in 1,401 articles. The classification of scientific relevance revealed the high quality of the 6 eligible articles of which outcomes were not unanimous in reporting not only the influence of the design of the brackets (conventional or self-ligating) over adhesion and formation of colonies of Streptococcus mutans, but also that other factors such as the quality of the bracket type, the level of individual oral hygiene, bonding and age may have greater influence. Statistical analysis was not feasible because of the heterogeneous methodological design. Conclusions Within the limitations of this study, it was concluded that there is no evidence for a possible influence of the design of the brackets (conventional or self-ligating) over colony formation and adhesion of Streptococcus mutans. PMID:24713561

  13. Sustained effects of blue light on Streptococcus mutans in regrown biofilm.

    PubMed

    Cohen-Berneron, Julie; Steinberg, Doron; Featherstone, John D B; Feuerstein, Osnat

    2016-04-01

    In prior studies, exposure of Streptococcus mutans in biofilm to blue light using high fluences of up to 680 J/cm(2) did not interfere with bacterial capability to reform an initial biofilm; however, a delayed antibacterial effect was observed. Our aim was to determine the sustained effecttts of blue light-emitting diode (LED) curing light on the pathogenicity of the newly formed biofilm. S. mutans were grown to form biofilm that was exposed to blue light (wavelengths, 460-480 nm) for 1, 3, and 7 min (equivalent to 37, 112, and 262 J/cm(2), respectively). Then, bacteria were suspended and allowed to regrow into new biofilms. The regrown biofilms were assessed for bacterial quantification by optical density (OD) measurement and quantitative polymerase chain reaction (qPCR), bacterial viability and extracellular polysaccharide production by fluorescent staining using confocal scanning laser microscopy, acid production by bacteria (acidogenicity), and bacterial survival at low pH (aciduricity) using qPCR. Bacterial growth in the regrown biofilms was increased when samples were previously exposed to light; however, under the confocal microscopy, a higher proportion of dead bacteria and a reduction in polysaccharide production were observed. The acidogenicity from the regrown biofilm was lowered as fluences of light increased. The aciduricity of the regrown biofilm was decreased, meaning less growth of bacteria into biofilm in low pH with increasing fluences. Blue light has sustained effects on S. mutans bacteria grown into new biofilm. Although bacterial growth in biofilm increased, bacterial viability and virulence characteristics were impaired. The cariogenic potential over time of S. mutans previously exposed to blue light when grown on tooth surfaces is yet to be determined. PMID:26796707

  14. Effect of Sodium Fluoride, Ampicillin, and Chlorhexidine on Streptococcus mutans Biofilm Detachment

    PubMed Central

    Liu, Jia; Zhang, Kai; Huo, Li-Jun; Ning, Yang

    2012-01-01

    We examined the effect of three clinically used antimicrobials on Streptococcus mutans UA159 biofilm detachment under flow conditions. Sodium fluoride (NaF) and chlorhexidine at MIC levels promoted biofilm detachment and inhibited detachment when concentrations were higher than the MIC and reduced detached-cell viability only at high concentrations. Ampicillin at all concentrations tested inhibited detachment and reduced the percentage of viable biofilm-detached cells. All the three antimicrobial treatments reduced biofilm live/dead cell ratios. PMID:22664966

  15. Cationic Lipid Content in Liposome-Encapsulated Nisin Improves Sustainable Bactericidal Activity against Streptococcus mutans.

    PubMed

    Yamakami, Kazuo; Tsumori, Hideaki; Shimizu, Yoshitaka; Sakurai, Yutaka; Nagatoshi, Kohei; Sonomoto, Kenji

    2016-01-01

    An oral infectious disease, dental caries, is caused by the cariogenic streptococci Streptococcus mutans. The expected preventive efficiency for prophylactics against dental caries is not yet completely observed. Nisin, a bacteriocin, has been demonstrated to be microbicidal against S. mutans, and liposome-encapsulated nisin improves preventive features that may be exploited for human oral health. Here we examined the bactericidal effect of charged lipids on nisin-loaded liposomes against S. mutans and inhibitory efficiency for insoluble glucan synthesis by the streptococci for prevention of dental caries. Cationic liposome, nisin-loaded dipalmitoylphosphatidylcholine/phytosphingosine, exhibited higher bactericidal activities than those of electroneutral liposome and anionic liposome. Bactericidal efficiency of the cationic liposome revealed that the vesicles exhibited sustained inhibition of glucan synthesis and the lowest rate of release of nisin from the vesicles. The optimizing ability of cationic liposome-encapsulated nisin that exploit the sustained preventive features of an anti-streptococcal strategy may improve prevention of dental caries. PMID:27583045

  16. The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit.

    PubMed

    Lee, Young-Ho; Park, Ho-Won; Lee, Ju-Hyun; Seo, Hyun-Woo; Lee, Si-Young

    2012-12-01

    The purpose of our study was to evaluate the effect of photodynamic therapy (PDT), using erythrosine as a photosensitizing agent and a dental halogen curing unit as a light source, on Streptococcus mutans in a biofilm phase. The S. mutans biofilms were formed in a 24-well cell culture cluster. Test groups consisted of biofilms divided into four groups: group 1: no photosensitizer or light irradiation treatment (control group); group 2: photosensitizer treatment alone; group 3: light irradiation alone; group 4: photosensitizer treatment and light irradiation. After treatments, the numbers of colony-forming unit (CFU) were counted and samples were examined by confocal laser scanning fluorescence microscopy (CLSM). Only group 4 (combined treatment) resulted in significant increases in cell death, with rates of 75% and 55% after 8 h of incubation, and 74% and 42% at 12 h, for biofilms formed in brain-heart infusion (BHI) broth supplemented with 0% or 0.1% sucrose, respectively. Therefore, PDT of S. mutans biofilms using a combination of erythrosine and a dental halogen curing unit, both widely used in dental clinics, resulted in a significant increase in cell death. The PDT effects are decreased in biofilms that form in the presence of sucrose. PMID:23222991

  17. Streptococcus mutans biofilm transient viscoelastic fluid behaviour during high-velocity microsprays.

    PubMed

    Fabbri, S; Johnston, D A; Rmaile, A; Gottenbos, B; De Jager, M; Aspiras, M; Starke, E M; Ward, M T; Stoodley, P

    2016-06-01

    Using high-speed imaging we assessed Streptococcus mutans biofilm-fluid interactions during exposure to a 60-ms microspray burst with a maximum exit velocity of 51m/s. S. mutans UA159 biofilms were grown for 72h on 10mm-length glass slides pre-conditioned with porcine gastric mucin. Biofilm stiffness was measured by performing uniaxial-compression tests. We developed an in-vitro interproximal model which allowed the parallel insertion of two biofilm-colonized slides separated by a distance of 1mm and enabled high-speed imaging of the removal process at the surface. S. mutans biofilms were exposed to either a water microspray or an air-only microburst. High-speed videos provided further insight into the mechanical behaviour of biofilms as complex liquids and into high-shear fluid-biofilm interaction. We documented biofilms extremely transient fluid behaviour when exposed to the high-velocity microsprays. The presence of time-dependent recoil and residual deformation confirmed the pivotal role of viscoelasticity in biofilm removal. The air-only microburst was effective enough to remove some of the biofilm but created a smaller clearance zone underlying the importance of water and the air-water interface of drops moving over the solid surface in the removal process. Confocal and COMSTAT analysis showed the high-velocity water microspray caused up to a 99.9% reduction in biofilm thickness, biomass and area coverage, within the impact area. PMID:26771168

  18. Low and high molecular weight chitosans interactions with Streptococcus mutans: an in vitro study.

    PubMed

    Virga, C; Landa, C; Beltramo, D; Ausar, F; Dorronsoro, S T

    2003-01-01

    We evaluated the in vitro capacity of high and low molecular weight chitosans (HMWCh and LMWCh) to inhibit the adherence of strains of S. mutans obtained from the American Type Culture Collection (ATCC,25175) to artificial saliva-coated hydroxiapatite beads. The effect of these biopolymers was assessed in terms of pH, ionic force, minimum inhibitory concentration (MIC) and antibacterial activity. The results show that HMWCh is modified by a rise in pH (7.0) and ionic strength. The induced conformational changes lead to the formation of rigid meshes capable of aggregating and entrapping S. mutans. This process is associated to the properties of HMWCh. LMWCh gave rise to smaller aggregates that exhibited a comparatively reduced interaction capacity. The MIC for HMWCh was 0.5 g% and evidenced the bacteriostatic action of the aggregates. We conclude that HMWCh would exert an inhibitory effect on the process of specific adsorption of S. mutans to saliva-coated hydroxiapatite beads. PMID:15500183

  19. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    NASA Astrophysics Data System (ADS)

    Xu, Juan; Ding, Gang; Li, Jinlu; Yang, Shenhui; Fang, Bisong; Sun, Hongchen; Zhou, Yanmin

    2010-10-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased ( p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  20. Microfluidic study of environmental control of genetic competence in Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Son, Minjun; Ghoreishilangroudi, Seyedehdelaram; Ahn, Sang-Joon; Burne, Robert; Hagen, Stephen

    2015-03-01

    The bacterial pathogen Streptococcus mutans has the ability to enter a transient state of genetic competence in which it can integrate exogenous DNA. It regulates the competent state in response to several environmental inputs that include two quorum sensing peptides (CSP and XIP) as well as pH and other variables. However the interplay of these variables in regulating the competent state is poorly understood. We are using microfluidics to isolate and control environmental inputs and examine how the competence regulatory circuit responds at the single cell level. Our studies reveal that the pH of the growth environment plays a critical role in determining how cells respond to the quorum sensing signals: The response to both peptides is sharply tuned to a narrow window of near-neutral pH. Within this optimal pH range, a population responds unimodally to a XIP stimulus, and bimodally to CSP; outside this range the response to both signals is suppressed. Because a growing S. mutans culture acidifies its medium, our findings suggest that the passage of the pH through the sensitivity window transiently activates the competence circuit. In this way a sharply tuned environmental response gives S. mutans fine control over the duration of its competent state. This work is supported by the NIH under NIDCR awards R01 DE023339.

  1. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    NASA Astrophysics Data System (ADS)

    Haochih Liu, Bernard; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der

    2013-07-01

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short.

  2. Crystallization and preliminary crystallographic analysis of d-alanine-d-alanine ligase from Streptococcus mutans

    SciTech Connect

    Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen; Tang, De-Wei; Liu, Xiang-Yu; Zhao, Xiaojun; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous protein was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.

  3. Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product.

    PubMed Central

    Shimamura, A; Nakano, Y J; Mukasa, H; Kuramitsu, H K

    1994-01-01

    The glucosyltransferases (GTFs) of mutans streptococci are important virulence factors in the sucrose-dependent colonization of tooth surfaces by these organisms. To investigate the structure-function relationship of the GTFs, an approach was initiated to identify amino acid residues of the GTFs which affect the incorporation of glucose residues into the glucan polymer. Conserved amino acid residues were identified in the GTF-S and GTF-I enzymes of the mutans streptococci and were selected for site-directed mutagenesis in the corresponding enzymes from Streptococcus mutans GS5. Conversion of six amino acid residues of the GTF-I enzyme to those present at the corresponding positions in GTF-S, either singly or in multiple combinations, resulted in enzymes synthesizing increased levels of soluble glucans. The enzyme containing six alterations synthesized 73% water-soluble glucan in the absence of acceptor dextran T10, while parental enzyme GTF-I synthesized no such glucan product. Conversely, when residue 589 of the GTF-S enzyme was converted from Thr to either Asp or Glu, the resulting enzyme synthesized primarily water-insoluble glucan in the absence of the acceptor. Therefore, this approach has identified several amino acid positions which influence the nature of the glucan product synthesized by GTFs. PMID:8050997

  4. The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit

    PubMed Central

    Lee, Young-Ho; Park, Ho-Won; Lee, Ju-Hyun; Seo, Hyun-Woo; Lee, Si-Young

    2012-01-01

    The purpose of our study was to evaluate the effect of photodynamic therapy (PDT), using erythrosine as a photosensitizing agent and a dental halogen curing unit as a light source, on Streptococcus mutans in a biofilm phase. The S. mutans biofilms were formed in a 24-well cell culture cluster. Test groups consisted of biofilms divided into four groups: group 1: no photosensitizer or light irradiation treatment (control group); group 2: photosensitizer treatment alone; group 3: light irradiation alone; group 4: photosensitizer treatment and light irradiation. After treatments, the numbers of colony-forming unit (CFU) were counted and samples were examined by confocal laser scanning fluorescence microscopy (CLSM). Only group 4 (combined treatment) resulted in significant increases in cell death, with rates of 75% and 55% after 8 h of incubation, and 74% and 42% at 12 h, for biofilms formed in brain–heart infusion (BHI) broth supplemented with 0% or 0.1% sucrose, respectively. Therefore, PDT of S. mutans biofilms using a combination of erythrosine and a dental halogen curing unit, both widely used in dental clinics, resulted in a significant increase in cell death. The PDT effects are decreased in biofilms that form in the presence of sucrose. PMID:23222991

  5. Composition Analysis and Inhibitory Effect of Sterculia lychnophora against Biofilm Formation by Streptococcus mutans.

    PubMed

    Yang, Yang; Park, Bok-Im; Hwang, Eun-Hee; You, Yong-Ouk

    2016-01-01

    Pangdahai is a traditional Chinese drug, specifically described in the Chinese Pharmacopoeia as the seeds of Sterculia lychnophora Hance. Here, we separated S. lychnophora husk and kernel, analyzed the nutrient contents, and investigated the inhibitory effects of S. lychnophora ethanol extracts on cariogenic properties of Streptococcus mutans, important bacteria in dental caries and plaque formation. Ethanol extracts of S. lychnophora showed dose-dependent antibacterial activity against S. mutans with significant inhibition at concentrations higher than 0.01 mg/mL compared with the control group (p < 0.05). Furthermore, biofilm formation was decreased by S. lychnophora at concentrations > 0.03 mg/mL, while bacterial viability was decreased dose-dependently at high concentrations (0.04, 0.08, 0.16, and 0.32 mg/mL). Preliminary phytochemical analysis of the ethanol extract revealed a strong presence of alkaloid, phenolics, glycosides, and peptides while the presence of steroids, terpenoids, flavonoids, and organic acids was low. The S. lychnophora husk had higher moisture and ash content than the kernel, while the protein and fat content of the husk were lower (p < 0.05) than those of the kernel. These results indicate that S. lychnophora may have antibacterial effects against S. mutans, which are likely related to the alkaloid, phenolics, glycosides, and peptides, the major components of S. lychnophora. PMID:27190540

  6. Cellular Adherence, Glucosyltransferase Adsorption, and Glucan Synthesis of Streptococcus mutans AHT Mutants

    PubMed Central

    Koga, Toshihiko; Inoue, Masakazu

    1978-01-01

    Streptococcus mutans AHT mutants M1, M2, and M13 failed to adhere to a glass surface, whereas mutants M9 and M35 exhibited decreased and increased adherence, respectively, as compared with the parent strain, when grown in sucrose broth. Extracellular glucosyltransferase prepared from glucose-grown cultures of the adherent strains (wild type, M9, and M35) induced adherence of heat-killed cells of the homologous and heterologous streptococcal strains as well as of Escherichia coli K-12 and uncoated resin particles. The glucosyltransferase was adsorbed on all the streptococcal cells and glucan-coated resins, but not on E. coli cells and the uncoated resins. Glucosyltransferase from the nonadhering mutants (M1, M2, M13) neither was significantly adsorbed on nor induced adherence of any of the cells and resins. Cell-free enzymes from the glucose-grown adherent strains produced water-soluble and water-insoluble glucans, whereas those from the nonadhering mutants produced only water-soluble glucans. Small amounts of alkali-soluble, cell-associated glucan were recovered from the sucrose-grown nonadhering mutants. Thus, the relative proportions of glucosyltransferase isozymes elaborated by the S. mutans mutants, insofar as they affect the physico-chemical properties of the glucans produced, seem to determine the adherence abilities of the cells. The adsorption of glucosyltransferase on glucan molecules on the cell surface is not required for the adherence of S. mutans, but de novo glucan synthesis is important in the adherence process. PMID:631879

  7. The effect of chlorhexidine varnish treatment on salivary mutans streptococcal levels in child orthodontic patients.

    PubMed

    Sandham, H J; Nadeau, L; Phillips, H I

    1992-01-01

    A chlorhexidine dental varnish was applied to the teeth of 26 children, ten to 17 years of age, in an attempt to limit the increase in colonization by mutans streptococci that normally accompanies the placement of fixed orthodontic appliances and to assess the acceptance of the application procedure. Despite the insertion of the appliances in the month following the varnish application, the numbers of detectable salivary mutans streptococci in the children were found to remain significantly lower than baseline values for seven months (p less than 0.01). Among the 26 children, 16 exhibited high counts (greater than 2.5 x 10(5) cfu/mL saliva) at baseline, but none exhibited such counts until three months post-treatment, when one child did. By seven months, eight children had high counts. No significant difference in effectiveness was observed between varnish formulations containing 10% or 20% chlorhexidine acetate, or between children of different ages or past caries experience. The lack of drop-outs and the results of a questionnaire indicated that acceptance of the treatment by the children was excellent. The study indicates that chlorhexidine varnish therapy was acceptable to the children and was effective in suppressing oral mutans streptococcal levels for long periods, even when used prior to the placement of fixed orthodontic appliances. PMID:1740553

  8. Effect of different carriers preventive measures in children highly infected with mutans streptococci.

    PubMed

    Lindquist, B; Edward, S; Torell, P; Krasse, B

    1989-08-01

    The caries preventive effect of topical application of fluoride varnish (Duraphat), ferric-aluminum-fluoride solution (FeAlF) and chlorhexidine gel was compared in 2-yr clinical study. Children with more than 10(6) mutans steptococci per ml saliva were selected and a total of 189 13-yr-old children participated in the study. The children in the fluoride groups were treated every third month with either Duraphat or FeAlF-solution. In the chlorhexidine group children with more than 2.5 x 10(5) mutans streptococci per ml of saliva were treated every third month. The mean number of new decayed and filled tooth surfaces was 3.06 in the chlorhexidine group, 5.88 in the Duraphat group, 5.33 in the FeAlF group, and 6.34 in the control group. Thus supervised antimicrobial treatment can significantly reduce the incidence of dental (caries) in children with high numbers of mutans streptococci. PMID:2799271

  9. Composition Analysis and Inhibitory Effect of Sterculia lychnophora against Biofilm Formation by Streptococcus mutans

    PubMed Central

    Yang, Yang; Park, Bok-Im; Hwang, Eun-Hee; You, Yong-Ouk

    2016-01-01

    Pangdahai is a traditional Chinese drug, specifically described in the Chinese Pharmacopoeia as the seeds of Sterculia lychnophora Hance. Here, we separated S. lychnophora husk and kernel, analyzed the nutrient contents, and investigated the inhibitory effects of S. lychnophora ethanol extracts on cariogenic properties of Streptococcus mutans, important bacteria in dental caries and plaque formation. Ethanol extracts of S. lychnophora showed dose-dependent antibacterial activity against S. mutans with significant inhibition at concentrations higher than 0.01 mg/mL compared with the control group (p < 0.05). Furthermore, biofilm formation was decreased by S. lychnophora at concentrations > 0.03 mg/mL, while bacterial viability was decreased dose-dependently at high concentrations (0.04, 0.08, 0.16, and 0.32 mg/mL). Preliminary phytochemical analysis of the ethanol extract revealed a strong presence of alkaloid, phenolics, glycosides, and peptides while the presence of steroids, terpenoids, flavonoids, and organic acids was low. The S. lychnophora husk had higher moisture and ash content than the kernel, while the protein and fat content of the husk were lower (p < 0.05) than those of the kernel. These results indicate that S. lychnophora may have antibacterial effects against S. mutans, which are likely related to the alkaloid, phenolics, glycosides, and peptides, the major components of S. lychnophora. PMID:27190540

  10. Death and survival in Streptococcus mutans: differing outcomes of a quorum-sensing signaling peptide

    PubMed Central

    Leung, Vincent; Dufour, Delphine; Lévesque, Céline M.

    2015-01-01

    Bacteria are considered “social” organisms able to communicate with one another using small hormone-like molecules (pheromones) in a process called quorum-sensing (QS). These signaling molecules increase in concentration as a function of bacterial cell density. For most human pathogens, QS is critical for virulence and biofilm formation, and the opportunity to interfere with bacterial QS could provide a sophisticated means for manipulating the composition of pathogenic biofilms, and possibly eradicating the infection. Streptococcus mutans is a well-characterized resident of the dental plaque biofilm, and is the major pathogen of dental caries (cavities). In S. mutans, its CSP QS signaling peptide does not act as a classical QS signal by accumulating passively in proportion to cell density. In fact, particular stresses such as those encountered in the oral cavity, induce the production of the CSP pheromone, suggesting that the pheromone most probably functions as a stress-inducible alarmone by triggering the signaling to the bacterial population to initiate an adaptive response that results in different phenotypic outcomes. This mini-review discusses two different CSP-induced phenotypes, bacterial “suicide” and dormancy, and the underlying mechanisms by which S. mutans utilizes the same QS signaling peptide to regulate two opposite phenotypes. PMID:26557114

  11. Cationic Lipid Content in Liposome-Encapsulated Nisin Improves Sustainable Bactericidal Activity against Streptococcus mutans

    PubMed Central

    Yamakami, Kazuo; Tsumori, Hideaki; Shimizu, Yoshitaka; Sakurai, Yutaka; Nagatoshi, Kohei; Sonomoto, Kenji

    2016-01-01

    An oral infectious disease, dental caries, is caused by the cariogenic streptococci Streptococcus mutans. The expected preventive efficiency for prophylactics against dental caries is not yet completely observed. Nisin, a bacteriocin, has been demonstrated to be microbicidal against S. mutans, and liposome-encapsulated nisin improves preventive features that may be exploited for human oral health. Here we examined the bactericidal effect of charged lipids on nisin-loaded liposomes against S. mutans and inhibitory efficiency for insoluble glucan synthesis by the streptococci for prevention of dental caries. Cationic liposome, nisin-loaded dipalmitoylphosphatidylcholine/phytosphingosine, exhibited higher bactericidal activities than those of electroneutral liposome and anionic liposome. Bactericidal efficiency of the cationic liposome revealed that the vesicles exhibited sustained inhibition of glucan synthesis and the lowest rate of release of nisin from the vesicles. The optimizing ability of cationic liposome-encapsulated nisin that exploit the sustained preventive features of an anti-streptococcal strategy may improve prevention of dental caries. PMID:27583045

  12. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans

    PubMed Central

    Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene

    2014-01-01

    Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography–mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen. PMID:24824668

  13. Biochemical and molecular characterization of a novel type of Mutanase from Paenibacillus sp. strain RM1: identification of its mutan-binding domain, essential for degradation of Streptococcus mutans biofilms.

    PubMed

    Shimotsuura, Isao; Kigawa, Hiromitsu; Ohdera, Motoyasu; Kuramitsu, Howard K; Nakashima, Syozi

    2008-05-01

    A novel type of mutanase (termed mutanase RM1) was isolated from Paenibacillus sp. strain RM1. The purified enzyme specifically hydrolyzed alpha-1,3-glucan (mutan) and effectively degraded biofilms formed by Streptococcus mutans, a major etiologic agent in the progression of dental caries, even following brief incubation. The nucleotide sequence of the gene for this protein contains a 3,873-bp open reading frame encoding 1,291 amino acids with a calculated molecular mass of 135 kDa. The protein contains two major domains, the N-terminal domain (277 residues) and the C-terminal domain (937 residues), separated by a characteristic sequence composed of proline and threonine repeats. The characterization of the recombinant proteins for each domain which were expressed in Escherichia coli demonstrated that the N-terminal domain had strong mutan-binding activity but no mutanase activity whereas the C-terminal domain was responsible for mutanase activity but had mutan-binding activity significantly lower than that of the intact protein. Importantly, the biofilm-degrading activity observed with the intact protein was not exhibited by either domain alone or in combination with the other. Therefore, these results indicate that the structural integrity of mutanase RM1 containing the N-terminal mutan-binding domain is required for the biofilm-degrading activity. PMID:18326674

  14. Biochemical and Molecular Characterization of a Novel Type of Mutanase from Paenibacillus sp. Strain RM1: Identification of Its Mutan-Binding Domain, Essential for Degradation of Streptococcus mutans Biofilms▿

    PubMed Central

    Shimotsuura, Isao; Kigawa, Hiromitsu; Ohdera, Motoyasu; Kuramitsu, Howard K.; Nakashima, Syozi

    2008-01-01

    A novel type of mutanase (termed mutanase RM1) was isolated from Paenibacillus sp. strain RM1. The purified enzyme specifically hydrolyzed α-1,3-glucan (mutan) and effectively degraded biofilms formed by Streptococcus mutans, a major etiologic agent in the progression of dental caries, even following brief incubation. The nucleotide sequence of the gene for this protein contains a 3,873-bp open reading frame encoding 1,291 amino acids with a calculated molecular mass of 135 kDa. The protein contains two major domains, the N-terminal domain (277 residues) and the C-terminal domain (937 residues), separated by a characteristic sequence composed of proline and threonine repeats. The characterization of the recombinant proteins for each domain which were expressed in Escherichia coli demonstrated that the N-terminal domain had strong mutan-binding activity but no mutanase activity whereas the C-terminal domain was responsible for mutanase activity but had mutan-binding activity significantly lower than that of the intact protein. Importantly, the biofilm-degrading activity observed with the intact protein was not exhibited by either domain alone or in combination with the other. Therefore, these results indicate that the structural integrity of mutanase RM1 containing the N-terminal mutan-binding domain is required for the biofilm-degrading activity. PMID:18326674

  15. Binding Force Dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans.

    PubMed

    Hwang, G; Marsh, G; Gao, L; Waugh, R; Koo, H

    2015-09-01

    Candida albicans cells are often detected with Streptococcus mutans in plaque biofilms from children affected with early childhood caries. The coadhesion between these 2 organisms appears to be largely mediated by the S. mutans-derived exoenzyme glucosyltransferase B (GtfB); GtfB readily binds to C. albicans cells in an active form, producing glucans locally that provide enhanced binding sites for S. mutans. However, knowledge is limited about the mechanisms by which the bacterial exoenzyme binds to and functions on the fungal surface to promote this unique cross-kingdom interaction. In this study, we use atomic force microscopy to understand the strength and binding dynamics modulating GtfB-C. albicans adhesive interactions in situ. Single-molecule force spectroscopy with GtfB-functionalized atomic force microscopy tips demonstrated that the enzyme binds with remarkable strength to the C. albicans cell surface (~2 nN) and showed a low dissociation rate, suggesting a highly stable bond. Strikingly, the binding strength of GtfB to the C. albicans surface was ~2.5-fold higher and the binding stability, ~20 times higher, as compared with the enzyme adhesion to S. mutans. Furthermore, adhesion force maps showed an intriguing pattern of GtfB binding. GtfB adhered heterogeneously on the surface of C. albicans, showing a higher frequency of adhesion failure but large sections of remarkably strong binding forces, suggesting the presence of GtfB binding domains unevenly distributed on the fungal surface. In contrast, GtfB bound uniformly across the S. mutans cell surface with less adhesion failure and a narrower range of binding forces (vs. the C. albicans surface). The data provide the first insights into the mechanisms underlying the adhesive and mechanical properties governing GtfB interactions with C. albicans. The strong and highly stable GtfB binding to C. albicans could explain, at least in part, why this bacterially derived exoenzyme effectively modulates this

  16. α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.

    PubMed

    Nguyen, Phuong Thi Mai; Falsetta, Megan L; Hwang, Geelsu; Gonzalez-Begne, Mireya; Koo, Hyun

    2014-01-01

    α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30-45%) than those treated with vehicle control (P<0.05), while the number of viable bacterial counts was unaffected. Furthermore, αMG treatments significantly compromised the mechanical stability of the biofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; P<0.05). Moreover, acid production by S. mutans biofilms was disrupted following αMG treatments (vs. vehicle-control, P<0.05). The activity of enzymes associated with glucan synthesis, acid production, and acid tolerance (glucosyltransferases B and C, phosphotransferase-PTS system, and F1F0-ATPase) were significantly inhibited by αMG. The expression of manL, encoding a key component of the mannose PTS, and gtfB were slightly repressed by αMG treatment (P<0.05), while the expression of atpD (encoding F-ATPase) and gtfC genes was unaffected. Hence, this study reveals that brief exposures to αMG can disrupt the development and structural integrity of S. mutans biofilms, at least in part

  17. Modulation of Biofilm Exopolysaccharides by the Streptococcus mutans vicX Gene

    PubMed Central

    Lei, Lei; Yang, Yingming; Mao, Mengying; Li, Hong; Li, Meng; Yang, Yan; Yin, Jiaxin; Hu, Tao

    2015-01-01

    The cariogenic pathogen Streptococcus mutans effectively utilizes dietary sucrose for the synthesis of exopolysaccharide, which act as a scaffold for its biofilm, thus contributing to its pathogenicity, environmental stress tolerance, and antimicrobial resistance. The two-component system VicRK of S. mutans regulates a group of virulence genes that are associated with biofilm matrix synthesis. Knockout of vicX affects biofilm formation, oxidative stress tolerance, and transformation of S. mutans. However, little is known regarding the vicX-modulated structural characteristics of the exopolysaccharides underlying the biofilm formation and the phenotypes of the vicX mutants. Here, we identified the role of vicX in the structural characteristics of the exopolysaccharide matrix and biofilm physiology. The vicX mutant (SmuvicX) biofilms seemingly exhibited “desertification” with architecturally impaired exopolysaccharide-enmeshed cell clusters, compared with the UA159 strain (S. mutans wild type strain). Concomitantly, SmuvicX showed a decrease in water-insoluble glucan (WIG) synthesis and in WIG/water-soluble glucan (WSG) ratio. Gel permeation chromatography (GPC) showed that the WIG isolated from the SmuvicX biofilms had a much lower molecular weight compared with the UA159 strain indicating differences in polysaccharide chain lengths. A monosaccharide composition analysis demonstrated the importance of the vicX gene in the glucose metabolism. We performed metabolite profiling via 1H nuclear magnetic resonance spectroscopy, which showed that several chemical shifts were absent in both WSG and WIG of SmuvicX biofilms compared with the UA159 strain. Thus, the modulation of structural characteristics of exopolysaccharide by vicX provides new insights into the interaction between the exopolysaccharide structure, gene functions, and cariogenicity. Our results suggest that vicX gene modulates the structural characteristics of exopolysaccharide associated with

  18. Effect of Human Saliva on Glucose Uptake by Streptococcus mutans and Other Oral Microorganisms

    PubMed Central

    Germaine, Greg R.; Tellefson, Lois M.

    1981-01-01

    We examined the effects of human whole salivary supernatant and parotid fluid on glucose uptake by Streptococcus mutans, Streptococcus sanguis, Streptococcus mitis, Actinomyces viscosus, Staphylococcus aureus, and Escherichia coli. The following three effects of saliva were observed: (i) inhibition of glucose uptake (S. mutans, S. sanguis), (ii) promotion of a transient, rapid (0 to 30 s) burst of glucose uptake (S. mutans, S. sanguis), and (iii) enhancement of glucose uptake (S. mitis, A. viscosus, S. aureus, E. coli). We observed no differences between the effects of whole salivary supernatant and the effects of parotid fluid. Heat treatment (80°C, 10 min) of saliva or the addition of dithiothreitol abolished inhibition of glucose uptake. Supplementation of saliva with H2O2 potentiated inhibition of glucose uptake. S. mitis and A. viscosus, which were stimulated by saliva alone, were inhibited by H2O2-supplemented saliva; 50% inhibition of glucose uptake by S. mutans and S. mitis required ca. 10 μM H2O2 in 50% (vol/vol) saliva. Loss of the inhibitory action of saliva occurred at about 5% (vol/vol) saliva. Supplementation of saliva dilutions with SCN− and H2O2 extended the inhibitory activity to solutions containing ca. 0.2% (vol/vol) saliva. We suggest that the salivary lactoperoxidase-SCN−-H2O2 system is responsible for the inhibitory activity of saliva reported here. Furthermore, we concluded that lactoperoxidase and SCN− are present in saliva specimens in concentrations that exceed minimal inhibitory levels by factors of ca. 500 and 10 to 20, respectively. The resistance of A. viscosus, S. aureus, and E. coli to the inhibitory potential of saliva alone was probably due to the production of catalase by these organisms. The resistance of S. mitis may have been due to special effects of saliva on H2O2 accumulation by this organism compared with S. mutans and S. sanguis. The basis of saliva-dependent enhancement of glucose uptake and the basis of promotion

  19. Effect of human saliva on glucose uptake by Streptococcus mutans and other oral microorganisms.

    PubMed

    Germaine, G R; Tellefson, L M

    1981-02-01

    We examined the effects of human whole salivary supernatant and parotid fluid on glucose uptake by Streptococcus mutans, Streptococcus sanguis, Streptococcus mitis, Actinomyces viscosus, Staphylococcus aureus, and Escherichia coli. The following three effects of saliva were observed: (i) inhibition of glucose uptake (S. mutans, S. sanguis), (ii) promotion of a transient, rapid (0 to 30 s) burst of glucose uptake (S. mutans, S. sanguis), and (iii) enhancement of glucose uptake (S. mitis, A. viscosus, S. aureus, E. coli). We observed no differences between the effects of whole salivary supernatant and the effects of parotid fluid. Heat treatment (80 degrees C, 10 min) of saliva or the addition of dithiothreitol abolished inhibition of glucose uptake. Supplementation of saliva with H(2)O(2) potentiated inhibition of glucose uptake. S. mitis and A. viscosus, which were stimulated by saliva alone, were inhibited by H(2)O(2)-supplemented saliva; 50% inhibition of glucose uptake by S. mutans and S. mitis required ca. 10 muM H(2)O(2) in 50% (vol/vol) saliva. Loss of the inhibitory action of saliva occurred at about 5% (vol/vol) saliva. Supplementation of saliva dilutions with SCN(-) and H(2)O(2) extended the inhibitory activity to solutions containing ca. 0.2% (vol/vol) saliva. We suggest that the salivary lactoperoxidase-SCN(-)-H(2)O(2) system is responsible for the inhibitory activity of saliva reported here. Furthermore, we concluded that lactoperoxidase and SCN(-) are present in saliva specimens in concentrations that exceed minimal inhibitory levels by factors of ca. 500 and 10 to 20, respectively. The resistance of A. viscosus, S. aureus, and E. coli to the inhibitory potential of saliva alone was probably due to the production of catalase by these organisms. The resistance of S. mitis may have been due to special effects of saliva on H(2)O(2) accumulation by this organism compared with S. mutans and S. sanguis. The basis of saliva-dependent enhancement of glucose

  20. Tight genetic linkage of a glucosyltransferase and dextranase of Streptococcus mutans GS-5.

    PubMed

    Burne, R A; Rubinfeld, B; Bowen, W H; Yasbin, R E

    1986-12-01

    A genetic library consisting of over 5000 clones with an average insert size of 6.9 kilobasepairs (kbp) of Streptococcus mutans GS-5 has been constructed in a bivalent plasmid vector pMK3, which is capable of replicating in Escherichia coli and Bacillus subtilis. The recombinant plasmid pSUCRI, containing a 6.0 kbp fragment of S. mutans GS-5 DNA, was the focus of this study. Using Southern hybridization, in vitro and in vivo gene expression techniques, and biochemical analysis, this clone was shown to encode the 55 kiloDalton (kDal) GS-5 gtfA gene product, as well as a 38 and a 66 kDal polypeptide. In addition to the gtfA gene, pSUCRI encodes a dextranase activity with specificity for alpha(1----6)-linked glucans, and with no detectable activity on mutan. The dextranase enzyme had an apparent molecular weight of 66 kDal as demonstrated by SDS-PAGE analysis of the proteins produced by a dextranase-negative deletion derivative. The pH optimum of the enzyme was approximately 6.0, and there was no detectable activity below pH 5.0. By subcloning various combinations of DNA fragments from pSUCRI, it was demonstrated that the dextranase gene (designated dexB) can be separated from the gtfA gene and still be efficiently expressed in both E. coli and B. subtilis. The dexB gene contained its own promoter and ribosome-binding site. The genetic linkage of the gtfA and dexB genes in the S. mutans GS-5 chromosome was confirmed by Southern hybridization and by the independent isolation of four distinct clones containing the gtfA gene and common flanking sequences. In addition to a glucosyltransferase and dextranase, an invertase-like activity is also encoded on pSUCRI, indicating that there is a cluster of genes on the S. mutans GS-5 chromosome which is devoted to the dissimilation of sucrose and concomitant synthesis or modification of glucans into a water-insoluble form, perhaps constituting an operon for glucan modification which can be coordinately regulated in response to

  1. Immunization of Macaca fascicularis (Macaca irus) monkeys with Streptococcus mutans: specificity of antibody responses in saliva.

    PubMed

    Emmings, F G; Evans, R T; Genco, R J

    1976-04-01

    M fascicularis monkeys were immunized subcutaneously in the vicinity of the major salivary glands and by retrograde infusion into the parotid duct, with a vaccine containing Formalin-killed S mutans strain 6715 cells and culture-fluid antigens. Indirect immunofluorescent staining was used to titrate and classify antibodies. Subcutaneous immunization induced only a serum response, whereas intraductal infusion stimulated both an IgA antibody response in the parotid fluid and a serum response. Immunized and nonimmunized control groups were orally infected with S mutans strain 6715. The establishment in dental plaque was quantitated by recovery of the infecting organism on selective media and by immunofluorescent staining of plaque smears taken from individual tooth surfaces. The establishment of S mutans strain 6715 was noticeably inhibited in immune monkeys. Immunofluorescent assays for antibody also showed that serum and parotid fluid containing serum IgA antibodies cross reacted with other d serotype and a serotype strains but not representative b and c strains. Immune and control groups were then orally infected with S mutans strain GS-5, a c serotype strain, and no inhibition in establishment was detected of the non-cross-reacting type c organism in the immune group. A latter series of booster immunizations via the intraductal route resulted in a significant decrease in parotid fluid flow. Histological investigations showed inflammatory cell infiltration and replacement of epithelium by connective tissue in the glands from immunized monkeys. A separate group of monkeys, younger than the first, was immunized with the same vaccine via the duct only. In this group, immunizations were given at shorter intervals, but the immunization response was similar to that observed in the first group. The investigations reviewed here and new experiments reported show that immunization of monkeys with S mutan strain 6715 via the parotid duct elicited a reproducible IgA antibody

  2. α-Mangostin Disrupts the Development of Streptococcus mutans Biofilms and Facilitates Its Mechanical Removal

    PubMed Central

    Nguyen, Phuong Thi Mai; Falsetta, Megan L.; Hwang, Geelsu; Gonzalez-Begne, Mireya; Koo, Hyun

    2014-01-01

    α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30–45%) than those treated with vehicle control (P<0.05), while the number of viable bacterial counts was unaffected. Furthermore, αMG treatments significantly compromised the mechanical stability of the biofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; P<0.05). Moreover, acid production by S. mutans biofilms was disrupted following αMG treatments (vs. vehicle-control, P<0.05). The activity of enzymes associated with glucan synthesis, acid production, and acid tolerance (glucosyltransferases B and C, phosphotransferase-PTS system, and F1F0-ATPase) were significantly inhibited by αMG. The expression of manL, encoding a key component of the mannose PTS, and gtfB were slightly repressed by αMG treatment (P<0.05), while the expression of atpD (encoding F-ATPase) and gtfC genes was unaffected. Hence, this study reveals that brief exposures to αMG can disrupt the development and structural integrity of S. mutans biofilms, at least in part

  3. Pluronics-Formulated Farnesol Promotes Efficient Killing and Demonstrates Novel Interactions with Streptococcus mutans Biofilms.

    PubMed

    Mogen, Austin B; Chen, Fu; Ahn, Sang-Joon; Burne, Robert A; Wang, Dong; Rice, Kelly C

    2015-01-01

    Streptococcus mutans is the primary causative agent of dental caries, one of the most prevalent diseases in the United States. Previously published studies have shown that Pluronic-based tooth-binding micelles carrying hydrophobic antimicrobials are extremely effective at inhibiting S. mutans biofilm growth on hydroxyapatite (HA). Interestingly, these studies also demonstrated that non-binding micelles (NBM) carrying antimicrobial also had an inhibitory effect, leading to the hypothesis that the Pluronic micelles themselves may interact with the biofilm. To explore this potential interaction, three different S. mutans strains were each grown as biofilm in tissue culture plates, either untreated or supplemented with NBM alone (P85), NBM containing farnesol (P85F), or farnesol alone (F). In each tested S. mutans strain, biomass was significantly decreased (SNK test, p < 0.05) in the P85F and F biofilms relative to untreated biofilms. Furthermore, the P85F biofilms formed large towers containing dead cells that were not observed in the other treatment conditions. Tower formation appeared to be specific to formulated farnesol, as this phenomenon was not observed in S. mutans biofilms grown with NBM containing triclosan. Parallel CFU/ml determinations revealed that biofilm growth in the presence of P85F resulted in a 3-log reduction in viability, whereas F decreased viability by less than 1-log. Wild-type biofilms grown in the absence of sucrose or gtfBC mutant biofilms grown in the presence of sucrose did not form towers. However, increased cell killing with P85F was still observed, suggesting that cell killing is independent of tower formation. Finally, repeated treatment of pre-formed biofilms with P85F was able to elicit a 2-log reduction in viability, whereas parallel treatment with F alone only reduced viability by 0.5-log. Collectively, these results suggest that Pluronics-formulated farnesol induces alterations in biofilm architecture, presumably via interaction

  4. Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development.

    PubMed

    Klein, Marlise I; DeBaz, Lena; Agidi, Senyo; Lee, Herbert; Xie, Gary; Lin, Amy H-M; Hamaker, Bruce R; Lemos, José A; Koo, Hyun

    2010-01-01

    The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates

  5. Pluronics-Formulated Farnesol Promotes Efficient Killing and Demonstrates Novel Interactions with Streptococcus mutans Biofilms

    PubMed Central

    Mogen, Austin B.; Chen, Fu; Ahn, Sang-Joon; Burne, Robert A.; Wang, Dong; Rice, Kelly C.

    2015-01-01

    Streptococcus mutans is the primary causative agent of dental caries, one of the most prevalent diseases in the United States. Previously published studies have shown that Pluronic-based tooth-binding micelles carrying hydrophobic antimicrobials are extremely effective at inhibiting S. mutans biofilm growth on hydroxyapatite (HA). Interestingly, these studies also demonstrated that non-binding micelles (NBM) carrying antimicrobial also had an inhibitory effect, leading to the hypothesis that the Pluronic micelles themselves may interact with the biofilm. To explore this potential interaction, three different S. mutans strains were each grown as biofilm in tissue culture plates, either untreated or supplemented with NBM alone (P85), NBM containing farnesol (P85F), or farnesol alone (F). In each tested S. mutans strain, biomass was significantly decreased (SNK test, p < 0.05) in the P85F and F biofilms relative to untreated biofilms. Furthermore, the P85F biofilms formed large towers containing dead cells that were not observed in the other treatment conditions. Tower formation appeared to be specific to formulated farnesol, as this phenomenon was not observed in S. mutans biofilms grown with NBM containing triclosan. Parallel CFU/ml determinations revealed that biofilm growth in the presence of P85F resulted in a 3-log reduction in viability, whereas F decreased viability by less than 1-log. Wild-type biofilms grown in the absence of sucrose or gtfBC mutant biofilms grown in the presence of sucrose did not form towers. However, increased cell killing with P85F was still observed, suggesting that cell killing is independent of tower formation. Finally, repeated treatment of pre-formed biofilms with P85F was able to elicit a 2-log reduction in viability, whereas parallel treatment with F alone only reduced viability by 0.5-log. Collectively, these results suggest that Pluronics-formulated farnesol induces alterations in biofilm architecture, presumably via interaction

  6. The copYAZ Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans

    PubMed Central

    Singh, Kamna; Senadheera, Dilani B.; Lévesque, Céline M.

    2015-01-01

    ABSTRACT In bacteria, copper homeostasis is closely monitored to ensure proper cellular functions while avoiding cell damage. Most Gram-positive bacteria utilize the copYABZ operon for copper homeostasis, where copA and copB encode copper-transporting P-type ATPases, whereas copY and copZ regulate the expression of the cop operon. Streptococcus mutans is a biofilm-forming oral pathogen that harbors a putative copper-transporting copYAZ operon. Here, we characterized the role of copYAZ operon in the physiology of S. mutans and delineated the mechanisms of copper-induced toxicity in this bacterium. We observed that copper induced toxicity in S. mutans cells by generating oxidative stress and disrupting their membrane potential. Deletion of the copYAZ operon in S. mutans strain UA159 resulted in reduced cell viability under copper, acid, and oxidative stress relative to the viability of the wild type under these conditions. Furthermore, the ability of S. mutans to form biofilms and develop genetic competence was impaired under copper stress. Briefly, copper stress significantly reduced cell adherence and total biofilm biomass, concomitantly repressing the transcription of the gtfB, gtfC, gtfD, gbpB, and gbpC genes, whose products have roles in maintaining the structural and/or functional integrity of the S. mutans biofilm. Furthermore, supplementation with copper or loss of copYAZ resulted in significant reductions in transformability and in the transcription of competence-associated genes. Copper transport assays revealed that the ΔcopYAZ strain accrued significantly large amounts of intracellular copper compared with the amount of copper accumulation in the wild-type strain, thereby demonstrating a role for CopYAZ in the copper efflux of S. mutans. The complementation of the CopYAZ system restored copper expulsion, membrane potential, and stress tolerance in the copYAZ-null mutant. Taking these results collectively, we have established the function of the S. mutans

  7. Biochemical characterization and evaluation of virulence of a fructosyltransferase-deficient mutant of Streptococcus mutans V403.

    PubMed Central

    Schroeder, V A; Michalek, S M; Macrina, F L

    1989-01-01

    The Streptococcus mutans extracellular fructosyltransferase (FTF) enzyme may play a role in the formation of dental caries by synthesizing a fructan polymer that serves as an extracellular storage polysaccharide. We sought to determine if an FTF-deficient strain of S. mutans was less virulent than wild-type cells in a rat animal model system. Cloned ftf gene sequences from S. mutans GS5 were used to generate a defective copy of the ftf gene by inserting into the ftf coding region a DNA fragment which encoded erythromycin resistance. The plasmid which carried the defective ftf construct was introduced into S. mutans V403 by using genetic transformation. This defective construct replaced, by allelic exchange, the wild-type copy of the ftf gene carried on the V403 chromosome. FTF activity assays indicated that the recombinant strain, V1741, was deficient in fructan synthesis. However, extracellular protein preparations from this strain displayed an increased ability to generate glucose polymers (glucans) compared with V403 preparations. Levels of adherence to glass and rat tooth surfaces by strain V1741 were similar to those of the V403 strain. Both strains caused moderate decay on rat tooth surfaces; however, the FTF-deficient strain was less pathogenic compared with the wild-type strain. These results suggest that FTF activity contributes to the pathogenicity of S. mutans V403, possibly by generating extracellular fructans which serve as storage compounds. Images PMID:2807537

  8. Genotypic Diversity and Virulence Traits of Streptococcus mutans Isolated from Carious Dentin after Partial Caries Removal and Sealing

    PubMed Central

    Damé-Teixeira, Nailê; Arthur, Rodrigo Alex; Parolo, Clarissa Cavalcanti Fatturi

    2014-01-01

    The aim of this study was to compare the genotypic diversity and virulence traits of Streptococcus mutans isolated from carious dentin before and after partial dentin caries removal (PDR) and sealing. Carious dentin samples were obtained three months before and after the PDR and cavity sealing. Up to seven isolates of each morphological type of S. mutans were selected and strain identity was confirmed using gtfB primer. Genotyping was performed by arbitrary primer-PCR (AP-PCR). Acidogenesis and acidurance of the genotypes were evaluated as virulence traits. A paired t-test and a Wilcoxon test were used to compare the virulence of genotypes. A total of 48 representative S. mutans isolates were genotyped (31 before and 17 after the sealing). At least one of the genotypes found before the sealing was also found on dentin after the sealing. The number of genotypes found before the sealing ranged from 2 to 3 and after the sealing from 1 to 2 genotypes. No difference was observed in the acidogenesis and acidurance between genotypes isolated before and after the sealing. In conclusion, genotypic diversity of S. mutans decreased after the PDR and sealing, but the virulence traits of S. mutans remained unchangeable. PMID:24578618

  9. GlmS and NagB Regulate Amino Sugar Metabolism in Opposing Directions and Affect Streptococcus mutans Virulence

    PubMed Central

    Kawada-Matsuo, Miki; Mazda, Yusuke; Oogai, Yuichi; Kajiya, Mikihito; Kawai, Toshihisa; Yamada, Sakuo; Miyawaki, Shouichi; Oho, Takahiko; Komatsuzawa, Hitoshi

    2012-01-01

    Streptococcus mutans is a cariogenic pathogen that produces an extracellular polysaccharide (glucan) from dietary sugars, which allows it to establish a reproductive niche and secrete acids that degrade tooth enamel. While two enzymes (GlmS and NagB) are known to be key factors affecting the entrance of amino sugars into glycolysis and cell wall synthesis in several other bacteria, their roles in S. mutans remain unclear. Therefore, we investigated the roles of GlmS and NagB in S. mutans sugar metabolism and determined whether they have an effect on virulence. NagB expression increased in the presence of GlcNAc while GlmS expression decreased, suggesting that the regulation of these enzymes, which functionally oppose one another, is dependent on the concentration of environmental GlcNAc. A glmS-inactivated mutant could not grow in the absence of GlcNAc, while nagB-inactivated mutant growth was decreased in the presence of GlcNAc. Also, nagB inactivation was found to decrease the expression of virulence factors, including cell-surface protein antigen and glucosyltransferase, and to decrease biofilm formation and saliva-induced S. mutans aggregation, while glmS inactivation had the opposite effects on virulence factor expression and bacterial aggregation. Our results suggest that GlmS and NagB function in sugar metabolism in opposing directions, increasing and decreasing S. mutans virulence, respectively. PMID:22438919

  10. The Antibacterial Effect of Ethanol Extract of Polish Propolis on Mutans Streptococci and Lactobacilli Isolated from Saliva

    PubMed Central

    Dziedzic, Arkadiusz; Kubina, Robert; Wojtyczka, Robert D.; Kabała-Dzik, Agata; Tanasiewicz, Marta; Morawiec, Tadeusz

    2013-01-01

    Dental caries occurrence is caused by the colonization of oral microorganisms and accumulation of extracellular polysaccharides synthesized by Streptococcus mutans with the synergistic influence of Lactobacillus spp. bacteria. The aim of this study was to determine ex vivo the antibacterial properties of ethanol extract of propolis (EEP), collected in Poland, against the main cariogenic bacteria: salivary mutans streptococci and lactobacilli. The isolation of mutans streptococci group bacteria (MS) and Lactobacillus spp. (LB) from stimulated saliva was performed by in-office CRT bacteria dip slide test. The broth diffusion method and AlamarBlue assay were used to evaluate the antimicrobial activity of EEP, with the estimation of its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The biochemical composition of propolis components was assessed. The mean MIC and MBC values of EEP, in concentrations ranging from 25 mg/mL to 0.025 mg/mL, for the MS and LB were found to be 1.10 mg/mL versus 0.7 mg/mL and 9.01 mg/mL versus 5.91 mg/mL, respectively. The exposure to an extract of Polish propolis affected mutans streptococci and Lactobacillus spp. viability, exhibiting an antibacterial efficacy on mutans streptococci group bacteria and lactobacilli saliva residents, while lactobacilli were more susceptible to EEP. Antibacterial measures containing propolis could be the local agents acting against cariogenic bacteria. PMID:23606887