Sample records for gtpase irga6 iigp1

  1. The immunity-related GTPase Irga6 dimerizes in a parallel head-to-head fashion.

    PubMed

    Schulte, Kathrin; Pawlowski, Nikolaus; Faelber, Katja; Fröhlich, Chris; Howard, Jonathan; Daumke, Oliver

    2016-03-02

    The immunity-related GTPases (IRGs) constitute a powerful cell-autonomous resistance system against several intracellular pathogens. Irga6 is a dynamin-like protein that oligomerizes at the parasitophorous vacuolar membrane (PVM) of Toxoplasma gondii leading to its vesiculation. Based on a previous biochemical analysis, it has been proposed that the GTPase domains of Irga6 dimerize in an antiparallel fashion during oligomerization. We determined the crystal structure of an oligomerization-impaired Irga6 mutant bound to a non-hydrolyzable GTP analog. Contrary to the previous model, the structure shows that the GTPase domains dimerize in a parallel fashion. The nucleotides in the center of the interface participate in dimerization by forming symmetric contacts with each other and with the switch I region of the opposing Irga6 molecule. The latter contact appears to activate GTP hydrolysis by stabilizing the position of the catalytic glutamate 106 in switch I close to the active site. Further dimerization contacts involve switch II, the G4 helix and the trans stabilizing loop. The Irga6 structure features a parallel GTPase domain dimer, which appears to be a unifying feature of all dynamin and septin superfamily members. This study contributes important insights into the assembly and catalytic mechanisms of IRG proteins as prerequisite to understand their anti-microbial action.

  2. Atg5 is Essential for Cellular Immunity in vivo and recruitment of a p47 GTPase to the Toxoplasma gondii Parasitophorous Vacuole in Macrophages

    PubMed Central

    Zhao, Zijiang; Fux, Blima; Goodwin, Megan; Dunay, Ildiko R.; Strong, David; Miller, Brian C.; Cadwell, Ken; Delgado-Vargas, Monica; Ponpuak, Marisa; Green, Karen G.; Schmidt, Robert E.; Mizushima, Noboru; Deretic, Vojo; Sibley, L. David; Virgin, Herbert W.

    2008-01-01

    SUMMARY The physiologic importance of autophagy proteins for control of mammalian bacterial and parasitic infection in vivo is unknown. We show that expression of the essential autophagy protein Atg5 in granulocytes and macrophages is required for in vivo resistance to infection with L. monocytogenes and T. gondii. In primary macrophages, Atg5 was not required for IFNγ/LPS-mediated transcription, induction of nitric oxide, or inhibition of T. gondii replication. However, Atg5 was required for IFNγ/LPS-induced damage to the T. gondii parasitophorous vacuole membrane and parasite clearance. While we did not detect autophagosomes enveloping T. gondii, Atg5 was required for recruitment of the IFNγ-inducible p47 GTPase IIGP1 (Irga6) to the vacuole membrane. This work shows that Atg5 expression in phagocytic cells is essential for cellular immunity to intracellular pathogens in vivo and that an autophagy protein can participate in immunity and intracellular killing of pathogens via autophagosome-independent processes such as GTPase trafficking. PMID:18996346

  3. Chlamydia muridarum evades growth restriction by the IFN-gamma-inducible host resistance factor Irgb10.

    PubMed

    Coers, Jörn; Bernstein-Hanley, Isaac; Grotsky, David; Parvanova, Iana; Howard, Jonathan C; Taylor, Gregory A; Dietrich, William F; Starnbach, Michael N

    2008-05-01

    Chlamydiae are obligate intracellular bacterial pathogens that exhibit a broad range of host tropism. Differences in host tropism between Chlamydia species have been linked to host variations in IFN-gamma-mediated immune responses. In mouse cells, IFN-gamma can effectively restrict growth of the human pathogen Chlamydia trachomatis but fails to control growth of the closely related mouse pathogen Chlamydia muridarum. The ability of mouse cells to resist C. trachomatis replication is largely dependent on the induction of a family of IFN-gamma-inducible GTPases called immunity-related GTPases or IRGs. In this study we demonstrate that C. muridarum can specifically evade IRG-mediated host resistance. It has previously been suggested that C. muridarum inactivates the IRG protein Irga6 (Iigp1) to dampen the murine immune response. However, we show that Irga6 is dispensable for the control of C. trachomatis replication. Instead, an effective IFN-gamma response to C. trachomatis requires the IRG proteins Irgm1 (Lrg47), Irgm3 (Igtp), and Irgb10. Ectopic expression of Irgb10 in the absence of IFN-gamma is sufficient to reduce intracellular growth of C. trachomatis but fails to restrict growth of C. muridarum, indicating that C. muridarum can specifically evade Irgb10-driven host responses. Importantly, we find that Irgb10 protein intimately associates with inclusions harboring C. trachomatis but is absent from inclusions formed by C. muridarum. These data suggest that C. muridarum has evolved a mechanism to escape the murine IFN-gamma response by restricting access of Irgb10 and possibly other IRG proteins to the inclusion.

  4. 6-Mercaptopurine reduces macrophage activation and gut epithelium proliferation through inhibition of GTPase Rac1.

    PubMed

    Marinković, Goran; Hamers, Anouk A J; de Vries, Carlie J M; de Waard, Vivian

    2014-09-01

    Inflammatory bowel disease is characterized by chronic intestinal inflammation. Azathioprine and its metabolite 6-mercaptopurine (6-MP) are effective immunosuppressive drugs that are widely used in patients with inflammatory bowel disease. However, established understanding of their immunosuppressive mechanism is limited. Azathioprine and 6-MP have been shown to affect small GTPase Rac1 in T cells and endothelial cells, whereas the effect on macrophages and gut epithelial cells is unknown. Macrophages (RAW cells) and gut epithelial cells (Caco-2 cells) were activated by cytokines and the effect on Rac1 signaling was assessed in the presence or absence of 6-MP. Rac1 is activated in macrophages and epithelial cells, and treatment with 6-MP resulted in Rac1 inhibition. In macrophages, interferon-γ induced downstream signaling through c-Jun-N-terminal Kinase (JNK) resulting in inducible nitric oxide synthase (iNOS) expression. iNOS expression was reduced by 6-MP in a Rac1-dependent manner. In epithelial cells, 6-MP efficiently inhibited tumor necrosis factor-α-induced expression of the chemokines CCL2 and interleukin-8, although only interleukin-8 expression was inhibited in a Rac1-dependent manner. In addition, activation of the transcription factor STAT3 was suppressed in a Rac1-dependent fashion by 6-MP, resulting in reduced proliferation of the epithelial cells due to diminished cyclin D1 expression. These data demonstrate that 6-MP affects macrophages and gut epithelial cells beneficially, in addition to T cells and endothelial cells. Furthermore, mechanistic insight is provided to support development of Rac1-specific inhibitors for clinical use in inflammatory bowel disease.

  5. Spi1 GTPase interacts with RCC1 to maintain interdependency of cell cycle events.

    PubMed

    Matsumoto, T; Beach, D

    1991-01-01

    A mutant which can enter mitosis at any cell cycle stage has been isolated and characterized in fission yeast. The pim1 (premature initiation of mitosis) mutant prearrested at G1/S can develop a mitotic spindle and has tightly condensed chromosomes upon shift to the restrictive temperature. pim1-induced mitosis requires maturation promoting factor (MPF) activity, but not the essential mitotic inducer, cdc25. The pim1+ gene encodes a homolog of regulator of chromosome condensation 1 (RCC1), a regulator of onset of mitosis in mammalian cells. A multicopy suppressor of pim1, spi1, was isolated, and found to encode a 25 kDa GTPase. The primary sequence of the spi1 GTPase shows extensive identity (80%) to human TC4, whose function is unknown. The spi1/TC4 GTPase defines a novel class in the "ras-like" GTPase family, which is distinct from ras, rho, or ypt. Disruption of the spi1+ gene causes genomic instability in a heterozygous diploid. These genetic data suggest that pim1+ and spi1+ interact to coordinate correct entry into mitosis. Immunological experiments demonstrate that the pim1+ and spi1+ products are physically associated. Mutation in the pim1 gene results in lowered affinity of the protein for the spi1 protein in vitro, which may explain why high dosages of the spi1 protein can rescue the pim1 mutant in vivo. The pim1/spi1 complex dissociates in the presence of Mg2+ and GTP. The current data suggests that pim1+ acts as a GTP exchanger for the spi1 GTPase.

  6. Enhancement of dynamin polymerization and GTPase activity by Arc/Arg3.1.

    PubMed

    Byers, Christopher E; Barylko, Barbara; Ross, Justin A; Southworth, Daniel R; James, Nicholas G; Taylor, Clinton A; Wang, Lei; Collins, Katie A; Estrada, Armando; Waung, Maggie; Tassin, Tara C; Huber, Kimberly M; Jameson, David M; Albanesi, Joseph P

    2015-06-01

    The Activity-regulated cytoskeleton-associated protein, Arc, is an immediate-early gene product implicated in various forms of synaptic plasticity. Arc promotes endocytosis of AMPA type glutamate receptors and regulates cytoskeletal assembly in neuronal dendrites. Its role in endocytosis may be mediated by its reported interaction with dynamin 2, a 100 kDa GTPase that polymerizes around the necks of budding vesicles and catalyzes membrane scission. Enzymatic and turbidity assays are used in this study to monitor effects of Arc on dynamin activity and polymerization. Arc oligomerization is measured using a combination of approaches, including size exclusion chromatography, sedimentation analysis, dynamic light scattering, fluorescence correlation spectroscopy, and electron microscopy. We present evidence that bacterially-expressed His6-Arc facilitates the polymerization of dynamin 2 and stimulates its GTPase activity under physiologic conditions (37°C and 100mM NaCl). At lower ionic strength Arc also stabilizes pre-formed dynamin 2 polymers against GTP-dependent disassembly, thereby prolonging assembly-dependent GTP hydrolysis catalyzed by dynamin 2. Arc also increases the GTPase activity of dynamin 3, an isoform of implicated in dendrite remodeling, but does not affect the activity of dynamin 1, a neuron-specific isoform involved in synaptic vesicle recycling. We further show in this study that Arc (either His6-tagged or untagged) has a tendency to form large soluble oligomers, which may function as a scaffold for dynamin assembly and activation. The ability of Arc to enhance dynamin polymerization and GTPase activation may provide a mechanism to explain Arc-mediated endocytosis of AMPA receptors and the accompanying effects on synaptic plasticity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases

    PubMed Central

    Oprea, Tudor I.; Sklar, Larry A.; Agola, Jacob O.; Guo, Yuna; Silberberg, Melina; Roxby, Joshua; Vestling, Anna; Romero, Elsa; Surviladze, Zurab; Murray-Krezan, Cristina; Waller, Anna; Ursu, Oleg; Hudson, Laurie G.; Wandinger-Ness, Angela

    2015-01-01

    Rho family GTPases (including Rac, Rho and Cdc42) collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac) as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs) with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID) as a structural series. Cheminformatics-based substructure analyses—using the rotationally constrained carboxylate in R-naproxen—led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines) demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid translation and

  8. Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in C. elegans

    PubMed Central

    Neukomm, L J; Zeng, S; Frei, A P; Huegli, P A; Hengartner, M O

    2014-01-01

    The rapid clearance of dying cells is important for the well-being of multicellular organisms. In C. elegans, cell corpse removal is mainly mediated by three parallel engulfment signaling cascades. These pathways include two small GTPases, MIG-2/RhoG and CED-10/Rac1. Here we present the identification and characterization of CDC-42 as a third GTPase involved in the regulation of cell corpse clearance. Genetic analyses performed by both loss of cdc-42 function and cdc-42 overexpression place cdc-42 in parallel to the ced-2/5/12 signaling module, in parallel to or upstream of the ced-10 module, and downstream of the ced-1/6/7 module. CDC-42 accumulates in engulfing cells at membranes surrounding apoptotic corpses. The formation of such halos depends on the integrins PAT-2/PAT-3, UNC-112 and the GEF protein UIG-1, but not on the canonical ced-1/6/7 or ced-2/5/12 signaling modules. Together, our results suggest that the small GTPase CDC-42 regulates apoptotic cell engulfment possibly upstream of the canonical Rac GTPase CED-10, by polarizing the engulfing cell toward the apoptotic corpse in response to integrin signaling and ced-1/6/7 signaling in C. elegans. PMID:24632947

  9. Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in C. elegans.

    PubMed

    Neukomm, L J; Zeng, S; Frei, A P; Huegli, P A; Hengartner, M O

    2014-06-01

    The rapid clearance of dying cells is important for the well-being of multicellular organisms. In C. elegans, cell corpse removal is mainly mediated by three parallel engulfment signaling cascades. These pathways include two small GTPases, MIG-2/RhoG and CED-10/Rac1. Here we present the identification and characterization of CDC-42 as a third GTPase involved in the regulation of cell corpse clearance. Genetic analyses performed by both loss of cdc-42 function and cdc-42 overexpression place cdc-42 in parallel to the ced-2/5/12 signaling module, in parallel to or upstream of the ced-10 module, and downstream of the ced-1/6/7 module. CDC-42 accumulates in engulfing cells at membranes surrounding apoptotic corpses. The formation of such halos depends on the integrins PAT-2/PAT-3, UNC-112 and the GEF protein UIG-1, but not on the canonical ced-1/6/7 or ced-2/5/12 signaling modules. Together, our results suggest that the small GTPase CDC-42 regulates apoptotic cell engulfment possibly upstream of the canonical Rac GTPase CED-10, by polarizing the engulfing cell toward the apoptotic corpse in response to integrin signaling and ced-1/6/7 signaling in C. elegans.

  10. Crystal structure of TBC1D15 GTPase-activating protein (GAP) domain and its activity on Rab GTPases.

    PubMed

    Chen, Yan-Na; Gu, Xin; Zhou, X Edward; Wang, Weidong; Cheng, Dandan; Ge, Yinghua; Ye, Fei; Xu, H Eric; Lv, Zhengbing

    2017-04-01

    TBC1D15 belongs to the TBC (Tre-2/Bub2/Cdc16) domain family and functions as a GTPase-activating protein (GAP) for Rab GTPases. So far, the structure of TBC1D15 or the TBC1D15·Rab complex has not been determined, thus, its catalytic mechanism on Rab GTPases is still unclear. In this study, we solved the crystal structures of the Shark and Sus TBC1D15 GAP domains, to 2.8 Å and 2.5 Å resolution, respectively. Shark-TBC1D15 and Sus-TBC1D15 belong to the same subfamily of TBC domain-containing proteins, and their GAP-domain structures are highly similar. This demonstrates the evolutionary conservation of the TBC1D15 protein family. Meanwhile, the newly determined crystal structures display new variations compared to the structures of yeast Gyp1p Rab GAP domain and TBC1D1. GAP assays show that Shark and Sus GAPs both have higher catalytic activity on Rab11a·GTP than Rab7a·GTP, which differs from the previous study. We also demonstrated the importance of arginine and glutamine on the catalytic sites of Shark GAP and Sus GAP. When arginine and glutamine are changed to alanine or lysine, the activities of Shark GAP and Sus GAP are lost. © 2017 The Protein Society.

  11. ARF1 and SAR1 GTPases in Endomembrane Trafficking in Plants

    PubMed Central

    Cevher-Keskin, Birsen

    2013-01-01

    Small GTPases largely control membrane traffic, which is essential for the survival of all eukaryotes. Among the small GTP-binding proteins, ARF1 (ADP-ribosylation factor 1) and SAR1 (Secretion-Associated RAS super family 1) are commonly conserved among all eukaryotes with respect to both their functional and sequential characteristics. The ARF1 and SAR1 GTP-binding proteins are involved in the formation and budding of vesicles throughout plant endomembrane systems. ARF1 has been shown to play a critical role in COPI (Coat Protein Complex I)-mediated retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in intracellular COPII-mediated protein trafficking from the ER to the Golgi apparatus. This review offers a summary of vesicular trafficking with an emphasis on the ARF1 and SAR1 expression patterns at early growth stages and in the de-etiolation process. PMID:24013371

  12. Enhancement of dynamin polymerization and GTPase activity by Arc/Arg3.1

    PubMed Central

    Byers, Christopher E.; Barylko, Barbara; Ross, Justin A.; Southworth, Daniel R.; James, Nicholas G.; Taylor, Clinton A.; Wang, Lei; Collins, Katie A.; Estrada, Armando; Waung, Maggie; Tassin, Tara C.; Huber, Kimberly M.; Jameson, David.M.; Albanesi, Joseph P.

    2015-01-01

    BACKGROUND The Activity-regulated cytoskeleton-associated protein, Arc, is an immediate-early gene product implicated in various forms of synaptic plasticity. Arc promotes endocytosis of AMPA type glutamate receptors and regulates cytoskeletal assembly in neuronal dendrites. Its role in endocytosis may be mediated by its reported interaction with dynamin 2 (Dyn2), a 100 kDa GTPase that polymerizes around the necks of budding vesicles and catalyzes membrane scission. METHODS Enzymatic and turbidity assays are used in this study to monitor effects of Arc on dynamin activity and polymerization. Arc oligomerization is measured using a combination of approaches, including size exclusion chromatography, sedimentation analysis, dynamic light scattering, fluorescence correlation spectroscopy, and electron microscopy. RESULTS We present evidence that bacterially-expressed His6-Arc facilitates the polymerization of Dyn2 and stimulates its GTPase activity under physiologic conditions (37°C and 100 mM NaCl). At lower ionic strength Arc also stabilizes pre-formed Dyn2 polymers against GTP-dependent disassembly, thereby prolonging assembly-dependent GTP hydrolysis catalyzed by Dyn2. Arc also increases the GTPase activity of Dyn3, an isoform of implicated in dendrite remodeling, but does not affect the activity of Dyn1, a neuron-specific isoform involved in synaptic vesicle recycling. We further show in this study that Arc (either His6-tagged or untagged) has a tendency to form large soluble oligomers, which may function as a scaffold for dynamin assembly and activation. CONCLUSIONS and GENERAL SIGNIFICANCE The ability of Arc to enhance dynamin polymerization and GTPase activation may provide a mechanism to explain Arc-mediated endocytosis of AMPA receptors and the accompanying effects on synaptic plasticity. This study represents the first detailed characterization of the physical properties of Arc. PMID:25783003

  13. Unique Structural and Nucleotide Exchange Features of the Rho1 GTPase of Entamoeba histolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, Dustin E.; Wittchen, Erika S.; Qiu, Connie

    The single-celled human parasite Entamoeba histolytica possesses a dynamic actin cytoskeleton vital for its intestinal and systemic pathogenicity. The E. histolytica genome encodes several Rho family GTPases known to regulate cytoskeletal dynamics. EhRho1, the first family member identified, was reported to be insensitive to the Rho GTPase-specific Clostridium botulinum C3 exoenzyme, raising the possibility that it may be a misclassified Ras family member. Here, we report the crystal structures of EhRho1 in both active and inactive states. EhRho1 is activated by a conserved switch mechanism, but diverges from mammalian Rho GTPases in lacking a signature Rho insert helix. EhRho1 engagesmore » a homolog of mDia, EhFormin1, suggesting a role in mediating serum-stimulated actin reorganization and microtubule formation during mitosis. EhRho1, but not a constitutively active mutant, interacts with a newly identified EhRhoGDI in a prenylation-dependent manner. Furthermore, constitutively active EhRho1 induces actin stress fiber formation in mammalian fibroblasts, thereby identifying it as a functional Rho family GTPase. EhRho1 exhibits a fast rate of nucleotide exchange relative to mammalian Rho GTPases due to a distinctive switch one isoleucine residue reminiscent of the constitutively active F28L mutation in human Cdc42, which for the latter protein, is sufficient for cellular transformation. Nonconserved, nucleotide-interacting residues within EhRho1, revealed by the crystal structure models, were observed to contribute a moderating influence on fast spontaneous nucleotide exchange. Collectively, these observations indicate that EhRho1 is a bona fide member of the Rho GTPase family, albeit with unique structural and functional aspects compared with mammalian Rho GTPases.« less

  14. The Arf6 GTPase-activating proteins ARAP2 and ACAP1 define distinct endosomal compartments that regulate integrin α5β1 traffic.

    PubMed

    Chen, Pei-Wen; Luo, Ruibai; Jian, Xiaoying; Randazzo, Paul A

    2014-10-31

    Arf6 and the Arf6 GTPase-activating protein (GAP) ACAP1 are established regulators of integrin traffic important to cell adhesion and migration. However, the function of Arf6 with ACAP1 cannot explain the range of Arf6 effects on integrin-based structures. We propose that Arf6 has different functions determined, in part, by the associated Arf GAP. We tested this idea by comparing the Arf6 GAPs ARAP2 and ACAP1. We found that ARAP2 and ACAP1 had opposing effects on apparent integrin β1 internalization. ARAP2 knockdown slowed, whereas ACAP1 knockdown accelerated, integrin β1 internalization. Integrin β1 association with adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif (APPL)-positive endosomes and EEA1-positive endosomes was affected by ARAP2 knockdown and depended on ARAP2 GAP activity. ARAP2 formed a complex with APPL1 and colocalized with Arf6 and APPL in a compartment distinct from the Arf6/ACAP1 tubular recycling endosome. In addition, although ACAP1 and ARAP2 each colocalized with Arf6, they did not colocalize with each other and had opposing effects on focal adhesions (FAs). ARAP2 overexpression promoted large FAs, but ACAP1 overexpression reduced FAs. Taken together, the data support a model in which Arf6 has at least two sites of opposing action defined by distinct Arf6 GAPs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Small-GTPase-associated signaling by the guanine nucleotide exchange factors CpDock180 and CpCdc24, the GTPase effector CpSte20, and the scaffold protein CpBem1 in Claviceps purpurea.

    PubMed

    Herrmann, Andrea; Tillmann, Britta A M; Schürmann, Janine; Bölker, Michael; Tudzynski, Paul

    2014-04-01

    Monomeric GTPases of the Rho subfamily are important mediators of polar growth and NADPH (Nox) signaling in a variety of organisms. These pathways influence the ability of Claviceps purpurea to infect host plants. GTPase regulators contribute to the nucleotide loading cycle that is essential for proper functionality of the GTPases. Scaffold proteins gather GTPase complexes to facilitate proper function. The guanine nucleotide exchange factors (GEFs) CpCdc24 and CpDock180 activate GTPase signaling by triggering nucleotide exchange of the GTPases. Here we show that CpCdc24 harbors nucleotide exchange activity for both Rac and Cdc42 homologues. The GEFs partly share the cellular distribution of the GTPases and interact with the putative upstream GTPase CpRas1. Interaction studies show the formation of higher-order protein complexes, mediated by the scaffold protein CpBem1. Besides the GTPases and GEFs, these complexes also contain the GTPase effectors CpSte20 and CpCla4, as well as the regulatory protein CpNoxR. Functional characterizations suggest a role of CpCdc24 mainly in polarity, whereas CpDock180 is involved in stress tolerance mechanisms. These findings indicate the dynamic formation of small GTPase complexes and improve the model for GTPase-associated signaling in C. purpurea.

  16. A role for the Rab6A′ GTPase in the inactivation of the Mad2-spindle checkpoint

    PubMed Central

    Miserey-Lenkei, Stéphanie; Couëdel-Courteille, Anne; Del Nery, Elaine; Bardin, Sabine; Piel, Matthieu; Racine, Victor; Sibarita, Jean-Baptiste; Perez, Franck; Bornens, Michel; Goud, Bruno

    2006-01-01

    The two isoforms of the Rab6 GTPase, Rab6A and Rab6A′, regulate a retrograde transport route connecting early endosomes and the endoplasmic reticulum via the Golgi complex in interphasic cells. Here we report that when Rab6A′ function is altered cells are unable to progress normally through mitosis. Such cells are blocked in metaphase, despite displaying a normal Golgi fragmentation and with the Mad2-spindle checkpoint activated. Furthermore, the Rab6 effector p150Glued, a subunit of the dynein/dynactin complex, remains associated with some kinetochores. A similar phenotype was observed when GAPCenA, a GTPase-activating protein of Rab6, was depleted from cells. Our results suggest that Rab6A′ likely regulates the dynamics of the dynein/dynactin complex at the kinetochores and consequently the inactivation of the Mad2-spindle checkpoint. Rab6A′, through its interaction with p150Glued and GAPCenA, may thus participate in a pathway involved in the metaphase/anaphase transition. PMID:16395330

  17. The small GTPase Arf6 regulates sea urchin morphogenesis

    PubMed Central

    Stepicheva, Nadezda A.; Dumas, Megan; Kobi, Priscilla; Donaldson, Julie G.; Song, Jia L.

    2017-01-01

    The small GTPase Arf6 is a conserved protein that is expressed in all metazoans. Arf6 remodels cytoskeletal actin and mediates membrane protein trafficking between the plasma membrane in its active form and endosomal compartments in its inactive form. While a rich knowledge exists for the cellular functions of Arf6, relatively little is known about its physiological role in development. This study examines the function of Arf6 in mediating cellular morphogenesis in early development. We dissect the function of Arf6 with a loss-of-function morpholino and constitutively active Arf6-Q67L construct. We focus on the two cell types that undergo active directed migration: the primary mesenchyme cells (PMCs) that give rise to the sea urchin skeleton and endodermal cells that form the gut. Our results indicate that Arf6 plays an important role in skeleton formation and PMC migration, in part due to its ability to remodel actin. We also found that embryos injected with Arf6 morpholino have gastrulation defects and embryos injected with constitutively active Arf6 have endodermal cells detached from the gut epithelium with decreased junctional cadherin staining, indicating that Arf6 may mediate the recycling of cadherin. Thus, Arf6 impacts cells that undergo coordinated movement to form embryonic structures in the developing embryo. PMID:28188999

  18. Small GTPases and Stress Responses of vvran1 in the Straw Mushroom Volvariella volvacea

    PubMed Central

    Yan, Jun-Jie; Xie, Bin; Zhang, Lei; Li, Shao-Jie; van Peer, Arend F.; Wu, Ta-Ju; Chen, Bing-Zhi; Xie, Bao-Gui

    2016-01-01

    Small GTPases play important roles in the growth, development and environmental responses of eukaryotes. Based on the genomic sequence of the straw mushroom Volvariella volvacea, 44 small GTPases were identified. A clustering analysis using human small GTPases as the references revealed that V. volvacea small GTPases can be grouped into five families: nine are in the Ras family, 10 are in the Rho family, 15 are in the Rab family, one is in the Ran family and nine are in the Arf family. The transcription of vvran1 was up-regulated upon hydrogen peroxide (H2O2) stress, and could be repressed by diphenyleneiodonium chloride (DPI), a NADPH oxidase-specific inhibitor. The number of vvran1 transcripts also increased upon cold stress. Diphenyleneiodonium chloride, but not the superoxide dismutase (SOD) inhibitor diethy dithiocarbamate (DDC), could suppress the up-regulation of vvran1 gene expression to cold stress. These results combined with the high correlations between gene expression and superoxide anion (O2−) generation indicated that vvran1 could be one of the candidate genes in the downstream of O2− mediated pathways that are generated by NADPH oxidase under low temperature and oxidative stresses. PMID:27626406

  19. Inhibition of GTPase Rac1 in endothelium by 6-mercaptopurine results in immunosuppression in nonimmune cells: new target for an old drug.

    PubMed

    Marinković, Goran; Kroon, Jeffrey; Hoogenboezem, Mark; Hoeben, Kees A; Ruiter, Matthijs S; Kurakula, Kondababu; Otermin Rubio, Iker; Vos, Mariska; de Vries, Carlie J M; van Buul, Jaap D; de Waard, Vivian

    2014-05-01

    Azathioprine and its metabolite 6-mercaptopurine (6-MP) are well established immunosuppressive drugs. Common understanding of their immunosuppressive properties is largely limited to immune cells. However, in this study, the mechanism underlying the protective role of 6-MP in endothelial cell activation is investigated. Because 6-MP and its derivative 6-thioguanosine-5'-triphosphate (6-T-GTP) were shown to block activation of GTPase Rac1 in T lymphocytes, we focused on Rac1-mediated processes in endothelial cells. Indeed, 6-MP and 6-T-GTP decreased Rac1 activation in endothelial cells. As a result, the compounds inhibited TNF-α-induced downstream signaling via JNK and reduced activation of transcription factors c-Jun, activating transcription factor-2 and, in addition, NF κ-light-chain-enhancer of activated B cells (NF-κB), which led to decreased transcription of proinflammatory cytokines. Moreover, 6-MP and 6-T-GTP selectively decreased TNF-α-induced VCAM-1 but not ICAM-1 protein levels. Rac1-mediated generation of cell membrane protrusions, which form docking structures to capture leukocytes, also was reduced by 6-MP/6-T-GTP. Consequently, leukocyte transmigration was inhibited after 6-MP/6-T-GTP treatment. These data underscore the anti-inflammatory effect of 6-MP and 6-T-GTP on endothelial cells by blocking Rac1 activation. Our data provide mechanistic insight that supports development of novel Rac1-specific therapeutic approaches against chronic inflammatory diseases.

  20. Immobilized metal affinity cryogel-based high-throughput platform for screening bioprocess and chromatographic parameters of His6-GTPase.

    PubMed

    Sarkar, Joyita; Kumar, Ashok

    2017-04-01

    Among various tools of product monitoring, chromatography is of vital importance as it also extends to the purification of product. Immobilized metal affinity cryogel (Cu(II)-iminodiacetic acid- and Ni(II)-nitrilotriacetic acid-polyacrylamide) minicolumns (diameter 8 mm, height 4 mm, void volume 250 μl) were inserted in open-ended 96-well plate and different chromatographic parameters and bioprocess conditions were analysed. The platform was first validated with lysozyme. Optimum binding of lysozyme (∼90%) was achieved when 50 μg of protein in 20 mM Tris, pH 8.0 was applied to the minicolumns with maximum recovery (∼90%) upon elution with 300 mM imidazole. Thereafter, the platform was screened for chromatographic conditions of His 6 -GTPase. Since cryogels have large pore size, they can easily process non-clarified samples containing debris and particulate matters. The bound enzymes on the gel retain its activity and therefore can be assayed on-column by adding substrate and then displacing the product. Highest binding of His 6 -GTPase was achieved when 50 μl of non-clarified cell lysate was applied to the cryogel and subsequently washed with 50 mM Tris, 150 mM NaCl, 5 mM MgCl 2 , 10 mM imidazole, pH 8.0 with dynamic and static binding capacities of ∼1.5 and 3 activity units. Maximum recovery was obtained upon elution with 300 mM imidazole with a purification fold of ∼10; the purity was also analysed by SDS-PAGE. The platform showed reproducible results which were validated by Bland-Altman plot. The minicolumn was also scaled up for chromatographic capture and recovery of His 6 -GTPase. The bioprocess conditions were monitored which displayed that optimum production of His 6 -GTPase was attained by induction with 200 μM isopropyl-β-D-thiogalactoside at 25 °C for 12 h. It was concluded that immobilized metal affinity cryogel-based platform can be successfully used as a high-throughput platform for screening of bioprocess and

  1. IQ-domain GTPase-activating protein 1 promotes the malignant phenotype of invasive ductal breast carcinoma via canonical Wnt pathway.

    PubMed

    Zhao, Huan-Yu; Han, Yang; Wang, Jian; Yang, Lian-He; Zheng, Xiao-Ying; Du, Jiang; Wu, Guang-Ping; Wang, En-Hua

    2017-06-01

    IQ-domain GTPase-activating protein 1 is a scaffolding protein with multidomain which plays a role in modulating dishevelled (Dvl) nuclear translocation in canonical Wnt pathway. However, the biological function and mechanism of IQ-domain GTPase-activating protein 1 in invasive ductal carcinoma (IDC) remain unknown. In this study, we found that IQ-domain GTPase-activating protein 1 expression was elevated in invasive ductal carcinoma, which was positively correlated with tumor grade, lymphatic metastasis, and poor prognosis. Coexpression of IQ-domain GTPase-activating protein 1 and Dvl in the nucleus and cytoplasm of invasive ductal carcinoma was significantly correlated but not in the membrane. Postoperative survival in the patients with their coexpression in the nucleus and cytoplasm was obviously lower than that without coexpression. The positive expression rates of c-myc and cyclin D1 were significantly higher in the patients with nuclear coexpression of Dvl and IQ-domain GTPase-activating protein 1 than that with cytoplasmic coexpression, correlating with poor prognosis. IQ-domain GTPase-activating protein 1 significantly enhanced cell proliferation and invasion in invasive ductal carcinoma cell lines by interacting with Dvl in cytoplasm to promote Dvl nuclear translocation so as to upregulate the expression of c-myc and cyclin D1. Collectively, our data suggest that IQ-domain GTPase-activating protein 1 may promote the malignant phenotype of invasive ductal carcinoma via canonical Wnt signaling, and it could be used as a potential prognostic biomarker for breast cancer patients.

  2. Machineries regulating the activity of the small GTPase Arf6 in cancer cells are potential targets for developing innovative anti-cancer drugs.

    PubMed

    Yamauchi, Yohei; Miura, Yuki; Kanaho, Yasunori

    2017-01-01

    The Small GTPase ADP-ribosylation factor 6 (Arf6) functions as the molecular switch in cellular signaling pathways by cycling between GDP-bound inactive and GTP-bound active form, which is precisely regulated by two regulators, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Numerous studies have shown that these machineries play critical roles in tumor angiogenesis/growth and cancer cell invasion/metastasis through regulating the cycling of Arf6. Here, we summarize accumulating knowledge for involvement of Arf6 GEFs/GAPs and small molecule inhibitors of Arf6 signaling/cycling in cancer progression, and discuss possible strategies for developing innovative anti-cancer drugs targeting Arf6 signaling/cycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Genetic Screening in C. Elegans Identifies Rho-GTPAse Activating Protein 6 as Novel HERG Regulator

    PubMed Central

    Potet, Franck; Petersen, Christina I.; Boutaud, Olivier; Shuai, Wen; Stepanovic, Svetlana Z.; Balser, Jeffrey R.; Kupershmidt, Sabina

    2009-01-01

    The human ether-a-go-go related gene (HERG) constitutes the pore forming subunit of IKr, a K+ current involved in repolarization of the cardiac action potential. While mutations in HERG predispose patients to cardiac arrhythmias (Long QT syndrome; LQTS), altered function of HERG regulators are undoubtedly LQTS risk factors. We have combined RNA interference with behavioral screening in Caenorhabditis elegans to detect genes that influence function of the HERG homolog, UNC-103. One such gene encodes the worm ortholog of the rho-GTPase activating protein 6 (ARHGAP6). In addition to its GAP function, ARHGAP6 induces cytoskeletal rearrangements and activates phospholipase C (PLC). Here we show that IKr recorded in cells co-expressing HERG and ARHGAP6 was decreased by 43% compared to HERG alone. Biochemical measurements of cell-surface associated HERG revealed that ARHGAP6 reduced membrane expression of HERG by 35%, which correlates well with the reduction in current. In an atrial myocyte cell line, suppression of endogenous ARHGAP6 by virally transduced shRNA led to a 53 % enhancement of IKr. ARHGAP6 effects were maintained when we introduced a dominant negative rho-GTPase, or ARHGAP6 devoid of rhoGAP function, indicating ARHGAP6 regulation of HERG is independent of rho activation. However, ARHGAP6 lost effectiveness when PLC was inhibited. We further determined that ARHGAP6 effects are mediated by a consensus SH3 binding domain within the C-terminus of HERG, although stable ARHGAP6-HERG complexes were not observed. These data link a rhoGAP-activated PLC pathway to HERG membrane expression and implicate this family of proteins as candidate genes in disorders involving HERG. PMID:19038263

  4. Insight into Temperature Dependence of GTPase Activity in Human Guanylate Binding Protein-1

    PubMed Central

    Rahman, Safikur; Deep, Shashank; Sau, Apurba Kumar

    2012-01-01

    Interferon-γ induced human guanylate binding protein-1(hGBP1) belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1. PMID:22859948

  5. Thermodynamic characterization of two homologous protein complexes: Associations of the semaphorin receptor plexin-B1 RhoGTPase binding domain with Rnd1 and active Rac1

    PubMed Central

    Hota, Prasanta K; Buck, Matthias

    2009-01-01

    Plexin receptors function in response to semaphorin guidance cues in a variety of developmental processes involving cell motility. Interactions with Rho, as well as Ras family small GTPases are critical events in the cell signaling mechanism. We have recently determined the structure of a cytoplasmic domain (RBD) of plexin-B1 and mapped its binding interface with several Rho-GTPases, Rac1, Rnd1, and RhoD. All three GTPases associate with a similar region of this plexin domain, but show different functional behavior in cells. To understand whether thermodynamic properties of the GTPase–RBD interaction contribute to such different behavior, we have examined the interaction at different temperatures, buffer, and pH conditions. Although the binding affinity of both Rnd1 and Rac1 with the plexin-B1 RBD is similar, the detailed thermodynamic properties of the interactions are considerably different. These data suggest that on Rac1 binding to the plexin-B1 RBD, the proteins become more rigid in the complex. By contrast, Rnd1 binding is consistent with unchanged or slightly increased flexibility in one or both proteins. Both GTPases show an appreciable reduction in affinity for the dimeric plexin-B1 RBD indicating that GTPase binding is not cooperative with dimer formation, but that a partial steric hindrance destabilizes the dimer. However, a reduced affinity binding mode to a disulphide stabilized model for the dimeric RBD is also possible. Consistent with cellular studies, the interaction thermodynamics imply that further levels of regulation involving additional binding partners and/or regions outside of the RhoGTPase binding domain are required for receptor activation. PMID:19388051

  6. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast.

    PubMed

    Peterson, J; Zheng, Y; Bender, L; Myers, A; Cerione, R; Bender, A

    1994-12-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine-nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases.

  7. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho- type GTPases in yeast

    PubMed Central

    1994-01-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine- nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098

  8. Unsolved mysteries of Rag GTPase signaling in yeast.

    PubMed

    Hatakeyama, Riko; De Virgilio, Claudio

    2016-10-01

    The target of rapamycin complex 1 (TORC1) plays a central role in controlling eukaryotic cell growth by fine-tuning anabolic and catabolic processes to the nutritional status of organisms and individual cells. Amino acids represent essential and primordial signals that modulate TORC1 activity through the conserved Rag family GTPases. These assemble, as part of larger lysosomal/vacuolar membrane-associated complexes, into heterodimeric sub-complexes, which typically comprise two paralogous Rag GTPases of opposite GTP-/GDP-loading status. The TORC1-stimulating/inhibiting states of these heterodimers are controlled by various guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) complexes, which are remarkably conserved in various eukaryotic model systems. Among the latter, the budding yeast Saccharomyces cerevisiae has been instrumental for the elucidation of basic aspects of Rag GTPase regulation and function. Here, we discuss the current state of the respective research, focusing on the major unsolved issues regarding the architecture, regulation, and function of the Rag GTPase containing complexes in yeast. Decoding these mysteries will undoubtedly further shape our understanding of the conserved and divergent principles of nutrient signaling in eukaryotes.

  9. Unsolved mysteries of Rag GTPase signaling in yeast

    PubMed Central

    Hatakeyama, Riko; De Virgilio, Claudio

    2016-01-01

    ABSTRACT The target of rapamycin complex 1 (TORC1) plays a central role in controlling eukaryotic cell growth by fine-tuning anabolic and catabolic processes to the nutritional status of organisms and individual cells. Amino acids represent essential and primordial signals that modulate TORC1 activity through the conserved Rag family GTPases. These assemble, as part of larger lysosomal/vacuolar membrane-associated complexes, into heterodimeric sub-complexes, which typically comprise two paralogous Rag GTPases of opposite GTP-/GDP-loading status. The TORC1-stimulating/inhibiting states of these heterodimers are controlled by various guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) complexes, which are remarkably conserved in various eukaryotic model systems. Among the latter, the budding yeast Saccharomyces cerevisiae has been instrumental for the elucidation of basic aspects of Rag GTPase regulation and function. Here, we discuss the current state of the respective research, focusing on the major unsolved issues regarding the architecture, regulation, and function of the Rag GTPase containing complexes in yeast. Decoding these mysteries will undoubtedly further shape our understanding of the conserved and divergent principles of nutrient signaling in eukaryotes. PMID:27400376

  10. The Universally Conserved Prokaryotic GTPases

    PubMed Central

    Verstraeten, Natalie; Fauvart, Maarten; Versées, Wim; Michiels, Jan

    2011-01-01

    Summary: Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, “It may never again be possible to capture [GTPases] in a family portrait” (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins. PMID:21885683

  11. Different roles of the small GTPases Rac1, Cdc42, and RhoG in CALEB/NGC-induced dendritic tree complexity.

    PubMed

    Schulz, Jana; Franke, Kristin; Frick, Manfred; Schumacher, Stefan

    2016-10-01

    Rho GTPases play prominent roles in the regulation of cytoskeletal reorganization. Many aspects have been elaborated concerning the individual functions of Rho GTPases in distinct signaling pathways leading to cytoskeletal rearrangements. However, major questions have yet to be answered regarding the integration and the signaling hierarchy of different Rho GTPases in regulating the cytoskeleton in fundamental physiological events like neuronal process differentiation. Here, we investigate the roles of the small GTPases Rac1, Cdc42, and RhoG in defining dendritic tree complexity stimulated by the transmembrane epidermal growth factor family member CALEB/NGC. Combining gain-of-function and loss-of-function analysis in primary hippocampal neurons, we find that Rac1 is essential for CALEB/NGC-mediated dendritic branching. Cdc42 reduces the complexity of dendritic trees. Interestingly, we identify the palmitoylated isoform of Cdc42 to adversely affect dendritic outgrowth and dendritic branching, whereas the prenylated Cdc42 isoform does not. In contrast to Rac1, CALEB/NGC and Cdc42 are not directly interconnected in regulating dendritic tree complexity. Unlike Rac1, the Rac1-related GTPase RhoG reduces the complexity of dendritic trees by acting upstream of CALEB/NGC. Mechanistically, CALEB/NGC activates Rac1, and RhoG reduces the amount of CALEB/NGC that is located at the right site for Rac1 activation at the cell membrane. Thus, Rac1, Cdc42, and RhoG perform very specific and non-redundant functions at different levels of hierarchy in regulating dendritic tree complexity induced by CALEB/NGC. Rho GTPases play a prominent role in dendritic branching. CALEB/NGC is a transmembrane member of the epidermal growth factor (EGF) family that mediates dendritic branching, dependent on Rac1. CALEB/NGC stimulates Rac1 activity. RhoG inhibits CALEB/NGC-mediated dendritic branching by decreasing the amount of CALEB/NGC at the plasma membrane. Palmitoylated, but not prenylated form

  12. RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    PubMed Central

    Martin-Vilchez, Samuel; Whitmore, Leanna; Asmussen, Hannelore; Zareno, Jessica; Horwitz, Rick; Newell-Litwa, Karen

    2017-01-01

    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development. PMID:28114311

  13. ArhGAP15, a Rac-specific GTPase-activating Protein, Plays a Dual Role in Inhibiting Small GTPase Signaling*

    PubMed Central

    Radu, Maria; Rawat, Sonali J.; Beeser, Alexander; Iliuk, Anton; Tao, Weiguo Andy; Chernoff, Jonathan

    2013-01-01

    Signaling from small GTPases is a tightly regulated process. In this work we used a protein microarray screen to identify the Rac-specific GAP, ArhGAP15, as a substrate of the Rac effectors Pak1 and Pak2. In addition to serving as a substrate of Pak1/2, we found that ArhGAP15, via its PH domain, bound to these kinases. The association of ArhGAP15 to Pak1/2 resulted in mutual inhibition of GAP and kinase catalytic activity, respectively. Knock-down of ArhGAP15 resulted in activation of Pak1/2, both indirectly, as a result of Rac activation, and directly, as a result of disruption of the ArhGAP15/Pak complex. Our data suggest that ArhGAP15 plays a dual negative role in regulating small GTPase signaling, by acting at the level of the GTPase itself, as well interacting with its effector, Pak kinase. PMID:23760270

  14. Generalized myoclonic epilepsy with photosensitivity in juvenile dogs caused by a defective DIRAS family GTPase 1

    PubMed Central

    Wielaender, Franziska; Sarviaho, Riika; James, Fiona; Hytönen, Marjo K.; Cortez, Miguel A.; Kluger, Gerhard; Koskinen, Lotta L. E.; Arumilli, Meharji; Kornberg, Marion; Bathen-Noethen, Andrea; Tipold, Andrea; Rentmeister, Kai; Bhatti, Sofie F. M.; Hülsmeyer, Velia; Boettcher, Irene C.; Tästensen, Carina; Flegel, Thomas; Leeb, Tosso; Matiasek, Kaspar; Fischer, Andrea; Lohi, Hannes

    2017-01-01

    The clinical and electroencephalographic features of a canine generalized myoclonic epilepsy with photosensitivity and onset in young Rhodesian Ridgeback dogs (6 wk to 18 mo) are described. A fully penetrant recessive 4-bp deletion was identified in the DIRAS family GTPase 1 (DIRAS1) gene with an altered expression pattern of DIRAS1 protein in the affected brain. This neuronal DIRAS1 gene with a proposed role in cholinergic transmission provides not only a candidate for human myoclonic epilepsy but also insights into the disease etiology, while establishing a spontaneous model for future intervention studies and functional characterization. PMID:28223533

  15. A Pan-GTPase Inhibitor as a Molecular Probe

    PubMed Central

    Hong, Lin; Guo, Yuna; BasuRay, Soumik; Agola, Jacob O.; Romero, Elsa; Simpson, Denise S.; Schroeder, Chad E.; Simons, Peter; Waller, Anna; Garcia, Matthew; Carter, Mark; Ursu, Oleg; Gouveia, Kristine; Golden, Jennifer E.; Aubé, Jeffrey; Wandinger-Ness, Angela; Sklar, Larry A.

    2015-01-01

    Overactive GTPases have often been linked to human diseases. The available inhibitors are limited and have not progressed far in clinical trials. We report here a first-in-class small molecule pan-GTPase inhibitor discovered from a high throughput screening campaign. The compound CID1067700 inhibits multiple GTPases in biochemical, cellular protein and protein interaction, as well as cellular functional assays. In the biochemical and protein interaction assays, representative GTPases from Rho, Ras, and Rab, the three most generic subfamilies of the GTPases, were probed, while in the functional assays, physiological processes regulated by each of the three subfamilies of the GTPases were examined. The chemical functionalities essential for the activity of the compound were identified through structural derivatization. The compound is validated as a useful molecular probe upon which GTPase-targeting inhibitors with drug potentials might be developed. PMID:26247207

  16. Reverse engineering GTPase programming languages with reconstituted signaling networks.

    PubMed

    Coyle, Scott M

    2016-07-02

    The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking. (1-4) Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular "programming language" would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors. (5) Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems.

  17. Ras Family GTPases Control Growth of Astrocyte Processes

    PubMed Central

    Kalman, Daniel; Gomperts, Stephen N.; Hardy, Stephen; Kitamura, Marina; Bishop, J. Michael

    1999-01-01

    Astrocytes in neuron-free cultures typically lack processes, although they are highly process-bearing in vivo. We show that basic fibroblast growth factor (bFGF) induces cultured astrocytes to grow processes and that Ras family GTPases mediate these morphological changes. Activated alleles of rac1 and rhoA blocked and reversed bFGF effects when introduced into astrocytes in dissociated culture and in brain slices using recombinant adenoviruses. By contrast, dominant negative (DN) alleles of both GTPases mimicked bFGF effects. A DN allele of Ha-ras blocked bFGF effects but not those of Rac1-DN or RhoA-DN. Our results show that bFGF acting through c-Ha-Ras inhibits endogenous Rac1 and RhoA GTPases thereby triggering astrocyte process growth, and they provide evidence for the regulation of this cascade in vivo by a yet undetermined neuron-derived factor. PMID:10233170

  18. A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements.

    PubMed Central

    D'Souza-Schorey, C; Boshans, R L; McDonough, M; Stahl, P D; Van Aelst, L

    1997-01-01

    The ARF6 GTPase, the least conserved member of the ADP ribosylation factor (ARF) family, associates with the plasma membrane and intracellular endosome vesicles. Mutants of ARF6 defective in GTP binding and hydrolysis have a marked effect on endocytic trafficking and the gross morphology of the peripheral membrane system. Here we report that expression of the GTPase-defective mutant of ARF6, ARF6(Q67L), remodels the actin cytoskeleton by inducing actin polymerization at the cell periphery. This cytoskeletal rearrangement was inhibited by co-expression of ARF6(Q67L) with deletion mutants of POR1, a Rac1-interacting protein involved in membrane ruffling, but not with the dominant-negative mutant of Rac1, Rac1(S17N). A synergistic effect between POR1 and ARF6 for the induction of actin polymerization was detected. Furthermore, we observed that ARF6 interacts directly with POR1 and that this interaction was GTP dependent. These findings indicate that ARF6 and Rac1 function on distinct signaling pathways to mediate cytoskeletal reorganization, and suggest a role for POR1 as an important regulatory element in orchestrating cytoskeletal rearrangements at the cell periphery induced by ARF6 and Rac1. PMID:9312003

  19. Control of T lymphocyte morphology by the GTPase Rho

    NASA Technical Reports Server (NTRS)

    Woodside, Darren G.; Wooten, David K.; Teague, T. Kent; Miyamoto, Yuko J.; Caudell, Eva G.; Udagawa, Taturo; Andruss, Bernard F.; McIntyre, Bradley W.

    2003-01-01

    BACKGROUND: Rho family GTPase regulation of the actin cytoskeleton governs a variety of cell responses. In this report, we have analyzed the role of the GTPase Rho in maintenance of the T lymphocyte actin cytoskeleton. RESULTS: Inactivation of the GTPase Rho in the human T lymphocytic cell line HPB-ALL does not inhibit constitutively high adhesion to the integrin beta1 substrate fibronectin. It did however result in the aberrant extension of finger-like dendritic processes on the substrates VCAM-1, Fn, and mAb specific to beta1 integrins. Time-lapse video microscopy demonstrated that C3 induced extensions were primarily the result of an altered pseudopod elongation rather than retraction. Once the stellate pseudopodia extended, none retracted, and cells became completely immobile. Filipodial structures were absent and the dendritic-like processes in C3 treated cells were rich in filamentous actin. Immunolocalization of RhoA in untreated HPB-ALL cells spreading on fibronectin demonstrated a diffuse staining pattern within the pseudopodia. In C3 treated cells, clusters of RhoA were pronounced and localized within the altered extensions. CONCLUSIONS: GTPase Rho is actively involved in the regulation of T lymphocyte morphology and motility.

  20. Rho GTPases at the crossroad of signaling networks in mammals: impact of Rho-GTPases on microtubule organization and dynamics.

    PubMed

    Wojnacki, José; Quassollo, Gonzalo; Marzolo, María-Paz; Cáceres, Alfredo

    2014-01-01

    Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization.

  1. Rho GTPases and their roles in cancer metabolism

    PubMed Central

    Wilson, Kristin F.; Erickson, Jon W.; Antonyak, Marc A.; Cerione, Richard A.

    2013-01-01

    Recently, the small molecule 968 was found to block the Rho GTPase-dependent growth of cancer cells in cell culture and mouse xenografts, and when the target of 968 was found to be mitochondrial enzyme glutaminase (GLS1) it revealed a surprising link between Rho GTPases and mitochondrial glutamine metabolism. Signal transduction via the Rho GTPases, together with NFκB, appears to elevate mitochondrial glutaminase activity in cancer cells, thereby helping cancer cells satisfy their altered metabolic demands. Here, we review what is known about the mechanism of glutaminase activation in cancer cells, as well as compare the properties of two distinct glutaminase inhibitors, and discuss recent findings that shed new light on how glutamine metabolism might affect cancer progression. PMID:23219172

  2. A role for Sar1 and ARF1 GTPases during Golgi biogenesis in the protozoan parasite Trypanosoma brucei

    PubMed Central

    Yavuz, Sevil; Warren, Graham

    2017-01-01

    A single Golgi stack is duplicated and partitioned into two daughter cells during the cell cycle of the protozoan parasite Trypanosoma brucei. The source of components required to generate the new Golgi and the mechanism by which it forms are poorly understood. Using photoactivatable GFP, we show that the existing Golgi supplies components directly to the newly forming Golgi in both intact and semipermeabilized cells. The movement of a putative glycosyltransferase, GntB, requires the Sar1 and ARF1 GTPases in intact cells. In addition, we show that transfer of GntB from the existing Golgi to the new Golgi can be recapitulated in semipermeabilized cells and is sensitive to the GTP analogue GTPγS. We suggest that the existing Golgi is a key source of components required to form the new Golgi and that this process is regulated by small GTPases. PMID:28495798

  3. Inhibiting the phosphatidylinositide 3-kinase pathway blocks radiation-induced metastasis associated with Rho-GTPase and Hypoxia-inducible factor-1 activity.

    PubMed

    Burrows, Natalie; Telfer, Brian; Brabant, Georg; Williams, Kaye J

    2013-09-01

    Undifferentiated follicular and anaplastic thyroid tumours often respond poorly to radiotherapy and show increased metastatic potential. We evaluated radiation-induced effects on metastasis in thyroid carcinoma cells and tumours, mechanistically focusing on phosphatidylinositide 3-kinase (PI3K) and associated pathways. Migration was analysed in follicular (FTC133) and anaplastic (8505c) cells following radiotherapy (0-6 Gray) with concomitant pharmacological (GDC-0941) or genetic inhibition of PI3K. Hypoxia-inducible factor-1 (HIF-1)-activity was measured using luciferase reporter assays and was inhibited using a dominant-negative variant. Activation and subcellular localisation of target proteins were assessed via Western blot and immunofluorescence. In vivo studies used FTC133 xenografts with metastatic lung dissemination assessed ex vivo. Radiation induced migration in a HIF-dependent manner in FTC133 cells but decreased migration in 8505c's. Post-radiation HIF-activity correlated with migratory phenotype. PI3K-targeting inhibited migration under basal and irradiated conditions through inhibition of HIF-1α, Rho-GTPase expression/activity and localisation whilst having little effect on src/FAK. In vivo, radiation induced PI3K, HIF, Rho-GTPases and src but only PI3K, HIF and Rho-GTPases were inhibited by GDC-0941. Co-treatment with GDC-0941 and radiation significantly reduced metastatic dissemination versus radiotherapy alone. Radiation modifies metastatic characteristics of thyroid carcinoma cells, which can be successfully inhibited by targeting PI3K using GDC-0941 in vitro and in vivo. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Genetic dissection of early endosomal recycling highlights a TORC1-independent role for Rag GTPases

    PubMed Central

    2017-01-01

    Endocytosed cell surface membrane proteins rely on recycling pathways for their return to the plasma membrane. Although endosome-to-plasma membrane recycling is critical for many cellular processes, much of the required machinery is unknown. We discovered that yeast has a recycling route from endosomes to the cell surface that functions efficiently after inactivation of the sec7-1 allele of Sec7, which controls transit through the Golgi. A genetic screen based on an engineered synthetic reporter that exclusively follows this pathway revealed that recycling was subject to metabolic control through the Rag GTPases Gtr1 and Gtr2, which work downstream of the exchange factor Vam6. Gtr1 and Gtr2 control the recycling pathway independently of TORC1 regulation through the Gtr1 interactor Ltv1. We further show that the early-endosome recycling route and its control though the Vam6>Gtr1/Gtr2>Ltv1 pathway plays a physiological role in regulating the abundance of amino acid transporters at the cell surface. PMID:28768685

  5. Evolution and Diversity of the Ras Superfamily of Small GTPases in Prokaryotes

    PubMed Central

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2015-01-01

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases. PMID:25480683

  6. Assessment of Rho GTPase signaling during neurite outgrowth.

    PubMed

    Feltrin, Daniel; Pertz, Olivier

    2012-01-01

    Rho GTPases are key regulators of the cytoskeleton during the process of neurite outgrowth. Based on overexpression of dominant-positive and negative Rho GTPase constructs, the classic view is that Rac1 and Cdc42 are important for neurite elongation whereas RhoA regulates neurite retraction in response to collapsing agents. However, recent work has suggested a much finer control of spatiotemporal Rho GTPase signaling in this process. Understanding this complexity level necessitates a panel of more sensitive tools than previously used. Here, we discuss a novel assay that enables the biochemical fractionation of the neurite from the soma of differentiating N1E-115 neuronal-like cells. This allows for spatiotemporal characterization of a large number of protein components, interactions, and post-translational modifications using classic biochemical and also proteomics approaches. We also provide protocols for siRNA-mediated knockdown of genes and sensitive assays that allow quantitative analysis of the neurite outgrowth process.

  7. An AGEF-1/Arf GTPase/AP-1 Ensemble Antagonizes LET-23 EGFR Basolateral Localization and Signaling during C. elegans Vulva Induction

    PubMed Central

    Skorobogata, Olga; Escobar-Restrepo, Juan M.; Rocheleau, Christian E.

    2014-01-01

    LET-23 Epidermal Growth Factor Receptor (EGFR) signaling specifies the vulval cell fates during C. elegans larval development. LET-23 EGFR localization on the basolateral membrane of the vulval precursor cells (VPCs) is required to engage the LIN-3 EGF-like inductive signal. The LIN-2 Cask/LIN-7 Veli/LIN-10 Mint (LIN-2/7/10) complex binds LET-23 EGFR, is required for its basolateral membrane localization, and therefore, vulva induction. Besides the LIN-2/7/10 complex, the trafficking pathways that regulate LET-23 EGFR localization have not been defined. Here we identify vh4, a hypomorphic allele of agef-1, as a strong suppressor of the lin-2 mutant Vulvaless (Vul) phenotype. AGEF-1 is homologous to the mammalian BIG1 and BIG2 Arf GTPase guanine nucleotide exchange factors (GEFs), which regulate secretory traffic between the Trans-Golgi network, endosomes and the plasma membrane via activation of Arf GTPases and recruitment of the AP-1 clathrin adaptor complex. Consistent with a role in trafficking we show that AGEF-1 is required for protein secretion and that AGEF-1 and the AP-1 complex regulate endosome size in coelomocytes. The AP-1 complex has previously been implicated in negative regulation of LET-23 EGFR, however the mechanism was not known. Our genetic data indicate that AGEF-1 is a strong negative regulator of LET-23 EGFR signaling that functions in the VPCs at the level of the receptor. In line with AGEF-1 being an Arf GEF, we identify the ARF-1.2 and ARF-3 GTPases as also negatively regulating signaling. We find that the agef-1(vh4) mutation results in increased LET-23 EGFR on the basolateral membrane in both wild-type and lin-2 mutant animals. Furthermore, unc-101(RNAi), a component of the AP-1 complex, increased LET-23 EGFR on the basolateral membrane in lin-2 and agef-1(vh4); lin-2 mutant animals. Thus, an AGEF-1/Arf GTPase/AP-1 ensemble functions opposite the LIN-2/7/10 complex to antagonize LET-23 EGFR basolateral membrane localization and signaling

  8. An AGEF-1/Arf GTPase/AP-1 ensemble antagonizes LET-23 EGFR basolateral localization and signaling during C. elegans vulva induction.

    PubMed

    Skorobogata, Olga; Escobar-Restrepo, Juan M; Rocheleau, Christian E

    2014-10-01

    LET-23 Epidermal Growth Factor Receptor (EGFR) signaling specifies the vulval cell fates during C. elegans larval development. LET-23 EGFR localization on the basolateral membrane of the vulval precursor cells (VPCs) is required to engage the LIN-3 EGF-like inductive signal. The LIN-2 Cask/LIN-7 Veli/LIN-10 Mint (LIN-2/7/10) complex binds LET-23 EGFR, is required for its basolateral membrane localization, and therefore, vulva induction. Besides the LIN-2/7/10 complex, the trafficking pathways that regulate LET-23 EGFR localization have not been defined. Here we identify vh4, a hypomorphic allele of agef-1, as a strong suppressor of the lin-2 mutant Vulvaless (Vul) phenotype. AGEF-1 is homologous to the mammalian BIG1 and BIG2 Arf GTPase guanine nucleotide exchange factors (GEFs), which regulate secretory traffic between the Trans-Golgi network, endosomes and the plasma membrane via activation of Arf GTPases and recruitment of the AP-1 clathrin adaptor complex. Consistent with a role in trafficking we show that AGEF-1 is required for protein secretion and that AGEF-1 and the AP-1 complex regulate endosome size in coelomocytes. The AP-1 complex has previously been implicated in negative regulation of LET-23 EGFR, however the mechanism was not known. Our genetic data indicate that AGEF-1 is a strong negative regulator of LET-23 EGFR signaling that functions in the VPCs at the level of the receptor. In line with AGEF-1 being an Arf GEF, we identify the ARF-1.2 and ARF-3 GTPases as also negatively regulating signaling. We find that the agef-1(vh4) mutation results in increased LET-23 EGFR on the basolateral membrane in both wild-type and lin-2 mutant animals. Furthermore, unc-101(RNAi), a component of the AP-1 complex, increased LET-23 EGFR on the basolateral membrane in lin-2 and agef-1(vh4); lin-2 mutant animals. Thus, an AGEF-1/Arf GTPase/AP-1 ensemble functions opposite the LIN-2/7/10 complex to antagonize LET-23 EGFR basolateral membrane localization and signaling.

  9. Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway.

    PubMed

    Lee, Minji; Kim, Jong Hyun; Yoon, Ina; Lee, Chulho; Fallahi Sichani, Mohammad; Kang, Jong Soon; Kang, Jeonghyun; Guo, Min; Lee, Kang Young; Han, Gyoonhee; Kim, Sunghoon; Han, Jung Min

    2018-06-05

    A protein synthesis enzyme, leucyl-tRNA synthetase (LRS), serves as a leucine sensor for the mechanistic target of rapamycin complex 1 (mTORC1), which is a central effector for protein synthesis, metabolism, autophagy, and cell growth. However, its significance in mTORC1 signaling and cancer growth and its functional relationship with other suggested leucine signal mediators are not well-understood. Here we show the kinetics of the Rag GTPase cycle during leucine signaling and that LRS serves as an initiating "ON" switch via GTP hydrolysis of RagD that drives the entire Rag GTPase cycle, whereas Sestrin2 functions as an "OFF" switch by controlling GTP hydrolysis of RagB in the Rag GTPase-mTORC1 axis. The LRS-RagD axis showed a positive correlation with mTORC1 activity in cancer tissues and cells. The GTP-GDP cycle of the RagD-RagB pair, rather than the RagC-RagA pair, is critical for leucine-induced mTORC1 activation. The active RagD-RagB pair can overcome the absence of the RagC-RagA pair, but the opposite is not the case. This work suggests that the GTPase cycle of RagD-RagB coordinated by LRS and Sestrin2 is critical for controlling mTORC1 activation, and thus will extend the current understanding of the amino acid-sensing mechanism.

  10. Cdc15 integrates Tem1 GTPase-mediated spatial signals with Polo kinase-mediated temporal cues to activate mitotic exit.

    PubMed

    Rock, Jeremy M; Amon, Angelika

    2011-09-15

    In budding yeast, a Ras-like GTPase signaling cascade known as the mitotic exit network (MEN) promotes exit from mitosis. To ensure the accurate execution of mitosis, MEN activity is coordinated with other cellular events and restricted to anaphase. The MEN GTPase Tem1 has been assumed to be the central switch in MEN regulation. We show here that during an unperturbed cell cycle, restricting MEN activity to anaphase can occur in a Tem1 GTPase-independent manner. We found that the anaphase-specific activation of the MEN in the absence of Tem1 is controlled by the Polo kinase Cdc5. We further show that both Tem1 and Cdc5 are required to recruit the MEN kinase Cdc15 to spindle pole bodies, which is both necessary and sufficient to induce MEN signaling. Thus, Cdc15 functions as a coincidence detector of two essential cell cycle oscillators: the Polo kinase Cdc5 synthesis/degradation cycle and the Tem1 G-protein cycle. The Cdc15-dependent integration of these temporal (Cdc5 and Tem1 activity) and spatial (Tem1 activity) signals ensures that exit from mitosis occurs only after proper genome partitioning.

  11. Characterization of the activation of small GTPases by their GEFs on membranes using artificial membrane tethering.

    PubMed

    Peurois, François; Veyron, Simon; Ferrandez, Yann; Ladid, Ilham; Benabdi, Sarah; Zeghouf, Mahel; Peyroche, Gérald; Cherfils, Jacqueline

    2017-03-23

    Active, GTP-bound small GTPases need to be attached to membranes by post-translational lipid modifications in order to process and propagate information in cells. However, generating and manipulating lipidated GTPases has remained difficult, which has limited our quantitative understanding of their activation by guanine nucleotide exchange factors (GEFs) and their termination by GTPase-activating proteins. Here, we replaced the lipid modification by a histidine tag in 11 full-length, human small GTPases belonging to the Arf, Rho and Rab families, which allowed to tether them to nickel-lipid-containing membranes and characterize the kinetics of their activation by GEFs. Remarkably, this strategy uncovered large effects of membranes on the efficiency and/or specificity in all systems studied. Notably, it recapitulated the release of autoinhibition of Arf1, Arf3, Arf4, Arf5 and Arf6 GTPases by membranes and revealed that all isoforms are efficiently activated by two GEFs with different regulatory regimes, ARNO and Brag2. It demonstrated that membranes stimulate the GEF activity of Trio toward RhoG by ∼30 fold and Rac1 by ∼10 fold, and uncovered a previously unknown broader specificity toward RhoA and Cdc42 that was undetectable in solution. Finally, it demonstrated that the exceptional affinity of the bacterial RabGEF DrrA for the phosphoinositide PI(4)P delimits the activation of Rab1 to the immediate vicinity of the membrane-bound GEF. Our study thus validates the histidine-tag strategy as a potent and simple means to mimic small GTPase lipidation, which opens a variety of applications to uncover regulations brought about by membranes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  12. A Complex Distribution of Elongation Family GTPases EF1A and EFL in Basal Alveolate Lineages

    PubMed Central

    Mikhailov, Kirill V.; Janouškovec, Jan; Tikhonenkov, Denis V.; Mirzaeva, Gulnara S.; Diakin, Andrei Yu.; Simdyanov, Timur G.; Mylnikov, Alexander P.; Keeling, Patrick J.; Aleoshin, Vladimir V.

    2014-01-01

    Translation elongation factor-1 alpha (EF1A) and the related GTPase EF-like (EFL) are two proteins with a complex mutually exclusive distribution across the tree of eukaryotes. Recent surveys revealed that the distribution of the two GTPases in even closely related taxa is frequently at odds with their phylogenetic relationships. Here, we investigate the distribution of EF1A and EFL in the alveolate supergroup. Alveolates comprise three major lineages: ciliates and apicomplexans encode EF1A, whereas dinoflagellates encode EFL. We searched transcriptome databases for seven early-diverging alveolate taxa that do not belong to any of these groups: colpodellids, chromerids, and colponemids. Current data suggest all seven are expected to encode EF1A, but we find three genera encode EFL: Colpodella, Voromonas, and the photosynthetic Chromera. Comparing this distribution with the phylogeny of alveolates suggests that EF1A and EFL evolution in alveolates cannot be explained by a simple horizontal gene transfer event or lineage sorting. PMID:25179686

  13. A Rab5 GTPase module is important for autophagosome closure

    PubMed Central

    Lipatova, Zhanna; Sun, Dan; Zhu, Xiaolong; Li, Rui; Wu, Zulin; You, Weiming; Cong, Xiaoxia; Zhou, Yiting; Gyurkovska, Valeriya; Liu, Yutao; Li, Qunli; Li, Wenjing; Cheng, Jie; Segev, Nava

    2017-01-01

    In the conserved autophagy pathway, the double-membrane autophagosome (AP) engulfs cellular components to be delivered for degradation in the lysosome. While only sealed AP can productively fuse with the lysosome, the molecular mechanism of AP closure is currently unknown. Rab GTPases, which regulate all intracellular trafficking pathways in eukaryotes, also regulate autophagy. Rabs function in GTPase modules together with their activators and downstream effectors. In yeast, an autophagy-specific Ypt1 GTPase module, together with a set of autophagy-related proteins (Atgs) and a phosphatidylinositol-3-phosphate (PI3P) kinase, regulates AP formation. Fusion of APs and endosomes with the vacuole (the yeast lysosome) requires the Ypt7 GTPase module. We have previously shown that the Rab5-related Vps21, within its endocytic GTPase module, regulates autophagy. However, it was not clear which autophagy step it regulates. Here, we show that this module, which includes the Vps9 activator, the Rab5-related Vps21, the CORVET tethering complex, and the Pep12 SNARE, functions after AP expansion and before AP closure. Whereas APs are not formed in mutant cells depleted for Atgs, sealed APs accumulate in cells depleted for the Ypt7 GTPase module members. Importantly, depletion of individual members of the Vps21 module results in a novel phenotype: accumulation of unsealed APs. In addition, we show that Vps21-regulated AP closure precedes another AP maturation step, the previously reported PI3P phosphatase-dependent Atg dissociation. Our results delineate three successive steps in the autophagy pathway regulated by Rabs, Ypt1, Vps21 and Ypt7, and provide the first insight into the upstream regulation of AP closure. PMID:28934205

  14. Quantification of small GTPase glucosylation by clostridial glucosylating toxins using multiplexed MRM analysis.

    PubMed

    Junemann, Johannes; Lämmerhirt, Chantal M; Polten, Felix; Just, Ingo; Gerhard, Ralf; Genth, Harald; Pich, Andreas

    2017-05-01

    Large clostridial toxins mono-O-glucosylate small GTPases of the Rho and Ras subfamily. As a result of glucosylation, the GTPases are inhibited and thereby corresponding downstream signaling pathways are disturbed. Current methods for quantifying the extent of glucosylation include sequential [ 14 C]glucosylation, sequential [ 32 P]ADP-ribosylation, and Western Blot detection of nonglucosylated GTPases, with neither method allowing the quantification of the extent of glucosylation of an individual GTPase. Here, we describe a novel MS-based multiplexed MRM assay to specifically quantify the glucosylation degree of small GTPases. This targeted proteomics approach achieves a high selectivity and reproducibility, which allows determination of the in vivo substrate pattern of glucosylating toxins. As proof of principle, GTPase glucosylation was analyzed in CaCo-2 cells treated with TcdA, and glucosylation kinetics were determined for RhoA/B, RhoC, RhoG, Ral, Rap1, Rap2, (H/K/N)Ras, and R-Ras2. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Rab GTPases and Membrane Trafficking in Neurodegeneration

    PubMed Central

    Kiral, Ferdi Ridvan; Kohrs, Friederike Elisabeth; Jin, Eugene Jennifer; Hiesinger, Peter Robin

    2018-01-01

    Defects in membrane trafficking are hallmarks of neurodegeneration. Rab GTPases are key regulators of membrane trafficking. Alterations of Rab GTPases, or the membrane compartments they regulate, are associated with virtually all neuronal activities in health and disease. The observation that many Rab GTPases are associated with neurodegeneration has proven a challenge in the quest for cause and effect. Neurodegeneration can be a direct consequence of a defect in membrane trafficking. Alternatively, changes in membrane trafficking may be secondary consequences or cellular responses. The secondary consequences and cellular responses, in turn, may protect, represent inconsequential correlates or function as drivers of pathology. Here, we attempt to disentangle the different roles of membrane trafficking in neurodegeneration by focusing on selected associations with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and selected neuropathies. We provide an overview of current knowledge on Rab GTPase functions in neurons and review the associations of Rab GTPases with neurodegeneration with respect to the following classifications: primary cause, secondary cause driving pathology or secondary correlate. This analysis is devised to aid the interpretation of frequently observed membrane trafficking defects in neurodegeneration and facilitate the identification of true causes of pathology. PMID:29689231

  16. Regulation of vesicular trafficking and leukocyte function by Rab27 GTPases and their effectors

    PubMed Central

    Catz, Sergio Daniel

    2013-01-01

    The Rab27 family of GTPases regulates the efficiency and specificity of exocytosis in hematopoietic cells, including neutrophils, CTLs, NK cells, and mast cells. However, the mechanisms regulated by Rab27 GTPases are cell-specific, as they depend on the differential expression and function of particular effector molecules that are recruited by the GTPases. In addition, Rab27 GTPases participate in multiple steps of the regulation of the secretory process, including priming, tethering, docking, and fusion through sequential interaction with multiple effector molecules. Finally, recent reports suggest that Rab27 GTPases and their effectors regulate vesicular trafficking mechanisms other than exocytosis, including endocytosis and phagocytosis. This review focuses on the latest discoveries on the function of Rab27 GTPases and their effectors Munc13-4 and Slp1 in neutrophil function comparatively to their functions in other leukocytes. PMID:23378593

  17. Def-6, a novel regulator of small GTPases in podocytes, acts downstream of atypical protein kinase C (aPKC) λ/ι.

    PubMed

    Worthmann, Kirstin; Leitges, Michael; Teng, Beina; Sestu, Marcello; Tossidou, Irini; Samson, Thomas; Haller, Hermann; Huber, Tobias B; Schiffer, Mario

    2013-12-01

    The atypical protein kinase C (aPKC) isotypes PKCλ/ι and PKCζ are both expressed in podocytes; however, little is known about differences in their function. Previous studies in mice have demonstrated that podocyte-specific loss of PKCλ/ι leads to a severe glomerular phenotype, whereas mice deficient in PKCζ develop no renal phenotype. We analyzed various effects caused by PKCλ/ι and PKCζ deficiency in cultured murine podocytes. In contrast to PKCζ-deficient podocytes, PKCλ/ι-deficient podocytes exhibited a severe actin cytoskeletal phenotype, reduced cell size, decreased number of focal adhesions, and increased activation of small GTPases. Comparative microarray analysis revealed that the guanine nucleotide exchange factor Def-6 was specifically up-regulated in PKCλ/ι-deficient podocytes. In vivo Def-6 expression is significantly increased in podocytes of PKCλ/ι-deficient mice. Cultured PKCλ/ι-deficient podocytes exhibited an enhanced membrane association of Def-6, indicating enhanced activation. Overexpression of aPKCλ/ι in PKCλ/ι-deficient podocytes could reduce the membrane-associated expression of Def-6 and rescue the actin phenotype. In the present study, PKCλ/ι was identified as an important factor for actin cytoskeletal regulation in podocytes and Def-6 as a specific downstream target of PKCλ/ι that regulates the activity of small GTPases and subsequently the actin cytoskeleton of podocytes. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Beyond Symmetry Breaking: Competition and Negative Feedback in GTPase regulation

    PubMed Central

    Wu, Chi-Fang; Lew, Daniel J.

    2013-01-01

    Summary Cortical domains are often specified by the local accumulation of active GTPases. Such domains can arise through spontaneous symmetry breaking, suggesting that GTPase accumulation occurs via positive feedback. Here, we focus on recent advances in fungal and plant cell models, where new work suggests that polarity-controlling GTPases develop only one “front” because GTPase clusters engage in a winner-takes-all competition. However, in some circumstances two or more GTPase domains can co-exist, and the basis for the switch from competition to coexistence remains an open question. Polarity GTPases can undergo oscillatory clustering and dispersal, suggesting that these systems contain negative feedback. Negative feedback may prevent polarity clusters from spreading too far, regulate the balance between competition and co-existence, and provide directional flexibility for cells tracking gradients. PMID:23731999

  19. Rab GTPases in Immunity and Inflammation.

    PubMed

    Prashar, Akriti; Schnettger, Laura; Bernard, Elliott M; Gutierrez, Maximiliano G

    2017-01-01

    Strict spatiotemporal control of trafficking events between organelles is critical for maintaining homeostasis and directing cellular responses. This regulation is particularly important in immune cells for mounting specialized immune defenses. By controlling the formation, transport and fusion of intracellular organelles, Rab GTPases serve as master regulators of membrane trafficking. In this review, we discuss the cellular and molecular mechanisms by which Rab GTPases regulate immunity and inflammation.

  20. IFN-inducible GTPases in Host Defense

    PubMed Central

    Kim, Bae-Hoon; Shenoy, Avinash R.; Kumar, Pradeep; Bradfield, Clinton J.; MacMicking, John D.

    2012-01-01

    From plants to humans, the ability to control infection at the level of an individual cell – a process termed cell-autonomous immunity – equates firmly with survival of the species. Recent work has begun to unravel this programmed cell-intrinsic response and the central roles played by IFN-inducible GTPases in defending the mammalian cell’s interior against a diverse group of invading pathogens. These immune GTPases regulate vesicular traffic and protein complex assembly to stimulate oxidative, autophagic, membranolytic and inflammasome-related antimicrobial activities within the cytosol as well as on pathogen-containing vacuoles. Moreover, human genome-wide association studies (GWAS) and disease-related transcriptional profiling have linked mutations in the Immunity-Related GTPase M (IRGM) locus and altered expression of Guanylate Binding Proteins (GBPs) with tuberculosis susceptibility and Crohn’s colitis. PMID:23084913

  1. Demarcation of Viral Shelters Results in Destruction by Membranolytic GTPases: Antiviral Function of Autophagy Proteins and Interferon-Inducible GTPases

    PubMed Central

    Brown, Hailey M.; Biering, Scott B.; Zhu, Allen; Choi, Jayoung; Hwang, Seungmin

    2018-01-01

    A hallmark of positive-sense RNA viruses is the formation of membranous shelters for safe replication in the cytoplasm. Once considered invisible to the immune system, these viral shelters are now found to be antagonized through the cooperation of autophagy proteins and anti-microbial GTPases. This coordinated effort of autophagy proteins guiding GTPases functions against not only the shelters of viruses but also cytoplasmic vacuoles containing bacteria or protozoa, suggesting a broad immune-defense mechanism against disparate vacuolar pathogens. Fundamental questions regarding this process remain: how the host recognizes these membranous structures as a target, how the autophagy proteins bring the GTPases to the shelters, and how the recruited GTPases disrupt these shelters. In this review we discuss these questions, the answers to which will significantly advance our understanding of the response to vacuole-like structures of pathogens, thereby paving the way for the development of broadly effective anti-microbial strategies for public health. PMID:29603284

  2. Demarcation of Viral Shelters Results in Destruction by Membranolytic GTPases: Antiviral Function of Autophagy Proteins and Interferon-Inducible GTPases.

    PubMed

    Brown, Hailey M; Biering, Scott B; Zhu, Allen; Choi, Jayoung; Hwang, Seungmin

    2018-06-01

    A hallmark of positive-sense RNA viruses is the formation of membranous shelters for safe replication in the cytoplasm. Once considered invisible to the immune system, these viral shelters are now found to be antagonized through the cooperation of autophagy proteins and anti-microbial GTPases. This coordinated effort of autophagy proteins guiding GTPases functions against not only the shelters of viruses but also cytoplasmic vacuoles containing bacteria or protozoa, suggesting a broad immune-defense mechanism against disparate vacuolar pathogens. Fundamental questions regarding this process remain: how the host recognizes these membranous structures as a target, how the autophagy proteins bring the GTPases to the shelters, and how the recruited GTPases disrupt these shelters. In this review, these questions are discussed, the answers to which will significantly advance our understanding of the response to vacuole-like structures of pathogens, thereby paving the way for the development of broadly effective anti-microbial strategies for public health. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  3. Manipulation of Behavioral Decline in Caenorhabditis elegans with the Rag GTPase raga-1

    PubMed Central

    Schreiber, Matthew A.; Pierce-Shimomura, Jonathan T.; Chan, Stefan; Parry, Dianne; McIntire, Steven L.

    2010-01-01

    Normal aging leads to an inexorable decline in motor performance, contributing to medical morbidity and decreased quality of life. While much has been discovered about genetic determinants of lifespan, less is known about modifiers of age-related behavioral decline and whether new gene targets may be found which extend vigorous activity, with or without extending lifespan. Using Caenorhabditis elegans, we have developed a model of declining neuromuscular function and conducted a screen for increased behavioral activity in aged animals. In this model, behavioral function suffers from profound reductions in locomotory frequency, but coordination is strikingly preserved until very old age. By screening for enhancers of locomotion at advanced ages we identified the ras-related Rag GTPase raga-1 as a novel modifier of behavioral aging. raga-1 loss of function mutants showed vigorous swimming late in life. Genetic manipulations revealed that a gain of function raga-1 curtailed behavioral vitality and shortened lifespan, while a dominant negative raga-1 lengthened lifespan. Dietary restriction results indicated that a raga-1 mutant is relatively protected from the life-shortening effects of highly concentrated food, while RNAi experiments suggested that raga-1 acts in the highly conserved target of rapamycin (TOR) pathway in C. elegans. Rag GTPases were recently shown to mediate nutrient-dependent activation of TOR. This is the first demonstration of their dramatic effects on behavior and aging. This work indicates that novel modulators of behavioral function can be identified in screens, with implications for future study of the clinical amelioration of age-related decline. PMID:20523893

  4. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites

    PubMed Central

    Ji, Wei-ke; Hatch, Anna L; Merrill, Ronald A; Strack, Stefan; Higgs, Henry N

    2015-01-01

    While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites. DOI: http://dx.doi.org/10.7554/eLife.11553.001 PMID:26609810

  5. The interdependence of the Rho GTPases and apicobasal cell polarity.

    PubMed

    Mack, Natalie Ann; Georgiou, Marios

    2014-01-01

    Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.

  6. Coupling mechanical tension and GTPase signaling to generate cell and tissue dynamics

    NASA Astrophysics Data System (ADS)

    Zmurchok, Cole; Bhaskar, Dhananjay; Edelstein-Keshet, Leah

    2018-07-01

    Regulators of the actin cytoskeleton such Rho GTPases can modulate forces developed in cells by promoting actomyosin contraction. At the same time, through mechanosensing, tension is known to affect the activity of Rho GTPases. What happens when these effects act in concert? Using a minimal model (1 GTPase coupled to a Kelvin–Voigt element), we show that two-way feedback between signaling (‘RhoA’) and mechanical tension (stretching) leads to a spectrum of cell behaviors, including contracted or relaxed cells, and cells that oscillate between these extremes. When such ‘model cells’ are connected to one another in a row or in a 2D sheet (‘epithelium’), we observe waves of contraction/relaxation and GTPase activity sweeping through the tissue. The minimal model lends itself to full bifurcation analysis, and suggests a mechanism that explains behavior observed in the context of development and collective cell behavior.

  7. Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon.

    PubMed

    Akashi, Kinya; Yoshimura, Kazuya; Kajikawa, Masataka; Hanada, Kouhei; Kosaka, Rina; Kato, Atsushi; Katoh, Akira; Nanasato, Yoshihiko; Tsujimoto, Hisashi; Yokota, Akiho

    2016-10-01

    Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.

  8. Rho GTPases at the crossroad of signaling networks in mammals

    PubMed Central

    Wojnacki, José; Quassollo, Gonzalo; Marzolo, María-Paz; Cáceres, Alfredo

    2014-01-01

    Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization. PMID:24691223

  9. Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways.

    PubMed

    Fuchs, Evelyn; Haas, Alexander K; Spooner, Robert A; Yoshimura, Shin-ichiro; Lord, J Michael; Barr, Francis A

    2007-06-18

    Rab family guanosine triphosphatases (GTPases) together with their regulators define specific pathways of membrane traffic within eukaryotic cells. In this study, we have investigated which Rab GTPase-activating proteins (GAPs) can interfere with the trafficking of Shiga toxin from the cell surface to the Golgi apparatus and studied transport of the epidermal growth factor (EGF) from the cell surface to endosomes. This screen identifies 6 (EVI5, RN-tre/USP6NL, TBC1D10A-C, and TBC1D17) of 39 predicted human Rab GAPs as specific regulators of Shiga toxin but not EGF uptake. We show that Rab43 is the target of RN-tre and is required for Shiga toxin uptake. In contrast, RabGAP-5, a Rab5 GAP, was unique among the GAPs tested and reduced the uptake of EGF but not Shiga toxin. These results suggest that Shiga toxin trafficking to the Golgi is a multistep process controlled by several Rab GAPs and their target Rabs and that this process is discrete from ligand-induced EGF receptor trafficking.

  10. Cloning, sequencing and phylogenetic analysis of the small GTPase gene cdc-42 from Ancylostoma caninum.

    PubMed

    Yang, Yurong; Zheng, Jing; Chen, Jiaxin

    2012-12-01

    CDC-42 is a member of the Rho GTPase subfamily that is involved in many signaling pathways, including mitosis, cell polarity, cell migration and cytoskeleton remodeling. Here, we present the first characterization of a full-length cDNA encoding the small GTPase cdc-42, designated as Accdc-42, isolated from the parasitic nematode Ancylostoma caninum. The encoded protein contains 191 amino acid residues with a predicted molecular weight of 21 kDa and displays a high level of identity with the Rho-family GTPase protein CDC-42. Phylogenetic analysis revealed that Accdc-42 was most closely related to Caenorhabditis briggsae cdc-42. Comparison with selected sequences from the free-living nematode Caenorhabditis elegans, Drosophila melanogaster, Xenopus laevis, Danio rerio, Mus musculus and human genomes showed that Accdc-42 is highly conserved. AcCDC-42 demonstrates the highest identity to CDC-42 from C. briggsae (94.2%), and it also exhibits 91.6% identity to CDC-42 from C. elegans and 91.1% from Brugia malayi. Additionally, the transcript of Accdc-42 was analyzed during the different developmental stages of the worm. Accdc-42 was expressed in the L1/L2 larvae, L3 larvae and female and male adults of A. caninum. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Regulation of endocytic traffic by Rho GTPases.

    PubMed Central

    Qualmann, Britta; Mellor, Harry

    2003-01-01

    The members of the Rho subfamily of small GTPases are key regulators of the actin cytoskeleton. However, recent studies have provided evidence for multiple additional roles for these signalling proteins in controlling endocytic traffic. Here we review our current understanding of Rho GTPase action within the endocytic pathway and examine the potential points of convergence with the more established, actin-based functions of these signalling proteins. PMID:12564953

  12. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells.

    PubMed

    DeRose, Robert; Pohlmeyer, Christopher; Umeda, Nobuhiro; Ueno, Tasuku; Nagano, Tetsuo; Kuo, Scot; Inoue, Takanari

    2012-03-09

    Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events(1, 2). Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time(3). In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac(4), Cdc42(4), RhoA(4) and Ras(5), in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells(6). Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level(6).

  13. Rho GTPases and their downstream effectors in megakaryocyte biology.

    PubMed

    Pleines, Irina; Cherpokova, Deya; Bender, Markus

    2018-06-18

    Megakaryocytes differentiate from hematopoietic stem cells in the bone marrow. The transition of megakaryocytes to platelets is a complex process. Thereby, megakaryocytes extend proplatelets into sinusoidal blood vessels, where the proplatelets undergo fission to release platelets. Defects in platelet production can lead to a low platelet count (thrombocytopenia) with increased bleeding risk. Rho GTPases comprise a family of small signaling G proteins that have been shown to be master regulators of the cytoskeleton controlling many aspects of intracellular processes. The generation of Pf4-Cre transgenic mice was a major breakthrough that enabled studies in megakaryocyte-/platelet-specific knockout mouse lines and provided new insights into the central regulatory role of Rho GTPases in megakaryocyte maturation and platelet production. In this review, we will summarize major findings on the role of Rho GTPases in megakaryocyte biology with a focus on mouse lines in which knockout strategies have been applied to study the function of the best-characterized members Rac1, Cdc42 and RhoA and their downstream effector proteins.

  14. ADP-Ribosylation Factor 6 and a Functional PIX/p95-APP1 Complex Are Required for Rac1B-mediated Neurite Outgrowth

    PubMed Central

    Albertinazzi, Chiara; Za, Lorena; Paris, Simona; de Curtis, Ivan

    2003-01-01

    The mechanisms coordinating adhesion, actin organization, and membrane traffic during growth cone migration are poorly understood. Neuritogenesis and branching from retinal neurons are regulated by the Rac1B/Rac3 GTPase. We have identified a functional connection between ADP-ribosylation factor (Arf) 6 and p95-APP1 during the regulation of Rac1B-mediated neuritogenesis. P95-APP1 is an ADP-ribosylation factor GTPase-activating protein (ArfGAP) of the GIT family expressed in the developing nervous system. We show that Arf6 has a predominant role in neurite extension compared with Arf1 and Arf5. Cotransfection experiments indicate a specific and cooperative potentiation of neurite extension by Arf6 and the carboxy-terminal portion of p95-APP1. Localization studies in neurons expressing different p95-derived constructs show a codistribution of p95-APP1 with Arf6, but not Arf1. Moreover, p95-APP1–derived proteins with a mutated or deleted ArfGAP domain prevent Rac1B-induced neuritogenesis, leading to PIX-mediated accumulation at large Rab11-positive endocytic vesicles. Our data support a role of p95-APP1 as a specific regulator of Arf6 in the control of membrane trafficking during neuritogenesis. PMID:12686588

  15. Nucleotide Dependent Switching in Rho GTPase: Conformational Heterogeneity and Competing Molecular Interactions

    PubMed Central

    Kumawat, Amit; Chakrabarty, Suman; Kulkarni, Kiran

    2017-01-01

    Ras superfamily of GTPases regulate myriad cellular processes through a conserved nucleotide (GTP/GDP) dependent switching mechanism. Unlike Ras family of GTPases, for the Rho GTPases, there is no clear evidence for the existence of “sub-states” such as state 1 & state 2 in the GTP bound form. To explore the nucleotide dependent conformational space of the Switch I loop and also to look for existence of state 1 like conformations in Rho GTPases, atomistic molecular dynamics and metadynamics simulations on RhoA were performed. These studies demonstrate that both the nucleotide-free state and the GDP bound “OFF” state have very similar conformations, whereas the GTP bound “ON” state has unique conformations with signatures of two intermediate states. The conformational free energy landscape for these systems suggests the presence of multiple intermediate states. Interestingly, the energetic penalty of exposing the non-polar residues in the GTP bound form is counter balanced by the favourable hydrogen bonded interactions between the γ-phosphate group of GTP with the highly conserved Tyr34 and Thr37 residues. These competing molecular interactions lead to a tuneable energy landscape of the Switch I conformation, which can undergo significant changes based on the local environment including changes upon binding to effectors. PMID:28374773

  16. Nucleotide Dependent Switching in Rho GTPase: Conformational Heterogeneity and Competing Molecular Interactions

    NASA Astrophysics Data System (ADS)

    Kumawat, Amit; Chakrabarty, Suman; Kulkarni, Kiran

    2017-04-01

    Ras superfamily of GTPases regulate myriad cellular processes through a conserved nucleotide (GTP/GDP) dependent switching mechanism. Unlike Ras family of GTPases, for the Rho GTPases, there is no clear evidence for the existence of “sub-states” such as state 1 & state 2 in the GTP bound form. To explore the nucleotide dependent conformational space of the Switch I loop and also to look for existence of state 1 like conformations in Rho GTPases, atomistic molecular dynamics and metadynamics simulations on RhoA were performed. These studies demonstrate that both the nucleotide-free state and the GDP bound “OFF” state have very similar conformations, whereas the GTP bound “ON” state has unique conformations with signatures of two intermediate states. The conformational free energy landscape for these systems suggests the presence of multiple intermediate states. Interestingly, the energetic penalty of exposing the non-polar residues in the GTP bound form is counter balanced by the favourable hydrogen bonded interactions between the γ-phosphate group of GTP with the highly conserved Tyr34 and Thr37 residues. These competing molecular interactions lead to a tuneable energy landscape of the Switch I conformation, which can undergo significant changes based on the local environment including changes upon binding to effectors.

  17. Neurolastin, a dynamin family GTPase, regulates excitatory synapses and spine density

    PubMed Central

    Madan Lomash, Richa; Gu, Xinglong; Youle, Richard J.; Lu, Wei; Roche, Katherine W.

    2015-01-01

    SUMMARY Membrane trafficking and spinogenesis contribute significantly to changes in synaptic strength during development and in various paradigms of synaptic plasticity. GTPases of the dynamin family are key players regulating membrane trafficking. Here, we identify a brain-specific dynamin family GTPase, neurolastin (RNF112/Znf179), with closest homology to atlastin. We demonstrate that neurolastin has functional GTPase and RING domains, making it a unique protein identified with this multi-enzymatic domain organization. We also show that neurolastin is a peripheral membrane protein, which localizes to endosomes and affects endosomal membrane dynamics via its RING domain. In addition, neurolastin knockout mice have fewer dendritic spines, and rescue of the wildtype phenotype requires both the GTPase and RING domains. Furthermore, we find fewer functional synapses and reduced paired pulse facilitation in neurolastin knockout mice. Thus, we identify neurolastin as a dynamin family GTPase that affects endosome size and spine density. PMID:26212327

  18. Activation of Rho GTPases by Cytotoxic Necrotizing Factor 1 Induces Macropinocytosis and Scavenging Activity in Epithelial Cells

    PubMed Central

    Fiorentini, Carla; Falzano, Loredana; Fabbri, Alessia; Stringaro, Annarita; Logozzi, Mariaantonia; Travaglione, Sara; Contamin, Stéphanette; Arancia, Giuseppe; Malorni, Walter; Fais, Stefano

    2001-01-01

    Macropinocytosis, a ruffling-driven process that allows the capture of large material, is an essential aspect of normal cell function. It can be either constitutive, as in professional phagocytes where it ends with the digestion of captured material, or induced, as in epithelial cells stimulated by growth factors. In this case, the internalized material recycles back to the cell surface. We herein show that activation of Rho GTPases by a bacterial protein toxin, the Escherichia coli cytotoxic necrotizing factor 1 (CNF1), allowed epithelial cells to engulf and digest apoptotic cells in a manner similar to that of professional phagocytes. In particular, we have demonstrated that 1) the activation of all Rho, Rac, and Cdc42 by CNF1 was essential for the capture and internalization of apoptotic cells; and 2) such activation allowed the discharge of macropinosomal content into Rab7 and lysosomal associated membrane protein-1 acidic lysosomal vesicles where the ingested particles underwent degradation. Taken together, these findings indicate that CNF1-induced “switching on” of Rho GTPases may induce in epithelial cells a scavenging activity, comparable to that exerted by professional phagocytes. The activation of such activity in epithelial cells may be relevant, in mucosal tissues, in supporting or integrating the scavenging activity of resident macrophages. PMID:11452003

  19. GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2.

    PubMed

    Zhao, Chunmei; Ma, Hong; Bossy-Wetzel, Ella; Lipton, Stuart A; Zhang, Zhuohua; Feng, Gen-Sheng

    2003-09-05

    Gab1 and Gab2 are scaffolding proteins acting downstream of cell surface receptors and interact with a variety of cytoplasmic signaling proteins such as Grb2, Shp-2, phosphatidylinositol 3-kinase, Shc, and Crk. To identify new binding partners for GAB proteins and better understand their functions, we performed a yeast two-hybrid screening with hGab2-(120-587) as bait. This work led to identification of a novel GTPase-activating protein (GAP) for Rho family GTPases. The GAP domain shows high similarity to the recently cloned CdGAP and displays activity toward RhoA, Rac1, and Cdc42 in vitro. The protein was named GC-GAP for its ability to interact with GAB proteins and its activity toward Rac and Cdc42. GC-GAP is predominantly expressed in the brain with low levels detected in other tissues. Antibodies directed against GC-GAP recognized a protein of approximately 200 kDa. Expression of GC-GAP in 293T cells led to a reduction in active Rac1 and Cdc42 levels but not RhoA. Suppression of GC-GAP expression by siRNA inhibited proliferation of C6 astroglioma cells. In addition, GC-GAP contains several classic proline-rich motifs, and it interacts with the first SH3 domain of Crk and full-length Nck in vitro. We propose that Gab1 and Gab2 in cooperation with other adapter molecules might regulate the cellular localization of GC-GAP under specific stimuli, acting to regulate precisely Rac and Cdc42 activities. Given that GC-GAP is specifically expressed in the nervous system and that it is localized to the dendritic processes of cultured neurons, GC-GAP may play a role in dendritic morphogenesis and also possibly in neural/glial cell proliferation.

  20. TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase Rap1

    PubMed Central

    Grolez, Guillaume P.; Bernardini, Michela; Richard, Elodie; Scianna, Marco; Lemonnier, Loic; Munaron, Luca; Mattot, Virginie; Prevarskaya, Natalia; Gkika, Dimitra

    2017-01-01

    Endothelial cell adhesion and migration are critical steps of the angiogenic process, whose dysfunction is associated with tumor growth and metastasis. The TRPM8 channel has recently been proposed to play a protective role in prostate cancer by impairing cell motility. However, the mechanisms by which it could influence vascular behavior are unknown. Here, we reveal a novel non-channel function for TRPM8 that unexpectedly acts as a Rap1 GTPase inhibitor, thereby inhibiting endothelial cell motility, independently of pore function. TRPM8 retains Rap1 intracellularly through direct protein–protein interaction, thus preventing its cytoplasm–plasma membrane trafficking. In turn, this mechanism impairs the activation of a major inside-out signaling pathway that triggers the conformational activation of integrin and, consequently, cell adhesion, migration, in vitro endothelial tube formation, and spheroid sprouting. Our results bring to light a novel, pore-independent molecular mechanism by which endogenous TRPM8 expression inhibits Rap1 GTPase and thus plays a critical role in the behavior of vascular endothelial cells by inhibiting migration. PMID:28550110

  1. BAR domain proteins regulate Rho GTPase signaling.

    PubMed

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.

  2. Rac1 GTPase regulates 11β hydroxysteroid dehydrogenase type 2 and fibrotic remodeling.

    PubMed

    Lavall, Daniel; Schuster, Pia; Jacobs, Nadine; Kazakov, Andrey; Böhm, Michael; Laufs, Ulrich

    2017-05-05

    The aim of the study was to characterize the role of Rac1 GTPase for the mineralocorticoid receptor (MR)-mediated pro-fibrotic remodeling. Transgenic mice with cardiac overexpression of constitutively active Rac1 (RacET) develop an age-dependent phenotype with atrial dilatation, fibrosis, and atrial fibrillation. Expression of MR was similar in RacET and WT mice. The expression of 11β hydroxysteroid dehydrogenase type 2 (11β-HSD2) was age-dependently up-regulated in the atria and the left ventricles of RacET mice on mRNA and protein levels. Statin treatment inhibiting Rac1 geranylgeranylation reduced 11β-HSD2 up-regulation. Samples of human left atrial myocardium showed a positive correlation between Rac1 activity and 11β-HSD2 expression ( r = 0.7169). Immunoprecipitation showed enhanced Rac1-bound 11β-HSD2 relative to Rac1 expression in RacET mice that was diminished with statin treatment. Both basal and phorbol 12-myristate 13-acetate (PMA)-induced NADPH oxidase activity were increased in RacET and correlated positively with 11β-HSD2 expression ( r = 0.788 and r = 0.843, respectively). In cultured H9c2 cardiomyocytes, Rac1 activation with l-buthionine sulfoximine increased; Rac1 inhibition with NSC23766 decreased 11β-HSD2 mRNA and protein expression. Connective tissue growth factor (CTGF) up-regulation induced by aldosterone was prevented with NSC23766. Cardiomyocyte transfection with 11β-HSD2 siRNA abolished the aldosterone-induced CTGF up-regulation. Aldosterone-stimulated MR nuclear translocation was blocked by the 11β-HSD2 inhibitor carbenoxolone. In cardiac fibroblasts, nuclear MR translocation induced by aldosterone was inhibited with NSC23766 and spironolactone. NSC23766 prevented the aldosterone-induced proliferation and migration of cardiac fibroblasts and the up-regulation of CTGF and fibronectin. In conclusion, Rac1 GTPase regulates 11β-HSD2 expression, MR activation, and MR-mediated pro-fibrotic signaling. © 2017 by The American Society for

  3. RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes.

    PubMed

    Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko

    2016-01-15

    Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes*

    PubMed Central

    Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko

    2016-01-01

    Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes. PMID:26620560

  5. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase.

    PubMed

    Tang, Songqing; Chen, Taoyong; Yu, Zhou; Zhu, Xuhui; Yang, Mingjin; Xie, Bin; Li, Nan; Cao, Xuetao; Wang, Jianli

    2014-08-14

    Host immune cells can detect and destruct invading pathogens via pattern-recognition receptors. Small Rap GTPases act as conserved molecular switches coupling extracellular signals to various cellular responses, but their roles as regulators in Toll-like receptor (TLR) signalling have not been fully elucidated. Here we report that Ras guanine nucleotide-releasing protein 3 (RasGRP3), a guanine nucleotide-exchange factor activating Ras and Rap1, limits production of proinflammatory cytokines (especially IL-6) in macrophages by activating Rap1 on activation by low levels of TLR agonists. We demonstrate that RasGRP3, a dominant member of RasGRPs in macrophages, impairs TLR3/4/9-induced IL-6 production and relieves dextrane sulphate sodium-induced colitis and collagen-induced arthritis. In RasGRP3-deficient RAW264.7 cells obtained by CRISPR-Cas9 genome editing, TLR3/4/9-induced activation of Rap1 was inhibited while ERK1/2 activation was enhanced. Our study suggests that RasGRP3 limits inflammatory response by activating Rap1 on low-intensity pathogen infection, setting a threshold for preventing excessive inflammatory response.

  6. Escherichia coli cytotoxic necrotizing factor 1: evidence for induction of actin assembly by constitutive activation of the p21 Rho GTPase.

    PubMed Central

    Fiorentini, C; Donelli, G; Matarrese, P; Fabbri, A; Paradisi, S; Boquet, P

    1995-01-01

    Cytotoxic necrotizing factor type 1 (CNF1) induces in HEp-2 cells an increase in F-actin structures, which was detectable by fluorescence-activated cell sorter analysis 24 h after addition of this factor to the culture medium. Increase in F-actin was correlated with the augmentation of both the cell volume and the total cell actin content. Actin assembly-disassembly is controlled by small GTP-binding proteins of the Rho family, which have been reported recently to be modified by CNF1 treatment. Clostridium difficile toxin B and Clostridium botulinum exoenzyme C3, both known to act on the Rho GTPase, were used as biological tools to study the effect of CNF1 on this protein. CNF1 incubated before, during, or after exposure to the chimeric toxin C3B (which is the product of a genetic fusion between the DNA coding for C3 and the one coding for the B fragment of diphtheria toxin) protected HEp-2 cells from the disruption of F-actin structures caused by inactivation of the Rho GTPase through its ADP-ribosylation. On the other hand, C. difficile toxin B cytopathic effect was not observed upon preincubation of cells with CNF1. Toxins acting through a Rho-independent mechanism, such as cytochalasin D and Clostridium spiroforme iota-like toxin, could not be modified in their cellular activities by CNF1 treatment. All of our results suggest that CNF1 modifies the Rho molecule, thus probably protecting this GTPase from further bacterial toxin modification. PMID:7558302

  7. Escherichia coli cytotoxic necrotizing factor 1: evidence for induction of actin assembly by constitutive activation of the p21 Rho GTPase.

    PubMed

    Fiorentini, C; Donelli, G; Matarrese, P; Fabbri, A; Paradisi, S; Boquet, P

    1995-10-01

    Cytotoxic necrotizing factor type 1 (CNF1) induces in HEp-2 cells an increase in F-actin structures, which was detectable by fluorescence-activated cell sorter analysis 24 h after addition of this factor to the culture medium. Increase in F-actin was correlated with the augmentation of both the cell volume and the total cell actin content. Actin assembly-disassembly is controlled by small GTP-binding proteins of the Rho family, which have been reported recently to be modified by CNF1 treatment. Clostridium difficile toxin B and Clostridium botulinum exoenzyme C3, both known to act on the Rho GTPase, were used as biological tools to study the effect of CNF1 on this protein. CNF1 incubated before, during, or after exposure to the chimeric toxin C3B (which is the product of a genetic fusion between the DNA coding for C3 and the one coding for the B fragment of diphtheria toxin) protected HEp-2 cells from the disruption of F-actin structures caused by inactivation of the Rho GTPase through its ADP-ribosylation. On the other hand, C. difficile toxin B cytopathic effect was not observed upon preincubation of cells with CNF1. Toxins acting through a Rho-independent mechanism, such as cytochalasin D and Clostridium spiroforme iota-like toxin, could not be modified in their cellular activities by CNF1 treatment. All of our results suggest that CNF1 modifies the Rho molecule, thus probably protecting this GTPase from further bacterial toxin modification.

  8. Arabidopsis RabF1 (ARA6) Is Involved in Salt Stress and Dark-Induced Senescence (DIS)

    PubMed Central

    Yin, Congfei; Karim, Sazzad; Zhang, Hongsheng; Aronsson, Henrik

    2017-01-01

    Arabidopsis small GTPase RabF1 (ARA6) functions in endosomal vesicle transport and may play a crucial role in recycling and degradation of molecules, thus involved in stress responses. Here we have reported that complementary overexpression lines RabF1OE (overexpression), GTPase mutants RabF1Q93L (constitutively active) and RabF1S47N (dominant negative) lines show longer root growth than wild-type, rabF1 knockout and N-myristoylation deletion (Δ1−29, N-terminus) complementary overexpression mutant plants under salt induced stress, which indicates that N-myristoylation of RabF1 is indispensable for salt tolerance. Moreover, RabF1 is highly expressed during senescence and RabF1OE lines were more tolerant of dark-induced senescence (DIS) than wild-type and rabF1. PMID:28157156

  9. Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway.

    PubMed

    Jang, Ju-Won; Kim, Min-Kyu; Bae, Suk-Chul

    2018-04-20

    Yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) (YAP/TAZ) are transcriptional coactivators that regulate genes involved in proliferation and transformation by interacting with DNA-binding transcription factors. Remarkably, YAP/TAZ are essential for cancer initiation or growth of most solid tumors. Their activation induces cancer stem cell attributes, proliferation, and metastasis. The oncogenic activity of YAP/TAZ is inhibited by the Hippo cascade, an evolutionarily conserved pathway that is governed by two kinases, mammalian Ste20-like kinases 1/2 (MST1/2) and Large tumor suppressor kinase 1/2 (LATS1/2), corresponding to Drosophila's Hippo (Hpo) and Warts (Wts), respectively. One of the most influential aspects of YAP/TAZ biology is that these factors are transducers of cell structural features, including polarity, shape, and cytoskeletal organization. In turn, these features are intimately related to the cell's ability to attach to other cells and to the surrounding extracellular matrix (ECM), and are also influenced by the cell's microenvironment. Thus, YAP/TAZ respond to changes that occur at the level of whole tissues. Notably, small GTPases act as master organizers of the actin cytoskeleton. Recent studies provided convincing genetic evidence that small GTPase signaling pathways activate YAP/TAZ, while the Hippo pathway inhibits them. Biochemical studies showed that small GTPases facilitate the YAP-Tea domain transcription factor (TEAD) interaction by inhibiting YAP phosphorylation in response to serum stimulation, while the Hippo pathway facilitates the YAP-RUNX3 interaction by increasing YAP phosphorylation. Therefore, small GTPase pathways activate YAP/TAZ by switching its DNA-binding transcription factors. In this review, we summarize the relationship between the Hippo pathway and small GTPase pathways in the regulation of YAP/TAZ.

  10. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1.

    PubMed Central

    Bischoff, F R; Krebber, H; Smirnova, E; Dong, W; Ponstingl, H

    1995-01-01

    RCC1 (the regulator of chromosome condensation) stimulates guanine nucleotide dissociation on the Ras-related nuclear protein Ran. Both polypeptides are components of a regulatory pathway that has been implicated in regulating DNA replication, onset of and exit from mitosis, mRNA processing and transport, and import of proteins into the nucleus. In a search for further members of the RCC1-Ran signal pathway, we have identified proteins of 23, 45 and 300 kDa which tightly bind to Ran-GTP but not Ran-GDP. The purified soluble 23 kDa Ran binding protein RanBP1 does not activate RanGTPase, but increases GTP hydrolysis induced by the RanGTPase-activating protein RanGAP1 by an order of magnitude. In the absence of RanGAP, it strongly inhibits RCC1-induced exchange of Ran-bound GTP. In addition, it forms a stable complex with nucleotide-free RCC1-Ran. With these properties, it differs markedly from guanine diphosphate dissociation inhibitors which preferentially prevent the exchange of protein-bound GDP and in some cases were shown to inhibit GAP-induced GTP hydrolysis. RanBP1 is the first member of a new class of proteins regulating the binding and hydrolysis of GTP by Ras-related proteins. Images PMID:7882974

  11. Rho'ing in and out of cells: viral interactions with Rho GTPase signaling.

    PubMed

    Van den Broeke, Céline; Jacob, Thary; Favoreel, Herman W

    2014-01-01

    Rho GTPases are key regulators of actin and microtubule dynamics and organization. Increasing evidence shows that many viruses have evolved diverse interactions with Rho GTPase signaling and manipulate them for their own benefit. In this review, we discuss how Rho GTPase signaling interferes with many steps in the viral replication cycle, especially entry, replication, and spread. Seen the diversity between viruses, it is not surprising that there is considerable variability in viral interactions with Rho GTPase signaling. However, several largely common effects on Rho GTPases and actin architecture and microtubule dynamics have been reported. For some of these processes, the molecular signaling and biological consequences are well documented while for others we just begin to understand them. A better knowledge and identification of common threads in the different viral interactions with Rho GTPase signaling and their ultimate consequences for virus and host may pave the way toward the development of new antiviral drugs that may target different viruses.

  12. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites.

    PubMed

    Chen, Baoyu; Chou, Hui-Ting; Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas; Rosen, Michael K

    2017-09-26

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly.

  13. Elevated small GTPase activation influences the cell proliferation signaling control in Niemann-Pick type C fibroblasts.

    PubMed

    Corey, Deborah A; Kelley, Thomas J

    2007-07-01

    Niemann-Pick type C (NPC) disease is characterized at the cellular level by the intracellular accumulation of free cholesterol. We have previously identified a similar phenotype in cystic fibrosis (CF) cell models that results in the activation of the small GTPase RhoA. The hypothesis of this study was that NPC cells would also exhibit an increase in small GTPase activation. An examination of the active, GTP-bound form of GTPases revealed a basal increase in the content of the active-form Ras and RhoA small GTPases in NPC fibroblasts compared to wt controls. To assess whether this increase in GTP-bound Ras and RhoA manifests a functional outcome, the expression of the proliferation control proteins p21/waf1 and cyclin D were examined. Consistent with increased GTPase signaling, p21/waf1 expression is reduced and cyclin D expression is elevated in NPC fibroblasts. Interestingly, cell growth rate is not altered in NPC fibroblasts compared to wt cells. However, NPC sensitivity to statin treatment is reversed by addition of the isoprenoid geranylgeranyl pyrophosphate (GGPP), a modifier of RhoA. It is concluded that Ras and RhoA basal activation is elevated in NPC fibroblasts and has an impact on cell survival pathways.

  14. Crystal structure of TBC1D15 GTPase‐activating protein (GAP) domain and its activity on Rab GTPases

    PubMed Central

    Chen, Yan‐Na; Gu, Xin; Zhou, X. Edward; Wang, Weidong; Cheng, Dandan; Ge, Yinghua; Ye, Fei

    2017-01-01

    Abstract TBC1D15 belongs to the TBC (Tre‐2/Bub2/Cdc16) domain family and functions as a GTPase‐activating protein (GAP) for Rab GTPases. So far, the structure of TBC1D15 or the TBC1D15·Rab complex has not been determined, thus, its catalytic mechanism on Rab GTPases is still unclear. In this study, we solved the crystal structures of the Shark and Sus TBC1D15 GAP domains, to 2.8 Å and 2.5 Å resolution, respectively. Shark‐TBC1D15 and Sus‐TBC1D15 belong to the same subfamily of TBC domain‐containing proteins, and their GAP‐domain structures are highly similar. This demonstrates the evolutionary conservation of the TBC1D15 protein family. Meanwhile, the newly determined crystal structures display new variations compared to the structures of yeast Gyp1p Rab GAP domain and TBC1D1. GAP assays show that Shark and Sus GAPs both have higher catalytic activity on Rab11a·GTP than Rab7a·GTP, which differs from the previous study. We also demonstrated the importance of arginine and glutamine on the catalytic sites of Shark GAP and Sus GAP. When arginine and glutamine are changed to alanine or lysine, the activities of Shark GAP and Sus GAP are lost. PMID:28168758

  15. Relevance of small GTPase Rac1 pathway in drug and radio-resistance mechanisms: Opportunities in cancer therapeutics.

    PubMed

    Cardama, G A; Alonso, D F; Gonzalez, N; Maggio, J; Gomez, D E; Rolfo, C; Menna, P L

    2018-04-01

    Rac1 GTPase signaling pathway has a critical role in the regulation of a plethora of cellular functions governing cancer cell behavior. Recently, it has been shown a critical role of Rac1 in the emergence of resistance mechanisms to cancer therapy. This review describes the current knowledge regarding Rac1 pathway deregulation and its association with chemoresistance, radioresistance, resistance to targeted therapies and immune evasion. This supports the idea that interfering Rac1 signaling pathway could be an interesting approach to tackle cancer resistance. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex.

    PubMed

    Hwang, Jae-Ung; Vernoud, Vanessa; Szumlanski, Amy; Nielsen, Erik; Yang, Zhenbiao

    2008-12-23

    Highly elongated eukaryotic cells (e.g., neuronal axons, fungal hyphae, and pollen tubes) are generated through continuous apically restricted growth (tip growth), which universally requires tip-localized Rho GTPases. We used the oscillating pollen tube as a model system to determine the function and regulation of Rho GTPases in tip growth. Our previous work showed that the spatiotemporal dynamics of the apical cap of the activated Rho-like GTPase from Plant 1 (ROP1) are critical for tip growth in pollen tubes. However, the underlying mechanism for the generation and maintenance of this dynamic apical cap is poorly understood. A screen for mutations that enhance ROP1-overexpression-induced depolarization of pollen-tube growth identified REN1 (ROP1 enhancer 1) in Arabidopsis, whose null mutations turn elongated pollen tubes into bulbous cells. REN1 encodes a novel Rho GTPase-activating protein (RhoGAP) required for restricting the ROP1 activity to the pollen-tube tip. REN1 was localized to exocytic vesicles accumulated in the pollen-tube apex, as well as to the apical plasma membrane at the site of ROP1 activation. The apical localization of REN1 and its function in controlling growth polarity was compromised by disruption of ROP1-dependent F-actin and vesicular trafficking, which indicates that REN1 targeting and function is regulated by ROP1 downstream signaling. Our findings suggest that the REN1 RhoGAP controls a negative-feedback-based global inhibition of ROP1. This function provides a critical self-organizing mechanism, by which ROP signaling is spatially limited to the growth site and temporally oscillates during continuous tip growth. Similar spatiotemporal control of Rho GTPase signaling may also play an important role in cell-polarity control in other systems, including tip growth in fungi and cell movement in animals.

  17. Traumatic noise activates Rho-family GTPases through transient cellular energy depletion

    PubMed Central

    Chen, Fu-Quan; Zheng, Hong-Wei; Hill, Kayla; Sha, Su-Hua

    2012-01-01

    Small GTPases mediate transmembrane signaling and regulate the actin cytoskeleton in eukaryotic cells. Here, we characterize the auditory pathology of adult male CBA/J mice exposed to traumatic noise (2–20 kHz; 106 dB; 2 h). Loss of outer hair cells was evident 1 h after noise exposure in the basal region of the cochlea and spread apically with time, leading to permanent threshold shifts of 35, 60, and 65 dB at 8, 16, and 32 kHz. Several biochemical and molecular changes correlated temporally with the loss of cells. Immediately after exposure, the concentration of ATP decreased in cochlear tissue and reached a minimum after 1 h while the immunofluorescent signal for p-AMPKα significantly increased in sensory hair cells at that time. Levels of active Rac1 increased, whereas those of active RhoA decreased significantly 1 h after noise attaining a plateau at 1 to 3 h; the formation of a RhoA-p140mDia complex was consistent with an activation of Rho GTPase pathways. Also at 1 to 3 h after exposure, the caspase-independent cell death marker, endonuclease G, translocated to the nuclei of outer hair cells. Finally, experiments with the inner ear HEI-OC1 cell line demonstrated that the energy-depleting agent oligomycin enhanced both Rac1 activity and cell death. The sum of the results suggests that traumatic noise induces transient cellular ATP depletion and activates Rho GTPase pathways, leading to death of outer hair cells in the cochlea. PMID:22956833

  18. Analysis of a minimal Rho-GTPase circuit regulating cell shape

    NASA Astrophysics Data System (ADS)

    Holmes, William R.; Edelstein-Keshet, Leah

    2016-08-01

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase (‘wave-pinning’) model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  19. The Epigenetic Factor KDM2B Regulates EMT and Small GTPases in Colon Tumor Cells.

    PubMed

    Zacharopoulou, Nefeli; Tsapara, Anna; Kallergi, Galatea; Schmid, Evi; Alkahtani, Saad; Alarifi, Saud; Tsichlis, Philip N; Kampranis, Sotirios C; Stournaras, Christos

    2018-05-14

    The epigenetic factor KDM2B is a histone demethylase expressed in various tumors. Recently, we have shown that KDM2B regulates actin cytoskeleton organization, small Rho GTPases signaling, cell-cell adhesion and migration of prostate tumor cells. In the present study, we addressed its role in regulating EMT and small GTPases expression in colon tumor cells. We used RT-PCR for the transcriptional analysis of various genes, Western blotting for the assessment of protein expression and immunofluorescence microscopy for visualization of fluorescently labeled proteins. We report here that KDM2B regulates EZH2 and BMI1 in HCT116 colon tumor cells. Knockdown of this epigenetic factor induced potent up-regulation of the protein levels of the epithelial markers E-cadherin and ZO-1, while the mesenchymal marker N-cadherin was downregulated. On the other hand, KDM2B overexpression downregulated the levels of both epithelial markers and upregulated the mesenchymal marker, suggesting control of EMT by KDM2B. In addition, RhoA, RhoB and RhoC protein levels diminished upon KDM2B-knockdown, while all three small GTPases became upregulated in KDM2B-overexpressing HCT116 cell clones. Interestingly, Rac1 GTPase level increased upon KDM2B-knockdown and diminished in KDM2B-overexpressing HCT116 colon tumor- and DU-145 prostate cancer cells. These results establish a clear functional role of the epigenetic factor KDM2B in the regulation of EMT and small-GTPases expression in colon tumor cells and further support the recently postulated oncogenic role of this histone demethylase in various tumors. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. Role of Rab family GTPases and their effectors in melanosomal logistics.

    PubMed

    Ohbayashi, Norihiko; Fukuda, Mitsunori

    2012-04-01

    Rab GTPases constitute a family of small GTPases that regulate a variety of membrane trafficking events in all eukaryotic cells by recruiting their specific effector molecules. Recent accumulating evidence indicates that members of the mammalian Rab small GTPase family are involved in certain physiological and pathological processes. In particular, functional impairments of specific Rab proteins, e.g. Rab38 and Rab27A, their regulators or their effectors cause pigmentation disorders in humans and coat colour variations in mice because such impairments cause defects in melanosomal logistics, i.e. defects in melanosome biogenesis and transport. Genetic and biochemical analyses of the gene products responsible for mammalian pigmentation disorders in the past decade have revealed that Rab-mediated endosomal transport systems and melanosome transport systems play crucial roles in the efficient darkening of mammalian hair and skin. In this article, we review current knowledge regarding melanosomal logistics, with particular focus on the roles of Rab small GTPases and their effectors.

  1. Nε-Fatty acylation of Rho GTPases by a MARTX toxin effector.

    PubMed

    Zhou, Yan; Huang, Chunfeng; Yin, Li; Wan, Muyang; Wang, Xiaofei; Li, Lin; Liu, Yanhua; Wang, Zhao; Fu, Panhan; Zhang, Ni; Chen, She; Liu, Xiaoyun; Shao, Feng; Zhu, Yongqun

    2017-10-27

    The multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are a family of large toxins that are extensively distributed in bacterial pathogens. MARTX toxins are autocatalytically cleaved to multiple effector domains, which are released into host cells to modulate the host signaling pathways. The Rho guanosine triphosphatase (GTPase) inactivation domain (RID), a conserved effector domain of MARTX toxins, is implicated in cell rounding by disrupting the host actin cytoskeleton. We found that the RID is an N ε -fatty acyltransferase that covalently modifies the lysine residues in the C-terminal polybasic region of Rho GTPases. The resulting fatty acylation inhibited Rho GTPases and disrupted Rho GTPase-mediated signaling in the host. Thus, RID can mediate the lysine N ε -fatty acylation of mammalian proteins and represents a family of toxins that harbor N-fatty acyltransferase activities in bacterial pathogens. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. A class of dynamin-like GTPases involved in the generation of the tubular ER network

    PubMed Central

    Hu, Junjie; Shibata, Yoko; Zhu, Peng-Peng; Voss, Christiane; Rismanchi, Neggy; Prinz, William A.; Rapoport, Tom A.; Blackstone, Craig

    2009-01-01

    The endoplasmic reticulum (ER) consists of tubules that are shaped by the reticulons and DP1/Yop1p, but how the tubules form an interconnected network is unknown. Here, we show that mammalian atlastins, which are dynamin-like, integral membrane GTPases, interact with the tubule-shaping proteins. The atlastins localize to the tubular ER and are required for proper network formation in vivo and in vitro. Depletion of the atlastins or overexpression of dominant-negative forms inhibits tubule interconnections. The Sey1p GTPase in S. cerevisiae is likely a functional ortholog of the atlastins; it shares the same signature motifs and membrane topology and interacts genetically and physically with the tubule-shaping proteins. Cells simultaneously lacking Sey1p and a tubule-shaping protein have ER morphology defects. These results indicate that formation of the tubular ER network depends on conserved dynamin-like GTPases. Since atlastin-1 mutations cause a common form of hereditary spastic paraplegia, we suggest ER shaping defects as a novel neuropathogenic mechanism. PMID:19665976

  3. Glycolysis regulates pollen tube polarity via Rho GTPase signaling

    PubMed Central

    Chen, Wei; Gong, Pingping; Guo, Jingzhe; Li, Hui; Li, Ruizi; Xing, Weiman; Yang, Zhenbiao

    2018-01-01

    As a universal energy generation pathway utilizing carbon metabolism, glycolysis plays an important housekeeping role in all organisms. Pollen tubes expand rapidly via a mechanism of polarized growth, known as tip growth, to deliver sperm for fertilization. Here, we report a novel and surprising role of glycolysis in the regulation of growth polarity in Arabidopsis pollen tubes via impingement of Rho GTPase-dependent signaling. We identified a cytosolic phosphoglycerate kinase (pgkc-1) mutant with accelerated pollen germination and compromised pollen tube growth polarity. pgkc-1 mutation greatly diminished apical exocytic vesicular distribution of REN1 RopGAP (Rop GTPase activating protein), leading to ROP1 hyper-activation at the apical plasma membrane. Consequently, pgkc-1 pollen tubes contained higher amounts of exocytic vesicles and actin microfilaments in the apical region, and showed reduced sensitivity to Brefeldin A and Latrunculin B, respectively. While inhibition of mitochondrial respiration could not explain the pgkc-1 phenotype, the glycolytic activity is indeed required for PGKc function in pollen tubes. Moreover, the pgkc-1 pollen tube phenotype was mimicked by the inhibition of another glycolytic enzyme. These findings highlight an unconventional regulatory function for a housekeeping metabolic pathway in the spatial control of a fundamental cellular process. PMID:29702701

  4. Viral Replication Complexes Are Targeted by LC3-Guided Interferon-Inducible GTPases.

    PubMed

    Biering, Scott B; Choi, Jayoung; Halstrom, Rachel A; Brown, Hailey M; Beatty, Wandy L; Lee, Sanghyun; McCune, Broc T; Dominici, Erin; Williams, Lelia E; Orchard, Robert C; Wilen, Craig B; Yamamoto, Masahiro; Coers, Jörn; Taylor, Gregory A; Hwang, Seungmin

    2017-07-12

    All viruses with positive-sense RNA genomes replicate on membranous structures in the cytoplasm called replication complexes (RCs). RCs provide an advantageous microenvironment for viral replication, but it is unknown how the host immune system counteracts these structures. Here we show that interferon-gamma (IFNG) disrupts the RC of murine norovirus (MNV) via evolutionarily conserved autophagy proteins and the induction of IFN-inducible GTPases, which are known to destroy the membrane of vacuoles containing bacteria, protists, or fungi. The MNV RC was marked by the microtubule-associated-protein-1-light-chain-3 (LC3) conjugation system of autophagy and then targeted by immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs) upon their induction by IFNG. Further, the LC3 conjugation system and the IFN-inducible GTPases were necessary to inhibit MNV replication in mice and human cells. These data suggest that viral RCs can be marked and antagonized by a universal immune defense mechanism targeting diverse pathogens replicating in cytosolic membrane structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Concept and set-up of an IR-gas sensor construction kit

    NASA Astrophysics Data System (ADS)

    Sieber, Ingo; Perner, Gernot; Gengenbach, Ulrich

    2015-10-01

    The paper presents an approach to a cost-efficient modularly built non-dispersive optical IR-gas sensor (NDIR) based on a construction kit. The modularity of the approach offers several advantages: First of all it allows for an adaptation of the performance of the gas sensor to individual specifications by choosing the suitable modular components. The sensitivity of the sensor e.g. can be altered by selecting a source which emits a favorable wavelength spectrum with respect to the absorption spectrum of the gas to be measured or by tuning the measuring distance (ray path inside the medium to be measured). Furthermore the developed approach is very well suited to be used in teaching. Together with students a construction kit on basis of an optical free space system was developed and partly implemented to be further used as a teaching and training aid for bachelor and master students at our institute. The components of the construction kit are interchangeable and freely fixable on a base plate. The components are classified into five groups: sources, reflectors, detectors, gas feed, and analysis cell. Source, detector, and the positions of the components are fundamental to experiment and test different configurations and beam paths. The reflectors are implemented by an aluminum coated adhesive foil, mounted onto a support structure fabricated by additive manufacturing. This approach allows derivation of the reflecting surface geometry from the optical design tool and generating the 3D-printing files by applying related design rules. The rapid fabrication process and the adjustment of the modules on the base plate allow rapid, almost LEGO®-like, experimental assessment of design ideas. Subject of this paper is modeling, design, and optimization of the reflective optical components, as well as of the optical subsystem. The realization of a sample set-up used as a teaching aid and the optical measurement of the beam path in comparison to the simulation results are

  6. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins

    PubMed Central

    Chen, Shuyi; Sun, Chunli; Wang, Haiying; Wang, Jufang

    2015-01-01

    Clostridium difficile (C. difficile) is the main cause of antibiotic-associated diarrhea prevailing in hospital settings. In the past decade, the morbidity and mortality of C. difficile infection (CDI) has increased significantly due to the emergence of hypervirulent strains. Toxin A (TcdA) and toxin B (TcdB), the two exotoxins of C. difficile, are the major virulence factors of CDI. The common mode of action of TcdA and TcdB is elicited by specific glucosylation of Rho-GTPase proteins in the host cytosol using UDP-glucose as a co-substrate, resulting in the inactivation of Rho proteins. Rho proteins are the key members in many biological processes and signaling pathways, inactivation of which leads to cytopathic and cytotoxic effects and immune responses of the host cells. It is supposed that Rho GTPases play an important role in the toxicity of C. difficile toxins. This review focuses on recent progresses in the understanding of functional consequences of Rho GTPases glucosylation induced by C. difficile toxins and the role of Rho GTPases in the toxicity of TcdA and TcdB. PMID:26633511

  7. Plant Rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro.

    PubMed

    Dorjgotov, Dulguun; Jurca, Manuela E; Fodor-Dunai, Csilla; Szucs, Attila; Otvös, Krisztina; Klement, Eva; Bíró, Judit; Fehér, Attila

    2009-04-02

    Plants have evolved distinct mechanisms to link Rho-type (Rop) GTPases to downstream signaling pathways as compared to other eukaryotes. Here, experimental data are provided that members of the Medicago, as well as Arabidopsis, receptor-like cytoplasmic kinase family (RLCK Class VI) were strongly and specifically activated by GTP-bound Rop GTPases in vitro. Deletion analysis indicated that the residues implicated in the interaction might be distributed on various parts of the kinases. Using a chimaeric Rop GTPase protein, the importance of the Rho-insert region in kinase activation could also be verified. These data strengthen the possibility that RLCKs may serve as Rop GTPase effectors in planta.

  8. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth1[OPEN

    PubMed Central

    Kang, Erfang; Zheng, Mingzhi; Zhang, Yan; Yuan, Ming; Fu, Ying

    2017-01-01

    Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss of function of ROP2 and knockdown of MAP18 lead to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In this study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 interacts physically with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP DISSOCIATION INHIBITOR1/SUPERCENTIPEDE1 for binding to ROP2, in turn affecting the localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth. PMID:28314794

  9. Structure-based design and screening of inhibitors for an essential bacterial GTPase, Der.

    PubMed

    Hwang, Jihwan; Tseitin, Vladimir; Ramnarayan, Kal; Shenderovich, Mark D; Inouye, Masayori

    2012-05-01

    Der is an essential and widely conserved GTPase that assists assembly of a large ribosomal subunit in bacteria. Der associates specifically with the 50S subunit in a GTP-dependent manner and the cells depleted of Der accumulate the structurally unstable 50S subunit, which dissociates into an aberrant subunit at a lower Mg(2+) concentration. As Der is an essential and ubiquitous protein in bacteria, it may prove to be an ideal cellular target against which new antibiotics can be developed. In the present study, we describe our attempts to identify novel antibiotics specifically targeting Der GTPase. We performed the structure-based design of Der inhibitors using the X-ray crystal structure of Thermotoga maritima Der (TmDer). Virtual screening of commercially available chemical library retrieved 257 small molecules that potentially inhibit Der GTPase activity. These 257 chemicals were tested for their in vitro effects on TmDer GTPase and in vivo antibacterial activities. We identified three structurally diverse compounds, SBI-34462, -34566 and -34612, that are both biologically active against bacterial cells and putative enzymatic inhibitors of Der GTPase homologs. We also presented the possible interactions of each compound with the Der GTP-binding site to understand the mechanism of inhibition. Therefore, our lead compounds inhibiting Der GTPase provide scaffolds for the development of novel antibiotics against antibiotic-resistant pathogenic bacteria.

  10. The RhoGAP SPIN6 Associates with SPL11 and OsRac1 and Negatively Regulates Programmed Cell Death and Innate Immunity in Rice

    PubMed Central

    Liu, Jinling; Park, Chan Ho; He, Feng; Nagano, Minoru; Wang, Mo; Bellizzi, Maria; Zhang, Kai; Zeng, Xiaoshan; Liu, Wende; Ning, Yuese; Kawano, Yoji; Wang, Guo-Liang

    2015-01-01

    The ubiquitin proteasome system in plants plays important roles in plant-microbe interactions and in immune responses to pathogens. We previously demonstrated that the rice U-box E3 ligase SPL11 and its Arabidopsis ortholog PUB13 negatively regulate programmed cell death (PCD) and defense response. However, the components involved in the SPL11/PUB13-mediated PCD and immune signaling pathway remain unknown. In this study, we report that SPL11-interacting Protein 6 (SPIN6) is a Rho GTPase-activating protein (RhoGAP) that interacts with SPL11 in vitro and in vivo. SPL11 ubiquitinates SPIN6 in vitro and degrades SPIN6 in vivo via the 26S proteasome-dependent pathway. Both RNAi silencing in transgenic rice and knockout of Spin6 in a T-DNA insertion mutant lead to PCD and increased resistance to the rice blast pathogen Magnaporthe oryzae and the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. The levels of reactive oxygen species and defense-related gene expression are significantly elevated in both the Spin6 RNAi and mutant plants. Strikingly, SPIN6 interacts with the small GTPase OsRac1, catalyze the GTP-bound OsRac1 into the GDP-bound state in vitro and has GAP activity towards OsRac1 in rice cells. Together, our results demonstrate that the RhoGAP SPIN6 acts as a linkage between a U-box E3 ligase-mediated ubiquitination pathway and a small GTPase-associated defensome system for plant immunity. PMID:25658451

  11. Neurotrophin Promotes Neurite Outgrowth by Inhibiting Rif GTPase Activation Downstream of MAPKs and PI3K Signaling.

    PubMed

    Tian, Xiaoxia; Yan, Huijuan; Li, Jiayi; Wu, Shuang; Wang, Junyu; Fan, Lifei

    2017-01-13

    Members of the well-known semaphorin family of proteins can induce both repulsive and attractive signaling in neural network formation and their cytoskeletal effects are mediated in part by small guanosine 5'-triphosphatase (GTPases). The aim of this study was to investigate the cellular role of Rif GTPase in the neurotrophin-induced neurite outgrowth. By using PC12 cells which are known to cease dividing and begin to show neurite outgrowth responding to nerve growth factor (NGF), we found that semaphorin 6A was as effective as nerve growth factor at stimulating neurite outgrowth in PC12 cells, and that its neurotrophic effect was transmitted through signaling by mitogen-activated protein kinases (MAPKs) and phosphatidylinositol-3-kinase (PI3K). We further found that neurotrophin-induced neurite formation in PC12 cells could be partially mediated by inhibition of Rif GTPase activity downstream of MAPKs and PI3K signaling. In conclusion, we newly identified Rif as a regulator of the cytoskeletal rearrangement mediated by semaphorins.

  12. Small Rho GTPases and Cholesterol Biosynthetic Pathway Intermediates in African Swine Fever Virus Infection

    PubMed Central

    Quetglas, Jose I.; Hernáez, Bruno; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Cuesta-Geijo, Miguel A.

    2012-01-01

    The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection. PMID:22114329

  13. Septins - active GTPases or just GTP-binding proteins?

    PubMed

    Abbey, Megha; Gaestel, Matthias; Menon, Manoj B

    2018-05-10

    Septins are conserved cytoskeletal proteins with unique filament forming capabilities and roles in cytokinesis and cell morphogenesis. Septins undergo hetero-oligomerization and assemble into higher order structures including filaments, rings and cages. Hetero- and homotypic interactions of septin isoforms involve alternating GTPase (G)-domain interfaces and those mediated by N- and C-terminal extensions. While most septins bind GTP, display weak GTP-hydrolysis activity and incorporate guanine nucleotides in their interaction interfaces, studies using GTPase-inactivating mutations have failed to conclusively establish a crucial role for GTPase activity in mediating septin functions. In this mini-review, we will critically assess the role of GTP-binding and -hydrolysis on septin assembly and function. The relevance of G-domain activity will also be discussed in the context of human septin mutations as well as the development of specific small-molecules targeting septin polymerization. As structural determinants of septin oligomer interfaces, G-domains are attractive targets for ligand-based inhibition of septin assembly. Whether such an intervention can predictably alter septin function is a major question for future research. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  14. Development and application of a quantitative multiplexed small GTPase activity assay using targeted proteomics.

    PubMed

    Zhang, Cheng-Cheng; Li, Ru; Jiang, Honghui; Lin, Shujun; Rogalski, Jason C; Liu, Kate; Kast, Juergen

    2015-02-06

    Small GTPases are a family of key signaling molecules that are ubiquitously expressed in various types of cells. Their activity is often analyzed by western blot, which is limited by its multiplexing capability, the quality of isoform-specific antibodies, and the accuracy of quantification. To overcome these issues, a quantitative multiplexed small GTPase activity assay has been developed. Using four different binding domains, this assay allows the binding of up to 12 active small GTPase isoforms simultaneously in a single experiment. To accurately quantify the closely related small GTPase isoforms, a targeted proteomic approach, i.e., selected/multiple reaction monitoring, was developed, and its functionality and reproducibility were validated. This assay was successfully applied to human platelets and revealed time-resolved coactivation of multiple small GTPase isoforms in response to agonists and differential activation of these isoforms in response to inhibitor treatment. This widely applicable approach can be used for signaling pathway studies and inhibitor screening in many cellular systems.

  15. The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease.

    PubMed

    Gao, Yujing; Wilson, Gabrielle R; Stephenson, Sarah E M; Bozaoglu, Kiymet; Farrer, Matthew J; Lockhart, Paul J

    2018-02-01

    The identification of pathogenic mutations in Ras analog in brain 39B (RAB39B) and Ras analog in brain 32 (RAB32) that cause Parkinson's disease (PD) has highlighted the emerging role of protein trafficking in disease pathogenesis. Ras analog in brain (Rab) Guanosine triphosphatase (GTPase) function as master regulators of membrane trafficking, including vesicle formation, movement along cytoskeletal networks, and membrane fusion. Recent studies have linked Rab GTPases with α-synuclein, Leucine-rich repeat kinase 2, and Vacuolar protein sorting 35, 3 key proteins in PD pathogenesis. In this review, we discuss the various RAB GTPases associated with PD, current progress in the research, and potential future directions. Investigations into the function of RAB GTPases will likely provide significant insight into the etiology of PD and identify novel therapeutic targets for a currently incurable disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  16. Rac1 GTPase -deficient mouse lens exhibits defects in shape, suture formation, fiber cell migration and survival

    PubMed Central

    Maddala, Rupalatha; Chauhan, Bharesh K.; Walker, Christopher; Zheng, Yi; Robinson, Michael L.; Lang, Richard A.; Rao, Ponugoti V.

    2011-01-01

    Morphogenesis and shape of the ocular lens depend on epithelial cell elongation and differentiation into fiber cells, followed by the symmetric and compact organization of fiber cells within an enclosed extracellular matrix-enriched elastic capsule. The cellular mechanisms orchestrating these different events however, remain obscure. We investigated the role of the Rac1 GTPase in these processes by targeted deletion of expression using the conditional gene knockout (cKO) approach. Rac1 cKO mice were derived from two different Cre (Le-Cre and MLR-10) transgenic mice in which lens-specific Cre expression starts at embryonic day 8.75 and 10.5, respectively, in both the lens epithelium and fiber cells. The Le-Cre/Rac1 cKO mice exhibited an early-onset (E12.5) and severe lens phenotype compared to the MLR-10/Rac1 cKO (E15.5) mice. While the Le-Cre/Rac1 cKO lenses displayed delayed primary fiber cell elongation, lenses from both Rac1 cKO strains were characterized by abnormal shape, impaired secondary fiber cell migration, sutural defects and thinning of the posterior capsule which often led to rupture. Lens fiber cell N-cadherin/β-catenin/Rap1/Nectin-based cell-cell junction formation and WAVE-2/Abi-2/Nap1-regulated actin polymerization were impaired in the Rac1 deficient mice. Additionally, the Rac1 cKO lenses were characterized by a shortened epithelial sheet, reduced levels of extracellular matrix (ECM) proteins and increased apoptosis. Taken together, these data uncover the essential role of Rac1 GTPase activity in establishment and maintenance of lens shape, suture formation and capsule integrity, and in fiber cell migration, adhesion and survival, via regulation of actin cytoskeletal dynamics, cell adhesive interactions and ECM turnover. PMID:21945075

  17. RhoGAP18B Isoforms Act on Distinct Rho-Family GTPases and Regulate Behavioral Responses to Alcohol via Cofilin

    PubMed Central

    Kalahasti, Geetha; Rodan, Aylin R.; Rothenfluh, Adrian

    2015-01-01

    Responses to the effects of ethanol are highly conserved across organisms, with reduced responses to the sedating effects of ethanol being predictive of increased risk for human alcohol dependence. Previously, we described that regulators of actin dynamics, such as the Rho-family GTPases Rac1, Rho1, and Cdc42, alter Drosophila’s sensitivity to ethanol-induced sedation. The GTPase activating protein RhoGAP18B also affects sensitivity to ethanol. To better understand how different RhoGAP18B isoforms affect ethanol sedation, we examined them for their effects on cell shape, GTP-loading of Rho-family GTPase, activation of the actin-severing cofilin, and actin filamentation. Our results suggest that the RhoGAP18B-PA isoform acts on Cdc42, while PC and PD act via Rac1 and Rho1 to activate cofilin. In vivo, a loss-of-function mutation in the cofilin-encoding gene twinstar leads to reduced ethanol-sensitivity and acts in concert with RhoGAP18B. Different RhoGAP18B isoforms, therefore, act on distinct subsets of Rho-family GTPases to modulate cofilin activity, actin dynamics, and ethanol-induced behaviors. PMID:26366560

  18. High-content tripartite split-GFP cell-based assays to screen for modulators of small GTPase activation

    PubMed Central

    Gence, Rémi; Bouchenot, Catherine; Lajoie-Mazenc, Isabelle

    2018-01-01

    ABSTRACT The human Ras superfamily of small GTPases controls essential cellular processes such as gene expression and cell proliferation. As their deregulation is widely associated with human cancer, small GTPases and their regulatory proteins have become increasingly attractive for the development of novel therapeutics. Classical methods to monitor GTPase activation include pulldown assays that limit the analysis of GTP-bound form of proteins from cell lysates. Alternatively, live-cell FRET biosensors may be used to study GTPase activation dynamics in response to stimuli, but these sensors often require further optimization for high-throughput applications. Here, we describe a cell-based approach that is suitable to monitor the modulation of small GTPase activity in a high-content analysis. The assay relies on a genetically encoded tripartite split-GFP (triSFP) system that we integrated in an optimized cellular model to monitor modulation of RhoA and RhoB GTPases. Our results indicate the robust response of the reporter, allowing the interrogation of inhibition and stimulation of Rho activity, and highlight potential applications of this method to discover novel modulators and regulators of small GTPases and related protein-binding domains. PMID:29192060

  19. Growth compensatory role of sulindac sulfide-induced thrombospondin-1 linked with ERK1/2 and RhoA GTPase signaling pathways

    PubMed Central

    Moon, Yuseok; Kim, Jeung Il; Yang, Hyun; Eling, Thomas E.

    2009-01-01

    Previously, we reported that non-steroidal anti-inflammatory drugs (NSAIDs) suppress cellular invasion which was mediated by thrombospondin-1 (TSP-1). As the extending study of the previous observation, we investigated the effect of NSAID-induced TSP-1 on the cellular growth and its related signaling transduction of the TSP-1 production. Among diverse NSAIDs, sulindac sulfide was most potent of inducing the human TSP-1 protein expression. Functionally, induced TSP-1 expression was associated with the growth-compensatory action of NSAID. TSP-1 expression was also elevated by mitogenic signals of ERK1/2 and RhoA GTPase pathway which had also growth-promotive capability after sulindac sulfide treatment. These findings suggest the possible mechanism through which tumor cells can survive the chemopreventive action of NSAIDs or the normal epithelium can reconstitute after NSAID-mediated ulceration in a compensatory way. PMID:18261746

  20. Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning

    PubMed Central

    Wesolowski, Jordan; Weber, Mary M.; Nawrotek, Agata; Dooley, Cheryl A.; Calderon, Mike; St. Croix, Claudette M.; Hackstadt, Ted; Cherfils, Jacqueline

    2017-01-01

    ABSTRACT The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion. PMID:28465429

  1. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Qiaoqiao; Cho, Eunhye; Yokota, Hiroki

    2013-04-19

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging.more » We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm{sup 2}) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study

  2. Rap1 GTPase is required for mouse lens epithelial maintenance and morphogenesis

    PubMed Central

    Maddala, Rupalatha; Nagendran, Tharkika; Lang, Richard A.; Morozov, Alexei; Rao, Ponugoti V.

    2015-01-01

    Rap1, a Ras-like small GTPase, plays a crucial role in cell-matrix adhesive interactions, cell-cell junction formation, cell polarity and migration. The role of Rap1 in vertebrate organ development and tissue architecture, however, remains elusive. We addressed this question in a mouse lens model system using a conditional gene targeting approach. While individual germline deficiency of either Rap1a or Rap1b did not cause overt defects in mouse lens, conditional double deficiency (Rap1 cKO) prior to lens placode formation led to an ocular phenotype including microphthalmia and lens opacification in embryonic mice. The embryonic Rap1 cKO mouse lens exhibited striking defects including loss of E-cadherin- and ZO-1-based cell-cell junctions, disruption of paxillin and β1-integrin-based cell adhesive interactions along with abnormalities in cell shape and apical-basal polarity of epithelium. These epithelial changes were accompanied by increased levels of α-smooth muscle actin, vimentin and N-cadherin, and expression of transcriptional suppressors of E-cadherin (Snai1, Slug and Zeb2), and a mesenchymal metabolic protein (Dihydropyrimidine dehydrogenase). Additionally, while lens differentiation was not overtly affected, increased apoptosis and dysregulated cell cycle progression were noted in epithelium and fibers in Rap1 cKO mice. Collectively these observations uncover a requirement for Rap1 in maintenance of lens epithelial phenotype and morphogenesis. PMID:26212757

  3. Small GTPases are involved in sprout formation in human granulosa lutein cells.

    PubMed

    Franz, Maximilian B; Daube, Stefanie; Keck, Christoph; Sator, Michael; Pietrowski, Detlef

    2013-04-01

    The corpus luteum (CL), develops from the ruptured follicle after gonadotropin stimulation. Based on intracellular reorganization of the cytoskeleton an human chorionic gonadotropin (hCG) dependent sprouting and migration of luteinizing granulosa cells (LGCs) and endothelial cells is observed. Rho-GTPases are shown to be key regulators of cytoskeletal restructuring. In the present study we analyzed the role of Rho-GTPases in the sprouting activity of LGCs. We used the Rho-GTPase-inhibitors Toxin A and -B and the Cdc42-activator Bradykinin in a LGC-spheroid sprouting assay to determine the effect of these modulators in LGCs. Toxin A and Toxin B reduces sprout formation in LGC spheroids. However, the reduction is less than in hCG treated cells. The usage of Bradykinin demonstrates both, a reduction of sprouts in untreated spheroids and an increase of sprouting in previous hCG treated spheroids. The presented results let us suggest that small Rho-GTPases may regulate the sprouting activity of LGCs after stimulation by hCG and that this mechanism may play a role in CL formation.

  4. Neurotrophin Promotes Neurite Outgrowth by Inhibiting Rif GTPase Activation Downstream of MAPKs and PI3K Signaling

    PubMed Central

    Tian, Xiaoxia; Yan, Huijuan; Li, Jiayi; Wu, Shuang; Wang, Junyu; Fan, Lifei

    2017-01-01

    Members of the well-known semaphorin family of proteins can induce both repulsive and attractive signaling in neural network formation and their cytoskeletal effects are mediated in part by small guanosine 5’-triphosphatase (GTPases). The aim of this study was to investigate the cellular role of Rif GTPase in the neurotrophin-induced neurite outgrowth. By using PC12 cells which are known to cease dividing and begin to show neurite outgrowth responding to nerve growth factor (NGF), we found that semaphorin 6A was as effective as nerve growth factor at stimulating neurite outgrowth in PC12 cells, and that its neurotrophic effect was transmitted through signaling by mitogen-activated protein kinases (MAPKs) and phosphatidylinositol-3-kinase (PI3K). We further found that neurotrophin-induced neurite formation in PC12 cells could be partially mediated by inhibition of Rif GTPase activity downstream of MAPKs and PI3K signaling. In conclusion, we newly identified Rif as a regulator of the cytoskeletal rearrangement mediated by semaphorins. PMID:28098758

  5. DNA topoisomerase IIβ stimulates neurite outgrowth in neural differentiated human mesenchymal stem cells through regulation of Rho-GTPases (RhoA/Rock2 pathway) and Nurr1 expression.

    PubMed

    Zaim, Merve; Isik, Sevim

    2018-04-25

    DNA topoisomerase IIβ (topo IIβ) is known to regulate neural differentiation by inducing the neuronal genes responsible for critical neural differentiation events such as neurite outgrowth and axon guidance. However, the pathways of axon growth controlled by topo IIβ have not been clarified yet. Microarray results of our previous study have shown that topo IIβ silencing in neural differentiated primary human mesenchymal stem cells (hMSCs) significantly alters the expression pattern of genes involved in neural polarity, axonal growth, and guidance, including Rho-GTPases. This study aims to further analyze the regulatory role of topo IIβ on the process of axon growth via regulation of Rho-GTPases. For this purpose, topo IIβ was silenced in neurally differentiated hMSCs. Cells lost their morphology because of topo IIβ deficiency, becoming enlarged and flattened. Additionally, a reduction in both neural differentiation efficiency and neurite length, upregulation in RhoA and Rock2, downregulation in Cdc42 gene expression were detected. On the other hand, cells were transfected with topo IIβ gene to elucidate the possible neuroprotective effect of topo IIβ overexpression on neural-induced hMSCs. Topo IIβ overexpression prompted all the cells to exhibit neural cell morphology as characterized by longer neurites. RhoA and Rock2 expressions were downregulated, whereas Cdc42 expression was upregulated. Nurr1 expression level correlated with topo IIβ in both topo IIβ-overexpressed and -silenced cells. Furthermore, differential translocation of Rho-GTPases was detected by immunostaining in response to topo IIβ. Our results suggest that topo IIβ deficiency could give rise to neurodegeneration through dysregulation of Rho-GTPases. However, further in-vivo research is needed to demonstrate if re-regulation of Rho GTPases by topo IIβ overexpression could be a neuroprotective treatment in the case of neurodegenerative diseases.

  6. Analysis of 15N-1H NMR relaxation in proteins by a combined experimental and molecular dynamics simulation approach: picosecond-nanosecond dynamics of the Rho GTPase binding domain of plexin-B1 in the dimeric state indicates allosteric pathways.

    PubMed

    Zerbetto, Mirco; Anderson, Ross; Bouguet-Bonnet, Sabine; Rech, Mariano; Zhang, Liqun; Meirovitch, Eva; Polimeno, Antonino; Buck, Matthias

    2013-01-10

    We investigate picosecond–nanosecond dynamics of the Rho-GTPase Binding Domain (RBD) of plexin-B1, which plays a key role in plexin-mediated cell signaling. Backbone 15N relaxation data of the dimeric RBD are analyzed with the model-free (MF) method, and with the slowly relaxing local structure/molecular dynamics (SRLS-MD) approach. Independent analysis of the MD trajectories, based on the MF paradigm, is also carried out. MF is a widely popular and simple method, SRLS is a general approach, and SRLS-MD is an integrated approach we developed recently. Corresponding parameters from the RBD dimer, a previously studied RBD monomer mutant, and the previously studied complex of the latter with the GTPase Rac1, are compared. The L2, L3, and L4 loops of the plexin-B1 RBD are involved in interactions with other plexin domains, GTPase binding, and RBD dimerization, respectively. Peptide groups in the loops of both the monomeric and dimeric RBD are found to experience weak and moderately asymmetric local ordering centered approximately at the C(i–1)(α)–C(i)(α) axes, and nanosecond backbone motion. Peptide groups in the α-helices and the β-strands of the dimer (the β-strands of the monomer) experience strong and highly asymmetric local ordering centered approximately at the C(i–1)(α)–C(i)(α) axes (N–H bonds). N–H fluctuations occur on the picosecond time scale. An allosteric pathway for GTPase binding, providing new insights into plexin function, is delineated.

  7. p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities.

    PubMed

    Yang, X-Y; Guan, M; Vigil, D; Der, C J; Lowy, D R; Popescu, N C

    2009-03-19

    DLC1 (deleted in liver cancer 1), which encodes a Rho GTPase-activating protein (Rho-GAP), is a potent tumor suppressor gene that is frequently inactivated in several human cancers. DLC1 is a multidomain protein that has been shown previously to bind members of the tensin gene family. Here we show that p120Ras-GAP (Ras-GAP; also known as RASA1) interacts and extensively colocalizes with DLC1 in focal adhesions. The binding was mapped to the SH3 domain located in the N terminus of Ras-GAP and to the Rho-GAP catalytic domain located in the C terminus of the DLC1. In vitro analyses with purified proteins determined that the isolated Ras-GAP SH3 domain inhibits DLC1 Rho-GAP activity, suggesting that Ras-GAP is a negative regulator of DLC1 Rho-GAP activity. Consistent with this possibility, we found that ectopic overexpression of Ras-GAP in a Ras-GAP-insensitive tumor line impaired the growth-suppressing activity of DLC1 and increased RhoA activity in vivo. Our observations expand the complexity of proteins that regulate DLC1 function and define a novel mechanism of the cross talk between Ras and Rho GTPases.1R01CA129610

  8. Synthetic 8-hydroxydeoxyguanosine inhibited metastasis of pancreatic cancer through concerted inhibitions of ERM and Rho-GTPase.

    PubMed

    Park, Jong-Min; Han, Young-Min; Jeong, Migyeong; Chung, Myung Hee; Kwon, Chang Il; Ko, Kwang Hyun; Hahm, Ki Baik

    2017-09-01

    8-hydroxydeoxyguanosine (8-OHdG) is generated consequent to oxidative stress, but its paradoxical anti-oxidative, anti-inflammatory, and anti-mutagenic effects via Rho-GTPase inhibition were noted in various models of inflammation and cancer. Metastasis occurs through cell detachment, epithelial-mesenchymal transition (EMT), and cell migration; during these processes, changes in cell morphology are initiated through Rho-GTPase-dependent actin cytoskeleton polymerization. In this study, we explored the anti-metastatic mechanisms of 8-OHdG in Panc-1 pancreatic cancer cells. 8-OHdG inhibits cell migration by inactivating ERM and Rho-GTPase proteins, and inhibiting focal adhesion kinase (FAK) and matrix metalloproteinases (MMPs). At 15min, 8-OHdG significantly inactivated ERM (p < 0.05) and led to a significant retardation of wound healing; siERM and H1152 (ROCK inhibitor) had similar effects (p < 0.05). However, FAK inhibitor 14, DPI (NOX inhibitor), and NAC (antioxidant) significantly delayed wound healing without inhibiting ERM or CD44 (p < 0.05). In the experiments on cell migration, siERM, siCD44, DPI, and 8-OHdG significantly inhibited MMPs. 8-OHdG significantly decreased DCF-DA activation in Panc-1 pancreatic cancer cells and down-regulated NOXs (nox-1, nox-2, and nox-3). Finally, all of these anti-migration actions of 8-OHdG resulted in significant inhibition of EMT, as evidenced by the up-regulation of ZO-1 and claudin-1 and down-regulation of vimentin. We found significant inhibition of lung metastasis of Panc-1 cells by 8-OHdG. In conclusion, exogenous 8-OHdG had potent anti-metastasis effects mediated by either ERM or Rho GTPase inhibition in metastasis-prone pancreatic cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors.

    PubMed

    Olson, Michael F

    2018-05-04

    The 20 members of the Rho GTPase family are key regulators of a wide-variety of biological activities. In response to activation, they signal via downstream effector proteins to induce dynamic alterations in the organization of the actomyosin cytoskeleton. In this review, post-translational modifications, mechanisms of dysregulation identified in human pathological conditions, and the ways that Rho GTPases might be targeted for chemotherapy will be discussed.

  10. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET.

    PubMed

    Shcherbakova, Daria M; Cox Cammer, Natasha; Huisman, Tsipora M; Verkhusha, Vladislav V; Hodgson, Louis

    2018-06-01

    Direct visualization and light control of several cellular processes is a challenge, owing to the spectral overlap of available genetically encoded probes. Here we report the most red-shifted monomeric near-infrared (NIR) fluorescent protein, miRFP720, and the fully NIR Förster resonance energy transfer (FRET) pair miRFP670-miRFP720, which together enabled design of biosensors compatible with CFP-YFP imaging and blue-green optogenetic tools. We developed a NIR biosensor for Rac1 GTPase and demonstrated its use in multiplexed imaging and light control of Rho GTPase signaling pathways. Specifically, we combined the Rac1 biosensor with CFP-YFP FRET biosensors for RhoA and for Rac1-GDI binding, and concurrently used the LOV-TRAP tool for upstream Rac1 activation. We directly observed and quantified antagonism between RhoA and Rac1 dependent on the RhoA-downstream effector ROCK; showed that Rac1 activity and GDI binding closely depend on the spatiotemporal coordination between these two molecules; and simultaneously observed Rac1 activity during optogenetic manipulation of Rac1.

  11. Inhibition of RhoA GTPase and the subsequent activation of PTP1B protects cultured hippocampal neurons against amyloid β toxicity

    PubMed Central

    2011-01-01

    Background Amyloid beta (Aβ) is the main agent responsible for the advent and progression of Alzheimer's disease. This peptide can at least partially antagonize nerve growth factor (NGF) signalling in neurons, which may be responsible for some of the effects produced by Aβ. Accordingly, better understanding the NGF signalling pathway may provide clues as to how to protect neurons from the toxic effects of Aβ. Results We show here that Aβ activates the RhoA GTPase by binding to p75NTR, thereby preventing the NGF-induced activation of protein tyrosine phosphatase 1B (PTP1B) that is required for neuron survival. We also show that the inactivation of RhoA GTPase and the activation of PTP1B protect cultured hippocampal neurons against the noxious effects of Aβ. Indeed, either pharmacological inhibition of RhoA with C3 ADP ribosyl transferase or the transfection of cultured neurons with a dominant negative form of RhoA protects cultured hippocampal neurons from the effects of Aβ. In addition, over-expression of PTP1B also prevents the deleterious effects of Aβ on cultured hippocampal neurons. Conclusion Our findings indicate that potentiating the activity of NGF at the level of RhoA inactivation and PTP1B activation may represent a new means to combat the noxious effects of Aβ in Alzheimer's disease. PMID:21294893

  12. ELMO Domains, Evolutionary and Functional Characterization of a Novel GTPase-activating Protein (GAP) Domain for Arf Protein Family GTPases*

    PubMed Central

    East, Michael P.; Bowzard, J. Bradford; Dacks, Joel B.; Kahn, Richard A.

    2012-01-01

    The human family of ELMO domain-containing proteins (ELMODs) consists of six members and is defined by the presence of the ELMO domain. Within this family are two subclassifications of proteins, based on primary sequence conservation, protein size, and domain architecture, deemed ELMOD and ELMO. In this study, we used homology searching and phylogenetics to identify ELMOD family homologs in genomes from across eukaryotic diversity. This demonstrated not only that the protein family is ancient but also that ELMOs are potentially restricted to the supergroup Opisthokonta (Metazoa and Fungi), whereas proteins with the ELMOD organization are found in diverse eukaryotes and thus were likely the form present in the last eukaryotic common ancestor. The segregation of the ELMO clade from the larger ELMOD group is consistent with their contrasting functions as unconventional Rac1 guanine nucleotide exchange factors and the Arf family GTPase-activating proteins, respectively. We used unbiased, phylogenetic sorting and sequence alignments to identify the most highly conserved residues within the ELMO domain to identify a putative GAP domain within the ELMODs. Three independent but complementary assays were used to provide an initial characterization of this domain. We identified a highly conserved arginine residue critical for both the biochemical and cellular GAP activity of ELMODs. We also provide initial evidence of the function of human ELMOD1 as an Arf family GAP at the Golgi. These findings provide the basis for the future study of the ELMOD family of proteins and a new avenue for the study of Arf family GTPases. PMID:23014990

  13. Desmoglein 3 acting as an upstream regulator of Rho GTPases, Rac-1/Cdc42 in the regulation of actin organisation and dynamics

    PubMed Central

    Man Tsang, Siu; Brown, Louise; Gadmor, Hanan; Gammon, Luke; Fortune, Farida; Wheeler, Ann; Wan, Hong

    2012-01-01

    Desmoglein 3 (Dsg3), a member of the desmoglein sub-family, serves as an adhesion molecule in desmosomes. Our previous study showed that overexpression of human Dsg3 in several epithelial lines induces formation of membrane protrusions, a phenotype suggestive of Rho GTPase activation. Here we examined the interaction between Dsg3 and actin in detail and showed that endogenous Dsg3 colocalises and interacts with actin, particularly the junctional actin in a Rac1-dependent manner. Ablation of Rac1 activity by dominant negative Rac1 mutant (N17Rac1) or the Rac1 specific inhibitor (NSC23766) directly disrupts the interaction between Dsg3 and actin. Assembly of the junctional actin at the cell borders is accompanied with enhanced levels of Dsg3, while inhibition of Dsg3 by RNAi results in profound changes in the organisation of actin cytoskeleton. In accordance, overexpression of Dsg3 results in a remarkable increase of Rac1 and Cdc42 activities and to a lesser extent, RhoA. The enhancements in Rho GTPases are accompanied by the pronounced actin-based membrane structures such as lamellipodia and filopodia, enhanced rate of actin turnover and cell polarisation. Together, our results reveal an important novel function for Dsg3 in promoting actin dynamics through regulating Rac1 and Cdc42 activation in epithelial cells. PMID:22796473

  14. A homogeneous quenching resonance energy transfer assay for the kinetic analysis of the GTPase nucleotide exchange reaction.

    PubMed

    Kopra, Kari; Ligabue, Alessio; Wang, Qi; Syrjänpää, Markku; Blaževitš, Olga; Veltel, Stefan; van Adrichem, Arjan J; Hänninen, Pekka; Abankwa, Daniel; Härmä, Harri

    2014-07-01

    A quenching resonance energy transfer (QRET) assay for small GTPase nucleotide exchange kinetic monitoring is demonstrated using nanomolar protein concentrations. Small GTPases are central signaling proteins in all eukaryotic cells acting as a "molecular switches" that are active in the GTP-state and inactive in the GDP-state. GTP-loading is highly regulated by guanine nucleotide exchange factors (GEFs). In several diseases, most prominently cancer, this process in misregulated. The kinetics of the nucleotide exchange reaction reports on the enzymatic activity of the GEF reaction system and is, therefore, of special interest. We determined the nucleotide exchange kinetics using europium-labeled GTP (Eu-GTP) in the QRET assay for small GTPases. After GEF catalyzed GTP-loading of a GTPase, a high time-resolved luminescence signal was found to be associated with GTPase bound Eu-GTP, whereas the non-bound Eu-GTP fraction was quenched by soluble quencher. The association kinetics of the Eu-GTP was measured after GEF addition, whereas the dissociation kinetics could be determined after addition of unlabeled GTP. The resulting association and dissociation rates were in agreement with previously published values for H-Ras(Wt), H-Ras(Q61G), and K-Ras(Wt), respectively. The broader applicability of the QRET assay for small GTPases was demonstrated by determining the kinetics of the Ect2 catalyzed RhoA(Wt) GTP-loading. The QRET assay allows the use of nanomolar protein concentrations, as more than 3-fold signal-to-background ratio was achieved with 50 nM GTPase and GEF proteins. Thus, small GTPase exchange kinetics can be efficiently determined in a HTS compatible 384-well plate format.

  15. The Cdc42 GTPase-associated proteins Gic1 and Gic2 are required for polarized cell growth in Saccharomyces cerevisiae

    PubMed Central

    Chen, Guang-Chao; Kim, Yung-Jin; Chan, Clarence S.M.

    1997-01-01

    BEM2 of Saccharomyces cerevisiae encodes a Rho-type GTPase-activating protein that is required for proper bud site selection at 26°C and for bud emergence at elevated temperatures. We show here that the temperature-sensitive growth phenotype of bem2 mutant cells can be suppressed by increased dosage of the GIC1 gene. The Gic1 protein, together with its structural homolog Gic2, are required for cell size and shape control, bud site selection, bud emergence, actin cytoskeletal organization, mitotic spindle orientation/positioning, and mating projection formation in response to mating pheromone. Each protein contains a CRIB (Cdc42/Rac-interactive binding) motif and each interacts in the two-hybrid assay with the GTP-bound form of the Rho-type Cdc42 GTPase, a key regulator of polarized growth in yeast. The CRIB motif of Gic1 and the effector domain of Cdc42 are required for this association. Genetic experiments indicate that Gic1 and Gic2 play positive roles in the Cdc42 signal transduction pathway, probably as effectors of Cdc42. Subcellular localization studies with a functional green fluorescent protein–Gic1 fusion protein indicate that this protein is concentrated at the incipient bud site of unbudded cells, at the bud tip and mother-bud neck of budded cells, and at cortical sites on large-budded cells that may delimit future bud sites in the two progeny cells. The ability of Gic1 to associate with Cdc42 is important for its function but is apparently not essential for its subcellular localization. PMID:9367979

  16. Catalysis of GTP Hydrolysis by Small GTPases at Atomic Detail by Integration of X-ray Crystallography, Experimental, and Theoretical IR Spectroscopy*

    PubMed Central

    Rudack, Till; Jenrich, Sarah; Brucker, Sven; Vetter, Ingrid R.; Gerwert, Klaus; Kötting, Carsten

    2015-01-01

    Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg2+ coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg2+ in GTPases. The Mg2+ coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis. PMID:26272610

  17. Cell surface dynamics - how Rho GTPases orchestrate the interplay between the plasma membrane and the cortical cytoskeleton.

    PubMed

    de Curtis, Ivan; Meldolesi, Jacopo

    2012-10-01

    Small GTPases are known to regulate hundreds of cell functions. In particular, Rho family GTPases are master regulators of the cytoskeleton. By regulating actin nucleation complexes, Rho GTPases control changes in cell shape, including the extension and/or retraction of surface protrusions and invaginations. Protrusion and invagination of the plasma membrane also involves the interaction between the plasma membrane and the cortical cytoskeleton. This interplay between membranes and the cytoskeleton can lead to an increase or decrease in the plasma membrane surface area and its tension as a result of the fusion (exocytosis) or internalization (endocytosis) of membranous compartments, respectively. For a long time, the cytoskeleton and plasma membrane dynamics were investigated separately. However, studies from many laboratories have now revealed that Rho GTPases, their modulation of the cytoskeleton, and membrane traffic are closely connected during the dynamic remodeling of the cell surface. Arf- and Rab-dependent exocytosis of specific vesicles contributes to the targeting of Rho GTPases and their regulatory factors to discrete sites of the plasma membrane. Rho GTPases regulate the tethering of exocytic vesicles and modulate their subsequent fusion. They also have crucial roles in the different forms of endocytosis, where they participate in the sorting of membrane domains as well as the sculpting and sealing of membrane flasks and cups. Here, we discuss how cell surface dynamics depend on the orchestration of the cytoskeleton and the plasma membrane by Rho GTPases.

  18. Triptolide disrupts the actin-based Sertoli-germ cells adherens junctions by inhibiting Rho GTPases expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiang; Zhao, Fang

    Triptolide (TP), derived from the medicinal plant Triterygium wilfordii Hook. f. (TWHF), is a diterpene triepoxide with variety biological and pharmacological activities. However, TP has been restricted in clinical application due to its narrow therapeutic window especially in reproductive system. During spermatogenesis, Sertoli cell cytoskeleton plays an essential role in facilitating germ cell movement and cell-cell actin-based adherens junctions (AJ). At Sertoli cell-spermatid interface, the anchoring device is a kind of AJ, known as ectoplasmic specializations (ES). In this study, we demonstrate that β-actin, an important component of cytoskeleton, has been significantly down-regulated after TP treatment. TP can inhibit themore » expression of Rho GTPase such as, RhoA, RhoB, Cdc42 and Rac1. Downstream of Rho GTPase, Rho-associated protein kinase (ROCKs) gene expressions were also suppressed by TP. F-actin immunofluorescence proved that TP disrupts Sertoli cells cytoskeleton network. As a result of β-actin down-regulation, TP treatment increased expression of testin, which indicating ES has been disassembled. In summary, this report illustrates that TP induces cytoskeleton dysfunction and disrupts cell-cell adherens junctions via inhibition of Rho GTPases. - Highlights: • Triptolide induced the disruption of Sertoli-germ cell adherens junction. • Rho GTPases expression and actin dynamics have been suppressed by triptolide. • Actin-based adherens junction is a potential antifertility target of triptolide. • Rho-Rock is involved in the regulation of actin dynamics.« less

  19. Crystal structure of the GTPase domain and the bundle signalling element of dynamin in the GDP state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, Roopsee; Eschenburg, Susanne; Reubold, Thomas F., E-mail: Reubold.Thomas@mh-hannover.de

    Dynamin is the prototype of a family of large multi-domain GTPases. The 100 kDa protein is a key player in clathrin-mediated endocytosis, where it cleaves off vesicles from membranes using the energy from GTP hydrolysis. We have solved the high resolution crystal structure of a fusion protein of the GTPase domain and the bundle signalling element (BSE) of dynamin 1 liganded with GDP. The structure provides a hitherto missing snapshot of the GDP state of the hydrolytic cycle of dynamin and reveals how the switch I region moves away from the active site after GTP hydrolysis and release of inorganic phosphate.more » Comparing our structure of the GDP state with the known structures of the GTP state, the transition state and the nucleotide-free state of dynamin 1 we describe the structural changes through the hydrolytic cycle. - Highlights: • High resolution crystal structure of the GDP-state of a dynamin 1 GTPase-BSE fusion. • Visualizes one of the key states of the hydrolytic cycle of dynamin. • The dynamin-specific loop forms a helix as soon as a guanine base is present.« less

  20. SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting

    PubMed Central

    Siu, Fai Y.; Spanggord, Richard J.; Doudna, Jennifer A.

    2007-01-01

    The signal recognition particle (SRP) cotranslationally targets proteins to cell membranes by coordinated binding and release of ribosome-associated nascent polypeptides and a membrane-associated SRP receptor. GTP uptake and hydrolysis by the SRP-receptor complex govern this targeting cycle. Because no GTPase-activating proteins (GAPs) are known for the SRP and SRP receptor GTPases, however, it has been unclear whether and how GTP hydrolysis is stimulated during protein trafficking in vivo. Using both biochemical and genetic experiments, we show here that SRP RNA enhances GTPase activity of the SRP–receptor complex above a critical threshold required for cell viability. Furthermore, this stimulation is a property of the SRP RNA tetraloop. SRP RNA tetraloop mutants that confer defective growth phenotypes can assemble into SRP–receptor complexes, but fail to stimulate GTP hydrolysis in these complexes in vitro. Tethered hydroxyl radical probing data reveal that specific positioning of the RNA tetraloop within the SRP–receptor complex is required to stimulate GTPase activity to a level sufficient to support cell growth. These results explain why no external GAP is needed and why the phylogenetically conserved SRP RNA tetraloop is required in vivo. PMID:17164479

  1. A conserved RxLR effector interacts with host RABA-type GTPases to inhibit vesicle-mediated secretion of antimicrobial proteins.

    PubMed

    Tomczynska, Iga; Stumpe, Michael; Mauch, Felix

    2018-04-19

    Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co-immunoprecipitation (Co-IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co-IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co-localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH-sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR-1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase-mediated vesicular secretion of antimicrobial PR-1, PDF1.2 and possibly other defence-related compounds. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  2. Herpes Simplex Virus Type 1 Neuronal Infection Perturbs Golgi Apparatus Integrity through Activation of Src Tyrosine Kinase and Dyn-2 GTPase

    PubMed Central

    Martin, Carolina; Leyton, Luis; Hott, Melissa; Arancibia, Yennyfer; Spichiger, Carlos; McNiven, Mark A.; Court, Felipe A.; Concha, Margarita I.; Burgos, Patricia V.; Otth, Carola

    2017-01-01

    Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that establishes a latent persistent neuronal infection in humans. The pathogenic effects of repeated viral reactivation in infected neurons are still unknown. Several studies have reported that during HSV-1 epithelial infection, the virus could modulate diverse cell signaling pathways remodeling the Golgi apparatus (GA) membranes, but the molecular mechanisms implicated, and the functional consequences to neurons is currently unknown. Here we report that infection of primary neuronal cultures with HSV-1 triggers Src tyrosine kinase activation and subsequent phosphorylation of Dynamin 2 GTPase, two players with a role in GA integrity maintenance. Immunofluorescence analyses showed that HSV-1 productive neuronal infection caused a scattered and fragmented distribution of the GA through the cytoplasm, contrasting with the uniform perinuclear distribution pattern observed in control cells. In addition, transmission electron microscopy revealed swollen cisternae and disorganized stacks in HSV-1 infected neurons compared to control cells. Interestingly, PP2, a selective inhibitor for Src-family kinases markedly reduced these morphological alterations of the GA induced by HSV-1 infection strongly supporting the possible involvement of Src tyrosine kinase. Finally, we showed that HSV-1 tegument protein VP11/12 is necessary but not sufficient to induce Dyn2 phosphorylation. Altogether, these results show that HSV-1 neuronal infection triggers activation of Src tyrosine kinase, phosphorylation of Dynamin 2 GTPase, and perturbation of GA integrity. These findings suggest a possible neuropathogenic mechanism triggered by HSV-1 infection, which could involve dysfunction of the secretory system in neurons and central nervous system. PMID:28879169

  3. Herpes Simplex Virus Type 1 Neuronal Infection Perturbs Golgi Apparatus Integrity through Activation of Src Tyrosine Kinase and Dyn-2 GTPase.

    PubMed

    Martin, Carolina; Leyton, Luis; Hott, Melissa; Arancibia, Yennyfer; Spichiger, Carlos; McNiven, Mark A; Court, Felipe A; Concha, Margarita I; Burgos, Patricia V; Otth, Carola

    2017-01-01

    Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that establishes a latent persistent neuronal infection in humans. The pathogenic effects of repeated viral reactivation in infected neurons are still unknown. Several studies have reported that during HSV-1 epithelial infection, the virus could modulate diverse cell signaling pathways remodeling the Golgi apparatus (GA) membranes, but the molecular mechanisms implicated, and the functional consequences to neurons is currently unknown. Here we report that infection of primary neuronal cultures with HSV-1 triggers Src tyrosine kinase activation and subsequent phosphorylation of Dynamin 2 GTPase, two players with a role in GA integrity maintenance. Immunofluorescence analyses showed that HSV-1 productive neuronal infection caused a scattered and fragmented distribution of the GA through the cytoplasm, contrasting with the uniform perinuclear distribution pattern observed in control cells. In addition, transmission electron microscopy revealed swollen cisternae and disorganized stacks in HSV-1 infected neurons compared to control cells. Interestingly, PP2, a selective inhibitor for Src-family kinases markedly reduced these morphological alterations of the GA induced by HSV-1 infection strongly supporting the possible involvement of Src tyrosine kinase. Finally, we showed that HSV-1 tegument protein VP11/12 is necessary but not sufficient to induce Dyn2 phosphorylation. Altogether, these results show that HSV-1 neuronal infection triggers activation of Src tyrosine kinase, phosphorylation of Dynamin 2 GTPase, and perturbation of GA integrity. These findings suggest a possible neuropathogenic mechanism triggered by HSV-1 infection, which could involve dysfunction of the secretory system in neurons and central nervous system.

  4. An extracellular-matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration.

    PubMed

    Kutys, Matthew L; Yamada, Kenneth M

    2014-09-01

    Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.

  5. Valproic acid-inducible Arl4D and cytohesin-2/ARNO, acting through the downstream Arf6, regulate neurite outgrowth in N1E-115 cells.

    PubMed

    Yamauchi, Junji; Miyamoto, Yuki; Torii, Tomohiro; Mizutani, Reiko; Nakamura, Kazuaki; Sanbe, Atsushi; Koide, Hiroshi; Kusakawa, Shinji; Tanoue, Akito

    2009-07-15

    The mood-stabilizing agent valproic acid (VPA) potently promotes neuronal differentiation. As yet, however, little is known about the underlying molecular mechanism. Here, we show that VPA upregulates cytohesin-2 and mediates neurite outgrowth in N1E-115 neuroblastoma cells. Cytohesin-2 is the guanine-nucleotide exchange factor (GEF) for small GTPases of the Arf family; it regulates many aspects of cellular functions including morphological changes. Treatment with the specific cytohesin family inhibitor SecinH3 or knockdown of cytohesin-2 with its siRNA results in blunted induction of neurite outgrowth in N1E-115 cells. The outgrowth is specifically inhibited by siRNA knockdown of Arf6, but not by that of Arf1. Furthermore, VPA upregulates Arl4D, an Arf-like small GTPase that has recently been identified as the regulator that binds to cytohesin-2. Arl4D knockdown displays an inhibitory effect on neurite outgrowth resulting from VPA, while expression of constitutively active Arl4D induces outgrowth. We also demonstrate that the addition of cell-permeable peptide, coupling the cytohesin-2-binding region of Arl4D into cells, reduces the effect of VPA. Thus, Arl4D is a previously unknown regulator of neurite formation through cytohesin-2 and Arf6, providing another example that the functional interaction of two different small GTPases controls an important cellular function.

  6. The tRNA-modifying function of MnmE is controlled by post-hydrolysis steps of its GTPase cycle

    PubMed Central

    Prado, Silvia; Villarroya, Magda; Medina, Milagros; Armengod, M.-Eugenia

    2013-01-01

    MnmE is a homodimeric multi-domain GTPase involved in tRNA modification. This protein differs from Ras-like GTPases in its low affinity for guanine nucleotides and mechanism of activation, which occurs by a cis, nucleotide- and potassium-dependent dimerization of its G-domains. Moreover, MnmE requires GTP hydrolysis to be functionally active. However, how GTP hydrolysis drives tRNA modification and how the MnmE GTPase cycle is regulated remains unresolved. Here, the kinetics of the MnmE GTPase cycle was studied under single-turnover conditions using stopped- and quench-flow techniques. We found that the G-domain dissociation is the rate-limiting step of the overall reaction. Mutational analysis and fast kinetics assays revealed that GTP hydrolysis, G-domain dissociation and Pi release can be uncoupled and that G-domain dissociation is directly responsible for the ‘ON’ state of MnmE. Thus, MnmE provides a new paradigm of how the ON/OFF cycling of GTPases may regulate a cellular process. We also demonstrate that the MnmE GTPase cycle is negatively controlled by the reaction products GDP and Pi. This feedback mechanism may prevent inefficacious GTP hydrolysis in vivo. We propose a biological model whereby a conformational change triggered by tRNA binding is required to remove product inhibition and initiate a new GTPase/tRNA-modification cycle. PMID:23630314

  7. The Small GTPase Rif Is Dispensable for Platelet Filopodia Generation in Mice

    PubMed Central

    Goggs, Robert; Savage, Joshua S.; Mellor, Harry; Poole, Alastair W.

    2013-01-01

    Background Formation of filopodia and other shape change events are vital for platelet hemostatic function. The mechanisms regulating filopodia formation by platelets are incompletely understood however. In particular the small GTPase responsible for initiating filopodia formation by platelets remains elusive. The canonical pathway involving Cdc42 is not essential for filopodia formation in mouse platelets. The small GTPase Rif (RhoF) provides an alternative route to filopodia generation in other cell types and is expressed in both human and mouse platelets. Hypothesis/Objective We hypothesized that Rif might be responsible for generating filopodia by platelets and generated a novel knockout mouse model to investigate the functional role of Rif in platelets. Methodology/Principal Findings Constitutive RhoF−/− mice are viable and have normal platelet, leukocyte and erythrocyte counts and indices. RhoF−/− platelets form filopodia and spread normally on various agonist surfaces in static conditions and under arterial shear. In addition, RhoF−/− platelets have normal actin dynamics, are able to activate and aggregate normally and secrete from alpha and dense granules in response to collagen related peptide and thrombin stimulation. Conclusions The small GTPase Rif does not appear to be critical for platelet function in mice. Functional overlap between Rif and other small GTPases may be responsible for the non-essential role of Rif in platelets. PMID:23359340

  8. Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein*

    PubMed Central

    García-Márquez, Adrián; Gijsbers, Abril; de la Mora, Eugenio; Sánchez-Puig, Nuria

    2015-01-01

    Ribosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1. PMID:25991726

  9. Catalysis of GTP hydrolysis by small GTPases at atomic detail by integration of X-ray crystallography, experimental, and theoretical IR spectroscopy.

    PubMed

    Rudack, Till; Jenrich, Sarah; Brucker, Sven; Vetter, Ingrid R; Gerwert, Klaus; Kötting, Carsten

    2015-10-02

    Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg(2+) coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg(2+) in GTPases. The Mg(2+) coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons.

    PubMed

    Smith, Katharine R; Rajgor, Dipen; Hanley, Jonathan G

    2017-12-08

    Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca 2+ -permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Bidirectional synaptic structural plasticity after chronic cocaine administration occurs through Rap1 small GTPase signaling

    PubMed Central

    Cahill, Michael E.; Bagot, Rosemary C.; Gancarz, Amy M.; Walker, Deena M.; Sun, HaoSheng; Wang, Zi-Jun; Heller, Elizabeth A.; Feng, Jian; Kennedy, Pamela J.; Koo, Ja Wook; Cates, Hannah M.; Neve, Rachael L.; Shen, Li; Dietz, David M.

    2016-01-01

    Summary Dendritic spines are the sites of most excitatory synapses in the CNS, and opposing alterations in the synaptic structure of medium spiny neurons (MSNs) of the nucleus accumbens, a primary brain reward region, are seen at early vs. late time points after cocaine administration. Here we investigate the time-dependent molecular and biochemical processes that regulate this bidirectional synaptic structural plasticity of NAc MSNs and associated changes in cocaine reward in response to chronic cocaine exposure. Our findings reveal key roles for the bidirectional synaptic expression of the Rap1b small GTPase and an associated local-synaptic protein translation network in this process. The transcriptional mechanisms and pathway-specific inputs to NAc that regulate Rap1b expression are also characterized. Collectively, these findings provide a precise mechanism by which nuclear to synaptic interactions induce “metaplasticity” in NAc MSNs, and we reveal the specific effects of this plasticity on reward behavior in a brain circuit-specific manner. PMID:26844834

  12. Rag GTPases mediate amino acid–dependent recruitment of TFEB and MITF to lysosomes

    PubMed Central

    Martina, Jose A.

    2013-01-01

    The mTORC1 complex supports cell growth and proliferation in response to energy levels, growth factors, and nutrients. The Rag guanosine triphosphatases (GTPases) activate mTORC1 in response to amino acids by promoting its redistribution to lysosomes. In this paper, we identify a novel role for Rags in controlling activation of transcription factor EB (TFEB), a master regulator of autophagic and lysosomal gene expression. Interaction of TFEB with active Rag heterodimers promoted recruitment of TFEB to lysosomes, leading to mTORC1-dependent phosphorylation and inhibition of TFEB. The interaction of TFEB with Rags required the first 30 residues of TFEB and the switch regions of the Rags G domain. Depletion or inactivation of Rags prevented recruitment of TFEB to lysosomes, whereas expression of active Rags induced association of TFEB with lysosomal membranes. Finally, Rag GTPases bound and regulated activation of microphthalmia-associated transcription factor, suggesting a broader role for Rags in the control of gene expression. Our work provides new insight into the molecular mechanisms that link nutrient availability and TFEB localization and activation. PMID:23401004

  13. Rab GTPases: The Key Players in the Molecular Pathway of Parkinson’s Disease

    PubMed Central

    Shi, Meng-meng; Shi, Chang-he; Xu, Yu-ming

    2017-01-01

    Parkinson’s disease (PD) is a progressive movement disorder with multiple non-motor symptoms. Although family genetic mutations only account for a small proportion of the cases, these mutations have provided several lines of evidence for the pathogenesis of PD, such as mitochondrial dysfunction, protein misfolding and aggregation, and the impaired autophagy-lysosome system. Recently, vesicle trafficking defect has emerged as a potential pathogenesis underlying this disease. Rab GTPases, serving as the core regulators of cellular membrane dynamics, may play an important role in the molecular pathway of PD through the complex interplay with numerous factors and PD-related genes. This might shed new light on the potential therapeutic strategies. In this review, we emphasize the important role of Rab GTPases in vesicle trafficking and summarize the interactions between Rab GTPases and different PD-related genes. PMID:28400718

  14. Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning.

    PubMed

    Wesolowski, Jordan; Weber, Mary M; Nawrotek, Agata; Dooley, Cheryl A; Calderon, Mike; St Croix, Claudette M; Hackstadt, Ted; Cherfils, Jacqueline; Paumet, Fabienne

    2017-05-02

    The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion. IMPORTANCE Chlamydia trachomatis is an important cause of morbidity and a significant economic burden in the world. However, how Chlamydia develops its intracellular compartment, the so-called inclusion, is poorly understood. Using genetically engineered Chlamydia mutants, we discovered that the effector protein CT813 recruits and activates host ADP-ribosylation factor 1 (ARF1) and ARF4 to regulate microtubules. In this context, CT813 acts as a molecular platform that induces the posttranslational modification of microtubules around the inclusion. These cages are then used to reposition the Golgi complex during infection and promote the development of the inclusion. This study provides the first evidence that ARF1 and ARF4 play critical roles in controlling posttranslationally modified

  15. A ribosome-dependent GTPase from yeast distinct from elongation factor 2.

    PubMed Central

    Skogerson, L; Wakatama, E

    1976-01-01

    Three proteins required for poly(U)-directed polyphenylalanine synthesis have been separated from yeast. Two of the factors correspond to the elongation factors 1 and 2 described for other eukaryotic systems, according to the criteria of phenylalanyl-tRNA binding and diphtheria toxin-catalyzed ADP-ribosylation. The third protein, while absolutely required for polyphenylalanine synthesis, was a more active ribosome-dependent GTPase than elongation factor 2. PMID:174100

  16. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury

    PubMed Central

    Blattner, Simone M.; Hodgin, Jeffrey B.; Nishio, Masashi; Wylie, Stephanie; Saha, Jharna; Soofi, Abdul; Vining, Courtenay; Randolph, Ann; Herbach, Nadja; Wanke, Ruediger; Atkins, Kevin B.; Kang, Hee Gyung; Henger, Anna; Brakebusch, Cord; Holzman, Lawrence B.; Kretzler, Matthias

    2013-01-01

    Podocytes are highly specialized epithelial cells with complex actin cytoskeletal architecture crucial for maintenance of the glomerular filtration barrier. The mammalian Rho GTPases Rac1 and Cdc42 are molecular switches that control many cellular processes, but are best known for their roles in the regulation of actin cytoskeleton dynamics. Here we employed podocyte-specific Cre-lox technology and found that mice with deletion of Rac1 display normal podocyte morphology without glomerular dysfunction well into adulthood. Using the protamine sulfate model of acute podocyte injury, podocyte-specific deletion of Rac1 prevented foot process effacement. In a long-term model of chronic hypertensive glomerular damage, however, loss of Rac1 led to an exacerbation of albuminuria and glomerulosclerosis. In contrast, mice with podocyte-specific deletion of Cdc42 had severe proteinuria, podocyte foot process effacement, and glomerulosclerosis beginning as early as 10 days of age. In addition, slit diaphragm proteins nephrin and podocin were redistributed and cofilin was de-phosphorylated. Cdc42 is necessary for the maintenance of podocyte structure and function, but Rac1 is entirely dispensable in physiologic steady state. However, Rac1 has either beneficial or deleterious effects depending on the context of podocyte impairment. Thus, our study highlights the divergent roles of Rac1 and Cdc42 function in podocyte maintenance and injury. PMID:23677246

  17. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xionggao; Department of Ophthalmology, Hainan Medical College, Haikou; Wei, Yantao

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells inducedmore » by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that

  18. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases

    PubMed Central

    Werner, Erica; Werb, Zena

    2002-01-01

    We show here the transient activation of the small GTPase Rac, followed by a rise in reactive oxygen species (ROS), as necessary early steps in a signal transduction cascade that lead to NFκB activation and collagenase-1 (CL-1)/matrix metalloproteinase-1 production after integrin-mediated cell shape changes. We show evidence indicating that this constitutes a new mechanism for ROS production mediated by small GTPases. Activated RhoA also induced ROS production and up-regulated CL-1 expression. A Rac mutant (L37) that prevents reorganization of the actin cytoskeleton prevented integrin-induced CL-1 expression, whereas mutations that abrogate Rac binding to the neutrophil NADPH membrane oxidase in vitro (H26 and N130) did not. Instead, ROS were produced by integrin-induced changes in mitochondrial function, which were inhibited by Bcl-2 and involved transient membrane potential loss. The cells showing this transient decrease in mitochondrial membrane potential were already committed to CL-1 expression. These results unveil a new molecular mechanism of signal transduction triggered by integrin engagement where a global mitochondrial metabolic response leads to gene expression rather than apoptosis. PMID:12119354

  19. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases.

    PubMed

    Werner, Erica; Werb, Zena

    2002-07-22

    We show here the transient activation of the small GTPase Rac, followed by a rise in reactive oxygen species (ROS), as necessary early steps in a signal transduction cascade that lead to NFkappaB activation and collagenase-1 (CL-1)/matrix metalloproteinase-1 production after integrin-mediated cell shape changes. We show evidence indicating that this constitutes a new mechanism for ROS production mediated by small GTPases. Activated RhoA also induced ROS production and up-regulated CL-1 expression. A Rac mutant (L37) that prevents reorganization of the actin cytoskeleton prevented integrin-induced CL-1 expression, whereas mutations that abrogate Rac binding to the neutrophil NADPH membrane oxidase in vitro (H26 and N130) did not. Instead, ROS were produced by integrin-induced changes in mitochondrial function, which were inhibited by Bcl-2 and involved transient membrane potential loss. The cells showing this transient decrease in mitochondrial membrane potential were already committed to CL-1 expression. These results unveil a new molecular mechanism of signal transduction triggered by integrin engagement where a global mitochondrial metabolic response leads to gene expression rather than apoptosis.

  20. The Guanine Nucleotide Exchange Factor Tiam1 Affects Neuronal Morphology; Opposing Roles for the Small GTPases Rac and Rho

    PubMed Central

    van Leeuwen, Frank N.; Kain, Hendrie E.T.; van der Kammen, Rob A.; Michiels, Frits; Kranenburg, Onno W.; Collard, John G.

    1997-01-01

    The invasion-inducing T-lymphoma invasion and metastasis 1 (Tiam1) protein functions as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1. Differentiation-dependent expression of Tiam1 in the developing brain suggests a role for this GEF and its effector Rac1 in the control of neuronal morphology. Here we show that overexpression of Tiam1 induces cell spreading and affects neurite outgrowth in N1E-115 neuroblastoma cells. These effects are Rac-dependent and strongly promoted by laminin. Overexpression of Tiam1 recruits the α6β1 integrin, a laminin receptor, to specific adhesive contacts at the cell periphery, which are different from focal contacts. Cells overexpressing Tiam1 no longer respond to lysophosphatidic acid– induced neurite retraction and cell rounding, processes mediated by Rho, suggesting that Tiam1-induced activation of Rac antagonizes Rho signaling. This inhibition can be overcome by coexpression of constitutively active RhoA, which may indicate that regulation occurs at the level of Rho or upstream. Conversely, neurite formation induced by Tiam1 or Rac1 is further promoted by inactivating Rho. These results demonstrate that Rac- and Rho-mediated pathways oppose each other during neurite formation and that a balance between these pathways determines neuronal morphology. Furthermore, our data underscore the potential role of Tiam1 as a specific regulator of Rac during neurite formation and illustrate the importance of reciprocal interactions between the cytoskeleton and the extracellular matrix during this process. PMID:9348295

  1. Extensive in silico analysis of Mimivirus coded Rab GTPase homolog suggests a possible role in virion membrane biogenesis.

    PubMed

    Zade, Amrutraj; Sengupta, Malavi; Kondabagil, Kiran

    2015-01-01

    Rab GTPases are the key regulators of intracellular membrane trafficking in eukaryotes. Many viruses and intracellular bacterial pathogens have evolved to hijack the host Rab GTPase functions, mainly through activators and effector proteins, for their benefit. Acanthamoeba polyphaga mimivirus (APMV) is one of the largest viruses and belongs to the monophyletic clade of nucleo-cytoplasmic large DNA viruses (NCLDV). The inner membrane lining is integral to the APMV virion structure. APMV assembly involves extensive host membrane modifications, like vesicle budding and fusion, leading to the formation of a membrane sheet that is incorporated into the virion. Intriguingly, APMV and all group I members of the Mimiviridae family code for a putative Rab GTPase protein. APMV is the first reported virus to code for a Rab GTPase (encoded by R214 gene). Our thorough in silico analysis of the subfamily specific (SF) region of Mimiviridae Rab GTPase sequences suggests that they are related to Rab5, a member of the group II Rab GTPases, of lower eukaryotes. Because of their high divergence from the existing three isoforms, A, B, and C of the Rab5-family, we suggest that Mimiviridae Rabs constitute a new isoform, Rab5D. Phylogenetic analysis indicated probable horizontal acquisition from a lower eukaryotic ancestor followed by selection and divergence. Furthermore, interaction network analysis suggests that vps34 (a Class III PI3K homolog, coded by APMV L615), Atg-8 and dynamin (host proteins) are recruited by APMV Rab GTPase during capsid assembly. Based on these observations, we hypothesize that APMV Rab plays a role in the acquisition of inner membrane during virion assembly.

  2. Recycling domains in plant cell morphogenesis: small GTPase effectors, plasma membrane signalling and the exocyst.

    PubMed

    Zárský, Viktor; Potocký, Martin

    2010-04-01

    The Rho/Rop small GTPase regulatory module is central for initiating exocytotically ACDs (active cortical domains) in plant cell cortex, and a growing array of Rop regulators and effectors are being discovered in plants. Structural membrane phospholipids are important constituents of cells as well as signals, and phospholipid-modifying enzymes are well known effectors of small GTPases. We have shown that PLDs (phospholipases D) and their product, PA (phosphatidic acid), belong to the regulators of the secretory pathway in plants. We have also shown that specific NOXs (NADPH oxidases) producing ROS (reactive oxygen species) are involved in cell growth as exemplified by pollen tubes and root hairs. Most plant cells exhibit several distinct plasma membrane domains (ACDs), established and maintained by endocytosis/exocytosis-driven membrane protein recycling. We proposed recently the concept of a 'recycling domain' (RD), uniting the ACD and the connected endosomal recycling compartment (endosome), as a dynamic spatiotemporal entity. We have described a putative GTPase-effector complex exocyst involved in exocytic vesicle tethering in plants. Owing to the multiplicity of its Exo70 subunits, this complex, along with many RabA GTPases (putative recycling endosome organizers), may belong to core regulators of RD organization in plants.

  3. Metal Binding Properties of Escherichia coli YjiA, a Member of the Metal Homeostasis-Associated COG0523 Family of GTPases

    PubMed Central

    2013-01-01

    GTPases are critical molecular switches involved in a wide range of biological functions. Recent phylogenetic and genomic analyses of the large, mostly uncharacterized COG0523 subfamily of GTPases revealed a link between some COG0523 proteins and metal homeostasis pathways. In this report, we detail the bioinorganic characterization of YjiA, a representative member of COG0523 subgroup 9 and the only COG0523 protein to date with high-resolution structural information. We find that YjiA is capable of binding several types of transition metals with dissociation constants in the low micromolar range and that metal binding affects both the oligomeric structure and GTPase activity of the enzyme. Using a combination of X-ray crystallography and site-directed mutagenesis, we identify, among others, a metal-binding site adjacent to the nucleotide-binding site in the GTPase domain that involves a conserved cysteine and several glutamate residues. Mutations of the coordinating residues decrease the impact of metal, suggesting that metal binding to this site is responsible for modulating the GTPase activity of the protein. These findings point toward a regulatory function for these COG0523 GTPases that is responsive to their metal-bound state. PMID:24449932

  4. ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells.

    PubMed

    Krey, Jocelyn F; Dumont, Rachel A; Wilmarth, Philip A; David, Larry L; Johnson, Kenneth R; Barr-Gillespie, Peter G

    2018-01-24

    Sensory hair cells require control of physical properties of their apical plasma membranes for normal development and function. Members of the ADP-ribosylation factor (ARF) small GTPase family regulate membrane trafficking and cytoskeletal assembly in many cells. We identified ELMO domain-containing protein 1 (ELMOD1), a guanine nucleoside triphosphatase activating protein (GAP) for ARF6, as the most highly enriched ARF regulator in hair cells. To characterize ELMOD1 control of trafficking, we analyzed mice of both sexes from a strain lacking functional ELMOD1 [roundabout ( rda )]. In rda/rda mice, cuticular plates of utricle hair cells initially formed normally, then degenerated after postnatal day 5; large numbers of vesicles invaded the compromised cuticular plate. Hair bundles initially developed normally, but the cell's apical membrane lifted away from the cuticular plate, and stereocilia elongated and fused. Membrane trafficking in type I hair cells, measured by FM1-43 dye labeling, was altered in rda/rda mice. Consistent with the proposed GAP role for ELMOD1, the ARF6 GTP/GDP ratio was significantly elevated in rda/rda utricles compared with controls, and the level of ARF6-GTP was correlated with the severity of the rda/rda phenotype. These results suggest that conversion of ARF6 to its GDP-bound form is necessary for final stabilization of the hair bundle. SIGNIFICANCE STATEMENT Assembly of the mechanically sensitive hair bundle of sensory hair cells requires growth and reorganization of apical actin and membrane structures. Hair bundles and apical membranes in mice with mutations in the Elmod1 gene degenerate after formation, suggesting that the ELMOD1 protein stabilizes these structures. We show that ELMOD1 is a GTPase-activating protein in hair cells for the small GTP-binding protein ARF6, known to participate in actin assembly and membrane trafficking. We propose that conversion of ARF6 into the GDP-bound form in the apical domain of hair cells is

  5. Legume small GTPases and their role in the establishment of symbiotic associations with Rhizobium spp

    PubMed Central

    Memon, Abdul R

    2009-01-01

    Small GTP-binding genes act as molecular switches regulating myriad of cellular processes including vesicle-mediated intracellular trafficking, signal transduction, cytoskeletal reorganization and cell division in plants and animals. Even though these genes are well conserved both functionally and sequentially across whole Eukaryotae, occasional lineage-specific diversification in some plant species in terms of both functional and expressional characteristics have been reported. Hence, comparative phyletic and correlative functional analyses of legume small GTPases homologs with the genes from other Metazoa and Embryophyta species would be very beneficial for gleaning out the small GTPases that could have specialized in legume-specific processes; e.g., nodulation. The completion of genome sequences of two model legumes, Medicago truncatula and Lotus japonicus will significantly improve our knowledge about mechanism of biological processes taking place in legume-rhizobia symbiotic associations. Besides, the need for molecular switches coordinating busy cargo-trafficking between symbiosis partners would suggest a possible subfunctionalization of small GTPases in Fabaceae for these functions. Therefore, more detailed investigation into the functional characteristics of legume small GTPases would be helpful for the illumination of the events initialized with the perception of bacteria by host, followed by the formation of infection thread and the engulfment of rhizobial bacteria, and end with the senescence of nitrogen-fixing organelles, nodules. In summary, a more thorough functional and evolutionary characterization of small GTPases across the main lineages of Embryophyta is significant for better comprehension of evolutionary history of Plantae, that is because, these genes are associated with multitude of vital biological processes including organogenesis. PMID:19794839

  6. RanGTPase regulates the interaction between the inner nuclear membrane proteins, Samp1 and Emerin.

    PubMed

    Vijayaraghavan, Balaje; Figueroa, Ricardo A; Bergqvist, Cecilia; Gupta, Amit J; Sousa, Paulo; Hallberg, Einar

    2018-06-01

    Samp1, spindle associated membrane protein 1, is a type II integral membrane protein localized in the inner nuclear membrane. Recent studies have shown that the inner nuclear membrane protein, Emerin and the small monomeric GTPase, Ran are direct binding partners of Samp1. Here we addressed the question whether Ran could regulate the interaction between Samp1 and Emerin in the inner nuclear membrane. To investigate the interaction between Samp1 and Emerin in live cells, we performed FRAP experiments in cells overexpressing YFP-Emerin. We compared the mobility of YFP-Emerin in Samp1 knock out cells and cells overexpressing Samp1. The results showed that the mobility of YFP-Emerin was higher in Samp1 knock out cells and lower in cells overexpressing Samp1, suggesting that Samp1 significantly attenuates the mobility of Emerin in the nuclear envelope. FRAP experiments using tsBN2 cells showed that the mobility of Emerin depends on RanGTP. Consistently, in vitro binding experiments showed that the affinity between Samp1 and Emerin is decreased in the presence of Ran, suggesting that Ran attenuates the interaction between Samp1 and Emerin. This is the first demonstration that Ran can regulate the interaction between two proteins in the nuclear envelope. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Suppressed invasive and migratory behaviors of SW1353 chondrosarcoma cells through the regulation of Src, Rac1 GTPase, and MMP13.

    PubMed

    Xu, Wenxiao; Wan, Qiaoqiao; Na, Sungsoo; Yokota, Hiroki; Yan, Jing-Long; Hamamura, Kazunori

    2015-12-01

    Chondrosarcoma is the second frequent type of primary bone cancer. In response to stress to the endoplasmic reticulum, activation of eIF2α-mediated signaling is reported to induce apoptosis. However, its effects on invasive and migratory behaviors of chondrosarcoma have not been understood. Focusing on potential roles of Src kinase, Rac1 GTPase, and MMP13, we investigated eIF2α-driven regulation of SW1353 chondrosarcoma cells. In particular, we employed two chemical agents (salubrinal, Sal; and guanabenz, Gu) that elevate the level of eIF2α phosphorylation. The result revealed that both Sal and Gu reduced invasion and motility of SW1353 chondrosarcoma cells in a dose dependent manner. Live imaging using a fluorescent resonance energy transfer (FRET) technique showed that Sal and Gu downregulated activities of Src kinase as well as Rac1 GTPase in an eIF2α dependent manner. RNA interference experiments supported an eIF2α-mediated regulatory network in the inhibitory role of Sal and Gu. Partial silencing of MMP13 also suppressed malignant phenotypes of SW1353 chondrosarcoma cells. However, MMP13 was not regulated via eIF2α since administration of Sal but not Gu reduced expression of MMP13. In summary, we demonstrate that eIF2α dependent and independent pathways regulate invasion and motility of SW1353 chondrosarcoma cells, and inactivation of Src, Rac1, and MMP13 by Sal could provide a potential adjuvant therapy for combating metastatic chondrosarcoma cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Pro‐migratory and TGF‐β‐activating functions of αvβ6 integrin in pancreatic cancer are differentially regulated via an Eps8‐dependent GTPase switch

    PubMed Central

    Tod, Jo; Hanley, Christopher J; Morgan, Mark R; Rucka, Marta; Mellows, Toby; Lopez, Maria‐Antoinette; Kiely, Philip; Moutasim, Karwan A; Frampton, Steven J; Sabnis, Durgagauri; Fine, David R; Johnson, Colin; Marshall, John F; Scita, Giorgio; Jenei, Veronika

    2017-01-01

    Abstract The integrin αvβ6 is up‐regulated in numerous carcinomas, where expression commonly correlates with poor prognosis. αvβ6 promotes tumour invasion, partly through regulation of proteases and cell migration, and is also the principal mechanism by which epithelial cells activate TGF‐β1; this latter function complicates therapeutic targeting of αvβ6, since TGF‐β1 has both tumour‐promoting and ‐suppressive effects. It is unclear how these different αvβ6 functions are linked; both require actin cytoskeletal reorganization, and it is suggested that tractive forces generated during cell migration activate TGF‐β1 by exerting mechanical tension on the ECM‐bound latent complex. We examined the functional relationship between cell invasion and TGF‐β1 activation in pancreatic ductal adenocarcinoma (PDAC) cells, and confirmed that both processes are αvβ6‐dependent. Surprisingly, we found that cellular functions could be biased towards either motility or TGF‐β1 activation depending on the presence or absence of epidermal growth factor receptor pathway substrate 8 (Eps8), a regulator of actin remodelling, endocytosis, and GTPase activation. Similar to αvβ6, we found that Eps8 was up‐regulated in >70% of PDACs. In complex with Abi1/Sos1, Eps8 regulated αvβ6‐dependent cell migration through activation of Rac1. Down‐regulation of Eps8, Sos1 or Rac1 suppressed cell movement, while simultaneously increasing αvβ6‐dependent TGF‐β1 activation. This latter effect was modulated through increased cell tension, regulated by Rho activation. Thus, the Eps8/Abi1/Sos1 tricomplex acts as a key molecular switch altering the balance between Rac1 and Rho activation; its presence or absence in PDAC cells modulates αvβ6‐dependent functions, resulting in a pro‐migratory (Rac1‐dependent) or a pro‐TGF‐β1 activation (Rho‐dependent) functional phenotype, respectively. © 2017 The Authors. The Journal of Pathology published by John

  9. Structure and Dynamics Analysis on Plexin-B1 Rho GTPase Binding Domain as a Monomer and Dimer

    PubMed Central

    2015-01-01

    Plexin-B1 is a single-pass transmembrane receptor. Its Rho GTPase binding domain (RBD) can associate with small Rho GTPases and can also self-bind to form a dimer. In total, more than 400 ns of NAMD molecular dynamics simulations were performed on RBD monomer and dimer. Different analysis methods, such as root mean squared fluctuation (RMSF), order parameters (S2), dihedral angle correlation, transfer entropy, principal component analysis, and dynamical network analysis, were carried out to characterize the motions seen in the trajectories. RMSF results show that after binding, the L4 loop becomes more rigid, but the L2 loop and a number of residues in other regions become slightly more flexible. Calculating order parameters (S2) for CH, NH, and CO bonds on both backbone and side chain shows that the L4 loop becomes essentially rigid after binding, but part of the L1 loop becomes slightly more flexible. Backbone dihedral angle cross-correlation results show that loop regions such as the L1 loop including residues Q25 and G26, the L2 loop including residue R61, and the L4 loop including residues L89–R91, are highly correlated compared to other regions in the monomer form. Analysis of the correlated motions at these residues, such as Q25 and R61, indicate two signal pathways. Transfer entropy calculations on the RBD monomer and dimer forms suggest that the binding process should be driven by the L4 loop and C-terminal. However, after binding, the L4 loop functions as the motion responder. The signal pathways in RBD were predicted based on a dynamical network analysis method using the pathways predicted from the dihedral angle cross-correlation calculations as input. It is found that the shortest pathways predicted from both inputs can overlap, but signal pathway 2 (from F90 to R61) is more dominant and overlaps all of the routes of pathway 1 (from F90 to P111). This project confirms the allosteric mechanism in signal transmission inside the RBD network, which was

  10. TD-60 links RalA GTPase function to the CPC in mitosis

    PubMed Central

    Papini, Diana; Langemeyer, Lars; Abad, Maria A.; Kerr, Alastair; Samejima, Itaru; Eyers, Patrick A.; Jeyaprakash, A. Arockia; Higgins, Jonathan M. G.; Barr, Francis A.; Earnshaw, William C.

    2015-01-01

    TD-60 (also known as RCC2) is a highly conserved protein that structurally resembles the Ran guanine exchange factor (GEF) RCC1, but has not previously been shown to have GEF activity. TD-60 has a typical chromosomal passenger complex (CPC) distribution in mitotic cells, but associates with integrin complexes and is involved in cell motility during interphase. Here we show that TD-60 exhibits GEF activity, in vitro and in cells, for the small GTPase RalA. TD-60 or RalA depletion causes spindle abnormalities in prometaphase associated with abnormal centromeric accumulation of CPC components. TD-60 and RalA apparently work together to contribute to the regulation of kinetochore–microtubule interactions in early mitosis. Importantly, several mitotic phenotypes caused by TD-60 depletion are reverted by the expression of a GTP-locked mutant, RalA (Q72L). The demonstration that a small GTPase participates in the regulation of the CPC reveals a level of mitotic regulation not suspected in previous studies. PMID:26158537

  11. RAC1 GTP-ase signals Wnt-beta-catenin pathway mediated integrin-directed metastasis-associated tumor cell phenotypes in triple negative breast cancers.

    PubMed

    De, Pradip; Carlson, Jennifer H; Jepperson, Tyler; Willis, Scooter; Leyland-Jones, Brian; Dey, Nandini

    2017-01-10

    The acquisition of integrin-directed metastasis-associated (ID-MA) phenotypes by Triple-Negative Breast Cancer (TNBC) cells is caused by an upregulation of the Wnt-beta-catenin pathway (WP). We reported that WP is one of the salient genetic features of TNBC. RAC-GTPases, small G-proteins which transduce signals from cell surface proteins including integrins, have been implicated in tumorigenesis and metastasis by their role in essential cellular functions like motility. The collective percentage of alteration(s) in RAC1 in ER+ve BC was lower as compared to ER-ve BC (35% vs 57%) (brca/tcga/pub2015). High expression of RAC1 was associated with poor outcome for RFS with HR=1.48 [CI: 1.15-1.9] p=0.0019 in the Hungarian ER-veBC cohort. Here we examined how WP signals are transduced via RAC1 in the context of ID-MA phenotypes in TNBC. Using pharmacological agents (sulindac sulfide), genetic tools (beta-catenin siRNA), WP modulators (Wnt-C59, XAV939), RAC1 inhibitors (NSC23766, W56) and WP stimulations (LWnt3ACM, Wnt3A recombinant) in a panel of 6-7 TNBC cell lines, we studied fibronectin-directed (1) migration, (2) matrigel invasion, (3) RAC1 and Cdc42 activation, (4) actin dynamics (confocal microscopy) and (5) podia-parameters. An attenuation of WP, which (a) decreased cellular levels of beta-catenin, as well as its nuclear active-form, (b) decreased fibronectin-induced migration, (c) decreased invasion, (d) altered actin dynamics and (e) decreased podia-parameters was successful in blocking fibronectin-mediated RAC1/Cdc42 activity. Both Wnt-antagonists and RAC1 inhibitors blocked fibronectin-induced RAC1 activation and inhibited the fibronectin-induced ID-MA phenotypes following specific WP stimulation by LWnt3ACM as well as Wnt3A recombinant protein. To test a direct involvement of RAC1-activation in WP-mediated ID-MA phenotypes, we stimulated brain-metastasis specific MDA-MB231BR cells with LWnt3ACM. LWnt3ACM-stimulated fibronectin-directed migration was blocked by

  12. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.

    2006-07-05

    The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1{sup V12} or Cdc42{sup V12} could increase cell-cell fusion promoted by the Hendra ormore » SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA{sup L63} decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia.« less

  13. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania.

    PubMed

    Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha

    2015-12-11

    Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania*

    PubMed Central

    Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha

    2015-01-01

    Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. PMID:26499792

  15. Golgi-Resident GTPase Rab30 Promotes the Biogenesis of Pathogen-Containing Autophagosomes

    PubMed Central

    Oda, Seiichiro; Nozawa, Takashi; Nozawa-Minowa, Atsuko; Tanaka, Misako; Aikawa, Chihiro; Harada, Hiroyuki; Nakagawa, Ichiro

    2016-01-01

    Autophagy acts as a host-defense system against pathogenic microorganisms such as Group A Streptococcus (GAS). Autophagy is a membrane-mediated degradation system that is regulated by intracellular membrane trafficking regulators, including small GTPase Rab proteins. Here, we identified Rab30 as a novel regulator of GAS-containing autophagosome-like vacuoles (GcAVs). We found that Rab30, a Golgi-resident Rab, was recruited to GcAVs in response to autophagy induction by GAS infection in epithelial cells. Rab30 recruitment was dependent upon its GTPase activity. In addition, the knockdown of Rab30 expression significantly reduced GcAV formation efficiency and impaired intracellular GAS degradation. Rab30 normally functions to maintain the structural integrity of the Golgi complex, but GcAV formation occurred even when the Golgi apparatus was disrupted. Although Rab30 also colocalized with a starvation-induced autophagosome, Rab30 was not required for autophagosome formation during starvation. These results suggest that Rab30 mediates autophagy against GAS independently of its normal cellular role in the structural maintenance of the Golgi apparatus, and autophagosome biogenesis during bacterial infection involves specific Rab GTPases. PMID:26771875

  16. Spontaneous nucleotide exchange in low molecular weight GTPases by fluorescently labeled γ-phosphate-linked GTP analogs

    PubMed Central

    Korlach, Jonas; Baird, Daniel W.; Heikal, Ahmed A.; Gee, Kyle R.; Hoffman, Gregory R.; Webb, Watt W.

    2004-01-01

    Regulated guanosine nucleotide exchange and hydrolysis constitute the fundamental activities of low molecular weight GTPases. We show that three guanosine 5′-triphosphate analogs with BODIPY fluorophores coupled via the gamma phosphate bind to the GTPases Cdc42, Rac1, RhoA, and Ras and displace guanosine 5′-diphosphate with high intrinsic exchange rates in the presence of Mg2+ ions, thereby acting as synthetic, low molecular weight guanine nucleotide exchange factors. The accompanying large fluorescence enhancements (as high as 12-fold), caused by a reduction in guanine quenching of the environmentally sensitive BODIPY dye fluorescence on protein binding, allow for real-time monitoring of this spontaneous nucleotide exchange in the visible spectrum with high signal-to-noise ratios. Binding affinities increased with longer aliphatic linkers connecting the nucleotide and BODIPY fluorophore and were in the 10–100 nM range. Steady-state and time-resolved fluorescence spectroscopy showed an inverse relationship between linker length and fluorescence enhancement factors and differences in protein-bound fluorophore mobilities, providing optimization criteria for future applications of such compounds as efficient elicitors and reporters of nucleotide exchange. EDTA markedly enhanced nucleotide exchange, enabling rapid loading of GTPases with these probes. Differences in active site geometries, in the absence of Mg2+, caused qualitatively different reporting of the bound state by the different analogs. The BODIPY analogs also prevented the interaction of Cdc42 with p21 activated kinase. Together, these results validate the use of these analogs as valuable tools for studying GTPase functions and for developing potent synthetic nucleotide exchange factors for this important class of signaling molecules. PMID:14973186

  17. Vibrio parahaemolyticus Inhibition of Rho Family GTPase Activation Requires a Functional Chromosome I Type III Secretion System▿

    PubMed Central

    Casselli, Timothy; Lynch, Tarah; Southward, Carolyn M.; Jones, Bryan W.; DeVinney, Rebekah

    2008-01-01

    Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis; however, its virulence mechanisms are not well understood. The identification of type III secreted proteins has provided candidate virulence factors whose functions are still being elucidated. Genotypic strain variability contributes a level of complexity to understanding the role of different virulence factors. The ability of V. parahaemolyticus to inhibit Rho family GTPases and cause cytoskeletal disruption was examined with HeLa cells. After HeLa cells were infected, intracellular Rho activation was inhibited in response to external stimuli. In vitro activation of Rho, Rac, and Cdc42 isolated from infected HeLa cell lysates was also inhibited, indicating that the bacteria were specifically targeting GTPase activation. The inhibition of Rho family GTPase activation was retained for clinical and environmental isolates of V. parahaemolyticus and was dependent on a functional chromosome I type III secretion system (CI-T3SS). GTPase inhibition was independent of hemolytic toxin genotype and the chromasome II (CII)-T3SS. Rho inhibition was accompanied by a shift in the total actin pool to its monomeric form. These phenotypes were abrogated in a mutant strain lacking the CI-T3S effector Vp1686, suggesting that the inhibiting actin polymerization may be a downstream effect of Vp1686-dependent GTPase inhibition. Although Vp1686 has been previously characterized as a potential virulence factor in macrophages, our findings reveal an effect on cultured HeLa cells. The ability to inhibit Rho family GTPases independently of the CII-T3SS and the hemolytic toxins may provide insight into the mechanisms of virulence used by strains lacking these virulence factors. PMID:18347050

  18. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms.

    PubMed

    Croft, Daniel R; Olson, Michael F

    2006-06-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. However, the mechanisms by which ROCK signaling promotes cell cycle progression have not been thoroughly characterized. Using a conditionally activated ROCK-estrogen receptor fusion protein, we found that ROCK activation is sufficient to stimulate G1/S cell cycle progression in NIH 3T3 mouse fibroblasts. Further analysis revealed that ROCK acts via independent pathways to alter the levels of cell cycle regulatory proteins: cyclin D1 and p21(Cip1) elevation via Ras and the mitogen-activated protein kinase pathway, increased cyclin A via LIM kinase 2, and reduction of p27(Kip1) protein levels. Therefore, the influence of ROCK on cell cycle regulatory proteins occurs by multiple independent mechanisms.

  19. Tandem duplications of a degenerated GTP-binding domain at the origin of GTPase receptors Toc159 and thylakoidal SRP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez Torres, Jorge; Maldonado, Monica Alexandra Arias; Chomilier, Jacques

    2007-12-14

    The evolutionary origin of some nuclear encoded proteins that translocate proteins across the chloroplast envelope remains unknown. Therefore, sequences of GTPase proteins constituting the Arabidopsis thaliana translocon at the outer membrane of chloroplast (atToc) complexes were analyzed by means of HCA. In particular, atToc159 and related proteins (atToc132, atToc120, and atToc90) do not have proven homologues of prokaryotic or eukaryotic ancestry. We established that the three domains commonly referred to as A, G, and M originate from the GTPase G domain, tandemly repeated, and probably evolving toward an unstructured conformation in the case of the A domain. It resulted frommore » this study a putative common ancestor for these proteins and a new domain definition, in particular the splitting of A into three domains (A1, A2, and A3), has been proposed. The family of Toc159, previously containing A. thaliana and Pisum sativum, has been extended to Medicago truncatula and Populus trichocarpa and it has been revised for Oryza sativa. They have also been compared to GTPase subunits involved in the cpSRP system. A distant homology has been revealed among Toc and cpSRP GTP-hydrolyzing proteins of A. thaliana, and repetitions of a GTPase domain were also found in cpSRP protein receptors, by means of HCA analysis.« less

  20. Adenylylation of Tyr77 stabilizes Rab1b GTPase in an active state: A molecular dynamics simulation analysis

    PubMed Central

    Luitz, Manuel P.; Bomblies, Rainer; Ramcke, Evelyn; Itzen, Aymelt; Zacharias, Martin

    2016-01-01

    The pathogenic pathway of Legionella pneumophila exploits the intercellular vesicle transport system via the posttranslational attachment of adenosine monophosphate (AMP) to the Tyr77 sidechain of human Ras like GTPase Rab1b. The modification, termed adenylylation, is performed by the bacterial enzyme DrrA/SidM, however the effect on conformational properties of the molecular switch mechanism of Rab1b remained unresolved. In this study we find that the adenylylation of Tyr77 stabilizes the active Rab1b state by locking the switch in the active signaling conformation independent of bound GTP or GDP and that electrostatic interactions due to the additional negative charge in the switch region make significant contributions. The stacking interaction between adenine and Phe45 however, seems to have only minor influence on this stabilisation. The results may also have implications for the mechanistic understanding of conformational switching in other signaling proteins. PMID:26818796

  1. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage

    PubMed Central

    Bekpen, Cemalettin; Hunn, Julia P; Rohde, Christoph; Parvanova, Iana; Guethlein, Libby; Dunn, Diane M; Glowalla, Eva; Leptin, Maria; Howard, Jonathan C

    2005-01-01

    Background Members of the p47 (immunity-related GTPases (IRG) family) GTPases are essential, interferon-inducible resistance factors in mice that are active against a broad spectrum of important intracellular pathogens. Surprisingly, there are no reports of p47 function in humans. Results Here we show that the p47 GTPases are represented by 23 genes in the mouse, whereas humans have only a single full-length p47 GTPase and an expressed, truncated presumed pseudo-gene. The human full-length gene is orthologous to an isolated mouse p47 GTPase that carries no interferon-inducible elements in the promoter of either species and is expressed constitutively in the mature testis of both species. Thus, there is no evidence for a p47 GTPase-based resistance system in humans. Dogs have several interferon-inducible p47s, and so the primate lineage that led to humans appears to have lost an ancient function. Multiple p47 GTPases are also present in the zebrafish, but there is only a tandem p47 gene pair in pufferfish. Conclusion Mice and humans must deploy their immune resources against vacuolar pathogens in radically different ways. This carries significant implications for the use of the mouse as a model of human infectious disease. The absence of the p47 resistance system in humans suggests that possession of this resistance system carries significant costs that, in the primate lineage that led to humans, are not outweighed by the benefits. The origin of the vertebrate p47 system is obscure. PMID:16277747

  2. Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology

    PubMed Central

    Tong, Louis; Tergaonkar, Vinay

    2014-01-01

    The RhoGTPases, with RhoA, Cdc42 and Rac being major members, are a group of key ubiquitous proteins present in all eukaryotic organisms that subserve such important functions as cell migration, adhesion and differentiation. The NFκB (nuclear factor κB) is a family of constitutive and inducible transcription factors that through their diverse target genes, play a major role in processes such as cytokine expression, stress regulation, cell division and transformation. Research over the past decade has uncovered new molecular links between the RhoGTPases and the NFκB pathway, with the RhoGTPases playing a positive or negative regulatory role on NFκB activation depending on the context. The RhoA–NFκB interaction has been shown to be important in cytokine-activated NFκB processes, such as those induced by TNFα (tumour necrosis factor α). On the other hand, Rac is important for activating the NFκB response downstream of integrin activation, such as after phagocytosis. Specific residues of Rac1 are important for triggering NFκB activation, and mutations do obliterate this response. Other upstream triggers of the RhoGTPase–NFκB interactions include the suppressive p120 catenin, with implications for skin inflammation. The networks described here are not only important areas for further research, but are also significant for discovery of targets for translational medicine. PMID:24877606

  3. Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes.

    PubMed

    Fu, Yulong; Zhu, Jun-Yi; Zhang, Fujian; Richman, Adam; Zhao, Zhanzheng; Han, Zhe

    2017-06-01

    The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.

  4. Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor.

    PubMed

    Freeman, Spencer A; Christian, Sonja; Austin, Pamela; Iu, Irene; Graves, Marcia L; Huang, Lin; Tang, Shuo; Coombs, Daniel; Gold, Michael R; Roskelley, Calvin D

    2017-01-01

    Although it is known that a stiffening of the stroma and the rearrangement of collagen fibers within the extracellular matrix facilitate the movement of tumor cells away from the primary lesion, the underlying mechanisms responsible are not fully understood. We now show that this invasion, which can be initiated by applying tensional loads to a three-dimensional collagen gel matrix in culture, is dependent on the Rap1 GTPases (Rap1a and Rap1b, referred to collectively as Rap1). Under these conditions Rap1 activity stimulates the formation of focal adhesion structures that align with the tensional axis as single tumor cells move into the matrix. These effects are mediated by the ability of Rap1 to induce the polarized polymerization and retrograde flow of actin, which stabilizes integrins and recruits vinculin to preformed adhesions, particularly those near the leading edge of invasive cells. Rap1 activity also contributes to the tension-induced collective invasive elongation of tumor cell clusters and it enhances tumor cell growth in vivo Thus, Rap1 mediates the effects of increased extracellular tension in multiple ways that are capable of contributing to tumor progression when dysregulated. © 2017. Published by The Company of Biologists Ltd.

  5. Maternal smoke exposure decreases mesenchymal proliferation and modulates Rho-GTPase-dependent actin cytoskeletal signaling in fetal lungs.

    PubMed

    Unachukwu, Uchenna; Trischler, Jordis; Goldklang, Monica; Xiao, Rui; D'Armiento, Jeanine

    2017-06-01

    The present study tested the hypothesis that maternal smoke exposure results in fetal lung growth retardation due to dysregulation in various signaling pathways, including the Wnt (wingless-related integration site)/β-catenin pathway. Pregnant female C57BL/6J mice were exposed to cigarette smoke (100-150 mg/m 3 ) or room air, and offspring were humanely killed on 12.5, 14.5, 16.5, and 18.5 d post coitum (dpc). We assessed lung stereology with Cavalieri estimation; apoptosis with proliferating cell nuclear antigen, TUNEL, and caspase assays; and gene expression with quantitative PCR (qPCR) and RNA sequencing on lung epithelium and mesenchyme retrieved by laser capture microdissection. Results demonstrated a significant decrease in body weight and lung volume of smoke-exposed embryos. At 16.5 dpc, the reduction in lung volume was due to loss of lung mesenchymal tissue correlating with a decrease in cell proliferation ( n = 10; air: 61.65% vs. smoke: 44.21%, P < 0.05). RNA sequence analysis demonstrated an alteration in the Wnt pathway, and qPCR confirmed an increased expression of secreted frizzled-related protein 1 (sFRP-1) [ n = 12; relative quantification (RQ) 1 vs. 2.33, P < 0.05] and down-regulation of Cyclin D1 ( n = 7; RQ 1 vs. 0.61, P < 0.05) in mesenchymal tissue. Furthermore, genome expression studies revealed a smoke-induced up-regulation of Rho-GTPase-dependent actin cytoskeletal signaling that can lead to loss of tissue integrity.-Unachukwu, U., Trischler, J., Goldklang, M., Xiao, R., D'Armiento, J. Maternal smoke exposure decreases mesenchymal proliferation and modulates Rho-GTPase-dependent actin cytoskeletal signaling in fetal lungs. © FASEB.

  6. Protein Kinase WNK1 Promotes Cell Surface Expression of Glucose Transporter GLUT1 by Regulating a Tre-2/USP6-BUB2-Cdc16 Domain Family Member 4 (TBC1D4)-Rab8A Complex*

    PubMed Central

    Mendes, Ana Isabel; Matos, Paulo; Moniz, Sónia; Jordan, Peter

    2010-01-01

    One mechanism by which mammalian cells regulate the uptake of glucose is the number of glucose transporter proteins (GLUT) present at the plasma membrane. In insulin-responsive cells types, GLUT4 is released from intracellular stores through inactivation of the Rab GTPase activating protein Tre-2/USP6-BUB2-Cdc16 domain family member 4 (TBC1D4) (also known as AS160). Here we describe that TBC1D4 forms a protein complex with protein kinase WNK1 in human embryonic kidney (HEK293) cells. We show that WNK1 phosphorylates TBC1D4 in vitro and that the expression levels of WNK1 in these cells regulate surface expression of the constitutive glucose transporter GLUT1. WNK1 was found to increase the binding of TBC1D4 to regulatory 14-3-3 proteins while reducing its interaction with the exocytic small GTPase Rab8A. These effects were dependent on the catalytic activity because expression of a kinase-dead WNK1 mutant had no effect on binding of 14-3-3 and Rab8A, or on surface GLUT1 levels. Together, the data describe a pathway regulating constitutive glucose uptake via GLUT1, the expression level of which is related to several human diseases. PMID:20937822

  7. Rho and Ras GTPases in Axon Growth, Guidance, and Branching

    PubMed Central

    Hall, Alan; Lalli, Giovanna

    2010-01-01

    The establishment of precise neuronal cell morphology provides the foundation for all aspects of neurobiology. During development, axons emerge from cell bodies after an initial polarization stage, elongate, and navigate towards target regions guided by a range of environmental cues. The Rho and Ras families of small GTPases have emerged as critical players at all stages of axonogenesis. Their ability to coordinately direct multiple signal transduction pathways with precise spatial control drives many of the activities that underlie this morphogenetic program: the dynamic assembly, disassembly, and reorganization of the actin and microtubule cytoskeletons, the interaction of the growing axon with other cells and extracellular matrix, the delivery of lipids and proteins to the axon through the exocytic machinery, and the internalization of membrane and proteins at the leading edge of the growth cone through endocytosis. This article highlights the contribution of Rho and Ras GTPases to axonogenesis. PMID:20182621

  8. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei

    PubMed Central

    Zhang, Jiwei; Zhang, Yanmei; Zhong, Yaohua; Qu, Yinbo; Wang, Tianhong

    2012-01-01

    Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the

  9. Miro's N-Terminal GTPase Domain Is Required for Transport of Mitochondria into Axons and Dendrites

    PubMed Central

    Babic, Milos; Russo, Gary J.; Wellington, Andrea J.; Sangston, Ryan M.; Gonzalez, Migdalia

    2015-01-01

    Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state. PMID:25855186

  10. GTPase Sar1 regulates the trafficking and secretion of the virulence factor gp63 in Leishmania.

    PubMed

    Parashar, Smriti; Mukhopadhyay, Amitabha

    2017-07-21

    Metalloprotease gp63 ( Leishmania donovani gp63 (Ldgp63)) is a critical virulence factor secreted by Leishmania However, how newly synthesized Ldgp63 exits the endoplasmic reticulum (ER) and is secreted by this parasite is unknown. Here, we cloned, expressed, and characterized the GTPase LdSar1 and other COPII components like LdSec23, LdSec24, LdSec13, and LdSec31 from Leishmania to understand their role in ER exit of Ldgp63. Using dominant-positive (LdSar1:H74L) and dominant-negative (LdSar1:T34N) mutants of LdSar1, we found that GTP-bound LdSar1 specifically binds to LdSec23, which binds, in turn, with LdSec24(1-702) to form a prebudding complex. Moreover, LdSec13 specifically interacted with His 6 -LdSec31(1-603), and LdSec31 bound the prebudding complex via LdSec23. Interestingly, dileucine 594/595 and valine 597 residues present in the Ldgp63 C-terminal domain were critical for binding with LdSec24(703-966), and GFP-Ldgp63 L594A/L595A or GFP-Ldgp63 V597S mutants failed to exit from the ER. Moreover, Ldgp63-containing COPII vesicle budding from the ER was inhibited by LdSar1:T34N in an in vitro budding assay, indicating that GTP-bound LdSar1 is required for budding of Ldgp63-containing COPII vesicles. To directly demonstrate the function of LdSar1 in Ldgp63 trafficking, we coexpressed RFP-Ldgp63 along with LdSar1:WT-GFP or LdSar1:T34N-GFP and found that LdSar1:T34N overexpression blocks Ldgp63 trafficking and secretion in Leishmania Finally, we noted significantly compromised survival of LdSar1:T34N-GFP-overexpressing transgenic parasites in macrophages. Taken together, these results indicated that Ldgp63 interacts with the COPII complex via LdSec24 for Ldgp63 ER exit and subsequent secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics

    PubMed Central

    Geyer, Elisabeth A; Burns, Alexander; Lalonde, Beth A; Ye, Xuecheng; Piedra, Felipe-Andres; Huffaker, Tim C; Rice, Luke M

    2015-01-01

    Microtubule dynamic instability depends on the GTPase activity of the polymerizing αβ-tubulin subunits, which cycle through at least three distinct conformations as they move into and out of microtubules. How this conformational cycle contributes to microtubule growing, shrinking, and switching remains unknown. Here, we report that a buried mutation in αβ-tubulin yields microtubules with dramatically reduced shrinking rate and catastrophe frequency. The mutation causes these effects by suppressing a conformational change that normally occurs in response to GTP hydrolysis in the lattice, without detectably changing the conformation of unpolymerized αβ-tubulin. Thus, the mutation weakens the coupling between the conformational and GTPase cycles of αβ-tubulin. By showing that the mutation predominantly affects post-GTPase conformational and dynamic properties of microtubules, our data reveal that the strength of the allosteric response to GDP in the lattice dictates the frequency of catastrophe and the severity of rapid shrinking. DOI: http://dx.doi.org/10.7554/eLife.10113.001 PMID:26439009

  12. Doxycycline reduces the migration of tuberous sclerosis complex-2 null cells - effects on RhoA-GTPase and focal adhesion kinase

    PubMed Central

    Ng, Ho Yin; Oliver, Brian Gregory George; Burgess, Janette Kay; Krymskaya, Vera P; Black, Judith Lee; Moir, Lyn M

    2015-01-01

    Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2-positive and TSC2-negative mouse embryonic fibroblasts (MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time-lapse microscopy and manual cell counts respectively. RhoA-GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2-negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2-null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2–59 μM. Doxycycline decreased RhoA-GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2-null cell migration. Thus doxycycline has potential as an anti-migratory agent in the treatment of diseases with TSC2 dysfunction. PMID:26282580

  13. Doxycycline reduces the migration of tuberous sclerosis complex-2 null cells - effects on RhoA-GTPase and focal adhesion kinase.

    PubMed

    Ng, Ho Yin; Oliver, Brian Gregory George; Burgess, Janette Kay; Krymskaya, Vera P; Black, Judith Lee; Moir, Lyn M

    2015-11-01

    Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2-positive and TSC2-negative mouse embryonic fibroblasts (MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time-lapse microscopy and manual cell counts respectively. RhoA-GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2-negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2-null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2-59 μM. Doxycycline decreased RhoA-GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2-null cell migration. Thus doxycycline has potential as an anti-migratory agent in the treatment of diseases with TSC2 dysfunction. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation

    PubMed Central

    1994-01-01

    The IPL2 gene is known to be required for normal polarized cell growth in the budding yeast Saccharomyces cerevisiae. We now show that IPL2 is identical to the previously identified BEM2 gene. bem2 mutants are defective in bud site selection at 26 degrees C and localized cell surface growth and organization of the actin cytoskeleton at 37 degrees C. BEM2 encodes a protein with a COOH-terminal domain homologous to sequences found in several GTPase-activating proteins, including human Bcr. The GTPase-activating protein-domain from the Bem2 protein (Bem2p) or human Bcr can functionally substitute for Bem2p. The Rho1 and Rho2 GTPases are the likely in vivo targets of Bem2p because bem2 mutant phenotypes can be partially suppressed by increasing the gene dosage of RHO1 or RHO2. CDC55 encodes the putative regulatory B subunit of protein phosphatase 2A, and mutations in BEM2 have previously been identified as suppressors of the cdc55-1 mutation. We show here that mutations in the previously identified GRR1 gene can suppress bem2 mutations. grr1 and cdc55 mutants are both elongated in shape and cold- sensitive for growth, and cells lacking both GRR1 and CDC55 exhibit a synthetic lethal phenotype. bem2 mutant phenotypes also can be suppressed by the SSD1-vl (also known as SRK1) mutation, which was shown previously to suppress mutations in the protein phosphatase- encoding SIT4 gene. Cells lacking both BEM2 and SIT4 exhibit a synthetic lethal phenotype even in the presence of the SSD1-v1 suppressor. These genetic interactions together suggest that protein phosphorylation and dephosphorylation play an important role in the BEM2-mediated process of polarized cell growth. PMID:7962097

  15. Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation.

    PubMed

    Kim, Y J; Francisco, L; Chen, G C; Marcotte, E; Chan, C S

    1994-12-01

    The IPL2 gene is known to be required for normal polarized cell growth in the budding yeast Saccharomyces cerevisiae. We now show that IPL2 is identical to the previously identified BEM2 gene. bem2 mutants are defective in bud site selection at 26 degrees C and localized cell surface growth and organization of the actin cytoskeleton at 37 degrees C. BEM2 encodes a protein with a COOH-terminal domain homologous to sequences found in several GTPase-activating proteins, including human Bcr. The GTPase-activating protein-domain from the Bem2 protein (Bem2p) or human Bcr can functionally substitute for Bem2p. The Rho1 and Rho2 GTPases are the likely in vivo targets of Bem2p because bem2 mutant phenotypes can be partially suppressed by increasing the gene dosage of RHO1 or RHO2. CDC55 encodes the putative regulatory B subunit of protein phosphatase 2A, and mutations in BEM2 have previously been identified as suppressors of the cdc55-1 mutation. We show here that mutations in the previously identified GRR1 gene can suppress bem2 mutations. grr1 and cdc55 mutants are both elongated in shape and cold-sensitive for growth, and cells lacking both GRR1 and CDC55 exhibit a synthetic lethal phenotype. bem2 mutant phenotypes also can be suppressed by the SSD1-vl (also known as SRK1) mutation, which was shown previously to suppress mutations in the protein phosphatase-encoding SIT4 gene. Cells lacking both BEM2 and SIT4 exhibit a synthetic lethal phenotype even in the presence of the SSD1-v1 suppressor. These genetic interactions together suggest that protein phosphorylation and dephosphorylation play an important role in the BEM2-mediated process of polarized cell growth.

  16. In situ detection of the activation of Rac1 and RalA small GTPases in mouse adipocytes by immunofluorescent microscopy following in vivo and ex vivo insulin stimulation.

    PubMed

    Takenaka, Nobuyuki; Nihata, Yuma; Ueda, Sho; Satoh, Takaya

    2017-11-01

    Rac1 has been implicated in insulin-dependent glucose uptake by mechanisms involving plasma membrane translocation of the glucose transporter GLUT4 in skeletal muscle. Although the uptake of glucose is also stimulated by insulin in adipose tissue, the role for Rac1 in adipocyte insulin signaling remains controversial. As a step to reveal the role for Rac1 in adipocytes, we aimed to establish immunofluorescent microscopy to detect the intracellular distribution of activated Rac1. The epitope-tagged Rac1-binding domain of a Rac1-specific target was utilized as a probe that specifically recognizes the activated form of Rac1. Rac1 activation in response to ex vivo and in vivo insulin stimulations in primary adipocyte culture and mouse white adipose tissue, respectively, was successfully observed by immunofluorescent microscopy. These Rac1 activations were mediated by phosphoinositide 3-kinase. Another small GTPase RalA has also been implicated in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. Similarly to Rac1, immunofluorescent microscopy using an activated RalA-specific polypeptide probe allowed us to detect intracellular distribution of insulin-activated RalA in adipocytes. These novel approaches to visualize the activation status of small GTPases in adipocytes will largely contribute to the understanding of signal transduction mechanisms particularly for insulin action. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Characterization of a Rab11-like GTPase, EhRab11, of Entamoeba histolytica.

    PubMed

    McGugan, Glen C; Temesvari, Lesly A

    2003-07-01

    The Entamoeba histolytica Rab11 family of small molecular weight GTPases consists of three members, EhRab11, EhRab11B, and EhRab11C. The functions of these Rabs in Entamoeba have not been determined. Therefore, as an approach to elucidate the role of the Rab11 family of GTPases in Entamoeba, immunofluorescence microscopy was undertaken to define the subcellular localization of one member of this family, EhRab11. Under conditions of growth, EhRab11 displayed a punctate pattern in the cytoplasm of trophozoites. EhRab11 did not colocalize with markers for the Golgi apparatus, endoplasmic reticulum, pinosomes, phagosomes, or compartments formed by receptor-mediated endocytosis, suggesting that this Rab may not play a role in vesicle trafficking between these organelles. Under conditions of iron and serum starvation, EhRab11 was translocated to the periphery of the cell. The altered cellular localization was accompanied by multinucleation of the cells as well as the acquisition of detergent resistance by the cells, features that are characteristic of Entamoeba cysts. The translocation of EhRab11 to the periphery of the cell during iron and serum starvation was specific as the subcellular localizations of two other Rab GTPases, EhRab7 and EhRabA, were not altered under the same conditions. In addition, the formation of multinucleated cells by inhibition of cytokinesis was not sufficient to induce the translocation of EhRab11 to the cell periphery. Taken together, the data suggest that iron and serum starvation may induce encystation in E. histolytica and that EhRab11 may play a role in this process. Moreover, these studies are the first to describe a putative role for a Rab GTPase in encystation in Entamoeba sp.

  18. Friend leukemia virus integration 1 activates the Rho GTPase pathway and is associated with metastasis in breast cancer.

    PubMed

    Song, Wei; Li, Wei; Li, Lingyu; Zhang, Shilin; Yan, Xu; Wen, Xue; Zhang, Xiaoying; Tian, Huimin; Li, Ailing; Hu, Ji-Fan; Cui, Jiuwei

    2015-09-15

    Breast cancer is the most prevalent malignant disease in women worldwide. In patients with breast cancer, metastasis to distant sites directly determines the survival outcome. However, the molecular mechanism underlying metastasis in breast cancer remains to be defined. In this report, we found that Friend leukemia virus integration 1 (FLI1) proto-oncogene was differentially expressed between the aggressive MDA-MB231 and the non-aggressive MCF-7 breast cancer cells. Congruently, immunohistochemical staining of clinical samples revealed that FLI1 was overexpressed in breast cancers as compared with the adjacent tissues. The abundance of FLI1 protein was strongly correlated with the advanced stage, poor differentiation, and lymph node metastasis in breast cancer patients. Knockdown of FLI1 with small interfering RNAs significantly attenuated the potential of migration and invasion in highly metastatic human breast cancer cells. FLI1 oncoprotein activated the Rho GTPase pathway that is known to play a role in tumor metastasis. This study for the first time identifies FLI1 as a clinically and functionally important target gene of metastasis, providing a rationale for developing FLI1 inhibitors in the treatment of breast cancer.

  19. Spatial organization of xylem cell walls by ROP GTPases and microtubule-associated proteins.

    PubMed

    Oda, Yoshihisa; Fukuda, Hiroo

    2013-12-01

    Proper patterning of cellulosic cell walls is critical for cell shaping and differentiation of plant cells. Cortical microtubule arrays regulate the deposition patterns of cellulose microfibrils by controlling the targeting and trajectory of cellulose synthase complexes. Although some microtubule-associated proteins (MAPs) regulate the arrangement of cortical microtubules, knowledge about the overall mechanism governing the spacing of cortical microtubules is still limited. Recent studies reveal that ROP GTPases and MAPs spatially regulate the assembly and disassembly of cortical microtubules in developing xylem cells, in which localized secondary cell walls are deposited. Here, we review recent insights into the regulation of xylem cell wall patterning by cortical microtubules, ROP GTPases, and MAPs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. RhoA GTPase inhibition organizes contraction during epithelial morphogenesis

    PubMed Central

    Mason, Frank M.; Xie, Shicong; Vasquez, Claudia G.; Tworoger, Michael

    2016-01-01

    During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding. PMID:27551058

  1. Defect in the GTPase activating protein (GAP) function of eIF5 causes repression of GCN4 translation.

    PubMed

    Antony A, Charles; Alone, Pankaj V

    2017-05-13

    In eukaryotes, the eIF5 protein plays an important role in translation start site selection by providing the GAP (GTPase activating protein) function. However, in yeast translation initiation fidelity defective eIF5 G31R mutant causes preferential utilization of UUG as initiation codon and is termed as Suppressor of initiation codon (Sui - ) phenotype due to its hyper GTPase activity. The eIF5 G31R mutant dominantly represses GCN4 expression and confers sensitivity to 3-Amino-1,2,4-Trizole (3AT) induced starvation. The down-regulation of the GCN4 expression (Gcn - phenotype) in the eIF5 G31R mutant was not because of leaky scanning defects; rather was due to the utilization of upUUG initiation codons at the 5' regulatory region present between uORF1 and the main GCN4 ORF. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase

    PubMed Central

    Pick, Edgar

    2014-01-01

    The superoxide-generating NADPH oxidase of phagocytes consists of the membrane-associated cytochrome b558 (a heterodimer of Nox2 and p22phox) and 4 cytosolic components: p47phox, p67phox, p40phox, and the small GTPase, Rac, in complex with RhoGDI. Superoxide is produced by the NADPH-driven reduction of molecular oxygen, via a redox gradient located in Nox2. Electron flow in Nox2 is initiated by interaction with cytosolic components, which translocate to the membrane, p67phox playing the central role. The participation of Rac is expressed in the following sequence: (1) Translocation of the RacGDP-RhoGDI complex to the membrane; (2) Dissociation of RacGDP from RhoGDI; (3) GDP to GTP exchange on Rac, mediated by a guanine nucleotide exchange factor; (4) Binding of RacGTP to p67phox; (5) Induction of a conformational change in p67phox, promoting interaction with Nox2. The particular involvement of Rac in NADPH oxidase assembly serves as a paradigm for signaling by Rho GTPases, in general. PMID:24598074

  3. 9Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments

    PubMed Central

    Dodonova, Svetlana O; Aderhold, Patrick; Kopp, Juergen; Ganeva, Iva; Röhling, Simone; Hagen, Wim J H; Sinning, Irmgard; Wieland, Felix; Briggs, John A G

    2017-01-01

    COPI coated vesicles mediate trafficking within the Golgi apparatus and between the Golgi and the endoplasmic reticulum. Assembly of a COPI coated vesicle is initiated by the small GTPase Arf1 that recruits the coatomer complex to the membrane, triggering polymerization and budding. The vesicle uncoats before fusion with a target membrane. Coat components are structurally conserved between COPI and clathrin/adaptor proteins. Using cryo-electron tomography and subtomogram averaging, we determined the structure of the COPI coat assembled on membranes in vitro at 9 Å resolution. We also obtained a 2.57 Å resolution crystal structure of βδ-COP. By combining these structures we built a molecular model of the coat. We additionally determined the coat structure in the presence of ArfGAP proteins that regulate coat dissociation. We found that Arf1 occupies contrasting molecular environments within the coat, leading us to hypothesize that some Arf1 molecules may regulate vesicle assembly while others regulate coat disassembly. DOI: http://dx.doi.org/10.7554/eLife.26691.001 PMID:28621666

  4. Leishmania major large RAB GTPase is highly immunogenic in individuals immune to cutaneous and visceral leishmaniasis.

    PubMed

    Chamakh-Ayari, Rym; Chenik, Mehdi; Chakroun, Ahmed Sahbi; Bahi-Jaber, Narges; Aoun, Karim; Meddeb-Garnaoui, Amel

    2017-04-17

    We previously identified a Leishmania (L.) major large RAB GTPase (LmlRAB), a new atypical RAB GTPase protein. It is highly conserved in Leishmania species while displaying low level of homology with mammalian homologues. Leishmania small RAB GTPases proteins have been involved in regulation of exocytic and endocytic pathways whereas the role of large RAB GTPases proteins has not been characterized yet. We report here the immunogenicity of both recombinant rLmlRAB and rLmlRABC, in individuals with immunity against L. major or L. infantum. PBMC were isolated from individuals cured of L. major (CCLm) or from healthy individuals. The latter were subdivided into high or low IFN-γ responders. Healthy high IFN-γ responders, considered as asymptomatics, were living in an endemic area for L. major (HHRLm) or L. infantum (HHRLi). Healthy low IFN-γ responders (HLR) were considered as naïve controls. Cells from all volunteers were stimulated with rLmlRAB or rLmlRABC. Cytokines were analysed by CBA and ELISA and phenotypes of IFN-γ-producing cells were analysed by flow cytometry. Both rLmlRAB and rLmlRABC induced high significant levels of IFN-γ in CCLm, HHRLm and HHRLi groups. Phenotype analysis of rLmlRAB and rLmlRABC-stimulated T cells in CCLm individuals showed a significant increase in the percentage of specific IFN-γ-producing CD4+ and CD8+ T cells. rLmlRAB induced significant granzyme B levels in CCLm and HHRLm. Low but significant granzyme B levels were detected in naïve group. IL-10 was detected in immune and naïve individuals. We showed that rLmlRAB protein and its divergent carboxy-terminal part induced a predominant Th1 response in individuals immune to L. major or L. infantum. Our results suggest that rLmlRAB and rLmlRABC proteins are potential cross-species vaccine candidates against cutaneous and visceral leishmaniasis.

  5. Influence of bacterial toxins on the GTPase activity of transducin from bovine retinal rod outer segments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybin, V.O.; Gureeva, A.A.

    1986-05-10

    The action of cholera toxin, capable of ADP-ribosylation of the activator N/sub s/ protein, and pertussis toxin, capable of ADP-ribosylation of the inhibitor N/sub i/ protein of the adenylate cyclase complex, on transducin, the GTP-binding protein of the rod outer segments of the retina, was investigated. It was shown that under the action of pertussis and cholera toxins, the GTPase activity of transducin is inhibited. Pertussin toxin inhibits the GTPase of native retinal rod outer segments by 30-40%, while GTPase of homogeneous transducin produces a 70-80% inhibition. The action of toxins on transducin depends on the presence and nature ofmore » the guanylic nucleotide with which incubation is performed. On the basis of the data obtained it is suggested that pertussis toxin interacts with pretransducin and with the transducin-GDP complex, while cholera toxin ADP-ribosylates the transducin-GTP complex and does not act on transducin lacking GTP.« less

  6. Regulation of podocalyxin trafficking by Rab small GTPases in epithelial cells

    PubMed Central

    Mrozowska, Paulina S.; Fukuda, Mitsunori

    2016-01-01

    ABSTRACT The characteristic feature of polarity establishment in MDCK II cells is transcytosis of apical glycoprotein podocalyxin (PCX) from the outer plasma membrane to the newly formed apical domain. This transcytotic event consists of multiple steps, including internalization from the plasma membrane, transport through early endosomes and Rab11-positive recycling endosomes, and delivery to the apical membrane. These steps are known to be tightly coordinated by Rab small GTPases, which act as molecular switches cycling between active GTP-bound and inactive GDP-bound states. However, our knowledge regarding which sets of Rabs regulate particular steps of PCX trafficking was rather limited. Recently, we have performed a comprehensive analysis of Rab GTPase engagement in the transcytotic pathway of PCX during polarity establishment in 2-dimensional (2D) and 3-dimensional (3D) MDCK II cell cultures. In this Commentary we summarize our findings and set them in the context of previous reports. PMID:27463697

  7. Inference of RhoGAP/GTPase regulation using single-cell morphological data from a combinatorial RNAi screen.

    PubMed

    Nir, Oaz; Bakal, Chris; Perrimon, Norbert; Berger, Bonnie

    2010-03-01

    Biological networks are highly complex systems, consisting largely of enzymes that act as molecular switches to activate/inhibit downstream targets via post-translational modification. Computational techniques have been developed to perform signaling network inference using some high-throughput data sources, such as those generated from transcriptional and proteomic studies, but comparable methods have not been developed to use high-content morphological data, which are emerging principally from large-scale RNAi screens, to these ends. Here, we describe a systematic computational framework based on a classification model for identifying genetic interactions using high-dimensional single-cell morphological data from genetic screens, apply it to RhoGAP/GTPase regulation in Drosophila, and evaluate its efficacy. Augmented by knowledge of the basic structure of RhoGAP/GTPase signaling, namely, that GAPs act directly upstream of GTPases, we apply our framework for identifying genetic interactions to predict signaling relationships between these proteins. We find that our method makes mediocre predictions using only RhoGAP single-knockdown morphological data, yet achieves vastly improved accuracy by including original data from a double-knockdown RhoGAP genetic screen, which likely reflects the redundant network structure of RhoGAP/GTPase signaling. We consider other possible methods for inference and show that our primary model outperforms the alternatives. This work demonstrates the fundamental fact that high-throughput morphological data can be used in a systematic, successful fashion to identify genetic interactions and, using additional elementary knowledge of network structure, to infer signaling relations.

  8. Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth.

    PubMed

    Berson, Tobias; von Wangenheim, Daniel; Takáč, Tomáš; Šamajová, Olga; Rosero, Amparo; Ovečka, Miroslav; Komis, George; Stelzer, Ernst H K; Šamaj, Jozef

    2014-09-27

    Small Rab GTPases are important regulators of vesicular trafficking in plants. AtRabA1d, a member of the RabA1 subfamily of small GTPases, was previously found in the vesicle-rich apical dome of growing root hairs suggesting a role during tip growth; however, its specific intracellular localization and role in plants has not been well described. The transient expression of 35S::GFP:RabA1d construct in Allium porrum and Nicotiana benthamiana revealed vesicular structures, which were further corroborated in stable transformed Arabidopsis thaliana plants. GFP-RabA1d colocalized with the trans-Golgi network marker mCherry-VTI12 and with early FM4-64-labeled endosomal compartments. Late endosomes and endoplasmic reticulum labeled with FYVE-DsRed and ER-DsRed, respectively, were devoid of GFP-RabA1d. The accumulation of GFP-RabA1d in the core of brefeldin A (BFA)-induced-compartments and the quantitative upregulation of RabA1d protein levels after BFA treatment confirmed the association of RabA1d with early endosomes/TGN and its role in vesicle trafficking. Light-sheet microscopy revealed involvement of RabA1d in root development. In root cells, GFP-RabA1d followed cell plate expansion consistently with cytokinesis-related vesicular trafficking and membrane recycling. GFP-RabA1d accumulated in disc-like structures of nascent cell plates, which progressively evolved to marginal ring-like structures of the growing cell plates. During root hair growth and development, GFP-RabA1d was enriched at root hair bulges and at the apical dome of vigorously elongating root hairs. Importantly, GFP-RabA1d signal intensity exhibited an oscillatory behavior in-phase with tip growth. Progressively, this tip localization dissapeared in mature root hairs suggesting a link between tip localization of RabA1d and root hair elongation. Our results support a RabA1d role in events that require vigorous membrane trafficking. RabA1d is located in early endosomes/TGN and is involved in vesicle

  9. Rab GTPases Regulate Endothelial Cell Protein C Receptor-Mediated Endocytosis and Trafficking of Factor VIIa

    PubMed Central

    Nayak, Ramesh C.; Keshava, Shiva; Esmon, Charles T.; Pendurthi, Usha R.; Rao, L. Vijaya Mohan

    2013-01-01

    Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa. PMID:23555015

  10. Neutron Crystal Structure of RAS GTPase Puts in Question the Protonation State of the GTP γ-Phosphate*

    PubMed Central

    Knihtila, Ryan; Holzapfel, Genevieve; Weiss, Kevin; Meilleur, Flora; Mattos, Carla

    2015-01-01

    RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated γ-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the start of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. The neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases. PMID:26515069

  11. Neutron crystal structure of RAS GTPase puts in question the protonation state of the GTP γ-phosphate

    DOE PAGES

    Knihtila, Ryan; Holzapfel, Genevieve; Weiss, Kevin; ...

    2015-10-29

    RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated gamma-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the startmore » of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. As a result, the neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases.« less

  12. Two Components of Aversive Memory in Drosophila, Anesthesia-Sensitive and Anesthesia-Resistant Memory, Require Distinct Domains Within the Rgk1 Small GTPase.

    PubMed

    Murakami, Satoshi; Minami-Ohtsubo, Maki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Tabata, Tetsuya

    2017-05-31

    Multiple components have been identified that exhibit different stabilities for aversive olfactory memory in Drosophila These components have been defined by behavioral and genetic studies and genes specifically required for a specific component have also been identified. Intermediate-term memory generated after single cycle conditioning is divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We determined that the ASM and ARM pathways converged on the Rgk1 small GTPase and that the N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Rgk1 is specifically accumulated at the synaptic site of the Kenyon cells (KCs), the intrinsic neurons of the mushroom bodies, which play a pivotal role in olfactory memory formation. A higher than normal Rgk1 level enhanced memory retention, which is consistent with the result that Rgk1 suppressed Rac-dependent memory decay; these findings suggest that rgk1 bolsters ASM via the suppression of forgetting. We propose that Rgk1 plays a pivotal role in the regulation of memory stabilization by serving as a molecular node that resides at KC synapses, where the ASM and ARM pathway may interact. SIGNIFICANCE STATEMENT Memory consists of multiple components. Drosophila olfactory memory serves as a fundamental model with which to investigate the mechanisms that underlie memory formation and has provided genetic and molecular means to identify the components of memory, namely short-term, intermediate-term, and long-term memory, depending on how long the memory lasts. Intermediate memory is further divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We have identified a small GTPase in Drosophila , Rgk1, which plays a pivotal role in the regulation of olfactory memory stability. Rgk1 is required for both ASM and ARM. Moreover, N

  13. Rho GTPases Control Polarity, Protrusion, and Adhesion during Cell Movement

    PubMed Central

    Nobes, Catherine D.; Hall, Alan

    1999-01-01

    Cell movement is essential during embryogenesis to establish tissue patterns and to drive morphogenetic pathways and in the adult for tissue repair and to direct cells to sites of infection. Animal cells move by crawling and the driving force is derived primarily from the coordinated assembly and disassembly of actin filaments. The small GTPases, Rho, Rac, and Cdc42, regulate the organization of actin filaments and we have analyzed their contributions to the movement of primary embryo fibroblasts in an in vitro wound healing assay. Rac is essential for the protrusion of lamellipodia and for forward movement. Cdc42 is required to maintain cell polarity, which includes the localization of lamellipodial activity to the leading edge and the reorientation of the Golgi apparatus in the direction of movement. Rho is required to maintain cell adhesion during movement, but stress fibers and focal adhesions are not required. Finally, Ras regulates focal adhesion and stress fiber turnover and this is essential for cell movement. We conclude that the signal transduction pathways controlled by the four small GTPases, Rho, Rac, Cdc42, and Ras, cooperate to promote cell movement. PMID:10087266

  14. A Novel Plasma Membrane-Anchored Protein Regulates Xylem Cell-Wall Deposition through Microtubule-Dependent Lateral Inhibition of Rho GTPase Domains.

    PubMed

    Sugiyama, Yuki; Wakazaki, Mayumi; Toyooka, Kiminori; Fukuda, Hiroo; Oda, Yoshihisa

    2017-08-21

    Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modulation of Plant RAB GTPase-Mediated Membrane Trafficking Pathway at the Interface Between Plants and Obligate Biotrophic Pathogens.

    PubMed

    Inada, Noriko; Betsuyaku, Shigeyuki; Shimada, Takashi L; Ebine, Kazuo; Ito, Emi; Kutsuna, Natsumaro; Hasezawa, Seiichiro; Takano, Yoshitaka; Fukuda, Hiroo; Nakano, Akihiko; Ueda, Takashi

    2016-09-01

    RAB5 is a small GTPase that acts in endosomal trafficking. In addition to canonical RAB5 members that are homologous to animal RAB5, land plants harbor a plant-specific RAB5, the ARA6 group, which regulates trafficking events distinct from canonical RAB5 GTPases. Here, we report that plant RAB5, both canonical and plant-specific members, accumulate at the interface between host plants and biotrophic fungal and oomycete pathogens. Biotrophic fungi and oomycetes colonize living plant tissues by establishing specialized infection hyphae, the haustorium, within host plant cells. We found that Arabidopsis thaliana ARA6/RABF1, a plant-specific RAB5, is localized to the specialized membrane that surrounds the haustorium, the extrahaustorial membrane (EHM), formed by the A. thaliana-adapted powdery mildew fungus Golovinomyces orontii Whereas the conventional RAB5 ARA7/RABF2b was also localized to the EHM, endosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) and RAB5-activating proteins were not, which suggests that the EHM has modified endosomal characteristic. The recruitment of host RAB5 to the EHM was a property shared by the barley-adapted powdery mildew fungus Blumeria graminis f.sp. hordei and the oomycete Hyaloperonospora arabidopsidis, but the extrahyphal membrane surrounding the hypha of the hemibiotrophic fungus Colletotrichum higginsianum at the biotrophic stage was devoid of RAB5. The localization of RAB5 to the EHM appears to correlate with the functionality of the haustorium. Our discovery sheds light on a novel relationship between plant RAB5 and obligate biotrophic pathogens. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. The Arabidopsis Rho of Plants GTPase AtROP6 Functions in Developmental and Pathogen Response Pathways1[C][W][OA

    PubMed Central

    Poraty-Gavra, Limor; Zimmermann, Philip; Haigis, Sabine; Bednarek, Paweł; Hazak, Ora; Stelmakh, Oksana Rogovoy; Sadot, Einat; Schulze-Lefert, Paul; Gruissem, Wilhelm; Yalovsky, Shaul

    2013-01-01

    How plants coordinate developmental processes and environmental stress responses is a pressing question. Here, we show that Arabidopsis (Arabidopsis thaliana) Rho of Plants6 (AtROP6) integrates developmental and pathogen response signaling. AtROP6 expression is induced by auxin and detected in the root meristem, lateral root initials, and leaf hydathodes. Plants expressing a dominant negative AtROP6 (rop6DN) under the regulation of its endogenous promoter are small and have multiple inflorescence stems, twisted leaves, deformed leaf epidermis pavement cells, and differentially organized cytoskeleton. Microarray analyses of rop6DN plants revealed that major changes in gene expression are associated with constitutive salicylic acid (SA)-mediated defense responses. In agreement, their free and total SA levels resembled those of wild-type plants inoculated with a virulent powdery mildew pathogen. The constitutive SA-associated response in rop6DN was suppressed in mutant backgrounds defective in SA signaling (nonexpresser of PR genes1 [npr1]) or biosynthesis (salicylic acid induction deficient2 [sid2]). However, the rop6DN npr1 and rop6DN sid2 double mutants retained the aberrant developmental phenotypes, indicating that the constitutive SA response can be uncoupled from ROP function(s) in development. rop6DN plants exhibited enhanced preinvasive defense responses to a host-adapted virulent powdery mildew fungus but were impaired in preinvasive defenses upon inoculation with a nonadapted powdery mildew. The host-adapted powdery mildew had a reduced reproductive fitness on rop6DN plants, which was retained in mutant backgrounds defective in SA biosynthesis or signaling. Our findings indicate that both the morphological aberrations and altered sensitivity to powdery mildews of rop6DN plants result from perturbations that are independent from the SA-associated response. These perturbations uncouple SA-dependent defense signaling from disease resistance execution. PMID

  17. Dendritic spine geometry can localize GTPase signaling in neurons

    PubMed Central

    Ramirez, Samuel A.; Raghavachari, Sridhar; Lew, Daniel J.

    2015-01-01

    Dendritic spines are the postsynaptic terminals of most excitatory synapses in the mammalian brain. Learning and memory are associated with long-lasting structural remodeling of dendritic spines through an actin-mediated process regulated by the Rho-family GTPases RhoA, Rac, and Cdc42. These GTPases undergo sustained activation after synaptic stimulation, but whereas Rho activity can spread from the stimulated spine, Cdc42 activity remains localized to the stimulated spine. Because Cdc42 itself diffuses rapidly in and out of the spine, the basis for the retention of Cdc42 activity in the stimulated spine long after synaptic stimulation has ceased is unclear. Here we model the spread of Cdc42 activation at dendritic spines by means of reaction-diffusion equations solved on spine-like geometries. Excitable behavior arising from positive feedback in Cdc42 activation leads to spreading waves of Cdc42 activity. However, because of the very narrow neck of the dendritic spine, wave propagation is halted through a phenomenon we term geometrical wave-pinning. We show that this can account for the localization of Cdc42 activity in the stimulated spine, and, of interest, retention is enhanced by high diffusivity of Cdc42. Our findings are broadly applicable to other instances of signaling in extreme geometries, including filopodia and primary cilia. PMID:26337387

  18. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    PubMed Central

    Rom, Slava; Reichenbach, Nancy L.; Dykstra, Holly; Persidsky, Yuri

    2015-01-01

    Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60–80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85–95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection. PMID:26379653

  19. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity.

    PubMed

    Rom, Slava; Reichenbach, Nancy L; Dykstra, Holly; Persidsky, Yuri

    2015-01-01

    Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60-80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85-95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection.

  20. Similarity and diversity of translational GTPase factors EF-G, EF4, and BipA: From structure to function.

    PubMed

    Ero, Rya; Kumar, Veerendra; Chen, Yun; Gao, Yong-Gui

    2016-12-01

    EF-G, EF4, and BipA are members of the translation factor family of GTPases with a common ribosome binding mode and GTPase activation mechanism. However, topological variations of shared as well as unique domains ensure different roles played by these proteins during translation. Recent X-ray crystallography and cryo-electron microscopy studies have revealed the structural basis for the involvement of EF-G domain IV in securing the movement of tRNAs and mRNA during translocation as well as revealing how the unique C-terminal domains of EF4 and BipA interact with the ribosome and tRNAs contributing to the regulation of translation under certain conditions. EF-G, EF-4, and BipA are intriguing examples of structural variations on a common theme that results in diverse behavior and function. Structural studies of translational GTPase factors have been greatly facilitated by the use of antibiotics, which have revealed their mechanism of action.

  1. Recycling and resensitization of the neurokinin 1 receptor. Influence of agonist concentration and Rab GTPases.

    PubMed

    Roosterman, Dirk; Cottrell, Graeme S; Schmidlin, Fabien; Steinhoff, Martin; Bunnett, Nigel W

    2004-07-16

    Substance P (SP) induces endocytosis and recycling of the neurokinin 1 receptor (NK1R) in endothelial cells and spinal neurons at sites of inflammation and pain, and it is thus important to understand the mechanism and function of receptor trafficking. We investigated how the SP concentration affects NK1R trafficking and determined the role of Rab GTPases in trafficking. NK1R trafficking was markedly influenced by the SP concentration. High SP (10 nM) induced translocation of the NK1R and beta-arrestin 1 to perinuclear sorting endosomes containing Rab5a, where NK1R remained for >60 min. Low SP (1 nM) induced translocation of the NK1R to early endosomes located immediately beneath the plasma membrane that also contained Rab5a and beta-arrestin 1, followed by rapid recycling of the NK1R. Overexpression of Rab5a promoted NK1R translocation to perinuclear sorting endosomes, whereas the GTP binding-deficient mutant Rab5aS34N caused retention of the NK1R in superficial early endosomes. NK1R translocated from superficial early endosomes to recycling endosomes containing Rab4a and Rab11a, and Rab11aS25N inhibited NK1R recycling. Rapid NK1R recycling coincided with resensitization of SP-induced Ca2+ mobilization and with the return of surface SP binding sites. Resensitization was minimally affected by inhibition of vacuolar H(+)-ATPase and phosphatases but was markedly suppressed by disruption of Rab4a and Rab11a. Thus, whereas beta-arrestins mediate NK1R endocytosis, Rab5a regulates translocation between early and sorting endosomes, and Rab4a and Rab11a regulate trafficking through recycling endosomes. We have thus identified a new function of Rab5a as a control protein for directing concentration-dependent trafficking of the NK1R into different intracellular compartments and obtained evidence that Rab4a and Rab11a contribute to G-protein-coupled receptor recycling from early endosomes.

  2. The identification of protein domains that mediate functional interactions between Rab-GTPases and RabGAPs using 3D protein modeling.

    PubMed

    Davie, Jeremiah J; Faitar, Silviu L

    2017-01-01

    Currently, time-consuming serial in vitro experimentation involving immunocytochemistry or radiolabeled materials is required to identify which of the numerous Rab-GTPases (Rab) and Rab-GTPase activating proteins (RabGAP) are capable of functional interactions. These interactions are essential for numerous cellular functions, and in silico methods of reducing in vitro trial and error would accelerate the pace of research in cell biology. We have utilized a combination of three-dimensional protein modeling and protein bioinformatics to identify domains present in Rab proteins that are predictive of their functional interaction with a specific RabGAP. The RabF2 and RabSF1 domains appear to play functional roles in mediating the interaction between Rabs and RabGAPs. Moreover, the RabSF1 domain can be used to make in silico predictions of functional Rab/RabGAP pairs. This method is expected to be a broadly applicable tool for predicting protein-protein interactions where existing crystal structures for homologs of the proteins of interest are available.

  3. Novel molecular insights into RhoA GTPase-induced resistance to aqueous humor outflow through the trabecular meshwork

    PubMed Central

    Zhang, Min; Maddala, Rupalatha; Rao, Ponugoti Vasantha

    2008-01-01

    Impaired drainage of aqueous humor through the trabecular meshwork (TM) culminating in increased intraocular pressure is a major risk factor for glaucoma, a leading cause of blindness worldwide. Regulation of aqueous humor drainage through the TM, however, is poorly understood. The role of RhoA GTPase-mediated actomyosin organization, cell adhesive interactions, and gene expression in regulation of aqueous humor outflow was investigated using adenoviral vector-driven expression of constitutively active mutant of RhoA (RhoAV14). Organ-cultured anterior segments from porcine eyes expressing RhoAV14 exhibited significant reduction of aqueous humor outflow. Cultured TM cells expressing RhoAV14 exhibited a pronounced contractile morphology, increased actin stress fibers, and focal adhesions and increased levels of phosphorylated myosin light chain (MLC), collagen IV, fibronectin, and laminin. cDNA microarray analysis of RNA extracted from RhoAV14-expressing human TM cells revealed a significant increase in the expression of genes encoding extracellular matrix (ECM) proteins, cytokines, integrins, cytoskeletal proteins, and signaling proteins. Conversely, various ECM proteins stimulated robust increases in phosphorylation of MLC, paxillin, and focal adhesion kinase and activated Rho GTPase and actin stress fiber formation in TM cells, indicating a potential regulatory feedback interaction between ECM-induced mechanical strain and Rho GTPase-induced isometric tension in TM cells. Collectively, these data demonstrate that sustained activation of Rho GTPase signaling in the aqueous humor outflow pathway increases resistance to aqueous humor outflow through the trabecular pathway by influencing the actomyosin assembly, cell adhesive interactions, and the expression of ECM proteins and cytokines in TM cells. PMID:18799648

  4. Poliovirus Proteins Induce Membrane Association of GTPase ADP-Ribosylation Factor

    PubMed Central

    Belov, George A.; Fogg, Mark H.; Ehrenfeld, Ellie

    2005-01-01

    Poliovirus infection results in the disintegration of intracellular membrane structures and formation of specific vesicles that serve as sites for replication of viral RNA. The mechanism of membrane rearrangement has not been clearly defined. Replication of poliovirus is sensitive to brefeldin A (BFA), a fungal metabolite known to prevent normal function of the ADP-ribosylation factor (ARF) family of small GTPases. During normal membrane trafficking in uninfected cells, ARFs are involved in vesicle formation from different intracellular sites through interaction with numerous regulatory and coat proteins as well as in regulation of phospholipase D activity and cytoskeleton modifications. We demonstrate here that ARFs 3 and 5, but not ARF6, are translocated to membranes in HeLa cell extracts that are engaged in translation of poliovirus RNA. The accumulation of ARFs on membranes correlates with active replication of poliovirus RNA in vitro, whereas ARF translocation to membranes does not occur in the presence of BFA. ARF translocation can be induced independently by synthesis of poliovirus 3A or 3CD proteins, and we describe mutations that abolished this activity. In infected HeLa cells, an ARF1-enhanced green fluorescent protein fusion redistributes from Golgi stacks to the perinuclear region, where poliovirus RNA replication occurs. Taken together, the data suggest an involvement of ARF in poliovirus RNA replication. PMID:15890959

  5. Arl6IP1 has the ability to shape the mammalian ER membrane in a reticulon-like fashion.

    PubMed

    Yamamoto, Yasunori; Yoshida, Asuka; Miyazaki, Naoyuki; Iwasaki, Kenji; Sakisaka, Toshiaki

    2014-02-15

    The ER (endoplasmic reticulum) consists of the nuclear envelope and a peripheral network of membrane sheets and tubules. Two classes of the evolutionarily conserved ER membrane proteins, reticulons and REEPs (receptor expression-enhancing proteins)/DP1 (deleted in polyposis locus 1)/Yop1 (YIP 1 partner), shape high-curvature ER tubules. In mammals, four members of the reticulon family and six members of the REEP family have been identified so far. In the present paper we report that Arl6IP1(ADP-ribosylation factor-like 6 interacting protein 1), an anti-apoptotic protein specific to multicellular organisms, is a potential player in shaping the ER tubules in mammalian cells. Arl6IP1, which does not share an overall primary sequence homology with reticulons, harbours reticulon-like short hairpin transmembrane domains and binds to atlastin, a GTPase that mediates the formation of the tubular ER network. Overexpression of Arl6IP1 induced extensive tubular structures of the ER and excluded a luminal protein. Furthermore, overexpression of Arl6IP1 stabilized the ER tubules, allowing the cells to maintain the ER tubules even in the absence of microtubules. Arl6IP1 constricted liposomes into tubules. The short hairpin structures of the transmembrane domains were required for the membrane-shaping activity of Arl6IP1. The results of the present study indicate that Arl6IP1 has the ability to shape high-curvature ER tubules in a reticulon-like fashion.

  6. The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3; end of 16S rRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Chao; Zhou, Xiaomei; Tarasov, Sergey G.

    2012-03-26

    Era, composed of a GTPase domain and a K homology domain, is essential for bacterial cell viability. It is required for the maturation of 16S rRNA and assembly of the 30S ribosomal subunit. We showed previously that the protein recognizes nine nucleotides (1531{sup AUCACCUCC}1539) near the 3{prime} end of 16S rRNA, and that this recognition stimulates GTP-hydrolyzing activity of Era. In all three kingdoms of life, the 1530{sup GAUCA}1534 sequence and helix 45 (h45) (nucleotides 1506-1529) are highly conserved. It has been shown that the 1530{sup GA}1531 to 1530{sup AG}1531 double mutation severely affects the viability of bacteria. However, whethermore » Era interacts with G1530 and/or h45 and whether such interactions (if any) contribute to the stimulation of Era's GTPase activity were not known. Here, we report two RNA structures that contain nucleotides 1506-1542 (RNA301), one in complex with Era and GDPNP (GNP), a nonhydrolysable GTP-analogue, and the other in complex with Era, GNP, and the KsgA methyltransferase. The structures show that Era recognizes 10 nucleotides, including G1530, and that Era also binds h45. Moreover, GTPase assay experiments show that G1530 does not stimulate Era's GTPase activity. Rather, A1531 and A1534 are most important for stimulation and h45 further contributes to the stimulation. Although G1530 does not contribute to the intrinsic GTPase activity of Era, its interaction with Era is important for binding and is essential for the protein to function, leading to the discovery of a new cold-sensitive phenotype of Era.« less

  7. An Arabidopsis Ran-binding protein, AtRanBP1c, is a co-activator of Ran GTPase-activating protein and requires the C-terminus for its cytoplasmic localization

    NASA Technical Reports Server (NTRS)

    Kim, Soo-Hwan; Roux, Stanley J.

    2003-01-01

    Ran-binding proteins (RanBPs) are a group of proteins that bind to Ran (Ras-related nuclear small GTP-binding protein), and thus either control the GTP/GDP-bound states of Ran or help couple the Ran GTPase cycle to a cellular process. AtRanBP1c is a Ran-binding protein from Arabidopsis thaliana (L.) Heynh. that was recently shown to be critically involved in the regulation of auxin-induced mitotic progression [S.-H. Kim et al. (2001) Plant Cell 13:2619-2630]. Here we report that AtRanBP1c inhibits the EDTA-induced release of GTP from Ran and serves as a co-activator of Ran-GTPase-activating protein (RanGAP) in vitro. Transient expression of AtRanBP1c fused to a beta-glucuronidase (GUS) reporter reveals that the protein localizes primarily to the cytosol. Neither the N- nor C-terminus of AtRanBP1c, which flank the Ran-binding domain (RanBD), is necessary for the binding of PsRan1-GTP to the protein, but both are needed for the cytosolic localization of GUS-fused AtRanBP1c. These findings, together with a previous report that AtRanBP1c is critically involved in root growth and development, imply that the promotion of GTP hydrolysis by the Ran/RanGAP/AtRanBP1c complex in the cytoplasm, and the resulting concentration gradient of Ran-GDP to Ran-GTP across the nuclear membrane could be important in the regulation of auxin-induced mitotic progression in root tips of A. thaliana.

  8. Merkel Cell Polyomavirus Small T Antigen Drives Cell Motility via Rho-GTPase-Induced Filopodium Formation.

    PubMed

    Stakaitytė, Gabrielė; Nwogu, Nnenna; Dobson, Samuel J; Knight, Laura M; Wasson, Christopher W; Salguero, Francisco J; Blackbourn, David J; Blair, G Eric; Mankouri, Jamel; Macdonald, Andrew; Whitehouse, Adrian

    2018-01-15

    Cell motility and migration is a complex, multistep, and multicomponent process intrinsic to progression and metastasis. Motility is dependent on the activities of integrin receptors and Rho family GTPases, resulting in the remodeling of the actin cytoskeleton and formation of various motile actin-based protrusions. Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high likelihood of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases, and MCPyV-induced tumorigenesis largely depends on the expression of the small tumor antigen (ST). Since the discovery of MCPyV, a number of mechanisms have been suggested to account for replication and tumorigenesis, but to date, little is known about potential links between MCPyV T antigen expression and the metastatic nature of MCC. Previously, we described the action of MCPyV ST on the microtubule network and how it impacts cell motility and migration. Here, we demonstrate that MCPyV ST affects the actin cytoskeleton to promote the formation of filopodia through a mechanism involving the catalytic subunit of protein phosphatase 4 (PP4C). We also show that MCPyV ST-induced cell motility is dependent upon the activities of the Rho family GTPases Cdc42 and RhoA. In addition, our results indicate that the MCPyV ST-PP4C interaction results in the dephosphorylation of β 1 integrin, likely driving the cell motility pathway. These findings describe a novel mechanism by which a tumor virus induces cell motility, which may ultimately lead to cancer metastasis, and provides opportunities and strategies for targeted interventions for disseminated MCC. IMPORTANCE Merkel cell polyomavirus (MCPyV) is the most recently discovered human tumor virus. It causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer. However, the molecular mechanisms implicating MCPyV-encoded proteins in cancer development are yet to be fully elucidated. This study builds

  9. Association of fat mass and obesity-associated and retinitis pigmentosa guanosine triphosphatase (GTPase) regulator-interacting protein-1 like polymorphisms with body mass index in Chinese women.

    PubMed

    Chen, Boyu; Li, Zhiqiang; Chen, Jianhua; Ji, Jue; Shen, Jingyi; Xu, Yufeng; Zhao, Yingying; Liu, Danping; Shen, Yinhuan; Zhang, Weijie; Shen, Jiawei; Wang, Yonggang; Shi, Yongyong

    2018-04-14

    Body mass index (BMI) is the most commonly used quantitative measure of adiposity. It is a kind of complex genetic diseases which are caused by multiple susceptibility genes. The first intron of fat mass and obesity-associated (FTO) has been widely discovered to be associated with BMI. Retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L) is located in the upstream region of FTO and has been proved to be linked with obesity through functional tests. We carried out a genetic association analysis to figure out the role of the FTO gene and the RPGRIP1L gene in BMI. A quantitative traits study with 6,102 Chinese female samples, adjusted for age, was performed during our project. Among the twelve SNPs, rs1421085, rs1558902, rs17817449, rs8050136, rs9939609, rs7202296, rs56137030, rs9930506 and rs12149832 in the FTO gene were significantly associated with BMI after Bonferroni correction. Meanwhile, rs9934800 in the RPGRIP1L gene showed significance with BMI before Bonferroni correction, but this association was eliminated after Bonferroni correction. Our results suggested that genetic variants in the FTO gene were strongly associated with BMI in Chinese women, which may serve as targets of pharmaceutical research and development concerning BMI. Meanwhile, we didn't found the significant association between RPGRIP1L and BMI in Chinese women.

  10. Arf6 guanine-nucleotide exchange factor, cytohesin-2, interacts with actinin-1 to regulate neurite extension.

    PubMed

    Torii, Tomohiro; Miyamoto, Yuki; Nakamura, Kazuaki; Maeda, Masahiro; Yamauchi, Junji; Tanoue, Akito

    2012-09-01

    Proper regulation of morphological changes in neuronal cells is essential for their differentiation. Complex signaling mechanisms mediate a variety of morphological changes such as formation of neurites. It is well established that a number of small GTPases control neurite behavior before the connection with the target tissue. However, their regulatory mechanisms remain to be fully understood. Here, we show that the Arf6 guanine-nucleotide exchange factor (GEF), cytohesin-2 (CYTH2), interacts with the cytoskeletal protein actinin-1 (ACTN1) and regulates neurite extension in N1E-115 cells used as the model. Knockdown of ACTN1, as well as that of CYTH2, in cells inhibits cellular Arf6 activity and neurite extension. The C-terminal polybasic region of CYTH2 participates in interacting directly with the EFh2 domain of ACTN1. Expression of CYTH2 mutant deficient of the EFh2 domain in cells also inhibits Arf6 activation and neurite extension. Furthermore, FRET analysis detects that the respective interactive region peptides, tagged with cell-permeable short peptides, greatly decrease Arf6 activation at growth cones in a time-dependent manner. Collectively, the signaling through CYTH2 and ACTN1 properly regulates neurite extension in N1E-115 cells, demonstrating the unexpected interaction of CYTH2 and ACTN1 in the regulation of cellular Arf6 activity involved in neurite extension. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies

    PubMed Central

    Azzarelli, Roberta; Kerloch, Thomas; Pacary, Emilie

    2015-01-01

    The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations. PMID:25610373

  12. Studies of Neurofibromatosis-1 Modifier Genes

    DTIC Science & Technology

    2005-06-01

    inhibitors of GTPase activation by preventing the dissociation of GDP from the inactive GTPase. [E3 DDff The current dogma, at least in the context of...dissociation the cycle is less clear. inhibitors (GD/s), the activity of each of which is potentially modulated in response to various signals. Inactive...function No. of No. of No. of No. of No. of ArfGAPs RabGAPs RapGAPs RasGAPs RhoGAPs BAR IPR004148 Membrane curvature sensor 6 (4) 0 0 0 6 (6) BTK

  13. Mevalonate Cascade and Small Rho GTPase in Spinal Cord Injury.

    PubMed

    Eftekharpour, Eftekhar; Nagakannan, Pandian; Iqbal, Mohamed Ariff; Chen, Qi Min

    2017-01-01

    The mevalonate pathway has been extensively studied for its involvement in cholesterol synthesis. Inhibition of this pathway using statins (3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors; HMGR inhibitors) is the primarily selected method due to its cholesterol-lowering effect, making statins the most commonly used (86-94%) cholesterol-lowering drugs in adults. This pathway has several other by-products that are affected by statins including GTPase molecules (guanine triphosphate-binding kinases), such as Rho/Rho-associated coiled kinase (ROCK) kinases, that are implicated in other diseases, including those of the central nervous system (CNS). These molecules control several aspects of neural cell life including axonal growth, cellular migration, and cell death, and therefore, are of increasing interest in the field of spinal cord injury (SCI). Limited regeneration capacity of nerve fibers in adult CNS has been considered the main obstacle for finding a SCI cure. Over the past two decades, the identity of inhibitory factors for regeneration has been widely investigated. It is well-established that the Rho/ROCK kinase system is specifically activated by the components of damaged spinal cord tissue, including oligodendrocytes and myelin, as well as extracellular matrix. This has led many groups to hypothesize that statin therapy may in fact enhance the current neurorestorative approaches. In this mini-review, a summary of SCI pathophysiology is discussed and the current literature targeting the regeneration obstacles in SCI are reviewed, with special attention to recent publications of the past decade. In addition, we focus on the current literature involving the use of pharmacological and molecular inhibitors of small GTPase molecules for treatment of neurotrauma. Inhibiting these molecules has been shown to increase neuroprotection, enhance axonal regeneration, and facilitate the implementation of cell replacement therapies. Based upon available

  14. Preventing the activation or cycling of the Rap1 GTPase alters adhesion and cytoskeletal dynamics and blocks metastatic melanoma cell extravasation into the lungs.

    PubMed

    Freeman, Spencer A; McLeod, Sarah J; Dukowski, Janet; Austin, Pamela; Lee, Crystal C Y; Millen-Martin, Brandie; Kubes, Paul; McCafferty, Donna-Marie; Gold, Michael R; Roskelley, Calvin D

    2010-06-01

    The Rap1 GTPase is a master regulator of cell adhesion, polarity, and migration. We show that both blocking Rap1 activation and expressing a constitutively active form of Rap1 reduced the ability of B16F1 melanoma cells to extravasate from the microvasculature and form metastatic lesions in the lungs. This correlated with a decreased ability of the tumor cells to undergo transendothelial migration (TEM) in vitro and form dynamic, F-actin-rich pseudopodia that penetrate capillary endothelial walls in vivo. Using multiple tumor cell lines, we show that the inability to form these membrane protrusions, which likely promote TEM and extravasation, can be explained by altered adhesion dynamics and impaired cell polarization that result when Rap1 activation or cycling is perturbed. Thus, targeting Rap1 could be a useful approach for reducing the metastatic dissemination of tumor cells that undergo active TEM. Copyright 2010 AACR.

  15. The 'invisible hand': regulation of RHO GTPases by RHOGDIs.

    PubMed

    Garcia-Mata, Rafael; Boulter, Etienne; Burridge, Keith

    2011-07-22

    The 'invisible hand' is a term originally coined by Adam Smith in The Theory of Moral Sentiments to describe the forces of self-interest, competition and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle.

  16. The invisible hand: regulation of RHO GTPases by RHOGDIs

    PubMed Central

    Garcia-Mata, Rafael; Boulter, Etienne; Burridge, Keith

    2011-01-01

    Preface The 'invisible hand' is a term originally coined by Adam Smith in the Theory of Moral Sentiments to describe the forces of self-interest, competition, and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle. PMID:21779026

  17. Crystallographic analysis of the conserved C-terminal domain of transcription factor Cdc73 from Saccharomyces cerevisiae reveals a GTPase-like fold.

    PubMed

    Chen, Hongkai; Shi, Nuo; Gao, Yongxiang; Li, Xu; Teng, Maikun; Niu, Liwen

    2012-08-01

    The yeast Paf1 complex (Paf1C), which is composed of the proteins Paf1, Cdc73, Ctr9, Leo1 and Rtf1, accompanies RNA polymerase II from the promoter to the 3'-end formation site of mRNA- and snoRNA-encoding genes. As one of the first identified subunits of Paf1C, yeast Cdc73 (yCdc73) takes part in many transcription-related processes, including binding to RNA polymerase II, recruitment and activation of histone-modification factors and communication with other transcriptional activators. The human homologue of yCdc73, parafibromin, has been identified as a tumour suppressor linked to breast, renal and gastric cancers. However, the functional mechanism of yCdc73 has until recently been unclear. Here, a 2.2 Å resolution crystal structure of the highly conserved C-terminal region of yCdc73 is reported. It revealed that yCdc73 appears to have a GTPase-like fold. However, no GTPase activity was observed. The crystal structure of yCdc73 will shed new light on the modes of function of Cdc73 and Paf1C.

  18. Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi Network

    PubMed Central

    Santiago-Tirado, Felipe H.; Bretscher, Anthony

    2011-01-01

    Cell polarity in eukaryotes requires constant sorting, packaging, and transport of membrane-bound cargo within the cell. These processes occur in two sorting hubs: the recycling endosome for incoming material, and the trans-Golgi Network for outgoing. Phosphatidylinositol 3-phosphate and 4–5 phosphate are enriched at the endocytic and exocytic sorting hubs, respectively, where they act together with small GTPases to recruit factors to segregate cargo and regulate carrier formation and transport. In this review, we summarize the current understanding of how these lipids and GTPases directly regulate membrane trafficking, emphasizing the recent discoveries of phosphatidylinositol 4-phosphate functions at the trans-Golgi Network. PMID:21764313

  19. Sec71 functions as a GEF for the small GTPase Arf1 to govern dendrite pruning of Drosophila sensory neurons.

    PubMed

    Wang, Yan; Zhang, Heng; Shi, Meng; Liou, Yih-Cherng; Lu, Lei; Yu, Fengwei

    2017-05-15

    Pruning, whereby neurons eliminate their excess neurites, is central for the maturation of the nervous system. In Drosophila , sensory neurons, ddaCs, selectively prune their larval dendrites without affecting their axons during metamorphosis. However, it is unknown whether the secretory pathway plays a role in dendrite pruning. Here, we show that the small GTPase Arf1, an important regulator of the secretory pathway, is specifically required for dendrite pruning of ddaC/D/E sensory neurons but dispensable for apoptosis of ddaF neurons. Analyses of the GTP- and GDP-locked forms of Arf1 indicate that the cycling of Arf1 between GDP-bound and GTP-bound forms is essential for dendrite pruning. We further identified Sec71 as a guanine nucleotide exchange factor for Arf1 that preferentially interacts with its GDP-bound form. Like Arf1, Sec71 is also important for dendrite pruning, but not for apoptosis, of sensory neurons. Arf1 and Sec71 are interdependent for their localizations on Golgi. Finally, we show that the Sec71/Arf1-mediated trafficking process is a prerequisite for Rab5-dependent endocytosis to facilitate endocytosis and degradation of the cell-adhesion molecule Neuroglian (Nrg). © 2017. Published by The Company of Biologists Ltd.

  20. A novel functional domain of Cdc15 kinase is required for its interaction with Tem1 GTPase in Saccharomyces cerevisiae.

    PubMed Central

    Asakawa, K; Yoshida, S; Otake, F; Toh-e, A

    2001-01-01

    Exit from mitosis requires the inactivation of cyclin-dependent kinase (CDK) activity. In the budding yeast Saccharomyces cerevisiae, a number of gene products have been identified as components of the signal transduction network regulating inactivation of CDK (called the MEN, for the mitotic exit network). Cdc15, one of such components of the MEN, is an essential protein kinase. By the two-hybrid screening, we identified Cdc15 as a binding protein of Tem1 GTPase, another essential regulator of the MEN. Coprecipitation experiments revealed that Tem1 binds to Cdc15 in vivo. By deletion analysis, we found that the Tem1-binding domain resides near the conserved kinase domain of Cdc15. The cdc15-LF mutation, which was introduced into the Tem1-binding domain, reduced the interaction with Cdc15 and Tem1 and caused temperature-sensitive growth.The kinase activity of Cdc15 was not so much affected by the cdc15-LF mutation. However, Cdc15-LF failed to localize to the SPB at the restrictive temperature. Our data show that the interaction with Tem1 is important for the function of Cdc15 and that Cdc15 and Tem1 function in a complex to direct the exit from mitosis. PMID:11290702

  1. A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity.

    PubMed

    Umeda, Nobuhiro; Ueno, Tasuku; Pohlmeyer, Christopher; Nagano, Tetsuo; Inoue, Takanari

    2011-01-12

    We developed a novel method to spatiotemporally control the activity of signaling molecules. A newly synthesized photocaged rapamycin derivative induced rapid dimerization of FKBP (FK-506 binding protein) and FRB (FKBP-rapamycin binding protein) upon UV irradiation. With this system and the spatially confined UV irradiation, we achieved subcellularly localized activation of Rac, a member of small GTPases. Our technique offers a powerful approach to studies of dynamic intracellular signaling events.

  2. RhoGTPase signalling at epithelial tight junctions: Bridging the GAP between polarity and cancer.

    PubMed

    Zihni, Ceniz; Terry, Stephen James

    2015-07-01

    The establishment and maintenance of epithelial polarity must be correctly controlled for normal development and homeostasis. Tight junctions (TJ) in vertebrates define apical and basolateral membrane domains in polarized epithelia via bi-directional, complex signalling pathways between TJ themselves and the cytoskeleton they are associated with. RhoGTPases are central to these processes and evidence suggests that their regulation is coordinated by interactions between GEFs and GAPs with junctional, cytoplasmic adapter proteins. In this InFocus review we determine that the expression, localization or stability of a variety of these adaptor proteins is altered in various cancers, potentially representing an important mechanistic link between loss of polarity and cancer. We focus here, on two well characterized RhoGTPases Cdc42 and RhoA who's GEFs and GAPs are predominantly localized to TJ via cytoplasmic adaptor proteins. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. ADP-ribosylation factor arf6p may function as a molecular switch of new end take off in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Atsushi

    2008-02-01

    Small GTPases act as molecular switches in a wide variety of cellular processes. In fission yeast Schizosaccharomyces pombe, the directions of cell growth change from a monopolar manner to a bipolar manner, which is known as 'New End Take Off' (NETO). Here I report the identification of a gene, arf6{sup +}, encoding an ADP-ribosylation factor small GTPase, that may be essential for NETO. arf6{delta} cells completely fail to undergo NETO. arf6p localizes at both cell ends and presumptive septa in a cell-cycle dependent manner. And its polarized localization is not dependent on microtubules, actin cytoskeletons and some NETO factors (bud6p,more » for3p, tea1p, tea3p, and tea4p). Notably, overexpression of a fast GDP/GTP-cycling mutant of arf6p can advance the timing of NETO. These findings suggest that arf6p functions as a molecular switch for the activation of NETO in fission yeast.« less

  4. Pak and Rac GTPases promote oncogenic KIT–induced neoplasms

    PubMed Central

    Martin, Holly; Mali, Raghuveer Singh; Ma, Peilin; Chatterjee, Anindya; Ramdas, Baskar; Sims, Emily; Munugalavadla, Veerendra; Ghosh, Joydeep; Mattingly, Ray R.; Visconte, Valeria; Tiu, Ramon V.; Vlaar, Cornelis P.; Dharmawardhane, Suranganie; Kapur, Reuben

    2013-01-01

    An acquired somatic mutation at codon 816 in the KIT receptor tyrosine kinase is associated with poor prognosis in patients with systemic mastocytosis and acute myeloid leukemia (AML). Treatment of leukemic cells bearing this mutation with an allosteric inhibitor of p21–activated kinase (Pak) or its genetic inactivation results in growth repression due to enhanced apoptosis. Inhibition of the upstream effector Rac abrogates the oncogene-induced growth and activity of Pak. Although both Rac1 and Rac2 are constitutively activated via the guanine nucleotide exchange factor (GEF) Vav1, loss of Rac1 or Rac2 alone moderately corrected the growth of KIT-bearing leukemic cells, whereas the combined loss resulted in 75% growth repression. In vivo, the inhibition of Vav or Rac or Pak delayed the onset of myeloproliferative neoplasms (MPNs) and corrected the associated pathology in mice. To assess the role of Rac GEFs in oncogene-induced transformation, we used an inhibitor of Rac, EHop-016, which specifically targets Vav1 and found that EHop-016 was a potent inhibitor of human and murine leukemic cell growth. These studies identify Pak and Rac GTPases, including Vav1, as potential therapeutic targets in MPN and AML involving an oncogenic form of KIT. PMID:24091327

  5. Activated GTPase movement on an RNA scaffold drives cotranslational protein targeting

    PubMed Central

    Shen, Kuang; Arslan, Sinan; Akopian, David; Ha, Taekjip; Shan, Shu-ou

    2012-01-01

    Roughly one third of the proteome is initially destined for the eukaryotic endoplasmic reticulum or the bacterial plasma membrane1. The proper localization of these proteins is mediated by a universally conserved protein targeting machinery, the signal recognition particle (SRP), which recognizes ribosomes carrying signal sequences2–4 and, via interactions with the SRP receptor5,6, delivers them to the protein translocation machinery on the target membrane7. The SRP is an ancient ribonucleoprotein particle containing an essential, elongated SRP RNA whose precise functions have remained elusive. Here, we used single molecule fluorescence microscopy to demonstrate that the SRP-receptor GTPase complex, after initial assembly at the tetraloop end of SRP RNA, travels over 100 Å to the distal end of this RNA where rapid GTP hydrolysis occurs. This movement is negatively regulated by the translating ribosome and, at a later stage, positively regulated by the SecYEG translocon, providing an attractive mechanism to ensure the productive exchange of the targeting and translocation machineries at the ribosome exit site with exquisite spatial and temporal accuracy. Our results show that large RNAs can act as molecular scaffolds that enable the facile exchange of distinct factors and precise timing of molecular events in a complex cellular process; this concept may be extended to similar phenomena in other ribonucleoprotein complexes. PMID:23235881

  6. Apical accumulation of the Sevenless receptor tyrosine kinase during Drosophila eye development is promoted by the small GTPase Rap1.

    PubMed

    Baril, Caroline; Lefrançois, Martin; Sahmi, Malha; Knævelsrud, Helene; Therrien, Marc

    2014-08-01

    The Ras/MAPK-signaling pathway plays pivotal roles during development of metazoans by controlling cell proliferation and cell differentiation elicited, in several instances, by receptor tyrosine kinases (RTKs). While the internal mechanism of RTK-driven Ras/MAPK signaling is well understood, far less is known regarding its interplay with other co-required signaling events involved in developmental decisions. In a genetic screen designed to identify new regulators of RTK/Ras/MAPK signaling during Drosophila eye development, we identified the small GTPase Rap1, PDZ-GEF, and Canoe as components contributing to Ras/MAPK-mediated R7 cell differentiation. Rap1 signaling has recently been found to participate in assembling cadherin-based adherens junctions in various fly epithelial tissues. Here, we show that Rap1 activity is required for the integrity of the apical domains of developing photoreceptor cells and that reduced Rap1 signaling hampers the apical accumulation of the Sevenless RTK in presumptive R7 cells. It thus appears that, in addition to its role in cell-cell adhesion, Rap1 signaling controls the partitioning of the epithelial cell membrane, which in turn influences signaling events that rely on apico-basal cell polarity. Copyright © 2014 by the Genetics Society of America.

  7. Targeting cell division: Small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality

    PubMed Central

    Margalit, Danielle N.; Romberg, Laura; Mets, Rebecca B.; Hebert, Alan M.; Mitchison, Timothy J.; Kirschner, Marc W.; RayChaudhuri, Debabrata

    2004-01-01

    FtsZ, the ancestral homolog of eukaryotic tubulins, is a GTPase that assembles into a cytokinetic ring structure essential for cell division in prokaryotic cells. Similar to tubulin, purified FtsZ polymerizes into dynamic protofilaments in the presence of GTP; polymer assembly is accompanied by GTP hydrolysis. We used a high-throughput protein-based chemical screen to identify small molecules that target assembly-dependent GTPase activity of FtsZ. Here, we report the identification of five structurally diverse compounds, named Zantrins, which inhibit FtsZ GTPase either by destabilizing the FtsZ protofilaments or by inducing filament hyperstability through increased lateral association. These two classes of FtsZ inhibitors are reminiscent of the antitubulin drugs colchicine and Taxol, respectively. We also show that Zantrins perturb FtsZ ring assembly in Escherichia coli cells and cause lethality to a variety of bacteria in broth cultures, indicating that FtsZ antagonists may serve as chemical leads for the development of new broad-spectrum antibacterial agents. Our results illustrate the utility of small-molecule chemical probes to study FtsZ polymerization dynamics and the feasibility of FtsZ as a novel therapeutic target. PMID:15289600

  8. Association of N-cadherin levels and downstream effectors of Rho GTPases with dendritic spine loss induced by chronic stress in rat hippocampal neurons.

    PubMed

    Castañeda, Patricia; Muñoz, Mauricio; García-Rojo, Gonzalo; Ulloa, José L; Bravo, Javier A; Márquez, Ruth; García-Pérez, M Alexandra; Arancibia, Damaris; Araneda, Karina; Rojas, Paulina S; Mondaca-Ruff, David; Díaz-Véliz, Gabriela; Mora, Sergio; Aliaga, Esteban; Fiedler, Jenny L

    2015-10-01

    Chronic stress promotes cognitive impairment and dendritic spine loss in hippocampal neurons. In this animal model of depression, spine loss probably involves a weakening of the interaction between pre- and postsynaptic cell adhesion molecules, such as N-cadherin, followed by disruption of the cytoskeleton. N-cadherin, in concert with catenin, stabilizes the cytoskeleton through Rho-family GTPases. Via their effector LIM kinase (LIMK), RhoA and ras-related C3 botulinum toxin substrate 1 (RAC) GTPases phosphorylate and inhibit cofilin, an actin-depolymerizing molecule, favoring spine growth. Additionally, RhoA, through Rho kinase (ROCK), inactivates myosin phosphatase through phosphorylation of the myosin-binding subunit (MYPT1), producing actomyosin contraction and probable spine loss. Some micro-RNAs negatively control the translation of specific mRNAs involved in Rho GTPase signaling. For example, miR-138 indirectly activates RhoA, and miR-134 reduces LIMK1 levels, resulting in spine shrinkage; in contrast, miR-132 activates RAC1, promoting spine formation. We evaluated whether N-cadherin/β-catenin and Rho signaling is sensitive to chronic restraint stress. Stressed rats exhibit anhedonia, impaired associative learning, and immobility in the forced swim test and reduction in N-cadherin levels but not β-catenin in the hippocampus. We observed a reduction in spine number in the apical dendrites of CA1 pyramidal neurons, with no effect on the levels of miR-132 or miR-134. Although the stress did not modify the RAC-LIMK-cofilin signaling pathway, we observed increased phospho-MYPT1 levels, probably mediated by RhoA-ROCK activation. Furthermore, chronic stress raises the levels of miR-138 in accordance with the observed activation of the RhoA-ROCK pathway. Our findings suggest that a dysregulation of RhoA-ROCK activity by chronic stress could potentially underlie spine loss in hippocampal neurons. © 2015 Wiley Periodicals, Inc.

  9. Sustained Delivery of Activated Rho GTPases and BDNF Promotes Axon Growth in CSPG-Rich Regions Following Spinal Cord Injury

    PubMed Central

    Jain, Anjana; McKeon, Robert J.; Brady-Kalnay, Susann M.; Bellamkonda, Ravi V.

    2011-01-01

    Background Spinal cord injury (SCI) often results in permanent functional loss. This physical trauma leads to secondary events, such as the deposition of inhibitory chondroitin sulfate proteoglycan (CSPG) within astroglial scar tissue at the lesion. Methodology/Principal Findings We examined whether local delivery of constitutively active (CA) Rho GTPases, Cdc42 and Rac1 to the lesion site alleviated CSPG-mediated inhibition of regenerating axons. A dorsal over-hemisection lesion was created in the rat spinal cord and the resulting cavity was conformally filled with an in situ gelling hydrogel combined with lipid microtubes that slowly released constitutively active (CA) Cdc42, Rac1, or Brain-derived neurotrophic factor (BDNF). Treatment with BDNF, CA-Cdc42, or CA-Rac1 reduced the number of GFAP-positive astrocytes, as well as CSPG deposition, at the interface of the implanted hydrogel and host tissue. Neurofilament 160kDa positively stained axons traversed the glial scar extensively, entering the hydrogel-filled cavity in the treatments with BDNF and CA-Rho GTPases. The treated animals had a higher percentage of axons from the corticospinal tract that traversed the CSPG-rich regions located proximal to the lesion site. Conclusion Local delivery of CA-Cdc42, CA-Rac1, and BDNF may have a significant therapeutic role in overcoming CSPG-mediated regenerative failure after SCI. PMID:21283639

  10. A network of conserved formins, regulated by the guanine exchange factor EXC-5 and the GTPase CDC-42, modulates tubulogenesis in vivo.

    PubMed

    Shaye, Daniel D; Greenwald, Iva

    2016-11-15

    The C. elegans excretory cell (EC) is a powerful model for tubulogenesis, a conserved process that requires precise cytoskeletal regulation. EXC-6, an ortholog of the disease-associated formin INF2, coordinates cell outgrowth and lumen formation during EC tubulogenesis by regulating F-actin at the tip of the growing canal and the dynamics of basolateral microtubules. EXC-6 functions in parallel with EXC-5/FGD, a predicted activator of the Rho GTPase Cdc42. Here, we identify the parallel pathway: EXC-5 functions through CDC-42 to regulate two other formins: INFT-2, another INF2 ortholog, and CYK-1, the sole ortholog of the mammalian diaphanous (mDia) family of formins. We show that INFT-2 promotes F-actin accumulation in the EC, and that CYK-1 inhibits INFT-2 to regulate F-actin levels and EXC-6-promoted outgrowth. As INF2 and mDia physically interact and cross-regulate in cultured cells, our work indicates that a conserved EXC-5-CDC-42 pathway modulates this regulatory interaction and that it is functionally important in vivo during tubulogenesis. © 2016. Published by The Company of Biologists Ltd.

  11. Structure of the catalytic domain of Plasmodium falciparum ARF GTPase-activating protein (ARFGAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, William J.; Senkovich, Olga; Chattopadhyay, Debasish

    2012-03-26

    The crystal structure of the catalytic domain of the ADP ribosylation factor GTPase-activating protein (ARFGAP) from Plasmodium falciparum has been determined and refined to 2.4 {angstrom} resolution. Multiwavelength anomalous diffraction (MAD) data were collected utilizing the Zn{sup 2+} ion bound at the zinc-finger domain and were used to solve the structure. The overall structure of the domain is similar to those of mammalian ARFGAPs. However, several amino-acid residues in the area where GAP interacts with ARF1 differ in P. falciparum ARFGAP. Moreover, a number of residues that form the dimer interface in the crystal structure are unique in P. falciparummore » ARFGAP.« less

  12. A Novel Interaction between the SH2 Domain of Signaling Adaptor Protein Nck-1 and the Upstream Regulator of the Rho Family GTPase Rac1 Engulfment and Cell Motility 1 (ELMO1) Promotes Rac1 Activation and Cell Motility*

    PubMed Central

    Zhang, Guo; Chen, Xia; Qiu, Fanghua; Zhu, Fengxin; Lei, Wenjing; Nie, Jing

    2014-01-01

    Nck family proteins function as adaptors to couple tyrosine phosphorylation signals to actin cytoskeleton reorganization. Several lines of evidence indicate that Nck family proteins involve in regulating the activity of Rho family GTPases. In the present study, we characterized a novel interaction between Nck-1 with engulfment and cell motility 1 (ELMO1). GST pull-down and co-immunoprecipitation assay demonstrated that the Nck-1-ELMO1 interaction is mediated by the SH2 domain of Nck-1 and the phosphotyrosine residues at position 18, 216, 395, and 511 of ELMO1. A R308K mutant of Nck-1 (in which the SH2 domain was inactive), or a 4YF mutant of ELMO1 lacking these four phosphotyrosine residues, diminished Nck-1-ELMO1 interaction. Conversely, tyrosine phosphatase inhibitor treatment and overexpression of Src family kinase Hck significantly enhanced Nck-1-ELMO1 interaction. Moreover, wild type Nck-1, but not R308K mutant, significantly augmented the interaction between ELMO1 and constitutively active RhoG (RhoGV12A), thus promoted Rac1 activation and cell motility. Taken together, the present study characterized a novel Nck-1-ELMO1 interaction and defined a new role for Nck-1 in regulating Rac1 activity. PMID:24928514

  13. Fructose-1,6-bisphosphatase Inhibits ERK Activation and Bypasses Gemcitabine Resistance in Pancreatic Cancer by Blocking IQGAP1–MAPK Interaction

    PubMed Central

    Jin, Xin; Pan, Yunqian; Wang, Liguo; Ma, Tao; Zhang, Lizhi; Tang, Amy H.; Billadeau, Daniel D.; Wu, Heshui; Huang, Haojie

    2017-01-01

    Dysregulation of the MAPK pathway correlates with progression of pancreatic ductal adenocarcinoma (PDAC) progression. IQ motif containing GTPase-activating protein 1 (IQGAP1) is a MAPK scaffold that directly regulates the activation of RAF, MEK, and ERK. Fructose-1,6-bisphosphatase (FBP1), a key enzyme in gluconeogenesis, is transcriptionally downregulated in various cancers, including PDAC. Here, we demonstrate that FBP1 acts as a negative modulator of the IQGAP1–MAPK signaling axis in PDAC cells. FBP1 binding to the WW domain of IQGAP1 impeded IQGAP1-dependent ERK1/2 phosphorylation (pERK1/2) in a manner independent of FBP1 enzymatic activity. Conversely, decreased FBP1 expression induced pERK1/2 levels in PDAC cell lines and correlated with increased pERK1/2 levels in patient specimens. Treatment with gemcitabine caused undesirable activation of ERK1/2 in PDAC cells, but cotreatment with the FBP1-derived small peptide inhibitor FBP1 E4 overcame gemcitabine-induced ERK activation, thereby increasing the anticancer efficacy of gemcitabine in PDAC. These findings identify a primary mechanism of resistance of PDAC to standard therapy and suggest that the FBP1–IQGAP1–ERK1/2 signaling axis can be targeted for effective treatment of PDAC. PMID:28720574

  14. Downregulation of the small GTPase SAR1A: a key event underlying alcohol-induced Golgi fragmentation in hepatocytes

    PubMed Central

    Petrosyan, Armen; Cheng, Pi-Wan; Clemens, Dahn L.; Casey, Carol A.

    2015-01-01

    The hepatic asialoglycoprotein receptor (ASGP-R) is posttranslationally modified in the Golgi en route to the plasma membrane, where it mediates clearance of desialylated serum glycoproteins. It is known that content of plasma membrane-associated ASGP-R is decreased after ethanol exposure, although the mechanisms remain elusive. Previously, we found that formation of compact Golgi requires dimerization of the largest Golgi matrix protein giantin. We hypothesize that ethanol-impaired giantin function may be related to altered trafficking of ASGP-R. Here we report that in HepG2 cells expressing alcohol dehydrogenase and hepatocytes of ethanol-fed rats, ethanol metabolism results in Golgi disorganization. This process is initiated by dysfunction of SAR1A GTPase followed by altered COPII vesicle formation and impaired Golgi delivery of the protein disulfide isomerase A3 (PDIA3), an enzyme that catalyzes giantin dimerization. Additionally, we show that SAR1A gene silencing in hepatocytes mimics the effect of ethanol: dedimerization of giantin, arresting PDIA3 in the endoplasmic reticulum (ER) and large-scale alterations in Golgi architecture. Ethanol-induced Golgi fission has no effect on ER-to-Golgi transportation of ASGP-R, however, it results in its deposition in cis-medial-, but not trans-Golgi. Thus, alcohol-induced deficiency in COPII vesicle formation predetermines Golgi fragmentation which, in turn, compromises the Golgi-to-plasma membrane transportation of ASGP-R. PMID:26607390

  15. Development of a Novel NMR-based Rheb GTPase Assay and Molecular Characterization of TSC2 GAP Activity

    DTIC Science & Technology

    2010-05-01

    GTPase) that belongs to the Ras superfamily and has homologs in yeast, fungi , slime mold, fruit fly, zebra fish, and mammals (1–3). Ge- netic and...characterization of TSC2 disease mutations affecting its GAP activity (months 9-12) While the final aspects of this task are yet to be completed, we have...domain mutants of TSC2 that we examined affected its enzymatic activ- ity. This method can now be applied to study the function and regulation of other

  16. Ras-Related Small GTPases RalA and RalB Regulate Cellular Survival After Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidd, Ambrose R.; Snider, Jared L.; Martin, Timothy D.

    2010-09-01

    Purpose: Oncogenic activation of Ras renders cancer cells resistant to ionizing radiation (IR), but the mechanisms have not been fully characterized. The Ras-like small GTPases RalA and RalB are downstream effectors of Ras function and are critical for both tumor growth and survival. The Ral effector RalBP1/RLIP76 mediates survival of mice after whole-body irradiation, but the role of the Ral GTPases themselves in response to IR is unknown. We have investigated the role of RalA and RalB in cellular responses to IR. Methods and Materials: RalA, RalB, and their major effectors RalBP1 and Sec5 were knocked down by stable expressionmore » of short hairpin RNAs in the K-Ras-dependent pancreatic cancer-derived cell line MIA PaCa-2. Radiation responses were measured by standard clonogenic survival assays for reproductive survival, {gamma}H2AX expression for double-strand DNA breaks (DSBs), and poly(ADP-ribose)polymerase (PARP) cleavage for apoptosis. Results: Knockdown of K-Ras, RalA, or RalB reduced colony-forming ability post-IR, and knockdown of either Ral isoform decreased the rate of DSB repair post-IR. However, knockdown of RalB, but not RalA, increased cell death. Surprisingly, neither RalBP1 nor Sec5 suppression affected colony formation post-IR. Conclusions: Both RalA and RalB contribute to K-Ras-dependent IR resistance of MIA PaCa-2 cells. Sensitization due to suppressed Ral expression is likely due in part to decreased efficiency of DNA repair (RalA and RalB) and increased susceptibility to apoptosis (RalB). Ral-mediated radioresistance does not depend on either the RalBP1 or the exocyst complex, the two best-characterized Ral effectors, and instead may utilize an atypical or novel effector.« less

  17. Small GTPase Sar1 is crucial for proglutelin and α-globulin export from the endoplasmic reticulum in rice endosperm.

    PubMed

    Tian, Lihong; Dai, Ling Ling; Yin, Zhi Jie; Fukuda, Masako; Kumamaru, Toshihiro; Dong, Xiang Bai; Xu, Xiu Ping; Qu, Le Qing

    2013-07-01

    Rice seed storage proteins glutelin and α-globulin are synthesized in the endoplasmic reticulum (ER) and deposited in protein storage vacuoles (PSVs). Sar1, a small GTPase, acts as a molecular switch to regulate the assembly of coat protein complex II, which exports secretory protein from the ER to the Golgi apparatus. To reveal the route by which glutelin and α-globulin exit the ER, four putative Sar1 genes (OsSar1a/b/c/d) were cloned from rice, and transgenic rice were generated with Sar1 overexpressed or suppressed by RNA interference (RNAi) specifically in the endosperm under the control of the rice glutelin promoter. Overexpression or suppression of any OsSar1 did not alter the phenotype. However, simultaneous knockdown of OsSar1a/b/c resulted in floury and shrunken seeds, with an increased level of glutelin precursor and decreased level of the mature α- and β-subunit. OsSar1abc RNAi endosperm generated numerous, spherical, novel protein bodies with highly electron-dense matrixes containing both glutelin and α-globulin. Notably, the novel protein bodies were surrounded by ribosomes, showing that they were derived from the ER. Some of the ER-derived dense protein bodies were attached to a blebbing structure containing prolamin. These results indicated that OsSar1a/b/c play a crucial role in storage proteins exiting from the ER, with functional redundancy in rice endosperm, and glutelin and α-globulin transported together from the ER to the Golgi apparatus by a pathway mediated by coat protein complex II.

  18. Involvement of rho-gtpases in fibroblast adhesion and fibronectine fibrillogenesis under stretch

    NASA Astrophysics Data System (ADS)

    Guignandon, A.; Lambert, C.; Rattner, A.; Servotte, S.; Lapiere, C.; Nusgens, B.; Vico, L.

    The Rho family small GTPases play a crucial role in mediating cellular adaptation to mechanical stimulation (MS), and possibly to microgravity (μg), through effects on the cytoskeleton and cell adhesion which is, in turn, mainly regulated by fibronectin fibrillogenesis (FnF). It remains unclear how mechanical stimulation is transduced to the Rho signaling pathways and how it impacts on fibronectin (fbn) fibrillogenesis (FnF). μg (2 days, mission STS-095) led to de-adhesion of fibroblasts and modification of the underlying extracellular matrix. To determine whether GTPases modulated FnF, we generated stable cell lines expressing high level of activated RhoA and Rac1 (QL) as compared to wild type (WI26-WT). After MS application [8% deformation, 1Hz, 15 min., 3 times/day for 1-2 days], we quantified focal adhesion (vinculin, paxillin, FAKY397), f-actin stress fibers (Sf) and FnF with home-developed softwares. We reported that after MS, Sf are more rapidly (30min) formed under the nucleus in Wi26-WT (+100%) and Rac1 (+200%) than in RhoA (+20%). Vinculin & paxillin were only restricted to the cell edge in static conditions and homogeneously distributed after MS in WT and Rac1. The relative area of contacts (vinculin & paxillin) was more dramatically enhanced by MS in Rac1 (+80%) than in WT (+40%) and RhoA (+25%) indicating that new focal contacts are formed under MS and supported the presence of Sf. MS Activation of FAK (FAKY397) was clear in WT and Rac1 and reduced in RhoA. FnF was restricted to cell-cell contacts zone without any change in the relative area of fbn after a 2-days MS. However we found more numerous spots of fbn at the cell center in Rac1 as compared with RhoA & WT suggesting that these fibrillar contacts will grow upon maturation and modulate FnF. The results indicate that MS induces formation of Sf and focal adhesions and enhances FF. RhoA has been shown to induce the formation of Sf and focal adhesions, and Rac1 activation decreases Rho activity in

  19. Comprehensive behavioral analysis of mice deficient in Rapgef2 and Rapgef6, a subfamily of guanine nucleotide exchange factors for Rap small GTPases possessing the Ras/Rap-associating domain.

    PubMed

    Maeta, Kazuhiro; Hattori, Satoko; Ikutomo, Junji; Edamatsu, Hironori; Bilasy, Shymaa E; Miyakawa, Tsuyoshi; Kataoka, Tohru

    2018-05-10

    Rapgef2 and Rapgef6 define a subfamily of guanine nucleotide exchange factors for Rap small GTPases, characterized by the possession of the Ras/Rap-associating domain. Previous genomic analyses suggested their possible involvement in the etiology of schizophrenia. We recently demonstrated the development of an ectopic cortical mass (ECM), which resembles the human subcortical band heterotopia, in the dorsal telencephalon-specific Rapgef2 conditional knockout (Rapgef2-cKO) brains. Additional knockout of Rapgef6 in Rapgef2-cKO mice resulted in gross enlargement of the ECM whereas knockout of Rapgef6 alone (Rapgef6-KO) had no discernible effect on the brain morphology. Here, we performed a battery of behavioral tests to examine the effects of Rapgef2 or Rapgef6 deficiency on higher brain functions. Rapgef2-cKO mice exhibited hyperlocomotion phenotypes. They showed decreased anxiety-like behavior in the elevated plus maze and the open-field tests as well as increased depression-like behavior in the Porsolt forced swim and tail suspension tests. They also exhibited increased sociability especially in novel environments. They showed defects in cognitive function as evidenced by reduced learning ability in the Barnes circular maze test and by impaired working memory in the T maze tests. In contrast, although Rapgef6 and Rapgef2 share similarities in biochemical roles, Rapgef6-KO mice exhibited mild behavioral abnormalities detected with a number of behavioral tests, such as hyperlocomotion phenotype in the open-field test and the social interaction test with a novel environment and working-memory defects in the T-maze test. In conclusion, although there were differences in their brain morphology and the magnitude of the behavioral abnormalities, Rapgef2-cKO mice and Rapgef6-KO mice exhibited hyperlocomotion phenotype and working-memory defect, both of which could be recognized as schizophrenia-like behavior.

  20. Activation status-coupled transient S acylation determines membrane partitioning of a plant Rho-related GTPase.

    PubMed

    Sorek, Nadav; Poraty, Limor; Sternberg, Hasana; Bar, Enat; Lewinsohn, Efraim; Yalovsky, Shaul

    2007-03-01

    ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane by virtue of posttranslational lipid modifications. The relationship between ROP activation status and membrane localization has not been established. Here we demonstrate that endogenous ROPs, as well as a transgenic His(6)-green fluorescent protein (GFP)-AtROP6 fusion protein, were partitioned between Triton X-100-soluble and -insoluble membranes. In contrast, an activated His(6)-GFP-Atrop6(CA) mutant protein accumulated exclusively in detergent-resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPgammaS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild-type and constitutively active AtROP6 isoforms were purified from Arabidopsis plants, and their lipids were cleaved and analyzed by gas chromatography-coupled mass spectrometry. In Triton-soluble membranes, wild-type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent-resistant membranes was modified by prenyl and acyl lipids. The acyl lipids were identified as palmitic and stearic acids. In agreement, activated His(6)-GFP-Atrop6(CA)mS(156) in which cysteine(156) was mutated into serine accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6 and possibly other ROPs are transiently S acylated, which induces their partitioning into detergent-resistant membranes.

  1. Activation of the Small GTPase Rap1 Inhibits Choroidal Neovascularization by Regulating Cell Junctions and ROS Generation in Rats.

    PubMed

    Li, Jiajia; Zhang, Rong; Wang, Caixia; Wang, Xin; Xu, Man; Ma, Jingxue; Shang, Qingli

    2018-03-30

    Choroidal neovascularization (CNV) is a common vision-threatening complication associated with many  fundus diseases. The retinal pigment epithelial (RPE) cell junction barrier has critical functions in preventing CNV, and oxidative stress can cause compromise of barrier integrity and induce angiogenesis. Rap1, a small guanosine triphosphatase (GTPase), is involved in regulating endothelial and epithelial cell junctions. In this work, we explored the function and mechanism of Rap1 in CNV in vivo. A laser-induced rat CNV model was developed. Rap1 was activated through intravitreal injection of the Rap1 activator 8CPT-2'-O-Me-cAMP (8CPT). At 14 days after laser treatment, CNV size in RPE/choroid flat mounts was measured by fluorescein isothiocyanate-dextran staining. Expression of vascular endothelial growth factor (VEGF) and cell junction proteins in RPE/choroid tissues were analyzed by western blots and quantitative real-time PCR assays. Reactive oxygen species (ROS) in RPE cells were detectedbydichloro-dihydro-fluorescein diacetate assays. The antioxidant apocynin was intraperitoneally injected into rats. Activating Rap1 by 8CPT significantly reduced CNV size and VEGF expression in the rat CNV model. Rap1 activation enhanced protein and mRNA levels of ZO-1 and occludin, two tight junction proteins in the RPE barrier. In addition, reducing ROS generation by injection of apocynin, a NADPH oxidase inhibitor, inhibited CNV formation. Rap1 activation reduced ROS generation and expression of NADPH oxidase 4. Rap1 activation inhibits CNV through regulating barrier integrity and ROS generation of RPE in vivo, and selectively activating Rap1 may be a way to reduce vision loss from CNV.

  2. Ulk1 Governs Nerve Growth Factor/TrkA Signaling by Mediating Rab5 GTPase Activation in Porcine Hemagglutinating Encephalomyelitis Virus-Induced Neurodegenerative Disorders.

    PubMed

    Li, Zi; Zhao, Kui; Lv, Xiaoling; Lan, Yungang; Hu, Shiyu; Shi, Junchao; Guan, Jiyu; Yang, Yawen; Lu, Huijun; He, Hongbin; Gao, Feng; He, Wenqi

    2018-06-06

    Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus and causes neurological dysfunction in the central nervous system (CNS), but the neuropathological mechanism of PHEV remains poorly understood. We report that Unc51-like kinase 1 (Ulk1/Unc51.1) is a pivotal regulator of PHEV-induced neurological disorders and functions to selectively control the initiation of NGF/TrkA endosome trafficking. We first identified the function of Ulk1 by histopathologic evaluation in PHEV-infected mouse model where neuronal loss was accompanied by the suppression of Ulk1 expression. Morphogenesis assessments in the primary cortical neurons revealed that overexpression or mutations of Ulk1 modulated neurite outgrowth, collateral sprouting, and endosomal transport. Likewise, Ulk1 expression was decreased following PHEV infection, suggesting that there was a correlation between the neurodegeneration and functional Ulk1 deficiency. We then showed that Ulk1 forms a multiprotein complex with TrkA and the early endosome marker Rab5 and that Ulk1 defects lead to either blocking of NGF/TrkA endocytosis or premature degradation of pTrkA via constitutive activation of the Rab5 GTPase. Further investigation determined that the ectopic expression of Rab5 mutants induces aberrant endosomal accumulation of activated pTrkA, proving that targeting of Ulk1-TrkA-NGF signaling to the retrograde transport route in the neurodegenerative process that underlies PHEV infection is dependent on Rab5 GTPase activity. Therefore, we described a long-distance signaling mechanism of PHEV-driven deficits in neurons and suggested that such Ulk1 repression may result in limited NGF/TrkA retrograde signaling within activated Rab5 endosomes, explaining the progressive failure of neurite outgrowth and survival. IMPORTANCE Porcine hemagglutinating encephalomyelitis virus (PHEV) is neurotropic coronavirus and targets neurons in the nervous system for proliferation, frequently leaving

  3. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Guohua; Zhu, Peng-Peng; Renvoisé, Benoît

    Atlastins are large, membrane-bound GTPases that participate in the fusion of endoplasmic reticulum (ER) tubules to generate the polygonal ER network in eukaryotes. They also regulate lipid droplet size and inhibit bone morphogenetic protein (BMP) signaling, though mechanisms remain unclear. Humans have three atlastins (ATL1, ATL2, and ATL3), and ATL1 and ATL3 are mutated in autosomal dominant hereditary spastic paraplegia and hereditary sensory neuropathies. Cellular investigations of atlastin orthologs in most yeast, plants, flies and worms are facilitated by the presence of a single or predominant isoform, but loss-of-function studies in mammalian cells are complicated by multiple, broadly-expressed paralogs. Wemore » have generated mouse NIH-3T3 cells lacking all three mammalian atlastins (Atl1/2/3) using CRISPR/Cas9-mediated gene knockout (KO). ER morphology is markedly disrupted in these triple KO cells, with prominent impairment in formation of three-way ER tubule junctions. This phenotype can be rescued by expression of distant orthologs from Saccharomyces cerevisiae (Sey1p) and Arabidopsis (ROOT HAIR DEFECTIVE3) as well as any one of the three human atlastins. Minimal, if any, changes are observed in the morphology of mitochondria and the Golgi apparatus. Alterations in BMP signaling and increased sensitivity to ER stress are also noted, though effects appear more modest. Finally, atlastins appear required for the proper differentiation of NIH-3T3 cells into an adipocyte-like phenotype. These findings have important implications for the pathogenesis of hereditary spastic paraplegias and sensory neuropathies associated with atlastin mutations. - Highlights: • NIH-3T3 cells lacking all three atlastin paralogs were generated using CRISPR/Cas9. • Cells lacking all atlastin GTPases exhibit far fewer 3-way ER tubule junctions. • ER morphology defects in atlastin knockout cells are rescued by distant plant and yeast orthologs. • Atlastin knock out cells

  4. RAB10 Interacts with the Male Germ Cell-Specific GTPase-Activating Protein during Mammalian Spermiogenesis.

    PubMed

    Lin, Ying-Hung; Ke, Chih-Chun; Wang, Ya-Yun; Chen, Mei-Feng; Chen, Tsung-Ming; Ku, Wei-Chi; Chiang, Han-Sun; Yeh, Chung-Hsin

    2017-01-05

    According to recent estimates, 2%-15% of couples are sterile, and approximately half of the infertility cases are attributed to male reproductive factors. However, the reasons remain undefined in approximately 25% of male infertility cases, and most infertility cases exhibit spermatogenic defects. Numerous genes involved in spermatogenesis still remain unknown. We previously identified Male Germ Cells Rab GTPase-Activating Proteins ( MGCRABGAPs ) through cDNA microarray analysis of human testicular tissues with spermatogenic defects. MGCRABGAP contains a conserved RABGAP catalytic domain, TBC (Tre2/Bub2/Cdc16). RABGAP family proteins regulate cellular function (e.g., cytoskeletal remodeling, vesicular trafficking, and cell migration) by inactivating RAB proteins. MGCRABGAP is a male germ cell-specific protein expressed in elongating and elongated spermatids during mammalian spermiogenesis. The purpose of this study was to identify proteins that interact with MGCRABGAP during mammalian spermiogenesis using a proteomic approach. We found that MGCRABGAP exhibited GTPase-activating bioability, and several MGCRABGAP interactors, possible substrates (e.g., RAB10, RAB5C, and RAP1), were identified using co-immunoprecipitation (co-IP) and nano liquid chromatography-mass spectrometry/mass spectrometry (nano LC-MS/MS). We confirmed the binding ability between RAB10 and MGCRABGAP via co-IP. Additionally, MGCRABGAP-RAB10 complexes were specifically colocalized in the manchette structure, a critical structure for the formation of spermatid heads, and were slightly expressed at the midpiece of mature spermatozoa. Based on these results, we propose that MGCRABGAP is involved in mammalian spermiogenesis by modulating RAB10.

  5. Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor.

    PubMed Central

    Reedijk, M; Liu, X Q; Pawson, T

    1990-01-01

    The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages. Images PMID:2172781

  6. The Small GTPase MoSec4 Is Involved in Vegetative Development and Pathogenicity by Regulating the Extracellular Protein Secretion in Magnaporthe oryzae

    PubMed Central

    Zheng, Huakun; Chen, Simiao; Chen, Xiaofeng; Liu, Shuyan; Dang, Xie; Yang, Chengdong; Giraldo, Martha C.; Oliveira-Garcia, Ely; Zhou, Jie; Wang, Zonghua; Valent, Barbara

    2016-01-01

    The Rab GTPase proteins play important roles in the membrane trafficking, and consequently protein secretion and development of eukaryotic organisms. However, little is known about the function of Rab GTPases in Magnaporthe oryzae. To further explore the function of Rab GTPases, we deleted the ortholog of the yeast Sec4p protein in M. oryzae, namely MoSEC4. The ΔMosec4 mutant is defective in polarized growth and conidiation, and it displays decreased appressorium turgor pressure and attenuated pathogenicity. Notably, the biotrophic invasive hyphae produced in rice cells are more bulbous and compressed in the ΔMosec4 mutant. Further studies showed that deletion of the MoSEC4 gene resulted in decreased secretion of extracellular enzymes and mislocalization of the cytoplasmic effector PWL2-mCherry-NLS. In accordance with a role in secretion, the GFP-MoSec4 fusion protein mainly accumulates at tips of growing vegetative hyphae. Our results suggest that the MoSec4 protein plays important roles in the secretion of extracellular proteins and consequently hyphal development and pathogenicity in the rice blast fungus. PMID:27729922

  7. Extremely low frequency electromagnetic fields promote mesenchymal stem cell migration by increasing intracellular Ca2+ and activating the FAK/Rho GTPases signaling pathways in vitro.

    PubMed

    Zhang, Yingchi; Yan, Jiyuan; Xu, Haoran; Yang, Yong; Li, Wenkai; Wu, Hua; Liu, Chaoxu

    2018-05-21

    The ability of mesenchymal stem cells (MSCs) to migrate to the desired tissues or lesions is crucial for stem cell-based regenerative medicine and tissue engineering. Optimal therapeutics for promoting MSC migration are expected to become an effective means for tissue regeneration. Electromagnetic fields (EMF), as a noninvasive therapy, can cause a lot of biological changes in MSCs. However, whether EMF can promote MSC migration has not yet been reported. We evaluated the effects of EMF on cell migration in human bone marrow-derived MSCs. With the use of Helmholtz coils and an EMF stimulator, 7.5, 15, 30, 50, and 70 Hz/1 mT EMF was generated. Additionally, we employed the L-type calcium channel blocker verapamil and the focal adhesion kinase (FAK) inhibitor PF-573228 to investigate the role of intracellular calcium content, cell adhesion proteins, and the Rho GTPase protein family (RhoA, Rac1, and Cdc42) in EMF-mediated MSC migration. Cell adhesion proteins (FAK, talin, and vinculin) were detected by Western blot analysis. The Rho GTPase protein family activities were assessed by G-LISA, and F-actin levels, which reflect actin cytoskeletal organization, were detected using immunofluorescence. All the 7.5, 15, 30, 50, and 70 Hz/1 mT EMF promoted MSC migration. EMF increased MSC migration in an intracellular calcium-dependent manner. Notably, EMF-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased talin and vinculin expression. Moreover, RhoA, Rac1, and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. EMF promoted MSC migration by increasing intracellular calcium and activating the FAK/Rho GTPase signaling pathways. This study provides insights into the mechanisms of MSC migration and will enable the rational design of targeted therapies to improve MSC engraftment.

  8. A high-throughput screen of the GTPase activity of Escherichia coli EngA to find an inhibitor of bacterial ribosome biogenesis

    PubMed Central

    Bharat, Amrita; Blanchard, Jan E.; Brown, Eric D.

    2014-01-01

    The synthesis of ribosomes is an essential process, which is aided by a variety of transacting factors in bacteria. Among these is a group of GTPases essential for bacterial viability and emerging as promising targets for new antibacterial agents. Herein, we describe a robust high-throughput screening process for inhibitors of one such GTPase, the Escherichia coli EngA protein. The primary screen employed an assay of phosphate production in 384-well density. Reaction conditions were chosen to maximize sensitivity for the discovery of competitive inhibitors while maintaining a strong signal amplitude and low noise. In a pilot screen of 31,800 chemical compounds, 44 active compounds were identified. Further, we describe the elimination of non-specific inhibitors that were detergent-sensitive or reactive as well as those that interfered with the high-throughput phosphate assay. Four inhibitors survived these common counter-screens for non-specificity but these chemicals were also inhibitors of the unrelated enzyme dihydrofolate reductase, suggesting that they too were promiscuously active. The high-throughput screen of the EngA protein described here provides a meticulous pilot study in the search for specific inhibitors of GTPases involved in ribosome biogenesis. PMID:23606650

  9. The RhoU/Wrch1 Rho GTPase gene is a common transcriptional target of both the gp130/STAT3 and Wnt-1 pathways

    PubMed Central

    SCHIAVONE, Davide; DEWILDE, Sarah; VALLANIA, Francesco; TURKSON, James; CUNTO, Ferdinando DI; POLI, Valeria

    2010-01-01

    STAT3 (signal transducer and activator of transcription 3) is a transcription factor activated by cytokines, growth factors and oncogenes, whose activity is required for cell survival/proliferation of a wide variety of primary tumours and tumour cell lines. Prominent among its multiple effects on tumour cells is the stimulation of cell migration and metastasis, whose functional mechanisms are however not completely characterized. RhoU/Wrch1 (Wnt-responsive Cdc42 homologue) is an atypical Rho GTPase thought to be constitutively bound to GTP. RhoU was first identified as a Wnt-1-inducible mRNA and subsequently shown to act on the actin cytoskeleton by stimulating filopodia formation and stress fibre dissolution. It was in addition recently shown to localize to focal adhesions and to Src-induced podosomes and enhance cell migration. RhoU overexpression in mammary epithelial cells stimulates quiescent cells to re-enter the cell cycle and morphologically phenocopies Wnt-1-dependent transformation. In the present study we show that Wnt-1-mediated RhoU induction occurs at the transcriptional level. Moreover, we demonstrate that RhoU can also be induced by gp130 cytokines via STAT3, and we identify two functional STAT3-binding sites on the mouse RhoU promoter. RhoU induction by Wnt-1 is independent of β-catenin, but does not involve STAT3. Rather, it is mediated by the Wnt/planar cell polarity pathway through the activation of JNK (c-Jun N-terminal kinase). Both the so-called non-canonical Wnt pathway and STAT3 are therefore able to induce RhoU, which in turn may be involved in mediating their effects on cell migration. PMID:19397496

  10. Rapamycin inhibits epithelial-to-mesenchymal transition of peritoneal mesothelium cells through regulation of Rho GTPases.

    PubMed

    Xiang, Shilong; Li, Meng; Xie, Xishao; Xie, Zhoutao; Zhou, Qin; Tian, Yuanshi; Lin, Weiqiang; Zhang, Xiaohui; Jiang, Hong; Shou, Zhangfei; Chen, Jianghua

    2016-06-01

    Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is a key process of peritoneal fibrosis. Rapamycin has been previously shown to inhibit EMT of PMCs and prevent peritoneal fibrosis. In this study, we investigated the undefined molecular mechanisms by which rapamycin inhibits EMT of PMCs. To define the protective effect of rapamycin, we initially used a rat PD model which was daily infused with 20 mL of 4.25% high glucose (HG) dialysis solution for 6 weeks to induce fibrosis. The HG rats showed decreased ultrafiltration volume and obvious fibroproliferative response, with markedly increased peritoneal thickness and higher expression of α-smooth muscle actin (α-SMA) and transforming growth factor-β1. Rapamycin significantly ameliorated those pathological changes. Next, we treated rat PMCs with HG to induce EMT and/or rapamycin for indicated time. Rapamycin significantly inhibited HG-induced EMT, which manifests as increased expression of α-SMA, fibronectin, and collagen I, decreased expression of E-cadherin, and increased mobility. HG increased the phosphorylation of PI3K, Akt, and mTOR. Importantly, rapamycin inhibits the RhoA, Rac1, and Cdc42 activated by HG. Moreover, rapamycin repaired the pattern of F-actin distribution induced by HG, reducing the formation of stress fiber, focal adhesion, lamellipodia, and filopodia. Thus, rapamycin shows an obvious protective effect on HG-induced EMT, by inhibiting the activation of Rho GTPases (RhoA, Rac1, and Cdc42). © 2016 Federation of European Biochemical Societies.

  11. The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans.

    PubMed

    Koch, Barbara; Tucey, Timothy M; Lo, Tricia L; Novakovic, Stevan; Boag, Peter; Traven, Ana

    2017-01-01

    The interactions of mitochondria with the endoplasmic reticulum (ER) are crucial for maintaining proper mitochondrial morphology, function and dynamics. This enables cells to utilize their mitochondria optimally for energy production and anabolism, and it further provides for metabolic control over developmental decisions. In fungi, a key mechanism by which ER and mitochondria interact is via a membrane tether, the protein complex ERMES (ER-Mitochondria Encounter Structure). In the model yeast Saccharomyces cerevisiae , the mitochondrial GTPase Gem1 interacts with ERMES, and it has been proposed to regulate its activity. Here we report on the first characterization of Gem1 in a human fungal pathogen. We show that in Candida albicans Gem1 has a dominant role in ensuring proper mitochondrial morphology, and our data is consistent with Gem1 working with ERMES in this role. Mitochondrial respiration and steady state cellular phospholipid homeostasis are not impacted by inactivation of GEM1 in C. albicans . There are two major virulence-related consequences of disrupting mitochondrial morphology by GEM1 inactivation: C. albicans becomes hypersusceptible to cell wall stress, and is unable to grow invasively. In the gem1 Δ / Δ mutant, it is specifically the invasive capacity of hyphae that is compromised, not the ability to transition from yeast to hyphal morphology, and this phenotype is shared with ERMES mutants. As a consequence of the hyphal invasion defect, the gem1 Δ / Δ mutant is drastically hypovirulent in the worm infection model. Activation of the mitogen activated protein (MAP) kinase Cek1 is reduced in the gem1 Δ / Δ mutant, and this function could explain both the susceptibility to cell wall stress and lack of invasive growth. This result establishes a new, respiration-independent mechanism of mitochondrial control over stress signaling and hyphal functions in C. albicans . We propose that ER-mitochondria interactions and the ER-Mitochondria Organizing

  12. The Mitochondrial GTPase Gem1 Contributes to the Cell Wall Stress Response and Invasive Growth of Candida albicans

    PubMed Central

    Koch, Barbara; Tucey, Timothy M.; Lo, Tricia L.; Novakovic, Stevan; Boag, Peter; Traven, Ana

    2017-01-01

    The interactions of mitochondria with the endoplasmic reticulum (ER) are crucial for maintaining proper mitochondrial morphology, function and dynamics. This enables cells to utilize their mitochondria optimally for energy production and anabolism, and it further provides for metabolic control over developmental decisions. In fungi, a key mechanism by which ER and mitochondria interact is via a membrane tether, the protein complex ERMES (ER-Mitochondria Encounter Structure). In the model yeast Saccharomyces cerevisiae, the mitochondrial GTPase Gem1 interacts with ERMES, and it has been proposed to regulate its activity. Here we report on the first characterization of Gem1 in a human fungal pathogen. We show that in Candida albicans Gem1 has a dominant role in ensuring proper mitochondrial morphology, and our data is consistent with Gem1 working with ERMES in this role. Mitochondrial respiration and steady state cellular phospholipid homeostasis are not impacted by inactivation of GEM1 in C. albicans. There are two major virulence-related consequences of disrupting mitochondrial morphology by GEM1 inactivation: C. albicans becomes hypersusceptible to cell wall stress, and is unable to grow invasively. In the gem1Δ/Δ mutant, it is specifically the invasive capacity of hyphae that is compromised, not the ability to transition from yeast to hyphal morphology, and this phenotype is shared with ERMES mutants. As a consequence of the hyphal invasion defect, the gem1Δ/Δ mutant is drastically hypovirulent in the worm infection model. Activation of the mitogen activated protein (MAP) kinase Cek1 is reduced in the gem1Δ/Δ mutant, and this function could explain both the susceptibility to cell wall stress and lack of invasive growth. This result establishes a new, respiration-independent mechanism of mitochondrial control over stress signaling and hyphal functions in C. albicans. We propose that ER-mitochondria interactions and the ER-Mitochondria Organizing Network

  13. GIMAP6 is required for T cell maintenance and efficient autophagy in mice.

    PubMed

    Pascall, John C; Webb, Louise M C; Eskelinen, Eeva-Liisa; Innocentin, Silvia; Attaf-Bouabdallah, Noudjoud; Butcher, Geoffrey W

    2018-01-01

    The GTPases of the immunity-associated proteins (GIMAP) GTPases are a family of proteins expressed strongly in the adaptive immune system. We have previously reported that in human cells one member of this family, GIMAP6, interacts with the ATG8 family member GABARAPL2, and is recruited to autophagosomes upon starvation, suggesting a role for GIMAP6 in the autophagic process. To study this possibility and the function of GIMAP6 in the immune system, we have established a mouse line in which the Gimap6 gene can be inactivated by Cre-mediated recombination. In mice bred to carry the CD2Cre transgene such that the Gimap6 gene was deleted within the T and B cell lineages there was a 50-70% reduction in peripheral CD4+ and CD8+ T cells. Analysis of splenocyte-derived proteins from these mice indicated increased levels of MAP1LC3B, particularly the lipidated LC3-II form, and S405-phosphorylation of SQSTM1. Electron microscopic measurements of Gimap6-/- CD4+ T cells indicated an increased mitochondrial/cytoplasmic volume ratio and increased numbers of autophagosomes. These results are consistent with autophagic disruption in the cells. However, Gimap6-/- T cells were largely normal in character, could be effectively activated in vitro and supported T cell-dependent antibody production. Treatment in vitro of CD4+ splenocytes from GIMAP6fl/flERT2Cre mice with 4-hydroxytamoxifen resulted in the disappearance of GIMAP6 within five days. In parallel, increased phosphorylation of SQSTM1 and TBK1 was observed. These results indicate a requirement for GIMAP6 in the maintenance of a normal peripheral adaptive immune system and a significant role for the protein in normal autophagic processes. Moreover, as GIMAP6 is expressed in a cell-selective manner, this indicates the potential existence of a cell-restricted mode of autophagic regulation.

  14. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation

    PubMed Central

    Varela Chavez, Carolina; Haustant, Georges Michel; Baron, Bruno; England, Patrick; Chenal, Alexandre; Pauillac, Serge; Blondel, Arnaud; Popoff, Michel-Robert

    2016-01-01

    Clostridium sordellii lethal toxin (TcsL) is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT) family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP)-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability. TcsL enters cells via receptor-mediated endocytosis and delivers the N-terminal glucosylating domain (TcsL-cat) into the cytosol. TcsL-cat was found to preferentially bind to phosphatidylserine (PS)-containing membranes and to increase the glucosylation of Rac anchored to the lipid membrane. We have previously reported that the N-terminal four helical bundle structure (1–93 domain) recognizes a broad range of lipids, but that TcsL-cat specifically binds to PS and phosphatidic acid. Here, we show using mutagenesis that the PS binding site is localized on the tip of the four-helix bundle which is rich in positively-charged amino acids. Residues Y14, V15, F17, and R18 on loop 1, between helices 1 and 2, in coordination with R68 from loop 3, between helices 3 and 4, form a pocket which accommodates L-serine. The functional PS-binding site is required for TcsL-cat binding to the plasma membrane and subsequent cytotoxicity. TcsL-cat binding to PS facilitates a high enzymatic activity towards membrane-anchored Ras by about three orders of magnitude as compared to Ras in solution. The PS-binding site is conserved in LCGTs, which likely retain a common mechanism of binding to the membrane for their full activity towards membrane-bound GTPases. PMID:27023605

  15. Loss of Either Rac1 or Rac3 GTPase Differentially Affects the Behavior of Mutant Mice and the Development of Functional GABAergic Networks

    PubMed Central

    Pennucci, Roberta; Talpo, Francesca; Astro, Veronica; Montinaro, Valentina; Morè, Lorenzo; Cursi, Marco; Castoldi, Valerio; Chiaretti, Sara; Bianchi, Veronica; Marenna, Silvia; Cambiaghi, Marco; Tonoli, Diletta; Leocani, Letizia; Biella, Gerardo; D'Adamo, Patrizia; de Curtis, Ivan

    2016-01-01

    Rac GTPases regulate the development of cortical/hippocampal GABAergic interneurons by affecting the early development and migration of GABAergic precursors. We have addressed the function of Rac1 and Rac3 proteins during the late maturation of hippocampal interneurons. We observed specific phenotypic differences between conditional Rac1 and full Rac3 knockout mice. Rac1 deletion caused greater generalized hyperactivity and cognitive impairment compared with Rac3 deletion. This phenotype matched with a more evident functional impairment of the inhibitory circuits in Rac1 mutants, showing higher excitability and reduced spontaneous inhibitory currents in the CA hippocampal pyramidal neurons. Morphological analysis confirmed a differential modification of the inhibitory circuits: deletion of either Rac caused a similar reduction of parvalbumin-positive inhibitory terminals in the pyramidal layer. Intriguingly, cannabinoid receptor-1-positive terminals were strongly increased only in the CA1 of Rac1-depleted mice. This increase may underlie the stronger electrophysiological defects in this mutant. Accordingly, incubation with an antagonist for cannabinoid receptors partially rescued the reduction of spontaneous inhibitory currents in the pyramidal cells of Rac1 mutants. Our results show that Rac1 and Rac3 have independent roles in the formation of GABAergic circuits, as highlighted by the differential effects of their deletion on the late maturation of specific populations of interneurons. PMID:26582364

  16. Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (NF1) gene.

    PubMed

    Thomas, Laura; Richards, Mark; Mort, Matthew; Dunlop, Elaine; Cooper, David N; Upadhyaya, Meena

    2012-12-01

    Neurofibromatosis type-1 (NF1) is caused by constitutional mutations of the NF1 tumor-suppressor gene. Although ∼85% of inherited NF1 microlesions constitute truncating mutations, the remaining ∼15% are missense mutations whose pathological relevance is often unclear. The GTPase-activating protein-related domain (GRD) of the NF1-encoded protein, neurofibromin, serves to define its major function as a negative regulator of the Ras-MAPK (mitogen-activated protein kinase) signaling pathway. We have established a functional assay to assess the potential pathogenicity of 15 constitutional nonsynonymous NF1 missense mutations (11 novel and 4 previously reported but not functionally characterized) identified in the NF1-GRD (p.R1204G, p.R1204W, p.R1276Q, p.L1301R, p.I1307V, p.T1324N, p.E1327G, p.Q1336R, p.E1356G, p.R1391G, p.V1398D, p.K1409E, p.P1412R, p.K1436Q, p.S1463F). Individual mutations were introduced into an NF1-GRD expression vector and activated Ras was assayed by an enzyme-linked immunosorbent assay (ELISA). Ten NF1-GRD variants were deemed to be potentially pathogenic by virtue of significantly elevated levels of activated GTP-bound Ras in comparison to wild-type NF1 protein. The remaining five NF1-GRD variants were deemed less likely to be of pathological significance as they exhibited similar levels of activated Ras to the wild-type protein. These conclusions received broad support from both bioinformatic analysis and molecular modeling and serve to improve our understanding of NF1-GRD structure and function. © 2012 Wiley Periodicals, Inc.

  17. Mutations in the Small GTPase Gene RAB39B Are Responsible for X-linked Mental Retardation Associated with Autism, Epilepsy, and Macrocephaly

    PubMed Central

    Giannandrea, Maila; Bianchi, Veronica; Mignogna, Maria Lidia; Sirri, Alessandra; Carrabino, Salvatore; D'Elia, Errico; Vecellio, Matteo; Russo, Silvia; Cogliati, Francesca; Larizza, Lidia; Ropers, Hans-Hilger; Tzschach, Andreas; Kalscheuer, Vera; Oehl-Jaschkowitz, Barbara; Skinner, Cindy; Schwartz, Charles E.; Gecz, Jozef; Van Esch, Hilde; Raynaud, Martine; Chelly, Jamel; de Brouwer, Arjan P.M.; Toniolo, Daniela; D'Adamo, Patrizia

    2010-01-01

    Human Mental Retardation (MR) is a common and highly heterogeneous pediatric disorder affecting around 3% of the general population; at least 215 X-linked MR (XLMR) conditions have been described, and mutations have been identified in 83 different genes, encoding proteins with a variety of function, such as chromatin remodeling, synaptic function, and intracellular trafficking. The small GTPases of the RAB family, which play an essential role in intracellular vesicular trafficking, have been shown to be involved in MR. We report here the identification of mutations in the small GTPase RAB39B gene in two male patients. One mutation in family X (D-23) introduced a stop codon seven amino acids after the start codon (c.21C > A; p.Y7X). A second mutation, in the MRX72 family, altered the 5′ splice site (c.215+1G > A) and normal splicing. Neither instance produced a protein. Mutations segregate with the disease in the families, and in some family members intellectual disabilities were associated with autism spectrum disorder, epileptic seizures, and macrocephaly. We show that RAB39B, a novel RAB GTPase of unknown function, is a neuronal-specific protein that is localized to the Golgi compartment. Its downregulation leads to an alteration in the number and morphology of neurite growth cones and a significant reduction in presynaptic buttons, suggesting that RAB39B is required for synapse formation and maintenance. Our results demonstrate developmental and functional neuronal alteration as a consequence of downregulation of RAB39B and emphasize the critical role of vesicular trafficking in the development of neurons and human intellectual abilities. PMID:20159109

  18. Enhanced accumulation of atropine in Atropa belladonna transformed by Rac GTPase gene isolated from Scoparia dulcis.

    PubMed

    Asano, Kyouhei; Lee, Jung-Bum; Yamamura, Yoshimi; Kurosaki, Fumiya

    2013-12-01

    Leaf tissues of Atropa belladonna were transformed by Sdrac2, a Rac GTPase gene, that is isolated from Scoparia dulcis, and the change in atropine concentration of the transformants was examined. Re-differentiated A. belladonna overexpressing Sdrac2 accumulated considerable concentration of atropine in the leaf tissues, whereas the leaves of plants transformed by an empty vector accumulated only a very low concentration of the compound. A. belladonna transformed by CASdrac2, a modified Sdrac2 of which translate was expected to bind guanosine triphosphate (GTP) permanently, accumulated very high concentrations of atropine (approximately 2.4-fold excess to those found in the wild-type plant in its natural habitat). In sharp contrast, the atropine concentration in transformed A. belladonna prepared with negatively modified Sdrac2, DNSdrac2, expected to bind guanosine diphosphate instead of GTP, was very low. These results suggested that Rac GTPases play an important role in the regulation of secondary metabolism in plant cells and that overexpression of the gene(s) may be capable of enhancing the production of natural products accumulated in higher plant cells.

  19. The Neurofibromatosis Type 1 (Nf1) Tumor Suppressor is a Modifier of Carcinogen-Induced Pigmentation and Papilloma Formation in C57BL/6 Mice

    PubMed Central

    Atit, Radhika P.; Mitchell, Kent; Nguyen, Lam; Warshawsky, David; Ratner, Nancy

    2010-01-01

    There is increasing evidence implicating the human NF1 gene in epithelial carcinogenesis. To test if NF1 can play a part in skin tumor formation, we analyzed effects of the skin cancer initiator dimethylbenzanthracene and/or the tumor promoter 12-O-tetradecanoyl-13-acetylphorbol on mice heterozygous for null mutations in Nf1 (Nf1+/−). Mice were on the C57BL/6 background, noted for resistance to chemical carcinogens. Nf1+/− mice (18 of 24) developed papillomas after treatment with dimethylbenzanthracene and 12-O-tetradecanoyl-13-acetylphorbol; papillomas did not develop in wild-type C57BL/6 mice nor Nf1+/− mice treated with 12-O-tetradecanoyl-13-acetylphorbol alone. All papillomas analyzed (six of six) had mutations in codon 61 of H-ras, demonstrating strong cooperation between the Nf1 GTPase activating protein for Ras, neurofibromin, and Ras-GTP. After exposure to 12-O-tetradecanoyl-13-acetylphorbol, Nf1+/− keratinocytes showed significant, sustained, increases in proliferation, implicating Nf1 in phorbol ester responsive pathways. Thus, Nf1 levels regulate the response of keratinocytes to 12-O-tetradecanoyl-13-acetylphorbol. Nf1+/− mice also showed a 2-fold increase in the development of pigmented skin patches stimulated by dimethylbenzanthracene; patches were characterized by hair follicles in anagen phase, implicating keratinocytes in the aberrant hyperpigmentation. Our results show that mutation in the Nf1 gene causes abnormal keratinocyte proliferation that can be revealed by environmental assaults such as carcinogen exposure. The data support a plausible role for NF1 mutation in human epithelial carcinogenesis. PMID:10844550

  20. Induction of Cell Scattering by Expression of β1 Integrins in β1-Deficient Epithelial Cells Requires Activation of Members of the Rho Family of Gtpases and Downregulation of Cadherin and Catenin Function

    PubMed Central

    Gimond, Clotilde; van der Flier, Arjan; van Delft, Sanne; Brakebusch, Cord; Kuikman, Ingrid; Collard, John G.; Fässler, Reinhard; Sonnenberg, Arnoud

    1999-01-01

    Adhesion receptors, which connect cells to each other and to the surrounding extracellular matrix (ECM), play a crucial role in the control of tissue structure and of morphogenesis. In this work, we have studied how intercellular adhesion molecules and β1 integrins influence each other using two different β1-null cell lines, epithelial GE11 and fibroblast-like GD25 cells. Expression of β1A or the cytoplasmic splice variant β1D, induced the disruption of intercellular adherens junctions and cell scattering in both GE11 and GD25 cells. In GE11 cells, the morphological change correlated with the redistribution of zonula occluden (ZO)-1 from tight junctions to adherens junctions at high cell confluency. In addition, the expression of β1 integrins caused a dramatic reorganization of the actin cytoskeleton and of focal contacts. Interaction of β1 integrins with their respective ligands was required for a complete morphological transition towards the spindle-shaped fibroblast-like phenotype. The expression of an interleukin-2 receptor (IL2R)-β1A chimera and its incorporation into focal adhesions also induced the disruption of cadherin-based adhesions and the reorganization of ECM–cell contacts, but failed to promote cell migration on fibronectin, in contrast to full-length β1A. This indicates that the disruption of cell–cell adhesion is not simply the consequence of the stimulated cell migration. Expression of β1 integrins in GE11 cells resulted in a decrease in cadherin and α-catenin protein levels accompanied by their redistribution from the cytoskeleton-associated fraction to the detergent-soluble fraction. Regulation of α-catenin protein levels by β1 integrins is likely to play a role in the morphological transition, since overexpression of α-catenin in GE11 cells before β1 prevented the disruption of intercellular adhesions and cell scattering. In addition, using biochemical activity assays for Rho-like GTPases, we show that the expression of β1A

  1. RAB GTPASES ASSOCIATE WITH ISOLATED LIPID DROPLETS (LDS) AND SHOW ALTERED CONTENT AFTER ETHANOL ADMINISTRATION: POTENTIAL ROLE IN ALCOHOL-IMPAIRED LD METABOLISM

    PubMed Central

    Rasineni, Karuna; McVicker, Benita L.; Tuma, Dean J.; McNiven, Mark A.; Casey, Carol A.

    2013-01-01

    Background Alcoholic liver disease is manifested by the presence of fatty liver, primarily due to accumulation of hepatocellular lipid droplets (LDs). The presence of membrane-trafficking proteins (e.g. Rab GTPases) with LDs indicates that LDs may be involved in trafficking pathways known to be altered in ethanol damaged hepatocytes. Since these Rab GTPases are crucial regulators of protein trafficking, we examined the effect ethanol administration has on hepatic Rab protein content and association with LDs. Methods Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Whole liver and isolated LD fractions were analyzed. Identification of LDs and associated Rab proteins was performed in frozen liver or paraffin-embedded sections followed by immunohistochemical analysis. Results Lipid accumulation was characterized by larger LD vacuoles and increased total triglyceride content in ethanol-fed rats. Rabs 1, 2, 3d, 5, 7 and 18 were analyzed in post-nuclear supernatant (PNS) as well as LDs. All of the Rabs were found in the PNS, and Rabs 1, 2, 5 and 7 did not show alcohol-altered content, while Rab 3d content was reduced by over 80%, and Rab 18 also showed ethanol-induced reduction in content. Rab 3d was not found to associate with LDs, while all other Rabs were found in the LD fractions, and several showed an ethanol-related decrease (Rabs 2, 5, 7, 18). Immunohistochemical analysis revealed the enhanced content of a LD-associated protein, perilipin 2 (PLIN2) that was paralleled with an associated decrease of Rab 18 in ethanol-fed rat sections. Conclusion Chronic ethanol feeding was associated with increased PLIN2 and altered Rab GTPase content in enriched LD fractions. Although mechanisms driving these changes are not established, further studies on intracellular protein trafficking and LD biology after alcohol administration will likely contribute to our understanding of fatty liver disease. PMID:24117505

  2. LRP6 promotes invasion and metastasis of colorectal cancer through cytoskeleton dynamics

    PubMed Central

    Yao, Qian; An, Yu; Hou, Wei; Cao, Ya-Nan; Yao, Meng-Fei; Ma, Ning-Ning; Hou, Lin; Zhang, Hong; Liu, Hai-Jing; Zhang, Bo

    2017-01-01

    Low density lipoprotein (LDL) receptor-related protein-6 (LRP6) is an important co-receptor of Wnt pathway, which plays a predominant role in development and progression of colorectal cancer. Recently, dysregulation of LRP6 has proved to be involved in the progression of cancers, but its biological role and clinical significance in colorectal cancer remain unclear. In present study, we revealed that phosphorylation of LRP6 was aberrantly upregulated in colorectal carcinoma correlating with TNM or Dukes staging and worse prognosis. In addition, phosphorylated LRP6 was positively correlated with nuclear accumulation of β-catenin. Overexpression or activation of LRP6 could activate Wnt signaling and promote tumor cell migration in vitro. The activation of LRP6 could induce microtubule dynamics and actin remodeling, probably through regulation of microtubule-associated protein 1B (MAP1B), microtubule actin cross-linking factor 1 (MACF1) and Rho GTPase--RhoA and Rac1. The investigation suggests that LRP6 may be a potential prognostic marker and therapeutic target in the progression of colorectal cancers. PMID:29312635

  3. LRP6 promotes invasion and metastasis of colorectal cancer through cytoskeleton dynamics.

    PubMed

    Yao, Qian; An, Yu; Hou, Wei; Cao, Ya-Nan; Yao, Meng-Fei; Ma, Ning-Ning; Hou, Lin; Zhang, Hong; Liu, Hai-Jing; Zhang, Bo

    2017-12-12

    Low density lipoprotein (LDL) receptor-related protein-6 (LRP6) is an important co-receptor of Wnt pathway, which plays a predominant role in development and progression of colorectal cancer. Recently, dysregulation of LRP6 has proved to be involved in the progression of cancers, but its biological role and clinical significance in colorectal cancer remain unclear. In present study, we revealed that phosphorylation of LRP6 was aberrantly upregulated in colorectal carcinoma correlating with TNM or Dukes staging and worse prognosis. In addition, phosphorylated LRP6 was positively correlated with nuclear accumulation of β-catenin. Overexpression or activation of LRP6 could activate Wnt signaling and promote tumor cell migration in vitro . The activation of LRP6 could induce microtubule dynamics and actin remodeling, probably through regulation of microtubule-associated protein 1B (MAP1B), microtubule actin cross-linking factor 1 (MACF1) and Rho GTPase--RhoA and Rac1. The investigation suggests that LRP6 may be a potential prognostic marker and therapeutic target in the progression of colorectal cancers.

  4. Activation of Rho GTPase Cdc42 promotes adhesion and invasion in colorectal cancer cells.

    PubMed

    Gao, Lei; Bai, Lan; Nan, Qing zhen

    2013-07-25

    The purpose of this study was to investigate the role of activated Rho GTPase cell division control protein 42 homolog (Cdc42) in colorectal cancer cell adhesion, migration, and invasion. The constitutively active form of Cdc42 (GFP-Cdc42L61) or control vector was overexpressed in the colorectal cancer cell line SW480. The localization of active Cdc42 was monitored by immunofluorescence staining, and the effects of active Cdc42 on cell migration and invasion were examined using an attachment assay, a wound healing assay, and a Matrigel migration assay in vitro. Immunofluorescence staining revealed that constitutively active Cdc42 predominately localized to the plasma membrane. Compared to SW480 cells transfected with the control vector, overexpression of constitutively active Cdc42 in SW480 cells promoted filopodia formation and cell stretch and dramatically enhanced cell adhesion to the coated plates. The wound healing assay revealed a significant increase of migration capability in SW480 cells expressing active Cdc42 compared to the control cells. Additionally, the Matrigel invasion assay demonstrated that active Cdc42 significantly promoted SW480 cell migration through the chamber. Our results suggest that active Rho GTPase Cdc42 can greatly enhance colorectal cancer cell SW480 to spread, migrate, and invade, which may contribute to colorectal cancer metastasis.

  5. TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy.

    PubMed

    Falace, Antonio; Filipello, Fabia; La Padula, Veronica; Vanni, Nicola; Madia, Francesca; De Pietri Tonelli, Davide; de Falco, Fabrizio A; Striano, Pasquale; Dagna Bricarelli, Franca; Minetti, Carlo; Benfenati, Fabio; Fassio, Anna; Zara, Federico

    2010-09-10

    Idiopathic epilepsies (IEs) are a group of disorders characterized by recurrent seizures in the absence of detectable brain lesions or metabolic abnormalities. IEs include common disorders with a complex mode of inheritance and rare Mendelian traits suggesting the occurrence of several alleles with variable penetrance. We previously described a large family with a recessive form of idiopathic epilepsy, named familial infantile myoclonic epilepsy (FIME), and mapped the disease locus on chromosome 16p13.3 by linkage analysis. In the present study, we found that two compound heterozygous missense mutations (D147H and A509V) in TBC1D24, a gene of unknown function, are responsible for FIME. In situ hybridization analysis revealed that Tbc1d24 is mainly expressed at the level of the cerebral cortex and the hippocampus. By coimmunoprecipitation assay we found that TBC1D24 binds ARF6, a Ras-related family of small GTPases regulating exo-endocytosis dynamics. The main recognized function of ARF6 in the nervous system is the regulation of dendritic branching, spine formation, and axonal extension. TBC1D24 overexpression resulted in a significant increase in neurite length and arborization and the FIME mutations significantly reverted this phenotype. In this study we identified a gene mutation involved in autosomal-recessive idiopathic epilepsy, unveiled the involvement of ARF6-dependent molecular pathway in brain hyperexcitability and seizures, and confirmed the emerging role of subtle cytoarchitectural alterations in the etiology of this group of common epileptic disorders. 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. The role of the small GTPase Rab31 in cancer

    PubMed Central

    Chua, Christelle En Lin; Tang, Bor Luen

    2015-01-01

    Members of the small GTPase family Rab are emerging as potentially important factors in cancer development and progression. A good number of Rabs have been implicated or associated with various human cancers, and much recent excitement has been associated with the roles of the Rab11 subfamily member Rab25 and its effector, the Rab coupling protein (RCP), in tumourigenesis and metastasis. In this review, we focus on a Rab5 subfamily member, Rab31, and its implicated role in cancer. Well recognized as a breast cancer marker with good prognostic value, recent findings have provided some insights as to the mechanism underlying Rab31's influence on oncogenesis. Levels of Oestrogen Receptor α (ERα)- responsive Rab31 could be elevated through stabilization of its transcript by the RNA binding protein HuR, or though activation by the oncoprotein mucin1-C (MUC1-C), which forms a transcriptional complex with ERα. Elevated Rab31 stabilizes MUC1-C levels in an auto-inductive loop that could lead to aberrant signalling and gene expression associated with cancer progression. Rab31 and its guanine nucleotide exchange factor GAPex-5 have, however, also been shown to enhance early endosome-late endosome transport and degradation of the epidermal growth factor receptor (EGFR). The multifaceted action and influences of Rab31 in cancer is discussed in the light of its new interacting partners and pathways. PMID:25472813

  7. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins

    DTIC Science & Technology

    2003-05-01

    develop a clinically useful test to detect which invasive cancers will metastasize, and that will allow clinicians to institute early treatment before the...a project that aims at understanding the clinical utility of RhoC-GTPase and WISP3 proteins in breast cancer patients. These two genes were identified... clinical utility of RhoC and WISP3 in breast cancer tissue samples. Below are brief descriptions of key accomplishments: a. Identify and retrieve the

  8. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins

    DTIC Science & Technology

    2005-05-01

    clinical utility of RhoC- GTPase and WISP3 proteins in breast cancer patients. These two genes were identified as key genetic determinants of...information, linked to a clinical database, and to better understand the functional significance of the WISP3 gene in Inflammatory Breast Cancer (IBC), to...pathological and clinical information. The idea behind this decision was to be able to link the results of the TMA scoring with the patient pathological

  9. Rho GTPases and p21-activated kinase in the regulation of proliferation and apoptosis by gastrins.

    PubMed

    He, Hong; Baldwin, Graham S

    2008-01-01

    Gastrins, including amidated gastrin (Gamide) and glycine-extended gastrin (Ggly), accelerate the growth of gastrointestinal cancer cells by stimulation of proliferation and inhibition of apoptosis. Gamide and Ggly activate different G proteins of the Rho family of small GTPases. For example, Gamide signals Rac/Cdc42 to activate p21-activated kinase 1 while Ggly signals Rho to activate Rho-activated kinase. p21-activated kinase 1 and Rho-activated kinase induce changes in phosphorylation or expression, respectively, of proteins of the Bcl-2 family, which then affect the caspase cascade with consequent inhibition of apoptosis. In addition, interaction of p21-activated kinase 1 with beta-catenin results in phosphorylation of beta-catenin, which enhances its translocation in to the nucleus, activation of TCF4-dependent transcription, and proliferation and migration. The central role of the beta-catenin pathway in carcinogenesis suggests that specific inhibitors of p21-activated kinase 1 may in the future provide novel therapies for gastrointestinal malignancies.

  10. EPI64B Acts as a GTPase-activating Protein for Rab27B in Pancreatic Acinar Cells*

    PubMed Central

    Hou, Yanan; Chen, Xuequn; Tolmachova, Tatyana; Ernst, Stephen A.; Williams, John A.

    2013-01-01

    The small GTPase Rab27B localizes to the zymogen granule membranes and plays an important role in regulating protein secretion by pancreatic acinar cells, as does Rab3D. A common guanine nucleotide exchange factor (GEF) for Rab3 and Rab27 has been reported; however, the GTPase-activating protein (GAP) specific for Rab27B has not been identified. In this study, the expression in mouse pancreatic acini of two candidate Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins, EPI64 (TBC1D10A) and EPI64B (TBC1D10B), was first demonstrated. Their GAP activity on digestive enzyme secretion was examined by adenovirus-mediated overexpression of EPI64 and EPI64B in isolated pancreatic acini. EPI64B almost completely abolished the GTP-bound form of Rab27B, without affecting GTP-Rab3D. Overexpression of EPI64B also enhanced amylase release. This enhanced release was independent of Rab27A, but dependent on Rab27B, as shown using acini from genetically modified mice. EPI64 had a mild effect on both GTP-Rab27B and amylase release. Co-overexpression of EPI64B with Rab27B can reverse the inhibitory effect of Rab27B on amylase release. Mutations that block the GAP activity decreased the inhibitory effect of EPI64B on the GTP-bound state of Rab27B and abolished the enhancing effect of EPI64B on the amylase release. These data suggest that EPI64B can serve as a potential physiological GAP for Rab27B and thereby participate in the regulation of exocytosis in pancreatic acinar cells. PMID:23671284

  11. Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3.

    PubMed

    Kornak, Uwe; Mademan, Inès; Schinke, Marte; Voigt, Martin; Krawitz, Peter; Hecht, Jochen; Barvencik, Florian; Schinke, Thorsten; Gießelmann, Sebastian; Beil, F Timo; Pou-Serradell, Adolf; Vílchez, Juan J; Beetz, Christian; Deconinck, Tine; Timmerman, Vincent; Kaether, Christoph; De Jonghe, Peter; Hübner, Christian A; Gal, Andreas; Amling, Michael; Mundlos, Stefan; Baets, Jonathan; Kurth, Ingo

    2014-03-01

    Many neurodegenerative disorders present with sensory loss. In the group of hereditary sensory and autonomic neuropathies loss of nociception is one of the disease hallmarks. To determine underlying factors of sensory neurodegeneration we performed whole-exome sequencing in affected individuals with the disorder. In a family with sensory neuropathy with loss of pain perception and destruction of the pedal skeleton we report a missense mutation in a highly conserved amino acid residue of atlastin GTPase 3 (ATL3), an endoplasmic reticulum-shaping GTPase. The same mutation (p.Tyr192Cys) was identified in a second family with similar clinical outcome by screening a large cohort of 115 patients with hereditary sensory and autonomic neuropathies. Both families show an autosomal dominant pattern of inheritance and the mutation segregates with complete penetrance. ATL3 is a paralogue of ATL1, a membrane curvature-generating molecule that is involved in spastic paraplegia and hereditary sensory neuropathy. ATL3 proteins are enriched in three-way junctions, branch points of the endoplasmic reticulum that connect membranous tubules to a continuous network. Mutant ATL3 p.Tyr192Cys fails to localize to branch points, but instead disrupts the structure of the tubular endoplasmic reticulum, suggesting that the mutation exerts a dominant-negative effect. Identification of ATL3 as novel disease-associated gene exemplifies that long-term sensory neuronal maintenance critically depends on the structural organisation of the endoplasmic reticulum. It emphasizes that alterations in membrane shaping-proteins are one of the major emerging pathways in axonal degeneration and suggests that this group of molecules should be considered in neuroprotective strategies.

  12. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus

    PubMed Central

    Liu, Peng; Myo, Thwin; Ma, Wei; Lan, Dingyun; Qi, Tuo; Guo, Jia; Song, Ping; Guo, Jun; Kang, Zhensheng

    2016-01-01

    Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner. PMID:27446108

  13. Corrected and Republished from: Activation Status-Coupled Transient S-Acylation Determines Membrane Partitioning of a Plant Rho-Related GTPase.

    PubMed

    Sorek, Nadav; Poraty, Limor; Sternberg, Hasana; Buriakovsky, Ella; Bar, Einat; Lewinsohn, Efraim; Yalovsky, Shaul

    2017-12-01

    ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane via posttranslational lipid modifications. The relationships between ROP activation status and membrane localization has not been established. Here, we show that endogenous ROPs, as well as a transgenic His 6 -green fluorescent protein (GFP)- Arabidopsis thaliana ROP6 (AtROP6) fusion protein, were partitioned between Triton X-100-soluble and -insoluble membranes. In contrast, the His 6 -GFP-Atrop6 CA activated mutant accumulated exclusively in detergent-resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPγS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild-type and constitutively active AtROP6 proteins were purified from Arabidopsis plants, and in turn, their lipids were cleaved and analyzed by gas chromatography-coupled mass spectrometry. In Triton-soluble membranes, the wild-type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent-resistant membranes was modified by prenyl and acyl lipids, identified as palmitic and stearic acids. Consistently, activated His 6 -GFP-Atrop6 CA mS 156 , in which C156 was mutated into serine, accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6, and possibly other ROPs, are transiently S-acylated, inducing their partitioning into detergent-resistant membranes. Copyright © 2017 American Society for Microbiology.

  14. Corrected and Republished from: Activation Status-Coupled Transient S-Acylation Determines Membrane Partitioning of a Plant Rho-Related GTPase

    PubMed Central

    Sorek, Nadav; Poraty, Limor; Sternberg, Hasana; Buriakovsky, Ella; Bar, Einat; Lewinsohn, Efraim

    2017-01-01

    ABSTRACT ROPs or RACs are plant Rho-related GTPases implicated in the regulation of a multitude of signaling pathways that function at the plasma membrane via posttranslational lipid modifications. The relationships between ROP activation status and membrane localization has not been established. Here, we show that endogenous ROPs, as well as a transgenic His6-green fluorescent protein (GFP)-Arabidopsis thaliana ROP6 (AtROP6) fusion protein, were partitioned between Triton X-100-soluble and -insoluble membranes. In contrast, the His6-GFP-Atrop6CA activated mutant accumulated exclusively in detergent-resistant membranes. GDP induced accumulation of ROPs in Triton-soluble membranes, whereas GTPγS induced accumulation of ROPs in detergent-resistant membranes. Recombinant wild-type and constitutively active AtROP6 proteins were purified from Arabidopsis plants, and in turn, their lipids were cleaved and analyzed by gas chromatography-coupled mass spectrometry. In Triton-soluble membranes, the wild-type AtROP6 was only prenylated, primarily by geranylgeranyl. The activated AtROP6 that accumulated in detergent-resistant membranes was modified by prenyl and acyl lipids, identified as palmitic and stearic acids. Consistently, activated His6-GFP-Atrop6CAmS156, in which C156 was mutated into serine, accumulated in Triton-soluble membranes. These findings show that upon GTP binding and activation, AtROP6, and possibly other ROPs, are transiently S-acylated, inducing their partitioning into detergent-resistant membranes. PMID:28894027

  15. A Class I ADP-Ribosylation Factor GTPase-Activating Protein Is Critical for Maintaining Directional Root Hair Growth in Arabidopsis1[W][OA

    PubMed Central

    Yoo, Cheol-Min; Wen, Jiangqi; Motes, Christy M.; Sparks, J. Alan; Blancaflor, Elison B.

    2008-01-01

    Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs. PMID:18539780

  16. The anticancer phytochemical rocaglamide inhibits Rho GTPase activity and cancer cell migration

    PubMed Central

    Becker, Michael S.; Müller, Paul M.; Bajorat, Jörg; Schroeder, Anne; Giaisi, Marco; Amin, Ehsan; Ahmadian, Mohammad R.; Rocks, Oliver; Köhler, Rebecca; Krammer, Peter H.; Li-Weber, Min

    2016-01-01

    Chemotherapy is one of the pillars of anti-cancer therapy. Although chemotherapeutics cause regression of the primary tumor, many chemotherapeutics are often shown to induce or accelerate metastasis formation. Moreover, metastatic tumors are largely resistant against chemotherapy. As more than 90% of cancer patients die due to metastases and not due to primary tumor formation, novel drugs are needed to overcome these shortcomings. In this study, we identified the anticancer phytochemical Rocaglamide (Roc-A) to be an inhibitor of cancer cell migration, a crucial event in metastasis formation. We show that Roc-A inhibits cellular migration and invasion independently of its anti-proliferative and cytotoxic effects in different types of human cancer cells. Mechanistically, Roc-A treatment induces F-actin-based morphological changes in membrane protrusions. Further investigation of the molecular mechanisms revealed that Roc-A inhibits the activities of the small GTPases RhoA, Rac1 and Cdc42, the master regulators of cellular migration. Taken together, our results provide evidence that Roc-A may be a lead candidate for a new class of anticancer drugs that inhibit metastasis formation. PMID:27340868

  17. Structural Dynamics Control Allosteric Activation of Cytohesin Family Arf GTPase Exchange Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malaby, Andrew W.; Das, Sanchaita; Chakravarthy, Srinivas

    Membrane dynamic processes including vesicle biogenesis depend on Arf guanosine triphosphatase (GTPase) activation by guanine nucleotide exchange factors (GEFs) containing a catalytic Sec7 domain and a membrane-targeting module such as a pleckstrin homology (PH) domain. The catalytic output of cytohesin family Arf GEFs is controlled by autoinhibitory interactions that impede accessibility of the exchange site in the Sec7 domain. These restraints can be relieved through activator Arf-GTP binding to an allosteric site comprising the PH domain and proximal autoinhibitory elements (Sec7-PH linker and C-terminal helix). Small-angle X-ray scattering and negative-stain electron microscopy were used to investigate the structural organization andmore » conformational dynamics of cytohesin-3 (Grp1) in autoinhibited and active states. The results support a model in which hinge dynamics in the autoinhibited state expose the activator site for Arf-GTP binding, while subsequent C-terminal helix unlatching and repositioning unleash conformational entropy in the Sec7-PH linker to drive exposure of the exchange site.« less

  18. Unique presentation of cutis laxa with Leigh-like syndrome due to ECHS1 deficiency.

    PubMed

    Balasubramaniam, S; Riley, L G; Bratkovic, D; Ketteridge, D; Manton, N; Cowley, M J; Gayevskiy, V; Roscioli, T; Mohamed, M; Gardeitchik, T; Morava, E; Christodoulou, J

    2017-09-01

    Clinical finding of cutis laxa, characterized by wrinkled, redundant, sagging, nonelastic skin, is of growing significance due to its occurrence in several different inborn errors of metabolism (IEM). Metabolic cutis laxa results from Menkes syndrome, caused by a defect in the ATPase copper transporting alpha (ATP7A) gene; congenital disorders of glycosylation due to mutations in subunit 7 of the component of oligomeric Golgi (COG7)-congenital disorders of glycosylation (CDG) complex; combined disorder of N- and O-linked glycosylation, due to mutations in ATPase H+ transporting V0 subunit a2 (ATP6VOA2) gene; pyrroline-5-carboxylate reductase 1 deficiency; pyrroline-5-carboxylate synthase deficiency; macrocephaly, alopecia, cutis laxa, and scoliosis (MACS) syndrome, due to Ras and Rab interactor 2 (RIN2) mutations; transaldolase deficiency caused by mutations in the transaldolase 1 (TALDO1) gene; Gerodermia osteodysplastica due to mutations in the golgin, RAB6-interacting (GORAB or SCYL1BP1) gene; and mitogen-activated pathway (MAP) kinase defects, caused by mutations in several genes [protein tyrosine phosphatase, non-receptor-type 11 (PTPN11), RAF, NF, HRas proto-oncogene, GTPase (HRAS), B-Raf proto-oncogene, serine/threonine kinase (BRAF), MEK1/2, KRAS proto-oncogene, GTPase (KRAS), SOS Ras/Rho guanine nucleotide exchange factor 2 (SOS2), leucine rich repeat scaffold protein (SHOC2), NRAS proto-oncogene, GTPase (NRAS), and Raf-1 proto-oncogene, serine/threonine kinase (RAF1)], which regulate the Ras-MAPK cascade. Here, we further expand the list of inborn errors of metabolism associated with cutis laxa by describing the clinical presentation of a 17-month-old girl with Leigh-like syndrome due to enoyl coenzyme A hydratase, short chain, 1, mitochondria (ECHS1) deficiency, a mitochondrial matrix enzyme that catalyzes the second step of the beta-oxidation spiral of fatty acids and plays an important role in amino acid catabolism, particularly valine.

  19. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, ion-stress response and vacuolar formation in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki

    Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our datamore » strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.« less

  20. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice.

    PubMed

    Samad, Mehdi Bin; Mohsin, Md Nurul Absar Bin; Razu, Bodiul Alam; Hossain, Mohammad Tashnim; Mahzabeen, Sinayat; Unnoor, Naziat; Muna, Ishrat Aklima; Akhter, Farjana; Kabir, Ashraf Ul; Hannan, J M A

    2017-08-09

    [6]-Gingerol, a major component of Zingiber officinale, was previously reported to ameliorate hyperglycemia in type 2 diabetic mice. Endocrine signaling is involved in insulin secretion and is perturbed in db/db Type-2 diabetic mice. [6]-Gingerol was reported to restore the disrupted endocrine signaling in rodents. In this current study on Lepr db/db diabetic mice, we investigated the involvement of endocrine pathway in the insulin secretagogue activity of [6]-Gingerol and the mechanism(s) through which [6]-Gingerol ameliorates hyperglycemia. Lepr db/db type 2 diabetic mice were orally administered a daily dose of [6]-Gingerol (200 mg/kg) for 28 days. We measured the plasma levels of different endocrine hormones in fasting and fed conditions. GLP-1 levels were modulated using pharmacological approaches, and cAMP/PKA pathway for insulin secretion was assessed by qRT-PCR and ELISA in isolated pancreatic islets. Total skeletal muscle and its membrane fractions were used to measure glycogen synthase 1 level and Glut4 expression and protein levels. 4-weeks treatment of [6]-Gingerol dramatically increased glucose-stimulated insulin secretion and improved glucose tolerance. Plasma GLP-1 was found to be significantly elevated in the treated mice. Pharmacological intervention of GLP-1 levels regulated the effect of [6]-Gingerol on insulin secretion. Mechanistically, [6]-Gingerol treatment upregulated and activated cAMP, PKA, and CREB in the pancreatic islets, which are critical components of GLP-1-mediated insulin secretion pathway. [6]-Gingerol upregulated both Rab27a GTPase and its effector protein Slp4-a expression in isolated islets, which regulates the exocytosis of insulin-containing dense-core granules. [6]-Gingerol treatment improved skeletal glycogen storage by increased glycogen synthase 1 activity. Additionally, GLUT4 transporters were highly abundant in the membrane of the skeletal myocytes, which could be explained by the increased expression of Rab8 and Rab

  1. Targets of B-cell antigen receptor signaling: the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway and the Rap1 GTPase.

    PubMed

    Gold, M R; Ingham, R J; McLeod, S J; Christian, S L; Scheid, M P; Duronio, V; Santos, L; Matsuuchi, L

    2000-08-01

    In this review, we discuss the role of phosphatidylinositol 3-kinase (PI3K) and Rap 1 in B-cell receptor (BCR) signaling. PI3K produces lipids that recruit pleckstrin homology domain-containing proteins to the plasma membrane. Akt is a kinase that the BCR activates in this manner. Akt phosphorylates several transcription factors as well as proteins that regulate apoptosis and protein synthesis. Akt also regulates glycogen synthase kinase-3, a kinase whose substrates include the nuclear factor of activated T cells (NF-AT)cl and beta-catenin transcriptional activators. In addition to Akt, PI3K-derived lipids also regulate the activity and localization of other targets of BCR signaling. Thus, a key event in BCR signaling is the recruitment of PI3K to the plasma membrane where its substrates are located. This is mediated by binding of the Src homology (SH) 2 domains in PI3K to phosphotyrosine-containing sequences on membrane-associated docking proteins. The docking proteins that the BCR uses to recruit PI3K include CD19, Cbl, Gab1, and perhaps Gab2. We have shown that Gab1 colocalizes PI3K with SH2 domain-containing inositol phosphatase (SHIP) and SHP2, two enzymes that regulate PI3K-dependent signaling. In contrast to PI3K, little is known about the Rap1 GTPase. We showed that the BCR activates Rap1 via phospholipase C-dependent production of diacylglycerol. Since Rap1 is thought to regulate cell adhesion and cell polarity, it may be involved in B-cell migration.

  2. Ras-like family small GTPases genes in Nilaparvata lugens: Identification, phylogenetic analysis, gene expression and function in nymphal development

    PubMed Central

    Wang, Weixia; Li, Kailong; Wan, Pinjun; Lai, Fengxiang; Fu, Qiang; Zhu, Tingheng

    2017-01-01

    Twenty-nine cDNAs encoding Ras-like family small GTPases (RSGs) were cloned and sequenced from Nilaparvata lugens. Twenty-eight proteins are described here: 3 from Rho, 2 from Ras, 9 from Arf and 14 from Rabs. These RSGs from N.lugens have five conserved G-loop motifs and displayed a higher degree of sequence conservation with orthologues from insects. RT-qPCR analysis revealed NlRSGs expressed at all life stages and the highest expression was observed in hemolymph, gut or wing for most of NlRSGs. RNAi demonstrated that eighteen NlRSGs play a crucial role in nymphal development. Nymphs with silenced NlRSGs failed to molt, eclosion or development arrest. The qRT-PCR analysis verified the correlation between mortality and the down-regulation of the target genes. The expression level of nuclear receptors, Kr-h1, Hr3, FTZ-F1 and E93 involved in 20E and JH signal pathway was impacted in nymphs with silenced twelve NlRSGs individually. The expression of two halloween genes, Cyp314a1 and Cyp315a1 involved in ecdysone synthesis, decreased in nymphs with silenced NlSar1 or NlArf1. Cyp307a1 increased in nymphs with silenced NlArf6. In N.lugens with silenced NlSRβ, NlSar1 and NlRab2 at 9th day individually, 0.0% eclosion rate and almost 100.0% mortality was demonstrated. Further analysis showed NlSRβ could be served as a candidate target for dsRNA-based pesticides for N.lugens control. PMID:28241066

  3. Phosphatidylserine and GTPase activation control Cdc42 nanoclustering to counter dissipative diffusion.

    PubMed

    Sartorel, Elodie; Ünlü, Caner; Jose, Mini; Massoni-Laporte, Aurélie; Meca, Julien; Sibarita, Jean-Baptiste; McCusker, Derek

    2018-04-18

    The anisotropic organization of plasma membrane constituents is indicative of mechanisms that drive the membrane away from equilibrium. However, defining these mechanisms is challenging due to the short spatio-temporal scales at which diffusion operates. Here, we use high-density single protein tracking combined with photoactivation localization microscopy (sptPALM) to monitor Cdc42 in budding yeast, a system in which Cdc42 exhibits anisotropic organization. Cdc42 exhibited reduced mobility at the cell pole, where it was organized in nanoclusters. The Cdc42 nanoclusters were larger at the cell pole than those observed elsewhere in the cell. These features were exacerbated in cells expressing Cdc42-GTP, and were dependent on the scaffold Bem1, which contributed to the range of mobility and nanocluster size exhibited by Cdc42. The lipid environment, in particular phosphatidylserine levels, also played a role in regulating Cdc42 nanoclustering. These studies reveal how the mobility of a Rho GTPase is controlled to counter the depletive effects of diffusion, thus stabilizing Cdc42 on the plasma membrane and sustaining cell polarity. Movie S1 Movie S1 sptPALM imaging of live yeast expressing Pil1-mEOS expressed at the genomic locus. Pil1-mEOS was simultaneously photo-converted with a 405 nm laser and imaged with a 561 nm laser using HiLo illumination. Images were acquired at 20 ms intervals, of which 300 frames are shown at 7 frames per second.

  4. Molecular characterization of a novel RhoGAP, RRC-1 of the nematode Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delawary, Mina; Nakazawa, Takanobu; Tezuka, Tohru

    2007-06-01

    The GTPase-activating proteins for Rho family GTPases (RhoGAP) transduce diverse intracellular signals by negatively regulating Rho family GTPase-mediated pathways. In this study, we have cloned and characterized a novel RhoGAP for Rac1 and Cdc42, termed RRC-1, from Caenorhabditis elegans. RRC-1 was highly homologous to mammalian p250GAP and promoted GTP hydrolysis of Rac1 and Cdc42 in cells. The rrc-1 mRNA was expressed in all life stages. Using an RRC-1::GFP fusion protein, we found that RRC-1 was localized to the coelomocytes, excretory cell, GLR cells, and uterine-seam cell in adult worms. These data contribute toward understanding the roles of Rho family GTPasesmore » in C. elegans.« less

  5. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana.

    PubMed

    Lin, Deshu; Ren, Huibo; Fu, Ying

    2015-01-01

    In multicellular plant organs, cell shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cell-to-cell communication. Plants have a specific subfamily of the Rho GTPase family, usually called Rho of Plants (ROP), which serve as a critical signal transducer involved in many cellular processes. In the last decade, important advances in the ROP-mediated regulation of plant cell morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cells. Especially, the auxin-ROP signaling networks have been demonstrated to control interdigitated growth of pavement cells to form jigsaw-puzzle shapes. Here, we review findings related to the discovery of this novel auxin-signaling mechanism at the cell surface. This signaling pathway is to a large extent independent of the well-known Transport Inhibitor Response (TIR)-Auxin Signaling F-Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane-localized, transmembrane kinase (TMK) receptor-like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self-organizing feature allowing ROP proteins to serve as a bustling signal decoder and integrator for plant cell morphogenesis. © 2014 Institute of Botany, Chinese Academy of Sciences.

  6. Regulation of hematopoietic stem cell aging by the small RhoGTPase Cdc42

    PubMed Central

    Geiger, Hartmut; Zheng, Yi

    2015-01-01

    Summary Aging of stem cells might be the underlying cause of tissue aging in tissue that in the adult heavily rely on stem cell activity, like the blood forming system. Hematopoiesis, the generation of blood forming cells, is sustained by hematopoietic stem cells. In this review article, we introduce the canonical set of phenotypes associated with aged HSCs, focus on the novel aging-associated phenotype apolarity caused by elevated activity of the small RhoGTPase in aged HSCs, disuccs the role of Cdc42 in hematopoiesis and describe that pharmacological inhibition of Cdc42 activity in aged HSCs results in functionally young and thus rejuvenated HSCs. PMID:25220425

  7. A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation*

    PubMed Central

    Kistler, Samantha; George, Samuel D.; Kuhlmann, Nora; Garvey, Leslie; Huynh, Minh; Bagni, Rachel K.; Lammers, Michael; Der, Channing J.; Campbell, Sharon L.

    2017-01-01

    The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity. PMID:28154176

  8. Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex.

    PubMed

    McGuire, Andrew T; Mangroo, Dev

    2012-02-01

    Nuclear tRNA export plays an essential role in key cellular processes such as regulation of protein synthesis, cell cycle progression, response to nutrient availability and DNA damage and development. Like other nuclear export processes, assembly of the nuclear tRNA export complex in the nucleus is dependent on Ran-GTP/Gsp1p-GTP, and dissociation of the export receptor-tRNA-Ran-GTP/Gsp1p-GTP complex in the cytoplasm requires RanBP1/Yrb1p and RanGAP/Rna1p to activate the GTPase activity of Ran-GTP/Gsp1p-GTP. The Saccharomyces cerevisiae Cex1p and Human Scyl1 have also been proposed to participate in unloading of the tRNA export receptors at the cytoplasmic face of the nuclear pore complex (NPC). Here, we provide evidence suggesting that Cex1p is required for activation of the GTPase activity of Gsp1p and dissociation of the receptor-tRNA-Gsp1p export complex in S. cerevisiae. The data suggest that Cex1p recruits Rna1p from the cytoplasm to the NPC and facilitates Rna1p activation of the GTPase activity of Gsp1p by enabling Rna1p to gain access to Gsp1p-GTP bound to the export receptor tRNA complex. It is possible that this tRNA unloading mechanism is conserved in evolutionarily diverse organisms and that other Gsp1p-GTP-dependent export processes use a pathway-specific component to recruit Rna1p to the NPC. © 2011 John Wiley & Sons A/S.

  9. Small GTPase Tc10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth.

    PubMed

    Abe, Tomoyuki; Kato, Masayoshi; Miki, Hiroaki; Takenawa, Tadaomi; Endo, Takeshi

    2003-01-01

    Rho family small GTPases regulate multiple cellular functions through reorganization of the actin cytoskeleton. Among them, Cdc42 and Tc10 induce filopodia or peripheral processes in cultured cells. We have identified a member of the family, designated as RhoT, which is closely related to Tc10. Tc10 was highly expressed in muscular tissues and brain and remarkably induced during differentiation of C2 skeletal muscle cells and neuronal differentiation of PC12 and N1E-115 cells. On the other hand, RhoT was predominantly expressed in heart and uterus and induced during neuronal differentiation of N1E-115 cells. Tc10 exogenously expressed in fibroblasts generated actin-filament-containing peripheral processes longer than the Cdc42-formed filopodia, whereas RhoT produced much longer and thicker processes containing actin filaments. Furthermore, both Tc10 and RhoT induced neurite outgrowth in PC12 and N1E-115 cells, but Cdc42 did not do this by itself. Tc10 and RhoT as well as Cdc42 bound to the N-terminal CRIB-motif-containing portion of N-WASP and activated N-WASP to induce Arp2/3-complex-mediated actin polymerization. The formation of peripheral processes and neurites by Tc10 and RhoT was prevented by the coexpression of dominant-negative mutants of N-WASP. Thus, N-WASP is essential for the process formation and neurite outgrowth induced by Tc10 and RhoT. Neuronal differentiation of PC12 and N1E-115 cells induced by dibutyryl cyclic AMP and by serum starvation, respectively, was prevented by dominant-negative Cdc42, Tc10 and RhoT. Taken together, all these Rho family proteins are required for neuronal differentiation, but they exert their functions differentially in process formation and neurite extension. Consequently, N-WASP activated by these small GTPases mediates neuronal differentiation in addition to its recently identified role in glucose uptake.

  10. Sevoflurane Inhalation Accelerates the Long-Term Memory Consolidation via Small GTPase Overexpression in the Hippocampus of Mice in Adolescence.

    PubMed

    Nakamura, Emi; Kinoshita, Hiroyuki; Feng, Guo-Gang; Hayashi, Hisaki; Satomoto, Maiko; Sato, Motohiko; Fujiwara, Yoshihiro

    2016-01-01

    Sevoflurane exposure impairs the long-term memory in neonates. Whether the exposure to animals in adolescence affects the memory, however, has been unclear. A small hydrolase enzyme of guanosine triphosphate (GTPase) rac1 plays a role in the F-actin dynamics related to the synaptic plasticity, as well as superoxide production via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The current study was designed to examine whether sevoflurane exposure to mice in early adolescence modifies the long-term learning ability concomitantly with the changes in F-actin constitution as well as superoxide production in the hippocampus according to the levels of rac1 protein expression. Four-week-old mice were subjected to the evaluation of long-term learning ability for three days. On day one, each mouse was allowed to enter a dark chamber for five min to acclimatization. On day two, the procedure was repeated with the addition of an electric shock as soon as a mouse entered the dark chamber. All mice subsequently inhaled 2 L/min air with (Sevoflurane group) and without (Control group) 2.5% sevoflurane for three hours. On day three, each mouse was placed on the platform and retention time, which is the latency to enter the dark chamber, was examined. The brain removed after the behavior test, was used for analyses of immunofluorescence, Western immunoblotting and intracellular levels of superoxide. Sevoflurane exposure significantly prolonged retention time, indicating the enhanced long-term memory. Sevoflurane inhalation augmented F-actin constitution coexisting with the rac1 protein overexpression in the hippocampus whereas it did not alter the levels of superoxide. Sevoflurane exposure to 4-week-old mice accelerates the long-term memory concomitantly with the enhanced F-actin constitution coexisting with the small GTPase rac1 overexpression in the hippocampus. These results suggest that sevoflurane inhalation may amplify long-term memory

  11. Structural insights into cell cycle control by essential GTPase Era.

    PubMed

    Ji, Xinhua

    Era (Escherichia coli Ras-like protein), essential for bacterial cell viability, is composed of an N-terminal GTPase domain and a C-terminal KH domain. In bacteria, it is required for the processing of 16S ribosomal RNA (rRNA) and maturation of 30S (small) ribosomal subunit. Era recognizes 10 nucleotides ( 1530 GAUCACCUCC 1539 ) near the 3' end of 16S rRNA and interacts with helix 45 (h45, nucleotides 1506-1529). GTP binding enables Era to bind RNA, RNA binding stimulates Era's GTP-hydrolyzing activity, and GTP hydrolysis releases Era from matured 30S ribosomal subunit. As such, Era controls cell growth rate via regulating the maturation of the 30S ribosomal subunit. Ribosomes manufacture proteins in all living organisms. The GAUCA sequence and h45 are highly conserved in all three kingdoms of life. Homologues of Era are present in eukaryotic cells. Hence, the mechanism of bacterial Era action also sheds light on the cell cycle control of eukaryotes.

  12. Assembly of an FtsZ Mutant Deficient in GTPase Activity Has Implications for FtsZ Assembly and the Role of the Z Ring in Cell Division

    PubMed Central

    Mukherjee, Amit; Saez, Cristian; Lutkenhaus, Joe

    2001-01-01

    FtsZ, the ancestral homologue of eukaryotic tubulins, assembles into the Z ring, which is required for cytokinesis in prokaryotic cells. Both FtsZ and tubulin have a GTPase activity associated with polymerization. Interestingly, the ftsZ2 mutant is viable, although the FtsZ2 mutant protein has dramatically reduced GTPase activity due to a glycine-for-aspartic acid substitution within the synergy loop. In this study, we have examined the properties of FtsZ2 and found that the reduced GTPase activity is not enhanced by DEAE-dextran-induced assembly, indicating it has a defective catalytic site. In the absence of DEAE-dextran, FtsZ2 fails to assemble unless supplemented with wild-type FtsZ. FtsZ has to be at or above the critical concentration for copolymerization to occur, indicating that FtsZ is nucleating the copolymers. The copolymers formed are relatively stable and appear to be stabilized by a GTP-cap. These results indicate that FtsZ2 cannot nucleate assembly in vitro, although it must in vivo. Furthermore, the stability of FtsZ-FtsZ2 copolymers argues that FtsZ2 polymers would be stable, suggesting that stable FtsZ polymers are able to support cell division. PMID:11717278

  13. Nuclear export of the small ribosomal subunit requires the Ran–GTPase cycle and certain nucleoporins

    PubMed Central

    Moy, Terence I.; Silver, Pamela A.

    1999-01-01

    After their assembly in the nucleolus, ribosomal subunits are exported from the nucleus to the cytoplasm. After export, the 20S rRNA in the small ribosomal subunit is cleaved to yield 18S rRNA and the small 5′ ITS1 fragment. The 5′ ITS1 RNA is normally degraded by the cytoplasmic Xrn1 exonuclease, but in strains lacking XRN1, the 5′ ITS1 fragment accumulates in the cytoplasm. Using the cytoplasmic localization of the 5′ ITS1 fragment as an indicator for the export of the small ribosomal subunit, we have identified genes that are required for ribosome export. Ribosome export is dependent on the Ran–GTPase as mutations in Ran or its regulators caused 5′ ITS1 to accumulate in the nucleoplasm. Mutations in the genes encoding the nucleoporin Nup82 and in the NES exporter Xpo1/Crm1 also caused the nucleoplasmic accumulation of 5′ ITS1. Mutants in a subset of nucleoporins and in the nuclear transport factors Srp1, Kap95, Pse1, Cse1, and Mtr10 accumulate the 5′ ITS1 in the nucleolus and affect ribosome assembly. In contrast, we did not detect nuclear accumulation of 5′ ITS1 in 28 yeast strains that have mutations in other genes affecting nuclear trafficking. PMID:10465789

  14. Soil carbon changes: comparing flux monitoring and mass balance in a box lysimeter experiment.

    Treesearch

    S.M. Nay; B.T. Bormann

    2000-01-01

    Direct measures of soil-surface respiration are needed to evaluate belowground biological processes, forest productivity, and ecosystem responses to global change. Although infra-red gas analyzer {IRGA) methods track reference CO2 flows in lab studies, questions remain for extrapolating IRGA methods to field conditions. We constructed 10 box...

  15. The Small GTPase Rac1 Contributes to Extinction of Aversive Memories of Drug Withdrawal by Facilitating GABAA Receptor Endocytosis in the vmPFC.

    PubMed

    Wang, Weisheng; Ju, Yun-Yue; Zhou, Qi-Xin; Tang, Jian-Xin; Li, Meng; Zhang, Lei; Kang, Shuo; Chen, Zhong-Guo; Wang, Yu-Jun; Ji, Hui; Ding, Yu-Qiang; Xu, Lin; Liu, Jing-Gen

    2017-07-26

    Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABA A receptor (GABA A R) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABA A R endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABA A R endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABA A R endocytosis and CPA extinction. The crucial role of GABA A R endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABA A R endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABA A R endocytosis. SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories. Copyright © 2017 the authors 0270-6474/17/377096-15$15.00/0.

  16. Dexras1 a unique ras-GTPase interacts with NMDA receptor activity and provides a novel dissociation between anxiety, working memory and sensory gating.

    PubMed

    Carlson, G C; Lin, R E; Chen, Y; Brookshire, B R; White, R S; Lucki, I; Siegel, S J; Kim, S F

    2016-05-13

    Dexras1 is a novel GTPase that acts at a confluence of signaling mechanisms associated with psychiatric and neurological disease including NMDA receptors, NOS1AP and nNOS. Recent work has shown that Dexras1 mediates iron trafficking and NMDA-dependent neurodegeneration but a role for Dexras1 in normal brain function or psychiatric disease has not been studied. To test for such a role, mice with germline knockout (KO) of Dexras1 were assayed for behavioral abnormalities as well as changes in NMDA receptor subunit protein expression. Because Dexras1 is up-regulated during stress or by dexamethasone treatment, we included measures associated with emotion including anxiety and depression. Baseline anxiety-like measures (open field and zero maze) were not altered, nor were depression-like behavior (tail suspension). Measures of memory function yielded mixed results, with no changes in episodic memory (novel object recognition) but a significant decrement on working memory (T-maze). Alternatively, there was an increase in pre-pulse inhibition (PPI), without concomitant changes in either startle amplitude or locomotor activity. PPI data are consistent with the direction of change seen following exposure to dopamine D2 antagonists. An examination of NMDA subunit expression levels revealed an increased expression of the NR2A subunit, contrary to previous studies demonstrating down-regulation of the receptor following antipsychotic exposure (Schmitt et al., 2003) and up-regulation after exposure to isolation rearing (Turnock-Jones et al., 2009). These findings suggest a potential role for Dexras1 in modulating a selective subset of psychiatric symptoms, possibly via its interaction with NMDARs and/or other disease-related binding-partners. Furthermore, data suggest that modulating Dexras1 activity has contrasting effects on emotional, sensory and cognitive domains. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. An Elmo–Dock complex locally controls Rho GTPases and actin remodeling during cadherin-mediated adhesion

    PubMed Central

    Collins, Caitlin

    2014-01-01

    Cell–cell contact formation is a dynamic process requiring the coordination of cadherin-based cell–cell adhesion and integrin-based cell migration. A genome-wide RNA interference screen for proteins required specifically for cadherin-dependent cell–cell adhesion identified an Elmo–Dock complex. This was unexpected as Elmo–Dock complexes act downstream of integrin signaling as Rac guanine-nucleotide exchange factors. In this paper, we show that Elmo2 recruits Dock1 to initial cell–cell contacts in Madin–Darby canine kidney cells. At cell–cell contacts, both Elmo2 and Dock1 are essential for the rapid recruitment and spreading of E-cadherin, actin reorganization, localized Rac and Rho GTPase activities, and the development of strong cell–cell adhesion. Upon completion of cell–cell adhesion, Elmo2 and Dock1 no longer localize to cell–cell contacts and are not required subsequently for the maintenance of cell–cell adhesion. These studies show that Elmo–Dock complexes are involved in both integrin- and cadherin-based adhesions, which may help to coordinate the transition of cells from migration to strong cell–cell adhesion. PMID:25452388

  18. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis Monteiro dos-Santos, Guilherme Rodrigo; Fontenele, Marcio Ribeiro; Dias, Felipe de Almeida

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.

  19. SARS coronavirus papain-like protease up-regulates the collagen expression through non-Samd TGF-β1 signaling.

    PubMed

    Wang, Ching-Ying; Lu, Chien-Yi; Li, Shih-Wen; Lai, Chien-Chen; Hua, Chun-Hung; Huang, Su-Hua; Lin, Ying-Ju; Hour, Mann-Jen; Lin, Cheng-Wen

    2017-05-02

    SARS coronavirus (CoV) papain-like protease (PLpro) reportedly induced the production of TGF-β1 through p38 MAPK/STAT3-meidated Egr-1-dependent activation (Sci. Rep. 6, 25754). This study investigated the correlation of PLpro-induced TGF-β1 with the expression of Type I collagen in human lung epithelial cells and mouse pulmonary tissues. Specific inhibitors for TGF-βRI, p38 MAPK, MEK, and STAT3 proved that SARS-CoV PLpro induced TGF-β1-dependent up-regulation of Type I collagen in vitro and in vivo. Subcellular localization analysis of SMAD3 and SMAD7 indicated that non-SMAD pathways in TGF-β1 signaling involved in the production of Type I collagen in transfected cells with pSARS-PLpro. Comprehensive analysis of ubiquitin-conjugated proteins using immunoprecipitation and nanoLC-MS/MS indicated that SARS-CoV PLpro caused the change in the ubiquitination profile of Rho GTPase family proteins, in which linked with the increase of Rho-like GTPase family proteins. Moreover, selective inhibitors TGF-βRI and STAT6 (AS1517499) ascertained that STAT6 activation was required for PLpro-induced TGF-β1-dependent up-regulation of Type I collagen in human lung epithelial cells. The results showed that SARS-CoV PLpro stimulated TGF-β1-dependent expression of Type I collagen via activating STAT6 pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation.

    PubMed

    Yin, Guowei; Kistler, Samantha; George, Samuel D; Kuhlmann, Nora; Garvey, Leslie; Huynh, Minh; Bagni, Rachel K; Lammers, Michael; Der, Channing J; Campbell, Sharon L

    2017-03-17

    The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Crosstalk between mTORC1 and cAMP Signaling

    DTIC Science & Technology

    2014-07-01

    based genome editing to endogenously tag the V1 subunit and introduce point mutations (T175A; phospho-defective and T175D; phospho-mimetic). By...analysis ap- proach, and the other screened small GTPases using RNAi in Drosophila cells [41,48]. There are four Rag proteins in mammals: RagA and RagB (!98...at the lysosome The Rag proteins lack membrane-targeting sequences , unlike other typical small GTPases such as Rheb. Thus, the Rag–mTORC1 complex is

  2. Whole-Organism Developmental Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the BBSome and Intraflagellar Transport

    PubMed Central

    Sanders, Anna A. W. M.; Li, Chunmei; Kennedy, Julie; Cai, Jerry; Scheidel, Noemie; Kennedy, Breandán N.; Morin, Ryan D.; Leroux, Michel R.; Blacque, Oliver E.

    2016-01-01

    Primary cilia are specialised sensory and developmental signalling devices extending from the surface of most eukaryotic cells. Defects in these organelles cause inherited human disorders (ciliopathies) such as retinitis pigmentosa and Bardet-Biedl syndrome (BBS), frequently affecting many physiological and developmental processes across multiple organs. Cilium formation, maintenance and function depend on intracellular transport systems such as intraflagellar transport (IFT), which is driven by kinesin-2 and IFT-dynein motors and regulated by the Bardet-Biedl syndrome (BBS) cargo-adaptor protein complex, or BBSome. To identify new cilium-associated genes, we employed the nematode C. elegans, where ciliogenesis occurs within a short timespan during late embryogenesis when most sensory neurons differentiate. Using whole-organism RNA-Seq libraries, we discovered a signature expression profile highly enriched for transcripts of known ciliary proteins, including FAM-161 (FAM161A orthologue), CCDC-104 (CCDC104), and RPI-1 (RP1/RP1L1), which we confirm are cilium-localised in worms. From a list of 185 candidate ciliary genes, we uncover orthologues of human MAP9, YAP, CCDC149, and RAB28 as conserved cilium-associated components. Further analyses of C. elegans RAB-28, recently associated with autosomal-recessive cone-rod dystrophy, reveal that this small GTPase is exclusively expressed in ciliated neurons where it dynamically associates with IFT trains. Whereas inactive GDP-bound RAB-28 displays no IFT movement and diffuse localisation, GTP-bound (activated) RAB-28 concentrates at the periciliary membrane in a BBSome-dependent manner and undergoes bidirectional IFT. Functional analyses reveal that whilst cilium structure, sensory function and IFT are seemingly normal in a rab-28 null allele, overexpression of predicted GDP or GTP locked variants of RAB-28 perturbs cilium and sensory pore morphogenesis and function. Collectively, our findings present a new approach for

  3. Whole-Organism Developmental Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the BBSome and Intraflagellar Transport.

    PubMed

    Jensen, Victor L; Carter, Stephen; Sanders, Anna A W M; Li, Chunmei; Kennedy, Julie; Timbers, Tiffany A; Cai, Jerry; Scheidel, Noemie; Kennedy, Breandán N; Morin, Ryan D; Leroux, Michel R; Blacque, Oliver E

    2016-12-01

    Primary cilia are specialised sensory and developmental signalling devices extending from the surface of most eukaryotic cells. Defects in these organelles cause inherited human disorders (ciliopathies) such as retinitis pigmentosa and Bardet-Biedl syndrome (BBS), frequently affecting many physiological and developmental processes across multiple organs. Cilium formation, maintenance and function depend on intracellular transport systems such as intraflagellar transport (IFT), which is driven by kinesin-2 and IFT-dynein motors and regulated by the Bardet-Biedl syndrome (BBS) cargo-adaptor protein complex, or BBSome. To identify new cilium-associated genes, we employed the nematode C. elegans, where ciliogenesis occurs within a short timespan during late embryogenesis when most sensory neurons differentiate. Using whole-organism RNA-Seq libraries, we discovered a signature expression profile highly enriched for transcripts of known ciliary proteins, including FAM-161 (FAM161A orthologue), CCDC-104 (CCDC104), and RPI-1 (RP1/RP1L1), which we confirm are cilium-localised in worms. From a list of 185 candidate ciliary genes, we uncover orthologues of human MAP9, YAP, CCDC149, and RAB28 as conserved cilium-associated components. Further analyses of C. elegans RAB-28, recently associated with autosomal-recessive cone-rod dystrophy, reveal that this small GTPase is exclusively expressed in ciliated neurons where it dynamically associates with IFT trains. Whereas inactive GDP-bound RAB-28 displays no IFT movement and diffuse localisation, GTP-bound (activated) RAB-28 concentrates at the periciliary membrane in a BBSome-dependent manner and undergoes bidirectional IFT. Functional analyses reveal that whilst cilium structure, sensory function and IFT are seemingly normal in a rab-28 null allele, overexpression of predicted GDP or GTP locked variants of RAB-28 perturbs cilium and sensory pore morphogenesis and function. Collectively, our findings present a new approach for

  4. Rga6 is a fission yeast Rho GAP involved in Cdc42 regulation of polarized growth

    PubMed Central

    Revilla-Guarinos, M. T.; Martín-García, Rebeca; Villar-Tajadura, M. Antonia; Estravís, Miguel; Coll, Pedro M.; Pérez, Pilar

    2016-01-01

    Active Cdc42 is essential for the establishment of polarized growth. This GTPase is negatively regulated by the GTPase-activating proteins (GAPs), which are important for the spatial specificity of Cdc42 function. Rga4 is the only GAP described as negative regulator of fission yeast Cdc42. We report here that Rga6, another fission yeast Cdc42 GAP, shares some functions with Rga4. Cells lacking Rga6 are viable but slightly shorter and broader than wild type, and cells lacking Rga6 and Rga4 simultaneously are rounded. In these cells, active Cdc42 is observed all around the membrane. These additive effects indicate that both GAPs collaborate in the spatial regulation of active Cdc42. Rga6 localizes to the plasma membrane, forming clusters different from those formed by Rga4. A polybasic region at the Rga6 C-terminus is responsible for its membrane localization. Rga6-GFP fluorescence decreases considerably at the growing tips, and this decrease is dependent on the actin cables. Of note, in the absence of Rga6, the amplitude of active Cdc42 oscillations at the tips decreases, and less GTP-Cdc42 accumulates at the new end of the cells. We propose that Rga6 collaborates with Rga4 to spatially restrict active Cdc42 at the cell tips and maintain cell dimensions. PMID:26960792

  5. The late endocytic Rab39a GTPase regulates the interaction between multivesicular bodies and chlamydial inclusions.

    PubMed

    Gambarte Tudela, Julian; Capmany, Anahi; Romao, Maryse; Quintero, Cristian; Miserey-Lenkei, Stephanie; Raposo, Graca; Goud, Bruno; Damiani, Maria Teresa

    2015-08-15

    Given their obligate intracellular lifestyle, Chlamydia trachomatis ensure that they have access to multiple host sources of essential lipids by interfering with vesicular transport. These bacteria hijack Rab6-, Rab11- and Rab14-controlled trafficking pathways to acquire sphingomyelin from the Golgi complex. Another important source of sphingolipids, phospholipids and cholesterol are multivesicular bodies (MVBs). Despite their participation in chlamydial inclusion development and bacterial replication, the molecular mechanisms mediating the interaction between MVBs and chlamydial inclusions remain unknown. In the present study, we demonstrate that Rab39a labels a subset of late endocytic vesicles - mainly MVBs - that move along microtubules. Moreover, Rab39a is actively recruited to chlamydial inclusions throughout the pathogen life cycle by a bacterial-driven process that depends on the Rab39a GTP- or GDP-binding state. Interestingly, Rab39a participates in the delivery of MVBs and host sphingolipids to maturing chlamydial inclusions, thereby promoting inclusion growth and bacterial development. Taken together, our findings indicate that Rab39a favours chlamydial replication and infectivity. This is the first report showing that a late endocytic Rab GTPase is involved in chlamydial infection development. © 2015. Published by The Company of Biologists Ltd.

  6. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells.

    PubMed

    Ge, Jianfeng; Burnier, Laurent; Adamopoulou, Maria; Kwa, Mei Qi; Schaks, Matthias; Rottner, Klemens; Brakebusch, Cord

    2018-06-15

    Mesenchymal stem cells (MSC) are suggested to be important progenitors of myofibroblasts in fibrosis. To understand the role of Rho GTPase signaling in TGFβ-induced myofibroblast differentiation of MSC, we generated a novel MSC line and its descendants lacking functional Rho GTPases and Rho GTPase signaling components. Unexpectedly, our data revealed that Rho GTPase signaling is required for TGFβ-induced expression of α-smooth muscle actin (αSMA) but not of collagen I α1 ( col1a1 ). Whereas loss of RhoA and Cdc42 reduced αSMA expression, ablation of the Rac1 gene had the opposite effect. Although actin polymerization and MRTFa were crucial for TGFβ-induced αSMA expression, neither Arp2/3-dependent actin polymerization nor cofilin-dependent severing and depolymerization of F-actin were required. Instead, F-actin levels were dependent on cell contraction, and TGFβ-induced actin polymerization correlated with increased cell contraction mediated by RhoA and Cdc42. Finally, we observed impaired collagen I secretion in MSC lacking RhoA or Cdc42. These data give novel molecular insights into the role of Rho GTPases in TGFβ signaling and have implications for our understanding of MSC function in fibrosis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. MDA-9/Syntenin (SDCBP) modulates small GTPases RhoA and Cdc42 via transforming growth factor β1 to enhance epithelial-mesenchymal transition in breast cancer.

    PubMed

    Menezes, Mitchell E; Shen, Xue-Ning; Das, Swadesh K; Emdad, Luni; Sarkar, Devanand; Fisher, Paul B

    2016-12-06

    Epithelial-mesenchymal transition (EMT) is one of the decisive steps regulating cancer invasion and metastasis. However, the molecular mechanisms underlying this transition require further clarification. MDA-9/syntenin (SDCBP) expression is elevated in breast cancer patient samples as well as cultured breast cancer cells. Silencing expression of MDA-9 in mesenchymal metastatic breast cancer cells triggered a change in cell morphology in both 2D- and 3D-cultures to a more epithelial-like phenotype, along with changes in EMT markers, cytoskeletal rearrangement and decreased invasion. Conversely, over expressing MDA-9 in epithelial non-metastatic breast cancer cells instigated a change in morphology to a more mesenchymal phenotype with corresponding changes in EMT markers, cytoskeletal rearrangement and an increase in invasion. We also found that MDA-9 upregulated active levels of known modulators of EMT, the small GTPases RhoA and Cdc42, via TGFβ1. Reintroducing TGFβ1 in MDA-9 silenced cells restored active RhoA and cdc42 levels, modulated cytoskeletal rearrangement and increased invasion. We further determined that MDA-9 interacts with TGFβ1 via its PDZ1 domain. Finally, in vivo studies demonstrated that silencing the expression of MDA-9 resulted in decreased lung metastasis and TGFβ1 re-expression partially restored lung metastases. Our findings provide evidence for the relevance of MDA-9 in mediating EMT in breast cancer and support the potential of MDA-9 as a therapeutic target against metastatic disease.

  8. Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin.

    PubMed

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Boni, Geraldine; Harrington, Elizabeth O

    2016-06-01

    Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.

  9. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Lin; Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038; Lu, Yuanyuan

    2013-10-18

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and inductionmore » of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3.« less

  10. Selective Matrix (Hyaluronan) Interaction with CD44 and RhoGTPase Signaling Promotes Keratinocyte Functions and Overcomes Age-related Epidermal Dysfunction

    PubMed Central

    Bourguignon, Lilly Y.W.; Wong, Gabriel; Xia, Weiliang; Man, Mao-Qiang; Holleran, Walter M.; Elias, Peter M.

    2013-01-01

    Background Mouse epidermal chronologic aging is closely associated with aberrant matrix (hyaluronan, HA) -size distribution/production and impaired keratinocyte proliferation/differentiation, leading to a marked thinning of the epidermis with functional consequence that causes a slower recovery of permeability barrier function. Objective The goal of this study is to demonstrate mechanism-based, corrective therapeutic strategies using topical applications of small HA (HAS) and/or large HA (HAL) [or a sequential small HA (HAS) and large HA(HAL) (HAs-»HAL) treatment] as well as RhoGTPase signaling perturbation agents to regulate HA/CD44-mediated signaling, thereby restoring normal epidermal function, and permeability barrier homeostasis in aged mouse skin. Methods A number of biochemical, cell biological/molecular, pharmacological and physiological approaches were used to investigate matrix HA-CD44-mediated RhoGTPase signaling in regulating epidermal functions and skin aging. Results In this study we demonstrated that topical application of small HA (HAS) promotes keratinocyte proliferation and increases skin thickness, while it fails to upregulate keratinocyte differentiation or permeability barrier repair in aged mouse skin. In contrast, large HA (HAL) induces only minimal changes in keratinocyte proliferation and skin thickness, but restores keratinocyte differentiation and improves permeability barrier function in aged epidermis. Since neither HAS nor HAL corrects these epidermal defects in aged CD44 knock-out mice, CD44 likely mediates HA-associated epidermal functions in aged mouse skin. Finally, blockade of Rho-kinase activity with Y27632 or protein kinase-Nγ activity with Ro31-8220 significantly decreased the HA (HAS or HAL)-mediated changes in epidermal function in aged mouse skin. Conclusion The results of our study show first that HA application of different sizes regulates epidermal proliferation, differentiation and barrier function in aged mouse skin

  11. Involvement of the Rac1-IRSp53-Wave2-Arp2/3 Signaling Pathway in HIV-1 Gag Particle Release in CD4 T Cells

    PubMed Central

    Thomas, Audrey; Mariani-Floderer, Charlotte; López-Huertas, Maria Rosa; Gros, Nathalie; Hamard-Péron, Elise; Favard, Cyril; Ohlmann, Theophile; Alcamí, José

    2015-01-01

    ABSTRACT During HIV-1 assembly, the Gag viral proteins are targeted and assemble at the inner leaflet of the cell plasma membrane. This process could modulate the cortical actin cytoskeleton, located underneath the plasma membrane, since actin dynamics are able to promote localized membrane reorganization. In addition, activated small Rho GTPases are known for regulating actin dynamics and membrane remodeling. Therefore, the modulation of such Rho GTPase activity and of F-actin by the Gag protein during virus particle formation was considered. Here, we studied the implication of the main Rac1, Cdc42, and RhoA small GTPases, and some of their effectors, in this process. The effect of small interfering RNA (siRNA)-mediated Rho GTPases and silencing of their effectors on Gag localization, Gag membrane attachment, and virus-like particle production was analyzed by immunofluorescence coupled to confocal microscopy, membrane flotation assays, and immunoblot assays, respectively. In parallel, the effect of Gag expression on the Rac1 activation level was monitored by G-LISA, and the intracellular F-actin content in T cells was monitored by flow cytometry and fluorescence microscopy. Our results revealed the involvement of activated Rac1 and of the IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag membrane localization and particle release in T cells as well as a role for actin branching and polymerization, and this was solely dependent on the Gag viral protein. In conclusion, our results highlight a new role for the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in the late steps of HIV-1 replication in CD4 T lymphocytes. IMPORTANCE During HIV-1 assembly, the Gag proteins are targeted and assembled at the inner leaflet of the host cell plasma membrane. Gag interacts with specific membrane phospholipids that can also modulate the regulation of cortical actin cytoskeleton dynamics. Actin dynamics can promote localized membrane reorganization and thus can be involved in

  12. Inhibition of mitochondrial division through covalent modification of Drp1 protein by 15 deoxy-{Delta}{sup 12,14}-prostaglandin J2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Nandita; Kar, Rekha; Singha, Prajjal K.

    2010-04-23

    Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 {mu}M concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexesmore » is evident when Drp1 is incubated with a non-cleavable GTP analog, GTP{gamma}S or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.« less

  13. Rad GTPase Deficiency Leads to Cardiac Hypertrophy

    PubMed Central

    Tseng, Yu-Hua; Xie, Chang-Qing; Ilany, Jacob; Brüning, Jens C.; Sun, Zhongcui; Zhu, Xiaojun; Cui, Taixing; Youker, Keith A.; Yang, Qinglin; Day, Sharlene M.; Kahn, C. Ronald; Chen, Y. Eugene

    2014-01-01

    Background Rad (Ras associated with diabetes) GTPase is the prototypic member of a subfamily of Ras-related small G proteins. The aim of the present study was to define whether Rad plays an important role in mediating cardiac hypertrophy. Methods and Results We document for the first time that levels of Rad mRNA and protein were decreased significantly in human failing hearts (n=10) compared with normal hearts (n=3; P<0.01). Similarly, Rad expression was decreased significantly in cardiac hypertrophy induced by pressure overload and in cultured cardiomyocytes with hypertrophy induced by 10 μmol/L phenylephrine. Gain and loss of Rad function in cardiomyocytes significantly inhibited and increased phenylephrine-induced hypertrophy, respectively. In addition, activation of calcium-calmodulin–dependent kinase II (CaMKII), a strong inducer of cardiac hypertrophy, was significantly inhibited by Rad overexpression. Conversely, downregulation of CaMKIIδ by RNA interference technology attenuated the phenylephrine-induced hypertrophic response in cardiomyocytes in which Rad was also knocked down. To further elucidate the potential role of Rad in vivo, we generated Rad-deficient mice and demonstrated that they were more susceptible to cardiac hypertrophy associated with increased CaMKII phosphorylation than wild-type littermate controls. Conclusions The present data document for the first time that Rad is a novel mediator that inhibits cardiac hypertrophy through the CaMKII pathway. The present study will have significant implications for understanding the mechanisms of cardiac hypertrophy and setting the basis for the development of new strategies for treatment of cardiac hypertrophy. PMID:18056528

  14. The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations

    NASA Astrophysics Data System (ADS)

    Walters, David; Boutle, Ian; Brooks, Malcolm; Melvin, Thomas; Stratton, Rachel; Vosper, Simon; Wells, Helen; Williams, Keith; Wood, Nigel; Allen, Thomas; Bushell, Andrew; Copsey, Dan; Earnshaw, Paul; Edwards, John; Gross, Markus; Hardiman, Steven; Harris, Chris; Heming, Julian; Klingaman, Nicholas; Levine, Richard; Manners, James; Martin, Gill; Milton, Sean; Mittermaier, Marion; Morcrette, Cyril; Riddick, Thomas; Roberts, Malcolm; Sanchez, Claudio; Selwood, Paul; Stirling, Alison; Smith, Chris; Suri, Dan; Tennant, Warren; Vidale, Pier Luigi; Wilkinson, Jonathan; Willett, Martin; Woolnough, Steve; Xavier, Prince

    2017-04-01

    We describe Global Atmosphere 6.0 and Global Land 6.0 (GA6.0/GL6.0): the latest science configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment) dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the model's physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe GA6.1/GL6.1, which includes a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global numerical weather prediction, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year.

  15. Early stages of functional diversification in the Rab GTPase gene family revealed by genomic and localization studies in Paramecium species

    PubMed Central

    Bright, Lydia J.; Gout, Jean-Francois; Lynch, Michael

    2017-01-01

    New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins. PMID:28251922

  16. The small GTPase Rac and the p21-activated kinase Cla4 in Claviceps purpurea: interaction and impact on polarity, development and pathogenicity.

    PubMed

    Rolke, Yvonne; Tudzynski, Paul

    2008-04-01

    Claviceps purpurea, the ergot fungus, is a highly specialized pathogen of grasses; its colonization of host ovarian tissue requires an extended period of strictly polarized, oriented growth towards the vascular tissue. To understand this process, we study the role of signalling factors affecting polarity and differentiation. We showed that the small GTPase Cdc42 is involved in polarity, sporulation and in planta growth in C. purpurea. Here we present evidence that the GTPase Rac has an even stronger and, in some aspects, inverse impact on growth and development: Deltarac mutants form coralline-like colonies, show hyper-branching, loss of polarity, sporulation and ability to penetrate. Functional analyses and yeast two-hybrid studies prove that the p21-activated kinase Cla4 is a major downstream partner of Rac. Phosphorylation assays of MAP kinases and expression studies of genes encoding reactive oxygen species (ROS)-scavenging and -generating enzymes indicate a function of Rac and Cla4 in fungal ROS homoeostasis which could contribute to their drastic impact on differentiation.

  17. Identification and Characterization of a Chloroplast-Targeted Obg GTPase in Dendrobium officinale.

    PubMed

    Chen, Ji; Deng, Feng; Deng, Mengsheng; Han, Jincheng; Chen, Jianbin; Wang, Li; Yan, Shen; Tong, Kai; Liu, Fan; Tian, Mengliang

    2016-12-01

    Bacterial homologous chloroplast-targeted Obg GTPases (ObgCs) belong to the plant-typical Obg group, which is involved in diverse physiological processes during chloroplast development. However, the evolutionarily conserved function of ObgC in plants remains elusive and requires further investigation. In this study, we identified DoObgC from an epiphytic plant Dendrobium officinale and demonstrated the characteristics of DoObgC. Sequence analysis indicated that DoObgC is highly conserved with other plant ObgCs, which contain the chloroplast transit peptide (cTP), Obg fold, G domain, and OCT regions. The C terminus of DoObgC lacking the chloroplast-targeting cTP region, DoObgC Δ1-160 , showed strong similarity to ObgE and other bacterial Obgs. Overexpression of DoObgC Δ1-160 in Escherichia coli caused slow cell growth and an increased number of elongated cells. This phenotype was consistent with the phenotype of cells overexpressing ObgE. Furthermore, the expression of recombinant DoObgC Δ1-160 enhanced the cell persistence of E. coli to streptomycin. Results of transient expression assays revealed that DoObgC was localized to chloroplasts. Moreover, we demonstrated that DoObgC could rescue the embryotic lethal phenotype of the Arabidopsis obgc-t mutant, suggesting that DoObgC is a functional homolog to Arabidopsis AtObgC in D. officinale. Gene expression profiles showed that DoObgC was expressed in leaf-specific and light-dependent patterns and that DoObgC responded to wounding treatments. Our previous and present studies reveal that ObgC has an evolutionarily conserved role in ribosome biogenesis to adapt chloroplast development to the environment.

  18. The universally conserved GTPase HflX is an RNA helicase that restores heat-damaged Escherichia coli ribosomes.

    PubMed

    Dey, Sandip; Biswas, Chiranjit; Sengupta, Jayati

    2018-06-21

    The ribosome-associated GTPase HflX acts as an antiassociation factor upon binding to the 50S ribosomal subunit during heat stress in Escherichia coli Although HflX is recognized as a guanosine triphosphatase, several studies have shown that the N-terminal domain 1 of HflX is capable of hydrolyzing adenosine triphosphate (ATP), but the functional role of its adenosine triphosphatase (ATPase) activity remains unknown. We demonstrate that E. coli HflX possesses ATP-dependent RNA helicase activity and is capable of unwinding large subunit ribosomal RNA. A cryo-electron microscopy structure of the 50S-HflX complex in the presence of nonhydrolyzable analogues of ATP and guanosine triphosphate hints at a mode of action for the RNA helicase and suggests the linker helical domain may have a determinant role in RNA unwinding. Heat stress results in inactivation of the ribosome, and we show that HflX can restore heat-damaged ribosomes and improve cell survival. © 2018 Dey et al.

  19. Involvement of the Rac1-IRSp53-Wave2-Arp2/3 Signaling Pathway in HIV-1 Gag Particle Release in CD4 T Cells.

    PubMed

    Thomas, Audrey; Mariani-Floderer, Charlotte; López-Huertas, Maria Rosa; Gros, Nathalie; Hamard-Péron, Elise; Favard, Cyril; Ohlmann, Theophile; Alcamí, José; Muriaux, Delphine

    2015-08-01

    During HIV-1 assembly, the Gag viral proteins are targeted and assemble at the inner leaflet of the cell plasma membrane. This process could modulate the cortical actin cytoskeleton, located underneath the plasma membrane, since actin dynamics are able to promote localized membrane reorganization. In addition, activated small Rho GTPases are known for regulating actin dynamics and membrane remodeling. Therefore, the modulation of such Rho GTPase activity and of F-actin by the Gag protein during virus particle formation was considered. Here, we studied the implication of the main Rac1, Cdc42, and RhoA small GTPases, and some of their effectors, in this process. The effect of small interfering RNA (siRNA)-mediated Rho GTPases and silencing of their effectors on Gag localization, Gag membrane attachment, and virus-like particle production was analyzed by immunofluorescence coupled to confocal microscopy, membrane flotation assays, and immunoblot assays, respectively. In parallel, the effect of Gag expression on the Rac1 activation level was monitored by G-LISA, and the intracellular F-actin content in T cells was monitored by flow cytometry and fluorescence microscopy. Our results revealed the involvement of activated Rac1 and of the IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag membrane localization and particle release in T cells as well as a role for actin branching and polymerization, and this was solely dependent on the Gag viral protein. In conclusion, our results highlight a new role for the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in the late steps of HIV-1 replication in CD4 T lymphocytes. During HIV-1 assembly, the Gag proteins are targeted and assembled at the inner leaflet of the host cell plasma membrane. Gag interacts with specific membrane phospholipids that can also modulate the regulation of cortical actin cytoskeleton dynamics. Actin dynamics can promote localized membrane reorganization and thus can be involved in facilitating Gag assembly

  20. Routing of the RAB6 secretory pathway towards the lysosome related organelle of melanocytes

    PubMed Central

    Patwardhan, Anand; Bardin, Sabine; Miserey-Lenkei, Stéphanie; Larue, Lionel; Goud, Bruno; Raposo, Graça; Delevoye, Cédric

    2017-01-01

    Exocytic carriers convey neo-synthesized components from the Golgi apparatus to the cell surface. While the release and anterograde movement of Golgi-derived vesicles require the small GTPase RAB6, its effector ELKS promotes the targeting and docking of secretory vesicles to particular areas of the plasma membrane. Here, we show that specialized cell types exploit and divert the secretory pathway towards lysosome related organelles. In cultured melanocytes, the secretory route relies on RAB6 and ELKS to directly transport and dock Golgi-derived carriers to melanosomes. By delivering specific cargos, such as MART-1 and TYRP2/ DCT, the RAB6/ELKS-dependent secretory pathway controls the formation and maturation of melanosomes but also pigment synthesis. In addition, pigmentation defects are observed in RAB6 KO mice. Our data together reveal for the first time that the secretory pathway can be directed towards intracellular organelles of endosomal origin to ensure their biogenesis and function. PMID:28607494

  1. Ral GTPase and the exocyst regulate autophagy in a tissue-specific manner.

    PubMed

    Tracy, Kirsten; Velentzas, Panagiotis D; Baehrecke, Eric H

    2016-01-01

    Autophagy traffics cellular components to the lysosome for degradation. Ral GTPase and the exocyst have been implicated in the regulation of stress-induced autophagy, but it is unclear whether they are global regulators of this process. Here, we investigate Ral function in different cellular contexts in Drosophila and find that it is required for autophagy during developmentally regulated cell death in salivary glands, but does not affect starvation-induced autophagy in the fat body. Furthermore, knockdown of exocyst subunits has a similar effect, preventing autophagy in dying cells but not in cells of starved animals. Notch activity is elevated in dying salivary glands, this change in Notch signaling is influenced by Ral, and decreased Notch function influences autophagy. These data indicate that Ral and the exocyst regulate autophagy in a context-dependent manner, and that in dying salivary glands, Ral mediates autophagy, at least in part, by regulation of Notch. © 2015 The Authors.

  2. Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture.

    PubMed

    Eswaran, Jeyanthy; Bernad, Antonio; Ligos, Jose M; Guinea, Barbara; Debreczeni, Judit E; Sobott, Frank; Parker, Sirlester A; Najmanovich, Rafael; Turk, Benjamin E; Knapp, Stefan

    2008-01-01

    The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.

  3. Endocytosis in the Shiitake Mushroom Lentinula edodes and Involvement of GTPase LeRAB7▿

    PubMed Central

    Lee, Ming Tsung; Szeto, Carol Ying Ying; Ng, Tak Pan; Kwan, Hoi Shan

    2007-01-01

    Endocytosis is the process by which substrates enter a cell without passing through the plasma membrane but rather invaginate the cell membrane and form intracellular vesicles. Rab7 regulates endocytic trafficking between early and late endosomes and between late endosomes and lysosomes. LeRab7 in Lentinula edodes is strongly homologous to Rab7 in Homo sapiens. Receptors for activated C kinase-1 (LeRACK1) and Rab5 GTPase (LeRAB5) were isolated as interacting partners of LeRab7, and the interactions were confirmed by in vivo and in vitro protein interaction assays. The three genes showed differential expression in the various developmental stages of the mushroom. In situ hybridization showed that the three transcripts were localized in regions of active growth, such as the outer region of trama cells, and the subhymenium of the hymenophore of mature fruiting bodies and the prehymenophore of young fruiting bodies. The existence of endocytosis in the mycelium and hymenophores was confirmed by the internalization of FM4-64. LeRAB7 was partially colocalized with the AM4-64 and was located in the late endocytic pathway. This is the first report of the presence of endocytosis in homobasidiomycetes. LeRAB7, LeRAB5, and LeRACK1 may contribute to the growth of L. edodes and cell differentiation in hymenophores. PMID:17921351

  4. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology.

    PubMed

    Zhao, Guohua; Zhu, Peng-Peng; Renvoisé, Benoît; Maldonado-Báez, Lymarie; Park, Seong Hee; Blackstone, Craig

    2016-11-15

    Atlastins are large, membrane-bound GTPases that participate in the fusion of endoplasmic reticulum (ER) tubules to generate the polygonal ER network in eukaryotes. They also regulate lipid droplet size and inhibit bone morphogenetic protein (BMP) signaling, though mechanisms remain unclear. Humans have three atlastins (ATL1, ATL2, and ATL3), and ATL1 and ATL3 are mutated in autosomal dominant hereditary spastic paraplegia and hereditary sensory neuropathies. Cellular investigations of atlastin orthologs in most yeast, plants, flies and worms are facilitated by the presence of a single or predominant isoform, but loss-of-function studies in mammalian cells are complicated by multiple, broadly-expressed paralogs. We have generated mouse NIH-3T3 cells lacking all three mammalian atlastins (Atl1/2/3) using CRISPR/Cas9-mediated gene knockout (KO). ER morphology is markedly disrupted in these triple KO cells, with prominent impairment in formation of three-way ER tubule junctions. This phenotype can be rescued by expression of distant orthologs from Saccharomyces cerevisiae (Sey1p) and Arabidopsis (ROOT HAIR DEFECTIVE3) as well as any one of the three human atlastins. Minimal, if any, changes are observed in the morphology of mitochondria and the Golgi apparatus. Alterations in BMP signaling and increased sensitivity to ER stress are also noted, though effects appear more modest. Finally, atlastins appear required for the proper differentiation of NIH-3T3 cells into an adipocyte-like phenotype. These findings have important implications for the pathogenesis of hereditary spastic paraplegias and sensory neuropathies associated with atlastin mutations. Published by Elsevier Inc.

  5. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers.

    PubMed

    Van Goietsenoven, Gwendoline; Mathieu, Véronique; Lefranc, Florence; Kornienko, Alexander; Evidente, Antonio; Kiss, Robert

    2013-03-01

    The anticancer activity of Amaryllidaceae isocarbostyrils is well documented. At pharmacological concentrations, that is, approximately 1 μM in vitro and approximately 10 mg/kg in vivo, narciclasine displays marked proapoptotic and cytotoxic activity, as does pancratistatin, and significant in vivo anticancer effects in various experimental models, but it is also associated with severe toxic side effects. At physiological doses, that is, approximately 50 nM in vitro and approximately 1 mg/kg in vivo, narciclasine is not cytotoxic but cytostatic and displays marked anticancer activity in vivo in experimental models of brain cancer (including gliomas and brain metastases), but it is not associated with toxic side effects. The cytostatic activity of narciclasine involves the impairment of actin cytoskeleton organization by targeting GTPases, including RhoA and the elongation factor eEF1A. We have demonstrated that chronic treatments of narciclasine (1 mg/kg) significantly increased the survival of immunodeficient mice orthotopically xenografted with highly invasive human glioblastomas and apoptosis-resistant brain metastases, including melanoma- and non-small-cell-lung cancer- (NSCLC) related brain metastases. Thus, narciclasine is a potentially promising agent for the treatment of primary brain cancers and various brain metastases. To date, efforts to develop synthetic analogs with anticancer properties superior to those of narciclasine have failed; thus, research efforts are now focused on narciclasine prodrugs. © 2012 Wiley Periodicals, Inc.

  6. 2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jian, E-mail: lujian@ujs.edu.cn; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013; Zhou, Zhongping

    Cadmium is a toxic heavy metal present in the environment and in industrial materials. Cadmium has demonstrated carcinogenic activity that induces cell transformation, but how this occurs is unclear. We used 2D-DIGE and MALDI TOF/TOF MS combined with bioinformatics and immunoblotting to investigate the molecular mechanism of cadmium transformation. We found that small GTPases were critical for transformation. Additionally, proteins involved in mitochondrial transcription, DNA repair, and translation also had altered expression patterns in cadmium treated cells. Collectively, our results suggest that activation of small GTPases contributes to cadmium-induced transformation of colon cells. - Highlights: • Colon epithelial cell linemore » is firstly successfully transformed by cadmium. • 2D-DIGE is applied to visualize the differentially expressed proteins. • RhoA plays an important role in cadmium induced malignant transformation. • Bioinformatic and experimental methods are combined to explore new mechanisms.« less

  7. VPS9a Activates the Rab5 GTPase ARA7 to Confer Distinct Pre- and Postinvasive Plant Innate Immunity[OPEN

    PubMed Central

    2017-01-01

    Plant innate immunity can effectively prevent the proliferation of filamentous pathogens. Papilla formation at the site of attack is essential for preinvasive immunity; in postinvasive immunity, the encasement of pathogen structures inside host cells can hamper disease. Whereas papillae are highly dependent on transcytosis of premade material, little is known about encasement formation. Here, we show that endosome-associated VPS9a, the conserved guanine-nucleotide exchange factor activating Rab5 GTPases, is required for both pre- and postinvasive immunity against a nonadapted powdery mildew fungus (Blumeria graminis f. sp hordei) in Arabidopsis thaliana. Surprisingly, VPS9a acts in addition to two previously well-described innate immunity components and thus represents an additional step in the regulation of how plants resist pathogens. We found VPS9a to be important for delivering membrane material to the encasement and VPS9a also plays a predominant role in postinvasive immunity. GTP-bound Rab5 GTPases accumulate in the encasement, but not the papillae, suggesting that two independent pathways form these defense structures. VPS9a also mediates defense to an adapted powdery mildew fungus, thus regulating a durable type of defense that works in both host and nonhost resistance. We propose that VPS9a plays a conserved role in organizing cellular endomembrane trafficking, required for delivery of defense components in response to powdery mildew fungi. PMID:28808134

  8. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways

    PubMed Central

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-01-01

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399

  9. The formin DIAPH1 (mDia1) regulates megakaryocyte proplatelet formation by remodeling the actin and microtubule cytoskeletons.

    PubMed

    Pan, Jiajia; Lordier, Larissa; Meyran, Deborah; Rameau, Philippe; Lecluse, Yann; Kitchen-Goosen, Susan; Badirou, Idinath; Mokrani, Hayat; Narumiya, Shuh; Alberts, Arthur S; Vainchenker, William; Chang, Yunhua

    2014-12-18

    Megakaryocytes are highly specialized precursor cells that produce platelets via cytoplasmic extensions called proplatelets. Proplatelet formation (PPF) requires profound changes in microtubule and actin organization. In this work, we demonstrated that DIAPH1 (mDia1), a mammalian homolog of Drosophila diaphanous that works as an effector of the small GTPase Rho, negatively regulates PPF by controlling the dynamics of the actin and microtubule cytoskeletons. Moreover, we showed that inhibition of both DIAPH1 and the Rho-associated protein kinase (Rock)/myosin pathway increased PPF via coordination of both cytoskeletons. We provide evidence that 2 major effectors of the Rho GTPase pathway (DIAPH1 and Rock/myosin II) are involved not only in Rho-mediated stress fibers assembly, but also in the regulation of microtubule stability and dynamics during PPF. © 2014 by The American Society of Hematology.

  10. VPS9a Activates the Rab5 GTPase ARA7 to Confer Distinct Pre- and Postinvasive Plant Innate Immunity.

    PubMed

    Nielsen, Mads E; Jürgens, Gerd; Thordal-Christensen, Hans

    2017-08-01

    Plant innate immunity can effectively prevent the proliferation of filamentous pathogens. Papilla formation at the site of attack is essential for preinvasive immunity; in postinvasive immunity, the encasement of pathogen structures inside host cells can hamper disease. Whereas papillae are highly dependent on transcytosis of premade material, little is known about encasement formation. Here, we show that endosome-associated VPS9a, the conserved guanine-nucleotide exchange factor activating Rab5 GTPases, is required for both pre- and postinvasive immunity against a nonadapted powdery mildew fungus ( Blumeria graminis f. sp hordei ) in Arabidopsis thaliana Surprisingly, VPS9a acts in addition to two previously well-described innate immunity components and thus represents an additional step in the regulation of how plants resist pathogens. We found VPS9a to be important for delivering membrane material to the encasement and VPS9a also plays a predominant role in postinvasive immunity. GTP-bound Rab5 GTPases accumulate in the encasement, but not the papillae, suggesting that two independent pathways form these defense structures. VPS9a also mediates defense to an adapted powdery mildew fungus, thus regulating a durable type of defense that works in both host and nonhost resistance. We propose that VPS9a plays a conserved role in organizing cellular endomembrane trafficking, required for delivery of defense components in response to powdery mildew fungi. © 2017 American Society of Plant Biologists. All rights reserved.

  11. The Interaction Properties of the Human Rab GTPase Family – A Comparative Analysis Reveals Determinants of Molecular Binding Selectivity

    PubMed Central

    Stein, Matthias; Pilli, Manohar; Bernauer, Sabine; Habermann, Bianca H.; Zerial, Marino; Wade, Rebecca C.

    2012-01-01

    Background Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. Methodology/Principal Findings Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. Conclusions/Significance We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity. PMID:22523562

  12. RAP-1 and the RAL-1/exocyst pathway coordinate hypodermal cell organization in Caenorhabditis elegans

    PubMed Central

    Frische, Ester W; Pellis-van Berkel, Wendy; van Haaften, Gijs; Cuppen, Edwin; Plasterk, Ronald H A; Tijsterman, Marcel; Bos, Johannes L; Zwartkruis, Fried J T

    2007-01-01

    The small Ras-like GTPase Rap1 has been identified as a regulator of integrin activation and cadherin-mediated cell–cell contacts. Surprisingly, null mutants of RAP-1 in Caenorhabditis elegans are viable and fertile. In a synthetic lethal RNAi screen with C. elegans rap-1 mutants, the Ras-like GTPase ral-1 emerged as one of seven genes specifically required for viability. Depletion of exoc-8 and sec-5, encoding two putative RAL-1 effectors and members of the exocyst complex, also caused lethality of rap-1 mutants, but did not affect wild-type worms. The RAP-1 and the RAL-1/exocyst pathway appear to coordinate hypodermal cell movement and elongation during embryonic development. They mediate their effect in part through targeting the α-catenin homologue HMP-1 to the lateral membrane. Genetic interactions show that the RAP-1 and RAL-1/exocyst pathway also act in parallel during larval stages. Together these data provide in vivo evidence for the exocyst complex as a downstream RAL-1 effector in cell migration. PMID:17989692

  13. RAP-1 and the RAL-1/exocyst pathway coordinate hypodermal cell organization in Caenorhabditis elegans.

    PubMed

    Frische, Ester W; Pellis-van Berkel, Wendy; van Haaften, Gijs; Cuppen, Edwin; Plasterk, Ronald H A; Tijsterman, Marcel; Bos, Johannes L; Zwartkruis, Fried J T

    2007-12-12

    The small Ras-like GTPase Rap1 has been identified as a regulator of integrin activation and cadherin-mediated cell-cell contacts. Surprisingly, null mutants of RAP-1 in Caenorhabditis elegans are viable and fertile. In a synthetic lethal RNAi screen with C. elegans rap-1 mutants, the Ras-like GTPase ral-1 emerged as one of seven genes specifically required for viability. Depletion of exoc-8 and sec-5, encoding two putative RAL-1 effectors and members of the exocyst complex, also caused lethality of rap-1 mutants, but did not affect wild-type worms. The RAP-1 and the RAL-1/exocyst pathway appear to coordinate hypodermal cell movement and elongation during embryonic development. They mediate their effect in part through targeting the alpha-catenin homologue HMP-1 to the lateral membrane. Genetic interactions show that the RAP-1 and RAL-1/exocyst pathway also act in parallel during larval stages. Together these data provide in vivo evidence for the exocyst complex as a downstream RAL-1 effector in cell migration.

  14. Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity

    PubMed Central

    Hwang, Jae-Ung; Wu, Guang; Yan, An; Lee, Yong-Jik; Grierson, Claire S.; Yang, Zhenbiao

    2010-01-01

    Rapid tip growth allows for efficient development of highly elongated cells (e.g. neuronal axons, fungal hyphae and pollen tubes) and requires an elaborate spatiotemporal regulation of the growing region. Here, we use the pollen tube as a model to investigate the mechanism regulating the growing region. ROPs (Rho-related GTPases from plants) are essential for pollen tip growth and display oscillatory activity changes in the apical plasma membrane (PM). By manipulating the ROP activity level, we showed that the PM distribution of ROP activity as an apical cap determines the tip growth region and that efficient tip growth requires an optimum level of the apical ROP1 activity. Excessive ROP activation induced the enlargement of the tip growth region, causing growth depolarization and reduced tube elongation. Time-lapse analysis suggests that the apical ROP1 cap is generated by lateral propagation of a localized ROP activity. Subcellular localization and gain- and loss-of-function analyses suggest that RhoGDI- and RhoGAP-mediated global inhibition limits the lateral propagation of apical ROP1 activity. We propose that the balance between the lateral propagation and the global inhibition maintains an optimal apical ROP1 cap and generates the apical ROP1 activity oscillation required for efficient pollen-tube elongation. PMID:20053639

  15. The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures.

    PubMed

    Patrussi, Laura; Baldari, Cosima T

    2016-01-01

    Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures.

  16. Structural insights into eRF3 and stop codon recognition by eRF1

    PubMed Central

    Cheng, Zhihong; Saito, Kazuki; Pisarev, Andrey V.; Wada, Miki; Pisareva, Vera P.; Pestova, Tatyana V.; Gajda, Michal; Round, Adam; Kong, Chunguang; Lim, Mengkiat; Nakamura, Yoshikazu; Svergun, Dmitri I.; Ito, Koichi; Song, Haiwei

    2009-01-01

    Eukaryotic translation termination is mediated by two interacting release factors, eRF1 and eRF3, which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. The crystal structures of human and Schizosaccharomyces pombe full-length eRF1 in complex with eRF3 lacking the GTPase domain revealed details of the interaction between these two factors and marked conformational changes in eRF1 that occur upon binding to eRF3, leading eRF1 to resemble a tRNA molecule. Small-angle X-ray scattering analysis of the eRF1/eRF3/GTP complex suggested that eRF1's M domain contacts eRF3's GTPase domain. Consistently, mutation of Arg192, which is predicted to come in close contact with the switch regions of eRF3, revealed its important role for eRF1's stimulatory effect on eRF3's GTPase activity. An ATP molecule used as a crystallization additive was bound in eRF1's putative decoding area. Mutational analysis of the ATP-binding site shed light on the mechanism of stop codon recognition by eRF1. PMID:19417105

  17. Structure and Function of the Intracellular Region of the Plexin-B1 Transmembrane Receptor*

    PubMed Central

    Tong, Yufeng; Hota, Prasanta K.; Penachioni, Junia Y.; Hamaneh, Mehdi B.; Kim, SoonJeung; Alviani, Rebecca S.; Shen, Limin; He, Hao; Tempel, Wolfram; Tamagnone, Luca; Park, Hee-Won; Buck, Matthias

    2009-01-01

    Members of the plexin family are unique transmembrane receptors in that they interact directly with Rho family small GTPases; moreover, they contain a GTPase-activating protein (GAP) domain for R-Ras, which is crucial for plexin-mediated regulation of cell motility. However, the functional role and structural basis of the interactions between the different intracellular domains of plexins remained unclear. Here we present the 2.4 Å crystal structure of the complete intracellular region of human plexin-B1. The structure is monomeric and reveals that the GAP domain is folded into one structure from two segments, separated by the Rho GTPase binding domain (RBD). The RBD is not dimerized, as observed previously. Instead, binding of a conserved loop region appears to compete with dimerization and anchors the RBD to the GAP domain. Cell-based assays on mutant proteins confirm the functional importance of this coupling loop. Molecular modeling based on structural homology to p120GAP·H-Ras suggests that Ras GTPases can bind to the plexin GAP region. Experimentally, we show that the monomeric intracellular plexin-B1 binds R-Ras but not H-Ras. These findings suggest that the monomeric form of the intracellular region is primed for GAP activity and extend a model for plexin activation. PMID:19843518

  18. The ability of GAP1IP4BP to function as a Rap1 GTPase-activating protein (GAP) requires its Ras GAP-related domain and an arginine finger rather than an asparagine thumb.

    PubMed

    Kupzig, Sabine; Bouyoucef-Cherchalli, Dalila; Yarwood, Sam; Sessions, Richard; Cullen, Peter J

    2009-07-01

    GAP1(IP4BP) is a member of the GAP1 family of Ras GTPase-activating proteins (GAPs) that includes GAP1(m), CAPRI, and RASAL. Composed of a central Ras GAP-related domain (RasGRD), surrounded by amino-terminal C2 domains and a carboxy-terminal PH/Btk domain, these proteins, with the notable exception of GAP1(m), possess an unexpected arginine finger-dependent GAP activity on the Ras-related protein Rap1 (S. Kupzig, D. Deaconescu, D. Bouyoucef, S. A. Walker, Q. Liu, C. L. Polte, O. Daumke, T. Ishizaki, P. J. Lockyer, A. Wittinghofer, and P. J. Cullen, J. Biol. Chem. 281:9891-9900, 2006). Here, we have examined the mechanism through which GAP1(IP4BP) can function as a Rap1 GAP. We show that deletion of domains on either side of the RasGRD, while not affecting Ras GAP activity, do dramatically perturb Rap1 GAP activity. By utilizing GAP1(IP4BP)/GAP1(m) chimeras, we establish that although the C2 and PH/Btk domains are required to stabilize the RasGRD, it is this domain which contains the catalytic machinery required for Rap1 GAP activity. Finally, a key residue in Rap1-specific GAPs is a catalytic asparagine, the so-called asparagine thumb. By generating a molecular model describing the predicted Rap1-binding site in the RasGRD of GAP1(IP4BP), we show that mutagenesis of individual asparagine or glutamine residues that lie in close proximity to the predicted binding site has no detectable effect on the in vivo Rap1 GAP activity of GAP1(IP4BP). In contrast, we present evidence consistent with a model in which the RasGRD of GAP1(IP4BP) functions to stabilize the switch II region of Rap1, allowing stabilization of the transition state during GTP hydrolysis initiated by the arginine finger.

  19. Early-Onset X-Linked Retinitis Pigmentosa in a Heterozygous Female Harboring an Intronic Donor Splice Site Mutation in the Retinitis Pigmentosa GTPase Regulator Gene.

    PubMed

    Shifera, Amde Selassie; Kay, Christine Nichols

    2015-01-01

    To report a heterozygous female presenting with an early-onset and severe form of X-linked retinitis pigmentosa (XLRP). This is a case series presenting the clinical findings in a heterozygous female with XLRP and two of her family members. Fundus photography, fundus autofluorescence, ocular coherence tomography, and visual perimetry are presented. The proband reported here is a heterozygous female who presented at the age of 8 years with an early onset and aggressive form of XLRP. The patient belongs to a four-generation family with a total of three affected females and four affected males. The patient was initially diagnosed with retinitis pigmentosa (RP) at the age of 4 years. Genetic testing identified a heterozygous donor splice site mutation in intron 1 (IVS1 + 1G > A) of the retinitis pigmentosa GTPase regulator gene. The father of the proband was diagnosed with RP when he was a young child. The sister of the proband, evaluated at the age of 6 years, showed macular pigmentary changes. Although carriers of XLRP are usually asymptomatic or have a mild disease of late onset, the proband presented here exhibited an early-onset, aggressive form of the disease. It is not clear why some carrier females manifest a severe phenotype. A better understanding of the genetic processes involved in the penetrance and expressivity of XLRP in heterozygous females could assist in providing the appropriate counseling to affected families.

  20. Use of Synthetic Isoprenoids to Target Protein Prenylation and Rho GTPases in Breast Cancer Invasion

    PubMed Central

    Chen, Min; Knifley, Teresa; Subramanian, Thangaiah; Spielmann, H. Peter; O’Connor, Kathleen L.

    2014-01-01

    Dysregulation of Ras and Rho family small GTPases drives the invasion and metastasis of multiple cancers. For their biological functions, these GTPases require proper subcellular localization to cellular membranes, which is regulated by a series of post-translational modifications that result in either farnesylation or geranylgeranylation of the C-terminal CAAX motif. This concept provided the rationale for targeting farnesyltransferase (FTase) and geranylgeranyltransferases (GGTase) for cancer treatment. However, the resulting prenyl transferase inhibitors have not performed well in the clinic due to issues with alternative prenylation and toxicity. As an alternative, we have developed a unique class of potential anti-cancer therapeutics called Prenyl Function Inhibitors (PFIs), which are farnesol or geranyl-geraniol analogs that act as alternate substrates for FTase or GGTase. Here, we test the ability of our lead PFIs, anilinogeraniol (AGOH) and anilinofarnesol (AFOH), to block the invasion of breast cancer cells. We found that AGOH treatment effectively decreased invasion of MDA-MB-231 cells in a two-dimensional (2D) invasion assay at 100 µM while it blocked invasive growth in three-dimensional (3D) culture model at as little as 20 µM. Notably, the effect of AGOH on 3D invasive growth was phenocopied by electroporation of cells with C3 exotransferase. To determine if RhoA and RhoC were direct targets of AGOH, we performed Rho activity assays in MDA-MB-231 and MDA-MB-468 cells and found that AGOH blocked RhoA and RhoC activation in response to LPA and EGF stimulation. Notably, the geranylgeraniol analog AFOH was more potent than AGOH in inhibiting RhoA and RhoC activation and invasive growth. Interestingly, neither AGOH nor AFOH impacted 3D growth of MCF10A cells. Collectively, this study demonstrates that AGOH and AFOH dramatically inhibit breast cancer invasion, at least in part by blocking Rho function, thus, suggesting that targeting prenylation by using

  1. Integrin β6 serves as an immunohistochemical marker for lymph node metastasis and promotes cell invasiveness in cholangiocarcinoma

    PubMed Central

    Li, Zequn; Biswas, Siddhartha; Liang, Benjia; Zou, Xueqing; Shan, Liqun; Li, Yang; Fang, Ruliang; Niu, Jun

    2016-01-01

    Cholangiocarcinoma is a devastating malignancy that is notoriously difficult to diagnose and is associated with a high mortality. Despite extensive efforts to improve the diagnosis and treatment of this neoplasm, limited progress has been made. Integrin β6 is a subtype of integrin that is expressed exclusively on the surfaces of epithelial cells and is associated with a variety of tumors. In the present study, we investigated the expression and roles of integrin β6 in cholangiocarcinoma. β6 upregulation in cholangiocarcinoma was correlated with lymph node metastasis and distant metastasis. Moreover, integrin β6 was identified as a biomarker for the diagnosis of cholangiocarcinoma and an indicator of lymph node metastasis. Integrin β6 significantly promoted the proliferation, migration and invasion of cholangiocarcinoma cells. Furthermore, integrin β6 increased Rac1-GTPase, resulting in the upregulation of metalloproteinase-9 (MMP9) and F-actin polymerization. Taken together, our results indicate that integrin β6 promotes tumor invasiveness in a Rac1-dependent manner and is a potential biomarker for tumor metastasis. Integrin β6 may help to improve the diagnostic accuracy, and targeting β6 may be a novel strategy for the treatment of cholangiocarcinoma. PMID:27440504

  2. Integrin β6 serves as an immunohistochemical marker for lymph node metastasis and promotes cell invasiveness in cholangiocarcinoma.

    PubMed

    Li, Zequn; Biswas, Siddhartha; Liang, Benjia; Zou, Xueqing; Shan, Liqun; Li, Yang; Fang, Ruliang; Niu, Jun

    2016-07-21

    Cholangiocarcinoma is a devastating malignancy that is notoriously difficult to diagnose and is associated with a high mortality. Despite extensive efforts to improve the diagnosis and treatment of this neoplasm, limited progress has been made. Integrin β6 is a subtype of integrin that is expressed exclusively on the surfaces of epithelial cells and is associated with a variety of tumors. In the present study, we investigated the expression and roles of integrin β6 in cholangiocarcinoma. β6 upregulation in cholangiocarcinoma was correlated with lymph node metastasis and distant metastasis. Moreover, integrin β6 was identified as a biomarker for the diagnosis of cholangiocarcinoma and an indicator of lymph node metastasis. Integrin β6 significantly promoted the proliferation, migration and invasion of cholangiocarcinoma cells. Furthermore, integrin β6 increased Rac1-GTPase, resulting in the upregulation of metalloproteinase-9 (MMP9) and F-actin polymerization. Taken together, our results indicate that integrin β6 promotes tumor invasiveness in a Rac1-dependent manner and is a potential biomarker for tumor metastasis. Integrin β6 may help to improve the diagnostic accuracy, and targeting β6 may be a novel strategy for the treatment of cholangiocarcinoma.

  3. Cell Cycle-Dependent Rho GTPase Activity Dynamically Regulates Cancer Cell Motility and Invasion In Vivo

    PubMed Central

    Kagawa, Yoshinori; Matsumoto, Shinji; Kamioka, Yuji; Mimori, Koshi; Naito, Yoko; Ishii, Taeko; Okuzaki, Daisuke; Nishida, Naohiro; Maeda, Sakae; Naito, Atsushi; Kikuta, Junichi; Nishikawa, Keizo; Nishimura, Junichi; Haraguchi, Naotsugu; Takemasa, Ichiro; Mizushima, Tsunekazu; Ikeda, Masataka; Yamamoto, Hirofumi; Sekimoto, Mitsugu; Ishii, Hideshi; Doki, Yuichiro; Matsuda, Michiyuki; Kikuchi, Akira; Mori, Masaki; Ishii, Masaru

    2013-01-01

    The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci) demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP), was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers. PMID:24386239

  4. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    PubMed

    Kagawa, Yoshinori; Matsumoto, Shinji; Kamioka, Yuji; Mimori, Koshi; Naito, Yoko; Ishii, Taeko; Okuzaki, Daisuke; Nishida, Naohiro; Maeda, Sakae; Naito, Atsushi; Kikuta, Junichi; Nishikawa, Keizo; Nishimura, Junichi; Haraguchi, Naotsugu; Takemasa, Ichiro; Mizushima, Tsunekazu; Ikeda, Masataka; Yamamoto, Hirofumi; Sekimoto, Mitsugu; Ishii, Hideshi; Doki, Yuichiro; Matsuda, Michiyuki; Kikuchi, Akira; Mori, Masaki; Ishii, Masaru

    2013-01-01

    The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci) demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP), was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  5. Circadian locomotor output cycles kaput affects the proliferation and migration of breast cancer cells by regulating the expression of E-cadherin via IQ motif containing GTPase activating protein 1.

    PubMed

    Li, Xiaoxue; Wang, Siyang; Yang, Shuhong; Ying, Junjie; Yu, Hang; Yang, Chunlei; Liu, Yanyou; Wang, Yuhui; Cheng, Shuting; Xiao, Jing; Guo, Huiling; Jiang, Zhou; Wang, Zhengrong

    2018-05-01

    The circadian rhythm regulates numerous physiological activities, including sleep and wakefulness, behavior, immunity and metabolism. Previous studies have demonstrated that circadian rhythm disorder is associated with the occurrence of tumors. Responsible for regulating a number of functions, the Circadian locomotor output cycles kaput ( Clock ) gene is one of the core regulatory genes of circadian rhythm. The Clock gene has also been implicated in the occurrence and development of tumors in previously studies. The present study evaluated the role of the Clock gene in the proliferation and migration of mouse breast cancer 4T1 cells, and investigated its possible regulatory pathways and mechanisms. It was reported that downregulation of Clock facilitated the proliferation and migration of breast cancer cells. Further investigation revealed the involvement of IQ motif containing GTPase activating protein 1 (IQGAP1) protein expression in the Clock regulatory pathway, further influencing the expression of E-cadherin, a known proprietor of tumor cell migration and invasion. To the best of our knowledge, the present study is the first to report that Clock , acting through the regulation of the scaffolding protein IQGAP1, regulates the downstream expression of E-cadherin, thereby affecting tumor cell structure and motility. These results confirmed the role of Clock in breast cancer tumor etiology and provide insight regarding the molecular avenues of its regulatory nature, which may translate beyond breast cancer into other known functions of the gene.

  6. The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids

    PubMed Central

    Hoxhaj, Gerta; Caddye, Edward; Najafov, Ayaz; Houde, Vanessa P; Johnson, Catherine; Dissanayake, Kumara; Toth, Rachel; Campbell, David G; Prescott, Alan R; MacKintosh, Carol

    2016-01-01

    The mechanistic Target of Rapamycin complex 1 (mTORC1) senses intracellular amino acid levels through an intricate machinery, which includes the Rag GTPases, Ragulator and vacuolar ATPase (V-ATPase). The membrane-associated E3 ubiquitin ligase ZNRF2 is released into the cytosol upon its phosphorylation by Akt. In this study, we show that ZNRF2 interacts with mTOR on membranes, promoting the amino acid-stimulated translocation of mTORC1 to lysosomes and its activation in human cells. ZNRF2 also interacts with the V-ATPase and preserves lysosomal acidity. Moreover, knockdown of ZNRF2 decreases cell size and cell proliferation. Upon growth factor and amino acid stimulation, mTORC1 phosphorylates ZNRF2 on Ser145, and this phosphosite is dephosphorylated by protein phosphatase 6. Ser145 phosphorylation stimulates vesicle-to-cytosol translocation of ZNRF2 and forms a novel negative feedback on mTORC1. Our findings uncover ZNRF2 as a component of the amino acid sensing machinery that acts upstream of Rag-GTPases and the V-ATPase to activate mTORC1. DOI: http://dx.doi.org/10.7554/eLife.12278.001 PMID:27244671

  7. Magic wavelengths for the 6{s}^{2}{}^{1}{S}_{0}{--}6s6p{}^{3}{P}_{1}^{o} transition in ytterbium atom

    NASA Astrophysics Data System (ADS)

    Tang, Zhi-Ming; Yu, Yan-Mei; Jiang, Jun; Dong, Chen-Zhong

    2018-06-01

    The static and dynamic electric dipole polarizabilities of the 6{s}2{}1{S}0 and 6s6p{}3{P}1o states of Yb are calculated by using the relativistic ab initio method. Focusing on the red detuning region to the 6{s}2{}1{S}0{--}6s6p{}3{P}1o transition, we find two magic wavelengths at 1035.7(2) and 612.9(2) nm for the 6{s}2{}1{S}0{--}6s6p{}3{P}1o,{M}J=0 transition and three magic wavelengths at 1517.68(6), 1036.0(3) and 858(12) nm for the 6{s}2{}1{S}0{--}6s6p{}3{P}1o,{M}J=+/- 1 transitions. Such magic wavelengths are of particular interest for attaining the state-insensitive cooling, trapping, and quantum manipulation of neutral Yb atom.

  8. Mechanisms of CDC-42 activation during contact-induced cell polarization

    PubMed Central

    Chan, Emily; Nance, Jeremy

    2013-01-01

    Summary Polarization of early embryos provides a foundation to execute essential patterning and morphogenetic events. In Caenorhabditis elegans, cell contacts polarize early embryos along their radial axis by excluding the cortical polarity protein PAR-6 from sites of cell contact, thereby restricting PAR-6 to contact-free cell surfaces. Radial polarization requires the cortically enriched Rho GTPase CDC-42, which in its active form recruits PAR-6 through direct binding. The Rho GTPase activating protein (RhoGAP) PAC-1, which localizes specifically to cell contacts, triggers radial polarization by inactivating CDC-42 at these sites. The mechanisms responsible for activating CDC-42 at contact-free surfaces are unknown. Here, in an overexpression screen of Rho guanine nucleotide exchange factors (RhoGEFs), which can activate Rho GTPases, we identify CGEF-1 and ECT-2 as RhoGEFs that act through CDC-42 to recruit PAR-6 to the cortex. We show that ECT-2 and CGEF-1 localize to the cell surface and that removing their activity causes a reduction in levels of cortical PAR-6. Through a structure–function analysis, we show that the tandem DH-PH domains of CGEF-1 and ECT-2 are sufficient for GEF activity, but that regions outside of these domains target each protein to the cell surface. Finally, we provide evidence suggesting that the N-terminal region of ECT-2 may direct its in vivo preference for CDC-42 over another known target, the Rho GTPase RHO-1. We propose that radial polarization results from a competition between RhoGEFs, which activate CDC-42 throughout the cortex, and the RhoGAP PAC-1, which inactivates CDC-42 at cell contacts. PMID:23424200

  9. Mechanisms of CDC-42 activation during contact-induced cell polarization.

    PubMed

    Chan, Emily; Nance, Jeremy

    2013-04-01

    Polarization of early embryos provides a foundation to execute essential patterning and morphogenetic events. In Caenorhabditis elegans, cell contacts polarize early embryos along their radial axis by excluding the cortical polarity protein PAR-6 from sites of cell contact, thereby restricting PAR-6 to contact-free cell surfaces. Radial polarization requires the cortically enriched Rho GTPase CDC-42, which in its active form recruits PAR-6 through direct binding. The Rho GTPase activating protein (RhoGAP) PAC-1, which localizes specifically to cell contacts, triggers radial polarization by inactivating CDC-42 at these sites. The mechanisms responsible for activating CDC-42 at contact-free surfaces are unknown. Here, in an overexpression screen of Rho guanine nucleotide exchange factors (RhoGEFs), which can activate Rho GTPases, we identify CGEF-1 and ECT-2 as RhoGEFs that act through CDC-42 to recruit PAR-6 to the cortex. We show that ECT-2 and CGEF-1 localize to the cell surface and that removing their activity causes a reduction in levels of cortical PAR-6. Through a structure-function analysis, we show that the tandem DH-PH domains of CGEF-1 and ECT-2 are sufficient for GEF activity, but that regions outside of these domains target each protein to the cell surface. Finally, we provide evidence suggesting that the N-terminal region of ECT-2 may direct its in vivo preference for CDC-42 over another known target, the Rho GTPase RHO-1. We propose that radial polarization results from a competition between RhoGEFs, which activate CDC-42 throughout the cortex, and the RhoGAP PAC-1, which inactivates CDC-42 at cell contacts.

  10. Regulation of ATM-Dependent DNA Damage Responses in Breast Cancer by the RhoGEF Net1

    DTIC Science & Technology

    2013-04-01

    Science 279: 509-514. 5. Jaffe AB. et al., (2010) RhoGTPases: Biochemistry and Biology. Annu. Rev. Cell Dev. Biol. 21:247-269. 6. Rossman KL, et al...exchange factor Net1 is regulated by nuclear sequestration. J. Biol. Chem. 277:17, 14581-14588. 17. Harper JW, et al., (2007) The DNA Damage Response: Ten...Research (AACR) Annual Meeting and 2013 Annual Cancer Research Biochemistry Retreat Regulation of ATM-dependent DNA damage signaling in human breast

  11. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed. ...

  12. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed. ...

  13. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed. ...

  14. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed. ...

  15. 1 CFR 6.1 - Index to daily issues.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Index to daily issues. 6.1 Section 6.1 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.1 Index to daily issues. Each daily issue of the Federal Register shall be appropriately indexed. ...

  16. 50 CFR 1.6 - Person.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 1 2012-10-01 2012-10-01 false Person. 1.6 Section 1.6 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR GENERAL PROVISIONS DEFINITIONS § 1.6 Person. Person means an individual, club, association, partnership, corporation, or private or...

  17. 50 CFR 1.6 - Person.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 1 2011-10-01 2011-10-01 false Person. 1.6 Section 1.6 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR GENERAL PROVISIONS DEFINITIONS § 1.6 Person. Person means an individual, club, association, partnership, corporation, or private or...

  18. 50 CFR 1.6 - Person.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 1 2014-10-01 2014-10-01 false Person. 1.6 Section 1.6 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR GENERAL PROVISIONS DEFINITIONS § 1.6 Person. Person means an individual, club, association, partnership, corporation, or private or...

  19. 50 CFR 1.6 - Person.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 1 2013-10-01 2013-10-01 false Person. 1.6 Section 1.6 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR GENERAL PROVISIONS DEFINITIONS § 1.6 Person. Person means an individual, club, association, partnership, corporation, or private or...

  20. 50 CFR 1.6 - Person.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Person. 1.6 Section 1.6 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR GENERAL PROVISIONS DEFINITIONS § 1.6 Person. Person means an individual, club, association, partnership, corporation, or private or...

  1. Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 and risk of colon or rectal cancer

    PubMed Central

    Slattery, Martha L.; Lundgreen, Abbie; Herrick, Jennifer S.; Wolff, Roger K.

    2010-01-01

    RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 are involved in several pathways central to the carcinogenic process, including regulation of cell growth, insulin, and inflammation. We evaluated genetic variation in their candidate genes to obtain a better understanding of their association with colon and rectal cancer. We used data from two population-based case-control studies of colon (n=1574 cases, 1940 controls) and rectal (n=791 cases, 999 controls) cancer. We observed genetic variation in RPS6KA1, RPS6KA2, and PRS6KB2 were associated with risk of developing colon cancer while only genetic variation in RPS6KA2 was associated with altering risk of rectal cancer. These genes also interacted significantly with other genes operating in similar mechanisms, including Akt1, FRAP1, NFκB1, and PIK3CA. Assessment of tumor markers indicated that these genes and this pathway may importantly contributed to CIMP+ tumors and tumors with KRAS2 mutations. Our findings implicate these candidate genes in the etiology of colon and rectal cancer and provide information on how these genes operate with other genes in the pathway. Our data further suggest that this pathway may lead to CIMP+ and KRAS2-mutated tumors. PMID:21035469

  2. 15 CFR 6.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Definitions. 6.1 Section 6.1 Commerce and Foreign Trade Office of the Secretary of Commerce CIVIL MONETARY PENALTY INFLATION ADJUSTMENTS § 6.1 Definitions. As used in this part: (a) Inflation Adjustment Act means the Federal Civil Penalties...

  3. Roles of STEF/Tiam1, guanine nucleotide exchange factors for Rac1, in regulation of growth cone morphology.

    PubMed

    Matsuo, Naoki; Terao, Mami; Nabeshima, Yo-ichi; Hoshino, Mikio

    2003-09-01

    Rho family GTPases are suggested to be pivotal for growth cone behavior, but regulation of their activities in response to environmental cues remains elusive. Here, we describe roles of STEF and Tiam1, guanine nucleotide exchange factors for Rac1, in neurite growth and growth cone remodeling. We reveal that, in primary hippocampal neurons, STEF/Tiam1 are localized within growth cones and essential for formation of growth cone lamellipodia, eventually contributing to neurite growth. Furthermore, experiments using a dominant-negative form demonstrate that STEF/Tiam1 mediate extracellular laminin signals to activate Rac1, promoting neurite growth in N1E-115 neuroblastoma cells. STEF/Tiam1 are revealed to mediate Cdc42 signal to activate Rac1 during lamellipodial formation. We also show that RhoA inhibits the STEF/Tiam1-Rac1 pathway. These data are used to propose a model that extracellular and intracellular information is integrated by STEF/Tiam1 to modulate the balance of Rho GTPase activities in the growth cone and, consequently, to control growth cone behavior.

  4. The Phosphatidylinositol (3,4,5)-Trisphosphate-dependent Rac Exchanger 1·Ras-related C3 Botulinum Toxin Substrate 1 (P-Rex1·Rac1) Complex Reveals the Basis of Rac1 Activation in Breast Cancer Cells.

    PubMed

    Lucato, Christina M; Halls, Michelle L; Ooms, Lisa M; Liu, Heng-Jia; Mitchell, Christina A; Whisstock, James C; Ellisdon, Andrew M

    2015-08-21

    The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gβγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gβγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gβγ releases inhibitory C-terminal domains to expose the Rac1 binding site. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. 27 CFR 6.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false General. 6.1 Section 6.1 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS âTIED-HOUSEâ Scope of Regulations § 6.1 General. The regulations in this part, issued pursuant to section 105 of the Federal Alcohol...

  6. 27 CFR 6.1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false General. 6.1 Section 6.1 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS âTIED-HOUSEâ Scope of Regulations § 6.1 General. The regulations in this part, issued pursuant to section 105 of the Federal Alcohol...

  7. 15 CFR 6.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Definitions. 6.1 Section 6.1 Commerce and Foreign Trade Office of the Secretary of Commerce CIVIL MONETARY PENALTY INFLATION ADJUSTMENTS § 6.... (d) Section Five means section 5 of the Inflation Adjustment Act. (e) Department means the Department...

  8. 15 CFR 6.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Definitions. 6.1 Section 6.1 Commerce and Foreign Trade Office of the Secretary of Commerce CIVIL MONETARY PENALTY INFLATION ADJUSTMENTS § 6.... (d) Section Five means section 5 of the Inflation Adjustment Act. (e) Department means the Department...

  9. 15 CFR 6.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Definitions. 6.1 Section 6.1 Commerce and Foreign Trade Office of the Secretary of Commerce CIVIL MONETARY PENALTY INFLATION ADJUSTMENTS § 6.... (d) Section Five means section 5 of the Inflation Adjustment Act. (e) Department means the Department...

  10. The Drosophila small GTPase Rac2 is required for normal feeding and mating behaviour.

    PubMed

    Goergen, Philip; Kasagiannis, Anna; Schiöth, Helgi B; Williams, Michael J

    2014-03-01

    All multicellular organisms require the ability to regulate bodily processes in order to maintain a stable condition, which necessitates fluctuations in internal metabolics, as well as modifications of outward behaviour. Understanding the genetics behind this modulation is important as a general model for the metabolic modification of behaviour. This study demonstrates that the activity of the small GTPase Rac2 is required in Drosophila for the proper regulation of lipid storage and feeding behaviour, as well as aggression and mating behaviours. Rac2 mutant males and females are susceptible to starvation and contain considerably less lipids than controls. Furthermore, Rac2 mutants also have disrupted feeding behaviour, eating fewer but larger meals than controls. Intriguingly, Rac2 mutant males rarely initiate aggressive behaviour and display significantly increased levels of courtship behaviour towards other males and mated females. From these results we conclude that Rac2 has a central role in regulating the Drosophila homeostatic system.

  11. Semiclassical transport properties of IrGa3: a promising thermoelectric material.

    PubMed

    Alvarez Quiceno, Juan Camilo; Dalpian, Gustavo; Fazzio, Adalberto; Osorio-Guillén, Jorge M

    2018-01-09

    IrGa3 is an intermetallic compound which is expected to be a metal, but a study on the electronic properties of this material to confirm its metallic character is not available in the literature. In this work, we report for the first time a first-principles Density Functional Theory and semiclassical Boltzmann theory study of the structural, electronic and transport properties of this material. The inclusion of the spin-orbit coupling term is crucial to calculate accurately the electronic properties of this compound. We have established that IrGa3 is an indirect semiconductor with a narrow gap of 0.07 eV. From semiclassical Boltzmann transport theory, it is inferred that this material, with the appropriate hole concentration, could have a thermoelectric figure of merit at room temperature comparable to other intermetallic compounds such as FeGa3, though the transport properties of IrGa3 are highly anisotropic. . © 2018 IOP Publishing Ltd.

  12. Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling.

    PubMed

    Pawar, Archana; Meier, Jeremy A; Dasgupta, Anwesha; Diwanji, Neha; Deshpande, Neha; Saxena, Kritika; Buwa, Natasha; Inchanalkar, Siddhi; Schwartz, Martin Alexander; Balasubramanian, Nagaraj

    2016-09-01

    Integrin dependent regulation of growth factor signalling confers anchorage dependence that is deregulated in cancers. Downstream of integrins and oncogenic Ras the small GTPase Ral is a vital mediator of adhesion dependent trafficking and signalling. This study identifies a novel regulatory crosstalk between Ral and Arf6 that controls Ral function in cells. In re-adherent mouse fibroblasts (MEFs) integrin dependent activation of RalA drives Arf6 activation. Independent of adhesion constitutively active RalA and RalB could both however activate Arf6. This is further conserved in oncogenic H-Ras containing bladder cancer T24 cells, which express anchorage independent active Ral that supports Arf6 activation. Arf6 mediates active Ral-exocyst dependent delivery of raft microdomains to the plasma membrane that supports anchorage independent growth signalling. Accordingly in T24 cells the RalB-Arf6 crosstalk is seen to preferentially regulate anchorage independent Erk signalling. Active Ral we further find uses a Ral-RalBP1-ARNO-Arf6 pathway to mediate Arf6 activation. This study hence identifies Arf6, through this regulatory crosstalk, to be a key downstream mediator of Ral isoform function along adhesion dependent pathways in normal and cancer cells. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Early stages of functional diversification in the Rab GTPase gene family revealed by genomic and localization studies in Paramecium species.

    PubMed

    Bright, Lydia J; Gout, Jean-Francois; Lynch, Michael

    2017-04-15

    New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins. © 2017 Bright et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. UreE-UreG Complex Facilitates Nickel Transfer and Preactivates GTPase of UreG in Helicobacter pylori*♦

    PubMed Central

    Yang, Xinming; Li, Hongyan; Lai, Tsz-Pui; Sun, Hongzhe

    2015-01-01

    The pathogenicity of Helicobacter pylori relies heavily on urease, which converts urea to ammonia to neutralize the stomach acid. Incorporation of Ni2+ into the active site of urease requires a battery of chaperones. Both metallochaperones UreE and UreG play important roles in the urease activation. In this study, we demonstrate that, in the presence of GTP and Mg2+, UreG binds Ni2+ with an affinity (Kd) of ∼0.36 μm. The GTPase activity of Ni2+-UreG is stimulated by both K+ (or NH4+) and HCO3− to a biologically relevant level, suggesting that K+/NH4+ and HCO3− might serve as GTPase elements of UreG. We show that complexation of UreE and UreG results in two protein complexes, i.e. 2E-2G and 2E-G, with the former being formed only in the presence of both GTP and Mg2+. Mutagenesis studies reveal that Arg-101 on UreE and Cys-66 on UreG are critical for stabilization of 2E-2G complex. Combined biophysical and bioassay studies show that the formation of 2E-2G complex not only facilitates nickel transfer from UreE to UreG, but also enhances the binding of GTP. This suggests that UreE might also serve as a structural scaffold for recruitment of GTP to UreG. Importantly, we demonstrate for the first time that UreE serves as a bridge to grasp Ni2+ from HypA, subsequently donating it to UreG. The study expands our horizons on the molecular details of nickel translocation among metallochaperones UreE, UreG, and HypA, which further extends our knowledge on the urease maturation process. PMID:25752610

  15. Membrane attachment is key to protecting transducin GTPase-activating complex from intracellular proteolysis in photoreceptors.

    PubMed

    Gospe, Sidney M; Baker, Sheila A; Kessler, Christopher; Brucato, Martha F; Winter, Joan R; Burns, Marie E; Arshavsky, Vadim Y

    2011-10-12

    The members of the R7 regulator of G-protein signaling (RGS) protein subfamily are versatile regulators of G-protein signaling throughout the nervous system. Recent studies indicate that they are often found in complexes with membrane anchor proteins that serve as versatile modulators of their activity, intracellular targeting, and stability. One striking example is the interplay between the membrane anchor R9AP and the RGS9-1 · Gβ5 GTPase-activating complex responsible for the rapid inactivation of the G-protein transducin in vertebrate photoreceptor cells during their recovery from light excitation. The amount of this complex in photoreceptors sets their temporal resolution and is precisely regulated by the expression level of R9AP, which serves to protect the RGS9-1 and Gβ5 subunits from intracellular proteolysis. In this study, we investigated the mechanism by which R9AP performs its protective function in mouse rods and found that it is entirely confined to recruiting RGS9-1 · Gβ5 to cellular membranes. Furthermore, membrane attachment of RGS9-1 · Gβ5 is sufficient for its stable expression in rods even in the absence of R9AP. Our second finding is that RGS9-1 · Gβ5 possesses targeting information that specifies its exclusion from the outer segment and that this information is neutralized by association with R9AP to allow outer segment targeting. Finally, we demonstrate that the ability of R9AP · RGS9-1 · Gβ5 to accelerate GTP hydrolysis on transducin is independent of its means of membrane attachment, since replacing the transmembrane domain of R9AP with a site for lipid modification did not impair the catalytic activity of this complex.

  16. Activation of Ran GTPase by a Legionella Effector Promotes Microtubule Polymerization, Pathogen Vacuole Motility and Infection

    PubMed Central

    Rothmeier, Eva; Pfaffinger, Gudrun; Hoffmann, Christine; Harrison, Christopher F.; Grabmayr, Heinrich; Repnik, Urska; Hannemann, Mandy; Wölke, Stefan; Bausch, Andreas; Griffiths, Gareth; Müller-Taubenberger, Annette; Itzen, Aymelt; Hilbi, Hubert

    2013-01-01

    The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila. PMID:24068924

  17. CED-10/Rac1 Regulates Endocytic Recycling through the RAB-5 GAP TBC-2

    PubMed Central

    Sun, Lin; Liu, Ou; Desai, Jigar; Karbassi, Farhad; Sylvain, Marc-André; Shi, Anbing; Zhou, Zheng; Rocheleau, Christian E.; Grant, Barth D.

    2012-01-01

    Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L) also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane. PMID:22807685

  18. Exploring the correlation between the sequence composition of the nucleotide binding G5 loop of the FeoB GTPase domain (NFeoB) and intrinsic rate of GDP release.

    PubMed

    Guilfoyle, Amy P; Deshpande, Chandrika N; Schenk, Gerhard; Maher, Megan J; Jormakka, Mika

    2014-12-12

    GDP release from GTPases is usually extremely slow and is in general assisted by external factors, such as association with guanine exchange factors or membrane-embedded GPCRs (G protein-coupled receptors), which accelerate the release of GDP by several orders of magnitude. Intrinsic factors can also play a significant role; a single amino acid substitution in one of the guanine nucleotide recognition motifs, G5, results in a drastically altered GDP release rate, indicating that the sequence composition of this motif plays an important role in spontaneous GDP release. In the present study, we used the GTPase domain from EcNFeoB (Escherichia coli FeoB) as a model and applied biochemical and structural approaches to evaluate the role of all the individual residues in the G5 loop. Our study confirms that several of the residues in the G5 motif have an important role in the intrinsic affinity and release of GDP. In particular, a T151A mutant (third residue of the G5 loop) leads to a reduced nucleotide affinity and provokes a drastically accelerated dissociation of GDP.

  19. A GTPase reaction accompanying the rejection of Leu-tRNA2 by UUU-programmed ribosomes. Proofreading of the codon-anticodon interaction by ribosomes.

    PubMed

    Thompson, R C; Dix, D B; Gerson, R B; Karim, A M

    1981-01-10

    The characteristics of a GTPase reaction between poly(U)-programmed ribosomes, EFTu . GTP, and the near-cognate aminoacyl (aa)-tRNA, Leu-tRNA Leu 2, have been studied to assess the role of this reaction in proofreading of the codon-anticodon interaction. The reaction resembles the GTPase reaction with cognate aa-tRNAs and EFTu . GTP in its substrate requirements, in its involving EFTu . GTP . aa-tRNA ternary complexes, and in its requiring a free ribosomal A-site. The noncognate reaction differs from the cognate one in that aa-tRNA becomes stably bound to the ribosomes only 5% of the time; it therefore seems best characterized as an abortive enzymatic binding reaction. The rate of reaction is a significant fraction (4%) of that of the cognate aa-tRNA, indicating that recognition of ternary complexes by ribosomes involves a level of error greater than that of translation as a whole. The rejection of the noncognate aa-tRNA following GTP hydrolysis is therefore a vital step in the translation process and fulfills the criteria set for a proofreading reaction. Leu-tRNA Leu 2 which escapes rejection through proofreading, forms a stable complex with the ribosomal A-site, so it appears that the Leu-tRNA2 which was rejected never reached the A-site and that proofreading precedes full A-site binding.

  20. RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1.

    PubMed

    Meyer Zum Büschenfelde, Uta; Brandenstein, Laura Isabel; von Elsner, Leonie; Flato, Kristina; Holling, Tess; Zenker, Martin; Rosenberger, Georg; Kutsche, Kerstin

    2018-05-01

    RIT1 belongs to the RAS family of small GTPases. Germline and somatic RIT1 mutations have been identified in Noonan syndrome (NS) and cancer, respectively. By using heterologous expression systems and purified recombinant proteins, we identified the p21-activated kinase 1 (PAK1) as novel direct effector of RIT1. We found RIT1 also to directly interact with the RHO GTPases CDC42 and RAC1, both of which are crucial regulators of actin dynamics upstream of PAK1. These interactions are independent of the guanine nucleotide bound to RIT1. Disease-causing RIT1 mutations enhance protein-protein interaction between RIT1 and PAK1, CDC42 or RAC1 and uncouple complex formation from serum and growth factors. We show that the RIT1-PAK1 complex regulates cytoskeletal rearrangements as expression of wild-type RIT1 and its mutant forms resulted in dissolution of stress fibers and reduction of mature paxillin-containing focal adhesions in COS7 cells. This effect was prevented by co-expression of RIT1 with dominant-negative CDC42 or RAC1 and kinase-dead PAK1. By using a transwell migration assay, we show that RIT1 wildtype and the disease-associated variants enhance cell motility. Our work demonstrates a new function for RIT1 in controlling actin dynamics via acting in a signaling module containing PAK1 and RAC1/CDC42, and highlights defects in cell adhesion and migration as possible disease mechanism underlying NS.

  1. RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1

    PubMed Central

    von Elsner, Leonie; Flato, Kristina; Holling, Tess; Zenker, Martin; Rosenberger, Georg

    2018-01-01

    RIT1 belongs to the RAS family of small GTPases. Germline and somatic RIT1 mutations have been identified in Noonan syndrome (NS) and cancer, respectively. By using heterologous expression systems and purified recombinant proteins, we identified the p21-activated kinase 1 (PAK1) as novel direct effector of RIT1. We found RIT1 also to directly interact with the RHO GTPases CDC42 and RAC1, both of which are crucial regulators of actin dynamics upstream of PAK1. These interactions are independent of the guanine nucleotide bound to RIT1. Disease-causing RIT1 mutations enhance protein-protein interaction between RIT1 and PAK1, CDC42 or RAC1 and uncouple complex formation from serum and growth factors. We show that the RIT1-PAK1 complex regulates cytoskeletal rearrangements as expression of wild-type RIT1 and its mutant forms resulted in dissolution of stress fibers and reduction of mature paxillin-containing focal adhesions in COS7 cells. This effect was prevented by co-expression of RIT1 with dominant-negative CDC42 or RAC1 and kinase-dead PAK1. By using a transwell migration assay, we show that RIT1 wildtype and the disease-associated variants enhance cell motility. Our work demonstrates a new function for RIT1 in controlling actin dynamics via acting in a signaling module containing PAK1 and RAC1/CDC42, and highlights defects in cell adhesion and migration as possible disease mechanism underlying NS. PMID:29734338

  2. Electrophysiology of glioma: a Rho GTPase-activating protein reduces tumor growth and spares neuron structure and function.

    PubMed

    Vannini, Eleonora; Olimpico, Francesco; Middei, Silvia; Ammassari-Teule, Martine; de Graaf, Erik L; McDonnell, Liam; Schmidt, Gudula; Fabbri, Alessia; Fiorentini, Carla; Baroncelli, Laura; Costa, Mario; Caleo, Matteo

    2016-12-01

    Glioblastomas are the most aggressive type of brain tumor. A successful treatment should aim at halting tumor growth and protecting neuronal cells to prevent functional deficits and cognitive deterioration. Here, we exploited a Rho GTPase-activating bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), to interfere with glioma cell growth in vitro and vivo. We also investigated whether this toxin spares neuron structure and function in peritumoral areas. We performed a microarray transcriptomic and in-depth proteomic analysis to characterize the molecular changes triggered by CNF1 in glioma cells. We also examined tumor cell senescence and growth in vehicle- and CNF1-treated glioma-bearing mice. Electrophysiological and morphological techniques were used to investigate neuronal alterations in peritumoral cortical areas. Administration of CNF1 triggered molecular and morphological hallmarks of senescence in mouse and human glioma cells in vitro. CNF1 treatment in vivo induced glioma cell senescence and potently reduced tumor volumes. In peritumoral areas of glioma-bearing mice, neurons showed a shrunken dendritic arbor and severe functional alterations such as increased spontaneous activity and reduced visual responsiveness. CNF1 treatment enhanced dendritic length and improved several physiological properties of pyramidal neurons, demonstrating functional preservation of the cortical network. Our findings demonstrate that CNF1 reduces glioma volume while at the same time maintaining the physiological and structural properties of peritumoral neurons. These data indicate a promising strategy for the development of more effective antiglioma therapies. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Saponins extracted from by-product of Asparagus officinalis L. suppress tumour cell migration and invasion through targeting Rho GTPase signalling pathway.

    PubMed

    Wang, Jieqiong; Liu, Yali; Zhao, Jingjing; Zhang, Wen; Pang, Xiufeng

    2013-04-01

    The inedible bottom part (~30-40%) of asparagus (Asparagus officinalis L.) spears is usually discarded as waste. However, since this by-product has been reported to be rich in many bioactive phytochemicals, it might be utilisable as a supplement in foods or natural drugs for its therapeutic effects. In this study it was identifed that saponins from old stems of asparagus (SSA) exerted potential inhibitory activity on tumour growth and metastasis. SSA suppressed cell viability of breast, colon and pancreatic cancers in a concentration-dependent manner, with half-maximum inhibitory concentrations ranging from 809.42 to 1829.96 µg mL(-1). However, SSA was more functional in blocking cell migration and invasion as compared with its cytotoxic effect, with an effective inhibitory concentration of 400 µg mL(-1). A mechanistic study showed that SSA markedly increased the activities of Cdc42 and Rac1 and decreased the activity of RhoA in cancer cells. SSA inhibits tumour cell motility through modulating the Rho GTPase signalling pathway, suggesting a promising use of SSA as a supplement in healthcare foods and natural drugs for cancer prevention and treatment. © 2012 Society of Chemical Industry.

  4. Interactions of UNC-34 Enabled With Rac GTPases and the NIK Kinase MIG-15 in Caenorhabditis elegans Axon Pathfinding and Neuronal Migration

    PubMed Central

    Shakir, M. Afaq; Gill, Jason S.; Lundquist, Erik A.

    2006-01-01

    Many genes that affect axon pathfinding and cell migration have been identified. Mechanisms by which these genes and the molecules they encode interact with one another in pathways and networks to control developmental events are unclear. Rac GTPases, the cytoskeletal signaling molecule Enabled, and NIK kinase have all been implicated in regulating axon pathfinding and cell migration. Here we present evidence that, in Caenorhabditis elegans, three Rac GTPases, CED-10, RAC-2, and MIG-2, define three redundant pathways that each control axon pathfinding, and that the NIK kinase MIG-15 acts in each Rac pathway. Furthermore, we show that the Enabled molecule UNC-34 defines a fourth partially redundant pathway that acts in parallel to Rac/MIG-15 signaling in axon pathfinding. Enabled and the three Racs also act redundantly to mediate AQR and PQR neuronal cell migration. The Racs and UNC-34 Ena might all control the formation of actin-based protrusive structures (lamellipodia and filopodia) that mediate growth cone outgrowth and cell migration. MIG-15 does not act with the three Racs in execution of cell migration. Rather, MIG-15 affects direction of PQR neuronal migration, similar to UNC-40 and DPY-19, which control initial Q cell polarity, and Wnt signaling, which acts later to control Q cell-directed migration. MIG-2 Rac, which acts with CED-10 Rac, RAC-2 Rac, and UNC-34 Ena in axon pathfinding and cell migration, also acts with MIG-15 in PQR directional migration. PMID:16204220

  5. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets.

    PubMed

    Kanamarlapudi, Venkateswarlu; Owens, Sian E; Saha, Keya; Pope, Robert J; Mundell, Stuart J

    2012-01-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y(1) and P2Y(12) purinoceptors. Recently, we demonstrated that P2Y(1) and P2Y(12) purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y(1) and P2Y(12) purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y(1) or P2Y(12) purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function.

  6. Interaction of the Small GTPase Cdc42 with Arginine Kinase Restricts White Spot Syndrome Virus in Shrimp

    PubMed Central

    Xu, Ji-Dong; Jiang, Hai-Shan; Wei, Tian-Di; Zhang, Ke-Yi; Wang, Xian-Wei; Zhao, Xiao-Fan

    2016-01-01

    ABSTRACT Many types of small GTPases are widely expressed in eukaryotes and have different functions. As a crucial member of the Rho GTPase family, Cdc42 serves a number of functions, such as regulating cell growth, migration, and cell movement. Several RNA viruses employ Cdc42-hijacking tactics in their target cell entry processes. However, the function of Cdc42 in shrimp antiviral immunity is not clear. In this study, we identified a Cdc42 protein in the kuruma shrimp (Marsupenaeus japonicus) and named it MjCdc42. MjCdc42 was upregulated in shrimp challenged by white spot syndrome virus (WSSV). The knockdown of MjCdc42 and injection of Cdc42 inhibitors increased the proliferation of WSSV. Further experiments determined that MjCdc42 interacted with an arginine kinase (MjAK). By analyzing the binding activity and enzyme activity of MjAK and its mutant, ΔMjAK, we found that MjAK could enhance the replication of WSSV in shrimp. MjAK interacted with the envelope protein VP26 of WSSV. An inhibitor of AK activity, quercetin, could impair the function of MjAK in WSSV replication. Further study demonstrated that the binding of MjCdc42 and MjAK depends on Cys271 of MjAK and suppresses the WSSV replication-promoting effect of MjAK. By interacting with the active site of MjAK and suppressing its enzyme activity, MjCdc42 inhibits WSSV replication in shrimp. Our results demonstrate a new function of Cdc42 in the cellular defense against viral infection in addition to the regulation of actin and phagocytosis, which has been reported in previous studies. IMPORTANCE The interaction of Cdc42 with arginine kinase plays a crucial role in the host defense against WSSV infection. This study identifies a new mechanism of Cdc42 in innate immunity and enriches the knowledge of the antiviral innate immunity of invertebrates. PMID:28031362

  7. Interaction of the Small GTPase Cdc42 with Arginine Kinase Restricts White Spot Syndrome Virus in Shrimp.

    PubMed

    Xu, Ji-Dong; Jiang, Hai-Shan; Wei, Tian-Di; Zhang, Ke-Yi; Wang, Xian-Wei; Zhao, Xiao-Fan; Wang, Jin-Xing

    2017-03-01

    Many types of small GTPases are widely expressed in eukaryotes and have different functions. As a crucial member of the Rho GTPase family, Cdc42 serves a number of functions, such as regulating cell growth, migration, and cell movement. Several RNA viruses employ Cdc42-hijacking tactics in their target cell entry processes. However, the function of Cdc42 in shrimp antiviral immunity is not clear. In this study, we identified a Cdc42 protein in the kuruma shrimp ( Marsupenaeus japonicus ) and named it Mj Cdc42. Mj Cdc42 was upregulated in shrimp challenged by white spot syndrome virus (WSSV). The knockdown of Mj Cdc42 and injection of Cdc42 inhibitors increased the proliferation of WSSV. Further experiments determined that Mj Cdc42 interacted with an arginine kinase ( Mj AK). By analyzing the binding activity and enzyme activity of Mj AK and its mutant, Δ Mj AK, we found that Mj AK could enhance the replication of WSSV in shrimp. Mj AK interacted with the envelope protein VP26 of WSSV. An inhibitor of AK activity, quercetin, could impair the function of Mj AK in WSSV replication. Further study demonstrated that the binding of Mj Cdc42 and Mj AK depends on Cys 271 of Mj AK and suppresses the WSSV replication-promoting effect of Mj AK. By interacting with the active site of Mj AK and suppressing its enzyme activity, Mj Cdc42 inhibits WSSV replication in shrimp. Our results demonstrate a new function of Cdc42 in the cellular defense against viral infection in addition to the regulation of actin and phagocytosis, which has been reported in previous studies. IMPORTANCE The interaction of Cdc42 with arginine kinase plays a crucial role in the host defense against WSSV infection. This study identifies a new mechanism of Cdc42 in innate immunity and enriches the knowledge of the antiviral innate immunity of invertebrates. Copyright © 2017 American Society for Microbiology.

  8. The Rap GTPase Activator Drosophila PDZ-GEF Regulates Cell Shape in Epithelial Migration and Morphogenesis▿

    PubMed Central

    Boettner, Benjamin; Van Aelst, Linda

    2007-01-01

    Epithelial morphogenesis is characterized by an exquisite control of cell shape and position. Progression through dorsal closure in Drosophila gastrulation depends on the ability of Rap1 GTPase to signal through the adherens junctional multidomain protein Canoe. Here, we provide genetic evidence that epithelial Rap activation and Canoe effector usage are conferred by the Drosophila PDZ-GEF (dPDZ-GEF) exchange factor. We demonstrate that dPDZ-GEF/Rap/Canoe signaling modulates cell shape and apicolateral cell constriction in embryonic and wing disc epithelia. In dPDZ-GEF mutant embryos with strong dorsal closure defects, cells in the lateral ectoderm fail to properly elongate. Postembryonic dPDZ-GEF mutant cells generated in mosaic tissue display a striking extension of lateral cell perimeters in the proximity of junctional complexes, suggesting a loss of normal cell contractility. Furthermore, our data indicate that dPDZ-GEF signaling is linked to myosin II function. Both dPDZ-GEF and cno show strong genetic interactions with the myosin II-encoding gene, and myosin II distribution is severely perturbed in epithelia of both mutants. These findings provide the first insight into the molecular machinery targeted by Rap signaling to modulate epithelial plasticity. We propose that dPDZ-GEF-dependent signaling functions as a rheostat linking Rap activity to the regulation of cell shape in epithelial morphogenesis at different developmental stages. PMID:17846121

  9. R-ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis

    PubMed Central

    Guo, Yuna; Kenney, Shelby Ray; Muller, Carolyn Y.; Adams, Sarah; Rutledge, Teresa; Romero, Elsa; Murray-Krezan, Cristina; Prekeris, Rytis; Sklar, Larry A.; Hudson, Laurie G.; Wandinger-Ness, Angela

    2015-01-01

    Cdc42 (cell division control protein 42) and Rac1 (Ras-related C3 botulinum toxin substrate 1) are attractive therapeutic targets in ovarian cancer based on established importance in tumor cell migration, adhesion and invasion. Despite a predicted benefit, targeting GTPases has not yet been translated to clinical practice. We previously established that Cdc42 and constitutively active Rac1b are overexpressed in primary ovarian tumor tissues. Through high throughput screening and computational shape homology approaches we identified R-ketorolac as a Cdc42 and Rac1 inhibitor; distinct from the anti-inflammatory, cyclooxygenase inhibitory activity of S-ketorolac. In the present study, we establish R-ketorolac as an allosteric inhibitor of Cdc42 and Rac1. Cell-based assays validate R-ketorolac activity against Cdc42 and Rac1. Studies on immortalized human ovarian adenocarcinoma cells (SKOV3ip), and primary, patient-derived ovarian cancer cells show R-ketorolac is a robust inhibitor of growth factor or serum dependent Cdc42 and Rac1 activation with a potency and cellular efficacy similar to small molecule inhibitors of Cdc42 (CID2950007/ML141) and Rac1 (NSC23766). Furthermore, GTPase inhibition by R-ketorolac reduces downstream p21-activated kinases (PAK1/PAK2) effector activation by >80%. Multiple assays of cell behavior using SKOV3ip and primary patient-derived ovarian cancer cells show that R-ketorolac significantly inhibits cell adhesion, migration and invasion. In sum, we provide evidence for R-ketorolac as direct inhibitor of Cdc42 and Rac1 that is capable of modulating downstream GTPase-dependent, physiological responses, which are critical to tumor metastasis. Our findings demonstrate the selective inhibition of Cdc42 and Rac1 GTPases by an FDA approved drug-racemic ketorolac that can be used in humans. PMID:26206334

  10. R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis.

    PubMed

    Guo, Yuna; Kenney, S Ray; Muller, Carolyn Y; Adams, Sarah; Rutledge, Teresa; Romero, Elsa; Murray-Krezan, Cristina; Prekeris, Rytis; Sklar, Larry A; Hudson, Laurie G; Wandinger-Ness, Angela

    2015-10-01

    Cdc42 (cell division control protein 42) and Rac1 (Ras-related C3 botulinum toxin substrate 1) are attractive therapeutic targets in ovarian cancer based on established importance in tumor cell migration, adhesion, and invasion. Despite a predicted benefit, targeting GTPases has not yet been translated to clinical practice. We previously established that Cdc42 and constitutively active Rac1b are overexpressed in primary ovarian tumor tissues. Through high-throughput screening and computational shape homology approaches, we identified R-ketorolac as a Cdc42 and Rac1 inhibitor, distinct from the anti-inflammatory, cyclooxygenase inhibitory activity of S-ketorolac. In the present study, we establish R-ketorolac as an allosteric inhibitor of Cdc42 and Rac1. Cell-based assays validate R-ketorolac activity against Cdc42 and Rac1. Studies on immortalized human ovarian adenocarcinoma cells (SKOV3ip) and primary patient-derived ovarian cancer cells show that R-ketorolac is a robust inhibitor of growth factor or serum-dependent Cdc42 and Rac1 activation with a potency and cellular efficacy similar to small-molecule inhibitors of Cdc42 (CID2950007/ML141) and Rac1 (NSC23766). Furthermore, GTPase inhibition by R-ketorolac reduces downstream p21-activated kinases (PAK1/PAK2) effector activation by >80%. Multiple assays of cell behavior using SKOV3ip and primary patient-derived ovarian cancer cells show that R-ketorolac significantly inhibits cell adhesion, migration, and invasion. In summary, we provide evidence for R-ketorolac as a direct inhibitor of Cdc42 and Rac1 that is capable of modulating downstream GTPase-dependent, physiologic responses, which are critical to tumor metastasis. Our findings demonstrate the selective inhibition of Cdc42 and Rac1 GTPases by an FDA-approved drug, racemic ketorolac, that can be used in humans. ©2015 American Association for Cancer Research.

  11. 7 CFR 1.6 - Aggregating requests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Aggregating requests. 1.6 Section 1.6 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Official Records § 1.6 Aggregating requests. When an agency reasonably believes that a requester, or a group of requesters acting in concert...

  12. 7 CFR 1.6 - Aggregating requests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Aggregating requests. 1.6 Section 1.6 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Official Records § 1.6 Aggregating... be considered in determining whether such a belief would be reasonable is the brevity of the time...

  13. 7 CFR 1.6 - Aggregating requests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Aggregating requests. 1.6 Section 1.6 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Official Records § 1.6 Aggregating... be considered in determining whether such a belief would be reasonable is the brevity of the time...

  14. 7 CFR 1.6 - Aggregating requests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Aggregating requests. 1.6 Section 1.6 Agriculture Office of the Secretary of Agriculture ADMINISTRATIVE REGULATIONS Official Records § 1.6 Aggregating... be considered in determining whether such a belief would be reasonable is the brevity of the time...

  15. 12 CFR 1.6 - Convertible securities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Convertible securities. 1.6 Section 1.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY INVESTMENT SECURITIES § 1.6 Convertible securities. A national bank may not purchase securities convertible into stock at the option of...

  16. 12 CFR 1.6 - Convertible securities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Convertible securities. 1.6 Section 1.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY INVESTMENT SECURITIES § 1.6 Convertible securities. A national bank may not purchase securities convertible into stock at the option of...

  17. 12 CFR 1.6 - Convertible securities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Convertible securities. 1.6 Section 1.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY INVESTMENT SECURITIES § 1.6 Convertible securities. A national bank may not purchase securities convertible into stock at the option of...

  18. A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP.

    PubMed

    Spanò, Stefania; Gao, Xiang; Hannemann, Sebastian; Lara-Tejero, María; Galán, Jorge E

    2016-02-10

    Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. 31 CFR 1.6 - Business information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Business information. 1.6 Section 1.6... Information Act § 1.6 Business information. (a) In general. Business information provided to the Department of the Treasury by a business submitter shall not be disclosed pursuant to a Freedom of Information Act...

  20. 31 CFR 1.6 - Business information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Business information. 1.6 Section 1.6... Information Act § 1.6 Business information. (a) In general. Business information provided to the Department of the Treasury by a business submitter shall not be disclosed pursuant to a Freedom of Information Act...

  1. 31 CFR 1.6 - Business information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Business information. 1.6 Section 1.6... Information Act § 1.6 Business information. (a) In general. Business information provided to the Department of the Treasury by a business submitter shall not be disclosed pursuant to a Freedom of Information Act...

  2. 31 CFR 1.6 - Business information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Business information. 1.6 Section 1.6... Information Act § 1.6 Business information. (a) In general. Business information provided to the Department of the Treasury by a business submitter shall not be disclosed pursuant to a Freedom of Information Act...

  3. 31 CFR 1.6 - Business information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Business information. 1.6 Section 1.6... Information Act § 1.6 Business information. (a) In general. Business information provided to the Department of the Treasury by a business submitter shall not be disclosed pursuant to a Freedom of Information Act...

  4. 14 CFR 1-6 - Accounting entities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Accounting entities. Sec. 1-6 Section Sec. 1-6 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... General Accounting Provisions Sec. 1-6 Accounting entities. (a) Separate accounting records shall be...

  5. Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection.

    PubMed

    Maric-Biresev, Jelena; Hunn, Julia P; Krut, Oleg; Helms, J Bernd; Martens, Sascha; Howard, Jonathan C

    2016-04-20

    The interferon-γ (IFN-γ)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse. We show that the three regulatory IRG proteins (GMS sub-family), including Irgm1, each of which localizes to distinct sets of endocellular membranes, play an important role during the cellular response to IFN-γ, each protecting specific membranes from off-target activation of effector IRG proteins (GKS sub-family). In the absence of Irgm1, which is localized mainly at lysosomal and Golgi membranes, activated GKS proteins load onto lysosomes, and are associated with reduced lysosomal acidity and failure to process autophagosomes. Another GMS protein, Irgm3, is localized to endoplasmic reticulum (ER) membranes; in the Irgm3-deficient mouse, activated GKS proteins are found at the ER. The Irgm3-deficient mouse does not show the drastic phenotype of the Irgm1 mouse. In the Irgm1/Irgm3 double knock-out mouse, activated GKS proteins associate with lipid droplets, but not with lysosomes, and the Irgm1/Irgm3(-/-) does not have the generalized immunodeficiency phenotype expected from its Irgm1 deficiency. The membrane targeting properties of the three GMS proteins to specific endocellular membranes prevent accumulation of activated GKS protein effectors on the corresponding membranes and thus enable GKS proteins to distinguish organellar cellular membranes from the membranes of pathogen vacuoles. Our data suggest that the generalized lymphomyeloid collapse that occurs in Irgm1(-/-) mice upon infection with a variety of pathogens may be due to lysosomal damage caused by off-target activation of GKS proteins on lysosomal

  6. The Rho GTPase Rif signals through IRTKS, Eps8 and WAVE2 to generate dorsal membrane ruffles and filopodia.

    PubMed

    Sudhaharan, Thankiah; Sem, Kai Ping; Liew, Hwi Fen; Yu, Yuan Hong; Goh, Wah Ing; Chou, Ai Mei; Ahmed, Sohail

    2016-07-15

    Rif induces dorsal filopodia but the signaling pathway responsible for this has not been identified. We show here that Rif interacts with the I-BAR family protein IRTKS (also known as BAIAP2L1) through its I-BAR domain. Rif also interacts with Pinkbar (also known as BAIAP2L2) in N1E-115 mouse neuroblastoma cells. IRTKS and Rif induce dorsal membrane ruffles and filopodia. Dominant-negative Rif inhibits the formation of IRTKS-induced morphological structures, and Rif activity is blocked in IRTKS-knockout (KO) cells. To further define the Rif-IRTKS signaling pathway, we identify Eps8 and WAVE2 (also known as WASF2) as IRTKS interactors. We find that Eps8 regulates the size and number of dorsal filopodia and membrane ruffles downstream of Rif-IRTKS signaling, whereas WAVE2 modulates dorsal membrane ruffling. Furthermore, our data suggests that Tir, a protein essential for enterohemorrhagic Escherichia coli infection, might compete for Rif for interaction with the I-BAR domain of IRTKS. Based on this evidence, we propose a model in which Rho family GTPases use the I-BAR proteins, IRSp53 (also known as BAIAP2), IRTKS and Pinkbar, as a central mechanism to modulate cell morphology. © 2016. Published by The Company of Biologists Ltd.

  7. Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5

    PubMed Central

    Lucas, María; Gaspar, Andrew H.; Pallara, Chiara; Rojas, Adriana Lucely; Fernández-Recio, Juan; Machner, Matthias P.; Hierro, Aitor

    2014-01-01

    A challenge for microbial pathogens is to assure that their translocated effector proteins target only the correct host cell compartment during infection. The Legionella pneumophila effector vacuolar protein sorting inhibitor protein D (VipD) localizes to early endosomal membranes and alters their lipid and protein composition, thereby protecting the pathogen from endosomal fusion. This process requires the phospholipase A1 (PLA1) activity of VipD that is triggered specifically on VipD binding to the host cell GTPase Rab5, a key regulator of endosomes. Here, we present the crystal structure of VipD in complex with constitutively active Rab5 and reveal the molecular mechanism underlying PLA1 activation. An active site-obstructing loop that originates from the C-terminal domain of VipD is repositioned on Rab5 binding, thereby exposing the catalytic pocket within the N-terminal PLA1 domain. Substitution of amino acid residues located within the VipD–Rab5 interface prevented Rab5 binding and PLA1 activation and caused a failure of VipD mutant proteins to target to Rab5-enriched endosomal structures within cells. Experimental and computational analyses confirmed an extended VipD-binding interface on Rab5, explaining why this L. pneumophila effector can compete with cellular ligands for Rab5 binding. Together, our data explain how the catalytic activity of a microbial effector can be precisely linked to its subcellular localization. PMID:25114243

  8. SLAT promotes TCR-mediated, Rap1-dependent LFA-1 activation and adhesion through interaction of its PH domain with Rap1

    PubMed Central

    Côte, Marjorie; Fos, Camille; Canonigo-Balancio, Ann J.; Ley, Klaus; Bécart, Stéphane; Altman, Amnon

    2015-01-01

    ABSTRACT SLAT (also known as DEF6) promotes T cell activation and differentiation by regulating NFAT-Ca2+ signaling. However, its role in TCR-mediated inside-out signaling, which induces integrin activation and T cell adhesion, a central process in T cell immunity and inflammation, has not been explored. Here, we show that SLAT is crucial for TCR-induced adhesion to ICAM-1 and affinity maturation of LFA-1 in CD4+ T cells. Mechanistic studies revealed that SLAT interacts, through its PH domain, with a key component of inside-out signaling, namely the active form of the small GTPase Rap1 (which has two isoforms, Rap1A and Rap1B). This interaction has been further shown to facilitate the interdependent recruitment of Rap1 and SLAT to the T cell immunological synapse upon TCR engagement. Furthermore, a SLAT mutant lacking its PH domain drastically inhibited LFA-1 activation and CD4+ T cell adhesion. Finally, we established that a constitutively active form of Rap1, which is present at the plasma membrane, rescues the defective LFA-1 activation and ICAM-1 adhesion in SLAT-deficient (Def6−/−) T cells. These findings ascribe a new function to SLAT, and identify Rap1 as a target of SLAT function in TCR-mediated inside-out signaling. PMID:26483383

  9. SLAT promotes TCR-mediated, Rap1-dependent LFA-1 activation and adhesion through interaction of its PH domain with Rap1.

    PubMed

    Côte, Marjorie; Fos, Camille; Canonigo-Balancio, Ann J; Ley, Klaus; Bécart, Stéphane; Altman, Amnon

    2015-12-01

    SLAT (also known as DEF6) promotes T cell activation and differentiation by regulating NFAT-Ca(2+) signaling. However, its role in TCR-mediated inside-out signaling, which induces integrin activation and T cell adhesion, a central process in T cell immunity and inflammation, has not been explored. Here, we show that SLAT is crucial for TCR-induced adhesion to ICAM-1 and affinity maturation of LFA-1 in CD4(+) T cells. Mechanistic studies revealed that SLAT interacts, through its PH domain, with a key component of inside-out signaling, namely the active form of the small GTPase Rap1 (which has two isoforms, Rap1A and Rap1B). This interaction has been further shown to facilitate the interdependent recruitment of Rap1 and SLAT to the T cell immunological synapse upon TCR engagement. Furthermore, a SLAT mutant lacking its PH domain drastically inhibited LFA-1 activation and CD4(+) T cell adhesion. Finally, we established that a constitutively active form of Rap1, which is present at the plasma membrane, rescues the defective LFA-1 activation and ICAM-1 adhesion in SLAT-deficient (Def6(-/-)) T cells. These findings ascribe a new function to SLAT, and identify Rap1 as a target of SLAT function in TCR-mediated inside-out signaling. © 2015. Published by The Company of Biologists Ltd.

  10. Monosomy 6q1: Syndrome delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romie, S.S.; Hartsfield, J.K. Jr.; Sutcliffe, M.J.

    1996-03-15

    We report on a girl with a de novo 6q1 interstitial deletion. To our knowledge, this is the second reported case with a deletion of 6q11-q15. We review the phenotype of monosomy 6q1. Our patient has manifestations similar to others with monosomy 6q1 including mental deficiency, growth retardation, short neck, and minor facila anomalies. 18 refs., 5 figs., 3 tabs.

  11. RSPO–LGR4 functions via IQGAP1 to potentiate Wnt signaling

    PubMed Central

    Carmon, Kendra S.; Gong, Xing; Yi, Jing; Thomas, Anthony; Liu, Qingyun

    2014-01-01

    R-spondins (RSPOs) and their receptor leucine-rich repeat-containing G-protein coupled receptor 4 (LGR4) play pleiotropic roles in normal and cancer development as well as the survival of adult stem cells through potentiation of Wnt signaling. Current evidence indicates that RSPO–LGR4 functions to elevate levels of Wnt receptors through direct inhibition of two membrane-bound E3 ligases (RNF43 and ZNRF3), which otherwise ubiquitinate Wnt receptors for degradation. Whether RSPO–LGR4 is coupled to intracellular signaling proteins to regulate Wnt pathways remains unknown. We identified the intracellular scaffold protein IQ motif containing GTPase-activating protein 1 (IQGAP1) as an LGR4-interacting protein that mediates RSPO–LGR4’s interaction with the Wnt signalosome. IQGAP1 binds to and modulates the activities of a plethora of signaling molecules, including MAP kinases, Rho GTPases, and components of the Wnt signaling pathways. Interaction of LGR4 with IQGAP1 brings RSPO–LGR4 to the Wnt signaling complex through enhanced IQGAP1–DVL interaction following RSPO stimulation. In this configuration, RSPO–LGR4–IQGAP1 potentiates β-catenin–dependent signaling by promoting MEK1/2-medidated phosphorylation of LRP5/6 as well as β-catenin–independent signaling through regulation of actin dynamics. Overall, these findings reveal that RSPO–LGR4 not only induces the clearance of RNF43/ZNRF3 to increase Wnt receptor levels but also recruits IQGAP1 into the Wnt signaling complex, leading to potent and robust potentiation of both the canonical and noncanonical pathways of Wnt signaling. PMID:24639526

  12. 48 CFR 6.303-1 - Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Requirements. 6.303-1... COMPETITION REQUIREMENTS Other Than Full and Open Competition 6.303-1 Requirements. (a) A contracting officer... are made public after award in accordance with 6.305. (c) Technical and requirements personnel are...

  13. Sestrin2 is a leucine sensor for the mTORC1 pathway

    PubMed Central

    Wolfson, Rachel L.; Chantranupong, Lynne; Saxton, Robert A.; Shen, Kuang; Scaria, Sonia M.; Cantor, Jason R.; Sabatini, David M.

    2015-01-01

    Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, a GTPase activating protein (GAP); GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a Kd of 20 µM, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway. PMID:26449471

  14. Sestrin2 is a leucine sensor for the mTORC1 pathway.

    PubMed

    Wolfson, Rachel L; Chantranupong, Lynne; Saxton, Robert A; Shen, Kuang; Scaria, Sonia M; Cantor, Jason R; Sabatini, David M

    2016-01-01

    Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanosine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, aGTPase-activating protein; GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a dissociation constant of 20 micromolar, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway. Copyright © 2016, American Association for the Advancement of Science.

  15. FGFR1 is essential for N-acetyl-seryl-aspartyl-lysyl-proline regulation of mitochondrial dynamics by upregulating microRNA let-7b-5p.

    PubMed

    Hu, Qiongying; Li, Jinpeng; Nitta, Kyoko; Kitada, Munehiro; Nagai, Takako; Kanasaki, Keizo; Koya, Daisuke

    2018-01-15

    Fibroblast growth factor receptor (FGFR) 1 plays a key role in endothelial homeostasis by inducing microRNA (miR) let-7. Our previous paper showed that anti-fibrotic effects of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) were associated with restoring diabetes-suppressed expression of FGFR1 and miR let-7, the key contributor of mitochondrial biogenesis, which is regulated by mitochondrial membrane GTPase proteins (MFN2 and OPA1). Here, we found that the FGFR1 signaling pathway was critical for AcSDKP in maintaining endothelial mitochondrial biogenesis through induction of miR let-7b-5p. In endothelial cells, AcSDKP restored the triple cytokines (TGF-β2, interleukin-1β, tumor necrosis factor-α)-suppressed miR let-7b-5p and protein levels of the mitochondrial membrane GTPase. This effect of AcSDKP was lost with either fibroblast growth factor receptor substrate 2 (FRS2) siRNA or neutralizing FGFR1-treated cells. Similarly, AcSDKP had no effect on the miR let-7b-5p inhibitor-suppressed GTPase levels in endothelial cells. In addition, a miR let-7b-5p mimic restored the levels of FRS2 siRNA-reduced GTPases in endothelial cells. These findings were also confirmed using MitoTracker Green and an immunofluorescence assay. Our results demonstrated that the AcSDKP-FGFR1 signaling pathway is critical for maintaining mitochondrial dynamics by control of miR let-7b-5p in endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mutation Spectrum in the Large GTPase Dynamin 2, and Genotype–Phenotype Correlation in Autosomal Dominant Centronuclear Myopathy

    PubMed Central

    Böhm, Johann; Biancalana, Valérie; DeChene, Elizabeth T.; Bitoun, Marc; Pierson, Christopher R.; Schaefer, Elise; Karasoy, Hatice; Dempsey, Melissa A.; Klein, Fabrice; Dondaine, Nicolas; Kretz, Christine; Haumesser, Nicolas; Poirson, Claire; Toussaint, Anne; Greenleaf, Rebecca S.; Barger, Melissa A.; Mahoney, Lane J.; Kang, Peter B.; Zanoteli, Edmar; Vissing, John; Witting, Nanna; Echaniz-Laguna, Andoni; Wallgren-Pettersson, Carina; Dowling, James; Merlini, Luciano; Oldfors, Anders; Ousager, Lilian Bomme; Melki, Judith; Krause, Amanda; Jern, Christina; Oliveira, Acary S. B.; Petit, Florence; Jacquette, Aurélia; Chaussenot, Annabelle; Mowat, David; Leheup, Bruno; Cristofano, Michele; Aldea, Juan José Poza; Michel, Fabrice; Furby, Alain; Llona, Jose E. Barcena; Van Coster, Rudy; Bertini, Enrico; Urtizberea, Jon Andoni; Drouin-Garraud, Valérie; Béroud, Christophe; Prudhon, Bernard; Bedford, Melanie; Mathews, Katherine; Erby, Lori A. H.; Smith, Stephen A.; Roggenbuck, Jennifer; Crowe, Carol A.; Spitale, Allison Brennan; Johal, Sheila C.; Amato, Anthony A.; Demmer, Laurie A.; Jonas, Jessica; Darras, Basil T.; Bird, Thomas D.; Laurino, Mercy; Welt, Selman I.; Trotter, Cynthia; Guicheney, Pascale; Das, Soma; Mandel, Jean-Louis; Beggs, Alan H.; Laporte, Jocelyn

    2012-01-01

    Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype–phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot–Marie–Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT. PMID:22396310

  17. 26 CFR 1.381(c)(6)-1 - Depreciation method.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 4 2014-04-01 2014-04-01 false Depreciation method. 1.381(c)(6)-1 Section 1.381... (CONTINUED) INCOME TAXES (CONTINUED) Insolvency Reorganizations § 1.381(c)(6)-1 Depreciation method. (a... (4), the acquiring corporation shall compute its depreciation allowance by the same method used by...

  18. 26 CFR 1.381(c)(6)-1 - Depreciation method.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 4 2012-04-01 2012-04-01 false Depreciation method. 1.381(c)(6)-1 Section 1.381... (CONTINUED) INCOME TAXES (Continued) Insolvency Reorganizations § 1.381(c)(6)-1 Depreciation method. (a... (4), the acquiring corporation shall compute its depreciation allowance by the same method used by...

  19. 26 CFR 1.381(c)(6)-1 - Depreciation method.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 4 2011-04-01 2011-04-01 false Depreciation method. 1.381(c)(6)-1 Section 1.381... (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.381(c)(6)-1 Depreciation method. (a) Carryover... (4), the acquiring corporation shall compute its depreciation allowance by the same method used by...

  20. 26 CFR 1.381(c)(6)-1 - Depreciation method.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Depreciation method. 1.381(c)(6)-1 Section 1.381... (CONTINUED) INCOME TAXES (CONTINUED) Insolvency Reorganizations § 1.381(c)(6)-1 Depreciation method. (a... (4), the acquiring corporation shall compute its depreciation allowance by the same method used by...

  1. 26 CFR 1.381(c)(6)-1 - Depreciation method.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Depreciation method. 1.381(c)(6)-1 Section 1.381... (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.381(c)(6)-1 Depreciation method. (a) Carryover... (4), the acquiring corporation shall compute its depreciation allowance by the same method used by...

  2. Small GTPase R-Ras participates in neural tube formation in zebrafish embryonic spinal cord.

    PubMed

    Ohata, Shinya; Uga, Hideko; Okamoto, Hitoshi; Katada, Toshiaki

    2018-06-27

    Ras related (R-Ras), a small GTPase, is involved in the maintenance of apico-basal polarity in neuroepithelial cells of the zebrafish hindbrain, axonal collapse in cultured murine hippocampal neurons, and maturation of blood vessels in adult mice. However, the role of R-Ras in neural tube formation remains unknown. Using antisense morpholino oligonucleotides (AMOs), we found that in the spinal cord of zebrafish embryos, the lumen was formed bilaterally in rras morphants, whereas it was formed at the midline in control embryos. As AMO can cause off-target effects, we generated rras mutant zebrafish lines using CRISPR/Cas9 technology. Although these rras mutant embryos did not have a bilateral lumen in the spinal cord, the following findings suggest that the phenotype is unlikely due to an off-target effect of rras AMO: 1) The rras morphant phenotype was rescued by an injection of AMO-resistant rras mRNA, and 2) a bilaterally segregated spinal cord was not observed in rras mutant embryos injected with rras AMO. The results suggest that the function of other ras family genes may be redundant in rras mutants. Previous research reported a bilaterally formed lumen in the spinal cord of zebrafish embryos with a mutation in a planar cell polarity (PCP) gene, van gogh-like 2 (vangl2). In the present study, in cultured cells, R-Ras was co-immunoprecipitated with Vangl2 but not with another PCP regulator, Pricke1. Interestingly, the interaction between R-Ras and Vangl2 was stronger in guanine-nucleotide free point mutants of R-Ras than in wild-type or constitutively active (GTP-bound) forms of R-Ras. R-Ras may regulate neural tube formation in cooperation with Vangl2 in the developing zebrafish spinal cord. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic.

    PubMed

    Yamane, Junko; Kubo, Akiharu; Nakayama, Kazuhisa; Yuba-Kubo, Akiko; Katsuno, Tatsuya; Tsukita, Shoichiro; Tsukita, Sachiko

    2007-10-01

    The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.

  4. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallon, Mario, E-mail: m.vallon@arcor.de; Rohde, Franziska; Janssen, Klaus-Peter

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile,more » an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.« less

  5. Evolution of Fermi Surface Properties in CexLa1-xB6 and PrxLa1-xB6

    NASA Astrophysics Data System (ADS)

    Endo, Motoki; Nakamura, Shintaro; Isshiki, Toshiyuki; Kimura, Noriaki; Nojima, Tsutomu; Aoki, Haruyoshi; Harima, Hisatomo; Kunii, Satoru

    2006-11-01

    We report the de Haas-van Alphen (dHvA) effect measurements of the Fermi surface properties in LaB6, CexLa1-xB6 (x = 0.1, 0.25, 0.5, 0.75, 1.0) and PrxLa1-xB6 (x = 0.25, 0.5, 0.75, 1.0) with particular attention to the spin dependence of the Fermi surface properties. The Fermi surface shape and dimension of CexLa1-xB6 change considerably with Ce concentration, while those of PrxLa1-xB6 change very slightly up to x = 0.75, and in PrB6 the Fermi surface splits into the up and down spin Fermi surfaces. The effective mass of CexLa1-xB6 increases considerably with Ce concentration and is nearly proportional to the number of Ce ions, whereas that of PrxLa1-xB6 increases slightly with Pr concentration. In CexLa1-xB6 the effective mass depends very strongly on field and increases divergently with decreasing field, while that of PrxLa1-xB6 increases slightly with decreasing field. The contribution to the dHvA signal from the conduction electrons of one spin direction diminishes with Ce concentration and appears to disappear somewhere around x = 0.25--0.5. A weak spin dependence is also found in PrxLa1-xB6. The behaviors of CexLa1-xB6 and PrxLa1-xB6 are compared to discuss the origin of the spin dependence of the Fermi surface properties.

  6. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts.

    PubMed

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-06-27

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Activated Rac1 requires gp130 for Stat3 activation, cell proliferation and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulanandam, Rozanne; Geletu, Mulu; Feracci, Helene

    2010-03-10

    Rac1 (Rac) is a member of the Rho family of small GTPases which controls cell migration by regulating the organization of actin filaments. Previous results suggested that mutationally activated forms of the Rho GTPases can activate the Signal Transducer and Activator of Transcription-3 (Stat3), but the exact mechanism is a matter of controversy. We recently demonstrated that Stat3 activity of cultured cells increases dramatically following E-cadherin engagement. To better understand this pathway, we now compared Stat3 activity levels in mouse HC11 cells before and after expression of the mutationally activated Rac1 (Rac{sup V12}), at different cell densities. The results revealedmore » for the first time a dramatic increase in protein levels and activity of both the endogenous Rac and Rac{sup V12} with cell density, which was due to inhibition of proteasomal degradation. In addition, Rac{sup V12}-expressing cells had higher Stat3, tyrosine-705 phosphorylation and activity levels at all densities, indicating that Rac{sup V12} is able to activate Stat3. Further examination of the mechanism of Stat3 activation showed that Rac{sup V12} expression caused a surge in mRNA of Interleukin-6 (IL6) family cytokines, known potent Stat3 activators. Knockdown of gp130, the common subunit of this family reduced Stat3 activity, indicating that these cytokines may be responsible for the Stat3 activation by Rac{sup V12}. The upregulation of IL6 family cytokines was required for cell migration and proliferation induced by Rac{sup V12}, as shown by gp130 knockdown experiments, thus demonstrating that the gp130/Stat3 axis represents an essential effector of activated Rac for the regulation of key cellular functions.« less

  8. Maize ROP2 GTPase provides a competitive advantage to the male gametophyte.

    PubMed

    Arthur, K M; Vejlupkova, Z; Meeley, R B; Fowler, J E

    2003-12-01

    Rop GTPases have been implicated in the regulation of plant signal transduction and cell morphogenesis. To explore ROP2 function in maize, we isolated five Mutator transposon insertions (rop2::Mu alleles). Transmission frequency through the male gametophyte, but not the female, was lower than expected in three of the rop2::Mu mutants. These three alleles formed an allelic series on the basis of the relative transmission rate of each when crossed as trans-heterozygotes. A dramatic reduction in the level of ROP2-mRNA in pollen was associated with the three alleles causing a transmission defect, whereas a rop2::Mu allele that did not result in a defect had wild-type transcript levels, thus confirming that mutation of rop2 causes the mutant phenotype. These data strongly support a role for rop2 in male gametophyte function, perhaps surprisingly, given the expression in pollen of the nearly identical duplicate gene rop9. However, the transmission defect was apparent only when a rop2::Mu heterozygote was used as the pollen donor or when a mixture of wild-type and homozygous mutant pollen was used. Thus, mutant pollen is at a competitive disadvantage compared to wild-type pollen, although mutant pollen grains lacked an obvious cellular defect. Our data demonstrate the importance in vivo of a specific Rop, rop2, in the male gametophyte.

  9. 1 CFR 2.6 - Unrestricted use.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Unrestricted use. 2.6 Section 2.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER GENERAL GENERAL INFORMATION § 2.6 Unrestricted use. Any person may reproduce or republish, without restriction, any material appearing in any regular...

  10. 1 CFR 2.6 - Unrestricted use.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Unrestricted use. 2.6 Section 2.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER GENERAL GENERAL INFORMATION § 2.6 Unrestricted use. Any person may reproduce or republish, without restriction, any material appearing in any regular...

  11. 1 CFR 2.6 - Unrestricted use.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Unrestricted use. 2.6 Section 2.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER GENERAL GENERAL INFORMATION § 2.6 Unrestricted use. Any person may reproduce or republish, without restriction, any material appearing in any regular...

  12. 1 CFR 2.6 - Unrestricted use.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Unrestricted use. 2.6 Section 2.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER GENERAL GENERAL INFORMATION § 2.6 Unrestricted use. Any person may reproduce or republish, without restriction, any material appearing in any regular...

  13. 1 CFR 2.6 - Unrestricted use.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Unrestricted use. 2.6 Section 2.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER GENERAL GENERAL INFORMATION § 2.6 Unrestricted use. Any person may reproduce or republish, without restriction, any material appearing in any regular...

  14. (16)- and (1→3)(16)-β-glucans from Lasiodiplodia theobromae MMBJ: Structural characterization and pro-inflammatory activity.

    PubMed

    Oliveira, Kassandra S M; Di Bastiani, Mirela; Cordeiro, Lucimara M C; Costa, Mírian F; Toledo, Karina A; Iacomini, Marcello; Babosa, Aneli M; Dekker, Robert F H; Nascimento, Valéria M G

    2015-11-20

    The chemical composition and structural characterization of exopolysaccharides from the fungus Lasiodiplodia theobromae MMBJ are described, and the immunomodulatory activity of a purified β-glucan was evaluated. L. theobromae MMBJ produced three different β-glucans. One, fraction PEPS, was a branched (1→3)(16)-β-glucan and was insoluble in cold water. The other two, fractions SEPS-005R and SEPS-10E, were characterized as linear (16)-β-glucans with molar mass of 1.8×10(6)Da and 7.0×10(3)Da, respectively. From a total of 2.2g/L of EPS produced by L. theobromae through submerged fermentation, 1.5g/L (67%) was of the branched (1→3)(16)-β-glucan, while 25% (w/w) were linear (16)-β-glucans. Tests conducted with macrophages showed that the high molar mass (16)-β-glucan fraction (SEPS-005R) induced a pro-inflammatory response pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease

    PubMed Central

    Pushkaran, Suvarnamala; Konstantinidis, Diamantis G.; Koochaki, Sebastian; Malik, Punam; Mohandas, Narla; Zheng, Yi; Joiner, Clinton H.; Kalfa, Theodosia A.

    2013-01-01

    Chronic inflammation has emerged as an important pathogenic mechanism in sickle cell disease (SCD). One component of this inflammatory response is oxidant stress mediated by reactive oxygen species (ROS) generated by leukocytes, endothelial cells, plasma enzymes, and sickle red blood cells (RBC). Sickle RBC ROS generation has been attributed to sickle hemoglobin auto-oxidation and Fenton chemistry reactions catalyzed by denatured heme moieties bound to the RBC membrane. In this study, we demonstrate that a significant part of ROS production in sickle cells is mediated enzymatically by NADPH oxidase, which is regulated by protein kinase C, Rac GTPase, and intracellular Ca2+ signaling within the sickle RBC. Moreover, plasma from patients with SCD and isolated cytokines, such as transforming growth factor β1 and endothelin-1, enhance RBC NADPH oxidase activity and increase ROS generation. ROS-mediated damage to RBC membrane components is known to contribute to erythrocyte rigidity and fragility in SCD. Erythrocyte ROS generation, hemolysis, vaso-occlusion, and the inflammatory response to tissue damage may therefore act in a positive-feedback loop to drive the pathophysiology of sickle cell disease. These findings suggest a novel pathogenic mechanism in SCD and may offer new therapeutic targets to counteract inflammation and RBC rigidity and fragility in SCD. PMID:23349388

  16. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day...

  17. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day...

  18. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day...

  19. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day...

  20. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day...

  1. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigeno, Yuta; Uchiumi, Toshio; Nomura, Takaomi, E-mail: nomurat@shinshu-u.ac.jp

    Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly,more » cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation. - Highlights: • We constructed an in vivo functional assay system for Escherichia coli ribosomal protein L6. • Growth of an E. coli ΔL6 mutant was biphasic when L6 levels were depleted. • The ΔL6 mutant accumulated 50S ribosomal subunit precursors that sedimented at 45S. • L6 is a key player in the late stage of E. coli 50S subunit assembly.« less

  2. The CASTOR proteins are arginine sensors for the mTORC1 pathway

    PubMed Central

    Chantranupong, Lynne; Scaria, Sonia M.; Saxton, Robert A.; Gygi, Melanie P.; Shen, Kuang; Wyant, Gregory A.; Wang, Tim; Harper, J. Wade; Gygi, Steven P.; Sabatini, David M.

    2016-01-01

    Amino acids signal to the mTOR complex I (mTORC1) growth pathway through the Rag GTPases. Multiple distinct complexes regulate the Rags, including GATOR1, a GTPase activating protein (GAP), and GATOR2, a positive regulator of unknown molecular function. Arginine stimulation of cells activates mTORC1, but how it is sensed is not well understood. Recently, SLC38A9 was identified as a putative lysosomal arginine sensor required for arginine to activate mTORC1 but how arginine deprivation represses mTORC1 is unknown. Here, we show that CASTOR1, a previously uncharacterized protein, interacts with GATOR2 and is required for arginine deprivation to inhibit mTORC1. CASTOR1 homodimerizes and can also heterodimerize with the related protein, CASTOR2. Arginine disrupts the CASTOR1-GATOR2 complex by binding to CASTOR1 with a dissociation constant of ~30 μM, and its arginine-binding capacity is required for arginine to activate mTORC1 in cells. Collectively, these results establish CASTOR1 as an arginine sensor for the mTORC1 pathway. PMID:26972053

  3. Differential effects of Rho GTPases on axonal and dendritic development in hippocampal neurones.

    PubMed

    Ahnert-Hilger, G; Höltje, M; Grosse, G; Pickert, G; Mucke, C; Nixdorf-Bergweiler, B; Boquet, P; Hofmann, F; Just, I

    2004-07-01

    Formation of neurites and their differentiation into axons and dendrites requires precisely controlled changes in the cytoskeleton. While small GTPases of the Rho family appear to be involved in this regulation, it is still unclear how Rho function affects axonal and dendritic growth during development. Using hippocampal neurones at defined states of differentiation, we have dissected the function of RhoA in axonal and dendritic growth. Expression of a dominant negative RhoA variant inhibited axonal growth, whereas dendritic growth was promoted. The opposite phenotype was observed when a constitutively active RhoA variant was expressed. Inactivation of Rho by C3-catalysed ADP-ribosylation using C3 isoforms (Clostridium limosum, C3(lim) or Staphylococcus aureus, C3(stau2)), diminished axonal branching. By contrast, extracellularly applied nanomolar concentrations of C3 from C. botulinum (C3(bot)) or enzymatically dead C3(bot) significantly increased axon growth and axon branching. Taken together, axonal development requires activation of RhoA, whereas dendritic development benefits from its inactivation. However, extracellular application of enzymatically active or dead C3(bot) exclusively promotes axonal growth and branching suggesting a novel neurotrophic function of C3 that is independent from its enzymatic activity.

  4. De novo variants in RHOBTB2, an atypical Rho GTPase gene, cause epileptic encephalopathy.

    PubMed

    Belal, Hazrat; Nakashima, Mitsuko; Matsumoto, Hiroshi; Yokochi, Kenji; Taniguchi-Ikeda, Mariko; Aoto, Kazushi; Amin, Mohammed Badrul; Maruyama, Azusa; Nagase, Hiroaki; Mizuguchi, Takeshi; Miyatake, Satoko; Miyake, Noriko; Iijima, Kazumoto; Nonoyama, Shigeaki; Matsumoto, Naomichi; Saitsu, Hirotomo

    2018-05-16

    By whole exome sequencing, we identified three de novo RHOBTB2 variants in three patients with epileptic encephalopathies (EEs). Interestingly, all three patients showed acute encephalopathy (febrile status epilepticus), with magnetic resonance imaging revealing hemisphere swelling or reduced diffusion in various brain regions. RHOBTB2 encodes Rho-related BTB domain-containing protein 2, an atypical Rho GTPase that is a substrate-specific adaptor or itself is a substrate for the Cullin-3 (CUL3)-based ubiquitin/proteasome complex. Transient expression experiments in Neuro-2a cells revealed that mutant RHOBTB2 was more abundant than wild-type RHOBTB2. Co-expression of CUL3 with RHOBTB2 decreased the level of wild-type RHOBTB2 but not the level of any of the three mutants, indicating impaired CUL3 complex-dependent degradation of the three mutants. These data indicate that RHOBTB2 variants are a rare genetic cause of EEs, in which acute encephalopathy might be a characteristic feature, and that precise regulation of RHOBTB2 levels is essential for normal brain function. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. 41 CFR 60-1.6 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true [Reserved] 60-1.6 Section 60-1.6 Public Contracts and Property Management Other Provisions Relating to Public Contracts OFFICE...-OBLIGATIONS OF CONTRACTORS AND SUBCONTRACTORS Preliminary Matters; Equal Opportunity Clause; Compliance...

  6. 41 CFR 60-1.6 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true [Reserved] 60-1.6 Section 60-1.6 Public Contracts and Property Management Other Provisions Relating to Public Contracts OFFICE...-OBLIGATIONS OF CONTRACTORS AND SUBCONTRACTORS Preliminary Matters; Equal Opportunity Clause; Compliance...

  7. Deletion of the "OPHN1" Gene Detected by aCGH

    ERIC Educational Resources Information Center

    Madrigal, I.; Rodriguez-Revenga, L.; Badenas, C.; Sanchez, A.; Mila, M.

    2008-01-01

    Background: The oligophrenin 1 gene ("OPHN1") is an Rho-GTPase-activating protein involved in the regulation of the G-protein cycle required for dendritic spine morphogenesis. Mutations in this gene are implicated in X-linked mental retardation (XLMR). Methods: We report a deletion spanning exons 21 and 22 of the "OPHN1" gene identified by a…

  8. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence.

    PubMed

    Zhang, Zhanquan; Qin, Guozheng; Li, Boqiang; Tian, Shiping

    2014-06-01

    Pathogenic fungi usually secrete a series of virulence factors to the extracellular environment to facilitate infection. Rab GTPases play a central role in the secretory pathway. To explore the function of Rab/GTPase in filamentous fungi, we knocked out a Rab/GTPase family gene, Bcsas1, in Botrytis cinerea, an aggressive fungal pathogen that infects more than 200 plant species. A detailed analysis was conducted on the virulence and the secretory capability of the mutants. The results indicated that knockout of Bcsas1 inhibited hyphal development and reduced sporulation of B. cinerea on potato dextrose agar plates resulting in reduced virulence on various fruit hosts. Knocking out the Bcsas1 gene led to an accumulation of transport vesicles at the hyphal tip, significantly reduced extracellular protein content, and lowered the activity of polygalacturonase and xylanase in the extracellular medium. However, mutation of Bcsas1 did not affect the expression of genes encoding polygalacturonase and xylanase, suggesting the secretion of these two family enzymes was suppressed in the mutant. Moreover, a comparative analysis of the secretome provided further evidence that the disruption of Bcsas1 in mutant strains significantly depressed the secretion of polysaccharide hydrolases and proteases. The results indicate that Bcsas1, the Rab8/SEC4-like gene, plays a crucial role in development, protein secretion, and virulence of B. cinerea.

  9. A class I ADP-ribosylation factor GTPase-activating protein is critical for maintaining directional root hair growth in Arabidopsis.

    PubMed

    Yoo, Cheol-Min; Wen, Jiangqi; Motes, Christy M; Sparks, J Alan; Blancaflor, Elison B

    2008-08-01

    Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs.

  10. Infrared predissociation spectroscopy of M+ (C6H6)(1-4)(H2O)(1-2)Ar(0-1) cluster ions, M = Li, Na.

    PubMed

    Beck, Jordan P; Lisy, James M

    2011-05-05

    Infrared predissociation (IRPD) spectra of Li(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar(0-1) and Na(+)(C(6)H(6))(2-4)(H(2)O)(1-2)Ar(1) are presented along with ab initio calculations. The results indicate that the global minimum energy structure for Li(+)(C(6)H(6))(2)(H(2)O)(2) has each water forming a π-hydrogen bond with the same benzene molecule. This bonding motif is preserved in Li(+)(C(6)H(6))(3-4)(H(2)O)(2)Ar(0-1) with the additional benzene ligands binding to the available free OH groups. Argon tagging allows high-energy Li(+)(C(6)H(6))(2-4)(H(2)O)(2)Ar isomers containing water-water hydrogen bonds to be trapped and detected. The monohydrated, Li(+) containing clusters contain benzene-water interactions with varying strength as indicated by shifts in OH stretching frequencies. The IRPD spectra of M(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar are very different for lithium-bearing versus sodium-bearing cluster ions emphasizing the important role of ion size in determining the most favorable balance of competing noncovalent interactions.

  11. Rho GTPase protein Cdc42 is critical for postnatal cartilage development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagahama, Ryo; Department of Orthodontics, School of Dentistry, Showa University, Tokyo; Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp

    2016-02-19

    Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 {sup fl/fl}; Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 {sup fl/fl}) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system.more » The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages. - Highlights: • Tamoxifen-induced cartilage specific inactivated Cdc42 mutant mice were generated. • Cdc42 mutant mice were shorter limbs and body. • Severe defects were found in growth plate chondrocytes.« less

  12. A Barley ROP GTPase ACTIVATING PROTEIN Associates with Microtubules and Regulates Entry of the Barley Powdery Mildew Fungus into Leaf Epidermal Cells[C][W

    PubMed Central

    Hoefle, Caroline; Huesmann, Christina; Schultheiss, Holger; Börnke, Frederik; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2011-01-01

    Little is known about the function of host factors involved in disease susceptibility. The barley (Hordeum vulgare) ROP (RHO of plants) G-protein RACB is required for full susceptibility of the leaf epidermis to invasion by the biotrophic fungus Blumeria graminis f. sp hordei. Stable transgenic knockdown of RACB reduced the ability of barley to accommodate haustoria of B. graminis in intact epidermal leaf cells and to form hairs on the root epidermis, suggesting that RACB is a common element of root hair outgrowth and ingrowth of haustoria in leaf epidermal cells. We further identified a barley MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN (MAGAP1) interacting with RACB in yeast and in planta. Fluorescent MAGAP1 decorated cortical microtubules and was recruited by activated RACB to the cell periphery. Under fungal attack, MAGAP1-labeled microtubules built a polarized network at sites of successful defense. By contrast, microtubules loosened where the fungus succeeded in penetration. Genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis. Additionally, MAGAP1 influenced the polar organization of cortical microtubules. These results add to our understanding of how intact plant cells accommodate fungal infection structures and suggest that RACB and MAGAP1 might be antagonistic players in cytoskeleton organization for fungal entry. PMID:21685259

  13. 18 CFR 1b.6 - Preliminary investigations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Preliminary investigations. 1b.6 Section 1b.6 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.6 Preliminary investigations. The...

  14. 18 CFR 1b.6 - Preliminary investigations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Preliminary investigations. 1b.6 Section 1b.6 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.6 Preliminary investigations. The...

  15. 18 CFR 1b.6 - Preliminary investigations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Preliminary investigations. 1b.6 Section 1b.6 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.6 Preliminary investigations. The...

  16. 18 CFR 1b.6 - Preliminary investigations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Preliminary investigations. 1b.6 Section 1b.6 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.6 Preliminary investigations. The...

  17. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    PubMed

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  18. Small G protein Rac GTPases regulate the maintenance of glioblastoma stem-like cells in vitro and in vivo.

    PubMed

    Lai, Yun-Ju; Tsai, Jui-Cheng; Tseng, Ying-Ting; Wu, Meng-Shih; Liu, Wen-Shan; Lam, Hoi-Ian; Yu, Jei-Hwa; Nozell, Susan E; Benveniste, Etty N

    2017-03-14

    Glioblastoma is the most common and aggressive malignant brain tumor in adults. The existence of glioblastoma stem cells (GSCs) or stem-like cells (stemloids) may account for its invasiveness and high recurrence. Rac proteins belong to the Rho small GTPase subfamily which regulates cell movement, proliferation, and survival. To investigate whether Rac proteins can serve as therapeutic targets for glioblastoma, especially for GSCs or stemloids, we examined the potential roles of Rac1, Rac2 and Rac3 on the properties of tumorspheres derived from glioblastoma cell lines. Tumorspheres are thought to be glioblastoma stem-like cells. We showed that Rac proteins promote the STAT3 and ERK activation and enhance cell proliferation and colony formation of glioblastoma stem-like cells. Knockdown of Rac proteins reduces the expression of GSC markers, such as CD133 and Sox2. The in vivo effects of Rac proteins in glioblastoma were further studied in zebrafish and in the mouse xenotransplantation model. Knocking-down Rac proteins abolished the angiogenesis effect induced by the injected tumorspheres in zebrafish model. In the CD133+-U373-tumorsphere xenotransplanted mouse model, suppression of Rac proteins decreased the incidence of tumor formation and inhibited the tumor growth. Moreover, knockdown of Rac proteins reduced the sphere forming efficiency of cells derived from these tumors. In conclusion, not only Rac1 but also Rac2 and 3 are important for glioblastoma tumorigenesis and can serve as the potential therapeutic targets against glioblastoma and its stem-like cells.

  19. 6. SITE OVERVIEW. PART 1 OF 6 PART PANORAMA WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SITE OVERVIEW. PART 1 OF 6 PART PANORAMA WITH NOS. CA-265-7 TO CA-265-11. ARROYO SECO PARKWAY AS SEEN FROM RADIO TOWER HILL (APPROXIMATELY 34° 5' BY 118° 12'30" ON USGS LOS ANGELES QUADRANGLE). PART 1 SHOWS GRAND VIEW POINT AT RIGHT REAR (LOCATION OF CAMERA POSITION FOR PHOTOGRAPHS NOS. 265-1 TO CA-265-5) AND FIGUEROA VIADUCT OVERCROSSING; DOWNTOWN LOS ANGELES IS AT LEFT REAR. LOOKING 234° SW. - Arroyo Seco Parkway, Los Angeles to Pasadena, Los Angeles, Los Angeles County, CA

  20. Phosphorylation of Synaptic GTPase-activating Protein (synGAP) by Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) and Cyclin-dependent Kinase 5 (CDK5) Alters the Ratio of Its GAP Activity toward Ras and Rap GTPases*

    PubMed Central

    Walkup, Ward G.; Washburn, Lorraine; Sweredoski, Michael J.; Carlisle, Holly J.; Graham, Robert L.; Hess, Sonja; Kennedy, Mary B.

    2015-01-01

    synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons. PMID:25533468

  1. KIF1Bβ and Neuroblastoma: Failure to Divide and Cull.

    PubMed

    Blackstone, Craig

    2016-01-25

    Neuroblastomas are associated with KIF1Bβ mutations within tumor suppressor region 1p36. In this issue of Developmental Cell, Li et al. (2016) show that KIF1Bβ binding releases calcineurin autoinhibition, leading to dephosphorylation of the DRP1 GTPase and subsequent mitochondrial fragmentation. KIF1Bβ impairment causes mitochondrial hyperfusion, impairing developmental apoptosis and promoting tumorigenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy.

    PubMed

    Ferraresi, Alessandra; Phadngam, Suratchanee; Morani, Federica; Galetto, Alessandra; Alabiso, Oscar; Chiorino, Giovanna; Isidoro, Ciro

    2017-03-01

    Interleukin-6 (IL-6), a pro-inflammatory cytokine released by cancer-associated fibroblasts, has been linked to the invasive and metastatic behavior of ovarian cancer cells. Resveratrol is a naturally occurring polyphenol with the potential to inhibit cancer cell migration. Here we show that Resveratrol and IL-6 affect in an opposite manner the expression of RNA messengers and of microRNAs involved in cell locomotion and extracellular matrix remodeling associated with the invasive properties of ovarian cancer cells. Among the several potential candidates responsible for the anti-invasive effect promoted by Resveratrol, here we focused our attention on ARH-I (DIRAS3), that encodes a Ras homolog GTPase of 26-kDa. This protein is known to inhibit cell motility, and it has been shown to regulate autophagy by interacting with BECLIN 1. IL-6 down-regulated the expression of ARH-I and inhibited the formation of LC3-positive autophagic vacuoles, while promoting cell migration. On opposite, Resveratrol could counteract the IL-6 induction of cell migration in ovarian cancer cells through induction of autophagy in the cells at the migration front, which was paralleled by up-regulation of ARH-I and down-regulation of STAT3 expression. Spautin 1-mediated disruption of BECLIN 1-dependent autophagy abrogated the effects of Resveratrol, while promoting cell migration. The present data indicate that Resveratrol elicits its anti-tumor effect through epigenetic mechanisms and support its inclusion in the chemotherapy regimen for highly aggressive ovarian cancers. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Synthesis and analgetic activity of 1,2,3,4,5,6-hexahydro-1,6-methano-3-benzozocines.

    PubMed

    Mazzocchi, P H; Harrison, A M

    1978-02-01

    1,2,3,4,5,6-Hexahydro-1,6-methano-3-benzazocine (1) has been synthesized via a four-step sequence from benzo-norbornadiene. This compound and its N-methyl derivative are more active than codeine in the mouse hot-plate antinociceptive assay and will not suppor morphine dependence in Rhesus monkeys.

  4. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeong Sig; Ro, Seung-Hyun; Kim, Myungjin

    2015-03-30

    Sestrins are stress-inducible metabolic regulators that suppress a wide range of age- and obesity-associated pathologies, many of which are due to mTORC1 overactivation. Upon various stresses, the Sestrins inhibit mTORC1 activity through an indirect mechanism that is still unclear. GATORs are recently identified protein complexes that regulate the activity of RagB, a small GTPase essential for mTORC1 activation. GATOR1 is a GTPase activating protein (GAP) for RagB whereas GATOR2 functions as an inhibitor of GATOR1. However, how the GATORs are physiologically regulated is unknown. Here we show that Sestrin2 binds to GATOR2, and liberates GATOR1 from GATOR2-mediated inhibition. Released GATOR1more » subsequently binds to and inactivates RagB, ultimately resulting in mTORC1 suppression. Consistent with this biochemical mechanism, genetic ablation of GATOR1 nullifies the mTORC1-inhibiting effect of Sestrin2 in both cell culture and Drosophila models. Collectively, we elucidate a new signaling cascade composed of Sestrin2-GATOR2-GATOR1-RagB that mediates stress-dependent suppression of mTORC1 activity.« less

  5. 7 CFR 932.6 - Variety group 1.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Variety group 1. 932.6 Section 932.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 932.6 Variety group 1. Variety group 1 means the following varieties and...

  6. 7 CFR 932.6 - Variety group 1.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Variety group 1. 932.6 Section 932.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 932.6 Variety group 1. Variety group 1 means the following varieties and...

  7. 7 CFR 932.6 - Variety group 1.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Variety group 1. 932.6 Section 932.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Regulating Handling Definitions § 932.6 Variety group 1. Variety group 1 means the following varieties and...

  8. 7 CFR 932.6 - Variety group 1.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Variety group 1. 932.6 Section 932.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 932.6 Variety group 1. Variety group 1 means the following varieties and...

  9. 7 CFR 932.6 - Variety group 1.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Variety group 1. 932.6 Section 932.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Regulating Handling Definitions § 932.6 Variety group 1. Variety group 1 means the following varieties and...

  10. 26 CFR 1.528-6 - Expenditure test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 7 2014-04-01 2013-04-01 true Expenditure test. 1.528-6 Section 1.528-6 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Homeowners Associations § 1.528-6 Expenditure test. (a) In general. An...

  11. Organic-Acid-Assisted Fabrication of Low-Cost Li-Rich Cathode Material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O-2) for Lithium-Ion Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Taolin; Chen, Shi; Li, Li

    2014-12-24

    A novel Li-rich cathode Li[Li1/6Fe1/6Ni1/6Mn1/2]O-2 (0.4Li(2)MnO(3-)0.6LiFe(1/3)Ni(1/3)Mn(1/3)O(2)) was synthesized by a solgel method, which uses citric acid (SC), tartaric acid (ST), or adipic acid (SA) as a chelating agent. The structural, morphological, and electrochemical properties of the prepared samples were characterized by various methods. X-ray diffraction showed that single-phase materials are formed mainly with typical alpha-NaFeO2 layered structure (R3 m), and the SC sample has the lowest Li/Ni cation disorder. The morphological study indicated homogeneous primary particles in good distribution size (100 nm) with small aggregates. The Fe, Ni, and Mn valences were determined by X-ray absorption near-edge structure analysis. Inmore » coin cell tests, the initial reversible discharge capacity of an SA electrode was 289.7 mAh g(-1) at the 0.1C rate in the 1.54.8 V voltage range, while an SC electrode showed a better cycling stability with relatively high capacity retention. At the 2C rate, the SC electrode can deliver a discharge capacity of 150 mAh g(-1) after 50 cycles. Differential capacity vs voltage curves were employed to further investigate the electrochemical reactions and the structural change process during cycling. This low-cost, Fe-based compound prepared by the solgel method has the potential to be used as the high capacity cathode material for Liion batteries.« less

  12. In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin.

    PubMed

    Li, Feng; Nitteranon, Viriya; Tang, Xiaozhen; Liang, Jin; Zhang, Guodong; Parkin, Kirk L; Hu, Qiuhui

    2012-11-15

    Hexahydrocurcumin, 1-dehydro-[6]-gingerdione, 6-dehydroshogaol and 6-shogaol were evaluated for their antioxidant and anti-inflammatory activities in the present study. The relative antioxidant potencies of ginger compounds decreased in similar order of 1-dehydro-[6]-gingerdione, hexahydrocurcumin>6-shogaol>6-dehydroshogaol in both 1,1-diphenyl-2-picyrlhydrazyl (DPPH) radical-scavenging and trolox equivalent antioxidant capacity (TEAC) assays. All tested compounds could attenuate lipopolysaccharide (LPS)-elicited increase of prostaglandin E2 (PGE(2)) in murine macrophages (RAW 264.7) in a concentration-dependent manner but hexahydrocurcumin of 7μM and 6-shogaol of 7μM. The strongest inhibitory effect was observed for 6-dehydroshogaol and 6-shogaol at 14μM with the inhibition of 53.3% and 48.9%, respectively. Furthermore, both 6-dehydroshogaol and 1-dehydro-[6]-gingerdione significantly suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins in a concentration-dependent fashion. These results contribute to our theoretical understanding of the potential beneficial effects of consuming ginger as a food and/or dietary supplement. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. 6 CFR 25.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Purpose. 25.1 Section 25.1 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY REGULATIONS TO SUPPORT ANTI-TERRORISM BY FOSTERING EFFECTIVE TECHNOLOGIES § 25.1 Purpose. This part implements the Support Anti-terrorism by Fostering...

  14. 14 CFR Sec. 1-6 - Accounting entities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Accounting entities. Sec. 1-6 Section 1-6... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS General Accounting Provisions Sec. 1-6 Accounting entities. (a) Separate accounting records shall be maintained for each air...

  15. Dynamic Control of Excitatory Synapse Development by a Rac1 GEF/GAP Regulatory Complex

    PubMed Central

    Um, Kyongmi; Niu, Sanyong; Duman, Joseph G.; Cheng, Jinxuan; Tu, Yen-Kuei; Schwechter, Brandon; Liu, Feng; Hiles, Laura; Narayanan, Anjana; Ash, Ryan T.; Mulherkar, Shalaka; Alpadi, Kannan; Smirnakis, Stelios M.; Tolias, Kimberley F.

    2014-01-01

    SUMMARY The small GTPase Rac1 orchestrates actin-dependent remodeling essential for numerous cellular processes including synapse development. While precise spatiotemporal regulation of Rac1 is necessary for its function, little is known about the mechanisms that enable Rac1 activators (GEFs) and inhibitors (GAPs) to act in concert to regulate Rac1 signaling. Here we identify a regulatory complex composed of a Rac-GEF (Tiam1) and a Rac-GAP (Bcr) that cooperate to control excitatory synapse development. Disruption of Bcr function within this complex increases Rac1 activity and dendritic spine remodeling, resulting in excessive synaptic growth that is rescued by Tiam1 inhibition. Notably, EphB receptors utilize the Tiam1-Bcr complex to control synaptogenesis. Following EphB activation, Tiam1 induces Rac1-dependent spine formation, whereas Bcr prevents Rac1-mediated receptor internalization, promoting spine growth over retraction. The finding that a Rac-specific GEF/GAP complex is required to maintain optimal levels of Rac1 signaling provides an important insight into the regulation of small GTPases. PMID:24960694

  16. Neuronal Rap1 regulates energy balance, glucose homeostasis, and leptin actions

    USDA-ARS?s Scientific Manuscript database

    The Central Nervous System (CNS) contributes to obesity and metabolic disease; however, the underlying neurobiological pathways remain to be fully established. Here, we show that the small GTPase Rap1 is expressed in multiple hypothalamic nuclei that control whole-body metabolism and is activated in...

  17. Synthesis and X-ray structural investigation of (5R*,6S*)-1-benzoyl-5-methylthio-6-methoxy-1-azapenam

    NASA Astrophysics Data System (ADS)

    Krajewski, J. W.; Gluziński, P.; Grochowski, E.; Pupek, K.; Mishnyov, A.; Kemme, A.

    1992-08-01

    The compound (5R*,6S*)-1-benzoyl-5-methylthio-6-methoxy-1-azapenam ( 3) has been synthesized and its structure investigated by X-ray diffraction. The compound crystallizes in a monoclinic system, space group Cc, Z = 4, a = 12.01(1), b = 16.51(1), c = 8.048(6) Å, β = 115.87(6)°. The structure was solved by direct methods and refined by a full-matrix, least-squares procedure to give R = 0.070, Rw = 0.046, w = 1.34/(σ 2F). The expected cis configuration around the β-lactam ring was fully confirmed.

  18. TLR4 signaling shapes B cell dynamics via MyD88-dependent pathways and Rac GTPases.

    PubMed

    Barrio, Laura; Saez de Guinoa, Julia; Carrasco, Yolanda R

    2013-10-01

    B cells use a plethora of TLR to recognize pathogen-derived ligands. These innate signals have an important function in the B cell adaptive immune response and modify their trafficking and tissue location. The direct role of TLR signaling on B cell dynamics nonetheless remains almost entirely unknown. In this study, we used a state-of-the-art two-dimensional model combined with real-time microscopy to study the effect of TLR4 stimulation on mouse B cell motility in response to chemokines. We show that a minimum stimulation period is necessary for TLR4 modification of B cell behavior. TLR4 stimulation increased B cell polarization, migration, and directionality; these increases were dependent on the MyD88 signaling pathway and did not require ERK or p38 MAPK activity downstream of TLR4. In addition, TLR4 stimulation enhanced Rac GTPase activity and promoted sustained Rac activation in response to chemokines. These results increase our understanding of the regulation of B cell dynamics by innate signals and the underlying molecular mechanisms.

  19. 33 CFR 6.14-1 - Safety measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Safety measures. 6.14-1 Section 6... Vessels in Port § 6.14-1 Safety measures. The Commandant, in order to achieve the purposes of this part, may prescribe such conditions and restrictions relating to the safety of waterfront facilities and...

  20. 26 CFR 1.401(k)-6 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false Definitions. 1.401(k)-6 Section 1.401(k)-6...) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(k)-6 Definitions. Unless otherwise provided, the definitions of this section govern for purposes of section 401(k) and the...