Sample records for guaiano sesquiterpene estudo

  1. Within-canopy sesquiterpene ozonolysis in Amazonia

    NASA Astrophysics Data System (ADS)

    Jardine, K.; YañEz Serrano, A.; Arneth, A.; Abrell, L.; Jardine, A.; van Haren, J.; Artaxo, P.; Rizzo, L. V.; Ishida, F. Y.; Karl, T.; Kesselmeier, J.; Saleska, S.; Huxman, T.

    2011-10-01

    Through rapid reactions with ozone, which can initiate the formation of secondary organic aerosols, the emission of sesquiterpenes from vegetation in Amazonia may have significant impacts on tropospheric chemistry and climate. Little is known, however, about sesquiterpene emissions, transport, and chemistry within plant canopies owing to analytical difficulties stemming from very low ambient concentrations, high reactivities, and sampling losses. Here, we present ambient sesquiterpene concentration measurements obtained during the 2010 dry season within and above a primary tropical forest canopy in Amazonia. We show that by peaking at night instead of during the day, and near the ground instead of within the canopy, sesquiterpene concentrations followed a pattern different from that of monoterpenes, suggesting that unlike monoterpene emissions, which are mainly light dependent, sesquiterpene emissions are mainly temperature dependent. In addition, we observed that sesquiterpene concentrations were inversely related with ozone (with respect to time of day and vertical concentration), suggesting that ambient concentrations are highly sensitive to ozone. These conclusions are supported by experiments in a tropical rain forest mesocosm, where little atmospheric oxidation occurs and sesquiterpene and monoterpene concentrations followed similar diurnal patterns. We estimate that the daytime dry season ozone flux of -0.6 to -1.5 nmol m-2 s-1 due to in-canopy sesquiterpene reactivity could account for 7%-28% of the net ozone flux. Our study provides experimental evidence that a large fraction of total plant sesquiterpene emissions (46%-61% by mass) undergo within-canopy ozonolysis, which may benefit plants by reducing ozone uptake and its associated oxidative damage.

  2. New sesquiterpenes from Euonymus europaeus (Celastraceae).

    PubMed

    Descoins, Charles; Bazzocchi, Isabel López; Ravelo, Angel Gutiérrez

    2002-02-01

    A new sesquiterpene evoninate alkaloid (1), and two sesquiterpenes (2, 3) with a dihydro-beta-agarofuran skeleton, along with three known sesquiterpenes (4-6), were isolated from the seeds of Euonymus europaeus. Their structures were elucidated by high resolution mass analysis, and one- and two-dimensional (1D and 2D) NMR spectroscopy, including homonuclear and heteronuclear correlation [correlation spectroscopy (COSY), rotating frame Overhauser enhancement spectroscopy (ROESY), heteronuclear single quantum coherence (HSQC), and heteronuclear multiple bond correlation (HMBC)] experiments.

  3. Agarofuran sesquiterpenes from Schaefferia argentinensis.

    PubMed

    García, Manuela E; Motrich, Rubén D; Caputto, Beatriz L; Sánchez, Marianela; Palermo, Jorge A; Estévez-Braun, Ana; Ravelo, Angel G; Nicotra, Viviana E

    2013-10-01

    Sixteen dihydro-β-agarofuran sesquiterpenes were isolated from the aerial parts of Schaefferia argentinensis Speg. Their structures were determined by a combination of 1D and 2D NMR and MS techniques. The in vitro antiproliferative activity of the major sesquiterpenes was examined in T47D, MCF7, and MDA-MB231 human cancer cell lines, but was found to be marginal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Temperature dependencies of Henry’s law constants for different plant sesquiterpenes

    PubMed Central

    Copolovici, Lucian; Niinemets, Ülo

    2018-01-01

    Sesquiterpenes are plant-produced hydrocarbons with important ecological functions in plant-to-plant and plant-to-insect communication, but due to their high reactivity they can also play a significant role in atmospheric chemistry. So far, there is little information of gas/liquid phase partition coefficients (Henry’s law constants) and their temperature dependencies for sesquiterpenes, but this information is needed for quantitative simulation of the release of sesquiterpenes from plants and modeling atmospheric reactions in different phases. In this study, we estimated Henry’s law constants (Hpc) and their temperature responses for 12 key plant sesquiterpenes with varying structure (aliphatic, mono-, bi- and tricyclic sesquiterpenes). At 25 °C, Henry’s law constants varied 1.4-fold among different sesquiterpenes, and the values were within the range previously observed for monocyclic monoterpenes. Hpc of sesquiterpenes exhibited a high rate of increase, on average ca. 1.5-fold with a 10 °C increase in temperature (Q10). The values of Q10 varied 1.2-fold among different sesquiterpenes. Overall, these data demonstrate moderately high variation in Hpc values and Hpc temperature responses among different sesquiterpenes. We argue that these variations can importantly alter the emission kinetics of sesquiterpenes from plants. PMID:26291755

  5. Sesquiterpenes from the Formosan stolonifer Tubipora musica.

    PubMed

    Duh, C Y; Chen, K J; El-Gamal, A A; Dai, C F

    2001-11-01

    Eight new sesquiterpenes, tubipolides A-G (1-7) and tubiporone (8) (novel carbon skeleton), and a known sesquiterpene, spirotubipolide, have been isolated from the Formosan stolonifer Tubipora musica. The structures of compounds 1-8 were determined by 1D and 2D NMR spectral analysis.

  6. Male-specific sesquiterpenes from Phyllotreta flea beetles

    USDA-ARS?s Scientific Manuscript database

    Flea beetles in several genera are known to possess male-specific sesquiterpenes, at least some of which serve as aggregation pheromones that attract both sexes. In continuing research on the chemical ecology of Phyllotreta flea beetles, six new male-specific sesquiterpenes were identified, one fro...

  7. Hirsutane-type sesquiterpenes with uncommon modifications from three basidiomycetes.

    PubMed

    Liermann, Johannes C; Schüffler, Anja; Wollinsky, Beate; Birnbacher, Judith; Kolshorn, Heinz; Anke, Timm; Opatz, Till

    2010-05-07

    From three basidiomycetes, Xeromphalina sp., Stereum sp., and Pleurocybella porrigens, six triquinane sesquiterpenes with unprecendented modifications and a rearranged sesquiterpene related to coriolin C have been isolated. Their isolation, structure elucidation, and biological evaluation are described.

  8. Sesquiterpenes and a phenylpropanoid from Cordia trichotoma.

    PubMed

    de Menezes, Jane Eire S A; Machado, Francisca Elane A; Lemos, Telma Leda G; Silveira, Edilberto R; Braz Filho, Raimundo; Pessoa, Otília Deusdênia L

    2004-01-01

    Two new secondary metabolites, the phenylpropanoid 3-(2',4',5'-trimethoxyphenyl)propanoic acid (1) and the sesquiterpene (+)-1beta,4beta,6alpha-trihydroxyeudesmane (2) were isolated from the heartwood of Cordia trichotoma Vell., along with the known sesquiterpenes (-)-1beta,4beta,7alpha-trihydroxyeudesmane (3) and (+)-1beta,4beta,11-trihydroxyoppositane (4). Their structures were elucidated by means of spectroscopic data interpretation, mainly 1D and 2D NMR and mass spectrometry.

  9. Sesquiterpenes from the east African sandalwood Osyris tenuifolia.

    PubMed

    Kreipl, Andreas Th; König, Wilfried A

    2004-07-01

    The essential oil of the east African sandalwood Osyris tenuifolia was investigated by chromatographic and spectroscopic methods. Beside several already known sesquiterpenes four new compounds could be isolated by preparative gas chromatography and their structures investigated by mass spectroscopy and NMR techniques. Two of the new compounds--tenuifolene (17) and ar-tenuifolene (15)--show a new sesquiterpene backbone. 2,(7Z,10Z)-Bisabolatrien-13-ol (23) and the cyclic ether lanceoloxide (21) belong to the bisabolanes.

  10. Sesquiterpene lactones from Centaurea tweediei.

    PubMed

    Fortuna, A M.; de Riscala, E C.; Catalan, C A.N.; Gedris, T E.; Herz, W

    2001-10-01

    Aerial parts of Centaurea tweediei from Argentina afforded as the main constituent the sesquiterpene lactone onopordopicrin and minor amounts of a new heliangolide, a new guaianolide, a new eudesmanolide, a new eudesmane acid and the lignans arctigenin and matairesinol.

  11. Secondary organic aerosol from sesquiterpene and monoterpene emissions in the United States.

    PubMed

    Sakulyanontvittaya, Tanarit; Guenther, Alex; Helmig, Detlev; Milford, Jana; Wiedinmyer, Christine

    2008-12-01

    Emissions of volatile organic compounds (VOC) from vegetation are believed to be a major source of secondary organic aerosol (SOA), which in turn comprises a large fraction of fine particulate matter in many areas. Sesquiterpenes are a class of biogenic VOC with high chemical reactivity and SOA yields. Sesquiterpenes have only recently been quantified in emissions from a wide variety of plants. In this study, a new sesquiterpene emission inventory is used to provide input to the Models-3 Community Multiscale Air Quality (CMAQ) model. CMAQ is used to estimate the contribution of sesquiterpenes and monoterpenes to SOA concentrations over the contiguous United States. The gas-particle partitioning module of CMAQ was modified to include condensable products of sesquiterpene oxidation and to update values of the enthalpy of vaporization. The resulting model predicts July monthly average surface concentrations of total SOA in the eastern U.S. ranging from about 0.2-0.8 microg m(-3). This is roughly double the amount of SOA produced in this region when sesquiterpenes are not included. Even with sesquiterpenes included, however, the model significantly underpredicts surface concentrations of particle-phase organic matter compared to observed values. Treating all SOA as capable of undergoing polymerization increases predicted monthly average surface concentrations in July to 0.4-1.2 microg m(-3), in closer agreement with observations. Using the original enthalpy of vaporization value in CMAQ in place of the values estimated from the recent literature results in predicted SOA concentrations of about 0.3-1.3 microg m(-3).

  12. New sources and antifungal activity of sesquiterpene lactones.

    PubMed

    Barrero, A F; Oltra, J E; Alvarez, M; Raslan, D S; Saúde, D A; Akssira, M

    2000-02-01

    In the search for new sources of sesquiterpene lactones, six Centaurea species have been analyzed. The activity against the fungus Cunninghamella echinulata of (+)-cnicin (1) and (+)-salonitenolide (2), isolated from the Centaurea plants, as well as that of (+)-costunolide (3), (-)-dehydrocostuslactone (4), (-)-lychnopholide (5) and (-)-eremantholide C (6), has been evaluated. Compounds 3 and 4 showed noticeable EC50 values, whilst more polar lactones were inactive. These results suggest that a relatively low polarity is one of the molecular requirements for the antifungal activity of sesquiterpene lactones.

  13. Sesquiterpene lactone stereochemistry influences herbivore resistance and plant fitness in the field.

    PubMed

    Ahern, Jeffrey R; Whitney, Kenneth D

    2014-03-01

    Stereochemical variation is widely known to influence the bioactivity of compounds in the context of pharmacology and pesticide science, but our understanding of its importance in mediating plant-herbivore interactions is limited, particularly in field settings. Similarly, sesquiterpene lactones are a broadly distributed class of putative defensive compounds, but little is known about their activities in the field. Natural variation in sesquiterpene lactones of the common cocklebur, Xanthium strumarium (Asteraceae), was used in conjunction with a series of common garden experiments to examine relationships between stereochemical variation, herbivore damage and plant fitness. The stereochemistry of sesquiterpene lactone ring junctions helped to explain variation in plant herbivore resistance. Plants producing cis-fused sesquiterpene lactones experienced significantly higher damage than plants producing trans-fused sesquiterpene lactones. Experiments manipulating herbivore damage above and below ambient levels found that herbivore damage was negatively correlated with plant fitness. This pattern translated into significant fitness differences between chemotypes under ambient levels of herbivore attack, but not when attack was experimentally reduced via pesticide. To our knowledge, this work represents only the second study to examine sesquiterpene lactones as defensive compounds in the field, the first to document herbivore-mediated natural selection on sesquiterpene lactone variation and the first to investigate the ecological significance of the stereochemistry of the lactone ring junction. The results indicate that subtle differences in stereochemistry may be a major determinant of the protective role of secondary metabolites and thus of plant fitness. As stereochemical variation is widespread in many groups of secondary metabolites, these findings suggest the possibility of dynamic evolutionary histories within the Asteraceae and other plant families showing

  14. Antimalarial activity of sesquiterpene lactones from Vernonia cinerea.

    PubMed

    Chea, Aun; Hout, Sotheara; Long, Christophe; Marcourt, Laurence; Faure, Robert; Azas, Nadine; Elias, Riad

    2006-10-01

    Two new sesquiterpene lactones, vernolides C and D as well as six known ones were isolated from the dichloromethane fraction of an aqueous extract from Vernonia cinerea. Their structures were elucidated by spectroscopic methods. Among the known sesquiterpene lactones, three of them were described in this plant for the first time. In vitro antiplasmodial evaluation showed that the three major compounds 1, 7 and 8 were active against chloroquine resistant Plasmodium falciparum strain (W2) with IC(50) 3.9, 3.7 and 3.5 microM, respectively.

  15. Sesquiterpene lactone stereochemistry influences herbivore resistance and plant fitness in the field

    PubMed Central

    Ahern, Jeffrey R.; Whitney, Kenneth D.

    2014-01-01

    Background and Aims Stereochemical variation is widely known to influence the bioactivity of compounds in the context of pharmacology and pesticide science, but our understanding of its importance in mediating plant–herbivore interactions is limited, particularly in field settings. Similarly, sesquiterpene lactones are a broadly distributed class of putative defensive compounds, but little is known about their activities in the field. Methods Natural variation in sesquiterpene lactones of the common cocklebur, Xanthium strumarium (Asteraceae), was used in conjunction with a series of common garden experiments to examine relationships between stereochemical variation, herbivore damage and plant fitness. Key Results The stereochemistry of sesquiterpene lactone ring junctions helped to explain variation in plant herbivore resistance. Plants producing cis-fused sesquiterpene lactones experienced significantly higher damage than plants producing trans-fused sesquiterpene lactones. Experiments manipulating herbivore damage above and below ambient levels found that herbivore damage was negatively correlated with plant fitness. This pattern translated into significant fitness differences between chemotypes under ambient levels of herbivore attack, but not when attack was experimentally reduced via pesticide. Conclusions To our knowledge, this work represents only the second study to examine sesquiterpene lactones as defensive compounds in the field, the first to document herbivore-mediated natural selection on sesquiterpene lactone variation and the first to investigate the ecological significance of the stereochemistry of the lactone ring junction. The results indicate that subtle differences in stereochemistry may be a major determinant of the protective role of secondary metabolites and thus of plant fitness. As stereochemical variation is widespread in many groups of secondary metabolites, these findings suggest the possibility of dynamic evolutionary histories

  16. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album

    PubMed Central

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P.; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S. Shiva; Thulasiram, Hirekodathakallu V.

    2015-01-01

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems. PMID:25976282

  17. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album.

    PubMed

    Srivastava, Prabhakar Lal; Daramwar, Pankaj P; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S Shiva; Thulasiram, Hirekodathakallu V

    2015-05-15

    Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems.

  18. A new sesquiterpene and other constituents from Saussurea lappa root.

    PubMed

    Duan, Jin-Ao; Hou, Pengfei; Tang, Yuping; Liu, Pei; Su, Shulan; Liu, Hanqing

    2010-10-01

    Five sesquiterpenes, dehydrocostus lactone (1), santamarine (5), beta-cyclocostunolide (6), 4alpha-hydroxy-4beta-methyldihydrocostol (7) and 10alpha-hydroxyl-artemisinic acid (9), along with four other compounds, beta-sitosterol (2), daucosterol (3), 5-hydroxymethyl-furaldehyde (4), and trans-syingin (8), were isolated and identified from the roots of Saussurea lappa (Compositae). Based on previous reports and our study, sesquiterpene derivatives are common and characteristic constituents of the genus Saussurea. Among the nine compounds obtained, 9 is a new sesquiterpene. It is an artemisinic acid derivative, whose structural skeleton has not been reported for Saussurea species before, but artemisinic acid is a common compound in another Compositae species, Artemisia annua. Dehydrocostus lactone (1) is present in high-content and is a possible bioprecursor of 10alpha-hydroxyartemisinic acid (9).

  19. Sesquiterpene lactones from Taraxacum obovatum.

    PubMed

    Michalska, Klaudia; Kisiel, Wanda

    2003-02-01

    Two new guaianolide glucosides, deacetylmatricarin 8-O-beta-glucopyranoside and 11beta-hydroxyleukodin 11-O-beta-glucopyranoside, were isolated from roots of Taraxacum obovatum, along with four known sesquiterpene lactones, deacetylmatricarin, sonchuside A, taraxinic acid beta-glucopyranosyl ester and its 11beta,13-dihydro derivative. Their structures were established by spectral methods.

  20. Bisabolane-type sesquiterpenes from the aerial parts of Lippia dulcis.

    PubMed

    Ono, Masateru; Tsuru, Tsuyoshi; Abe, Hiroaki; Eto, Masashi; Okawa, Masafumi; Abe, Fumiko; Kinjo, Junei; Ikeda, Tsuyoshi; Nohara, Toshihiro

    2006-10-01

    Six new bisabolane-type sesquiterpenes, peroxylippidulcines A-C (3-5), peroxyepilippidulcine B (6), and epilippidulcines B (7) and C (8), have been isolated from the aerial parts of Lippia dulcis, along with two known bisabolane-type sesquiterpenes, seven known flavonoids, and a known triterpenoid. The structures of 3-8 were characterized on the basis of NMR, MS, specific rotation, and X-ray crystallographic analysis data and chemical evidence.

  1. Isogermacrene A, a proposed intermediate in sesquiterpene biosynthesis.

    PubMed

    Hackl, Thomas; König, Wilfried A; Muhle, Hermann

    2004-08-01

    In the essential oil of the liverwort Saccogyna viticulosa, collected on the island of Madeira, the new sesquiterpene hydrocarbons isogermacrene A (5) and its Cope rearrangement product iso-beta-elemene (6) were identified. 5 is proposed to act as the biogenetic precursor of several new sesquiterpenes identified in the volatiles of S. viticulosa. These include iso-alpha-humulene, alpha-gorgonene, gorgona-1,4(15), 11-triene and gorgon- 11-en-4-ol. In addition, the Cope product of zierene, isozierene, allo-aromadendra-4(15),10(14)-diene, aromadendra-4(15),10(14)-dien-1-ol and a prenylguaiane diterpene alcohol, named viticulol, were identified as new natural products.

  2. Structural and Sensory Characterization of Novel Sesquiterpene Lactones from Iceberg Lettuce.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2016-01-13

    Lactuca sativa var. capitate (iceberg lettuce) is a delicious vegetable and popular for its mild taste. Nevertheless, iceberg lettuce is a source of bitter substances, such as the sesquiterpene lactones. Chemical investigations on the n-butanol extract led to the isolation of three novel sesquiterpene lactones. All compounds were isolated by multilayer countercurrent chromatography followed by preparative high-performance liquid chromatography. The structures were verified by means of spectroscopic methods, including NMR and mass spectrometry techniques. For the first time 11ß,13-dihydrolactucin-8-O-sulfate (jaquinelin-8-O-sulfate) was structurally elucidated and identified in plants. In addition, the sesquiterpene lactones cichorioside B and 8-deacetylmatricarin-8-O-sulfate were identified as novel ingredients of iceberg lettuce. Further flowering plants in the daisy family Asteraceae were examined for the above three compounds. At least one of the compounds was identified in nine plants. The comparison between the lettuce butt end and the leaves of five types of the Cichorieae tribe showed an accumulation of the compounds in the butt end. Further experiments addressed the impact of sesquiterpene lactones on color formation and bitter taste.

  3. Variability of sesquiterpene lactones in Neurolaena lobata of different origin.

    PubMed

    Passreiter, C M; Aldana, B E

    1998-06-01

    Leaves of Neurolaena lobata (L.) R. Br. originating from Guatemala, were analyzed using HPLC for their qualitative and quantitative sesquiterpene lactone contents. Significant differences in the individual amounts of neurolenins and furanoheliangolides were found between four natural populations. When plants were cultivated on proving fields at two different localities in Guatemala, their sesquiterpene lactone patterns matched the natural population, but differed quantitatively. The meaning of these differences for the use of N. lobata in traditional medicine and its cultivation is discussed.

  4. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis

    PubMed Central

    Miron, Anca; Corciova, Andreia

    2015-01-01

    Sesquiterpene lactones are a large group of natural compounds, found primarily in plants of Asteraceae family, with over 5000 structures reported to date. Within this family, genus Artemisia is very well represented, having approximately 500 species characterized by the presence of eudesmanolides and guaianolides, especially highly oxygenated ones, and rarely of germacranolides. Sesquiterpene lactones exhibit a wide range of biological activities, such as antitumor, anti-inflammatory, analgesic, antiulcer, antibacterial, antifungal, antiviral, antiparasitic, and insect deterrent. Many of the biological activities are attributed to the α-methylene-γ-lactone group in their molecule which reacts through a Michael-addition with free sulfhydryl or amino groups in proteins and alkylates them. Due to the fact that most sesquiterpene lactones are thermolabile, less volatile compounds, they present no specific chromophores in the molecule and are sensitive to acidic and basic mediums, and their identification and quantification represent a difficult task for the analyst. Another problematic aspect is represented by the complexity of vegetal samples, which may contain compounds that can interfere with the analysis. Therefore, this paper proposes an overview of the methods used for the identification and quantification of sesquiterpene lactones found in Artemisia genus, as well as the optimal conditions for their extraction and separation. PMID:26495156

  5. Quantitative co-occurrence of sesquiterpenes; a tool for elucidating their biosynthesis in Indian sandalwood, Santalum album.

    PubMed

    Jones, Christopher G; Ghisalberti, Emilio L; Plummer, Julie A; Barbour, Elizabeth L

    2006-11-01

    A chemotaxonomic approach was used to investigate biosynthetic relationships between heartwood sesquiterpenes in Indian sandalwood, Santalum album L. Strong, linear relationships exist between four structural classes of sesquiterpenes; alpha- and beta-santalenes and bergamotene; gamma- and beta-curcumene; beta-bisabolene and alpha-bisabolol and four unidentified sesquiterpenes. All samples within the heartwood yielded the same co-occurrence patterns, however wood from young trees tended to be more variable. It is proposed that the biosynthesis of each structural class of sesquiterpene in sandalwood oil is linked through common carbocation intermediates. Lack of co-occurrence between each structural class suggests that four separate cyclase enzymes may be operative. The biosynthesis of sandalwood oil sesquiterpenes is discussed with respect to these co-occurrence patterns. Extractable oil yield was correlated to heartwood content of each wood core and the oil composition did not vary significantly throughout the tree.

  6. Sesquiterpene lactones from neurolaena oaxacana

    PubMed

    Passreiter; Sandoval-Ramirez; Wright

    1999-08-01

    Twelve sesquiterpene lactones, two new (1 and 2) and 10 known neurolenin-type germacranolides and furanoheliangolides (3-12) were isolated from Neurolaena oaxacana, and their structures were elucidated by NMR and GC-MS analysis. The chemotaxonomic importance of these findings is discussed. As N. lobata is used against dysenteries, neurolenin B (4) and a mixture of the neurolenins C (5) and D (6) were tested against Entamoeba histolytica and Giardia intestinalis.

  7. Biogenic trypanocidal sesquiterpenes: lead compounds to design future trypanocidal drugs - a mini review

    PubMed Central

    2013-01-01

    Human trypanosomiasis is a parasitic disease among poor people in Africa and Latin America. Therapy against African and American trypanosomiasis is based on a few drugs that often cause severe side-effects. Therefore, it is essential to develop drug discovery especially from natural origins. Sesquiterpenes, a diverse group of natural terpenoids, are found in essential oils of many plants and show a broad range of bioactivities. They act through multiple mechanisms in the chemotherapy of trypanosomiasis. Some of these active compounds contain hydroperoxides, aldehydes, alcohols, α,β-unsaturated γ-lactone and even halogenated moieties. Among the compounds reported, sesquiterpene lactones showed a potent anti-trypanosoma effect comparable with commercial trypanocidal drugs. Trypanocidal activity of sesquiterpene lactones mostly depends on the reaction between γ-lactone moieties and nucleophile groups of trypanithione, which is essential for Trypanosoma defense against the oxidative stresses. Elatol is a sesquiterpenoid from marine algae, with a different structure and considerable trypanocidal activity which could be an interesting candidate for further antiprotozoal investigations. To develop novel drugs with higher efficacy and lower toxicity from natural products, this review summarizes the more recent information on trypanocidal activities of various sesquiterpenes. PMID:23676125

  8. Sesquiterpenes from the essential oil of Curcuma wenyujin and their inhibitory effects on nitric oxide production.

    PubMed

    Xia, Guiyang; Zhou, Li; Ma, Jianghao; Wang, Ying; Ding, Liqin; Zhao, Feng; Chen, Lixia; Qiu, Feng

    2015-06-01

    Three new sesquiterpenes including a new elemane-type sesquiterpene, 5βH-elem-1,3,7,8-tetraen-8,12-olide (1), and two new carabrane-type sesquiterpenes, 7α,11-epoxy-6α-methoxy-carabrane-4,8-dione (2) and 8,11-epidioxy-8-hydroxy-4-oxo-6-carabren (3), together with eight known sesquiterpenes (4-11) were isolated from Curcuma wenyujin Y. H. Chen et C. Ling. Their structures were elucidated based on extensive spectroscopic analyses. A possible biogenetic scheme for the related compounds was postulated. All of the isolated compounds were tested for inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages. Meanwhile, preliminary structure-activity relationships for these compounds are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus

    PubMed Central

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-01-01

    SUMMARY Fungi are a rich source of bioactive secondary metabolites and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared to the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as a α-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes δ-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homolog, but instead was found to catalyze highly specific the synthesis of α-cuprenene. Co-expression of cop6 and the two monooxygenase genes next to it yields oxygenated α-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  10. Antibacterial and cytotoxic activities of the sesquiterpene lactones cnicin and onopordopicrin.

    PubMed

    Bach, Sandra M; Fortuna, Mario A; Attarian, Rodgoun; de Trimarco, Juliana T; Catalán, César A N; Av-Gay, Yossef; Bach, Horacio

    2011-02-01

    The antimicrobial and cytotoxic activities of chloroform extracts from the weeds Centaurea tweediei and C. diffusa, and the main sesquiterpene lactones isolated from these species, onopordopicrin and cnicin, respectively, were assayed. Results show that the chloroform extracts from both Centaurea species possess antibacterial activities against a panel of Gram-positive and Gram-negative bacteria. Remarkable antibacterial activity against methicillin-resistant Staphylococcus aureus was also measured. Both the extracts and the purified sesquiterpene lactones show high cytotoxicity against human-derived macrophages. Despite this cytotoxicity, C. diffusa chloroform extract and cnicin are attractive candidates for evaluation as antibiotics in topical preparations against skin-associated pathogens.

  11. A dihydro-β-agarofuran sesquiterpene from Maytenus boaria.

    PubMed

    Paz, Cristian; von Dossow, Daniela; Tiznado, Victor; Suarez, Sebastián; Cukiernik, Fabio D; Baggio, Ricardo

    2017-06-01

    The natural compound (1S,4S,5S,6R,7R,8R,9R,10S)-6-acetoxy-4,9,10-trihydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepin-5-yl furan-3-carboxylate, C 22 H 30 O 9 , (I), is a β-agarofuran sesquiterpene isolated from the seeds of Maytenus boaria as part of a study of the secondary metabolites from Chilean flora. The compound presents a central structure formed by a decalin system esterified with acetate at site 1 and furan-3-carboxylate at site 9. The chirality of the skeleton can be described as 1S,4S,5S,6R,7R,8R,9R,10S, which is consistent with that suggested by NMR studies. Unlike previously reported structures of sesquiterpenes containing a pure dihydro-β-agarofuran skeleton, (I) exhibits a three-dimensional hydrogen-bonded network.

  12. Anti-inflammatory sesquiterpene lactones from Onopordum illyricum L. (Asteraceae), an Italian medicinal plant.

    PubMed

    Formisano, Carmen; Sanna, Cinzia; Ballero, Mauro; Chianese, Giuseppina; Sirignano, Carmina; Rigano, Daniela; Millán, Estrella; Muñoz, Eduardo; Taglialatela-Scafati, Orazio

    2017-01-01

    Onopordum illyricum L. is a medicinal plant used in the Mediterranean area as antipyretic for the treatment of respiratory and urinary inflammations and to treat skin ulcers. Repeated chromatographic purification of O. illyricum aerial parts led to the isolation of six known sesquiterpenes, which were evaluated for the inhibition of the pro-inflammatory transcription factors NF-κB and STAT3 and for the activation of the transcription factor Nrf2, which regulates the cellular antioxidant response. Structure-activity relationships were interpreted by the NMR-based cysteamine assay. The sesquiterpene lactone vernomelitensin significantly inhibited NF-κB and STAT3, showing also a significant Nrf2 activation. Accordingly, the cysteamine assay selected vernomelitensin as the most reactive of the isolated sesquiterpenes, identifying the α,β-unsaturated aldehyde moiety as responsible for the higher (re)activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Sesquiterpene lactones of Vernonia - influence of glaucolide-A on the growth rate and survival of Lepidopterous larvae.

    PubMed

    Jones, Samuel B; Burnett, William C; Coile, Nancy C; Mabry, Tom J; Betkouski, M F

    1979-01-01

    Sesquiterpene lactone glaucolide-A from Vernonia, incorporated in the rearing diets of five species of Lepidoptera, significantly reduced the rate of growth of larvae of the southern armyworm, Spodoptera eridania; fall armyworm, S. frugiperda; and yellowstriped armyworm, S. ornithogalli. Quantitative feeding tests demonstrated that decreased feeding levels and reduced growth resulted from ingestion of a sesquiterpene lactone. Ingestion of glaucolide-A increased the number of days to pupation in four of the species. In the southern armyworm, it significantly reduced pupal weight. Glaucolide-A decidedly reduced percentage of survival of southern and fall armyworms. Yellow woollybear, Diacrisia virginica, and cabbage looper, Trichoplusia ni, larvae were essentially uneffected by the ingestion of the sesquiterpene lactone. Sesquiterpene lactones adversely affect growth rate and survival of certain insects that feed upon plants containing them. They apparently function as defensive products, screening out a portion of the potential herbivores.

  14. Four new bisabolane-type sesquiterpenes from Ligularia lankongensis.

    PubMed

    Hirota, Hiroshi; Horiguchi, Yurie; Kawaii, Satoru; Kuroda, Chiaki; Hanai, Ryo; Gong, Xun

    2012-04-01

    The chemical constituents of the roots of two Ligularia lankongensis samples collected in Yunnan and Sichuan Provinces, China, were investigated, together with the DNA sequence of the atpB-rbcL and ITS regions. Four new highly oxygenated bisabolane-type sesquiterpenes (1 - 4) were obtained. Intraspecific diversity in the DNA sequence was found to be limited.

  15. Mode of Action of the Sesquiterpene Lactones Psilostachyin and Psilostachyin C on Trypanosoma cruzi

    PubMed Central

    Papademetrio, Daniela; Batlle, Alcira; Martino, Virginia S.; Frank, Fernanda M.; Lombardo, María E.

    2016-01-01

    Trypanosoma cruzi is the causative agent of Chagas’ disease, which is a major endemic disease in Latin America and is recognized by the WHO as one of the 17 neglected tropical diseases in the world. Psilostachyin and psilostachyin C, two sesquiterpene lactones isolated from Ambrosia spp., have been demonstrated to have trypanocidal activity. Considering both the potential therapeutic targets present in the parasite, and the several mechanisms of action proposed for sesquiterpene lactones, the aim of this work was to characterize the mode of action of psilostachyin and psilostachyin C on Trypanosoma cruzi and to identify the possible targets for these molecules. Psilostachyin and psilostachyin C were isolated from Ambrosia tenuifolia and Ambrosia scabra, respectively. Interaction of sesquiterpene lactones with hemin, the induction of oxidative stress, the inhibition of cruzipain and trypanothione reductase and their ability to inhibit sterol biosynthesis were evaluated. The induction of cell death by apoptosis was also evaluated by analyzing phosphatidylserine exposure detected using annexin-V/propidium iodide, decreased mitochondrial membrane potential, assessed with Rhodamine 123 and nuclear DNA fragmentation evaluated by the TUNEL assay. Both STLs were capable of interacting with hemin. Psilostachyin increased about 5 times the generation of reactive oxygen species in Trypanosoma cruzi after a 4h treatment, unlike psilostachyin C which induced an increase in reactive oxygen species levels of only 1.5 times. Only psilostachyin C was able to inhibit the biosynthesis of ergosterol, causing an accumulation of squalene. Both sesquiterpene lactones induced parasite death by apoptosis. Upon evaluating the combination of both compounds, and additive trypanocidal effect was observed. Despite their structural similarity, both sesquiterpene lactones exerted their anti-T. cruzi activity through interaction with different targets. Psilostachyin accomplished its

  16. Identification and Functional Characterization of Sesquiterpene Synthases from Xanthium strumarium.

    PubMed

    Li, Yuanjun; Chen, Fangfang; Li, Zhenqiu; Li, Changfu; Zhang, Yansheng

    2016-03-01

    Xanthium strumarium synthesizes various pharmacologically active sesquiterpenes. The molecular characterization of sesquiterpene biosynthesis in X. strumarium has not been reported so far. In this study, the cDNAs coding for three sesquiterpene synthases (designated as XsTPS1, XsTPS2 and XsTPS3) were isolated using the X. strumarium transcriptome that we recently constructed. XsTPS1, XsTPS2 and XsTPS3 were revealed to have primary activities forming germacrene D, guaia-4,6-diene and germacrene A, respectively, by either ectopic expression in yeast cells or purified recombinant protein-based in vitro assays. Quantitative real-time PCRs and metabolite analysis for the different plant parts showed that the transcript abundance of XsTPS1-XsTPS3 is consistent with the accumulation pattern of their enzymatic products, supporting their biochemical functions in vivo. In particular, we discovered that none of the XsTPS2 product, guaia-4,6-diene, can be detected in one of the X. strumarium cultivars used in this study (it was named the Hubei-cultivar), in which a natural deletion of two A bases in the XsTPS2 cDNA disrupts its activity, which further confirmed the proposed biochemical role of XsTPS2 in X. strumarium in vivo. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Four new spiroaxane sesquiterpenes and one new rosenonolactone derivative from cultures of Basidiomycete Trametes versicolor.

    PubMed

    Wang, Su-Rui; Zhang, Ling; Chen, He-Ping; Li, Zheng-Hui; Dong, Ze-Jun; Wei, Kun; Liu, Ji-Kai

    2015-09-01

    Four new spiroaxane sesquiterpenes, tramspiroins A-D (1-4), one new rosenonolactone 15,16-acetonide (5), and the known drimane sesquiterpenes isodrimenediol (6) and funatrol D (7) have been isolated from the cultures of Basidiomycete Trametes versicolor. The structures of new compounds were elucidated by means of spectroscopic methods. Compounds 1-7 were investigated for their cytotoxicities against five human cancer cell lines. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L.

    PubMed

    Nell, Monika; Wawrosch, Christoph; Steinkellner, Siegrid; Vierheilig, Horst; Kopp, Brigitte; Lössl, Andreas; Franz, Chlodwig; Novak, Johannes; Zitterl-Eglseer, Karin

    2010-03-01

    In some medicinal plants a specific plant-fungus association, known as arbuscular mycorrhizal (AM) symbiosis, increases the levels of secondary plant metabolites and/or plant growth. In this study, the effects of three different AM treatments on biomass and sesquiterpenic acid concentrations in two IN VITRO propagated genotypes of valerian ( VALERIANA OFFICINALIS L., Valerianaceae) were investigated. Valerenic, acetoxyvalerenic and hydroxyvalerenic acid levels were analyzed in the rhizome and in two root fractions. Two of the AM treatments significantly increased the levels of sesquiterpenic acids in the underground parts of valerian. These treatments, however, influenced the biomass of rhizomes and roots negatively. Therefore this observed increase was not accompanied by an increase in yield of sesquiterpenic acids per plant. Furthermore, one of the two genotypes had remarkably high hydroxyvalerenic acid contents and can be regarded as a hydroxyvalerenic acid chemotype. Copyright Georg Thieme Verlag KG Stuttgart New York.

  19. A non-synonymous nucleotide substitution can account for one evolutionary route to sesquiterpene synthase activity in the TPS-b subgroup.

    PubMed

    Green, Sol; Baker, Edward N; Laing, William

    2011-06-23

    Plant sesquiterpene and hemiterpene synthases in the monoterpene synthase dominated TPS-b subgroup are thought to have evolved independently from a monoterpene synthase ancestor. A TPS-b sesquiterpene synthase from apple (MdAFS1), which predominantly produces α-farnesene, can also synthesize the monoterpene (E)-β-ocimene. The dual activity offered a functional link to an ancestral MdAFS1 enzyme and a rational basis for investigation of the evolution of TPS-b sesquiterpene enzymes. Protein modelling and mutagenesis analysis of the MdAFS1 active site identified a non-synonymous nucleotide substitution that could account for the requisite shift in substrate specificity necessary for the emergence of its sesquiterpene activity during the evolution of the TPS-b enzymes. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Antifungal activities of the essential oil and its fractions rich in sesquiterpenes from leaves of Casearia sylvestris Sw.

    PubMed

    Pereira, Flaviane G; Marquete, Ronaldo; Domingos, Levy T; Rocha, Marco E N; Ferreira-Pereira, Antonio; Mansur, Elisabeth; Moreira, Davyson L

    2017-01-01

    Casearia genus (Salicaceae) is found in sub-tropical and tropical regions of the world and comprises about 160-200 species. It is a medicinal plant used in South America, also known as "guaçatonga", "erva-de-tiú", "cafezinho-do-mato". In Brazil, there are about 48 species and 12 are registered in the State of Rio de Janeiro, including Casearia sylvestris Sw. There are many studies related to the chemical profile and cytotoxic activities of extracts from these plants, although few studies about the antifungal potential of the essential oil have been reported. In this work, we have studied the antifungal properties of the essential oil of C. sylvestris leaves, as well as of their fractions, against four yeasts (Saccharomyces cerevisae, Candida albicans, C. glabrata and C. krusei) for the first time. The chemical analysis of the essential oil revealed a very diversified (n = 21 compounds) volatile fraction composed mainly of non-oxygenated sesquiterpenes (72.1%). These sesquiterpenes included α-humulene (17.8%) and α-copaene (8.5%) and the oxygenated sesquiterpene spathulenol (11.8%) were also identified. Monoterpenes were not identified. The fractions are mainly composed of oxygenated sesquiterpenes, and the most active fraction is rich in the sesquiterpene 14-hydroxy -9-epi-β-caryophyllene. This fraction was the most effective in inhibiting the growth of three yeast strains.

  1. Nitroalkenes and sesquiterpene hydrocarbons from the frontal gland of three prorhinotermes termite species.

    PubMed

    Piskorski, Rafal; Hanus, Robert; Vasícková, Sona; Cvacka, Josef; Sobotník, Jan; Svatos, Ales; Valterová, Irena

    2007-09-01

    Frontal gland contents of soldiers of three Prorhinotermes species, Prorhinotermes canalifrons, Prorhinotermes inopinatus, and Prorhinotermes simplex, consisted of two groups of compounds: nitroalkenes and sesquiterpene hydrocarbons. Analysis by gas chromatography-mass spectrometry revealed (E)-1-nitropentadec-1-ene as the major component of the glands with mean values of 152, 207, and 293 microg/individual for P. canalifrons, P. inopinatus, and P. simplex, respectively. Four other 1-nitroalkenes (C13, C14, C16, and C17), and two nitrodienes (C15 and C17) were also detected in the three species. The C17:1 nitroalkene was identified as (E)-1-nitroheptadec-1-ene. The sesquiterpene composition of the gland was species-specific: P. simplex contained (3Z,6E)-alpha-farnesene (mean of 39 microg/individual), while P. canalifrons and P. inopinatus contained the same compound (means of 0.5 and 1.5 microg/individual, respectively) as well as the (3E,6E) isomer (means of 1.8 and 0.7 microg/individual, respectively). Two other sesquiterpenes, trans-beta-bergamotene and (Z)-gamma-bisabolene, were also found in low quantities in the frontal gland of P. canalifrons.

  2. Sesquiterpene emissions from Alternaria alternata and Fusarium oxysporum: Effects of age, nutrient availability, and co-cultivation

    PubMed Central

    Weikl, Fabian; Ghirardo, Andrea; Schnitzler, Jörg-Peter; Pritsch, Karin

    2016-01-01

    Alternaria alternata is one of the most studied fungi to date because of its impact on human life – from plant pathogenicity to allergenicity. However, its sesquiterpene emissions have not been systematically explored. Alternaria regularly co-occurs with Fusarium fungi, which are common plant pathogens, on withering plants. We analyzed the diversity and determined the absolute quantities of volatile organic compounds (VOCs) in the headspace above mycelial cultures of A. alternata and Fusarium oxysporum under different conditions (nutrient rich and poor, single cultures and co-cultivation) and at different mycelial ages. Using stir bar sorptive extraction and gas chromatography–mass spectrometry, we observed A. alternata to strongly emit sesquiterpenes, particularly during the early growth stages, while emissions from F. oxysporum consistently remained comparatively low. The emission profile characterizing A. alternata comprised over 20 sesquiterpenes with few effects from nutrient quality and age on the overall emission profile. Co-cultivation with F. oxysporum resulted in reduced amounts of VOCs emitted from A. alternata although its profile remained similar. Both fungi showed distinct emission profiles, rendering them suitable biomarkers for growth-detection of their phylotype in ambient air. The study highlights the importance of thorough and quantitative evaluations of fungal emissions of volatile infochemicals such as sesquiterpenes. PMID:26915756

  3. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.

    PubMed

    Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago

    2004-10-01

    Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential

  4. Isolation of Persicaria minor sesquiterpene synthase promoter and its deletions for transgenic Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Omar, Aimi Farehah; Ismail, Ismanizan

    2016-11-01

    Sesquiterpene synthase (SS) catalyzes the formation of sesquiterpenes from farnesyl diphosphate (FDP) via carbocation intermediates. In this study, the promoter region of sesquiterpene synthase was isolated from Persicaria minor to identify possible cis-acting elements in the promoter. The full-length PmSS promoter of P. minor is 1824-bp sequences. The sequence was analyzed and several putative cis-acting regulatory elements were identified. Three cis-acting regulatory elements were selected for deletion analysis which are cis-acting element involved in wound responsiveness (WUN), cis - acting element involved in defense and stress responsiveness (TC) and cis-acting element involved in ABA responsiveness (ABRE). Series of deletions were conducted to assess the promoter activity producing three truncated fragments promoter; Prom 2 1606-bp, Prom 3 1144- bp, and Prom 4 921-bp. The full-length promoter and its deletion series were cloned into the pBGWFS7 vector which contain β-glucuronidase (GUS) gene and green fluorescent protein (GFP) as the reporter gene. All constructs were successfully transformed into Arabidopsis thaliana based on PCR of positive BASTA resistance plants.

  5. Impact of sesquiterpenes from Inula racemosa (Asteraceae) on growth, development and nutrition of Spodoptera litura (Lepidoptera: Noctuidae).

    PubMed

    Kaur, Mandeep; Kumar, Rakesh; Upendrabhai, Deep Patel; Singh, Inder Pal; Kaur, Sanehdeep

    2017-05-01

    The use of botanical pesticides for protecting crops from insect pests has assumed greater importance all over the world owing to growing awareness of harmful effects of indiscriminate use of synthetic pesticides. Inula racemosa Hook. f. (Asteraceae), a medicinally important perennial herb, is rich in sesquiterpenes with many biological activities. The present studies were conducted with the objective to evaluate the sesquiterpenes isolated from I. racemosa for insecticidal activity against Spodoptera litura (F.). Alantolactone and isoalantolactone isolated from I. racemosa exerted growth inhibitory effects on S. litura. Addition of both the sesquiterpenes to larval diet extended the development period and reduced pupation as well as adult emergence. The dietary utilisation experiments on third-instar larvae of S. litura revealed reduction in consumption and growth rates of larvae as well as efficiency of conversion of ingested and digested food owing to alantolactone and isoalantolactone. The root extract of I. racemosa, which is rich in two sesquiterpenes, i.e. alantolactone and isoalantolactone, has the potential for management of S. litura. However, there is a need to understand the specific mechanism of action of these compounds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Metabolite profiling of sesquiterpene lactones from Lactuca species. Major latex components are novel oxalate and sulfate conjugates of lactucin and its derivatives.

    PubMed

    Sessa, R A; Bennett, M H; Lewis, M J; Mansfield, J W; Beale, M H

    2000-09-01

    Wounding leaves or stems of Lactuca species releases a milky latex onto the plant surface. We have examined the constituents of latex from Lactuca sativa (lettuce) cv. Diana. The major components were shown to be novel 15-oxalyl and 8-sulfate conjugates of the guaianolide sesquiterpene lactones, lactucin, deoxylactucin, and lactucopicrin. The oxalates were unstable, reverting to the parent sesquiterpene lactone on hydrolysis. Oxalyl derivatives have been reported rarely from natural sources. The sulfates were stable and are the first reported sesquiterpene sulfates from plants. Unusual tannins based on 4-hydroxyphenylacetyl conjugates of glucose were also identified. Significant qualitative and quantitative variation was found in sesquiterpene lactone profiles in different lettuce varieties and in other Lactuca spp. The proportions of each conjugate in latex also changed depending on the stage of plant development. A similar profile was found in chicory, in which oxalyl conjugates were identified, but the 8-sulfate conjugates were notably absent. The presence of the constitutive sesquiterpene lactones was not correlated with resistance to pathogens but may have a significant bearing on the molecular basis of the bitter taste of lettuce and related species. The induced sesquiterpene lactone phytoalexin, lettucenin A, was found in the Lactuca spp. but not in chicory.

  7. Ermophilane sesquiterpenes from Hawaiian endophytic fungus Chaetoconis sp.FT087

    USDA-ARS?s Scientific Manuscript database

    Seven sesquiterpene derivatives, including chaetopenoids A–F and dendryphiellin A1, and 6-methyl-(2E,4E, 6S) octadienoic acid were isolated from the culture broth of Chaetoconis sp. FT087. Their structures were determined through the analysis of HRMS and NMR spectroscopic data. The absolute configur...

  8. Tandem Mass Spectrometry for Structural Identification of Sesquiterpene alkaloids from the stems of dendrobium nobile using LC-QToF3

    USDA-ARS?s Scientific Manuscript database

    Dendrobium nobile is one of the fundamental herbs in traditional Chinese medicine (TCM). Sesquiterpene alkaloids are the main active components in this plant. Due to weak ultraviolet absorption and low content in D. nobile, these sesquiterpene alkaloids have not been extensively studied using chroma...

  9. Cadinane sesquiterpenes from Curcuma phaeocaulis with their inhibitory activities on nitric oxide production in RAW 264.7 cells.

    PubMed

    Ma, Jianghao; Wang, Ying; Liu, Yue; Gao, Suyu; Ding, Liqin; Zhao, Feng; Chen, Lixia; Qiu, Feng

    2015-06-01

    Four new cadinane-type sesquiterpenes named phacadinanes A-D (1-4) were isolated from the rhizomes of Curcuma phaeocaulis. Their structures were elucidated by 1D and 2D NMR, as well as accurate mass measurements. Compound 4 was the first example of a rare 4,5-seco-cadinane sesquiterpene isolated from the Zingiberaceae family. Furthermore, inhibitory effects of the isolated compounds on nitric oxide production in LPS-activated macrophages were evaluated. Compounds 1 and 2 showed strong inhibitory activities on NO production with IC50 values of 3.88±0.58 and 2.25±0.71 μM, respectively. A possible biogenetic pathway for 4,5-seco-cadinane sesquiterpene (4) was postulated. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Caryophyllane sesquiterpenes inhibit DNA-damage by tobacco smoke in bacterial and mammalian cells.

    PubMed

    Di Giacomo, Silvia; Abete, Lorena; Cocchiola, Rossana; Mazzanti, Gabriela; Eufemi, Margherita; Di Sotto, Antonella

    2018-01-01

    In the present study, the ability of the natural sesquiterpene β-caryophyllene (CRY) and its metabolite β-caryophyllene oxide (CRYO) to inhibit the genotoxicity of a condensate of cigarette smoke (CSC) was evaluated both in bacterial and mammalian cells. Also, the inhibition of the CSC-mediated STAT3 phosphorylation and intracellular oxidative stress was evaluated as potential chemopreventive mechanism. Under our experimental conditions, both the sesquiterpenes exhibited antimutagenic properties, being CRY the most potent compound. The antimutagenicity was highlighted in all experimental protocols, being particularly strong in the co- and post-treatments. The test substances also reduced the micronuclei frequency induced by CSC, with a major effectiveness of CRY. CRY was also able to reduce the CSC-mediated increase of the Y705- pSTAT3 levels, in spite of a lacking effect of CRYO. Furthermore, the sesquiterpenes CRY and CRYO displayed a moderate antioxidant activity, with a 25 % and 40 % inhibition of the ROS-levels increased by CSC, respectively. On the basis of these results, CRY seems to be a multi-target chemopreventive agent, although the genoprotective and antioxidant effects of CRYO suggest that both compounds deserve to be deeply investigated for a possible application in the prevention and treatment of different smoke-related ailments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Puupehanol, a Sesquiterpene-Dihydroquinone Derivative from the Marine Sponge Hyrtios sp

    USDA-ARS?s Scientific Manuscript database

    Puupehanol (1), a new sesquiterpene-dihydroquinone derivative, was isolated from the marine sponge Hyrtios sp., along with the known compounds puupehenone (2) and chloropuupehenone (3). The structure of 1 was established as (20R,21R)-21-hydroxy-20,21-dihydropuupehenone by interpretation of spectros...

  12. Helikaurolides A-D with a Diterpene-Sesquiterpene Skeleton from Supercritical Fluid Extracts of Helianthus annuus L. var. Arianna.

    PubMed

    Torres, Ascensión; Molinillo, José M G; Varela, Rosa M; Casas, Lourdes; Mantell, Casimiro; Martínez de la Ossa, Enrique J; Macías, Francisco A

    2015-10-02

    Four novel compounds (1-4) with an unprecedented skeleton that combines a sesquiterpene lactone and a kaurane diterpene acid were isolated from Helianthus annuus L. var. Arianna extract, which was obtained under supercritical conditions. The structures of 1-4 were elucidated by NMR and MS analyses. The biosynthetic routes involve sesquiterpene lactones and kauranic acid, both of which were previously isolated from this species.

  13. Chemical constituents of the mangrove-associated fungus Capnodium sp. SZ-F22. A new eremophilane sesquiterpene.

    PubMed

    He, Haibing; Ma, Zhongjun; Wang, Qianqian; Liu, Yu; Xu, Hualin

    2016-07-01

    A new eremophilane sesquiterpene, capnodiumone (1), along with five known eremophilane sesquiterpenes (2-6) and eight other compounds (7-14), have been isolated from a mangrove-associated fungus Capnodium sp. SZ-F22. The chemical structures were elucidated on the basis of extensive spectroscopic analysis. The broth extract of the fungus exhibited a good inhibitory effect on the mycelium growth against Fusarium graminearum at 100 μg/mL, however, all the 14 compounds showed no expected antifungal activity. The probable reasons were discussed.

  14. Studies on the Expression of Sesquiterpene Synthases Using Promoter-β-Glucuronidase Fusions in Transgenic Artemisia annua L

    PubMed Central

    Wang, Hongzhen; Han, Junli; Kanagarajan, Selvaraju; Lundgren, Anneli; Brodelius, Peter E.

    2013-01-01

    In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production. PMID:24278301

  15. Aedes aegypti Larvicidal Sesquiterpene Alkaloids from Maytenus oblongata.

    PubMed

    Touré, Seindé; Nirma, Charlotte; Falkowski, Michael; Dusfour, Isabelle; Boulogne, Isabelle; Jahn-Oyac, Arnaud; Coke, Maïra; Azam, Didier; Girod, Romain; Moriou, Céline; Odonne, Guillaume; Stien, Didier; Houël, Emeline; Eparvier, Véronique

    2017-02-24

    Four new sesquiterpene alkaloids (1-4) with a β-dihydroagrofuran skeleton and a new triterpenoid (5) were isolated from an ethyl acetate extract of Maytenus oblongata stems. Their structures were elucidated using 1D and 2D NMR spectroscopy as well as MS and ECD experiments. The M. oblongata stem EtOAc extract and the pure compounds isolated were tested for larvicidal activity against Aedes aegypti under laboratory conditions, and compounds 2 and 3 were found to be active.

  16. Dihydro-β-agarofuran sesquiterpenes from celastraceae species as anti-tumour-promoting agents: Structure-activity relationship.

    PubMed

    Núñez, Marvin J; Jiménez, Ignacio A; Mendoza, Cristina R; Chavez-Sifontes, Marvin; Martinez, Morena L; Ichiishi, Eiichiro; Tokuda, Ryo; Tokuda, Harukuni; Bazzocchi, Isabel L

    2016-03-23

    Inhibition of tumour promotion in multistage chemical carcinogenesis is considered a promising strategy for cancer chemoprevention. In an ongoing investigation of bioactive secondary metabolites from Celastraceae species, five new dihydro-β-agarofuran sesquiterpenes (1-5), named Chiapens A-E, and seventeen known ones, were isolated from Maytenus chiapensis. Their structures were elucidated by extensive NMR spectroscopic and mass spectrometric techniques, and their absolute configurations were determined by circular dichroism studies, chemical correlations and biogenic means. The isolated compounds, along with twenty known sesquiterpenes, previously isolated from Zinowiewia costaricensis, have been tested for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorpol-13-acetate (TPA). Thirty three compounds from this series showed stronger effects than that of β-carotene, the reference inhibitor. The structure-activity relationship (SAR) analysis revealed that the type of substituent, in particular at the C-1 position of the sesquiterpene scaffold, was able to modulate the anti-tumour promoting activity. Compounds 3, 6, and 33 showed significant effects in an in vivo two-stage mouse-skin carcinogenesis model. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Four New Chloro-Eremophilane Sesquiterpenes from an Antarctic Deep-Sea Derived Fungus, Penicillium sp. PR19N-1

    PubMed Central

    Wu, Guangwei; Lin, Aiqun; Gu, Qianqun; Zhu, Tianjiao; Li, Dehai

    2013-01-01

    A new chloro-trinoreremophilane sesquiterpene 1, three new chlorinated eremophilane sesquiterpenes 2–4, together with a known compound, eremofortine C (5), were isolated from an Antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Structures were established using IR, HRMS, 1D and 2D NMR techniques. In addition, the plausible metabolic network of these isolated products is proposed. Compound 1 showed moderate cytotoxic activity against HL-60 and A549 cancer cell lines. PMID:23612371

  18. New eremophilane-type sesquiterpenes from an Antarctic deepsea derived fungus, Penicillium sp. PR19 N-1.

    PubMed

    Lin, Aiqun; Wu, Guangwei; Gu, Qianqun; Zhu, Tianjiao; Li, Dehai

    2014-07-01

    Chemical investigation of an Antarctic deepsea derived fungus Penicillium sp. PR19 N-1 yielded five new eremophilane-type sesquiterpenes 1–5 and a new rare lactam-type eremophilane 6, together with three known compounds 7–9. The structures of these diverse sesquiterpenes were determined by extensive NMR and mass spectroscopic analyses. Compounds 1, 2, 4–6, 8 and 9 were evaluated for their cytotoxities against HL-60 and A-549 human cancer cell lines, and 5 was the most active one with IC50 value of 5.2 lM against the A-549 cells.

  19. Three new sesquiterpenes from Pterocarpus santalinus.

    PubMed

    Li, Li; Tao, Run-Hong; Wu, Ji-Ming; Guo, Ya-Ping; Huang, Chao; Liang, Hong-Gang; Fan, Le-Zhi; Zhang, Hai-Yan; Sun, Ren-Kuan; Shang, Lei; Lu, Li-Na; Huang, Jian; Wang, Jin-Hui

    2018-04-01

    Three new sesquiterpenes of canusesnol K (1), canusesnol L (2) and 12, 15-dihydroxycurcumene (3), along with five known ones (4-8), were isolated from the heartwood extract of Pterocarpus santalinus. Their structures were established by extensive analyses of 1D and 2D NMR spectroscopy, including 1 H NMR, 13 C NMR, HSQC, HMBC and NOESY, and HRESI-MS. The absolute configurations of the new compounds were established with Modified Mosher's method. The cytotoxic activities of all these compounds against HepG2 (human liver cancer), MCF-7 (human breast cancer), MDA-MB-231 (human breast cancer), and Hela (human cervical carcinoma) cancer cell lines were evaluated. Compound 1 exhibited moderate cytotoxic activity toward MDA-MB-231 cell lines.

  20. Dendocarbin A: a sesquiterpene lactone from Drimys winteri.

    PubMed

    Paz Robles, Cristian; Burgos, Viviana; Suarez, Sebastián; Baggio, Ricardo

    2014-11-01

    The natural compound dendocarbin A, C15H22O3, is a sesquiterpene lactone isolated for the first time from Drimys winteri for var chilensis. The compound crystallizes in the orthorhombic space group P2₁2₁2₁ and its X-ray crystal structure confirmed the S/R character of the chiral centres at C-5/C-10 and C-9/C-11, respectively. The α-OH group at C-11 was found to be involved in intermolecular hydrogen bonding, defining chains along the <100> 2₁ screw axis.

  1. Selective cytotoxic eremophilane-type sesquiterpenes from Penicillium citreonigrum.

    PubMed

    Yuan, Wei-Hua; Goto, Masuo; Hsieh, Kan-Yen; Yuan, Bo; Zhao, Yu; Morris-Natschke, Susan L; Lee, Kuo-Hsiung

    2015-01-01

    One new eremophilane-type sesquiterpene (1, citreopenin) was isolated from Penicillium citreonigrum (HQ738282), and the structure was elucidated by a combination of spectroscopic data interpretation and single-crystal X-ray diffraction analysis using Cu Kα radiation (CCDC 1030588). Compound 1 showed weak activity against KB-VIN (IC50 = 11.0 ± 0.156 μM), while the known compound 3 exhibited selective cytotoxicity against MDA-MB-231 triple-negative breast cancer (TNBC) (IC50 = 5.42 ± 0.167 μM).

  2. Sesquiterpenes from Neurolaena lobata and their antiproliferative and anti-inflammatory activities.

    PubMed

    Lajter, Ildikó; Vasas, Andrea; Béni, Zoltán; Forgo, Peter; Binder, Markus; Bochkov, Valery; Zupkó, István; Krupitza, Georg; Frisch, Richard; Kopp, Brigitte; Hohmann, Judit

    2014-03-28

    Five new sesquiterpenes, neurolobatin A (1), neurolobatin B (2), 5β-hydroxy-8β-isovaleroyloxy-9α-hydroxycalyculatolide (3), 3-epi-desacetylisovaleroylheliangine (4), and 3β-acetoxy-8β-isovaleroyloxyreynosin (5), were isolated from the aerial parts of Neurolaena lobata. The structures were established by means of a combined spectroscopic data analysis, including ESIMS, APCI-MS, and 1D- and 2D-NMR techniques. Neurolobatin A (1) and B (2) are unusual isomeric seco-germacranolide sesquiterpenes with a bicyclic acetal moiety, compounds 3 and 4 are unsaturated epoxy-germacranolide esters, and compound 5 is the first eudesmanolide isolated from the genus Neurolaena. The isolated compounds (1-5) were shown to have noteworthy antiproliferative activities against human tumor cell lines (A2780, A431, HeLa, and MCF7). The anti-inflammatory effects of 1-5, evaluated in vitro using LPS- and TNF-α-induced IL-8 expression inhibitory assays, revealed that all these compounds strongly down-regulated the LPS-induced production of IL-8 protein, with neurolobatin B (2) and 3-epi-desacetylisovaleroylheliangine (4) being the most effective.

  3. Sesquiterpenes from Neurolaena lobata and Their Antiproliferative and Anti-inflammatory Activities

    PubMed Central

    2014-01-01

    Five new sesquiterpenes, neurolobatin A (1), neurolobatin B (2), 5β-hydroxy-8β-isovaleroyloxy-9α-hydroxycalyculatolide (3), 3-epi-desacetylisovaleroylheliangine (4), and 3β-acetoxy-8β-isovaleroyloxyreynosin (5), were isolated from the aerial parts of Neurolaena lobata. The structures were established by means of a combined spectroscopic data analysis, including ESIMS, APCI-MS, and 1D- and 2D-NMR techniques. Neurolobatin A (1) and B (2) are unusual isomeric seco-germacranolide sesquiterpenes with a bicyclic acetal moiety, compounds 3 and 4 are unsaturated epoxy-germacranolide esters, and compound 5 is the first eudesmanolide isolated from the genus Neurolaena. The isolated compounds (1–5) were shown to have noteworthy antiproliferative activities against human tumor cell lines (A2780, A431, HeLa, and MCF7). The anti-inflammatory effects of 1–5, evaluated in vitro using LPS- and TNF-α-induced IL-8 expression inhibitory assays, revealed that all these compounds strongly down-regulated the LPS-induced production of IL-8 protein, with neurolobatin B (2) and 3-epi-desacetylisovaleroylheliangine (4) being the most effective. PMID:24476550

  4. Developmentally Regulated Sesquiterpene Production Confers Resistance to Colletotrichum gloeosporioides in Ripe Pepper Fruits

    PubMed Central

    Im, Soonduk; Han, Yun-Jeong; Lee, Sungbeom; Back, Kyoungwhan; Kim, Jeong-Il; Kim, Young Soon

    2014-01-01

    Sesquiterpenoid capsidiol, exhibiting antifungal activity against pathogenic fungus, is accumulated in infected ripe pepper fruits. In this study, we found a negative relation between the capsidiol level and lesion size in fruits infected with Colletotrichum gloeosporioides, depending on the stage of ripening. To understand the developmental regulation of capsidiol biosynthesis, fungal-induced gene expressions in the isoprenoid biosynthetic pathways were examined in unripe and ripe pepper fruits. The sterol biosynthetic pathway was almost shut down in healthy ripe fruits, showing very low expression of hydroxymethyl glutaryl CoA reductase (HMGR) and squalene synthase (SS) genes. In contrast, genes in the carotenoid pathway were highly expressed in ripe fruits. In the sesquiterpene pathway, 5-epi-aristolochene synthase (EAS), belonging to a sesquiterpene cyclase (STC) family, was significantly induced in the ripe fruits upon fungal infection. Immunoblot and enzyme activity analyses showed that the STCs were induced both in the infected unripe and ripe fruits, while capsidiol was synthesized discriminatively in the ripe fruits, implying diverse enzymatic specificity of multiple STCs. Thereby, to divert sterol biosynthesis into sesquiterpene production, infected fruits were pretreated with an SS inhibitor, zaragozic acid (ZA), resulting in increased levels of capsidiol by more than 2-fold in the ripe fruits, with concurrent reduction of phytosterols. Taken together, the present results suggest that the enhanced expression and activity of EAS in the ripe fruits play an important role in capsidiol production, contributing to the incompatibility between the anthracnose fungus and the ripe pepper fruits. PMID:25286411

  5. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol.

    PubMed

    May, Bianca; Lange, B Markus; Wüst, Matthias

    2013-11-01

    The participation of the mevalonic acid (MVA) and 1-deoxy-d-xylulose 5-phosphate/2-C-methyl-d-erythritol-4-phosphate (DOXP/MEP) pathways in sesquiterpene biosynthesis of grape berries was investigated. There is an increasing interest in this class of terpenoids, since the oxygenated sesquiterpene rotundone was identified as the peppery aroma impact compound in Australian Shiraz wines. To investigate precursor supply pathway utilization, in vivo feeding experiments were performed with the deuterium labeled, pathway specific, precursors [5,5-(2)H2]-1-deoxy-d-xylulose and [5,5-(2)H2]-mevalonic acid lactone. Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) analysis of the generated volatile metabolites demonstrated that de novo sesquiterpene biosynthesis is mainly located in the grape berry exocarp (skin), with no detectable activity in the mesocarp (flesh) of the Lemberger variety. Interestingly, precursors from both the (primarily) cytosolic MVA and plastidial DOXP/MEP pathways were incorporated into grape sesquiterpenes in the varieties Lemberger, Gewürztraminer and Syrah. Our labeling data provide evidence for a homogenous, cytosolic pool of precursors for sesquiterpene biosynthesis, indicating that a transport of precursors occurs mostly from plastids to the cytosol. The labeling patterns of the sesquiterpene germacrene D were in agreement with a cyclization mechanism analogous to that of a previously cloned enantioselective (R)-germacrene D synthase from Solidago canadensis. This observation was subsequently confirmed by enantioselective GC-MS analysis demonstrating the exclusive presence of (R)-germacrene D, and not the (S)-enantiomer, in grape berries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol

    PubMed Central

    May, Bianca; Lange, B. Markus; Wüst, Matthias

    2013-01-01

    The participation of the mevalonic acid (MVA) and 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol-4-phosphate (DOXP/MEP) pathways in sesquiterpene biosynthesis of grape berries was investigated. There is an increasing interest in this class of terpenoids, since the oxygenated sesquiterpene rotundone was identified as the peppery aroma impact compound in Australian Shiraz wines. To investigate precursor supply pathway utilization, in vivo feeding experiments were performed with the deuterium labeled, pathway specific, precursors [5,5-2H2]-1-deoxy-D-xylulose and [5,5-2H2]-mevalonic acid lactone. Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) analysis of the generated volatile metabolites demonstrated that de novo sesquiterpene biosynthesis is mainly located in the grape berry exocarp (skin), with no detectable activity in the mesocarp (flesh) of the Lemberger variety. Interestingly, precursors from both the (primarily) cytosolic MVA and plastidial DOXP/MEP pathways were incorporated into grape sesquiterpenes in the varieties Lemberger, Gewürztraminer and Syrah. Our labeling data provide evidence for a homogenous, cytosolic pool of precursors for sesquiterpene biosynthesis, indicating that a transport of precursors occurs mostly from plastids to the cytosol. The labeling patterns of the sesquiterpene germacrene D were in agreement with a cyclization mechanism analogous to that of a previously cloned enantioselective (R)-germacrene D synthase from Solidago canadensis. This observation was subsequently confirmed by enantioselective GC-MS analysis demonstrating the exclusive presence of (R)-germacrene D, and not the (S)-enantiomer, in grape berries. PMID:23954075

  7. New sesquiterpene lactones from Ambrosia cumanensis Kunth.

    PubMed

    Jimenez-Usuga, Nora Del Socorro; Malafronte, Nicola; Cotugno, Roberta; De Leo, Marinella; Osorio, Edison; De Tommasi, Nunziatina

    2016-09-01

    Eleven sesquiterpene lactones, including three new natural products (1-3), were isolated from the n-butanolic extract of Ambrosia cumanensis Kunth. aerial parts. The structure of all isolated compounds was elucidated by 1D- and 2D-NMR, and MS analyses. All compounds were tested for their antiproliferative activity on HeLa, Jurkat, and U937 cell lines. Compound 3, 2,3-dehydropsilostachyn C, showed cytotoxic activity with different potency in all cell lines. By means of flow cytometric studies, compound 3 was demonstrated to induce in Jurkat cells a G2/M cell cycle block, while in U937 elicited both cytostatic and cytotoxic responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cloning of a sesquiterpene synthase from Lavandula x intermedia glandular trichomes.

    PubMed

    Sarker, Lukman S; Demissie, Zerihun A; Mahmoud, Soheil S

    2013-11-01

    The essential oil (EO) of Lavandula is dominated by monoterpenes, but can also contain small amounts of sesquiterpenes, depending on species and environmental conditions. For example, the sesquiterpene 9-epi-caryophyllene can make up to 8 % of the EO in a few species, including those commercially propagated for EO production. Here, we report the cloning and functional characterization of 9-epi-caryophyllene synthase (LiCPS) from the glandular trichomes of Lavandula x intermedia, cv. Grosso. The 1,617 bp open reading frame of LiCPS, which did not encode a transit peptide, was expressed in Escherichia coli and the recombinant protein purified by Ni-NTA agarose affinity chromatography. The ca. 60 kDa recombinant protein specifically converted farnesyl diphosphate to 9-epi-caryophyllene. LiCPS also produced a few monoterpenes when assayed with the monoterpene precursor geranyl diphosphate (GPP), but--unlike most monoterpene synthases--was not able to derive detectable amounts of any products from the cis isomer of GPP, neryl diphosphate. The LiCPS transcripts accumulated in developing L. x intermedia flowers and were highly enriched in glandular trichomes, but were not detected in leaves suggesting that the transcriptional expression of this gene is spatially and developmentally regulated.

  9. Hepatocurative potential of sesquiterpene lactones of Taraxacum officinale on carbon tetrachloride induced liver toxicity in mice.

    PubMed

    Mahesh, A; Jeyachandran, R; Cindrella, L; Thangadurai, D; Veerapur, V P; Muralidhara Rao, D

    2010-06-01

    The hepatocurative potential of ethanolic extract (ETO) and sesquiterpene lactones enriched fraction (SL) of Taraxacum officinale roots was evaluated against carbon tetrachloride (CCl 4 ) induced hepatotoxicity in mice. The diagnostic markers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin contents were significantly elevated, whereas significant reduction in the level of reduced glutathione (GSH) and enhanced hepatic lipid peroxidation, liver weight and liver protein were observed in CCl 4 induced hepatotoxicity in mice. Post-treatment with ETO and SL significantly protected the hepatotoxicity as evident from the lower levels of hepatic enzyme markers, such as serum transaminase (ALT, AST), ALP and total bilirubin. Further, significant reduction in the liver weight and liver protein in drug-treated hepatotoxic mice and also reduced oxidative stress by increasing reduced glutathione content and decreasing lipid peroxidation level has been noticed. The histopathological evaluation of the liver also revealed that ETO and SL reduced the incidence of liver lesions induced by CCl 4 . The results indicate that sesquiterpene lactones have a protective effect against acute hepatotoxicity induced by the administration of CCl 4 in mice. Furthermore, observed activity of SL may be due to the synergistic action of two sesquiterpene lactones identified from enriched ethyl acetate fraction by HPLC method.

  10. Sesquiterpenes from Curcuma wenyujin with their inhibitory activities on nitric oxide production in RAW 264.7 cells.

    PubMed

    Gao, Suyu; Xia, Guiyang; Wang, Liqing; Zhou, Li; Zhao, Feng; Huang, Jian; Chen, Lixia

    2017-03-01

    One new sesquiterpene, 7α,11-epoxy-6α-hydroxy-carabrane-4,8-dione, along with 10 known ones were isolated from the essential oil of Curcuma wenyujin Y.H. Chen et C. Ling. Their structures were established based on extensive spectroscopic analysis. The absolute configuration of compound 1 was determined by the CD analysis of the insitu formed [Rh 2 (OCOCF 3 ) 4 ] complex, and the CD data analysis based on the octane rule of cyclohexanone. The inhibitory effects of these sesquiterpenes on nitric oxide production in lipopolysaccharide-activated macrophages were also evaluated. Furthermore, the biosynthesis pathway of the isolated compounds was proposed.

  11. Four new sesquiterpenes from the rhizomes of Curcuma phaeocaulis and their iNOS inhibitory activities.

    PubMed

    Ma, Jiang-Hao; Wang, Ying; Liu, Yue; Gao, Su-Yu; Ding, Li-Qin; Zhao, Feng; Chen, Li-Xia; Qiu, Feng

    2015-05-01

    Three new guaiane-type sesquiterpenes named phaeocaulisins K-M (1-3), and one germacrane-type sesquiterpenoid with new ring system of 1,5- and 1,8-ether groups named phagermadiol (4), were isolated from rhizomes of Curcuma phaeocaulis. Their structures were established based on extensive spectroscopic analysis. Compound 1, the first example of norsesquiterpene with tropone backbone, and compound 3 with a novel 1,2-dioxolane sesquiterpene alcohol were isolated from the genus Curcuma. All of the isolated compounds were tested for inhibitory activity against lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compound 3 inhibited NO production with IC50 value of 6.05 ± 0.43 μM. The plausible biosynthetic pathway for compounds 3 and 4 in C. phaeocaulis was also discussed.

  12. Molecular characterization of two isoforms of a farnesyl pyrophosphate synthase gene in wheat and their roles in sesquiterpene synthesis and inducible defence against aphid infestation.

    PubMed

    Zhang, Yan; Li, Zhi-Xia; Yu, Xiu-Dao; Fan, Jia; Pickett, John A; Jones, Huw D; Zhou, Jing-Jiang; Birkett, Michael A; Caulfield, John; Napier, Johnathan A; Zhao, Guang-Yao; Cheng, Xian-Guo; Shi, Yi; Bruce, Toby J A; Xia, Lan-Qin

    2015-05-01

    Aphids are important pests of wheat (Triticum aestivum) that affect crop production globally. Herbivore-induced emission of sesquiterpenes can repel pests, and farnesyl pyrophosphate synthase (FPS) is a key enzyme involved in sesquiterpene biosynthesis. However, fps orthologues in wheat and their functional roles in sesquiterpene synthesis and defence against aphid infestation are unknown. Here, two fps isoforms, Tafps1 and Tafps2, were identified in wheat. Quantitative real-time polymerase chain reaction (qRT-PCR) and in vitro catalytic activity analyses were conducted to investigate expression patterns and activity. Heterologous expression of these isoforms in Arabidopsis thaliana, virus-induced gene silencing (VIGS) in wheat and aphid behavioural assays were performed to understand the functional roles of these two isoforms. We demonstrated that Tafps1 and Tafps2 played different roles in induced responses to aphid infestation and in sesquiterpene synthesis. Heterologous expression in A. thaliana resulted in repulsion of the peach aphid (Myzus persicae). Wheat plants with these two isoforms transiently silenced were significantly attractive to grain aphid (Sitobion avenae). Our results provide new insights into induced defence against aphid herbivory in wheat, in particular, the different roles of the two Tafps isoforms in both sesquiterpene biosynthesis and defence against aphid infestation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Quantitative analysis of sesquiterpene lactones in extract of Arnica montana L. by 1H NMR spectroscopy.

    PubMed

    Staneva, Jordanka; Denkova, Pavletta; Todorova, Milka; Evstatieva, Ljuba

    2011-01-05

    (1)H NMR spectroscopy was used as a method for quantitative analysis of sesquiterpene lactones present in a crude lactone fraction isolated from Arnica montana. Eight main components - tigloyl-, methacryloyl-, isobutyryl- and 2-methylbutyryl-esters of helenalin (H) and 11α,13-dihydrohelenalin (DH) were identified in the studied sample. The method allows the determination of the total amount of sesquiterpene lactones and the quantity of both type helenalin and 11α,13-dihydrohelenalin esters separately. Furthermore, 6-O-tigloylhelenalin (HT, 1), 6-O-methacryloylhelenalin (HM, 2), 6-O-tigloyl-11α,13-dihydrohelenalin (DHT, 5), and 6-O-methacryloyl-11α,13-dihydrohelenalin (DHM, 6) were quantified as individual components. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Spirocyclopropane-type sesquiterpene hydrocarbons from Schinus terebinthifolius Raddi.

    PubMed

    Richter, Rita; von Reuss, Stephan H; König, Wilfried A

    2010-08-01

    The essential oil of Schinus terebinthifolius fruits was reinvestigated using GC and GC-MS techniques. Apart from several known compounds three sesquiterpene hydrocarbons with a carbon skeleton exhibiting the rare spiro(cyclopropane) moiety could be isolated by a combination of column chromatography and GLC. Structure assignments were carried out by NMR spectroscopy. These natural products are 9-spiro(cyclopropa)-4,4,8-trimethyl-2-methylenbicyclo[4.3.0]non-1(6)-ene (terebanene), 9-spiro(cyclopropa)-2,4,4,8-tetramethylbicyclo[4.3.0]nona-1,5-diene (teredenene), and (6R*,8R*)-9-spiro(cyclopropa)-2,4,4,8-tetramethylbicyclo[4.3.0]non-1-ene (terebinthene). Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Capitate glandular trichomes in Aldama discolor (Heliantheae - Asteraceae): morphology, metabolite profile and sesquiterpene biosynthesis.

    PubMed

    Bombo, A B; Appezzato-da-Glória, B; Aschenbrenner, A-K; Spring, O

    2016-05-01

    The capitate glandular trichome is the most common type described in Asteraceae species. It is known for its ability to produce various plant metabolites of ecological and economic importance, among which sesquiterpene lactones are predominant. In this paper, we applied microscopy, phytochemical and molecular genetics techniques to characterise the capitate glandular trichome in Aldama discolor, a native Brazilian species of Asteraceae, with pharmacological potential. It was found that formation of trichomes on leaf primordia of germinating seeds starts between 24 h and 48 h after radicle growth indicates germination. The start of metabolic activity of trichomes was indicated by separation of the cuticle from the cell wall of secretory cells at the trichome tip after 72 h. This coincided with the accumulation of budlein A, the major sesquiterpene lactone of A. discolor capitate glandular trichomes, in extracts of leaf primordia after 96 h. In the same timeframe of 72-96 h post-germination, gene expression studies showed up-regulation of the putative germacrene A synthase (pGAS2) and putative germacrene A oxidase (pGAO) of A. discolor in the transcriptome of these samples, indicating the start of sesquiterpene lactone biosynthesis. Sequencing of the two genes revealed high similarity to HaGAS and HaGAO from sunflower, which shows that key steps of this pathway are highly conserved. The processes of trichome differentiation, metabolic activity and genetic regulation in A. discolor and in sunflower appear to be typical for other species of the subtribe Helianthinae. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Effect of different types of sesquiterpene lactones on the maturation of Rhinella arenarum oocytes.

    PubMed

    Sánchez-Toranzo, G; Zapata-Martínez, J; Catalán, C; Bühler, M I

    2015-06-01

    The sesquiterpene lactones (STLs) are a large class of plant secondary metabolites that are generally found in the Asteraceae family and that have high diversity with respect to chemical structure as well as biological activity. STLs have been classified into different groups, such as guaianolides, germacranolides, and melampolides etc., based on their carboxylic skeleton. In amphibians, fully grown ovarian oocytes are arrested at the beginning of meiosis I. Under the stimulus of progesterone, this meiotic arrest is released and meiosis progresses to metaphase II, a process known as oocyte maturation. The purpose of this work was to determine whether sesquiterpene lactones from the germacranolide and melampolide groups act as inhibitor agents on the meiosis of amphibian oocytes in vitro. Results for germacranolides indicated that the addition of deoxyelephantopins caused a high degree of inhibition and that minimolide showed a moderate inhibitory effect, whereas glaucolide A was inactive. Furthermore, the addition of melampolides (uvedalin, enhydrin, polymatin A and polymatin B) showed inhibitory effects. For enhydrin and uvedalin, inhibitory effects were observed at the higher concentrations assayed. The results of this study suggest that the inhibitory activity of the tested sesquiterpene lactones on the meiosis of Rhinella arenarum oocytes is not dependent on the group to which they belong, i.e. not on the carboxylic skeleton, but probably due to the arrangement and type of function groups present in the molecules. All assayed lactones in the germacranolide group showed low toxicity. In contrast, important differences in toxicity were observed for lactones from the melampolide group: enhydrin and uvedalin showed low toxicity, but polymatin A and B were highly toxic.

  17. Bioactive constituents of Chinese natural medicines. I. New sesquiterpene ketones with vasorelaxant effect from Chinese moxa, the processed leaves of Artemisia argyi Levl. et Vant.: moxartenone and moxartenolide.

    PubMed

    Yoshikawa, M; Shimada, H; Matsuda, H; Yamahara, J; Murakami, N

    1996-09-01

    Two new sesquiterpene ketones, moxartenone and moxartenolide, and three octadecadienoic acids were isolated from Chinese moxa, the processed leaves of Artemisia argyi LEVL. et VANT., together with two sesquiterpenes, five triterpenes, two phenyl propanoids and three polyoxyflavones. The chemical structures of new sesquiterpenes, moxartenone, moxartenolide, and octadecadienoic acids were determined on the basis of chemical and physiochemical evidence. Moxartenolide was found to inhibit the contractions induced by a high concentration of K+, by norepinephrine, and by serotonin in isolated aortic strips of rat, while moxartenone showed little activity.

  18. Functional Identification of Valerena-1,10-diene Synthase, a Terpene Synthase Catalyzing a Unique Chemical Cascade in the Biosynthesis of Biologically Active Sesquiterpenes in Valeriana officinalis*

    PubMed Central

    Yeo, Yun-Soo; Nybo, S. Eric; Chittiboyina, Amar G.; Weerasooriya, Aruna D.; Wang, Yan-Hong; Góngora-Castillo, Elsa; Vaillancourt, Brieanne; Buell, C. Robin; DellaPenna, Dean; Celiz, Mary Dawn; Jones, A. Daniel; Wurtele, Eve Syrkin; Ransom, Nick; Dudareva, Natalia; Shaaban, Khaled A.; Tibrewal, Nidhi; Chandra, Suman; Smillie, Troy; Khan, Ikhlas A.; Coates, Robert M.; Watt, David S.; Chappell, Joe

    2013-01-01

    Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [13C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes. PMID:23243312

  19. The Sesquiterpenes(E)-ß-Farnesene and (E)-α-Bergamotene Quench Ozone but Fail to Protect the Wild Tobacco Nicotiana attenuata from Ozone, UVB, and Drought Stresses

    PubMed Central

    Palmer-Young, Evan C.; Veit, Daniel; Gershenzon, Jonathan; Schuman, Meredith C.

    2015-01-01

    Among the terpenes, isoprene (C5) and monoterpene hydrocarbons (C10) have been shown to ameliorate abiotic stress in a number of plant species via two proposed mechanisms: membrane stabilization and direct antioxidant effects. Sesquiterpene hydrocarbons (C15) not only share the structural properties thought to lend protective qualities to isoprene and monoterpene hydrocarbons, but also react rapidly with ozone, suggesting that sesquiterpenes may similarly enhance tolerance of abiotic stresses. To test whether sesquiterpenes protect plants against ozone, UVB light, or drought, we used transgenic lines of the wild tobacco Nicotiana attenuata. The transgenic plants expressed a maize terpene synthase gene (ZmTPS10) which produced a blend of (E)-ß-farnesene and (E)-α-bergamotene, or a point mutant of the same gene (ZmTPS10M) which produced (E)-ß-farnesene alone,. (E)-ß-farnesene exerted a local, external, and transient ozone-quenching effect in ozone-fumigated chambers, but we found no evidence that enhanced sesquiterpene production by the plant inhibited oxidative damage, or maintained photosynthetic function or plant fitness under acute or chronic stress. Although the sesquiterpenes (E)-ß-farnesene and (E)-α-bergamotene might confer benefits under intermittent heat stress, which was not tested, any roles in relieving abiotic stress may be secondary to their previously demonstrated functions in biotic interactions. PMID:26030663

  20. Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in Valeriana officinalis.

    PubMed

    Yeo, Yun-Soo; Nybo, S Eric; Chittiboyina, Amar G; Weerasooriya, Aruna D; Wang, Yan-Hong; Góngora-Castillo, Elsa; Vaillancourt, Brieanne; Buell, C Robin; DellaPenna, Dean; Celiz, Mary Dawn; Jones, A Daniel; Wurtele, Eve Syrkin; Ransom, Nick; Dudareva, Natalia; Shaaban, Khaled A; Tibrewal, Nidhi; Chandra, Suman; Smillie, Troy; Khan, Ikhlas A; Coates, Robert M; Watt, David S; Chappell, Joe

    2013-02-01

    Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.

  1. Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors1[W

    PubMed Central

    Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.

    2014-01-01

    Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528

  2. Redifferentiation of human hepatoma cells (SMMC-7721) induced by two new highly oxygenated bisabolane-type sesquiterpenes.

    PubMed

    Miao, Ruidong; Wei, Juan; Zhang, Qi; Sajja, Venkateswara; Yang, Jinbo; Wang, Qin

    2008-12-01

    Bisabolane-type sesquiterpenes are a class of biologically active compounds that has antitumour,antifungal, antibacterial,antioxidant and antivenom properties.We investigated the effect of two new highly oxygenated bisabolane-type sesquiterpenes (HOBS)isolated from Cremanthodium discoideum (C.discoideum) on tumour cells. Our results showed that HOBS induced morphological differentiation and reduced microvilli formation on the cell surface in SMMC-7721 cells.Flow cytometry analysis demonstrated that HOBS could induce cell-cycle arrest in the G1 phase. Moreover,HOBS was able to increase tyrosine-alpha ketoglutarate transaminase activity,decrease alpha- foetoprotein level and gamma-glutamyl transferase activity. In addition,we found that HOBS inhibited the anchorage- independent growth of SMMC-7721 cells in a dose-dependent manner.Taken together,all the above observations indicate that HOBS might be able to normalize malignant SMMC-7721 cells by inhibiting cell proliferation and inducing redifferentiation.

  3. Sesquiterpene lactone mix as a diagnostic tool for Asteraceae allergic contact dermatitis: chemical explanation for its poor performance and Sesquiterpene lactone mix II as a proposed improvement.

    PubMed

    Jacob, Mathias; Brinkmann, Jürgen; Schmidt, Thomas J

    2012-05-01

    Two preparations are currently in use for the diagnosis of allergic contact dermatitis caused by Asteraceae: (i) Sesquiterpene lactone (SL) mix [three pure sesquiterpene lactones (STLs)], whose use has been questioned, owing to an insufficient rate of true-positive results; and (ii) Compositae mix, consisting of five Asteraceae extracts, which is problematic because of lack of standardization and questionable reproducibility. To analyse the reasons for the narrow sensitivity of SL mix from a chemoinformatic point of view, and to propose a solution by rational selection of alternative constituents for a new SL mix II covering a broader cohort of allergic patients. Structural and biological information on allergenic STLs was retrieved from databases and the literature, and molecular modelling and chemoinformatic computations were performed. An explanation for the insufficient hit rate of SL mix is that the three constituents possess extremely similar molecular structures/properties and do not represent well the structural diversity of allergenic STLs. STLs that are known as constituents of Compositae mix plants show much a wider diversity, which explains the higher positive rate. On the basis of their positions in chemical property space, a new collection of STLs that more evenly cover the overall structural diversity spectrum is proposed. SL mix II is likely to detect a larger number of patients sensitized to Asteraceae. © 2012 John Wiley & Sons A/S.

  4. Three sesquiterpene compounds biosynthesised from artemisinic acid using suspension-cultured cells of Averrhoa carambola (Oxalidaceae).

    PubMed

    Yang, Li; Zhu, Jianhua; Song, Liyan; Shi, Xiaojian; Li, Xingyi; Yu, Rongmin

    2012-01-01

    A new sesquiterpene glycoside, artemisinic acid 3-β-O-β-D-glucopyranoside (3, 31.24%) and other two biotransformation products, 3-β-hydroxyartemisinic acid (2, 36.69%) and 3-β-hydroxyartemisinic acid β-D-glucopyranosyl ester (4, 7.03%), were biosynthesised after artemisinic acid (1) was administered to the cultured cells of Averrhoa carambola. The three biotransformation products were obtained for the first time by using the suspension-cultured cells of A. carambola as a new biocatalyst system, and their structures were identified on the basis of the physico-chemical properties, NMR and mass spectral analyses. The results indicate that the cultured cells of A. carambola have the abilities to hydroxylate and glycosylate sesquiterpene compounds in a regio- and stereoselective manner. Furthermore, the anti-tumour activity of compounds 3 and 4 was evaluated against K562 and HeLa cell lines. Compound 4 showed strong activity against HeLa cell line, with the IC₅₀ value of 0.56 µmol mL⁻¹.

  5. Complexation of sesquiterpene lactones with cyclodextrins: synthesis and effects on their activities on parasitic weeds.

    PubMed

    Cala, Antonio; Molinillo, José M G; Fernández-Aparicio, Mónica; Ayuso, Jesús; Álvarez, José A; Rubiales, Diego; Macías, Francisco A

    2017-08-09

    Allelochemicals are safer, more selective and more active alternatives than synthetic agrochemicals for weed control. However, the low solubility of these compounds in aqueous media limits their use as agrochemicals. Herein, we propose the application of α-, β- and γ-cyclodextrins to improve the physicochemical properties and biological activities of three sesquiterpene lactones: dehydrocostuslactone, costunolide and (-)-α-santonin. Complexation was achieved by kneading and coprecipitation methods. Aqueous solubility was increased in the range 100-4600% and the solubility-phase diagrams suggested that complex formation had been successful. The results of the PM3 semiempirical calculations were consistent with the experimental results. The activities on etiolated wheat coleoptiles, Standard Target Species and parasitic weeds were improved. Cyclodextrins preserved or enhanced the activity of the three sesquiterpene lactones. Free cyclodextrins did not show significant activity and therefore the enhancement in activity was due to complexation. These results are promising for applications in agrochemical design.

  6. Sesquiterpene Lactone Composition and Cellular Nrf2 Induction of Taraxacum officinale Leaves and Roots and Taraxinic Acid β-d-Glucopyranosyl Ester.

    PubMed

    Esatbeyoglu, Tuba; Obermair, Betina; Dorn, Tabea; Siems, Karsten; Rimbach, Gerald; Birringer, Marc

    2017-01-01

    Taraxacum officinale, the common dandelion, is a plant of the Asteraceae family, which is used as a food and medical herb. Various secondary plant metabolites such as sesquiterpene lactones, triterpenoids, flavonoids, phenolic acids, coumarins, and steroids have been described to be present in T. officinale. Dandelion may exhibit various health benefits, including antioxidant, anti-inflammatory, and anticarcinogenic properties. We analyzed the leaves and roots of the common dandelion (T. officinale) using high-performance liquid chromatography/mass spectrometry to determine its sesquiterpene lactone composition. The main compound of the leaf extract taraxinic acid β-d-glucopyranosyl ester (1), a sesquiterpene lactone, was isolated and the structure elucidation was conducted by nuclear magnetic resonance spectrometry. The leaf extract and its main compound 1 activated the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in human hepatocytes more significantly than the root extract. Furthermore, the leaf extract induced the Nrf2 target gene heme oxygenase 1. Overall, present data suggest that compound 1 may be one of the active principles of T. officinale.

  7. Sesquiterpene-derived metabolites from the deep water marine sponge Poecillastra sollasi.

    PubMed

    Killday, K B; Longley, R; McCarthy, P J; Pomponi, S A; Wright, A E; Neale, R F; Sills, M A

    1993-04-01

    Six sesquiterpene-derived compounds, 1-6, which we call sollasins a-f, have been isolated from a deep water specimen of the sponge Poecillastra sollasi. The structures were elucidated by comparison of spectral data to related metabolites and confirmed using spectroscopic methods. The compounds inhibit the growth of the pathogenic fungi Candida albicans and Cryptococcus neoformans and the P-388 and A-549 tumor cell lines. Compounds 3 and 4 show weak inhibition of binding of [125I] angiotensin II to rat aorta smooth muscle cell membranes.

  8. Cytotoxic sesquiterpene lactones from the leaves of Vernonia guineensis Benth. (Asteraceae)

    PubMed Central

    Toyang, Ngeh J.; Wabo, Hippolyte K.; Ateh, Eugene N.; Davis, Harry; Tane, Pierre; Sondengam, Luc B.; Bryant, Joseph; Verpoorte, Rob

    2015-01-01

    Ethnopharmacological relevance Vernonia guineensis Benth. (Asteraceae) preparations are used in folk medicine in Cameroon to treat a number of ailments, including prostate cancer and malaria, and is used as an anthelmintic, adaptogen and antidote. The aim of this study was to continue the validation of the activity of Vernonia guineensis Benth. extracts and isolated molecules against cancer cell lines following the previous isolation of an anti-prostate cancer sugar ester from the root extract. Materials and methods Acetone extracts of Vernonia guineensis Benth. leaves were tested for activity against 10 cancer cell lines (Breast—MDA-MB-231, Breast—MCF-7, Colon—HCT-116, Leukemia—HL-60, Lung—A549, Melanoma—A375, Ovarian—OVCAR3, Pancreas—Mia-paca, Prostate—PC-3 and Prostate—DU-145). The acetone extract was subjected to bioactivity guided fractionation. Anti-proliferation and clonogenic activity of the isolated compounds were tested. The WST-1 assay was used for the anti-proliferation activity, while the standard clonogenic test was used to determine the clonogenic activity. Results The acetone extract of Vernonia guineensis Benth. demonstrated in vitro activity ranging from IC50 4–26 mg/mL against the 10 cell lines. Activity guided fractionation of this extract yielded two sesquiterpene lactones, isolated for the first time from the genus Vernonia. The compounds were characterized using spectroscopic experiments, including a combination of 1D and 2D NMR data. Vernopicrin (1) and Vernomelitensin (2) demonstrated in vitro activity against human cancer cell lines with IC50 ranging from 0.35–2.04 μM (P < 0.05) and 0.13–1.5 μM (P < 0.05), respectively, between the most and least sensitive cell lines for each compound. Vernopicrin was most active against the human melanoma (A375) cell line and least active against the lung cancer (A549) cell line, while Vernomelitensin was also most active against the human melanoma (A375) cell line and least

  9. A model study of laboratory photooxidation experiments of mono- and sesquiterpenes

    NASA Astrophysics Data System (ADS)

    Capouet, M.; Vereecken, L.; Peeters, J.; Müller, J.

    2006-12-01

    The importance of monoterpenes in the atmosphere stems from their large emissions from plants, their high reactivity, and their role as precursors for Secondary Organic Aerosol (SOA) production. In order to quantify the impact of α-pinene oxidation (as representative of the monoterpenes) using a CTM, a detailed understanding of its oxidation mechanism is necessary. Past studies have investigated successfully the gas- phase OH-oxidation mechanism of α-pinene [Peeters et al., 2001; Vereecken and Peeters 2004; Capouet et al., 2004]. However, the SOA formation measured in laboratory experiments remains difficult to model, partly due to a poor understanding of the ozonolysis mechanism believed to be the dominant path to formation of condensable compounds. Very recently, Peeters and co-workers have developed a detailed mechanism for the α-pinene ozonolysis based on objective theoretical grounds. Both OH- and O3- oxidation mechanisms have been implemented in a box model and coupled to a module describing the gas/particle partitioning of the semi-volatile products on the basis of a vapour pressure prediction method [Capouet and Müller, 2006]. The photooxidation of primary products has been parameterized in order to evaluate the role of condensable compounds formed by secondary reactions. Simulations of a wide set of α-pinene photooxidation experiments reported in the literature have been performed. Results indicate that the calculated SOA contain a significant fraction of second generation products. Note in particular that our box model simulations as well as theoretical arguments contradict the gas-phase formation routes for pinic acid proposed in the literature and suggest a secondary origin for this compound. Contribution of the sesquiterpenes to biogenic non methane hydrocarbon emissions has been estimated from 9% to 28% in some regions in the U.S. Their high reactivity towards ozone and their complex chemistry make these compounds hardly accessible to theoretical

  10. Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa)

    PubMed Central

    Nieuwenhuizen, Niels J.; Wang, Mindy Y.; Matich, Adam J.; Green, Sol A.; Chen, Xiuyin; Yauk, Yar-Khing; Beuning, Lesley L.; Nagegowda, Dinesh A.; Dudareva, Natalia; Atkinson, Ross G.

    2009-01-01

    Kiwifruit vines rely on bees for pollen transfer between spatially separated male and female individuals and require synchronized flowering to ensure pollination. Volatile terpene compounds, which are important cues for insect pollinator attraction, were studied by dynamic headspace sampling in the major green-fleshed kiwifruit (Actinidia deliciosa) cultivar ‘Hayward’ and its male pollinator ‘Chieftain’. Terpene volatile levels showed a profile dominated by the sesquiterpenes α-farnesene and germacrene D. These two compounds were emitted by all floral tissues and could be observed throughout the day, with lower levels at night. The monoterpene (E)-β-ocimene was also detected in flowers but was emitted predominantly during the day and only from petal tissue. Using a functional genomics approach, two terpene synthase (TPS) genes were isolated from a ‘Hayward’ petal EST library. Bacterial expression and transient in planta data combined with analysis by enantioselective gas chromatography revealed that one TPS produced primarily (E,E)-α-farnesene and small amounts of (E)-β-ocimene, whereas the second TPS produced primarily (+)-germacrene D. Subcellular localization using GFP fusions showed that both enzymes were localized in the cytoplasm, the site for sesquiterpene production. Real-time PCR analysis revealed that both TPS genes were expressed in the same tissues and at the same times as the corresponding floral volatiles. The results indicate that two genes can account for the major floral sesquiterpene volatiles observed in both male and female A. deliciosa flowers. PMID:19516075

  11. Alkaloids and Sesquiterpenes from the South China Sea Gorgonian Echinogorgia pseudossapo

    PubMed Central

    Gao, Cheng-Hai; Wang, Yi-Fei; Li, Shen; Qian, Pei-Yuan; Qi, Shu-Hua

    2011-01-01

    Five zoanthoxanthin alkaloids (1–5) and four sesquiterpenes (6–9) were isolated from the South China Sea gorgonian Echinogorgia pseudossapo. Their structures were determined on the bases of extensive spectroscopic analyses, including 1D and 2D NMR data. Among them, pseudozoanthoxanthins III and IV (1–2), 8-hydroxy-6β-methoxy-14- oxooplop-6,12-olide (6) and 3β-methoxyguaian-10(14)-en-2β-ol (7) were new, 1 and 3 showed mild anti-HSV-1 activity, and 7 showed significant antilarval activity towards Balanus amphitrite larvae. PMID:22163197

  12. Microjaponin, a new dihydroagarofuranoid sesquiterpene from the stem of Microtropis japonica with antituberculosis activity.

    PubMed

    Chen, Jih-Jung; Kuo, Wen-Lung; Chen, Ih-Sheng; Peng, Chien-Fang; Sung, Ping-Jyun; Cheng, Ming-Jen; Lim, Yun-Ping

    2014-08-01

    A new dihydroagarofuran-based sesquiterpene, microjaponin (1), was isolated from the stem of Microtropis japonica. Its structure was determined by in-depth spectroscopic and mass-spectrometric analyses. Microjaponin (1) exhibited potent in vitro antituberculosis activity, with an MIC value of 12.5 μg/ml against Mycobacterium tuberculosis H37 Rv. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  13. Antiplasmodial activities and cytotoxic effects of aqueous extracts and sesquiterpene lactones from Neurolaena lobata.

    PubMed

    François, G; Passreiter, C M; Woerdenbag, H J; Van Looveren, M

    1996-04-01

    Aqueous and lipophilic extracts of Neurolaena lobata (Asteraceae), obtained from Guatemala, were tested against Plasmodium falciparum in vitro. Moreover, sesquiterpene lactones, of the germacranolide and furanoheliangolide type, isolated from N. lobata, were shown to be active against P. falciparum in vitro. In addition to their antiplasmodial activity, their cytotoxic effects on human carcinoma cell lines were evaluated. Structure-activity relationships are discussed.

  14. Sesquiterpene lactones from Gynoxys verrucosa and their anti-MRSA activity.

    PubMed

    Ordóñez, Paola E; Quave, Cassandra L; Reynolds, William F; Varughese, Kottayil I; Berry, Brian; Breen, Philip J; Malagón, Omar; Smeltzer, Mark S; Compadre, Cesar M

    2011-09-02

    Because of its virulence and antibiotic resistance, Staphylococcus aureus is a more formidable pathogen now than at any time since the pre-antibiotic era. In an effort to identify and develop novel antimicrobial agents with activity against this pathogen, we have examined Gynoxys verrucosa Wedd (Asteraceae), an herb used in traditional medicine in southern Ecuador for the treatment and healing of wounds. The sesquiterpene lactones leucodine (1) and dehydroleucodine (2) were extracted and purified from the aerial parts of Gynoxys verrucosa, and their structure was elucidated by spectroscopic methods and single-crystal X-ray analysis. The in vitro anti-microbial activity of Gynoxys verrucosa extracts and its purified constituents was determined against six clinical isolates including Staphylococcus aureus and Staphylococcus epidermidis strains with different drug-resistance profiles, using the microtiter broth method. Compound 1 has very low activity, while compound 2 has moderate activity with MIC(50)s between 49 and 195 μg/mL. The extract of Gynoxys verrucosa has weak activity with MIC(50)s between 908 and 3290 μg/mL. We are reporting the full assignment of the (1)H NMR and (13)C NMR of both compounds, and the crystal structure of compound 2, for the first time. Moreover, the fact that compound 2 has antimicrobial activity and compound 1 does not, demonstrates that the exocyclic conjugated methylene in the lactone ring is essential for the antimicrobial activity of these sesquiterpene lactones. However, the weak activity observed for the plant extracts, does not explain the use of Gynoxys verrucosa in traditional medicine for the treatment of wounds and skin infections. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Sesquiterpene Lactones from Gynoxys verrucosa and their Anti-MRSA Activity

    PubMed Central

    Ordóñez, Paola E.; Quave, Cassandra L.; Reynolds, William F.; Varughese, Kottayil I.; Berry, Brian; Breen, Philip J.; Malagón, Omar; Smeltzer, Mark S.; Compadre, Cesar M.

    2011-01-01

    Ethnopharmacological relevance Because of its virulence and antibiotic resistance, Staphylococcus aureus is a more formidable pathogen now than at any time since the pre-antibiotic era. In an effort to identify and develop novel antimicrobial agents with activity against this pathogen, we have examined Gynoxys verrucosa Wedd (Asteraceae), an herb used in traditional medicine in southern Ecuador for the treatment and healing of wounds. Materials and Methods The sesquiterpene lactones leucodine (1) and dehydroleucodine (2) were extracted and purified from the aerial parts of G. verrucosa, and their structure was elucidated by spectroscopic methods and single-crystal X-ray analysis. The in vitro anti-microbial activity of G. verrucosa extracts and its purified constituents was determined against six clinical isolates including S. aureus and Staphylococcus epidermidis strains with different drug-resistance profiles, using the microtiter broth method. Results Compound 1 has very low activity, while compound 2 has moderate activity with MIC50s between 49 and195 μg/mL. The extract of G. verrucosa has weak activity with MIC50s between 908 and 3290 μg/mL. Conclusions We are reporting the full assignment of the 1H-NMR and 13C-NMR of both compounds, and the crystal structure of compound 2, for the first time. Moreover, the fact that compound 2 has antimicrobial activity and compound 1 does not, demonstrates that the exocyclic conjugated methylene in the lactone ring is essential for the antimicrobial activity of these sesquiterpene lactones. However, the weak activity observed for the plants extracts, does not explain the use of G. verrucosa in traditional medicine for the treatment of wounds and skin infections. PMID:21782013

  16. Sesquiterpene Lactones from Cynara cornigera: Acetyl Cholinesterase Inhibition and In Silico Ligand Docking.

    PubMed

    Hegazy, Mohamed-Elamir F; Ibrahim, Abeer Y; Mohamed, Tarik A; Shahat, Abdelaaty A; El Halawany, Ali M; Abdel-Azim, Nahla S; Alsaid, Mansour S; Paré, Paul W

    2016-01-01

    Wild artichoke (Cynara cornigera), a thistle-like perennial belonging to the Asteraceae family, is native to the Mediterranean region, northwestern Africa, and the Canary Islands. While the pleasant, albeit bitter, taste of the leaves and flowers is attributed to the sesquiterpene lactones cynaropicrin and cynarin, a comprehensive phytochemical investigation still needs to be reported. In this study seven sesquiterpene lactones were isolated from an aqueous methanol plant extract, including a new halogenated metabolite (1), the naturally isolated compound sibthorpine (2), and five metabolites isolated for the first time from C. cornigera. Structures were established by spectroscopic methods, including HREIMS, (1 )H, (13 )C, DEPT, (1 )H-(1 )H COSY, HMQC, and HMBC-NMR experiments as well as by X-ray analysis. The isolated bioactive nutrients were analyzed for their antioxidant and metal chelating activity. Compound 1 exhibited a potent metal chelating activity as well as a high antioxidant capacity. Moreover, select compounds were effective as acetyl cholinesterase inhibitors presenting the possibility for such compounds to be examined for anti-neurodegenerative activity. A computational pharmacophore elucidation and docking study was performed to estimate the pharmacophoric features and binding conformation of isolated compounds in the acetyl cholinesterase active site. Georg Thieme Verlag KG Stuttgart · New York.

  17. [Two new sesquiterpene lactones from the pericarp of Illicium macranthum].

    PubMed

    Ma, Hai-juan; Ma, Chang-hua; Huang, Jian-mei

    2010-03-01

    Silica gel column chromatography was used for the isolation and purification of the chemical constituents of the pericarp of Illicium macranthum. From dichloromethane-EtOAc (1:1) fraction and EtOAc fraction of the methanol extracts, eleven compounds were identified on the basis of chemical and spectral data. Two new compounds were elucidated to be 6-deoxyneomajucin (1) and 2-oxo-6-deoxyneomajucin (2), along with nine known compounds 6-deoxypseudoanisatin (3), pseudoanisatin (4), anisatin (5), pseudomajucin (6), protocatecheuic acid (7), shikimic acid (8), shikimic acid methylester (9), beta-sitosterol (10) and daucosterol (11). Compounds 1 and 2 are new majucin-type sesquiterpene lactones.

  18. Dimacrolide Sesquiterpene Pyridine Alkaloids from the Stems of Tripterygium regelii.

    PubMed

    Fan, Dongsheng; Zhu, Guo-Yuan; Li, Ting; Jiang, Zhi-Hong; Bai, Li-Ping

    2016-08-29

    Two new dimacrolide sesquiterpene pyridine alkaloids (DMSPAs), dimacroregelines A (1) and B (2), were isolated from the stems of Tripterygium regelii. The structures of both compounds were characterized by extensive 1D and 2D NMR spectroscopic analyses, as well as HRESIMS data. Compounds 1 and 2 are two rare DMSPAs possessing unique 2-(3'-carboxybutyl)-3-furanoic acid units forming the second macrocyclic ring, representing the first example of DMSPAs bearing an extra furan ring in their second macrocyclic ring system. Compound 2 showed inhibitory effects on the proliferation of human rheumatoid arthritis synovial fibroblast cell (MH7A) at a concentration of 20 μM.

  19. Analysis of sesquiterpenes in Valeriana officinalis by capillary electrophoresis.

    PubMed

    Mikell, J R; Ganzera, M; Khan, I A

    2001-12-01

    A capillary electrophoresis (CE) method permitting the determination of the main sesquiterpenes in Valeriana officinalis has been developed. A separation of valerenic acid and its hydroxy and acetoxy derivatives, three compounds characteristic for the species, was achieved using a 40 mM phosphate-borate buffer at pH 8.5, which contained 10% isopropanol as organic modifier. Applied temperature and voltage were 35 degrees C and 17.5 kV, respectively. This setup allowed a baseline separation of the three compounds within 8 min, with a detection limit of 5.8 micrograms/ml or less. Out of six market products analyzed, only one contained a detectable amount of the marker compounds, with 0.54% of hydroxyvalerenic acid and 0.13% valerenic acid, respectively. The quantitative results were comparable to those obtained by HPLC.

  20. Tandem Mass Spectrometry for Structural Identification of Sesquiterpene Alkaloids from the Stems of Dendrobium nobile Using LC-QToF.

    PubMed

    Wang, Yan-Hong; Avula, Bharathi; Abe, Naohito; Wei, Feng; Wang, Mei; Ma, Shuang-Cheng; Ali, Zulfiqar; Elsohly, Mahmoud A; Khan, Ikhlas A

    2016-05-01

    Dendrobium nobile is one of the fundamental herbs in traditional Chinese medicine. Sesquiterpene alkaloids are the main active components in this plant. Due to weak ultraviolet absorption and low content in D. nobile, these sesquiterpene alkaloids have not been extensively studied using chromatographic methods. Herein, tandem mass spectrometry combined with liquid chromatography separation provides a tool for the identification and characterization of the alkaloids from D. nobile. A total of nine sesquiterpene alkaloids were characterized by ultrahigh-performance liquid chromatography tandem mass spectrometry. These alkaloids can be classified into two subgroups that are represented by dendrobine and nobilonine. Tandem mass spectrometric studies revealed the fragmentation pathways of these two subgroup alkaloids that were used for the identification and characterization of other alkaloids in D. nobile. Characterization of these alkaloids using accurate mass and diagnostic fragments provided a reliable methodology for the analysis of D. nobile by ultrahigh-performance liquid chromatography tandem mass spectrometry. The limit of detection was defined as the signal-to-noise ratio equal to 3 : 1. Limits of detection of dendrobine and nobilonine were less than 30 ng/mL. The developed method was applied for the analysis of various Dendrobium species and related dietary supplements. Alkaloids were identified from D. nobile, but not detected from commercial samples including 13 other Dendrobium species and the 7 dietary supplements. Georg Thieme Verlag KG Stuttgart · New York.

  1. Abscisic acid-type sesquiterpenes and ansamycins from Amycolatopsis alba DSM 44262.

    PubMed

    Li, Xiao-Mei; Li, Xiao-Man; Lu, Chun-Hua

    2017-10-01

    Two new abscisic acid-type sesquiterpenes (1, 2), and one new ansamycin (3), together with four known ansamycins, namely ansacarbamitocins 4-7, were isolated from the fermentation extract of Amycolatopsis alba DSM 44262. The structures of the new compounds were elucidated to be (E)-3-methyl-5-(2,6,6-trimethyl-3-oxocyclohex-1-enyl)pent-2-enoic acid (1) and (E)-3-methyl-5-(2,6,6-trimethyl-4-oxocyclohex-2-enyl)pent-2-enoic acid (2), and 9-O-methylansacarbamitocin A1 (3), on the basis of comprehensive analysis of spectroscopic data, respectively. The antimicrobial activities were also evaluated for all seven compounds.

  2. Solubility of the sesquiterpene alcohol patchoulol in supercritical carbon dioxide

    PubMed Central

    Hybertson, Brooks M.

    2009-01-01

    The solubility of the sesquiterpene alcohol patchoulol in supercritical carbon dioxide was measured at P ranging from 10.0 MPa to 25.0 MPa and T of 40.0 and 50.0 °C using a simple microsampling type apparatus with a 100.5 µL sample loop to remove aliquots for off-line analysis. The system was first validated using vanillin with off-line spectrophotometric analysis, then utilized for patchoulol measurements with off-line GC-MS analysis. The measured solubility of patchoulol in supercritical CO2 ranged from mole fractions of 0.43 × 10−3 at 10.0 MPa and 50.0 °C to 9.45 × 10−3 at 25.0 MPa and 40.0 °C. PMID:19424449

  3. Medicinal flowers. IV. Marigold. (2): Structures of new ionone and sesquiterpene glycosides from Egyptian Calendula officinalis.

    PubMed

    Marukami, T; Kishi, A; Yoshikawa, M

    2001-08-01

    Following the characterization of hypoglycemic, gastric emptying inhibitory, and gastroprotective principles and the structure elucidation of calendasaponins A, B, C, and D, two new ionone glucosides (officinosides A and B), and two sesquiterpene oligoglycosides (officinosides C and D), were isolated from the flowers of Egyptian Calendula officinalis. The structures of the officinosides were elucidated on the basis of chemical and physicochemical evidence.

  4. (+)-4 beta-hydroxyhernandulcin, a new sweet sesquiterpene from the leaves and flowers of Lippia dulcis.

    PubMed

    Kaneda, N; Lee, I S; Gupta, M P; Soejarto, D D; Kinghorn, A D

    1992-08-01

    From the leaves and flowers of Lippia dulcis collected in Panama, a new sweet sesquiterpene identified as (+)-4 beta-hydroxyhernandulcin [2] was isolated, accompanied by (+)-hernandulcin [1], (-)-epihernandulcin [3] (a novel natural product), and 6-methyl-5-hepten-2-one [4]. Acteoside (verbascoside) [5], a known bitter phenylpropanoid glycoside, was isolated from the flowers of L. dulcis. The structure of (+)-4 beta-hydroxyhernandulcin was established by interpretation of its spectral data.

  5. Two novel sesquiterpene lactones, cytotoxic vernolide-A and -B, from Vernonia cinerea.

    PubMed

    Kuo, Yao-Haur; Kuo, Yu-Jen; Yu, Ang-Su; Wu, Ming-Der; Ong, Chi-Wi; Yang Kuo, Li-Ming; Huang, Jo-Ti; Chen, Chieh-Fu; Li, Shyh-Yuan

    2003-04-01

    Bioassay-directed fractionation of an ethanolic extract of stems of Vernonia cinerea has resulted in the isolation of two novel sesquiterpene lactones, vernolide-A and -B. Their structures were elucidated on the basis of spectroscopic analysis. Biological evaluation showed that vernolide-A demonstrated potent cytotoxicity against human KB, DLD-1, NCI-661, and Hela tumor cell lines (ED(50)=0.02, 0.05, 0.53, 0.04 microg/ml for KB, DLD-1, NCI-661, and Hela, respectively); vernolide-B had marginal cytoxicity (ED(50)=3.78, 5.88, 6.42 microg/ml for KB, NCI-661, and Hela, respectively).

  6. Four novel antibacterial sesquiterpene-α-amino acid quaternary ammonium hybrids from the mycelium of mushroom Stereum hirsutum.

    PubMed

    Duan, Yuan-Chang; Feng, Jun; Bai, Na; Li, Guo-Hong; Zhang, Ke-Qin; Zhao, Pei-Ji

    2018-05-21

    The mushroom Stereum hirsutum is parasitized by Tremella aurantia to form a heterogeneous basidiocarp Jin'er, which has been used as food and folk medicine in Chinese society. In present work, the S. hirsutum was fermented in YMG broth, and four novel mixed terpenes, stereumamides A-D (1-4), which are sesquiterpenes combined with α-amino acids to form quaternary ammonium hybrids, were isolated from the Stereum hirsutum FP-91666 and their structures were elucidated by spectroscopic data analysis. Stereumamides A and D showed antibacterial activity against Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium, with the minimum inhibitory concentration (MIC) values of 12.5-25.0 μg/mL. The stereumamides A-D should be apparently the first example of naturally occurring a quaternary ammonium compound (QAC) conjugated by sesquiterpene with an α-amino acid. QAC is a common antibacterial agent in food industry, which is found in the mycelium of Stereum hirsutum would suggest that the complex basidiocarp is a functional food and veritable folk medicine. Copyright © 2017. Published by Elsevier B.V.

  7. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower.

    PubMed

    Ueno, Kotomi; Furumoto, Toshio; Umeda, Shuhei; Mizutani, Masaharu; Takikawa, Hirosato; Batchvarova, Rossitza; Sugimoto, Yukihiro

    2014-12-01

    Root exudates of sunflower (Helianthus annuus L.) line 2607A induced germination of seeds of root parasitic weeds Striga hermonthica, Orobanche cumana, Orobanche minor, Orobanche crenata, and Phelipanche aegyptiaca. Bioassay-guided purification led to the isolation of a germination stimulant designated as heliolactone. FT-MS analysis indicated a molecular formula of C20H24O6. Detailed NMR spectroscopic studies established a methylfuranone group, a common structural component of strigolactones connected to a methyl ester of a C14 carboxylic acid via an enol ether bridge. The cyclohexenone ring is identical to that of 3-oxo-α-ionol and the other part of the molecule corresponds to an oxidized carlactone at C-19. It is a carlactone-type molecule and functions as a germination stimulant for seeds of root parasitic weeds. Heliolactone induced seed germination of the above mentioned root parasitic weeds, while dehydrocostus lactone and costunolide, sesquiterpene lactones isolated from sunflower root exudates, were effective only on O. cumana and O. minor. Heliolactone production in aquacultures increased when sunflower seedlings were grown hydroponically in tap water and decreased on supplementation of the culture with either phosphorus or nitrogen. Costunolide, on the other hand, was detected at a higher concentration in well-nourished medium as opposed to nutrient-deficient media, thus suggesting a contrasting contribution of heliolactone and the sesquiterpene lactone to the germination of O. cumana under different soil fertility levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Impact of heat stress on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    NASA Astrophysics Data System (ADS)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-07-01

    Changes in the biogenic volatile organic compound (BVOC) emissions from European beech, Palestine oak, Scots pine, and Norway spruce exposed to heat stress were measured in a laboratory setup. In general, heat stress decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. Decreasing emission strength with heat stress was independent of the tree species and whether the de novo emissions being constitutive or induced by biotic stress. In contrast, heat stress induced emissions of green leaf volatiles. It also amplified the release of monoterpenes stored in resin ducts of conifers probably due to heat-induced damage of these resin ducts. The increased release of monoterpenes could be strong and long lasting. But, despite of such strong monoterpene emission pulses, the net effect of heat stress on BVOC emissions from conifers can be an overall decrease. In particular during insect attack on conifers the plants showed de novo emissions of sesquiterpenes and phenolic BVOC which exceeded constitutive monoterpene emissions from pools. The heat stress induced decrease of these de novo emissions was larger than the increased release caused by damage of resin ducts. We project that global change induced heat waves may cause increased BVOC emissions only in cases where the respective areas are predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOC. Otherwise the overall effect of heat stress will be a decrease in BVOC emissions.

  9. 15-Hydroxygermacranolides as Sources of Structural Diversity: Synthesis of Sesquiterpene Lactones by Cyclization and Rearrangement Reactions. Experimental and DFT Study.

    PubMed

    Álvarez-Calero, José María; Ruiz, Enrique; López-Pérez, José Luis; Jaraíz, Martín; Rubio, José E; Jorge, Zacarías D; Suárez, Margarita; Massanet, Guillermo M

    2018-05-18

    A study on the electrophile-induced rearrangement of two 15-hydroxygermacranolides, salonitenolide and artemisiifolin, was carried out. These compounds underwent electrophilic intramolecular cyclizations or acid-mediated rearrangements to give sesquiterpene lactones with different skeletons such as eudesmanolides, guaianolides, amorphanolides, or other germacranolides. The cyclization that gives guaianolides can be considered a biomimetic route to this type of sesquiterpene lactones. The use of acetone as a solvent changes the reactivity of the two starting germacranolides to the acid catalysts, with a 4,15-diol acetonide being the main product obtained. The δ-amorphenolide obtained by intramolecular cyclization of this acetonide is a valuable intermediate for accessing the antimalarials artemisinin and its derivatives. Mechanistic proposals for the transformations are raised, and to provide support them, quantum chemical calculations [DFT B3LYP/6-31+G(d,p) level] were undertaken.

  10. Oppositines A and B, Sesquiterpene Pyridine Alkaloids from a Sri Lankan Pleurostylia opposita

    PubMed Central

    Whitson, Emily L.; Mala, S.M.V. Damayanthi; Veltri, Charles. A.; Bugni, Tim S.; de Silva, E. Dilip; Ireland, Chris M.

    2008-01-01

    Two new sesquiterpene pyridine alkaloids, oppositines A (1) and B (2), have been isolated from the plant, Pleurostylia opposita (Celastraceae), collected in Sri Lanka. The compounds were isolated and purified by solvent/solvent partitioning, column chromatography and HPLC. Their structures were assigned on the basis of extensive 1D and 2D NMR studies as well as analysis by HRESIMS. Oppositines A (1) and B (2) showed moderate cytotoxicity against HCT116 cell lines with EC50 values of 27 ± 2 and 26 ± 3 μM, respectively. PMID:17190474

  11. Fumigant and repellent properties of sesquiterpene-rich essential oil from Teucrium polium subsp. capitatum (L.).

    PubMed

    Khani, Abbas; Heydarian, Monireh

    2014-12-01

    To test fumigant and repellent properties of sesquiterpene-rich essential oil from Teucrium polium subsp. capitatum (L.). The fumigant toxicity test was performed at (27±1)°C, (65±5)% relative humidity, and under darkness condition and 24 h exposure time. The chemical composition of the isolated oils was examined by gas chromatography-mass spectrometry. The major compounds were α-cadinol (46.2%), caryophyllene oxide (25.9%), α muurolol epi (8.1%), cadalene (3.7%) and longiverbenone (2.9%). In all cases, considerable differences in mortality of insect to essential oil vapor were observed in different concentrations and exposure times. Callosobruchus maculatus (C. maculates) (LC50=148.9 μL/L air) was more susceptible to the tested plant product than Teucrium castaneum (T. castaneum) (LC50=360.2 μL/L air) based on LC50 values. In the present investigation, the concentration of 3 μL /mL acetone showed 60% and 52% repellency against T. casteneum and C. maculatus adults, respectively. The results suggests that sesquiterpene-rich essential oils from the tested plant could be used as a potential control agent for stored-product insects. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  12. Phytotoxic properties of cnicin, a sesquiterpene lactone fromcentaurea maculosa (spotted knapweed).

    PubMed

    Kelsey, R G; Locken, L J

    1987-01-01

    Water and solvent extracts from the aerial tissues ofCentaurea maculosa, spotted knapweed, inhibited the root growth of lettuce. Column chromatography and lettuce bioassay of a chloroform extract led to the isolation of cnicin, a sesquiterpene lactone. Pure cnicin was bioassayed at 0, 1, 2, 4, 6, 8, and 10 mg/5 ml water with lettuce, created wheatgrass, bluebunch wheatgrass, rough fescue, western larch, lodgepole pine, and spotted knapweed. Germination was inhibited at one or more concentrations for all species except lodgepole pine and spotted knapweed. Growth, particularly of the roots, was retarded between 1 and 4 mg of cnicin. Lettuce, bluebunch wheatgrass, and spotted knapweed were inhibited significantly at all concentrations tested.

  13. New Bisabolane-Type Sesquiterpenes from the Aerial Parts of Lippia dulcis.

    PubMed

    Ono, Masateru; Morinaga, Hiroaki; Masuoka, Chikako; Ikeda, Tsuyoshi; Okawa, Masafumi; Kinjo, Junei; Nohara, Toshihiro

    2005-09-01

    Two new bisabolane-type sesquiterpenes, lippidulcine A (3) and epilippidulcine A (4), have been isolated from the aerial parts of Lippia dulcis TREV. along with five known flavonoids, cirsimaritin (5), salvigenin (6), eupatorin (7), 5-hydroxy-6,7,3',4'-tetramethoxyflavone (8) and 5,3'-dihydroxy-6,7,4',5'-tetramethoxyflavone (9), three known phenylethanoid glycosides, decaffeoylverbascoside (10), acteoside (11) and isoacteoside (12), and two known iridoid glucosides, 8-epiloganin (13) and lamiide (14). Their chemical structures have been determined on the basis of spectroscopic data. Among them, 5, 7, and 9 exhibited almost the same activity as that of alpha-tocopherol, and 10-12 were identified as stronger antioxidants than alpha-tocopherol using the ferric thiocyanate method.

  14. Simultaneous quantitative determination of 11 sesquiterpene lactones in Jerusalem artichoke (Helianthus tuberosus L.) leaves by ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Yuan, Xiaoyan; Yang, Qianxu

    2017-04-01

    A method of ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was developed for the simultaneous quantification of 11 sesquiterpene lactones in 11 Jerusalem artichoke leaf samples harvested in a number of areas at different periods. The optimal chromatographic conditions were achieved on a ZORBAX Eclipse Plus C 18 column (3.0 × 150 mm, 1.8 μm) with linear gradient elution of methanol and water in 8 min. Quantitative analysis was carried out under selective ion monitoring mode. All of the sesquiterpene lactones showed good linearity (R 2 ≥ 0.9949), repeatability (relative standard deviations < 4.66%), and intra- and interday precisions (relative standard deviations < 4.52%) with an accuracy of 95.24-104.84%. The recoveries measured at three concentration levels varied from 95.07 to 104.87% with relative standard deviations less than 4.9%. The limit of detection and limit of quantitation for this method were 0.89-5.05 and 1.12-44.33 ng/mL, respectively. The results showed that the contents of sesquiterpene lactones varied significantly in the Jerusalem artichoke leaf samples from different areas. Among them, the content of sesquiterpene lactones in the sample collected from Dalian, Liaoning province was the highest and the early flowering period was considered to be the optimal harvest time. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pharmacological insight into the anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R.Br. ex Cass.

    PubMed

    McKinnon, R; Binder, M; Zupkó, I; Afonyushkin, T; Lajter, I; Vasas, A; de Martin, R; Unger, C; Dolznig, H; Diaz, R; Frisch, R; Passreiter, C M; Krupitza, G; Hohmann, J; Kopp, B; Bochkov, V N

    2014-10-15

    Neurolaena lobata is a Caribbean medicinal plant used for the treatment of several conditions including inflammation. Recent data regarding potent anti-inflammatory activity of the plant and isolated sesquiterpene lactones raised our interest in further pharmacological studies. The present work aimed at providing a mechanistic insight into the anti-inflammatory activity of N. lobata and eight isolated sesquiterpene lactones, as well as a structure-activity relationship and in vivo anti-inflammatory data. The effect of the extract and its compounds on the generation of pro-inflammatory proteins was assessed in vitro in endothelial and monocytic cells by enzyme-linked immunosorbent assay. Their potential to modulate the expression of inflammatory genes was further studied at the mRNA level. In vivo anti-inflammatory activity of the chemically characterized extract was evaluated using carrageenan-induced paw edema model in rats. The compounds and extract inhibited LPS- and TNF-α-induced upregulation of the pro-inflammatory molecules E-selectin and interleukin-8 in HUVECtert and THP-1 cells. LPS-induced elevation of mRNA encoding for E-selectin and interleukin-8 was also suppressed. Furthermore, the extract inhibited the development of acute inflammation in rats. Sesquiterpene lactones from N. lobata interfered with the induction of inflammatory cell adhesion molecules and chemokines in cells stimulated with bacterial products and cytokines. Structure-activity analysis revealed the importance of the double bond at C-4-C-5 and C-2-C-3 and the acetyl group at C-9 for the anti-inflammatory activity. The effect was confirmed in vivo, which raises further interest in the therapeutic potential of the compounds for the treatment of inflammatory diseases. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. The Variability of Sesquiterpenes Emitted from Two Zea mays Cultivars Is Controlled by Allelic Variation of Two Terpene Synthase Genes Encoding Stereoselective Multiple Product Enzymes

    PubMed Central

    Köllner, Tobias G.; Schnee, Christiane; Gershenzon, Jonathan; Degenhardt, Jörg

    2004-01-01

    The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes. PMID:15075399

  17. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes.

    PubMed

    Köllner, Tobias G; Schnee, Christiane; Gershenzon, Jonathan; Degenhardt, Jörg

    2004-05-01

    The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes.

  18. Assessment of sesquiterpene lactones isolated from Mikania plants species for their potential efficacy against Trypanosoma cruzi and Leishmania sp.

    PubMed Central

    Bivona, Augusto E.; Sánchez Alberti, Andrés; Giberti, Gustavo; Malchiodi, Emilio L.; Martino, Virginia S.; Catalan, Cesar A.; Alonso, María Rosario; Cazorla, Silvia I.

    2017-01-01

    Four sesquiterpene lactones, mikanolide, deoxymikanolide, dihydromikanolide and scandenolide, were isolated by a bioassay-guided fractionation of Mikania variifolia and Mikania micrantha dichloromethane extracts. Mikanolide and deoxymikanolide were the major compounds in both extracts (2.2% and 0.4% for Mikania variifolia and 21.0% and 6.4% for Mikania micrantha respectively, calculated on extract dry weight). Mikanolide, deoxymikanolide and dihydromikanolide were active against Trypanosoma cruzi epimastigotes (50% inhibitory concentrations of 0.7, 0.08 and 2.5 μg/mL, for each compound respectively). These sesquiterpene lactones were also active against the bloodstream trypomastigotes (50% inhibitory concentrations for each compound were 2.1, 1.5 and 0.3 μg/mL, respectively) and against amastigotes (50% inhibitory concentrations for each compound were 4.5, 6.3 and 8.5 μg/mL, respectively). By contrast, scandenolide was not active on Trypanosoma cruzi. Besides, mikanolide and deoxymikanolide were also active on Leishmania braziliensis promastigotes (50% inhibitory concentrations of 5.1 and 11.5 μg/mL, respectively). The four sesquiterpene lactones were tested for their cytotoxicity on THP 1 cells. Deoxymikanolide presented the highest selectivity index for trypomastigotes (SI = 54) and amastigotes (SI = 12.5). In an in vivo model of Trypanosoma cruzi infection, deoxymikanolide was able to decrease the parasitemia and the weight loss associated to the acute phase of the parasite infection. More importantly, while 100% of control mice died by day 22 after receiving a lethal T. cruzi infection, 70% of deoxymikanolide-treated mice survived. We also observed that this compound increased TNF-α and IL-12 production by macrophages, which could contribute to control T. cruzi infection. PMID:28945741

  19. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants.

    PubMed

    Degenhardt, Jörg; Köllner, Tobias G; Gershenzon, Jonathan

    2009-01-01

    The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.

  20. Preisocalamendiol, Shyobunol and Related Oxygenated Sesquiterpenes from Bolivian Schinus molle Essential Oil.

    PubMed

    St-Gelais, Alexis; Mathieu, Michel; Levasseur, Virginie; Ovando, Jesús Flores; Escamilla, Ruben; Marceau, Hubert

    2016-04-01

    Five batches of Bolivian Schinus molle essential oils were obtained from pilot and industrial-scale hydrodiffusions. They were analyzed by gas chromatography to find 80 known compounds and two unknown molecules. In particular, preisocalamendiol (5.6-11.0 %) was found to be an important constituent of these oils, along with shyobunol (0.6-3.2 %) and several other related oxygenated sesquiterpenes. These compounds, usually found in Acorus calamus, had not been reported altogether in S. molle essential oils previously. These findings, in light of the GABAA positive modulating effect of shyobunone and preisocalamendiol, along with some traditional uses of S. molle, suggest that further investigation of the tranquilizing properties of these Bolivian oils would be of interest.

  1. Distinct sesquiterpene pyridine alkaloids from in Salvadoran and Peruvian Celastraceae species.

    PubMed

    Callies, Oliver; Núñez, Marvin J; Perestelo, Nayra R; Reyes, Carolina P; Torres-Romero, David; Jiménez, Ignacio A; Bazzocchi, Isabel L

    2017-10-01

    As part of a bioprospecting program aimed at the discovery of undescribed natural products from Salvadoran and Peruvian flora, the phytochemical investigations of four Celastraceae species, Celastrus vulcanicola, Maytenus segoviarum, Maytenus jeslkii, and Maytenus cuzcoina, were performed. The current study reports the isolation and structural characterization of five previously undescribed macrolide sesquiterpene pyridine alkaloids, named vulcanicoline-A, cuzcoinine, vulcanicoline-B, jelskiine, and vulcanicoline-C, along with sixteen known alkaloids. The structures of the alkaloids were established by spectrometric and extensive 1D and 2D NMR spectroscopic analysis, including COSY, HSQC, HMBC, and ROESY experiments. The absolute configurations of alkaloids were proposed based on optical rotation sign, and biogenetic considerations. This study represents the first phytochemical analysis of Maytenus segoviarum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Native Production of the Sesquiterpene Isopterocarpolone by Streptomyces sp. RM-14-6

    PubMed Central

    Shaaban, Khaled A.; Singh, Shanteri; Elshahawi, Sherif I.; Wang, Xiachang; Ponomareva, Larissa V.; Sunkara, Manjula; Copley, Gregory C.; Hower, James C.; Morris, Andrew J.; Kharel, Madan K.; Thorson, Jon S.

    2013-01-01

    We report the production, isolation and structure elucidation of the sesquiterpene isopterocarpolone from an Appalachian isolate Streptomyces species RM-14-6. While isopterocarpolone was previously put forth as a putative plant metabolite, the current study highlights the first native bacterial production of isopterocarpolone and the first full characterization of isopterocarpolone using 1D and 2D NMR spectroscopy and HR-ESI mass spectrometry. Considering the biosynthesis of closely related metabolites (geosmin or 5-epiaristolochene), the structure of isopterocarpolone also suggests the potential participation of one or more unique enzymatic transformations. In this context, this work also sets the stage for the elucidation of potentially novel bacterial biosynthetic machinery. PMID:24237421

  3. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    NASA Astrophysics Data System (ADS)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-12-01

    Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress) on plants changing emissions of biogenic volatile organic compounds (BVOCs). As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the de novo emissions were constitutive or induced by biotic stress. In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed de novo emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of de novo emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease. Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do not consider stress impacts.

  4. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture

    PubMed Central

    Ditengou, Franck A.; Müller, Anna; Rosenkranz, Maaria; Felten, Judith; Lasok, Hanna; van Doorn, Maja Miloradovic; Legué, Valerie; Palme, Klaus; Schnitzler, Jörg-Peter; Polle, Andrea

    2015-01-01

    The mutualistic association of roots with ectomycorrhizal fungi promotes plant health and is a hallmark of boreal and temperate forests worldwide. In the pre-colonization phase, before direct contact, lateral root (LR) production is massively stimulated, yet little is known about the signals exchanged during this step. Here, we identify sesquiterpenes (SQTs) as biologically active agents emitted by Laccaria bicolor while interacting with Populus or Arabidopsis. We show that inhibition of fungal SQT production by lovastatin strongly reduces LR proliferation and that (–)-thujopsene, a low-abundance SQT, is sufficient to stimulate LR formation in the absence of the fungus. Further, we show that the ectomycorrhizal ascomycote, Cenococcum geophilum, which cannot synthesize SQTs, does not promote LRs. We propose that the LR-promoting SQT signal creates a win-win situation by enhancing the root surface area for plant nutrient uptake and by improving fungal access to plant-derived carbon via root exudates. PMID:25703994

  5. The Maize Gene terpene synthase 1 Encodes a Sesquiterpene Synthase Catalyzing the Formation of (E)-β-Farnesene, (E)-Nerolidol, and (E,E)-Farnesol after Herbivore Damage1

    PubMed Central

    Schnee, Christiane; Köllner, Tobias G.; Gershenzon, Jonathan; Degenhardt, Jörg

    2002-01-01

    Maize (Zea mays) emits a mixture of volatile compounds upon attack by the Egyptian cotton leafworm (Spodoptera littoralis). These substances, primarily mono- and sesquiterpenes, are used by parasitic wasps to locate the lepidopteran larvae, which are their natural hosts. This interaction among plant, lepidopteran larvae, and hymenopteran parasitoids benefits the plant and has been termed indirect defense. The committed step in the biosynthesis of the different skeletal types of mono- and sesquiterpenes is catalyzed by terpene synthases, a class of enzymes that forms a large variety of mono- and sesquiterpene products from prenyl diphosphate precursors. We isolated a terpene synthase gene, terpene synthase 1 (tps1), from maize that exhibits only a low degree of sequence identity to previously identified terpene synthases. Upon expression in a bacterial system, the encoded enzyme produced the acyclic sesquiterpenes, (E)-β-farnesene, (E,E)-farnesol, and (3R)-(E)-nerolidol, the last an intermediate in the formation of (3E)-4,8-dimethyl-1,3,7-nonatriene. Both (E)-β-farnesene and (3E)-4,8-dimethyl-1,3,7-nonatriene are prominent compounds of the maize volatile blend that is emitted after herbivore damage. The biochemical characteristics of the encoded enzyme are similar to those of terpene synthases from both gymnosperms and dicotyledonous angiosperms, suggesting that catalysis involves a similar electrophilic reaction mechanism. The transcript level of tps1 in the maize cv B73 was elevated after herbivory, mechanical damage, and treatment with elicitors. In contrast, the increase in the transcript level of the tps1 gene or gene homolog in the maize cv Delprim after herbivory was less pronounced, suggesting that the regulation of terpene synthase expression may vary among maize varieties. PMID:12481088

  6. Effects of Acute Ozone Exposure and Methyl Jasmonate Treatment on White Pine Monoterpene and Sesquiterpene Emission Rates

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Wagner, D.; Allwine, E.; Harley, P. C.; Vanreken, T. M.

    2010-12-01

    Biogenic volatile organic compounds (BVOCs) are produced by plants and include monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are one of the principal factors influencing the oxidative capacity of the atmosphere in forested regions, and impact both ozone concentration and secondary organic aerosol formation. Under unstressed conditions, the release of BVOCs to the atmosphere is primarily controlled by the vapor pressure of the relevant compounds within the plant tissue, which is in turn dependent on temperature as well as complex biochemical production processes. However, various natural and anthropogenic stressors can alter both the quantity and composition of the BVOCs emitted by plants. Many potential stressors are expected to become stronger as climate change effects escalate. The impacts of most stressors on BVOC emissions have not been well characterized, particularly in a field setting where changes in BVOC emissions could have influential feedbacks with climate. This study investigated the effects of two stressors on monoterpene and sesquiterpene emission rates at a field site in northern Michigan: acute ozone exposure and treatment with methyl jasmonate, an herbivory proxy. The study included six repetitions of the same experiment, each time using a new set of sub-canopy eastern white pine specimens. For each experiment, dynamic branch enclosures were simultaneously used on three specimens for sample collection: one ozone treatment tree, one methyl jasmonate treatment tree, and one control tree. Sampling lines were placed in each enclosure and VOCs were collected onto cartridges packed with Tenax GR adsorbent. Samples were collected several times per day for at least two days before treatment and for five days after treatment. Cartridges were analyzed via thermodesorption with an Agilent GC/MS/FID. This analysis allowed the identification and quantification of several monoterpene and sesquiterpene species in the samples

  7. Revisiting sesquiterpene biosynthetic pathways leading to santalene and its analogues: a comprehensive mechanistic study.

    PubMed

    Jindal, Garima; Sunoj, Raghavan B

    2012-10-21

    Santalene and bergamotene are the major olefinic sesquiterpenes responsible for the fragrance of sandalwood oil. Herein we report the details of density functional theory investigations on the biosynthetic pathway of this important class of terpenes. The mechanistic study has been found to be effective toward gaining significant new insight into different possibilities for the formation of the key intermediates involved in santalene and bergamotene biosynthesis. The stereoelectronic features of the transition states and intermediates for (i) ring closure of the initial bisabolyl cation, and (ii) skeletal rearrangements in the ensuing bicyclic carbocationic intermediates leading to (-)-epi-β-santalene, (-)-β-santalene, (-)-α-santalene, (+)-epi-β-santalene, exo-β-bergamotene, endo-β-bergamotene, exo-α-bergamotene, and endo-α-bergamotene are presented. Interesting structural features pertaining to certain new carbocationic intermediates (such as b) resulting from the ring closure of bisabolyl cation are discussed. Extensive conformational sampling of all key intermediates along the biosynthetic pathway offered new insight into the role of the isoprenyl side chain conformation in the formation of santalene and its analogues. Although the major bicyclic products in Santalum album appear to arise from the right or left handed helical form of farnesyl pyrophosphate (FPP), different alternatives for their formation are found to be energetically feasible. The interconversion of the exo and endo isomers of bisabolyl cation and a likely epimerization, both with interesting mechanistic implications, are presented. The exo to endo conversion is identified to be energetically more favorable than another pathway emanating from the left handed helical FPP. The role of pyrophosphate (OPP(-)) in the penultimate deprotonation step leading to olefinic sesquiterpenes is also examined.

  8. Patch testing with thin-layer chromatograms of chamomile tea in patients allergic to sesquiterpene lactones.

    PubMed

    Lundh, Kerstin; Gruvberger, Birgitta; Möller, Halvor; Persson, Lena; Hindsén, Monica; Zimerson, Erik; Svensson, Ake; Bruze, Magnus

    2007-10-01

    Patients with contact allergy to sesquiterpene lactones (SLs) are usually hypersensitive to Asteraceae plant products such as herbal teas. The objective of this study was to show sensitizers in chamomile tea by patch testing with thin-layer chromatograms. Tea made from German chamomile was separated by thin-layer chromatography. Strips of the thin-layer chromatograms were used for patch testing SL-positive patients. 15 (43%) of 35 patients tested positively to 1 or more spots on the thin-layer chromatogram, with many individual reaction patterns. Patch testing with thin-layer chromatograms of German chamomile tea showed the presence of several allergens.

  9. Potent anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R. Br. ex Cass., a Q'eqchi' Maya traditional medicine.

    PubMed

    Walshe-Roussel, Brendan; Choueiri, Christine; Saleem, Ammar; Asim, Muhammd; Caal, Federico; Cal, Victor; Rojas, Marco Otarola; Pesek, Todd; Durst, Tony; Arnason, John Thor

    2013-08-01

    The widespread use of Neurolaena lobata (L.) R. Br. ex Cass. by Q'eqchi' Maya and indigenous healers throughout the Caribbean for inflammatory conditions prompted the study of the anti-inflammatory activity of this traditional medicine. The objectives of this study were to conduct a detailed ethnobotanical investigation of the uses of N. lobata by the Q'eqchi' Maya of Belize for a variety of inflammatory symptoms and to evaluate the in vitro anti-inflammatory activity of leaf extract and isolated sesquiterpene lactones. The crude 80% EtOH extract of N. lobata leaves administered at 100 μg/mL reduced LPS-stimulated TNF-α production in THP-1 monocytes by 72% relative to the stimulated vehicle control. Isolated sesquiterpene lactones, neurolenins B, C+D, lobatin B and 9α-hydroxy-8β-isovalerianyloxy-calyculatolide were more active (IC50=0.17-2.32 μM) than the positive control parthenolide (IC50=4.79 μM). The results provide a pharmacological and phytochemical basis for the traditional use of this leaf for inflammatory conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Anti-inflammatory sesquiterpene lactones from the flower of Vernonia cinerea.

    PubMed

    Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Simmons, Charles J; Borris, Robert P; Tanamatayarat, Patcharawan; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Pezzuto, John M; Chang, Leng Chee

    2012-09-01

    Bioassay-guided fractionation of the hexane extract from the flowers of Vernonia cinerea (Asteraceae) led to the isolation of a new sesquiterpene lactone, 8α-hydroxyhirsutinolide (2), and a new naturally occurring derivative, 8α-hydroxyl-1-O-methylhirsutinolide (3), along with seven known compounds (1 and 4-9). The structures of the new compounds were determined by 1D and 2D NMR experiments and by comparison with the structure of compound 1, whose relative stereochemistry was determined by X-ray analysis. The isolated compounds were evaluated for their cancer chemopreventive potential based on their ability to inhibit nitric oxide (NO) production and tumor necrosis factor alpha (TNF-α)-induced NF-κB activity. Compounds 1, 2, 4, 5, and 9 inhibited TNF-α-induced NF-κB activity with IC(50) values of 3.1, 1.9, 0.6, 5.2, and 1.6 μM, respectively; compounds 4 and 6-9 exhibited significant NO inhibitory activity with IC(50) values of 2.0, 1.5, 1.2, 2.7, and 2.4 μM, respectively. Published by Elsevier Ltd.

  11. Three New Sesquiterpene Glycosides from the Rhizomes of Trillium tschonoskii.

    PubMed

    Yang, Jie; Yang, Yin-Jun; Sun, Xin-Guang; Zhang, Jie; Zhao, Yang; Wang, Bei; Ding, Qian-Zhi; Guo, Bao-Lin; Ma, Bai-Ping

    2017-08-02

    Three new sesquiterpene glycosides, possessing a rare aglycone with a sulfonyl between C-1 and C-15 positions, named 3-(3' E -7' R ,8'-dihydroxy-4',8'-dimethyl-3'-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7'- O -β-d-glucopyranosyl-(1→4)- O -β-d-glucopyranosyl-(1→4)- O -β-d-glucopyranoside ( 1 ), 3-(3' E -7' R ,8'-dihydroxy-4',8'-dimethyl-3'-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7'- O -β-d-glucopyranosyl-(1→4)- O -β-d-glucopyranoside ( 2 ), and 3-(3' E -7' R ,8'-dihydroxy-4',8'-dimethyl-3'-nonenyl)-2,5-dihydro-1,1-dioxo-thiophen 7'- O -β-d-glucopyranosyl-6'- O -acetyl-(1→4)- O -β-d-glucopyranosyl-(1→4)- O -β-d-glucopyranoside ( 3 ), respectively, were isolated from the rhizomes of Trillium tschonoskii . Their structures were established on the basis of spectroscopic data, including HR-ESI-MS, IR, 1D and 2D NMR. The cytotoxic properties of the three compounds were investigated using human hepatic L02 cells.

  12. The bouquet of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) flowers arises from the biosynthesis of sesquiterpene volatiles in pollen grains

    PubMed Central

    Martin, Diane M.; Toub, Omid; Chiang, Angela; Lo, Bernard C.; Ohse, Sebastian; Lund, Steven T.; Bohlmann, Jörg

    2009-01-01

    Terpenoid volatiles are important information molecules that enable pollinators to locate flowers and may protect reproductive tissues against pathogens or herbivores. Inflorescences of grapevine (Vitis vinifera L.) are composed of tiny green flowers that produce an abundance of sesquiterpenoid volatiles. We demonstrate that male flower parts of grapevines are responsible for sesquiterpenoid floral scent formation. We describe temporal and spatial patterns of biosynthesis and release of floral volatiles throughout the blooming of V. vinifera L. cv. Cabernet Sauvignon. The biosynthesis of sesquiterpene volatiles, which are emitted with a light-dependent diurnal pattern early in the morning at prebloom and bloom, is localized to anthers and, more specifically, within the developing pollen grains. Valencene synthase (VvValCS) enzyme activity, which produces the major sesquiterpene volatiles of grapevine flowers, is present in anthers. VvValCS transcripts are most abundant in flowers at prebloom stages. Western blot analysis identified VvValCS protein in anthers, and in situ immunolabeling located VvValCS protein in pollen grains during bloom. Histochemical staining, as well as immunolabeling analysis by fluorescent microscopy and transmission electron microscopy, indicated that VvValCS localizes close to lipid bodies within the maturing microspore. PMID:19359488

  13. Mono- and sesquiterpene release from tomato (Solanum lycopersicum) leaves upon mild and severe heat stress and through recovery: from gene expression to emission responses

    PubMed Central

    Pazouki, Leila; Kanagendran, Arooran; Li, Shuai; Kännaste, Astrid; Memari, Hamid Rajabi; Bichele, Rudolf; Niinemets, Ülo

    2018-01-01

    Plants frequently experience heat ramps of various severities, but how and to what degree plant metabolic activity recovers from mild and severe heat stress is poorly understood. In this study, we exposed the constitutive terpene emitter, Solanum. lycopersicum leaves to mild (37 and 41 °C), moderate (46 °C) and severe (49 °C) heat ramps of 5 min. and monitored foliage photosynthetic activity, lipoxygenase pathway volatile (LOX), and mono- and sesquiterpene emissions and expression of two terpene synthase genes, β-phellandrene synthase and (E)-β-caryophyllene/α-humulene synthase, through a 24 h recovery period upon return to pre-stress conditions. Leaf monoterpene emissions were dominated by β-phellandrene and sesquiterpene emissions by (E)-β-caryophyllene, and thus, these two terpene synthase genes were representative for the two volatile terpene classes. Photosynthetic characteristics partly recovered under moderate heat stress, and very limited recovery was observed under severe stress. All stress treatments resulted in elicitation of LOX emissions that declined during recovery. Enhanced mono- and sesquiterpene emissions were observed immediately after the heat treatment, but the emissions decreased even to below the control treatment during recovery between 2-10 h, and raised again by 24 h. The expression of β-phellandrene and (E)-β-caryophyllene synthase genes decreased between 2-10 h after heat stress, and recovered to pre-stress level in mild heat stress treatment by 24 h. Overall, this study demonstrates a highly sensitive heat response of terpenoid synthesis that is mainly controlled by gene level responses under mild stress, while severe stress leads to non-recoverable declines in foliage physiological and gene expression activities. PMID:29367791

  14. A novel diarylheptanoid-bearing sesquiterpene moiety from the rhizomes of Alpinia officinarum.

    PubMed

    Wei, Na; Zhou, Zhonglin; Wei, Qing; Wang, Yong; Jiang, Jun; Zhang, Junqing; Wu, Lixiang; Dai, Shuiping; Li, Youbin

    2016-10-01

    A new diarylheptanoid analogue-bearing sesquiterpene moiety, named Alpinisin A, was isolated from the rhizomes of Alpinia officinarum Hance. The new structure was determined by various spectroscopic techniques (1)H-nuclear magnetic resonance ((1)H NMR), (13)C-attached proton test ((13)C-APT), heteronuclear single quantum coherence (HSQC), heteronuclear multiple bond correlation (HMBC), (1)H-(1)H correlation spectroscopy ((1)H-(1)HCOSY), nuclear overhauser effect spectroscopy (NOESY) and high resolution electrospray ionization mass spectrometry (HR-ESI-MS). The compound was tested for cytotoxic activity in vitro against human tumour cell lines (gastric carcinoma cell -7901 (SGC-7901), Michigan Cancer Foundation-7 (MCF-7) and Caski), which showed significant inhibitory effects with IC50 levels of 11.42, 15.14 and 14.78 μM, respectively. The novel chemical structure characterised with a diarylheptanoid linked to a chain-like sesquiterpenoid should be highlighted.

  15. Pestalotiopens A and B: stereochemically challenging flexible sesquiterpene-cyclopaldic acid hybrids from Pestalotiopsis sp.

    PubMed

    Hemberger, Yasmin; Xu, Jing; Wray, Victor; Proksch, Peter; Wu, Jun; Bringmann, Gerhard

    2013-11-11

    From the endophytic fungus Pestalotiopsis sp. isolated from the leaves of the Chinese mangrove, Rhizophora mucronata, two novel hybrid sesquiterpene-cyclopaldic acid metabolites with an unusual carbon skeleton, named pestalotiopens A and B, were obtained, together with the already known phytotoxin altiloxin B. Pestalotiopen B even contains a third, triketide-derived module. The constitutions and the absolute configurations of the new metabolites and of altiloxin B were unambiguously determined by a combination of spectroscopic methods and quantum-chemical optical-rotatory dispersion (ORD) and circular dichroism (CD) calculations. A biosynthetic pathway to pestalotiopens A and B is proposed with altiloxin B as one of the suggested precursors. Pestalotiopen A shows moderate antimicrobial activity against Enterococcus faecalis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. In vitro antiplasmodial and cytotoxic activities of sesquiterpene lactones from Vernonia fimbrillifera Less. (Asteraceae).

    PubMed

    Bordignon, Annélise; Frédérich, Michel; Ledoux, Allison; Campos, Pierre-Eric; Clerc, Patricia; Hermann, Thomas; Quetin-Leclercq, Joëlle; Cieckiewicz, Ewa

    2018-06-01

    Due to the in vitro antiplasmodial activity of leaf extracts from Vernonia fimbrillifera Less. (Asteraceae), a bioactivity-guided fractionation was carried out. Three sesquiterpene lactones were isolated, namely 8-(4'-hydroxymethacrylate)-dehydromelitensin (1), onopordopicrin (2) and 8α-[4'-hydroxymethacryloyloxy]-4-epi-sonchucarpolide (3). Their structures were elucidated by spectroscopic methods (1D and 2D NMR and MS analyses) and by comparison with published data. The isolated compounds exhibited antiplasmodial activity with IC 50 values ≤ 5 μg/mL. Cytotoxicity of the compounds against a human cancer cell line (HeLa) and a mouse lung epithelial cell line (MLE12) was assessed to determine selectivity. Compound 3 displayed promising selective antiplasmodial activity (SI > 10).

  17. High performance liquid chromatography time of flight electrospray ionization mass spectrometry for quantification of sesquiterpenes in Chrysanthemi indici Flos active extract

    PubMed Central

    Fu, Ling; Wang, Pan; Sun, Yiqun; Wang, Yangyang; Zhao, Jing; Ye, Yuting; Zhang, Yanbin; Bi, Yuefeng

    2015-01-01

    Background: Chrysanthemi indici Flos, a traditional herbal medicine is used to clearing heat–toxicity, removing the liver fire, and improving eyesight. In our preliminary work, an active extract of CTC in C. An indici Flos with anti-hepatitis B virus and liver protective activity was found by HepG2.2.1.5 test and experiment of protein synthesis in mice's injured liver. In this work, we aimed to study the active faction CTC further by qualitative and quantitative analysis method. Materials and Methods: High performance liquid chromatography time of flight electrospray ionization mass spectrometry (HPLC TOF ESI-MS) analysis method of the CTC was established. Cumambrin A and angeloylcumambrin B in CTC were analyzed by high performance liquid chromatography-ultraviolet-evaporative light scattering detector (HPLC-UV-ELSD) analysis methods. A binary gradient elution program was conducted for chromatographic separation with acetonitrile (A) and ultrapure water (B) as follows: 0–10 min, 42–46% A; 10–20 min, 46–55% A; 20–25 min, 55–60% A; and 25–35 min, 60–75% A. The column temperature and UV wavelength were set at 30°C and 205 nm. Result: Ten constituents including (3R, 5R, 6S, 7S, 10R)-7-(2-hydroxy-2-propyl)-10-methyl-4-methyleneperhy, dronaphthal-ene-3, 5, 6-triol acetone solvate; (+)-edusmance-4, (14)-ene-11, 13-diol; linarin; luteolin; apigenin; tricin; 5, 3’,4’- trimethyl-6,7-dimethoxy flavones; cumambrin A; acacetin; and angeloylcumambrin B in CTC were identified by HPLC TOF ESI-MS. The contents of sesquiterpenes in CTC were decreased by storing years. Conclusions: The results showed that both UV and ELSD methods were feasible, accurate, and the determination results were in good consistency. The contents of two sesquiterpenes decreased with storing years. Two sesquiterpenes could be used as quality control for C. indici flos CTC. PMID:26600718

  18. Lettucenin sesquiterpenes contribute significantly to the browning of lettuce.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2014-05-21

    Wound-induced changes in the composition of secondary plant compounds cause the browning of processed lettuce. Cut tissues near the lettuce butt end clearly exhibit increased formation of yellow-brown pigments. This browning reaction is typically been attributed to the oxidation of polyphenols by the enzyme polyphenol oxidase (PPO). However, in our previous study on Iceberg lettuce, we showed that, besides the enzymatic polyphenol browning, other reactions must be involved in the formation of colored structures. With the present study for the first time, we isolated yellow sesquiterpenes by multilayer countercurrent chromatography (MLCCC), followed by preparative high-performance liquid chromatography (HPLC). Further analyses by nuclear magnetic resonance (NMR) and mass spectrometry (MS) techniques identified lettucenin A and three novel derivatives. We call these compounds lettucenins A1, B, and B1. Color-dilution analyses revealed these lettucenins as key chromophores in the browning of Iceberg lettuce. A time formation curve showed the accumulation of lettucenins A and B within 40 h after cutting. Thereafter, these structures were degraded to unknown colored compounds. Lettucenin A was verified in five varieties of Lactuca. In contrast to that, lettucenin A was present only at trace levels in five varieties of Cichorium. Therefore, lettucenin A might be used as a chemosystematic marker of the genus Lactuca.

  19. Insights into the molecular mechanism of action of Celastraceae sesquiterpenes as specific, non-transported inhibitors of human P-glycoprotein.

    PubMed

    Muñoz-Martínez, Francisco; Reyes, Carolina P; Pérez-Lomas, Antonio L; Jiménez, Ignacio A; Gamarro, Francisco; Castanys, Santiago

    2006-01-01

    Dihydro-beta-agarofuran sesquiterpenes from Celastraceae have been recently shown to bind to human P-glycoprotein (Pgp), functioning as specific, mixed-type inhibitors of its drug transport activity, as well as multidrug resistance (MDR) modulators in vitro. However, nothing is known about whether such compounds are themselves transported by Pgp, or whether they affect Pgp expression as well as its activity, or about the location of their binding site within the protein. We performed transport experiments with a newly synthesized fluorescent sesquiterpene derivative, which retains the anti-Pgp activity of its natural precursor. This probe was poorly transported by Pgp, MRP1, MRP2 and BCRP transporters, compared with classical MDR substrates. Moreover, Pgp did not confer cross-resistance to the most potent dihydro-beta-agarofurans, which did not affect Pgp expression levels in several MDR cell lines. Finally, we observed competitive and non-competitive interactions between one of such dihydro-beta-agarofurans (Mama12) and classical Pgp modulators such as cyclosporin A, verapamil, progesterone, vinblastine and GF120918. These findings suggest that multidrug ABC transporters do not confer resistance to dihydro-beta-agarofurans and could not affect their absorption and biodistribution in the body. Moreover, we mapped their binding site(s) within Pgp, which may prove useful for the rational design of improved modulators based on the structure of dihydro-beta-agarofurans.

  20. Biosynthesis of abscisic acid in fungi: Identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea.

    PubMed

    Izquierdo-Bueno, Inmaculada; González-Rodríguez, Victoria E; Simon, Adeline; Dalmais, Bérengère; Pradier, Jean-Marc; Le Pêcheur, Pascal; Mercier, Alex; Walker, Anne-Sophie; Garrido, Carlos; Collado, Isidro González; Viaud, Muriel

    2018-04-30

    While abscisic acid (ABA) is known as a hormone produced by plants through the carotenoid pathway, a small number of phytopathogenic fungi are also able to produce this sesquiterpene but they use a distinct pathway that starts with the cyclization of farnesyl diphosphate (FPP) into 2Z,4E-α-ionylideneethane which is then subjected to several oxidation steps. To identify the sesquiterpene cyclase (STC) responsible for the biosynthesis of ABA in fungi, we conducted a genomic approach in Botrytis cinerea. The genome of the ABA-overproducing strain ATCC58025 was fully sequenced and five STC-coding genes were identified. Among them, Bcstc5 exhibits an expression profile concomitant with ABA production. Gene inactivation, complementation and chemical analysis demonstrated that BcStc5/BcAba5 is the key enzyme responsible for the key step of ABA biosynthesis in fungi. Unlike what is observed for most of the fungal secondary metabolism genes, the key enzyme-coding gene Bcstc5/Bcaba5 is not clustered with the other biosynthetic genes i.e. Bcaba1 to Bcaba4 that are responsible for the oxidative transformation of 2Z,4E-α-ionylideneethane. Finally, our study revealed that the presence of the Bcaba genes among Botrytis species is rare and that the majority of them do not possess the ability to produce ABA. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Effectiveness of the sesquiterpene (-)-α-bisabolol in dogs with naturally acquired canine leishmaniosis: an exploratory clinical trial.

    PubMed

    Corpas-López, V; Merino-Espinosa, G; Acedo-Sánchez, C; Díaz-Sáez, V; Navarro-Moll, M C; Morillas-Márquez, F; Martín-Sánchez, J

    2018-06-01

    The use of natural products is a promising approach for treating visceral leishmaniosis. (-)-α-Bisabolol is a sesquiterpene that have been proved active in vivo on Leishmania infantum-infected mice without showing toxicity. A single-centre, parallel-group, randomized, exploratory study was designed to assess its efficacy in a canine leishmaniosis model involving naturally infected dogs. In this clinical trial, 12 dogs were allocated into two groups and were treated with either meglumine antimoniate (100 mg/kg) through subcutaneous route or (-)-α-bisabolol (30 mg/kg) through oral route for two treatment series of 30 days, separated by a 30-day interval. A 4-month follow-up period was established as well. Parasite loads in bone marrow, lymph node and blood were estimated through quantitative PCR. Antibody titres were determined through immunofluorescence antibody test and cytokine expression values were estimated through real-time reverse transcription-PCR. Treatment safety was assessed through the evaluation of weight, gastrointestinal alterations and hematological and biochemical parameters in blood. Analyses were performed before and after treatment, and after a 4-months follow-up period. Treatment with the sesquiterpene was effective at decreasing parasite loads and increasing gamma-interferon expression level. Dogs treated with (-)-α-bisabolol did not show any toxicity sign. These results were better than those obtained using the reference drug, meglumine antimoniate. The natural compound seemed to induce a Th1 immune response that led to parasitological and clinical improvement without showing any safety issue, suggesting a high potential for the treatment of canine and human visceral leishmaniosis.

  2. Phytotoxic eremophilane sesquiterpenes from the coprophilous fungus Penicillium sp. G1-a14.

    PubMed

    Del Valle, Paulina; Figueroa, Mario; Mata, Rachel

    2015-02-27

    Bioassay-directed fractionation of an extract from the grain-based culture of the coprophilous fungus Penicillium sp. G1-a14 led to the isolation of a new eremophilane-type sesquiterpene, 3R,6R-dihydroxy-9,7(11)-dien-8-oxoeremophilane (1), along with three known analogues, namely, isopetasol (2), sporogen AO-1 (3), and dihydrosporogen AO-1 (4). The structure of 1 was elucidated using 1D and 2D NMR and single-crystal X-ray diffraction. Assignment of absolute configuration at the stereogenic centers of 1 was achieved using ECD spectroscopy combined with time-dependent density functional theory calculations. Sporogen AO-1 (3) and dihydrosporogen AO-1 (4) caused significant inhibition of radicle growth against Amaranthus hypochondriacus (IC50 = 0.17 mM for both compounds) and Echinochloa crus-galli (IC50 = 0.17 and 0.30 mM, respectively).

  3. Chemical Transformation and Biological Studies of Marine Sesquiterpene (S)-(+)-Curcuphenol and Its Analogs

    PubMed Central

    Gul, Waseem; Hammond, Nicholas L.; Yousaf, Muhammad; Peng, Jiangnan; Holley, Andy

    2007-01-01

    Chemical transformation studies of the marine sesquiterpene phenol (S)-(+)-curcuphenol (1) isolated from the Jamaican sponges, Didiscus oxeata and Myrmekioderma styx, were accomplished. In order to optimize the activity and better understand the SAR of (S)-(+)-curcuphenol, nineteen semisynthetic analogs were prepared and evaluated for activity against infectious diseases. A number of analogs showed significant activity against Mtb and Leishmania donovani, while showing good to moderate activities in antibacterial and antifungal assays as well as against P. falciparium (D6 clone) and (W2 clone). The analogs a, c, h, and r exhibited Mtb activity with MICs of 24.6, 41.2, 6.90, and 50.5 μM, respectively. Analog f shows enhanced activity against L. donovani with an IC50 of 0.6 μM and IC90 of 40 μM respectively. PMID:17804167

  4. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea

    PubMed Central

    Youn, Ui Joung; Miklossy, Gabriella; Chai, Xingyun; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Turkson, James; Chang, Leng Chee

    2014-01-01

    Four new sesquiterpene lactones, 8α-(2′Z-tigloyloxy)-hirsutinolide (1), 8α-(2′Z-tigloyloxy)-hirsutinolide-13-O-acetate (2), 8α-(4-hydroxytigloyloxy)-hirsutinolide (3), and 8α-hydroxy-13-O-tigloyl-hirsutinolide (4), along with seven known derivatives (5–11), three norisoprenoids (12–14), a flavonoid (15), and a linoleic acid derivative (16), were isolated from the chloroform partition of a methanol extract from the combined leaves and stems of Vernonia cinerea. Their structures were established by 1D and 2D NMR, UV, and MS analyses. Compounds 1–16 were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbour aberrantly-active STAT3, compared to normal NIH3T3 mouse fibroblasts that show no evidence of activated STAT3. Among the isolates, compounds 2 and 7 inhibited the aberrant STAT3 activity in glioblastoma or breast cancer cells. Further, compounds 7 and 8 inhibited viability of all three cell lines, compounds 2, 4, and 9 predominantly inhibited the viability of the U251MG glioblastoma cell line. PMID:24370662

  5. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea.

    PubMed

    Youn, Ui Joung; Miklossy, Gabriella; Chai, Xingyun; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Turkson, James; Chang, Leng Chee

    2014-03-01

    Four new sesquiterpene lactones, 8α-(2'Z-tigloyloxy)-hirsutinolide (1), 8α-(2'Z-tigloyloxy)-hirsutinolide-13-O-acetate (2), 8α-(4-hydroxytigloyloxy)-hirsutinolide (3), and 8α-hydroxy-13-O-tigloyl-hirsutinolide (4), along with seven known derivatives (5-11), three norisoprenoids (12-14), a flavonoid (15), and a linoleic acid derivative (16), were isolated from the chloroform partition of a methanol extract from the combined leaves and stems of Vernonia cinerea. Their structures were established by 1D and 2D NMR, UV, and MS analyses. Compounds 1-16 were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbour aberrantly-active STAT3, compared to normal NIH3T3 mouse fibroblasts that show no evidence of activated STAT3. Among the isolates, compounds 2 and 7 inhibited the aberrant STAT3 activity in glioblastoma or breast cancer cells. Further, compounds 7 and 8 inhibited viability of all three cell lines, compounds 2, 4, and 9 predominantly inhibited the viability of the U251MG glioblastoma cell line. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Sesquiterpene amino ether and cytotoxic phenols from Dendrobium wardianum Warner.

    PubMed

    Zhang, Cong; Liu, Shou-Jin; Yang, Liu; Yuan, Ming-Yan; Li, Jin-Yu; Hou, Bo; Li, Hong-Mei; Yang, Xing-Zhi; Ding, Chang-Chun; Hu, Jiang-Miao

    2017-10-01

    A new bibenzyl derivative, dendrocandin V (1) and a new sesquiterpene amino ether, wardianumine A (2), together with eleven known compounds, including phenanthrenes (denbinobin (3), 9,10-dihydro-denbinobin (4), mostatin (5), loddigesiinols A (6)), bibenzyls (moscatilin (7), 5-hydroxy-3,4'-dimethoxybibenzyl (8), 3,4-dihydroxy-5,4'-dimethoxy bibenzyl (9), dendrocandin A (10), gigantol (11), dendrocandin U (12)) and an alkaloids (dihydroshihunine, 13) were isolated from the EtOH extraction of stems of Dendrobium wardianum Warner. Isolation of the new compound 2 indicated that N,N-dimethylethanolamine as the key adduction in the synthesis of dendroxine and its analogs in Dendrobium species. The hypothetical biosynthetic pathway of 2 was then postulated. Inspired by literature and traditional usage of the herbal medicine, some compounds were sent for cytotoxic activity and the results indicated that compounds 1, 3, 4, 5 showed cytotoxic activities against five human cancer cell lines (HL-60, A-549, SMMC-7721, MCF-7, and SW-480) with IC50 from 2.33-38.48μM. Among those compounds, 3 and 4 showed cell line selectivity with strong activity comparable to DDP. Copyright © 2017. Published by Elsevier B.V.

  7. Norisoprenoids, sesquiterpenes and terpenoids content of Valpolicella wines during ageing: investigating aroma potential in relationship to evolution of tobacco and balsamic aroma in aged wine

    NASA Astrophysics Data System (ADS)

    Slaghenaufi, Davide; Ugliano, Maurizio

    2018-03-01

    During wine ageing, tobacco and balsamic aroma notes appear. In this paper, volatile compounds directly or potentially related to those aromas have been investigated in Corvina and Corvinone wines during aging. Corvina and Corvinone are two northern-Italy autochthonous red grape varieties, used to produce Valpolicella Classico and Amarone wines, both characterized by tobacco and balsamic aroma notes. Wines were analysed shortly after bottling or following model ageing at 60 °C for 48, 72, and 168 hours. Volatile compounds were analysed by HS-SPME-GC-MS. Results showed that compounds related to tobacco aroma (β-damascenone, 3-oxo-α-ionol, (E)-1-(2,3,6-Trimethylphenyl)-buta-1,3-diene (TPB) and megastigmatrienones) increased in relationship to storage time with different patterns. β-Damascenone and 3-oxo-α-ionol rapidly increased to reach a plateau in the first 48-72 hours of model ageing. Instead, TPB and megastigmatrienones concentration showed a linear correlation with ageing time. During model ageing, several cyclic terpenes tended to increase. Among them 1,8-cineole and 1,4-cineole, previously reported to contribute to red wine eucalyptus notes increased proportionally to storage time, and this behavior was clearly associated with reactions involving α-terpineol, limonene and terpinolene, as confirmed by studies with model wine solutions. Among other relevant volatile compounds, sesquiterpenes appear to contribute potentially balsamic and spicy aroma notes. In this study, linear sesquiterpenes (nerolidol, farnesol) underwent acid hydrolysis during long wine ageing, while cyclic sesquiterpenes seemed to increase with time. The chemical pathways associated with evolution of some of the compounds investigated have been studied in model wine.

  8. Inhibition of β-Secretase Activity by Monoterpenes, Sesquiterpenes, and C13 Norisoprenoids.

    PubMed

    Marumoto, Shinsuke; Okuno, Yoshiharu; Miyazawa, Mitsuo

    2017-08-01

    Inhibition of β-secretase (BACE1) is currently regarded as the leading treatment strategy for Alzheimer's disease. In the present study, we aimed to screen the in vitro inhibitory activity of 80 types of aroma compounds (monoterpenes, sesquiterpenes, and C 13 norisoprenoids), including plant-based types, at a 200-μM concentration against a recombinant human BACE1. The results showed that the most potent inhibitor of BACE1 was geranyl acetone followed by (+)-camphor, (-)-fenchone, (+)-fenchone, and (-)-camphor with the half-maximal inhibitory concentration (IC 50 ) values of 51.9 ± 3.9, 95.9 ± 11.0, 106.3 ± 14.9, 117.0 ± 18.6, and 134.1 ± 16.4 μM, respectively. Furthermore, the mechanism of inhibition of BACE1 by geranyl acetone was analyzed using Dixon kinetics plus Cornish-Bowden plots, which revealed mixed-type mode. Therefore aroma compounds may be used as potential lead molecules for designing anti-BACE1 agents.

  9. Sesquiterpene lactone dermatitis in the young: is atopy a risk factor?

    PubMed

    Paulsen, Evy; Otkjaer, Aksel; Andersen, Klaus E

    2008-07-01

    Screening for Compositae contact allergy has documented fairly high prevalence in adults, and recent studies indicate that the allergy may be more common in children than previously believed. However, detailed information on sensitization in this age group is sparse. The objective of this study was to present another 2 cases in children and review the literature. Screening with sesquiterpene lactone (SL) mix has shown prevalence of 0.5% and 1.8% in 2 studies, while screening with 2 different Compositae mixes detected 4.2% and 2.6% positives among children and adolescents. All individual case reports describe sensitization in atopic children, and the largest screening study showed a prevalence of Compositae mix sensitization that was significantly higher in children with atopic dermatitis compared with non-atopics. Compositae sensitization should be considered in children with a family or personal history of atopy, summer-related, or -exacerbated dermatitis of any kind, and a history of plant exposure. Screening with SL mix is recommended but should be supplemented with plant extracts based on exposure history. Compositae weeds, especially dandelions, seem to be important sensitizers in children.

  10. Bioherbicidal activity of a germacranolide sesquiterpene dilactone from Ambrosia artemisiifolia L.

    PubMed

    Molinaro, Francesco; Monterumici, Chiara Mozzetti; Ferrero, Aldo; Tabasso, Silvia; Negre, Michèle

    2016-12-01

    Ambrosia artemisiifolia L. (common ragweed) is an invasive plant whose allelopathic properties have been suggested by its field behaviour and demonstrated through phytotoxicity bioassays. However, the nature of the molecules responsible for the allelopathic activity of common ragweed has not been explored. The main objective of this study was to identify the phytotoxic molecules produced by A. artemisiifolia. A preliminary investigation has indicated that a methanol extract of A. artemisiifolia completely inhibited the germination of cress and radish. Semi-preparative fractionation of the methanol extract allowed separating of phytotoxic fraction which contained a single compound. The structure of this compound was elucidated by liquid chromatography-mass spectrometry (LC-MS)/MS, high-resolution mass spectral, nuclear magnetic resonance, and Fourier transform infrared spectra as sesquiterpene lactone isabelin (C 15 H 16 O 4 ). The effect of pure isabelin was tested on four different weed species, confirming the inhibitory activity of molecule. The results indicate directions for the future studies about herbicidal specific activity of isabelin, as pure molecule or in the crude extract, as a potential candidate for biological weed control.

  11. In vivo assessment of plant extracts for control of plant diseases: A sesquiterpene ketolactone isolated from Curcuma zedoaria suppresses wheat leaf rust.

    PubMed

    Han, Jae Woo; Shim, Sang Hee; Jang, Kyoung Soo; Choi, Yong Ho; Dang, Quang Le; Kim, Hun; Choi, Gyung Ja

    2018-02-01

    As an alternative to synthetic pesticides, natural materials such as plant extracts and microbes have been considered to control plant diseases. In this study, methanol extracts of 120 plants were explored for in vivo antifungal activity against Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia triticina, and Blumeria graminis f. sp. hordei. Of the 120 plant extracts, eight plant extracts exhibited a disease control efficacy of more than 90% against at least one of five plant diseases. In particular, a methanol extract of Curcuma zedoaria rhizomes exhibited strong activity against wheat leaf rust caused by P. triticina. When the C. zedoaria methanol extracts were partitioned with various solvents, the layers of n-hexane, methylene chloride, and ethyl acetate showed disease control values of 100, 80, and 43%, respectively, against wheat leaf rust. From the C. zedoaria rhizome extracts, an antifungal substance was isolated and identified as a sesquiterpene ketolactone based on the mass and nuclear magnetic resonance spectral data. The active compound controlled the development of rice sheath blight, wheat leaf rust, and tomato late blight. Considering the in vivo antifungal activities of the sesquiterpene ketolactone and the C. zedoaria extracts, these results suggest that C. zedoaria can be used as a potent fungicide in organic agriculture.

  12. Automating gene library synthesis by structure-based combinatorial protein engineering: examples from plant sesquiterpene synthases.

    PubMed

    Dokarry, Melissa; Laurendon, Caroline; O'Maille, Paul E

    2012-01-01

    Structure-based combinatorial protein engineering (SCOPE) is a homology-independent recombination method to create multiple crossover gene libraries by assembling defined combinations of structural elements ranging from single mutations to domains of protein structure. SCOPE was originally inspired by DNA shuffling, which mimics recombination during meiosis, where mutations from parental genes are "shuffled" to create novel combinations in the resulting progeny. DNA shuffling utilizes sequence identity between parental genes to mediate template-switching events (the annealing and extension of one parental gene fragment on another) in PCR reassembly reactions to generate crossovers and hence recombination between parental genes. In light of the conservation of protein structure and degeneracy of sequence, SCOPE was developed to enable the "shuffling" of distantly related genes with no requirement for sequence identity. The central principle involves the use of oligonucleotides to encode for crossover regions to choreograph template-switching events during PCR assembly of gene fragments to create chimeric genes. This approach was initially developed to create libraries of hybrid DNA polymerases from distantly related parents, and later developed to create a combinatorial mutant library of sesquiterpene synthases to explore the catalytic landscapes underlying the functional divergence of related enzymes. This chapter presents a simplified protocol of SCOPE that can be integrated with different mutagenesis techniques and is suitable for automation by liquid-handling robots. Two examples are presented to illustrate the application of SCOPE to create gene libraries using plant sesquiterpene synthases as the model system. In the first example, we outline how to create an active-site library as a series of complex mixtures of diverse mutants. In the second example, we outline how to create a focused library as an array of individual clones to distil minimal combinations of

  13. Developmental and Environmental Effects on Sesquiterpene Lactones in Cultivated Arnica montana L.

    PubMed

    Todorova, Milka; Trendafilova, Antoaneta; Vitkova, Antonina; Petrova, Maria; Zayova, Ely; Antonova, Daniela

    2016-08-01

    The amount of sesquiterpene lactones and the lactone profile of Arnica montana L. in flowering and seed formation stages in vitro and in vivo propagated from seeds of German, Ukrainian, and Austrian origin and grown in two experimental fields were studied. It was found that in vitro propagated 2-year plants in full flowering stage accumulated higher amount of lactones in comparison to in vivo propagated 3-year plants and to the seed formation stage, respectively. Helenalins predominated in in vivo propagated 2-year or in vitro propagated 3-year plants. 2-Methylbutyrate (2MeBu) was the principal ester in the samples with prevalence of helenalins, while isobutyrate (iBu) was the major one in the samples with predominance of 11,13-dihydrohelenalins. The results revealed that the environmental conditions on Vitosha Mt. are more suitable for cultivation of A. montana giving higher content of lactones. © 2016 Wiley-VHCA AG, Zürich.

  14. Neopetrosiquinones A and B, Sesquiterpene Benzoquinones Isolated from the Deep-water Sponge Neopetrosia cf. proxima

    PubMed Central

    Winder, Priscilla L.; Baker, Heather L.; Linley, Patricia; Guzmán, Esther; Pomponi, Shirley A.; Diaz, M. Cristina; Reed, John K.; Wright, Amy E.

    2011-01-01

    Two new marine-derived sesquiterpene benzoquinones which we designate as neopetrosiquinone A (1) and B (2), have been isolated from a deep-water sponge of the family Petrosiidae. The structures were elucidated on the basis of their spectroscopic data. Compounds 1 and 2 inhibit the in vitro proliferation of the DLD-1 human colorectal adenocarcinoma cell line with IC50 values of 3.7 and 9.8 μM, respectively, and the PANC-1 human pancreatic carcinoma cell line with IC50 values of 6.1 and 13.8 μM, respectively. Neopetrosiquinone A (1) also inhibited the in vitro proliferation of the AsPC-1 human pancreatic carcinoma cell line with an IC50 value of 6.1 μM. The compounds are structurally related to alisiaquinone A, cyclozonarone and xestoquinone. PMID:22014756

  15. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities.

    PubMed

    Mathema, Vivek Bhakta; Koh, Young-Sang; Thakuri, Balkrishna Chand; Sillanpää, Mika

    2012-04-01

    Parthenolide, a naturally occurring sesquiterpene lactone derived from feverfew (Tanacetum parthenium), exhibits exceptional anti-cancer and anti-inflammatory properties, making it a prominent candidate for further studies and drug development. In this review, we briefly investigate molecular events and cell-specific activities of this chemical in relation to cytochrome c, nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), signal transduction and activation of transcription (STAT), reactive oxygen species (ROS), TCP, HDACs, microtubules, and inflammasomes. This paper reports that parthenolide shows strong NF-κB- and STAT-inhibition-mediated transcriptional suppression of pro-apoptotic genes. This compound acts both at the transcriptional level and by direct inhibition of associated kinases (IKK-β). Similarly, this review discusses parthenolide-induced ROS-mediated apoptosis of tumor cells via the intrinsic apoptotic signaling pathway. The unique ability of this compound to not harm normal cells but at the same time induce sensitization to extrinsic as well as intrinsic apoptosis signaling in cancer cells provides an important, novel therapeutic strategy for treatment of cancer and inflammation-related disorders.

  16. Production of mono- and sesquiterpenes in Camelina sativa oilseed.

    PubMed

    Augustin, Jörg M; Higashi, Yasuhiro; Feng, Xiaohong; Kutchan, Toni M

    2015-09-01

    Camelina was bioengineered to accumulate (4 S )-limonene and (+)-δ-cadinene in seed. Plastidic localization of the recombinant enzymes resulted in higher yields than cytosolic localization. Overexpressing 1-deoxy- d -xylulose-5-phosphate synthase ( DXS ) further increased terpene accumulation. Many plant-derived compounds of high value for industrial or pharmaceutical applications originate from plant species that are not amenable to cultivation. Biotechnological production in low-input organisms is an attractive alternative. Several microbes are well established as biotechnological production platforms; however, their growth requires fermentation units, energy input, and nutrients. Plant-based production systems potentially allow the generation of high-value compounds on arable land with minimal input. Here we explore whether Camelina sativa (camelina), an emerging low-input non-foodstuff Brassicaceae oilseed crop grown on marginal lands or as a rotation crop on fallow land, can successfully be refactored to produce and store novel compounds in seed. As proof-of-concept, we use the cyclic monoterpene hydrocarbon (4S)-limonene and the bicyclic sesquiterpene hydrocarbon (+)-δ-cadinene, which have potential biofuel and industrial solvent applications. Post-translational translocation of the recombinant enzymes to the plastid with concurrent overexpression of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) resulted in the accumulation of (4S)-limonene and (+)-δ-cadinene up to 7 mg g(-1) seed and 5 mg g(-1) seed, respectively. This study presents the framework for rapid engineering of camelina oilseed production platforms for terpene-based high-value compounds.

  17. The mono - and sesquiterpene content of aphid-induced galls on Pistacia palaestina is not a simple reflection of their composition in intact leaves.

    PubMed

    Rand, Karin; Bar, Einat; Ben-Ari, Matan; Lewinsohn, Efraim; Inbar, Moshe

    2014-06-01

    Pistacia palaestina Boiss. (Anacardiaceae), a sibling species of P. terebinthus also known as turpentine tree or terebinth tree, is common in the Levant region. The aphid Baizongia pistaciae L. manipulates the leaves of the plant to form large galls, which provide both food and protection for its developing offspring. We analyzed the levels and composition of mono-and sesquiterpenes in both leaves and galls of ten naturally growing trees. Our results show that monoterpene hydrocarbons are the main constituents of P. palaestina leaves and galls, but terpene levels and composition vary among trees. Despite this inter-tree variation, terpene levels and compositions in galls from different trees resemble each other more than the patterns displayed by leaves from the same trees. Generally, galls contain 10 to 60 fold higher total terpene amounts than leaves, especially of the monoterpenes α-pinene and limonene. Conversely, the leaves generally accumulate more sesquiterpenes, in particular E-caryophyllene, germacrene D and δ-cadinene, in comparison to galls. Our results clearly show that the terpene pattern in the galls is not a simple reflection of that of the leaves and suggest that aphids have a strong impact on the metabolism of their host plant, possibly for their own defense.

  18. Sesquiterpene emissions from vegetation: a review

    NASA Astrophysics Data System (ADS)

    Duhl, T. R.; Helmig, D.; Guenther, A.

    2007-11-01

    This literature review summarizes the environmental controls governing biogenic sesquiterpene (SQT) emissions and presents a compendium of numerous SQT-emitting plant species as well as the quantities and ratios of SQT species they have been observed to emit. The results of many enclosure-based studies indicate that temporal SQT emission variations appear to be dominated mainly by ambient temperatures although other factors contribute (e.g. seasonal variations). This implies that SQT emissions have increased significance at certain times of the year, especially in late spring to mid-summer. The strong temperature dependency of SQT emissions also creates the distinct possibility of increasing SQT emissions in a warmer climate. Disturbances to vegetation (from herbivores and possibly violent weather events) are clearly also important in controlling short-term SQT emissions bursts, though the relative contribution of disturbance-induced emissions is not known. Based on the biogenic SQT emission studies reviewed here, SQT emission rates among numerous species have been observed to cover a wide range of values, and exhibit substantial variability between individuals and across species, as well as at different environmental and phenological states. These emission rates span several orders of magnitude (10s-1000s of ng gDW-1 h-1). Many of the higher rates were reported by early SQT studies, which may have included artificially-elevated SQT emission rates due to higher-than-ambient enclosure temperatures and disturbances to enclosed vegetation prior to and during sample collection. When predicting landscape-level SQT fluxes, modelers must consider the numerous sources of variability driving observed SQT emissions. Characterizations of landscape and global SQT fluxes are highly uncertain given differences and uncertainties in experimental protocols and measurements, the high variability in observed emission rates from different species, the selection of species that have

  19. Sesquiterpene emissions from vegetation: a review

    NASA Astrophysics Data System (ADS)

    Duhl, T. R.; Helmig, D.; Guenther, A.

    2008-05-01

    This literature review summarizes the environmental controls governing biogenic sesquiterpene (SQT) emissions and presents a compendium of numerous SQT-emitting plant species as well as the quantities and ratios of SQT species they have been observed to emit. The results of many enclosure-based studies indicate that temporal SQT emission variations appear to be dominated mainly by ambient temperatures although other factors contribute (e.g., seasonal variations). This implies that SQT emissions have increased significance at certain times of the year, especially in late spring to mid-summer. The strong temperature dependency of SQT emissions also creates the distinct possibility of increasing SQT emissions in a warmer climate. Disturbances to vegetation (from herbivores and possibly violent weather events) are clearly also important in controlling short-term SQT emissions bursts, though the relative contribution of disturbance-induced emissions is not known. Based on the biogenic SQT emissions studies reviewed here, SQT emission rates among numerous species have been observed to cover a wide range of values, and exhibit substantial variability between individuals and across species, as well as at different environmental and phenological states. These emission rates span several orders of magnitude (10s-1000s of ng gDW-1 h-1). Many of the higher rates were reported by early SQT studies, which may have included artificially-elevated SQT emission rates due to higher-than-ambient enclosure temperatures and disturbances to enclosed vegetation prior to and during sample collection. When predicting landscape-level SQT fluxes, modelers must consider the numerous sources of variability driving observed SQT emissions. Characterizations of landscape and global SQT fluxes are highly uncertain given differences and uncertainties in experimental protocols and measurements, the high variability in observed emission rates from different species, the selection of species that have

  20. Secondary organic aerosol formation from the oxidation of a series of sesquiterpenes: α-cedrene, β-caryophyllene, α-humulene and α-farnesene with O3,OH and NO3 radicals.

    EPA Science Inventory

    A series of sesquiterpenes were individually oxidized under a range of conditions, including irradiation in the presence of NOx, reactions with O3 or reactions with NO3 radicals. Experiments were conducted in either static mode to observe temporal...

  1. Neopetrosiquinones A and B, sesquiterpene benzoquinones isolated from the deep-water sponge Neopetrosia cf. proxima.

    PubMed

    Winder, Priscilla L; Baker, Heather L; Linley, Patricia; Guzmán, Esther A; Pomponi, Shirley A; Diaz, M Cristina; Reed, John K; Wright, Amy E

    2011-11-15

    Two new marine-derived sesquiterpene benzoquinones which we designate as neopetrosiquinones A (1) and B (2), have been isolated from a deep-water sponge of the family Petrosiidae. The structures were elucidated on the basis of their spectroscopic data. Compounds 1 and 2 inhibit the in vitro proliferation of the DLD-1 human colorectal adenocarcinoma cell line with IC(50) values of 3.7 and 9.8 μM, respectively, and the PANC-1 human pancreatic carcinoma cell line with IC(50) values of 6.1 and 13.8 μM, respectively. Neopetrosiquinone A (1) also inhibited the in vitro proliferation of the AsPC-1 human pancreatic carcinoma cell line with an IC(50) value of 6.1 μM. The compounds are structurally related to alisiaquinone A, cyclozonarone, and xestoquinone. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. New dihydro-β-agarofuran sesquiterpenes from Parnassia wightiana wall: isolation, identification and cytotoxicity against cancer cells.

    PubMed

    Lv, Chao; Zheng, Zuo-Lue; Miao, Fang; Geng, Hui-Ling; Zhou, Le; Liu, La-Ping

    2014-06-20

    Five new (4-8) and three known (1-3) dihydro-β-agarofuran sesquiterpene polyesters were isolated from the whole plants of Parnassia wightiana. The structures of all compounds were elucidated through spectroscopic analysis including 2D-NMR and HR-MS. The absolute configuration of these compounds was established by X-ray diffraction analysis, comparison of NOESY spectra and biogenetic means. The cytotoxities of compounds 2-8 were evaluated in vitro against HL-60, SMMC-7721, A549, MCF-7 and SW480 cell lines. Compounds 5-7 exhibited the highest activities with IC₅₀ values of 11.8-30.1 μM in most cases. The SAR revealed that the introduction of hydroxyl group was able to significantly improve the activities of the compounds for most of the cell lines.

  3. Sesquiterpene lactones in Arnica montana: helenalin and dihydrohelenalin chemotypes in Spain.

    PubMed

    Perry, Nigel B; Burgess, Elaine J; Rodríguez Guitián, Manuel A; Romero Franco, Rosa; López Mosquera, Elvira; Smallfield, Bruce M; Joyce, Nigel I; Littlejohn, Roger P

    2009-05-01

    An analytical RPLC method for sesquiterpene lactones in Arnica montana has been extended to include quantitative analyses of dihydrohelenalin esters. LC-ESI-MS-MS distinguished the isomeric helenalin and dihydrohelenalin esters. The dihydrohelenalin esters have lower response factors for UV detection than do helenalin esters, which must be taken into account for quantitative analyses. Analyses of flowers from 16 different wild populations of A. montana in Spain showed differing proportions of helenalin and dihydrohelenalin esters. For the first time a chemotype with high levels of helenalin esters (total helenalins 5.2-10.3 mg/g dry weight) is reported in Spanish A. montana. These samples were from heath lands at high altitude (1330-1460 m), whereas samples from meadows and peat bogs at lower altitudes were the expected chemotype with high levels of dihydrohelenalin esters (total dihydrohelenalins 10.9-18.2 mg/g). The phenolic compounds, both flavonoid glycosides and caffeoylquinic acids, in Spanish A. montana are reported for the first time. The levels of several of these compounds differed significantly between samples from heath lands and samples from peat bogs or meadows, with the heath land samples being most similar to central European A. montana in their phenolic composition. Copyright Georg Thieme Verlag KG Stuttgart. New York.

  4. Dehydroleucodine, a Sesquiterpene Lactone from Gynoxys verrucosa, Demonstrates Cytotoxic Activity against Human Leukemia Cells.

    PubMed

    Ordóñez, Paola E; Sharma, Krishan K; Bystrom, Laura M; Alas, Maria A; Enriquez, Raul G; Malagón, Omar; Jones, Darin E; Guzman, Monica L; Compadre, Cesar M

    2016-04-22

    The sesquiterpene lactones dehydroleucodine (1) and leucodine (2) were isolated from Gynoxys verrucosa, a species used in traditional medicine in southern Ecuador. The activity of these compounds was determined against eight acute myeloid leukemia (AML) cell lines and compared with their activity against normal peripheral blood mononuclear cells. Compound 1 showed cytotoxic activity against the tested cell lines, with LD50 values between 5.0 and 18.9 μM. Compound 2 was inactive against all of the tested cell lines, demonstrating that the exocyclic methylene in the lactone ring is required for cytotoxic activity. Importantly, compound 1 induced less toxicity to normal blood cells than to AML cell lines and was active against human AML cell samples from five patients, with an average LD50 of 9.4 μM. Mechanistic assays suggest that compound 1 has a similar mechanism of action to parthenolide (3). Although these compounds have significant structural differences, their lipophilic surface signatures show striking similarities.

  5. Sesquiterpenes with TRAIL-resistance overcoming activity from Xanthium strumarium.

    PubMed

    Karmakar, Utpal K; Ishikawa, Naoki; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2015-08-01

    The ability of TRAIL to selectively induce apoptosis in cancer cells while sparing normal cells makes it an attractive target for the development of new cancer therapy. In search of bioactive natural products for overcoming TRAIL-resistance from natural resources, we previously reported a number of active compounds. In our screening program on natural resources targeting overcoming TRAIL-resistance, activity-guided fractionations of the extract of Xanthium strumarium led to the isolation of five sesquiterpene compounds (1-5). 11α,13-dihydroxanthinin (2) and 11α,13-dihydroxanthuminol (3) were first isolated from natural resources and xanthinosin (1), desacetylxanthanol (4), and lasidiol p-methoxybenzoate (5) were known compounds. All compounds (1-5) showed potent TRAIL-resistance overcoming activity at 8, 20, 20, 16, and 16 μM, respectively, in TRAIL-resistant AGS cells. Compounds 1 and 5 enhanced the levels of apoptosis inducing proteins DR4, DR5, p53, CHOP, Bax, cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9 and also decreased the levels of cell survival protein Bcl-2 in TRAIL-resistant AGS cells in a dose-dependent manner. Compound 1 also enhanced the levels of DR4 and DR5 proteins in a time-dependent manner. Thus, compounds 1 and 5 were found to induce both extrinsic and intrinsic apoptotic cell death. Compound 1 also exhibit TRAIL-resistance overcoming activity in DLD1, DU145, HeLa, and MCF7 cells but did not decrease viability in non-cancer HEK293 cells up to 8 μM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Two Novel Tyrosinase Inhibitory Sesquiterpenes Induced by CuCl2 from a Marine-Derived Fungus Pestalotiopsis sp. Z233

    PubMed Central

    Wu, Bin; Wu, Xiaodan; Sun, Min; Li, Minhui

    2013-01-01

    Two new sesquiterpenes, 1β,5α,6α,14-tetraacetoxy-9α-benzoyloxy-7βH-eudesman-2β,11-diol (1) and 4α,5α-diacetoxy-9α-benzoyloxy-7βH-eudesman-1β,2β,11,14-tetraol (2), were produced as stress metabolites in the cultured mycelia of Pestalotiopsis sp. Z233 isolated from the algae Sargassum horneri in response to abiotic stress elicitation by CuCl2. Their structures were established by spectroscopic means. New compounds 1 and 2 showed tyrosinase inhibitory activities with IC50 value of 14.8 µM and 22.3 µM. PMID:23917067

  7. Two novel tyrosinase inhibitory sesquiterpenes induced by CuCl2 from a marine-derived fungus Pestalotiopsis sp. Z233.

    PubMed

    Wu, Bin; Wu, Xiaodan; Sun, Min; Li, Minhui

    2013-08-02

    Two new sesquiterpenes, 1β,5α,6α,14-tetraacetoxy-9α-benzoyloxy-7β H-eudesman-2β,11-diol (1) and 4α,5α-diacetoxy-9α-benzoyloxy-7βH-eudesman-1β,2β,11, 14-tetraol (2), were produced as stress metabolites in the cultured mycelia of Pestalotiopsis sp. Z233 isolated from the algae Sargassum horneri in response to abiotic stress elicitation by CuCl2. Their structures were established by spectroscopic means. New compounds 1 and 2 showed tyrosinase inhibitory activities with IC50 value of 14.8 µM and 22.3 µM.

  8. Biosynthesis of Costunolide, Dihydrocostunolide, and Leucodin. Demonstration of Cytochrome P450-Catalyzed Formation of the Lactone Ring Present in Sesquiterpene Lactones of Chicory

    PubMed Central

    de Kraker, Jan-Willem; Franssen, Maurice C.R.; Joerink, Maaike; de Groot, Aede; Bouwmeester, Harro J.

    2002-01-01

    Chicory (Cichorium intybus) is known to contain guaianolides, eudesmanolides, and germacranolides. These sesquiterpene lactones are postulated to originate from a common germacranolide, namely (+)-costunolide. Whereas a pathway for the formation of germacra-1(10),4,11(13)-trien-12-oic acid from farnesyl diphosphate had previously been established, we now report the isolation of an enzyme activity from chicory roots that converts the germacrene acid into (+)-costunolide. This (+)-costunolide synthase catalyzes the last step in the formation of the lactone ring present in sesquiterpene lactones and is dependent on NADPH and molecular oxygen. Incubation of the germacrene acid in the presence of 18O2 resulted in the incorporation of one atom of 18O into (+)-costunolide. The label was situated at the ring oxygen atom. Hence, formation of the lactone ring most likely occurs via C6-hydroxylation of the germacrene acid and subsequent attack of this hydroxyl group at the C12-atom of the carboxyl group. Blue light-reversible CO inhibition and experiments with cytochrome P450 inhibitors demonstrated that the (+)-costunolide synthase is a cytochrome P450 enzyme. In addition, enzymatic conversion of (+)-costunolide into 11(S),13-dihydrocostunolide and leucodin, a guaianolide, was detected. The first-mentioned reaction involves an enoate reductase, whereas the formation of leucodin from (+)-costunolide probably involves more than one enzyme, including a cytochrome P450 enzyme. PMID:12011356

  9. Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demonstration of cytochrome p450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory.

    PubMed

    de Kraker, Jan-Willem; Franssen, Maurice C R; Joerink, Maaike; de Groot, Aede; Bouwmeester, Harro J

    2002-05-01

    Chicory (Cichorium intybus) is known to contain guaianolides, eudesmanolides, and germacranolides. These sesquiterpene lactones are postulated to originate from a common germacranolide, namely (+)-costunolide. Whereas a pathway for the formation of germacra-1(10),4,11(13)-trien-12-oic acid from farnesyl diphosphate had previously been established, we now report the isolation of an enzyme activity from chicory roots that converts the germacrene acid into (+)-costunolide. This (+)-costunolide synthase catalyzes the last step in the formation of the lactone ring present in sesquiterpene lactones and is dependent on NADPH and molecular oxygen. Incubation of the germacrene acid in the presence of 18O2 resulted in the incorporation of one atom of 18O into (+)-costunolide. The label was situated at the ring oxygen atom. Hence, formation of the lactone ring most likely occurs via C6-hydroxylation of the germacrene acid and subsequent attack of this hydroxyl group at the C12-atom of the carboxyl group. Blue light-reversible CO inhibition and experiments with cytochrome P450 inhibitors demonstrated that the (+)-costunolide synthase is a cytochrome P450 enzyme. In addition, enzymatic conversion of (+)-costunolide into 11(S),13-dihydrocostunolide and leucodin, a guaianolide, was detected. The first-mentioned reaction involves an enoate reductase, whereas the formation of leucodin from (+)-costunolide probably involves more than one enzyme, including a cytochrome P450 enzyme.

  10. New Dihydro-β-agarofuran Sesquiterpenes from Parnassia wightiana Wall: Isolation, Identification and Cytotoxicity against Cancer Cells

    PubMed Central

    Lv, Chao; Zheng, Zuo-Lue; Miao, Fang; Geng, Hui-Ling; Zhou, Le; Liu, La-Ping

    2014-01-01

    Five new (4–8) and three known (1–3) dihydro-β-agarofuran sesquiterpene polyesters were isolated from the whole plants of Parnassia wightiana. The structures of all compounds were elucidated through spectroscopic analysis including 2D-NMR and HR-MS. The absolute configuration of these compounds was established by X-ray diffraction analysis, comparison of NOESY spectra and biogenetic means. The cytotoxities of compounds 2–8 were evaluated in vitro against HL-60, SMMC-7721, A549, MCF-7 and SW480 cell lines. Compounds 5–7 exhibited the highest activities with IC50 values of 11.8–30.1 μM in most cases. The SAR revealed that the introduction of hydroxyl group was able to significantly improve the activities of the compounds for most of the cell lines. PMID:24955789

  11. Novel dihydro-beta-agarofuran sesquiterpenes as potent modulators of human P-glycoprotein dependent multidrug resistance.

    PubMed

    Torres-Romero, David; Muñoz-Martínez, Francisco; Jiménez, Ignacio A; Castanys, Santiago; Gamarro, Francisco; Bazzocchi, Isabel L

    2009-12-21

    P-Glycoprotein (Pgp) overexpression is one factor contributing to multidrug resistance (MDR) in cancer cells and represents one drawback in the treatment of cancer. In an attempt to find more specific and less toxic anticancer MDR-reversal agents, we report herein the isolation, structure elucidation and biological activity of nine new (, and ) and seven known (, and ) dihydro-beta-agarofuran sesquiterpenes from the leaves of Celastrus vulcanicola. Their stereostructures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques, CD studies and biogenetic means. All the compounds were assayed on human MDR1-transfected NIH-3T3 cells, in order to determine their ability to reverse the MDR phenotype due to Pgp overexpression. Six compounds from these series (, , , , and ) showed an effectiveness that was similar to (or higher than) the classical Pgp reversal agent verapamil for the reversal of resistance to daunomycin and vinblastine. The structure-activity relationships are discussed.

  12. Variation of sesquiterpene lactone contents in different Arnica montana populations: influence of ecological parameters.

    PubMed

    Seemann, Andreas; Wallner, Teresa; Poschlod, Peter; Heilmann, Jörg

    2010-05-01

    In ten grassland or heathland sites along a geographic (north to south) and climatic gradient in Germany, flowerheads of Arnica montana were collected, and the total content of sesquiterpene lactones (SLs) as well as the content of the detected single compounds were determined. The ratios of helenalin (H)- and corresponding 11 alpha,13-dihydrohelenalin(DH)-type compounds were calculated. All habitats were characterised concerning the climatic and soil conditions, and the values obtained were correlated with SL contents according to univariate statistical analyses. All populations showed very similar and constant ratios of helenalin ( 1)/11 alpha,13-dihydrohelenalin ( 2) at around 1.5-2/1 irrespective of different ecological parameters. The ratio of helenalin/11 alpha,13-dihydrohelenalin esters was several fold higher in all samples, but it was nearly identical in every habitat among each other, except for the helenalin/11 alpha,13-dihydrohelenalin 2-methylbutyrate pair ( 5/ 11), which showed a constantly twofold higher H/DH ratio. However, the 6- O-isovalerylhelenalin content ( 6) showed highly significant correlations to climatic factors. Georg Thieme Verlag KG Stuttgart New York.

  13. Sesquiterpenes from the Saudi Red Sea: Litophyton arboreum with their cytotoxic and antimicrobial activities.

    PubMed

    Abou El-Kassem, Lamia T; Hawas, Usama W; El-Desouky, Samy K; Al-Farawati, Radwan

    2018-01-26

    A new pseudoguaiane-type sesquiterpene named litopharbol (1) was isolated from the methanolic extract of the Red Sea soft coral Litophyton arboreum, along with known sesquiterpenoids alismol (2), alismorientol B (3), teuhetenone A (4), and calamusin I (5); steroid, 24-methyl-cholesta-5,24(28)-diene-3β-ol (6), alkyl glyceryl ether, chimyl alcohol (7); sphingolipid, erythro-N-dodecanoyl-docosasphinga-(4E,8E)-dienine (8); and nitrogenous bases, thymine (9) and thymidine (10). The structures were determined on the basis of nuclear magnetic resonance (NMR) spectroscopic (1D and 2D NMR data including heteronuclear single quantum coherence spectroscopy, heteronuclear multiple-bond correlation spectroscopy, and nuclear Overhauser effect spectroscopy) and mass spectrometric analyses. Compounds 1-5 were explored for antimicrobial activity and cancer cell line sensitivity tests. Compound 1 exhibited antibacterial activity against Bacillus cereus with a minimum inhibition concentration of 1.8 μg/mL, whereas compound 3 showed significant potent cytotoxic effect against MCF-7 (breast cancer cells) with IC50 4.32 μM.

  14. Quantification of Sesquiterpene Lactones in Asteraceae Plant Extracts: Evaluation of their Allergenic Potential

    PubMed Central

    Salapovic, Helena; Geier, Johannes; Reznicek, Gottfried

    2013-01-01

    Sesquiterpene lactones (SLs), mainly those with an activated exocyclic methylene group, are important allergens in Asteraceae (Compositae) plants. As a screening tool, the Compositae mix, consisting of five Asteraceae plant extracts with allergenic potential (feverfew, tansy, arnica, yarrow, and German chamomile) is part of several national patch test baseline series. However, the SL content of the Compositae mix may vary due to the source material. Therefore, a simple spectrophotometric method for the quantitative measurement of SLs with the α-methylene-γ-butyrolactone moiety was developed, giving the percentage of allergenic compounds in plant extracts. The method has been validated and five Asteraceae extracts, namely feverfew (Tanacetum parthenium L.), tansy (Tanacetum vulgare L.), arnica (Arnica montana L.), yarrow (Achillea millefolium L.), and German chamomile (Chamomilla recutita L. Rauschert) that have been used in routine patch test screening were evaluated. A good correlation could be found between the results obtained using the proposed spectrophotometric method and the corresponding clinical results. Thus, the introduced method is a valuable tool for evaluating the allergenic potential and for the simple and efficient quality control of plant extracts with allergenic potential. PMID:24106675

  15. A novel sesquiterpene glycoside from Loquat leaf alleviates oleic acid-induced steatosis and oxidative stress in HepG2 cells.

    PubMed

    Jian, Tunyu; Wu, Yuexian; Ding, Xiaoqin; Lv, Han; Ma, Li; Zuo, Yuanyuan; Ren, Bingru; Zhao, Lei; Tong, Bei; Chen, Jian; Li, Weilin

    2018-01-01

    Loquat (Eriobotrya japonica) leaf has displayed beneficial effect on metabolic syndrome. In our previously study, total sesquiterpene glycosides (TSG) isolated from Loquat leaf exhibited therapeutic effect on Non-alcoholic fatty liver disease (NAFLD) in vivo, but the accurate active compound remains unknown. Sesquiterpene glycoside 1 (SG1) is a novel compound, which is exclusively isolated from Loquat leaf, but its biological activity has been rarely reported. The present study was designed to evaluate the pharmacological effect of SG1, the main component of TSG, in oleic acid (OA)-induced HepG2 cell model of NAFLD with its related mechanisms of action. In this study, both SG1 and TSG were found to significantly reduce the lipid deposition in the cell model. They could also decrease total cholesterol (TC), triglyceride (TG) and intracellular free fatty acid (FFA) contents. Compared with OA-treated cells, the superoxide dismutase (SOD) level increased, and the malondialdehyde (MDA) and 4-hydroxynonenal levels respectively decreased after the administration of SG1 or TSG. The high dose of SG1 (140 μg/mL) displayed a similar therapeutic effect as TSG at 200 μg/mL. Both SG1 and TSG were found to suppress the expression of cytochrome P450 2E1 (CYP2E1) and the phosphorylation of c-jun terminal kinase (JNK) and its downstream target c-Jun in OA-treated cell. These results demonstrate again that TSG are probably the main responsible chemical profiles of Loquat leaf for the treatment of NAFLD, for which it can effectively improve OA-induced steatosis and reduce oxidative stress, probably by downregulating of CYP2E1 expression and JNK/c-Jun phosphorylation, while SG1 may be the principle compound. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Two cytotoxic sesquiterpene lactones from the leaves of Xanthium strumarium and their in vitro inhibitory activity on farnesyltransferase.

    PubMed

    Kim, Young Sup; Kim, Jeoung Seob; Park, Sung-Hee; Choi, Sang-Un; Lee, Chong Ock; Kim, Seong-Kie; Kim, Young-Kyoon; Kim, Sung Hoon; Ryu, Shi Yong

    2003-04-01

    Two xanthanolide sesquiterpene lactones, 8- epi-xanthatin (1) and 8- epi-xanthatin epoxide (2), isolated from the leaves of Xanthium strumarium (Compositae), demonstrated a significant inhibition on the proliferation of cultured human tumor cells, i. e., A549 (non-small cell lung), SK-OV-3 (ovary), SK-MEL-2 (melanoma), XF498 (central nervous system) and HCT-15 (colon) in vitro. They were also found to inhibit the farnesylation process of human lamin-B by farnesyltransferase (FTase), in a dose-dependent manner in vitro (IC 50 value was calculated as 64 and 58 microM, respectively). Due to the relatively high concentrations of 1 and 2 required to obtain an FTase inhibition as compared with those necessary for a cytotoxic effect on tumor cells, it remains unclear whether a relationship between these two activities exists.

  17. Enhanced cytostatic activity of the sesquiterpene lactone eupatoriopicrin by glutathione depletion.

    PubMed Central

    Woerdenbag, H. J.; Lemstra, W.; Malingré, T. M.; Konings, A. W.

    1989-01-01

    Eupatoriopicrin (EUP), a sesquiterpene lactone from Eupatorium cannabinum L., possesses cytostatic activity. This was demonstrated for FIO 26 cells in vitro with the aid of a clonogenic assay and in vivo by tumour growth delay in FIO 26 and Lewis lung tumour-bearing mice. In vitro the IC50 for 1 h exposure to EUP was 1.5 microgram ml-1 (4.1 nmol ml-1). This concentration depleted about 25% of its cellular GSH concentration. Pretreatment of FIO 26 cells with BSO, resulting in greater than 99%. GSH depletion, enhanced the cytotoxic effect of EUP. The dose-enhancement factor at the level of 10% cell survival was 2.3. Growth inhibition of the Lewis lung carcinoma and the FIO 26 fibrosarcoma, solidly growing in C57Bl mice, was found after i.v. injection of 20 or 40 mg kg-1 EUP, at a tumour volume of about 500 microliters. Pretreatment with BSO at a dose of 4 mmol kg-1 i.p., 6 h before EUP administration, resulted in a significantly stronger growth delay of both tumours compared with EUP only. At the time of EUP treatment, cellular GSH in the tumours was reduced by BSO treatment to about 60%. It is concluded that EUP possesses antitumour activity in vivo and that chemosensitisation of EUP may be accomplished by pretreatment with BSO, indicating that endogenous GSH protects against the cytostatic action of EUP. PMID:2757925

  18. New farnesane-type sesquiterpenes, hedychiols A and B 8,9-diacetate, and inhibitors of degranulation in RBL-2H3 cells from the rhizome of Hedychium coronarium.

    PubMed

    Morikawa, Toshio; Matsuda, Hisashi; Sakamoto, Yasuko; Ueda, Kazuho; Yoshikawa, Masayuki

    2002-08-01

    Two new farnesane-type sesquiterpenes, hedychiols A and B 8,9-diacetate, were isolated from the methanolic extract of the fresh rhizome of Hedychium coronarium KOEN. cultivated in Japan. Their stereostructures were elucidated on the basis of chemical and physicochemical evidence. The inhibitory effects of isolated constituents on the release of beta-hexosaminidase from RBL-2H3 cells were examined, and hedychilactone A and coronarin D were found to show the inhibitory activity.

  19. Localization of sesquiterpene lactone biosynthesis in cells of capitate glandular trichomes of Helianthus annuus (Asteraceae).

    PubMed

    Amrehn, Evelyn; Aschenbrenner, Anna-Katharina; Heller, Annerose; Spring, Otmar

    2016-03-01

    Capitate glandular trichomes (CGT) of sunflower, Helianthus annuus, synthesize bioactive sesquiterpene lactones (STLs) within a short period of only a few days during trichome development. In the current project, the subcellular localization of H. annuus germacrene A monooxygenase (HaGAO), a key enzyme of the STL biosynthesis in sunflower CGT, was investigated. A polyclonal antibody raised against this enzyme was used for immunolabelling. HaGAO was found in secretory and stalk cells of CGT. This correlated with the appearance of smooth endoplasmic reticulum in both cell types. Stalk cells and secretory cells differed in form, size and types of plastids, but both had structures necessary for secretion. No HaGAO-specific immunoreaction was found in sunflower leaf tissue outside of CGT or in developing CGT before the secretory phase had started. Our results indicated that not only secretory cells but also nearly all cells of the CGT were involved in the biosynthesis of STL and that this process was not linked to the presence or absence of a specific type of plastid.

  20. Sesquiterpene furan compound CJ-01, a novel chitin synthase 2 inhibitor from Chloranthus japonicus SIEB.

    PubMed

    Yim, Nam Hui; Hwang, Eui Il; Yun, Bong Sik; Park, Ki Duk; Moon, Jae Sun; Lee, Sang Han; Sung, Nack Do; Kim, Sung Uk

    2008-05-01

    A novel sesquiterpene furan compound CJ-01 was isolated from the methanol extract of the whole plant of Chloranthus japonicus SIEB. by monitoring the inhibitory activity of chitin synthase 2 from Saccharomyces cerevisiae. Based on spectroscopic analysis, the structure of compound CJ-01 was determined as 3,4,8a-trimethyl-4a,7,8,8a-tetrahydro-4a-naphto[2,3-b]furan-9-one. The compound inhibited chitin synthase 2 of Saccharomyces cerevisiae in a dose-dependent manner with an IC50 of 39.6 microg/ml, whereas it exhibited no inhibitory activities against chitin synthase 1 and 3 of S. cerevisiae up to 280 microg/ml. CJ-01 has 1.7-fold stronger inhibitory activity than polyoxin D (IC50=70 microg/ml), a well-known chitin synthase inhibitor. These results indicate that the compound is a specific inhibitor of chitin synthase 2 from S. cerevisiae. In addition, CJ-01 showed antifungal activities against various human and phytopathogenic fungi. Therefore, the compound might be an interesting lead to develop effective antifungal agents.

  1. A new cytotoxic sesquiterpene quinone produced by Penicillium sp. F00120 isolated from a deep sea sediment sample.

    PubMed

    Lin, Xiuping; Zhou, Xuefeng; Wang, Fazuo; Liu, Kaisheng; Yang, Bin; Yang, Xianwen; Peng, Yan; Liu, Juan; Ren, Zhe; Liu, Yonghong

    2012-01-01

    A new fungal strain, displaying strong toxic activity against brine shrimp larvae, was isolated from a deep sea sediment sample collected at a depth of 1300 m. The strain, designated as F00120, was identified as a member of the genus Penicillium on the basis of morphology and ITS sequence analysis. One new sesquiterpene quinone, named penicilliumin A (1), along with two known compounds ergosterol (2) and ergosterol peroxide (3), were isolated and purified from the cultures of F00120 by silica gel column, Sephadex LH-20 column, and preparative thin layer chromatography. Their structures were elucidated by detailed nuclear magnetic resonance (NMR) and mass spectroscopic (MS) analysis as well as comparison with literature data. The new compound penicilliumin A inhibited in vitro proliferation of mouse melanoma (B16), human melanoma (A375), and human cervical carcinoma (Hela) cell lines moderately.

  2. Shizukaol D, a Dimeric Sesquiterpene Isolated from Chloranthus serratus, Represses the Growth of Human Liver Cancer Cells by Modulating Wnt Signalling Pathway.

    PubMed

    Tang, Lisha; Zhu, Hengrui; Yang, Xianmei; Xie, Fang; Peng, Jingtao; Jiang, Deke; Xie, Jun; Qi, Meiyan; Yu, Long

    2016-01-01

    Natural products have become sources of developing new drugs for the treatment of cancer. To seek candidate compounds that inhibit the growth of liver cancer, components of Chloranthus serratus were tested. Here, we report that shizukaol D, a dimeric sesquiterpene from Chloranthus serratus, exerted a growth inhibition effect on liver cancer cells in a dose- and time-dependent manner. We demonstrated that shizukaol D induced cells to undergo apoptosis. More importantly, shizukaol D attenuated Wnt signalling and reduced the expression of endogenous Wnt target genes, which resulted in decreased expression of β-catenin. Collectively, this study demonstrated that shizukaol D inhibited the growth of liver cancer cells by modulating Wnt pathway.

  3. Theoretical and experimental analysis of the reaction mechanism of MrTPS2, a triquinane-forming sesquiterpene synthase from chamomile.

    PubMed

    Hong, Young J; Irmisch, Sandra; Wang, Selina C; Garms, Stefan; Gershenzon, Jonathan; Zu, Liansuo; Köllner, Tobias G; Tantillo, Dean J

    2013-09-27

    Terpene synthases, as key enzymes of terpene biosynthesis, have garnered the attention of chemists and biologists for many years. Their carbocationic reaction mechanisms are responsible for the huge variety of terpene structures in nature. These mechanisms are amenable to study by using classical biochemical approaches as well as computational analysis, and in this study we combine quantum-chemical calculations and deuterium-labeling experiments to elucidate the reaction mechanism of a triquinane forming sesquiterpene synthase from chamomile. Our results suggest that the reaction from farnesyl diphosphate to triquinanes proceeds through caryophyllyl and presilphiperfolanyl cations and involves the protonation of a stable (-)-(E)-β-caryophyllene intermediate. A tyrosine residue was identified that appears to be involved in the proton-transfer process. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Skin penetration studies of Arnica preparations and of their sesquiterpene lactones.

    PubMed

    Wagner, Steffen; Suter, Andreas; Merfort, Irmgard

    2004-10-01

    Alcoholic preparations of Arnica montana are widely used for the topical treatment of various inflammatory diseases. Sesquiterpene lactones (SLs) are mainly responsible for their anti-inflammatory activity. Here we have studied the penetration kinetics of Arnica tinctures prepared from dried Arnica flowers originating from different chemotypes as well as of their respective dominating SLs, helenalin isobutyrate and 11alpha,13-dihydrohelenalin acetate. Some alcoholic preparations of fresh Arnica flowers and an Arnica fresh plant gel were also included in the study. We used the stripping method with adhesive tape and pig skin as a model and determined the quantity of SLs in the stripped layers of the stratum corneum (SC). Thus, we observed the penetration into and permeation through this uppermost part of the skin. Whereas isolated SLs permeate through the SC only in a very small amount, permeation of SLs was much higher when they were present in the tinctures. Furthermore, differences of permeation were observed between helenalin and dihydrohelenalin derivatives. Permeation through the SC could be determined for the tested Arnica preparations of fresh Arnica flowers with two preparations showing the best penetration behaviour of all the tested substances. Moreover, the effects of incubation time as well as of repeated applications were investigated with one preparation. Altogether, this study shows that a sufficient amount of SLs might permeate the skin barrier by using Arnica preparations to exert anti-inflammatory effects and that the topical use of plant preparations may be advantageous compared to the isolated compounds.

  5. Wightianines A-E, dihydro-β-agarofuran sesquiterpenes from Parnassia wightiana, and their antifungal and insecticidal activities.

    PubMed

    Wang, Dong-Mei; Zhang, Cheng-Chen; Zhang, Qiang; Shafiq, Nusrat; Pescitelli, Gennaro; Li, Deng-Wu; Gao, Jin-Ming

    2014-07-16

    Five new sesquiterpene polyol esters with a dihydro-β-agarofuran skeleton, designated as wightianines A-E (1-5), besides two known compounds, were isolated from the methanolic extract of the whole plant of the traditional herbal medicine Parnassia wightiana Wall. The structures of the isolated compounds were elucidated on the basis of spectroscopic analyses, including two-dimensional nuclear magnetic resonance techniques (correlation spectroscopy, heteronuclear multiple-quantum coherence, nuclear Overhauser effect spectrometry, and heteronuclear multiple-bond correlation) and electronic circular dichroism studies. The antifungal and insecticidal activities of five compounds were evaluated against several plant pathogenic fungi and armyworm larvae (Mythimna separata Walker). Among the test metabolites, compounds 2 and 7 both exhibited potent antifungal activity against the phytopathogenic fungus Cytospora sp. with minimum inhibitory concentration values of 0.78 μg/mL, which are equal to the two positive controls, hymexazol and carbendazim. However, no insecticidal activity of the test compounds was observed in the present study. Compounds 2 and 7 could be promising leads for developing new fungicides against agriculturally important fungus Cytospora sp.

  6. New sesquiterpene lactones from Arnica tincture prepared from fresh flowerheads of Arnica montana.

    PubMed

    Kos, Olha; Lindenmeyer, Maja T; Tubaro, Aurelia; Sosa, Silvio; Merfort, Irmgard

    2005-11-01

    Investigation of an ethanolic extract prepared from fresh Arnica montana flowers afforded three new 1,5- trans-guaianolides, of which 11alpha,13-dihydro-2-O-tigloylflorilenalin and the respective 2-O-isovaleryl derivative are reported for the first time. Additionally, three new and one known 2beta-ethoxy-2,3-dihydrohelenalin esters were isolated. GC/MS studies of the extract after a two year storage at 4 degrees C demonstrated that the latter were artefacts that had been formed by addition of ethanol to the cyclopentenone structure of helenalin. Formation of these adducts gave compounds possessing an inhibitory activity comparable to that of 11alpha,13-dihydrohelenalin derivatives in the NF-kappaB EMSA and the IL-8 ELISA in vitro assays as well as in the in vivo croton oil-induced mouse ear edema test for one adduct, namely 2beta-ethoxy-6-O-acetyl-2,3-dihydrohelenalin. As expected, 6-O-(2-methylbutyryl)- and 6-O-methacryloyl-helenalin exhibited a stronger activity in the NF-kappaB EMSA and IL-8 ELISA. Sesquiterpene lactones seem to be the most important NF-kappaB inhibiting compounds in the Arnica extract. Bioguided fractionation using the luciferase reporter gene assay resulted in the isolation of only moderately active compounds, such as 6-acetoxy-2,2-dimethylchroman-4-one and 10-acetoxy-8,9-epoxythymol isobutyrate.

  7. Eremophilane Sesquiterpenes from a Deep Marine-Derived Fungus, Aspergillus sp. SCSIOW2, Cultivated in the Presence of Epigenetic Modifying Agents.

    PubMed

    Wang, Liyan; Li, Mengjie; Tang, Jianqiang; Li, Xiaofan

    2016-04-18

    Chemical epigenetic manipulation was applied to a deep marine-derived fungus, Aspergillus sp. SCSIOW2, resulting in significant changes of the secondary metabolites. Three new eremophilane-type sesquiterpenes, dihydrobipolaroxin B (2), dihydrobipolaroxin C (3), and dihydrobipolaroxin D (4), along with one known analogue, dihydrobipolaroxin (1), were isolated from the culture treated with a combination of histone deacetylase inhibitor (suberohydroxamic acid) and DNA methyltransferase inhibitor (5-azacytidine). 1-4 were not produced in the untreated cultures. 2 and 3 might be artificial because 1 could form 2 and 3 spontaneously in water by intracellular acetalization reaction. The absolute configurations of 1 and 2 were assigned based on ECD spectroscopy combined with time-dependent density functional theory calculations. All four compounds exhibited moderate nitric oxide inhibitory activities without cytotoxic effects.

  8. The floral transcriptome of ylang ylang (Cananga odorata var. fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase

    PubMed Central

    Jin, Jingjing; Kim, Mi Jung; Dhandapani, Savitha; Tjhang, Jessica Gambino; Yin, Jun-Lin; Wong, Limsoon; Sarojam, Rajani; Chua, Nam-Hai; Jang, In-Cheol

    2015-01-01

    The pleasant fragrance of ylang ylang varieties (Cananga odorata) is mainly due to volatile organic compounds (VOCs) produced by the flowers. Floral scents are a key factor in plant–insect interactions and are vital for successful pollination. C. odorata var. fruticosa, or dwarf ylang ylang, is a variety of ylang ylang that is popularly grown in Southeast Asia as a small shrub with aromatic flowers. Here, we describe the combined use of bioinformatics and chemical analysis to discover genes for the VOC biosynthesis pathways and related genes. The scented flowers of C. odorata var. fruticosa were analysed by gas chromatography/mass spectrometry and a total of 49 VOCs were identified at four different stages of flower development. The bulk of these VOCs were terpenes, mainly sesquiterpenes. To identify the various terpene synthases (TPSs) involved in the production of these essential oils, we performed RNA sequencing on mature flowers. From the RNA sequencing data, four full-length TPSs were functionally characterized. In vitro assays showed that two of these TPSs were mono-TPSs. CoTPS1 synthesized four products corresponding to β-thujene, sabinene, β-pinene, and α-terpinene from geranyl pyrophosphate and CoTPS4 produced geraniol from geranyl pyrophosphate. The other two TPSs were identified as sesqui-TPSs. CoTPS3 catalysed the conversion of farnesyl pyrophosphate to α-bergamotene, whereas CoTPS2 was found to be a multifunctional and novel TPS that could catalyse the synthesis of three sesquiterpenes, β-ylangene, β-copaene, and β-cubebene. Additionally, the activities of the two sesqui-TPSs were confirmed in planta by transient expression of these TPS genes in Nicotiana benthamiana leaves by Agrobacterium-mediated infiltration. PMID:25956881

  9. Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum.

    PubMed

    Flynn, Christopher M; Schmidt-Dannert, Claudia

    2018-06-01

    The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters. IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide

  10. Germacrane sesquiterpenes isolated from the rhizome of Curcuma xanthorrhiza Roxb. inhibit UVB-induced upregulation of MMP-1, -2, and -3 expression in human keratinocytes.

    PubMed

    Park, Ji-Hae; Mohamed, Mohamed Antar Aziz; Jung, Ye-Jin; Shrestha, Sabina; Lee, Tae Hoon; Lee, Chang-Ho; Han, Daeseok; Kim, Jiyoung; Baek, Nam-In

    2015-10-01

    Four sesquiterpenes were isolated from the rhizome of Curcuma xanthorrhiza Roxb.: furanodiene (1), germacrone (2), furanodienone (3), and 13-hydroxygermacrone (4). Importantly, this was the first time compounds 1 and 4 were isolated from this plant. The chemical structures of these compounds were determined using 1D- and 2D-nuclear magnetic resonance, infrared spectroscopy, and electron ionization mass spectrometry analyses. Among the isolated compounds, compounds 2 and 4 inhibited UVB-induced upregulation of the mRNA and protein expression levels of MMP-1, MMP-2, and MMP-3 in human keratinocytes (HaCaT). Moreover, this upregulation occurred in a dose-dependent manner over the range of 1-10 μM for each compound.

  11. Total sesquiterpene glycosides from Loquat (Eriobotrya japonica) leaf alleviate high-fat diet induced non-alcoholic fatty liver disease through cytochrome P450 2E1 inhibition.

    PubMed

    Jian, Tunyu; Ao, Xiancan; Wu, YueXian; Lv, Han; Ma, Li; Zhao, Lei; Tong, Bei; Ren, Bingru; Chen, Jian; Li, Weilin

    2017-07-01

    Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by hepatic steatosis, which affects 20-40% of the population in the world. Loquat (Eriobotrya japonica) Leaf possesses several pharmacological actions. Many sesquiterpene glycosides were reported to be isolated exclusively from the Loquat Leaf, however, their biological activity has been rarely investigated. The present study was designed to evaluate the pharmacological effect of total sesquiterpene glycosides (TSG) in high-fat diet (HFD) induced NAFLD mice with its related mechanisms of action. Mice were fed with a normal diet or HFD for 8 weeks. TSG (25 and 100mg/kg/day), simvastatin (10mg/kg/day) or vehicle were orally administered for last 4 weeks of the 8-week HFD feeding period. From the result, it was showed that TSG significantly reduced the body weight and fat deposition in the liver of NAFLD mice. It also decreased total cholesterol (TC) and triglyceride (TG) contents in the serum. Compared with NAFLD mice, superoxide dismutase (SOD) and malondialdehyde (MDA) levels were increased and decreased after the administration of TSG in a dose of 100mg/kg, respectively. TSG reduced alanine aminotransferase (ALT) activity as well. Finally, TSG was found to suppress the expression of cytochrome P450 2E1 (CYP2E1) and the phosphorylation of c-jun terminal kinase (JNK) in NAFLD mice. In summary, this study demonstrates that TSG reduces oxidative stress by downregulating of CYP2E1 expression and JNK phosphorylation in NAFLD, and alleviates NAFLD ultimately. TSG potentially serves as bioactive compounds for the treatment of NAFLD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Structure and cytotoxic activity of sesquiterpene glycoside esters from Calendula officinalis L.: Studies on the conformation of viridiflorol.

    PubMed

    D'Ambrosio, Michele; Ciocarlan, Alexandru; Colombo, Elisa; Guerriero, Antonio; Pizza, Cosimo; Sangiovanni, Enrico; Dell'Agli, Mario

    2015-09-01

    Topic applications of Calendula officinalis L. lipophilic extracts are used in phytotherapy to relieve skin inflammatory conditions whereas infusions are used as a remedy for gastric complaints. Such a different usage might be explained by some cytotoxicity of lipophilic extracts at gastric level but little is known about this. Therefore, we screened the CH2Cl2 extract from the flowers of C. officinalis by MTT and LDH assays in human epithelial gastric cells AGS. This bioassay-oriented approach led to the isolation of several sesquiterpene glycosides which were structurally characterized by spectroscopic measurements, chemical reactions and MM calculations. The conformational preferences of viridiflorol fucoside were established and a previously assigned stereochemistry was revised. The compounds 1a, 2a and 3f showed comparably high cytotoxicity in the MTT assays, whereas the effect on LDH release was lower. Our study provides new insights on the composition of C. officinalis extracts of medium polarity and identifies the main compounds that could be responsible for cytotoxic effects at gastric level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Trypanocidal and Leishmanicidal Activities of Sesquiterpene Lactones from Ambrosia tenuifolia Sprengel (Asteraceae) ▿

    PubMed Central

    Sülsen, Valeria P.; Frank, Fernanda M.; Cazorla, Silvia I.; Anesini, Claudia A.; Malchiodi, Emilio L.; Freixa, Blanca; Vila, Roser; Muschietti, Liliana V.; Martino, Virginia S.

    2008-01-01

    Bioassay-guided fractionation of the organic extract of Ambrosia tenuifolia Sprengel (Asteraceae) led to the isolation of two bioactive sesquiterpene lactones with significant trypanocidal and leishmanicidal activities. By spectroscopic methods (1H- and 13C-nuclear magnetic resonance, distortionless enhancement by polarization transfer, correlated spectroscopy, heteronuclear multiple-quantum coherence, electron impact-mass spectrometry, and infrared spectroscopy), these compounds were identified as psilostachyin and peruvin. Both compounds showed a marked in vitro trypanocidal activity against Trypanosoma cruzi epimastigotes with 50% inhibitory concentration (IC50) values of less than 2 μg/ml. Psilostachyin exerted a significant in vitro activity against the trypomastigote forms of T. cruzi (IC50, 0.76 μg/ml) and was selected for in vivo testing. Psilostachyin-treated mice had a survival of 100% and lower parasitemia values than control mice. Both compounds were also tested on Leishmania sp. promastigotes: psilostachyin (IC50, 0.12 μg/ml) and peruvin (IC50, 0.39 μg/ml) exerted significant leishmanicidal activities. This is the first time that the trypanocidal and leishmanicidal activities of these compounds have been reported. The selectivity index (SI) was employed to evaluate the cytotoxic effect of lactones on T lymphocytes. Although the SIs of both compounds were high for T. cruzi epimastigotes, psilostachyin was more selective against trypomastigotes (SI, 33.8) while peruvin showed no specificity for this parasite. Both compounds presented high selectivity for Leishmania spp. The results shown herein suggest that psilostachyin and peruvin could be considered potential candidates for the development of new antiprotozoal agents against Chagas' disease and leishmaniasis. PMID:18443111

  14. The Nonartemisinin Sesquiterpene Lactones Parthenin and Parthenolide Block Plasmodium falciparum Sexual Stage Transmission

    PubMed Central

    Balaich, Jared N.; Mathias, Derrick K.; Torto, Baldwyn; Jackson, Bryan T.; Tao, Dingyin; Ebrahimi, Babak; Tarimo, Brian B.; Cheseto, Xavier; Foster, Woodbridge A.

    2016-01-01

    Parthenin and parthenolide are natural products that are closely related in structure to artemisinin, which is also a sesquiterpene lactone (SQL) and one of the most important antimalarial drugs available. Parthenin, like artemisinin, has an effect on Plasmodium blood stage development. We extended the evaluation of parthenin as a potential therapeutic for the transmissible stages of Plasmodium falciparum as it transitions between human and mosquito, with the aim of gaining potential mechanistic insight into the inhibitory activity of this compound. We posited that if parthenin targets different biological pathways in the parasite, this in turn could pave the way for the development of druggable compounds that could prevent the spread of artemisinin-resistant parasites. We examined parthenin's effect on male gamete activation and the ookinete-to-oocyst transition in the mosquito as well as on stage V gametocytes that are present in peripheral blood. Parthenin arrested parasite development for each of the stages tested. The broad inhibitory properties of parthenin on the evaluated parasite stages may suggest different mechanisms of action between parthenin and artemisinin. Parthenin's cytotoxicity notwithstanding, its demonstrated activity in this study suggests that structurally related SQLs with a better safety profile deserve further exploration. We used our battery of assays to test parthenolide, which has a more compelling safety profile. Parthenolide demonstrated activity nearly identical to that of parthenin against P. falciparum, highlighting its potential as a possible transmission-blocking drug scaffold. We discuss the context of the evidence with respect to the next steps toward expanding the current antimalarial arsenal. PMID:26787692

  15. The Nonartemisinin Sesquiterpene Lactones Parthenin and Parthenolide Block Plasmodium falciparum Sexual Stage Transmission.

    PubMed

    Balaich, Jared N; Mathias, Derrick K; Torto, Baldwyn; Jackson, Bryan T; Tao, Dingyin; Ebrahimi, Babak; Tarimo, Brian B; Cheseto, Xavier; Foster, Woodbridge A; Dinglasan, Rhoel R

    2016-04-01

    Parthenin and parthenolide are natural products that are closely related in structure to artemisinin, which is also a sesquiterpene lactone (SQL) and one of the most important antimalarial drugs available. Parthenin, like artemisinin, has an effect onPlasmodiumblood stage development. We extended the evaluation of parthenin as a potential therapeutic for the transmissible stages ofPlasmodium falciparumas it transitions between human and mosquito, with the aim of gaining potential mechanistic insight into the inhibitory activity of this compound. We posited that if parthenin targets different biological pathways in the parasite, this in turn could pave the way for the development of druggable compounds that could prevent the spread of artemisinin-resistant parasites. We examined parthenin's effect on male gamete activation and the ookinete-to-oocyst transition in the mosquito as well as on stage V gametocytes that are present in peripheral blood. Parthenin arrested parasite development for each of the stages tested. The broad inhibitory properties of parthenin on the evaluated parasite stages may suggest different mechanisms of action between parthenin and artemisinin. Parthenin's cytotoxicity notwithstanding, its demonstrated activity in this study suggests that structurally related SQLs with a better safety profile deserve further exploration. We used our battery of assays to test parthenolide, which has a more compelling safety profile. Parthenolide demonstrated activity nearly identical to that of parthenin againstP. falciparum, highlighting its potential as a possible transmission-blocking drug scaffold. We discuss the context of the evidence with respect to the next steps toward expanding the current antimalarial arsenal. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. From wine to pepper: rotundone, an obscure sesquiterpene, is a potent spicy aroma compound.

    PubMed

    Wood, Claudia; Siebert, Tracey E; Parker, Mango; Capone, Dimitra L; Elsey, Gordon M; Pollnitz, Alan P; Eggers, Marcus; Meier, Manfred; Vössing, Tobias; Widder, Sabine; Krammer, Gerhard; Sefton, Mark A; Herderich, Markus J

    2008-05-28

    An obscure sesquiterpene, rotundone, has been identified as a hitherto unrecognized important aroma impact compound with a strong spicy, peppercorn aroma. Excellent correlations were observed between the concentration of rotundone and the mean 'black pepper' aroma intensity rated by sensory panels for both grape and wine samples, indicating that rotundone is a major contributor to peppery characters in Shiraz grapes and wine (and to a lesser extent in wine of other varieties). Approximately 80% of a sensory panel were very sensitive to the aroma of rotundone (aroma detection threshold levels of 16 ng/L in red wine and 8 ng/L in water). Above these concentrations, these panelists described the spiked samples as more 'peppery' and 'spicy'. However, approximately 20% of panelists could not detect this compound at the highest concentration tested (4000 ng/L), even in water. Thus, the sensory experiences of two consumers enjoying the same glass of Shiraz wine might be very different. Rotundone was found in much higher amounts in other common herbs and spices, especially black and white peppercorns, where it was present at approximately 10000 times the level found in very 'peppery' wine. Rotundone is the first compound found in black or white peppercorns that has a distinctive peppery aroma. Rotundone has an odor activity value in pepper on the order of 50000-250000 and is, on this criterion, by far the most powerful aroma compound yet found in that most important spice.

  17. Further drimane sesquiterpenes from Drimys brasiliensis stem barks with cytotoxic potential.

    PubMed

    Fratoni, Eduarda; Claudino, Vanessa Duarte; Yunes, Rosendo Augusto; Franchi, Gilberto C; Nowill, Alexandre E; Filho, Valdir Cechinel; Monache, Franco Delle; Malheiros, Angela

    2016-07-01

    Drimys brasiliensis Miers (Winteraceae) is used in folk medicine for the treatment of cancer. Its anti-tumor activity has been demonstrated in vitro models using extracts and isolated compounds. This study investigates the cytotoxic effects of stem bark extracts of D. brasiliensis as well as isolated compounds that may be responsible for the activitys and evaluates them in leukemia cells. The stem bark extract were subjected to column chromatography, and the structures of compounds were elucidated based on spectroscopic methods by using NMR and infrared spectroscopy and GC/MS. The cytotoxicity of the isolated compounds was evaluated in chronic myeloid (K562) and acute B lymphoblastic (Nalm6) leukemia cells using tetrazolium assay (MTT). Two new compounds were isolated 1β-O-p-methoxy-E-cinnamoyl-5α-keto-11α-enol-albicanol (1a) and the isomer 1β-O-p-methoxy-E-cinnamoyl-5α-keto-11β-enol-albicanol (1b) and 1β-O-p-methoxy-E-cinnamoyl-isodrimeninol (2). The known compounds polygonal acid (3a) and the isomer isopolygonal acid (3b), fuegin (4a) and the isomer epifuegin (4b), the mixture drimanial (5) and 1β-O-(p-methoxy-E-cinnamoyl)-6α-hydroxypolygodial (6) were also isolated. The drimanes (1-4) and drimanial (5), 1β-(p-coumaroyloxy)-polygodial (7), 1β-(p-methoxycinnamoyl)-polygodial (8), and polygodial (9) isolated previously were assessed in tumor cells. The IC50 values were between 3.56 and 128.91 μM. 1-β-(p-cumaroiloxi)-polygodial showed the best result with IC50 8.18 and 3.56 μM by K562 and Nalm6, respectively. The chloroform extract of the stem bark of D. brasiliensis is a great source of drimane sesquiterpenes. Our experimental data suggest that drimanes are responsible for cytotoxicity activity demonstrated by this species, especially those with the aldehyde group linked to carbons C-11 and C-12.

  18. Solution and solid-state effects on NMR chemical shifts in sesquiterpene lactones: NMR, X-ray, and theoretical methods.

    PubMed

    Dračínský, Martin; Buděšínský, Miloš; Warżajtis, Beata; Rychlewska, Urszula

    2012-01-12

    Selected guaianolide type sesquiterpene lactones were studied combining solution and solid-state NMR spectroscopy with theoretical calculations of the chemical shifts in both environments and with the X-ray data. The experimental (1)H and (13)C chemical shifts in solution were successfully reproduced by theoretical calculations (with the GIAO method and DFT B3LYP 6-31++G**) after geometry optimization (DFT B3LYP 6-31 G**) in vacuum. The GIPAW method was used for calculations of solid-state (13)C chemical shifts. The studied cases involved two polymorphs of helenalin, two pseudopolymorphs of 6α-hydroxydihydro-aromaticin and two cases of multiple asymmetric units in crystals: one in which the symmetry-independent molecules were connected by a series of hydrogen bonds (geigerinin) and the other in which the symmetry-independent molecules, deprived of any specific intermolecular interactions, differed in the conformation of the side chain (badkhysin). Geometrically different molecules present in the crystal lattices could be easily distinguished in the solid-state NMR spectra. Moreover, the experimental differences in the (13)C chemical shifts corresponding to nuclei in different polymorphs or in geometrically different molecules were nicely reproduced with the GIPAW calculations.

  19. Skin penetration behaviour of sesquiterpene lactones from different Arnica preparations using a validated GC-MSD method.

    PubMed

    Wagner, Steffen; Merfort, Irmgard

    2007-01-04

    Preparations of Arnica montana L. are widely used for the topical treatment of inflammatory diseases. The anti-inflammatory activity is mainly attributed to their sesquiterpene lactones (SLs) from the helenalin and 11alpha,13-dihydrohelenalin type. To study the penetration kinetics of SLs in Arnica preparations, a stripping method with adhesive tape and pig skin as a model was used. For the determination of SLs in the stripped layers of the stratum corneum (SC), a gas chromatography/mass spectrometry method was developed and validated. Thereby the amount of helenalin derivatives was calculated as helenalin isobutyrate, and 11alpha,13-dihydrohelenalin derivatives as 11alpha,13-dihydrohelenalin methacrylate. This GC-MSD method is suitable also to determine low amounts of SLs in Arnica preparations. The penetration behaviour of one gel preparation and two ointment preparations was investigated. The SLs of all preparations show a comparable penetration in and a permeation through the stratum corneum, the uppermost part of the skin. Interestingly, the gel preparation showed a decrease of the penetration rate over 4h, whereas the penetration rate of ointments kept constant over time. Moreover, we could demonstrate that the totally penetrated amount of SLs only depends on the kind of the formulation and of the SLs-content in the formulation but not on the SLs composition or on the used extraction agent.

  20. Sesquiterpene lactones from the methanol extracts of twenty-eight Hieracium species from the Balkan Peninsula and their chemosystematic significance.

    PubMed

    Milutinović, Violeta; Niketić, Marjan; Krunić, Aleksej; Nikolić, Dejan; Petković, Miloš; Ušjak, Ljuboš; Petrović, Silvana

    2018-06-20

    Four sesquiterpene lactones (SLs), including three undescribed proline-SL conjugates, the guaianolides calophyllamine A and 8-epiixerisamine A, and the eudesmanolide calophyllamine B, were isolated from the methanol extract of Hieracium calophyllum R. Uechtr. (Compositae) flowering heads. Another known guaianolide, crepiside E, was detected in Hieracium L. species for the first time. Their structures were elucidated using extensive 1D and 2D NMR spectroscopy in combination with HRMS. The isolated SLs were used as external standards for qualitative and quantitative LC-MS analysis of the dry methanol extracts of the flowering aerial parts of 28 Hieracium species from the Balkan Peninsula. Guaianolides were the dominant SLs in 27 species studied. The chemosystematic significance of detected SLs was evaluated using multivariate statistics (PCA, nMDS and UPGMA). Differentiation between the main groups was well supported. All four compounds significantly and equally contributed to the differences between the species. In addition, the eudesmanolide calophyllamine B could be a significant chemosystematic marker for H. sect. Villosa (Griseb.) Gremli s.l. and Glauciformia (Freyn) Zahn-Italica (Fr.) Av. Touv. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Antiplasmodial activity of sesquiterpene lactones and a sucrose ester from Vernonia guineensis Benth. (Asteraceae)

    PubMed Central

    Toyang, Ngeh J.; Krause, Michael A.; Fairhurst, Rick M.; Tane, Pierre; Bryant, Joseph; Verpoorte, Rob

    2013-01-01

    Ethnopharmacological relevance Aqueous preparations of Vernonia guineensis Benth. (Asteraceae) are used in Cameroonian folk medicine as a general stimulant and to treat various illnesses and conditions including malaria, bacterial infections and helminthic infestations. Materials and methods 10-g samples of the leaf and tuber powders of V. guineensis were extracted separately using dichloromethane, methanol and distilled water. The extracts were dried in vacuo and used in bioassays. These extracts and three compounds previously isolated from V. guineensis [vernopicrin (1), vernomelitensin (2) and pentaisovalerylsucrose (3)] were screened for antiplasmodial activity against chloroquine (CQ)-sensitive (Hb3) and CQ-resistant (Dd2) Plasmodium falciparum lines. Results Crude extracts and pure compounds from V. guineensis showed antiplasmodial activity against both Hb3 and Dd2. The IC50 values of extracts ranged from 1.64 – 27.2 μg/ml for Hb3 and 1.82 – 30.0 μg/ml for Dd2; those for compounds 1, 2 and 3 ranged from 0.47 – 1.62 μg/ml (1364 – 1774 nM) for Hb3 and 0.57 – 1.50 μg/ml (1644 – 2332 nM) for Dd2. None of the crude extracts or pure compounds was observed to exert toxic effects on the erythrocytes used to cultivate the P. falciparum lines. Conclusion In Cameroonian folk medicine, V. guineensis may be used to treat malaria in part due to the antiplasmodial activity of sesquiterpene lactones (1, 2), a sucrose ester (3) and perhaps other compounds present in crude plant extracts. Exploring the safety and antiplasmodial efficacy of these compounds in vivo requires further study. PMID:23542146

  2. Influence of cnicin, a sesquiterpene lactone ofCentaurea maculosa (Asteraceae), on specialist and generalist insect herbivores.

    PubMed

    Landau, I; Müller-Schärer, H; Ward, P I

    1994-04-01

    The sesquiterpene lactone cnicin was extracted fromCentaurea maculosa andCentaurea vallesiaca. We examined its effects on the ovipositional response and larval development of generalist and specialist insect herbivores associated withC. maculosa. For the oviposition trials, three plant species (C. maculosa, Achillea millefolium, andCichorium intybus), half of which were sprayed with 3% of cnicin, were exposed to the specialist mothsStenodes straminea, Agapeta zoegana, andPterolonche inspersa in field cages. All three species significantly preferredC. maculosa to other plants andP. inspersa significantly preferred cnicin-sprayed plants to untreated plants for oviposition. Tested over all species, cnicin significantly increased the number of eggs laid on a given plant. A larval diet test examined the toxicity of cnicin for larvae of the generalist noctuid mothSpodoptera littoralis. Cnicin concentrations of 3% and 6% were lethal and 1% and 0.5% seriously inhibited growth and development. The larvae of theC. maculosa specialistStenodes straminea survived at 6% cnicin, but none of the pupae hatched.Agapeta zoegana was able to survive at 1% and 3% cnicin. Both specialists had difficulties with the artificial diet, but weight increase and survival was not further reduced when cnicin was present compared with on the control diet. In conclusion, cnicin influenced host recognition by the specialist species, and larvae of the generalist did not survive on natural levels of cnicin. Growth and survival of the specialist were not influenced by cnicin but were considerably hampered on artificial diet.

  3. The effect of bleaching on the terpene chemistry of Plexaurella fusifera: evidence that zooxanthellae are not responsible for sesquiterpene production.

    PubMed

    Frenz-Ross, Jamie L; Enticknap, Julie J; Kerr, Russell G

    2008-01-01

    The close association between marine invertebrates, zooxanthellae, and numerous bacteria gives rise to the question of the identity of the actual producer of secondary metabolites. In fall of 2005, a widespread bleaching event occurred throughout the Caribbean Sea in which some colonies of the gorgonian coral Plexaurella fusifera bleached. This study investigated whether zooxanthellae play a key role in the biosynthesis of secondary metabolite terpenes from P. fusifera. The extent of bleaching was examined by chlorophyll A analysis and also by zooxanthellae isolation and cell counting. The bleached and unbleached colonies were found to contain similar concentrations of eremophilene as the major terpene, and both exhibited similar biosynthetic capability as evaluated by the transformation of [C(1)-(3)H]-farnesyl diphosphate to the sesquiterpenes. Differences in bacterial communities between the bleached and unbleached colonies were analyzed using molecular techniques, and preliminary indications are that unbleached and bleached corals are dominated by low G + C firmicutes and gammaproteobacteria, respectively. It therefore appears that terpene biosynthesis can proceed independently of the zooxanthellae in P. fusifera, suggesting that the coral or a bacterium is the biosynthetic source.

  4. Efficient functional analysis system for cyanobacterial or plant cytochromes P450 involved in sesquiterpene biosynthesis.

    PubMed

    Harada, Hisashi; Shindo, Kazutoshi; Iki, Kanoko; Teraoka, Ayuko; Okamoto, Sho; Yu, Fengnian; Hattan, Jun-ichiro; Utsumi, Ryutaro; Misawa, Norihiko

    2011-04-01

    Tractable plasmids (pAC-Mv-based plasmids) for Escherichia coli were constructed, which carried a mevalonate-utilizing gene cluster, towards an efficient functional analysis of cytochromes P450 involved in sesquiterpene biosynthesis. They included genes coding for a series of redox partners that transfer the electrons from NAD(P)H to a P450 protein. The redox partners used were ferredoxin reductases (CamA and NsRED) and ferredoxins (CamB and NsFER), which are derived from Pseudomonas putida and cyanobacterium Nostoc sp. strain PCC 7120, respectively, as well as three higher-plant NADPH-P450 reductases, the Arabidopsis thaliana ATR2 and two corresponding enzymes derived from ginger (Zingiber officinale), named ZoRED1 and ZoRED2. We also constructed plasmids for functional analysis of two P450s, α-humulene-8-hydroxylase (CYP71BA1) from shampoo ginger (Zingiber zerumbet) and germacrene A hydroxylase (P450NS; CYP110C1) from Nostoc sp. PCC 7120, and co-transformed E. coli with each of the pAC-Mv-based plasmids. Production levels of 8-hydroxy-α-humulene with recombinant E. coli cells (for CYP71BA1) were 1.5- to 2.3-fold higher than that of a control strain without the mevalonate-pathway genes. Level of the P450NS product with the combination of NsRED and NsFER was 2.9-fold higher than that of the CamA and CamB. The predominant product of P450NS was identified as 1,2,3,5,6,7,8,8a-octahydro-6-isopropenyl-4,8a-dimethylnaphth-1-ol with NMR analyses. © Springer-Verlag 2011

  5. A Method for the Simultaneous Determination of Chlorogenic Acid and Sesquiterpene Lactone Content in Industrial Chicory Root Foodstuffs

    PubMed Central

    Hance, Philippe; Fertin, Anne; Voedts, Najia; Duhal, Nathalie; Goossens, Jean-François; Hilbert, Jean-Louis

    2014-01-01

    A method for the simultaneous determination of free chlorogenic acids (CGA) and sesquiterpene lactones (STL) in chicory root and its dried (flour) and roasted (grain) forms is described. The method uses one extraction and one analysis for all chicory root products. Various solvents with low to high polarity, such as methanol, chloroform, or n-hexane, were tested alone, in combination in different proportions or with acidified or neutral aqueous solvent. The water/chloroform/methanol (30/30/40, v/v/v) mixture generated the best extraction yield, 21% higher than alcohol mixtures. The profiling of CGA and STL content was performed through a conventional HPLC-DAD method using a PFP core shell column in a fast single run. Good retention time and area repeatability (RDD mean % 0.46 and 5.6, resp.) and linearity (R 2 ≥ 0.96) were obtained. The STL and chlorogenic acids levels determined were 254.7 and 100.2 μg/g of dry matter in the root, 792.5 and 1,547 μg/g in flour, and 160.4 and 822.5 μg/g in the roasted grains, respectively. With an average recovery of 106% and precision of 90%, this method is rapid, reproducible, and straightforward way to quantify the chlorogenic acids and STL in chicory raw material and end products. PMID:25548785

  6. Three new dihydro-β-agarofuran sesquiterpenes from the seeds of Maytenus boaria.

    PubMed

    Paz, Cristian; Heydenreich, Matthias; Schmidt, Bernd; Vadra, Nahir; Baggio, Ricardo

    2018-05-01

    As part of a project studying the secondary metabolites extracted from the Chilean flora, we report herein three new β-agarofuran sesquiterpenes, namely (1S,4S,5S,6R,7R,8R,9R,10S)-6-acetoxy-4,9-dihydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepine-5,10-diyl bis(furan-3-carboxylate), C 27 H 32 O 11 , (II), (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-9-hydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepine-5,10-diyl bis(furan-3-carboxylate), C 27 H 32 O 10 , (III), and (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-10-(benzoyloxy)-9-hydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepin-5-yl furan-3-carboxylate, C 29 H 34 O 9 , (IV), obtained from the seeds of Maytenus boaria and closely associated with a recently published relative [Paz et al. (2017). Acta Cryst. C73, 451-457]. In the (isomorphic) structures of (II) and (III), the central decalin system is esterified with an acetate group at site 1 and furoate groups at sites 6 and 9, and differ at site 8, with an OH group in (II) and no substituent in (III). This position is also unsubstituted in (IV), with site 6 being occupied by a benzoate group. The chirality of the skeletons is described as 1S,4S,5S,6R,7R,8R,9R,10S in (II) and 1S,4S,5S,6R,7R,9S,10S in (III) and (IV), matching the chirality suggested by NMR studies. This difference in the chirality sequence among the title structures (in spite of the fact that the three skeletons are absolutely isostructural) is due to the differences in the environment of site 8, i.e. OH in (II) and H in (III) and (IV). This diversity in substitution, in turn, is responsible for the differences in the hydrogen-bonding schemes, which is discussed.

  7. Sandalwood Fragrance Biosynthesis Involves Sesquiterpene Synthases of Both the Terpene Synthase (TPS)-a and TPS-b Subfamilies, including Santalene Synthases*

    PubMed Central

    Jones, Christopher G.; Moniodis, Jessie; Zulak, Katherine G.; Scaffidi, Adrian; Plummer, Julie A.; Ghisalberti, Emilio L.; Barbour, Elizabeth L.; Bohlmann, Jörg

    2011-01-01

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. PMID:21454632

  8. The effects of sesquiterpenes-rich extract of Alpinia oxyphylla Miq. on amyloid-β-induced cognitive impairment and neuronal abnormalities in the cortex and hippocampus of mice.

    PubMed

    Shi, Shao-Huai; Zhao, Xu; Liu, Bing; Li, Huan; Liu, Ai-Jing; Wu, Bo; Bi, Kai-Shun; Jia, Ying

    2014-01-01

    As a kind of medicine which can also be used as food, Alpinia oxyphylla Miq. has a long clinical history in China. A variety of studies demonstrated the significant neuroprotective activity effects of chloroform (CF) extract from the fruits of Alpinia oxyphylla. In order to further elucidate the possible mechanisms of CF extract which mainly contains sesquiterpenes with neuroprotection on the cognitive ability, mice were injected with Aβ(1-42) and later with CF in this study. The results showed that the long-term treatment of CF enhanced the cognitive performances in behavior tests, increased activities of glutathione peroxidase (GSH-px) and decreased the level of malondialdehyde (MDA), acetylcholinesterase (AChE), and amyloid-β (Aβ), and reversed the activation of microglia, degeneration of neuronal acidophilia, and nuclear condensation in the cortex and hippocampus. These results demonstrate that CF ameliorates learning and memory deficits by attenuating oxidative stress and regulating the activation of microglia and degeneration of neuronal acidophilia to reinforce cholinergic functions.

  9. The Effects of Sesquiterpenes-Rich Extract of Alpinia oxyphylla Miq. on Amyloid-β-Induced Cognitive Impairment and Neuronal Abnormalities in the Cortex and Hippocampus of Mice

    PubMed Central

    Shi, Shao-Huai; Zhao, Xu; Liu, Bing; Li, Huan; Liu, Ai-Jing; Wu, Bo; Bi, Kai-Shun

    2014-01-01

    As a kind of medicine which can also be used as food, Alpinia oxyphylla Miq. has a long clinical history in China. A variety of studies demonstrated the significant neuroprotective activity effects of chloroform (CF) extract from the fruits of Alpinia oxyphylla. In order to further elucidate the possible mechanisms of CF extract which mainly contains sesquiterpenes with neuroprotection on the cognitive ability, mice were injected with Aβ 1−42 and later with CF in this study. The results showed that the long-term treatment of CF enhanced the cognitive performances in behavior tests, increased activities of glutathione peroxidase (GSH-px) and decreased the level of malondialdehyde (MDA), acetylcholinesterase (AChE), and amyloid-β (Aβ), and reversed the activation of microglia, degeneration of neuronal acidophilia, and nuclear condensation in the cortex and hippocampus. These results demonstrate that CF ameliorates learning and memory deficits by attenuating oxidative stress and regulating the activation of microglia and degeneration of neuronal acidophilia to reinforce cholinergic functions. PMID:25180067

  10. Taraxinic acid, a hydrolysate of sesquiterpene lactone glycoside from the Taraxacum coreanum NAKAI, induces the differentiation of human acute promyelocytic leukemia HL-60 cells.

    PubMed

    Choi, Jung-Hye; Shin, Kyung-Min; Kim, Na-Young; Hong, Jung-Pyo; Lee, Yong Sup; Kim, Hyoung Ja; Park, Hee-Juhn; Lee, Kyung-Tae

    2002-11-01

    The present work was performed to elucidate the active moiety of a sesquiterpene lactone, taraxinic acid-1'-O-beta-D-glucopyranoside (1). from Taraxacum coreanum NAKAI on the cytotoxicity of various cancer cells. Based on enzymatic hydrolysis and MTT assay, the active moiety should be attributed to the aglycone taraxinic acid (1a). rather than the glycoside (1). Taraxinic acid exhibited potent antiproliferative activity against human leukemia-derived HL-60. In addition, this compound was found to be a potent inducer of HL-60 cell differentiation as assessed by a nitroblue tetrazolium reduction test, esterase activity assay, phagocytic activity assay, morphology change, and expression of CD 14 and CD 66 b surface antigens. These results suggest that taraxinic acid induces the differentiation of human leukemia cells to monocyte/macrophage lineage. Moreover, the expression level of c-myc was down-regulated during taraxinic acid-dependent HL-60 cell differentiation, whereas p21(CIP1) and p27(KIP1) were up-regulated. Taken together, our results suggest that taraxinic acid may have potential as a therapeutic agent in human leukemia.

  11. Probing the Role of Active Site Water in the Sesquiterpene Cyclization Reaction Catalyzed by Aristolochene Synthase.

    PubMed

    Chen, Mengbin; Chou, Wayne K W; Al-Lami, Naeemah; Faraldos, Juan A; Allemann, Rudolf K; Cane, David E; Christianson, David W

    2016-05-24

    Aristolochene synthase (ATAS) is a high-fidelity terpenoid cyclase that converts farnesyl diphosphate exclusively into the bicyclic hydrocarbon aristolochene. Previously determined crystal structures of ATAS complexes revealed trapped active site water molecules that could potentially interact with catalytic intermediates: water "w" hydrogen bonds with S303 and N299, water molecules "w1" and "w2" hydrogen bond with Q151, and a fourth water molecule coordinates to the Mg(2+)C ion. There is no obvious role for water in the ATAS mechanism because the enzyme exclusively generates a hydrocarbon product. Thus, these water molecules are tightly controlled so that they cannot react with carbocation intermediates. Steady-state kinetics and product distribution analyses of eight ATAS mutants designed to perturb interactions with active site water molecules (S303A, S303H, S303D, N299A, N299L, N299A/S303A, Q151H, and Q151E) indicate relatively modest effects on catalysis but significant effects on sesquiterpene product distributions. X-ray crystal structures of S303A, N299A, N299A/S303A, and Q151H mutants reveal minimal perturbation of active site solvent structure. Seven of the eight mutants generate farnesol and nerolidol, possibly resulting from addition of the Mg(2+)C-bound water molecule to the initially formed farnesyl cation, but no products are generated that would suggest enhanced reactivity of other active site water molecules. However, intermediate germacrene A tends to accumulate in these mutants. Thus, apart from the possible reactivity of Mg(2+)C-bound water, active site water molecules in ATAS are not directly involved in the chemistry of catalysis but instead contribute to the template that governs the conformation of the flexible substrate and carbocation intermediates.

  12. Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases.

    PubMed

    Jones, Christopher G; Moniodis, Jessie; Zulak, Katherine G; Scaffidi, Adrian; Plummer, Julie A; Ghisalberti, Emilio L; Barbour, Elizabeth L; Bohlmann, Jörg

    2011-05-20

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. MS/MS studies on the selective on-line detection of sesquiterpenes using a Flowing Afterglow-Tandem Mass Spectrometer (FA-TMS)

    NASA Astrophysics Data System (ADS)

    Rimetz-Planchon, J.; Dhooghe, F.; Schoon, N.; Vanhaecke, F.; Amelynck, C.

    2011-04-01

    A Flowing Afterglow-Tandem Mass Spectrometer (FA-TMS) was used to investigate the feasibility of selective on-line detection of a series of seven sesquiterpenes (SQTs). These SQTs were chemically ionized by either H3O+ or NO+ reagent ions in the FA, resulting among others in protonated SQT and SQT molecular ions, respectively. These and other Chemical Ionization (CI) product ions were subsequently subjected to dissociation by collisions with Ar atoms in the collision cell of the tandem mass spectrometer. The fragmentation spectra show similarities with mass spectra obtained for these compounds with other instruments such as a Proton Transfer Reaction-Linear Ion Trap (PTR-LIT), a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), a Triple Quadrupole-Mass Spectrometer (QqQ-MS) and a Selected Ion Flow Tube-Mass Spectrometer (SIFT-MS). Fragmentation of protonated SQT is characterized by fragment ions at the same masses but with different intensities for the individual SQT. Distinction of SQTs is based on well-chosen intensity ratios and collision energies. The fragmentation patterns of SQT molecular ions show specific fragment ion tracers at m/z 119, m/z162, m/z 137 and m/z 131 for α-cedrene, δ-neoclovene, isolongifolene and α-humulene, respectively. Consequently, chemical ionization of SQT by NO+, followed by MS/MS of SQT+ seems to open a way for selective quantification of SQTs in mixtures.

  14. Enzymatic synthesis of valerena-4,7(11)-diene by a unique sesquiterpene synthase from the valerian plant (Valeriana officinalis).

    PubMed

    Pyle, Bryan W; Tran, Hue T; Pickel, Benjamin; Haslam, Tegan M; Gao, Zhizeng; MacNevin, Gillian; Vederas, John C; Kim, Soo-Un; Ro, Dae-Kyun

    2012-09-01

    Valerian (Valeriana officinalis) is a popular medicinal plant in North America and Europe. Its root extract is commonly used as a mild sedative and anxiolytic. Among dozens of chemical constituents (e.g. alkaloids, iridoids, flavonoids, and terpenoids) found in valerian root, valerena-4,7(11)-diene and valerenic acid (C15 sesquiterpenoid) have been suggested as the active ingredients responsible for the sedative effect. However, the biosynthesis of the valerena-4,7(11)-diene hydrocarbon skeleton in valerian remains unknown to date. To identify the responsible terpene synthase, next-generation sequencing (Roche 454 pyrosequencing) was used to generate ∼ 1 million transcript reads from valerian root. From the assembled transcripts, two sesquiterpene synthases were identified (VoTPS1 and VoTPS2), both of which showed predominant expression patterns in root. Transgenic yeast expressing VoTPS1 and VoTPS2 produced germacrene C/germacrene D and valerena-4,7(11)-diene, respectively, as major terpene products. Purified VoTPS1 and VoTPS2 recombinant enzymes confirmed these activities in vitro, with competent kinetic properties (K(m) of ∼ 10 μm and k(cat) of 0.01 s(-1) for both enzymes). The structure of the valerena-4,7(11)-diene produced from the yeast expressing VoTPS2 was further substantiated by (13) C-NMR and GC-MS in comparison with the synthetic standard. This study demonstrates an integrative approach involving next-generation sequencing and metabolically engineered microbes to expand our knowledge of terpenoid diversity in medicinal plants. © 2012 The Authors Journal compilation © 2012 FEBS.

  15. Induction of G2/M arrest and apoptosis through mitochondria pathway by a dimer sesquiterpene lactone from Smallanthus sonchifolius in HeLa cells.

    PubMed

    Kitai, Yurika; Zhang, Xia; Hayashida, Yushi; Kakehi, Yoshiyuki; Tamura, Hirotoshi

    2017-07-01

    Dimer sesquiterpene lactones (SLs), uvedafolin and enhydrofolin, against four monomer SLs isolated from yacon, Smallanthus sonchifolius, leaf were the most cytotoxic substances on HeLa cells (IC 50 values 2.96-3.17 μM at 24 hours). However, the cytotoxic mechanism of dimer SL has not been elucidated yet. Therefore, in this study, we clarified the in vitro cytotoxic mechanism of uvedafolin on the HeLa cells, and evaluated the cytotoxicity against NIH/3T3 cells which were used as normal cells. In consequence, the dimer SLs had low toxicity for the NIH/3T3 cells (IC 50 4.81-4.98 μM at 24 hours) and then the uvedafolin mediated cell cycle arrest at the G 2 /M phase and induced apoptosis on the HeLa cells evidenced by appearance of a subG1 peak. Uvedafolin induced apoptosis was attributed to caspase-9 and caspase-3/7 activities. An effectively induced apoptosis pathway was demonstrated from mitochondria membrane potential change and cytochrome c release to cytosol. These results reveal that uvedafolin induced apoptosis via the mitochondria pathway. The present results indicate the potential of uvedafolin as a leading compound of new anticancer agents. Copyright © 2016. Published by Elsevier B.V.

  16. Inhibition of human cytochromes P450 2A6 and 2A13 by flavonoids, acetylenic thiophenes and sesquiterpene lactones from Pluchea indica and Vernonia cinerea.

    PubMed

    Boonruang, Supattra; Prakobsri, Khanistha; Pouyfung, Phisit; Srisook, Ekaruth; Prasopthum, Aruna; Rongnoparut, Pornpimol; Sarapusit, Songklod

    2017-12-01

    The human liver cytochrome P450 (CYP) 2A6 and the respiratory CYP2A13 enzymes play role in nicotine metabolism and activation of tobacco-specific nitrosamine carcinogens. Inhibition of both enzymes could offer a strategy for smoking abstinence and decreased risks of respiratory diseases and lung cancer. In this study, activity-guided isolation identified four flavonoids 1-4 (apigenin, luteolin, chrysoeriol, quercetin) from Vernonia cinerea and Pluchea indica, four hirsutinolide-type sesquiterpene lactones 5-8 from V. cinerea, and acetylenic thiophenes 9-11 from P. indica that inhibited CYP2A6- and CYP2A13-mediated coumarin 7-hydroxylation. Flavonoids were most effective in inhibition against CYP2A6 and CYP2A13, followed by thiophenes, and hirsutinolides. Hirsutinolides and thiophenes exhibited mechanism-based inhibition and in irreversible mode against both enzymes. The inactivation kinetic K I values of hirsutinolides against CYP2A6 and CYP2A13 were 5.32-15.4 and 0.92-8.67 µM, respectively, while those of thiophenes were 0.11-1.01 and 0.67-0.97 µM, respectively.

  17. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling.

    PubMed

    Rossi, Franco Rubén; Gárriz, Andrés; Marina, María; Romero, Fernando Matías; Gonzalez, María Elisa; Collado, Isidro González; Pieckenstain, Fernando Luis

    2011-08-01

    Botrytis cinerea, as a necrotrophic fungus, kills host tissues and feeds on the remains. This fungus is able to induce the hypersensitive response (HR) on its hosts, thus taking advantage on the host's defense machinery for generating necrotic tissues. However, the identity of HR effectors produced by B. cinerea is not clear. The aim of this work was to determine whether botrydial, a phytotoxic sesquiterpene produced by B. cinerea, is able to induce the HR on plant hosts, using Arabidopsis thaliana as a model. Botrydial induced the expression of the HR marker HSR3, callose deposition, and the accumulation of reactive oxygen species and phenolic compounds. Botrydial also induced the expression of PR1 and PDF1.2, two pathogenesis-related proteins involved in defense responses regulated by salicylic acid (SA) and jasmonic acid (JA), respectively. A. thaliana and tobacco plants defective in SA signaling were more resistant to botrydial than wild-type plants, as opposed to A. thaliana plants defective in JA signaling, which were more sensitive. It can be concluded that botrydial induces the HR on its hosts and its effects are modulated by host signaling pathways mediated by SA and JA.

  18. Codonolactone, a sesquiterpene lactone isolated from Chloranthus henryi Hemsl, inhibits breast cancer cell invasion, migration and metastasis by downregulating the transcriptional activity of Runx2.

    PubMed

    Wang, Wei; Chen, Bin; Zou, Ruolan; Tu, Xiuying; Tan, Songlin; Lu, Hong; Liu, Zhaojie; Fu, Jianjiang

    2014-11-01

    Metastasis is the most insidious aspect of breast cancer, but effective strategies to control this malignant process are still lacking. In previous studies, we screened over 200 extracts from plants of genus Chloranthaceae by bioactivity-guided fractionation, and found that Codonolactone (CLT) exhibited potential antimetastatic properties in breast cancer cells. This sesquiterpene lactone was isolated from Chloranthus henryi Hemsl, and is also found in other medical herbs, such as Codonopsis pilosula, Atractylodes macrocephala Koidz and others. Here, we report that CLT inhibited the ability of invasion and migration in metastatic breast cancer cells. Furthermore, CLT exhibited significant suppression on formation of lung metastatic foci of breast cancer in vivo. We next investigated the mechanism of CLT-induced metastasis inhibitory effects in breast cancer cells. A significant inhibition on activity and expression of MMP-9 and MMP-13 was observed. Moreover, data from western blotting, Runx2 transcription factor assay and chromatin immunoprecipitation assay showed that binding ability of Runx2 to sequences of the mmp-13 promoter was inhibited by CLT. Collectively, these findings suggested that the antimetastatic properties of CLT in breast cancer were due to the inhibition of MMPs, which might be associated with a downregulation of Runx2 transcriptional activity.

  19. Self-organizing maps of molecular descriptors for sesquiterpene lactones and their application to the chemotaxonomy of the Asteraceae family.

    PubMed

    Scotti, Marcus T; Emerenciano, Vicente; Ferreira, Marcelo J P; Scotti, Luciana; Stefani, Ricardo; da Silva, Marcelo S; Mendonça Junior, Francisco Jaime B

    2012-04-20

    The Asteraceae, one of the largest families among angiosperms, is chemically characterised by the production of sesquiterpene lactones (SLs). A total of 1,111 SLs, which were extracted from 658 species, 161 genera, 63 subtribes and 15 tribes of Asteraceae, were represented and registered in two dimensions in the SISTEMATX, an in-house software system, and were associated with their botanical sources. The respective 11 block of descriptors: Constitutional, Functional groups, BCUT, Atom-centred, 2D autocorrelations, Topological, Geometrical, RDF, 3D-MoRSE, GETAWAY and WHIM were used as input data to separate the botanical occurrences through self-organising maps. Maps that were generated with each descriptor divided the Asteraceae tribes, with total index values between 66.7% and 83.6%. The analysis of the results shows evident similarities among the Heliantheae, Helenieae and Eupatorieae tribes as well as between the Anthemideae and Inuleae tribes. Those observations are in agreement with systematic classifications that were proposed by Bremer, which use mainly morphological and molecular data, therefore chemical markers partially corroborate with these classifications. The results demonstrate that the atom-centred and RDF descriptors can be used as a tool for taxonomic classification in low hierarchical levels, such as tribes. Descriptors obtained through fragments or by the two-dimensional representation of the SL structures were sufficient to obtain significant results, and better results were not achieved by using descriptors derived from three-dimensional representations of SLs. Such models based on physico-chemical properties can project new design SLs, similar structures from literature or even unreported structures in two-dimensional chemical space. Therefore, the generated SOMs can predict the most probable tribe where a biologically active molecule can be found according Bremer classification.

  20. Germacranolide-type sesquiterpene lactones from Smallanthus sonchifolius with promising activity against Leishmania mexicana and Trypanosoma cruzi.

    PubMed

    Ulloa, Jerónimo L; Spina, Renata; Casasco, Agustina; Petray, Patricia B; Martino, Virginia; Sosa, Miguel A; Frank, Fernanda M; Muschietti, Liliana V

    2017-11-13

    Leishmaniasis and Chagas disease are life-threatening illnesses caused by the protozoan parasites Leishmania spp. and Trypanosoma cruzi, respectively. They are known as "neglected diseases" due to the lack of effective drug treatments and the scarcity of research work devoted to them. Therefore, the development of novel and effective drugs is an important and urgent need. Natural products are an important source of bioactive molecules for the development of new drugs. In this study, we evaluated the activity of enhydrin, uvedalin and polymatin B, three sesquiterpene lactones (STLs) isolated from Smallanthus sonchifolius, on Leishmania mexicana (MNYC/BZ/62/M) and Trypanosoma cruzi (Dm28c). In addition, the in vivo trypanocidal activity of enhydrin and uvedalin and the effects of these STLs on parasites' ultrastructure were evaluated. The inhibitory effect of the three STLs on the growth of L. mexicana amastigotes and promastigotes as well as T. cruzi epimastigotes was evaluated in vitro. The changes produced by the STLs on the ultrastructure of parasites were examined by transmission electron microscopy (TEM). Enhydrin and uvedalin were also studied in a murine model of acute T. cruzi infection (RA strain). Serum activities of the hepatic enzymes alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase were used as biochemical markers of hepatotoxicity. The three compounds exhibited leishmanicidal activity on both parasite forms with IC 50 values of 0.42-0.54 μg/ml for promastigotes and 0.85-1.64 μg/ml for intracellular amastigotes. Similar results were observed on T. cruzi epimastigotes (IC 50 0.35-0.60 μg/ml). The TEM evaluation showed marked ultrastructural alterations, such as an intense vacuolization and mitochondrial swelling in both L. mexicana promastigotes and T. cruzi epimastigotes exposed to the STLs. In the in vivo study, enhydrin and uvedalin displayed a significant decrease in circulating parasites (50-71%) and no signs of

  1. Monoterpene and sesquiterpene emissions from Quercus coccifera exhibit interacting responses to light and temperature

    NASA Astrophysics Data System (ADS)

    Staudt, M.; Lhoutellier, L.

    2011-09-01

    Light and temperature are known to be the most important environmental factors controlling biogenic volatile organic compound (BVOC) emissions from plants, but little is known about their interdependencies especially for BVOCs other than isoprene. We studied light responses at different temperatures and temperature responses at different light levels of foliar BVOC emissions, photosynthesis and chlorophyll fluorescence on Quercus coccifera, an evergreen oak widespread in Mediterranean shrublands. More than 50 BVOCs were detected in the emissions from Q. coccifera leaves most of them being isoprenoids plus a few green leaf volatiles (GLVs). Under standard conditions non-oxygenated monoterpenes (MT-hc) accounted for about 90% of the total BVOC release (mean ± SD: 738 ± 378 ng m-2 projected leaf area s-1 or 13.1 ± 6.9 μg g-1 leaf dry weight h-1) and oxygenated monoterpenes (MT-ox) and sesquiterpenes (SQTs) accounted for the rest in about equal proportions. Except GLVs, emissions of all BVOCs responded positively to light and temperature. The light responses of MT and SQT emissions resembled that of CO2-assimilation and were little influenced by the assay temperature: at high assay temperature, MT-hc emissions saturated at lower light levels than at standard assay temperature and tended even to decrease in the highest light range. The emission responses to temperature showed mostly Arrhenius-type response curves, whose shapes in the high temperature range were clearly affected by the assay light level and were markedly different between isoprenoid classes: at non-saturating light, all isoprenoids showed a similar temperature optimum (~43 °C), but, at higher temperatures, MT-hc emissions decreased faster than MT-ox and SQT emissions. At saturating light, MT-hc emissions peaked around 37 °C and rapidly dropped at higher temperatures, whereas MT-ox and SQT emissions strongly increased between 40 and 50 °C accompanied by a burst of GLVs. In all experiments

  2. Monoterpene and sesquiterpene emissions from Quercus coccifera exhibit interacting responses to light and temperature

    NASA Astrophysics Data System (ADS)

    Staudt, M.; Lhoutellier, L.

    2011-06-01

    Light and temperature are known to be the most important environmental factors controlling biogenic volatile organic compound (BVOC) emissions from plants, but little is known about their interdependencies especially for BVOCs other than isoprene. We studied light responses at different temperatures and temperature responses at different light levels of foliar BVOC emissions, photosynthesis and chlorophyll fluorescence on Quercus coccifera, an evergreen oak widespread in Mediterranean shrublands. More than 50 BVOCs were detected in the emissions from Q. coccifera leaves most of them being isoprenoids plus a few green leaf volatiles (GLVs). Under standard conditions non-oxygenated monoterpenes (MT-hc) accounted for about 90 % of the total BVOC release (mean ± SD: 738 ± 378 ng m-2 projected leaf area s-1 or 13.1 ± 6.9 μg g-1 leaf dry weight h-1) and oxygenated monoterpenes (MT-ox) and sesquiterpenes (SQTs) accounted for the rest in about equal proportions. Except GLVs, emissions of all BVOCs responded positively to light and temperature. The light responses of MT and SQT emissions resembled that of CO2-assimilation and were little influenced by the assay temperature: at high assay temperature, MT-hc emissions saturated at lower light levels than at standard assay temperature and tended even to decrease in the highest light range. The emission responses to temperature showed mostly Arrhenius-type response curves, whose shapes in the high temperature range were clearly affected by the assay light level and were markedly different between isoprenoid classes: at non-saturating light, all isoprenoids showed a similar temperature optimum (~43 °C), but, at higher temperatures, MT-hc emissions decreased faster than MT-ox and SQT emissions. At saturating light, MT-hc emissions peaked already around 37 °C and rapidly dropped at higher temperatures, whereas MT-ox and SQT emissions strongly increased between 40 and 50 °C accompanied by a burst of GLVs. In all experiments

  3. Synergistic induction of 1,25-dihydroxyvitamin D(3)- and all-trans-retinoic acid-induced differentiation of HL-60 leukemia cells by yomogin, a sesquiterpene lactone from Artemisia princeps.

    PubMed

    Kim, Seung Hyun; Kim, Tae Sung

    2002-10-01

    Many anti-inflammatory agents are known to significantly enhance the terminal differentiation of some cancer cells such as leukemia cells. In this study, the effect of yomogin, a eudesmane sesquiterpene lactone isolated from Artemisia princeps with anti-inflammatory activity, was investigated in human promyelocytic leukemia HL-60 cells. Yomogin by itself induced small increases in cell differentiation, with less than 19 % of the cells attaining a differentiated phenotype. Importantly, yomogin synergistically enhanced differentiation of HL-60 cells in a dose-dependent manner when combined with either 5 nM 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2) D(3)] or 50 nM all- trans retinoic acid (all- trans RA). Cytofluorometric analysis and morphologic studies indicated that the combinations of yomogin and 1,25-(OH)(2) D(3) stimulated differentiation to monocytes whereas the combinations of yomogin and all- trans RA stimulated differentiation to granulocytes. These results suggest that yomogin may be useful in combination with 1,25-(OH)(2) D(3) or all- trans-RA in the differentiation therapy for myeloid leukemias. Abbreviations. 1,25-(OH)(2) D(3) :1,25-dihydroxyvitamin D(3) FITC:fluorescein isothiocyanate NBT:nitroblue tetrazolium RA:retinoic acid PE:phytoerythrin

  4. Silver ion chromatography for peak resolution enhancement: Application to the preparative separation of two sesquiterpenes using online heart-cutting LC-LC technique.

    PubMed

    Yang, Yang; Zhang, Yongmin; Wei, Chong; Li, Jing; Sun, Wenji

    2018-09-01

    Silver ion chromatography, utilizing columns packed with silver ions bonded to silica gel, has proved to be an invaluable technique for the analysis of some positional isomers. In this work, silver ion chromatography by combination with online heart-cutting LC-LC technique for the preparative separation of two sesquiterpenes positional isomers from a natural product was investigated. On the basis of the evaluation that silver ion content impacts on the separation, the laboratory-made silver ion columns, utilizing silica gel impregnated with 15% silver nitrate as column packing materials, were used for peak resolution improvement of these two isomers and the preparative separation of them in heart-cutting LC-LC. The relationship among the maximal sample load, flow rate and peak resolution in the silver ion column were optimized, and the performance of the silver ion column was compared with conventional C 18 column and silica gel column. Based on the developed chromatographic conditions, online heart-cutting LC-LC chromatographic separation system in combination with a silica gel column and a silver ion column that was applied to preparative separation of these two isomers from a traditional Chinese medicine, Inula racemosa Hook.f., was established. The results showed that the online heart-cutting LC-LC technique by combination of a silica gel column and a silver ion column for the preparative separation of these two positional isomers from this natural plant was superior to the preparative separation performed on a single-column system with C 18 column or silica gel column. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The sesquiterpene (-)-α-bisabolol is active against the causative agents of Old World cutaneous leishmaniasis through the induction of mitochondrial-dependent apoptosis.

    PubMed

    Corpas-López, V; Merino-Espinosa, G; Díaz-Sáez, V; Morillas-Márquez, F; Navarro-Moll, M C; Martín-Sánchez, J

    2016-10-01

    Cutaneous leishmaniasis treatment remains challenging due to the absence of a satisfactory treatment. The screening of natural compounds is a valuable strategy in the search of new drugs against leishmaniasis. The sesquiterpene (-)-α-bisabolol is effective in vivo against visceral leishmaniasis due to Leishmania infantum, but its mechanism of action remains elusive. The aim of this study is to validate this promising compound against the causative species of Old World cutaneous leishmaniasis and to get an insight into its antileishmanial mode of action. The compound was evaluated on L. tropica promastigotes and intracellular amastigotes using bone marrow-derived macrophages and its cytotoxicity was evaluated on L929 fibroblasts. The reactive oxygen species generation was evaluated using a sensitive probe. Mitochondrial depolarization was assessed evaluating the fluorescence due to rhodamine 123 in a flow cytometer. Apoptosis was investigated by measuring the fluorescence due to annexin V and propidium iodide in a flow cytometer. The ultrastructure of treated promastigotes and intracellular amastigotes was analysed through transmission electron microscopy. (-)-α-Bisabolol was active against L. tropica intracellular amastigotes displaying an inhibitory concentration 50 % of 25.2 µM and showing low cytotoxicity. This compound induced time and dose-dependent oxidative stress, mitochondrial depolarization and phosphatidilserine externalization (a marker of apoptosis). These effects were noticed at a low concentration and short exposure time. In the ultrastructural analyses, the treated parasites showed mitochondrial disruption, presence of electron-dense structures and chromatin condensation. These results suggest that this natural compound induces oxidative stress and mitochondrial-dependent apoptosis on Leishmania without disturbing the plasma membrane.

  6. A dimeric urea of the bisabolene sesquiterpene from the Okinawan marine sponge Axinyssa sp. inhibits protein tyrosine phosphatase 1B activity in Huh-7 human hepatoma cells.

    PubMed

    Abdjul, Delfly B; Kanno, Syu-Ichi; Yamazaki, Hiroyuki; Ukai, Kazuyo; Namikoshi, Michio

    2016-01-15

    Protein tyrosine phosphatase 1B (PTP1B) plays an important role as a negative regulator of the insulin and leptin signaling pathways. Therefore, this enzyme is regarded as an attractive therapeutic target for the treatment of type 2 diabetes and obesity. Our screening program for PTP1B inhibitors led to the isolation of four sesquiterpenes and sterol: N,N'-bis[(6R,7S)-7-amino-7,8-dihydro-α-bisabolen-7-yl]urea (1), (6R,7S)-7-amino-7,8-dihydro-α-bisabolene (2), (1R,6S,7S,10S)-10-isothiocyanato-4-amorphene (3), axinisothiocyanate J (4), and axinysterol (5) from the marine sponge Axinyssa sp. collected at Iriomote Island. Of these, compound 1 was the most potent inhibitor of PTP1B activity (IC50=1.9μM) without cytotoxicity at 50μM in two human cancer cell lines, hepatoma Huh-7 and bladder carcinoma EJ-1 cells. Compound 1 also moderately enhanced the insulin-stimulated phosphorylation levels of Akt in Huh-7 cells. Therefore, compound 1 has potential as a new type of anti-diabetic drug candidate possessing PTP1B inhibitory activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Chlorogenic acids from Tithonia diversifolia demonstrate better anti-inflammatory effect than indomethacin and its sesquiterpene lactones.

    PubMed

    Chagas-Paula, Daniela Aparecida; Oliveira, Rejane Barbosa de; da Silva, Vanessa Cristina; Gobbo-Neto, Leonardo; Gasparoto, Thaís Helena; Campanelli, Ana Paula; Faccioli, Lúcia Helena; Da Costa, Fernando Batista

    2011-06-22

    T. diversifolia (Hemsl.) A. Gray (Asteraceae) has been used in the traditional medicine in several countries as anti-inflammatory and against other illnesses. It is important to evaluate the anti-inflammatory activity of extracts from the leaves of this species, including an infusion, to identify the main constituents of the extracts, observe their effects and correlate them with the anti-inflammatory activity. An infusion, a leaf rinse extract (LRE) and a polar extract from the rinsed leaves (PE) were obtained and analysed by HPLC-UV-DAD and infrared spectroscopy. The major compounds of these extracts were quantified. The three obtained extracts were evaluated for their anti-inflammatory activities using the paw oedema and croton oil ear oedema assays in mice. Furthermore, neutrophil migration was measured by evaluating myeloperoxidase activity. The PE consists primarily of chlorogenic acids (CAs) and lacks sesquiterpene lactones (STLs). The LRE is rich in STLs and includes a few flavonoids. The infusion is chemically similar to the PE but also contains very low amounts of STLs. The PE and LRE have better mechanisms of action than non-steroidal anti-inflammatory drugs (NSAIDs). Unlike NSAIDs, both the PE and LRE inhibit oedema and neutrophil migration. The pool of CAs from the PE of T. diversifolia has an additional mechanism of action, and its anti-inflammatory effect was greater than what is described in the literature for this class of compounds using the same evaluation models. The similar chemical compositions observed for the infusion and the PE, contrasted with the different activities observed, suggests the presence of antagonist compounds produced during the extraction procedure (infusion); the infusion did not inhibit oedema, however it inhibited neutrophil migration. It suggests that although the great majority of plants present CAs, the category of anti-inflammatory effect of their extracts depends on a suitable pool of compounds and an absence of

  8. NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death

    PubMed Central

    2012-01-01

    Background Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit. Pharmacologically active natural compounds such as those from marine, terrestrial plants and animals represent a promising resource for novel anticancer drugs. There are several prominent examples from the past proving the success of natural products and derivatives exhibiting anticancer activity. Helenalin, a sesquiterpene lactone has been demonstrated to have potent anti-inflammatory and antitumor activity. Albeit previous studies demonstrating helenalin’s multi modal action on cellular proliferative and apoptosis, the mechanisms underlying its action are largely unexplained. Methods To deduce the mechanistic action of helenalin, cancer cells were treated with the drug at various concentrations and time intervals. Using western blot, FACS analysis, overexpression and knockdown studies, cellular signaling pathways were interrogated focusing on apoptosis and autophagy markers. Results We show here that helenalin induces sub-G1 arrest, apoptosis, caspase cleavage and increases the levels of the autophagic markers. Suppression of caspase cleavage by the pan caspase inhibitor, Z-VAD-fmk, suppressed induction of LC3-B and Atg12 and reduced autophagic cell death, indicating caspase activity was essential for autophagic cell death induced by helenalin. Additionally, helenalin suppressed NF-κB p65 expression in a dose and time dependent manner. Exogenous overexpression of p65 was accompanied by reduced levels of cell death whereas siRNA mediated suppression led to augmented levels of caspase cleavage, autophagic cell death markers and increased cell death. Conclusions Taken together, these results show that helenalin mediated

  9. Anti-ulcerogenic mechanisms of the sesquiterpene lactone onopordopicrin-enriched fraction from Arctium lappa L. (Asteraceae): role of somatostatin, gastrin, and endogenous sulfhydryls and nitric oxide.

    PubMed

    de Almeida, Ana Beatriz Albino; Luiz-Ferreira, Anderson; Cola, Maíra; Di Pietro Magri, Luciana; Batista, Leonia Maria; de Paiva, Joseilson Alves; Trigo, José Roberto; Souza-Brito, Alba R M

    2012-04-01

    Arctium lappa L. has been used in folk medicine as a diuretic, depurative, and digestive stimulant and in dermatological conditions. The mechanisms involved in the anti-ulcerogenic activity of the sesquiterpene onopordopicrin (ONP)-enriched fraction (termed the ONP fraction), obtained from A. lappa leaves, were studied. The gastroprotective mechanism of the ONP fraction was evaluated in experimental in vivo models in rodents, mimicking this disease in humans. ONP fraction (50 mg/kg, p.o.) significantly inhibited the mucosal injury induced by ethanol/HCl solution (75%), indomethacin/bethanecol (68.9%), and stress (58.3%). When the ONP fraction was investigated in pylorus ligature, it did not induce alteration in the gastric volume but did modify the pH and total acid concentration of gastric juice. ONP fraction significantly increased serum somatostatin levels (82.1±4.1 vs. control group 12.7±4 pmol/L) and decreased serum gastrin levels (62.6±6.04 vs. control group 361.5±8.2 μU/mL). Mucus production was not significantly altered by the ONP fraction. Gastroprotection by the ONP fraction was completely inhibited by N-ethylmaleimide treatment and did not modify the effect in the animals pretreated with l-N(G)-nitroarginine methyl ester. These results suggest an antisecretory mechanism involved with the antiulcerogenic effect of the ONP fraction. However, only endogenous sulfhydryls play an important role in gastroprotection of the ONP fraction.

  10. Divergent Regulation of Terpenoid Metabolism in the Trichomes of Wild and Cultivated Tomato Species1[W][OA

    PubMed Central

    Besser, Katrin; Harper, Andrea; Welsby, Nicholas; Schauvinhold, Ines; Slocombe, Stephen; Li, Yi; Dixon, Richard A.; Broun, Pierre

    2009-01-01

    The diversification of chemical production in glandular trichomes is important in the development of resistance against pathogens and pests in two species of tomato. We have used genetic and genomic approaches to uncover some of the biochemical and molecular mechanisms that underlie the divergence in trichome metabolism between the wild species Solanum habrochaites LA1777 and its cultivated relative, Solanum lycopersicum. LA1777 produces high amounts of insecticidal sesquiterpene carboxylic acids (SCAs), whereas cultivated tomatoes lack SCAs and are more susceptible to pests. We show that trichomes of the two species have nearly opposite terpenoid profiles, consisting mainly of monoterpenes and low levels of sesquiterpenes in S. lycopersicum and mainly of SCAs and very low monoterpene levels in LA1777. The accumulation patterns of these terpenoids are different during development, in contrast to the developmental expression profiles of terpenoid pathway genes, which are similar in the two species, but they do not correlate in either case with terpenoid accumulation. However, our data suggest that the accumulation of monoterpenes in S. lycopersicum and major sesquiterpenes in LA1777 are linked both genetically and biochemically. Metabolite analyses after targeted gene silencing, inhibitor treatments, and precursor feeding all show that sesquiterpene biosynthesis relies mainly on products from the plastidic 2-C-methyl-d-erythritol-4-phosphate pathway in LA1777 but less so in the cultivated species. Furthermore, two classes of sesquiterpenes produced by the wild species may be synthesized from distinct pools of precursors via cytosolic and plastidial cyclases. However, highly trichome-expressed sesquiterpene cyclase-like enzymes were ruled out as being involved in the production of major LA1777 sesquiterpenes. PMID:18997116

  11. Analysis of sesquiterpene lactones, lignans, and flavonoids in wormwood (Artemisia absinthium L.) using high-performance liquid chromatography (HPLC)-mass spectrometry, reversed phase HPLC, and HPLC-solid phase extraction-nuclear magnetic resonance.

    PubMed

    Aberham, Anita; Cicek, Serhat Sezai; Schneider, Peter; Stuppner, Hermann

    2010-10-27

    Today, the medicinal use of wormwood (Artemisia absinthium) is enjoying a resurgence of popularity. This study presents a specific and validated high-performance liquid chromatography (HPLC)-diode array detection method for the simultaneous determination and quantification of bioactive compounds in wormwood and commercial preparations thereof. Five sesquiterpene lactones, two lignans, and a polymethoxylated flavonoid were baseline separated on RP-18 material, using a solvent gradient consisting of 0.085% (v/v) o-phosphoric acid and acetonitrile. The flow rate was 1.0 mL/min, and chromatograms were recorded at 205 nm. The stability of absinthin was tested exposing samples to light, moisture, and different temperatures. Methanolic and aqueous solutions of absinthin were found to be stable for up to 6 months. This was also the case when the solid compound was kept in the refrigerator at -35 °C. In contrast, the colorless needles, when stored at room temperature, turned yellow. Three degradation compounds (anabsin, anabsinthin, and the new dimer 3'-hydroxyanabsinthin) were identified by HPLC-mass spectrometry and HPLC-solid-phase extraction-nuclear magnetic resonance and quantified by the established HPLC method.

  12. Biosynthesis of Germacrene A Carboxylic Acid in Chicory Roots. Demonstration of a Cytochrome P450 (+)-Germacrene A Hydroxylase and NADP+-Dependent Sesquiterpenoid Dehydrogenase(s) Involved in Sesquiterpene Lactone Biosynthesis

    PubMed Central

    de Kraker, Jan-Willem; Franssen, Maurice C. R.; Dalm, Marcella C. F.; de Groot, Aede; Bouwmeester, Harro J.

    2001-01-01

    Sprouts of chicory (Cichorium intybus), a vegetable grown in the dark, have a slightly bitter taste associated with the presence of guaianolides, eudesmanolides, and germacranolides. The committed step in the biosynthesis of these compounds is catalyzed by a (+)-germacrene A synthase. Formation of the lactone ring is the postulated next step in biosynthesis of the germacrene-derived sesquiterpene lactones. The present study confirms this hypothesis by isolation of enzyme activities from chicory roots that introduce a carboxylic acid function in the germacrene A isopropenyl side chain, which is necessary for lactone ring formation. (+)-Germacrene A is hydroxylated to germacra-1(10),4,11(13)-trien-12-ol by a cytochrome P450 enzyme, and is subsequently oxidized to germacra-1(10),4,11(13)-trien-12-oic acid by NADP+-dependent dehydrogenase(s). Both oxidized germacrenes were detected as their Cope-rearrangement products elema-1,3,11(13)-trien-12-ol and elema-1,3,11(13)-trien-12-oic acid, respectively. The cyclization products of germacra-1(10),4,11(13)-trien-12-ol, i.e. costol, were also observed. The (+)-germacrene A hydroxylase is inhibited by carbon monoxide (blue-light reversible), has an optimum pH at 8.0, and hydroxylates β-elemene with a modest degree of enantioselectivity. PMID:11299372

  13. Discovery of germacrene A synthases in Barnadesia spinosa: The first committed step in sesquiterpene lactone biosynthesis in the basal member of the Asteraceae.

    PubMed

    Nguyen, Trinh-Don; Faraldos, Juan A; Vardakou, Maria; Salmon, Melissa; O'Maille, Paul E; Ro, Dae-Kyun

    2016-10-28

    The Andes-endemic Barnadesioideae lineage is the oldest surviving and phylogenetically basal subfamily of the Asteraceae (Compositae), a prolific group of flowering plants with world-wide distribution (∼24,000 species) marked by a rich diversity of sesquiterpene lactones (STLs). Intriguingly, there is no evidence that members of the Barnadesioideae produce STLs, specialized metabolites thought to have contributed to the adaptive success of the Asteraceae family outside South America. The biosynthesis of STLs requires the intimate expression and functional integration of germacrene A synthase (GAS) and germacrene A oxidase (GAO) to sequentially cyclize and oxidize farnesyl diphosphate into the advanced intermediate germacrene A acid leading to diverse STLs. Our previous discovery of GAO activity conserved across all major subfamilies of Asteraceae, including the phylogenetically basal lineage of Barnadesioideae, prompted further investigation of the presence of the gateway GAS in Barnadesioideae. Herein we isolated two terpene synthases (BsGAS1/BsGAS2) from the basal Barnadesia spinosa (Barnadesioideae) that displayed robust GAS activity when reconstituted in yeast and characterized in vitro. Despite the apparent lack of STLs in the Barnadesioideae, this work unambiguously confirms the presence of GAS in the basal genera of the Asteraceae. Phylogenetic analysis reveals that the two BsGASs fall into two distinct clades of the Asteraceae's GASs, and BsGAS1 clade is only retained in the evolutionary closer Cichorioideae subfamily, implicating BsGAS2 is likely the ancestral base of most GASs found in the lineages outside the Barnadesioideae. Taken together, these results show the enzymatic capacities of GAS and GAO emerged prior to the subsequent radiation of STL-producing Asteraceae subfamilies. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. New insights into the parametrization of temperature and light responses of mono - and sesquiterpene emissions from Aleppo pine and rosemary

    NASA Astrophysics Data System (ADS)

    Staudt, M.; Bourgeois, I.; Al Halabi, R.; Song, W.; Williams, J.

    2017-03-01

    Phytogenic emission of large volatile organic compounds (VOCs) such as monoterpenes (MTs) and sesquiterpenes (SQTs) are key precursors to the formation and growth of atmospheric particles. However, controlled environment studies to elucidate emission responses to temperature and light are still sparse. In this study, the volatile contents and emission responses of Aleppo pine and Rosemary have been investigated. These two common Mediterranean species store semivolatiles inside (resin ducts) and outside (trichomes) their foliage tissues respectively. Both species emitted mainly MTs with basal emission rates of around 5 (Rosemary) and 10 (pine) μg g-1 h-1 and SQTs about one order of magnitude lower. In Aleppo pine, two volatile sources could be clearly distinguished: 1) de-novo synthesized emission of (E)-β-ocimene and linalool, which accounted for about 70% of the total VOC release, were not found in foliar VOC extracts and expressed light dependency (LD) and temperature responses typical for enzyme driven emissions; and 2) storage-derived emissions of various MTs and SQTs whose emissions increased exponentially with temperature, showed no light dependency and were all present in leaf extracts. In Rosemary, all emitted MTs and SQTs including many oxygenated compounds, showed responses typical for stored volatiles and were all found in leaf extracts. The emissions of individual volatiles or volatile classes could be well described with the commonly applied empirical algorithms developed for LD or non LD emissions. However, the shapes of the temperature responses, and hence the deduced coefficient values, were significantly different between oxygenated and non-oxygenated compounds. They also differed between the storage-derived emissions of the two plant species, for individual VOCs or VOC classes. We address the possible reasons for this variation in temperature responses and argue that they are mostly due to molecular interactions along the species specific leaf

  15. A Novel Plant Sesquiterpene Lactone Derivative, DETD-35, Suppresses BRAFV600E Mutant Melanoma Growth and Overcomes Acquired Vemurafenib Resistance in Mice.

    PubMed

    Feng, Jia-Hua; Nakagawa-Goto, Kyoko; Lee, Kuo-Hsiung; Shyur, Lie-Fen

    2016-06-01

    Acquired resistance to vemurafenib develops through reactivation of RAF/MEK/ERK signaling or bypass mechanisms. Recent combination therapies such as a MEK inhibitor combined with vemurafenib show improvement in major clinical end points, but the percentage of patients with adverse toxic events is higher than with vemurafenib monotherapy and most patients ultimately relapse. Therefore, there is an urgent need to develop new antimelanoma drugs and/or adjuvant agents for vemurafenib therapy. In this study, we created a novel semiorganically modified derivative, DETD-35, from deoxyelephantopin (DET), a plant sesquiterpene lactone demonstrated as an anti-inflammatory and anti-mammary tumor agent. Our results show that DETD-35 inhibited proliferation of a panel of melanoma cell lines, including acquired vemurafenib resistance A375 cells (A375-R) established in this study, with superior activities to DET and no cytotoxicity to normal melanocytes. DETD-35 suppressed tumor growth and reduced tumor mass as effectively as vemurafenib in A375 xenograft study. Furthermore, DETD-35 also reduced tumor growth in both acquired (A375-R) and intrinsic (A2058) vemurafenib resistance xenograft models, where vemurafenib showed no antitumor activity. Notably, the combination of DETD-35 and vemurafenib exhibited the most significant effects in both in vitro and in vivo xenograft studies due to synergism of the compound and the drug. Mechanistic studies suggested that DETD-35 overcame acquired vemurafenib resistance at least in part through deregulating MEK-ERK, Akt, and STAT3 signaling pathways and promoting apoptosis of cancer cells. Overall, our results suggest that DETD-35 may be useful as a therapeutic or adjuvant agent against BRAF(V600E) mutant and acquired vemurafenib resistance melanoma. Mol Cancer Ther; 15(6); 1163-76. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism.

    PubMed

    Czechowski, Tomasz; Larson, Tony R; Catania, Theresa M; Harvey, David; Brown, Geoffrey D; Graham, Ian A

    2016-12-27

    Artemisinin, a sesquiterpene lactone produced by Artemisia annua glandular secretory trichomes, is the active ingredient in the most effective treatment for malaria currently available. We identified a mutation that disrupts the amorpha-4,11-diene C-12 oxidase (CYP71AV1) enzyme, responsible for a series of oxidation reactions in the artemisinin biosynthetic pathway. Detailed metabolic studies of cyp71av1-1 revealed that the consequence of blocking the artemisinin biosynthetic pathway is the redirection of sesquiterpene metabolism to a sesquiterpene epoxide, which we designate arteannuin X. This sesquiterpene approaches half the concentration observed for artemisinin in wild-type plants, demonstrating high-flux plasticity in A. annua glandular trichomes and their potential as factories for the production of novel alternate sesquiterpenes at commercially viable levels. Detailed metabolite profiling of leaf maturation time-series and precursor-feeding experiments revealed that nonenzymatic conversion steps are central to both artemisinin and arteannuin X biosynthesis. In particular, feeding studies using 13 C-labeled dihydroartemisinic acid (DHAA) provided strong evidence that the final steps in the synthesis of artemisinin are nonenzymatic in vivo. Our findings also suggest that the specialized subapical cavity of glandular secretory trichomes functions as a location for both the chemical conversion and the storage of phytotoxic compounds, including artemisinin. We conclude that metabolic engineering to produce high yields of novel secondary compounds such as sesquiterpenes is feasible in complex glandular trichomes. Such systems offer advantages over single-cell microbial hosts for production of toxic natural products.

  17. Differences in the chemical composition of Arnica montana flowers from wild populations of north Italy.

    PubMed

    Clauser, Maria; Aiello, Nicola; Scartezzini, Fabrizio; Innocenti, Gabbriella; Dall'Acqua, Stefano

    2014-01-01

    The flower heads of fourteen wild Arnica montana L. populations were collected in the summer of 2010 in the provinces of Trento, Brescia and Bergamo (Italy). The dried flowers were analyzed to assess their chemical diversity. HLPC-MS analysis led to the identification of phenolic derivatives and sesquiterpene lactones in the samples, confirming literature data. Quali-quantitative analysis of the flower heads showed similar qualitative patterns both for the phenolic as well as sesquiterpene lactone derivatives, while significant variability was obtained in the amounts (HPLC-DAD) of sesquiterpene lactones (0.45-2.31%), phenolic acids (1.44-2.88%) and flavonoids (0.96-2.44%). The highest quantities of sesquiterpene lactones, flavonoids and phenolic acids were found in Malga Fregasoga (1703 m above sea level), Rifugio Camini (1608 m a.s.l.) and Malga Sass (1817 m a.s.l.) samples, respectively.

  18. Arthropod deterrents from Artemisia pallens (Davana oil) components

    USDA-ARS?s Scientific Manuscript database

    Davanone, a key sesquiterpene component of davana oil, has been synthesized in five convenient steps. Oxygenated sesquiterpenes have been linked to insect deterrent properties. Based on initial screening of davana oil, davanone and its hydroxy precursors have been generated and are being evaluated...

  19. Artemisia annua mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism

    PubMed Central

    Czechowski, Tomasz; Larson, Tony R.; Catania, Theresa M.; Harvey, David; Brown, Geoffrey D.; Graham, Ian A.

    2016-01-01

    Artemisinin, a sesquiterpene lactone produced by Artemisia annua glandular secretory trichomes, is the active ingredient in the most effective treatment for malaria currently available. We identified a mutation that disrupts the amorpha-4,11-diene C-12 oxidase (CYP71AV1) enzyme, responsible for a series of oxidation reactions in the artemisinin biosynthetic pathway. Detailed metabolic studies of cyp71av1-1 revealed that the consequence of blocking the artemisinin biosynthetic pathway is the redirection of sesquiterpene metabolism to a sesquiterpene epoxide, which we designate arteannuin X. This sesquiterpene approaches half the concentration observed for artemisinin in wild-type plants, demonstrating high-flux plasticity in A. annua glandular trichomes and their potential as factories for the production of novel alternate sesquiterpenes at commercially viable levels. Detailed metabolite profiling of leaf maturation time-series and precursor-feeding experiments revealed that nonenzymatic conversion steps are central to both artemisinin and arteannuin X biosynthesis. In particular, feeding studies using 13C-labeled dihydroartemisinic acid (DHAA) provided strong evidence that the final steps in the synthesis of artemisinin are nonenzymatic in vivo. Our findings also suggest that the specialized subapical cavity of glandular secretory trichomes functions as a location for both the chemical conversion and the storage of phytotoxic compounds, including artemisinin. We conclude that metabolic engineering to produce high yields of novel secondary compounds such as sesquiterpenes is feasible in complex glandular trichomes. Such systems offer advantages over single-cell microbial hosts for production of toxic natural products. PMID:27930305

  20. Sesquiterpenoids Lactones: Benefits to Plants and People

    PubMed Central

    Chadwick, Martin; Trewin, Harriet; Gawthrop, Frances; Wagstaff, Carol

    2013-01-01

    Sesquiterpenoids, and specifically sesquiterpene lactones from Asteraceae, may play a highly significant role in human health, both as part of a balanced diet and as pharmaceutical agents, due to their potential for the treatment of cardiovascular disease and cancer. This review highlights the role of sesquiterpene lactones endogenously in the plants that produce them, and explores mechanisms by which they interact in animal and human consumers of these plants. Several mechanisms are proposed for the reduction of inflammation and tumorigenesis at potentially achievable levels in humans. Plants can be classified by their specific array of produced sesquiterpene lactones, showing high levels of translational control. Studies of folk medicines implicate sesquiterpene lactones as the active ingredient in many treatments for other ailments such as diarrhea, burns, influenza, and neurodegradation. In addition to the anti-inflammatory response, sesquiterpene lactones have been found to sensitize tumor cells to conventional drug treatments. This review explores the varied ecological roles of sesquiterpenes in the plant producer, depending upon the plant and the compound. These include allelopathy with other plants, insects, and microbes, thereby causing behavioural or developmental modification to these secondary organisms to the benefit of the sesquiterpenoid producer. Some sesquiterpenoid lactones are antimicrobial, disrupting the cell wall of fungi and invasive bacteria, whereas others protect the plant from environmental stresses that would otherwise cause oxidative damage. Many of the compounds are effective due to their bitter flavor, which has obvious implications for human consumers. The implications of sesquiterpenoid lactone qualities for future crop production are discussed. PMID:23783276

  1. Underestimation of terpene exposure in the Nordic wood industry.

    PubMed

    Granström, Karin M

    2010-03-01

    This study determined that emission of sesquiterpenes from processed wood warrants attention in the work environment. Currently, only the monoterpenes in the terpene group are monitored in occupational hygiene studies. Terpene emissions are a work environment issue for industries that process wood, as they are known to cause respiratory difficulties and mucous membrane irritation. Fresh sawdust of the most common boreal conifers, Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), was subjected to processing (drying), and the emissions were analyzed with a gas chromatograph-mass spectrometer. The data indicate that workers are exposed to significant amounts of sesquiterpenes, an observation that has not been recorded previously at wood processing plants. On average, the proportion of sesquiterpenes to monoterpenes was 21 +/- 5% (STD, n = 11) for spruce and 15 +/- 5% (STD, n = 13) for pine. The composition of terpenes emitted in air from spruce wood differs from the composition in resin. The sum of monoterpenes and sesquiterpenes can exceed the occupational exposure limit for turpentine for processes where monoterpene concentrations are already close to the occupational exposure limit, and for processes involving the processing of bark. Findings suggest that future studies of health effects from terpenes in air should measure monoterpenes and sesquiterpenes to assess whether the current OELs are appropriate.

  2. Unusual features of a recombinant apple alpha-farnesene synthase.

    PubMed

    Green, Sol; Friel, Ellen N; Matich, Adam; Beuning, Lesley L; Cooney, Janine M; Rowan, Daryl D; MacRae, Elspeth

    2007-01-01

    A recombinant alpha-farnesene synthase from apple (Malus x domestica), expressed in Escherichia coli, showed features not previously reported. Activity was enhanced 5-fold by K(+) and all four isomers of alpha-farnesene, as well as beta-farnesene, were produced from an isomeric mixture of farnesyl diphosphate (FDP). Monoterpenes, linalool, (Z)- and (E)-beta-ocimene and beta-myrcene, were synthesised from geranyl diphosphate (GDP), but at 18% of the optimised rate for alpha-farnesene synthesis from FDP. Addition of K(+) reduced monoterpene synthase activity. The enzyme also produced alpha-farnesene by a reaction involving coupling of GDP and isoprenyl diphosphate but at <1% of the rate with FDP. Mutagenesis of active site aspartate residues removed sesquiterpene, monoterpene and prenyltransferase activities suggesting catalysis through the same active site. Phylogenetic analysis clusters this enzyme with isoprene synthases rather than with other sesquiterpene synthases, suggesting that it has evolved differently from other plant sesquiterpene synthases. This is the first demonstration of a sesquiterpene synthase possessing prenyltransferase activity.

  3. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  4. Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis

    PubMed Central

    2013-01-01

    Background Agarwood is an expensive resinous heartwood derived from Aquilaria plants that is widely used in traditional medicines, incense and perfume. Only wounded trees can produce agarwood, and the huge demand for the agarwood products has led all Aquilaria spp. being endangered and listed in the Appendix II of the CITES (http://www.cites.org). The major components of agarwood are sesquiterpenes and phenylethyl chromones. Owing to a lack of genomic information, the molecular basis of wound-induced sesquiterpenes biosynthesis and agarwood formation remains unknown. Results To identify the primary genes that maybe related to agarwood formation, we sequenced 2 cDNA libraries generated from healthy and wounded A. sinensis (Lour.) Gilg. A total of 89,137 unigenes with an average length of 678.65 bp were obtained, and they were annotated in detail at bioinformatics levels. Of those associated with agarwood formation, 30 putatively encoded enzymes in the sesquiterpene biosynthesis pathway, and a handful of transcription factors and protein kinases were related to wound signal transduction. Three full-length cDNAs of sesquiterpene synthases (ASS1-3) were cloned and expressed in Escherichia coli, and enzyme assays revealed that they are active enzymes, with the major products being δ-guaiene. A methyl jasmonate (MJ) induction experiment revealed that the expression of ASS was significantly induced by MJ, and the production of sesquiterpenes was elevated accordingly. The expression of some transcription factors and protein kinases, especially MYB4, WRKY4, MPKK2 and MAPK2, was also induced by MJ and coordinated with ASS expression, suggesting they maybe positive regulators of ASS. Conclusions This study provides extensive transcriptome information for Aquilaria spp. and valuable clues for elucidating the mechanism of wound-induced agarwood sesquiterpenes biosynthesis and their regulation. PMID:23565705

  5. Study of the Local Horizon. (Spanish Title: Estudio del Horizonte Local.) Estudo do Horizonte Local

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.

    2009-12-01

    The study of the horizon is fundamental to easy the first observations of the students at any education center. A simple model, to be developed in each center, allows to easy the study and comprehension of the rudiments of astronomy. The constructed model is presented in turn as a simple equatorial clock, other models (horizontal and vertical) may be constructed starting from it. El estudio del horizonte es fundamental para poder facilitar las primeras observaciones de los alumnos en un centro educativo. Un simple modelo, que debe realizarse para cada centro, nos permite facilitar el estudio y la comprensión de los primeros rudimentos astronómicos. El modelo construido se presenta a su vez como un sencillo modelo de reloj ecuatorial y a partir de él se pueden construir otros modelos (horizontal y vertical). O estudo do horizonte é fundamental para facilitar as primeiras observações dos alunos num centro educativo. Um modelo simples, que deve ser feito para cada centro, permite facilitar o estudo e a compreensão dos primeiros rudimentos astronômicos. O modelo construído apresenta-se, por sua vez, como um modelo simples de relógio equatorial e a partir dele pode-se construir outros modelos (horizontal e vertical)

  6. Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed.

    PubMed

    Tippmann, Stefan; Scalcinati, Gionata; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Terpenes have various applications as fragrances, cosmetics and fuels. One of the most prominent examples is the sesquiterpene farnesene, which can be used as diesel substitute in its hydrogenated form farnesane. Recent metabolic engineering efforts have enabled efficient production of several terpenes in Saccharomyces cerevisiae and Escherichia coli. Plant terpene synthases take on an essential function for sesquiterpene production as they catalyze the specific conversion of the universal precursor farnesyl diphosphate (FPP) to the sesquiterpene of interest and thereby impose limitations on the overall productivity. Using farnesene as a case study, we chose three terpene synthases with distinct plant origins and compared their applicability for farnesene production in the yeast S. cerevisiae. Differences regarding the efficiency of these enzymes were observed in shake flask cultivation with maximal final titers of 4 mg/L using α-farnesene synthase from Malus domestica. By employing two existing platform strains optimized for sesquiterpene production, final titers could be raised up 170 mg/L in fed-batch fermentations with RQ-controlled exponential feeding. Based on these experiments, the difference between the selected synthases was not significant. Lastly, the same fermentation setup was used to compare these results to production of the fragrance sesquiterpene santalene, and almost equivalent titers were obtained with 163 mg/L, using the highest producing strain expressing a santalene synthase from Clausena lansium. However, a reduction of the product yield on biomass by 50% could indicate a higher catalytic efficiency of the farnesene synthase. © 2015 Wiley Periodicals, Inc.

  7. Online identification of chlorogenic acids, sesquiterpene lactones, and flavonoids in the Brazilian arnica Lychnophora ericoides Mart. (Asteraceae) leaves by HPLC-DAD-MS and HPLC-DAD-MS/MS and a validated HPLC-DAD method for their simultaneous analysis.

    PubMed

    Gobbo-Neto, Leonardo; Lopes, Norberto P

    2008-02-27

    Lychnophora ericoides Mart. (Asteraceae, Vernonieae) is a plant, endemic to Brazil, with occurrence restricted to the "cerrado" biome. Traditional medicine employs alcoholic and aqueous-alcoholic preparations of leaves from this species for the treatment of wounds, inflammation, and pain. Furthermore, leaves of L. ericoides are also widely used as flavorings for the Brazilian traditional spirit "cachaça". A method has been developed for the extraction and HPLC-DAD analysis of the secondary metabolites of L. ericoides leaves. This analytical method was validated with 11 secondary metabolites chosen to represent the different classes and polarities of secondary metabolites occurring in L. ericoides leaves, and good responses were obtained for each validation parameter analyzed. The same HPLC analytical method was also employed for online secondary metabolite identification by HPLC-DAD-MS and HPLC-DAD-MS/MS, leading to the identification of di- C-glucosylflavones, coumaroylglucosylflavonols, flavone, flavanones, flavonols, chalcones, goyazensolide, and eremantholide-type sesquiterpene lactones and positional isomeric series of chlorogenic acids possessing caffeic and/or ferulic moieties. Among the 52 chromatographic peaks observed, 36 were fully identified and 8 were attributed to compounds belonging to series of caffeoylferuloylquinic and diferuloylquinic acids that could not be individualized from each other.

  8. Estudo espectral em raios-X duros de fontes do tipo Z com o HEXTE/RXTE

    NASA Astrophysics Data System (ADS)

    D'Amico, F.; Heindl, W. A.; Rothschild, R. E.

    2003-08-01

    Apresentam-se os resultados de um estudo espectral em raios-X de fontes do tipo Z. As fontes do tipo Z são binárias de raios-X de baixa massa (BXBM) com campo magnético intermediário (B~109G). Esta classe de fontes é composta por apenas 6 fontes Galácticas (a saber: ScoX-1, 9, 7, CygX-2, 5 e 0). A nossa análise se concentra na faixa de raios-X duros (E ~ 20keV), até cerca de 200keV, faixa ótima de operação do telescópio "High Energy X-ray Timing Experiment" (HEXTE), um dos três telescópios de raios-X à bordo do Rossi X-ray Timing Explorer (RXTE). Nossa motivação para tal estudo, uma busca de caudas em raios-X duros em fontes do tipo Z, foi o pouco conhecimento sobre a emissão nesta faixa de energia das referidas fontes quando comparadas, por exemplo, as fontes do tipo atoll (também BXBM). Apresentam-se a análise/redução de dados e explicita-se a maneira como o HEXTE mede o ru1do de fundo. Especial atenção é direcionada a este item devido a localização das fontes do tipo Z e também ao problema de contaminação por fontes próximas. Com exceção de ScoX-1, nenhuma cauda em raios-X duros foi encontrada para as outras fontes, a despeito de resultados de detecção dessas caudas em algumas fontes pelo satélite BeppoSAX. As interpretações deste resultado serão apresentadas. Do ponto de vista deste estudo, nós deduzimos que a produção de caudas de raios-X duros em fontes do tipo Z é um processo disparado quando, pelo menos, uma condição é satisfeita: o brilho da componente térmica do espectro precisa estar acima de um certo valor limiar de ~4´1036ergs-1.

  9. Lettuce Costunolide Synthase (CYP71BL2) and Its Homolog (CYP71BL1) from Sunflower Catalyze Distinct Regio- and Stereoselective Hydroxylations in Sesquiterpene Lactone Metabolism*

    PubMed Central

    Ikezawa, Nobuhiro; Göpfert, Jens Christian; Nguyen, Don Trinh; Kim, Soo-Un; O'Maille, Paul E.; Spring, Otmar; Ro, Dae-Kyun

    2011-01-01

    Sesquiterpene lactones (STLs) are terpenoid natural products possessing the γ-lactone, well known for their diverse biological and medicinal activities. The occurrence of STLs is sporadic in nature, but most STLs have been isolated from plants in the Asteraceae family. Despite the implication of the γ-lactone group in many reported bioactivities of STLs, the biosynthetic origins of the γ-lactone ring remains elusive. Germacrene A acid (GAA) has been suggested as a central precursor of diverse STLs. The regioselective (C6 or C8) and stereoselective (α or β) hydroxylation on a carbon of GAA adjacent to its carboxylic acid at C12 is responsible for the γ-lactone formation. Here, we report two cytochrome P450 monooxygenases (P450s) capable of catalyzing 6α- and 8β-hydroxylation of GAA from lettuce and sunflower, respectively. To identify these P450s, sunflower trichomes were isolated to generate a trichome-specific transcript library, from which 10 P450 clones were retrieved. Expression of these clones in a yeast strain metabolically engineered to synthesize substrate GAA identified a P450 catalyzing 8β-hydroxylation of GAA, but the STL was not formed by spontaneous lactonization. Subsequently, we identified the closest homolog of the GAA 8β-hydroxylase from lettuce and discovered 6α-hydroxylation of GAA by the recombinant enzyme. The resulting 6α-hydroxy-GAA spontaneously undergoes a lactonization to yield the simplest form of STL, costunolide. Furthermore, we demonstrate the milligram per liter scale de novo synthesis of costunolide using the lettuce P450 in an engineered yeast strain, an important advance that will enable exploitation of STLs. Evolution and homology models of these two P450s are discussed. PMID:21515683

  10. Identification and characterization of two bisabolene synthases from linear glandular trichomes of sunflower (Helianthus annuus L., Asteraceae).

    PubMed

    Aschenbrenner, Anna-Katharina; Kwon, Moonhyuk; Conrad, Jürgen; Ro, Dae-Kyun; Spring, Otmar

    2016-04-01

    Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a β-farnesene synthase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Sesquiterpenes are a class of natural products with a diverse range of attractive industrial proprieties. Due to economic difficulties of sesquiterpene production via extraction from plants or chemical synthesis there is interest in developing alternative and cost efficient bioprocesses. The hydrocarbon α-santalene is a precursor of sesquiterpenes with relevant commercial applications. Here, we construct an efficient Saccharomyces cerevisiae cell factory for α-santalene production. Results A multistep metabolic engineering strategy targeted to increase precursor and cofactor supply was employed to manipulate the yeast metabolic network in order to redirect carbon toward the desired product. To do so, genetic modifications were introduced acting to optimize the farnesyl diphosphate branch point, modulate the mevalonate pathway, modify the ammonium assimilation pathway and enhance the activity of a transcriptional activator. The approach employed resulted in an overall α-santalene yield of a 0.0052 Cmmol (Cmmol glucose)-1 corresponding to a 4-fold improvement over the reference strain. This strategy, combined with a specifically developed continuous fermentation process, led to a final α-santalene productivity of 0.036 Cmmol (g biomass)-1 h-1. Conclusions The results reported in this work illustrate how the combination of a metabolic engineering strategy with fermentation technology optimization can be used to obtain significant amounts of the high-value sesquiterpene α-santalene. This represents a starting point toward the construction of a yeast “sesquiterpene factory” and for the development of an economically viable bio-based process that has the potential to replace the current production methods. PMID:22938570

  12. Chemical composition and antibacterial activity of the essential oils from flower, leaf and stem of Ferula cupularis growing wild in Iran.

    PubMed

    Alipour, Ziba; Taheri, Poroshat; Samadi, Nasrin

    2015-04-01

    Ferula cupularis (Boiss.) Spalik et S. R. Downie (Apiaceae) is a common plant in Iran that grows in the foothills of Dena Mountain. In traditional folk medicine, this plant has different applications, but there are no studies proving their uses. This study is the first attempt to investigate the chemical composition and antibacterial effect of the essential oils of F. cupularis. The essential oils from flower, leaf, and stem of F. cupularis were analyzed by using GC and GC-MS. Antibacterial activity of essential oils was determined by microdilution method against Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The essential oil from flower of F. cupularis contained 15 monoterpene, 13 oxygenated monoterpene, and 2 sesquiterpene hydrocarbons. The leaf essential oil contained 12 monoterpene, 13 oxygenated monoterpene, 2 sesquiterpene, 6 oxygenated sesquiterpene hydrocarbons, and 3 non-terpenoid components. Stem essential oil contained one monoterpene, 23 oxygenated monoterpene, 2 sesquiterpene, and 6 oxygenated sesquiterpene hydrocarbons. The MIC value of stem essential oil was 2.85 mg/mL against both Gram-positive bacteria and Gram-negative bacteria except P. aeruginosa which was inhibited at 22.75 mg/mL. The MIC values of leaf and flower essential oils were higher than 5.69 and 22.75 mg/mL, respectively. This study highlighted the strong antibacterial effect of Ferula cupularis's essential oil which might be due to its high content of oxygenated monoterpene hydrocarbons. Our results suggested that this plant may be a good candidate for further biological and pharmacological investigations.

  13. UFVA, A Combined Linear and Nonlinear Factor Analysis Program Package for Chemical Data Evaluation.

    DTIC Science & Technology

    1980-11-01

    that one cluster consists of the monoterpenes and Isoprene; the second is of the sesquiterpenes. Compound 8 (Caryophyllene) should therefore belong to...two clusters very clearly (Fig. 6). Figure 6 The very similar fragmentation pattern of Isoprene and the monoterpenes is reflected by their close...13 of another set of 13 terpene components. These are Isoprene, four monoterpenes (Myrcene, Menthol, Camphene, Umbellulone), four sesquiterpenes

  14. Penicillipyrones A and B, meroterpenoids from a marine-derived Penicillium sp. fungus.

    PubMed

    Liao, Lijuan; Lee, Jung-Ho; You, Minjung; Choi, Tae Joon; Park, Wanki; Lee, Sang Kook; Oh, Dong-Chan; Oh, Ki-Bong; Shin, Jongheon

    2014-02-28

    Penicillipyrones A (1) and B (2), two novel meroterpenoids, were isolated from the marine-derived fungus Penicillium sp. On the basis of the results of combined spectroscopic analyses, these compounds were structurally elucidated to be sesquiterpene γ-pyrones from a new skeletal class derived from a unique linkage pattern between the drimane sesquiterpene and pyrone moieties. Compound 2 elicited significant induction of quinone reductase.

  15. Sesquiterpenes from Centaurea aspera.

    PubMed

    Marco, J Alberto; Sanz-Cervera, Juan F; Yuste, Alberto; Sancenón, Félix; Carda, Miguel

    2005-07-01

    The aerial parts of two subspecies of Centaurea aspera L. (Asteraceae) yielded the germacranolides 1a-h, 2, 3, 4 and 5, the elemane derivatives 6d and 6f, the lignan matairesinol, the degraded terpene loliolide, and the onopordopicrin-valine dimeric adduct 7. From these, compounds 1e, 3 and 6d are natural products. The chemical composition of the two subspecies is very similar, a circumstance which does not support a taxonomic subdivision of the species.

  16. Direct Analyses of Secondary Metabolites by Mass Spectrometry Imaging (MSI) from Sunflower (Helianthus annuus L.) Trichomes.

    PubMed

    Brentan Silva, Denise; Aschenbrenner, Anna-Katharina; Lopes, Norberto Peporine; Spring, Otmar

    2017-05-10

    Helianthus annuus (sunflower) displays non-glandular trichomes (NGT), capitate glandular trichomes (CGT), and linear glandular trichomes (LGT), which reveal different chemical compositions and locations in different plant tissues. With matrix-assisted laser desorption/ionization (MALDI) and laser desorption/ionization (LDI) mass spectrometry imaging (MSI) techniques, efficient methods were developed to analyze the tissue distribution of secondary metabolites (flavonoids and sesquiterpenes) and proteins inside of trichomes. Herein, we analyzed sesquiterpene lactones, present in CGT, from leaf transversal sections using the matrix 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA) (mixture 1:1) with sodium ions added to increase the ionization in positive ion mode. The results observed for sesquiterpenes and polymethoxylated flavones from LGT were similar. However, upon desiccation, LGT changed their shape in the ionization source, complicating analyses by MSI mainly after matrix application. An alternative method could be applied to LGT regions by employing LDI (without matrix) in negative ion mode. The polymethoxylated flavones were easily ionized by LDI, producing images with higher resolution, but the sesquiterpenes were not observed in spectra. Thus, the application and viability of MALDI imaging for the analyses of protein and secondary metabolites inside trichomes were confirmed, highlighting the importance of optimization parameters.

  17. Estudo da região HII galática NGC 2579

    NASA Astrophysics Data System (ADS)

    Riffel, R.; Copetti, M. V. F.

    2003-08-01

    Desde a descoberta dos gradientes de abundância química em galáxias espirais, as regiões HII galáticas têm sido intensamente estudadas com o objetivo de determinar a forma do gradiente de abundância química na Via-Láctea. Entretanto, a forma do gradiente galático continua controversa e existem muitas regiões HII que continuam inexploradas. A região HII galática NGC 2579 é um objeto que aparece em imagens Ha, como uma pequena mancha brilhante de aproximadamente 2 segundos de arco de diâmetro a 20 segundos de arco ao leste de RCW 20, sendo NGC 2579 muitas vezes confundida com esta última. Apesar de seu alto brilho superficial, NGC 2579 é um objeto pouco estudado provavelmente por problemas de identificação deste objeto. Como parte de um projeto de reavaliação dos gradientes de abundância química das regiões HII na Via-Láctea, estamos realizando um estudo extensivo das propriedades físicas básicas como temperatura eletrônica, densidade eletrônica e composição química da região HII galática NGC 2579. Analisamos dados espectrofotométricos de fenda longa na faixa de 3700Å a 7750Å obtidos com o telescópio de 1.52 m do ESO, Chile, em 2002. Determinamos a temperatura eletrônica usando a razão entre as linhas do [OIII] (l4959+l5007/l4363) e a densidade eletrônica pela razão entre as linhas do [SII] (l6716/l6731). As abundâncias químicas do O, N, Cl, S, Ne e He foram determinadas. Realizamos um estudo de imagens fotométricas nas bandas UBVRI obtidas em 2000 no observatório astronômico San Pedro Mártir, México, para identificar e classificar as estrelas ionizantes de NGC 2579 e determinar a distância deste objeto.

  18. The germacranolide sesquiterpene lactone neurolenin B of the medicinal plant Neurolaena lobata (L.) R.Br. ex Cass inhibits NPM/ALK-driven cell expansion and NF-κB-driven tumour intravasation.

    PubMed

    Unger, Christine; Kiss, Izabella; Vasas, Andrea; Lajter, Ildikó; Kramer, Nina; Atanasov, Atanas Georgiev; Nguyen, Chi Huu; Chatuphonprasert, Waranya; Brenner, Stefan; Krieger, Sigurd; McKinnon, Ruxandra; Peschel, Andrea; Kain, Renate; Saiko, Philipp; Szekeres, Thomas; Kenner, Lukas; Hassler, Melanie R; Diaz, Rene; Frisch, Richard; Dirsch, Verena M; Jäger, Walter; de Martin, Rainer; Bochkov, Valery N; Passreiter, Claus M; Peter-Vörösmarty, Barbara; Mader, Robert M; Grusch, Michael; Dolznig, Helmut; Kopp, Brigitte; Zupko, Istvan; Hohmann, Judit; Krupitza, Georg

    2015-08-15

    The t(2;5)(p23;q35) chromosomal translocation results in the expression of the fusion protein NPM/ALK that when expressed in T-lymphocytes gives rise to anaplastic large cell lymphomas (ALCL). In search of new therapy options the dichloromethane extract of the ethnomedicinal plant Neurolaena lobata (L.) R.Br. ex Cass was shown to inhibit NPM/ALK expression. Therefore, we analysed whether the active principles that were recently isolated and found to inhibit inflammatory responses specifically inhibit growth of NPM/ALK+ ALCL, leukaemia and breast cancer cells, but not of normal cells, and the intravasation through the lymphendothelial barrier. ALCL, leukaemia and breast cancer cells, and normal peripheral blood mononuclear cells (PBMCs) were treated with isolated sesquiterpene lactones and analysed for cell cycle progression, proliferation, mitochondrial activity, apoptosis, protein and mRNA expression, NF-κB and cytochrome P450 activity, 12(S)-HETE production and lymphendothelial intravasation. In vitro treatment of ALCL by neurolenin B suppressed NPM/ALK, JunB and PDGF-Rβ expression, inhibited the growth of ALCL cells late in M phase, and induced apoptosis via caspase 3 without compromising mitochondrial activity (as a measure of general exogenic toxicity). Moreover, neurolenin B attenuated tumour spheroid intravasation probably through inhibition of NF-κB and CYP1A1. Neurolenin B specifically decreased pro-carcinogenic NPM/ALK expression in ALK+ ALCL cells and, via the inhibition of NF-kB signalling, attenuated tumour intra/extravasation into the lymphatics. Hence, neurolenin B may open new options to treat ALCL and to manage early metastatic processes to which no other therapies exist. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Microbial and chemical transformation studies of the bioactive marine sesquiterpenes (S)-(+)-curcuphenol and -curcudiol isolated from a deep reef collection of the Jamaican sponge Didiscus oxeata.

    PubMed

    El Sayed, Khalid A; Yousaf, Muhammad; Hamann, Mark T; Avery, Mitchell A; Kelly, Michelle; Wipf, Peter

    2002-11-01

    Microbial and chemical transformation studies of the marine sesquiterpene phenols (S)-(+)-curcuphenol (1) and (S)-(+)-curcudiol (2), isolated from the Jamaican sponge Didiscus oxeata, were accomplished. Preparative-scale fermentation of 1 with Kluyveromyces marxianus var. lactis (ATCC 2628) has resulted in the isolation of six new metabolites: (S)-(+)-15-hydroxycurcuphenol (3), (S)-(+)-12-hydroxycurcuphenol (4), (S)-(+)-12,15-dihydroxycurcuphenol (5), (S)-(+)-15-hydroxycurcuphenol-12-al (6), (S)-(+)-12-carboxy-10,11-dihydrocurcuphenol (7), and (S)-(+)-12-hydroxy-10,11-dihydrocurcuphenol (8). Fourteen-days incubation of 1 with Aspergillus alliaceus (NRRL 315) afforded the new compounds (S)-(+)-10beta-hydroxycurcudiol (9), (S)-(+)-curcudiol-10-one (10), and (S)-(+)-4-[1-(2-hydroxy-4-methyl)phenyl)]pentanoic acid (11). Rhizopus arrhizus (ATCC 11145) and Rhodotorula glutinus (ATCC 15125) afforded (S)-curcuphenol-1alpha-D-glucopyranoside (12) and (S)-curcudiol-1alpha-D-glucopyranoside (13) when incubated for 6 and 8 days with 1 and 2, respectively. The absolute configuration of C(10) and C(11) of metabolites 7-9 was established by optical rotation computations. Reaction of 1 with NaNO(2) and HCl afforded (S)-(+)-4-nitrocurcuphenol (14) and (S)-(+)-2-nitrocurcuphenol (15) in a 2:1 ratio. Acylation of 1 and 2 with isonicotinoyl chloride afforded the expected esters (S)-(+)-curcuphenol-1-O-isonicotinate (16) and (S)-(+)-curcudiol-1-O-isonicotinate (17), respectively. Curcuphenol (1) shows potent antimicrobial activity against Candida albicans, Cryptococcus neoformans, methicillin-resistant Staphylococcus aureus, and S. aureus with MIC and MFC/MBC ranges of 7.5-25 and 12.5-50 microg/mL, respectively. Compounds 1 and 3 also display in vitro antimalarial activity against Palsmodium falciparium (D6 clone) with MIC values of 3600 and 3800 ng/mL, respectively (selectivity index >1.3). Both compounds were also active against P. falciparium (W2 clone) with MIC values of 1800 (S

  20. Sesquiterpene lactone mix patch testing supplemented with dandelion extract in patients with allergic contact dermatitis, atopic dermatitis and non-allergic chronic inflammatory skin diseases.

    PubMed

    Jovanović, M; Poljacki, M; Mimica-Dukić, N; Boza, P; Vujanović, Lj; Duran, V; Stojanović, S

    2004-09-01

    We investigated the value of patch testing with dandelion (Compositae) extract in addition to sesquiterpene lactone (SL) mix in selected patients. After we detected a case of contact erythema multiforme after patch testing with dandelion and common chickweed (Caryophyllaceae), additional testing with common chickweed extract was performed. A total of 235 adults with a mean age of 52.3 years were tested. There were 66 men and 169 women: 53 consecutive patients with allergic contact dermatitis (ACD); 43 with atopic dermatitis (AD); 90 non-atopics suffering from non-allergic chronic inflammatory skin diseases; 49 healthy volunteers. All were tested with SL mix 0.1% petrolatum (pet.) and diethyl ether extracts from Taraxacum officinale (dandelion) 0.1 and 3.0% pet. and from Stellaria media (common chickweed) 0.1 and 3% pet. A total of 14 individuals (5.9%) showed allergic reaction (AR) to at least 1 of the plant allergens, 4 (28.6%) to common chickweed extract, and 11 (78.6%) to Compositae allergens. These 11 persons made the overall prevalence of 4.7%: 8 (3.4%) were SL-positive and 3 (1.3%) reacted to dandelion extract. 5 persons (45.5%) had AD, 2 had ACD, 2 had psoriasis and 2 were healthy controls. The Compositae allergy was relevant in 8 cases (72.7%). The highest frequency of SL mix sensitivity (9.3%) was among those with AD. Half the SL mix-sensitive individuals had AD. ARs to dandelion extract were obtained only among patients with eczema. A total of 9 irritant reactions (IRs) in 9 individuals (3.8%) were recorded, 8 to SL mix and 1 to common chickweed extract 3.0% pet. No IR was recorded to dandelion extract (P = 0.007). Among those with relevant Compositae allergy, 50.0% had AR to fragrance mix and balsam of Peru (Myroxylon pereirae resin) and colophonium. SLs were detected in dandelion but not in common chickweed. Our study confirmed the importance of 1 positive reaction for emerging, not fully established, Compositae allergy. In conclusion, the overall

  1. Hernandulcin: an intensely sweet compound discovered by review of ancient literature.

    PubMed

    Compadre, C M; Pezzuto, J M; Kinghorn, A D; Kamath, S K

    1985-01-25

    Ancient Mexican botanical literature was systematically searched for new plant sources of intensely sweet substances. Lippia dulcis Trev., a sweet plant, emerged as a candidate for fractionation studies, and hernandulcin, a sesquiterpene, was isolated and judged by a human taste panel as more than 1000 times sweeter than sucrose. The structure of the sesquiterpene was determined spectroscopically and confirmed by chemical synthesis. Hernandulcin was nontoxic when administered orally to mice, and it did not induce bacterial mutation.

  2. A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia.

    PubMed

    Lane, Alexander; Boecklemann, Astrid; Woronuk, Grant N; Sarker, Lukman; Mahmoud, Soheil S

    2010-03-01

    We are developing Lavandula angustifolia (lavender) as a model system for investigating molecular regulation of essential oil (a mixture of mono- and sesquiterpenes) production in plants. As an initial step toward building the necessary 'genomics toolbox' for this species, we constructed two cDNA libraries from lavender leaves and flowers, and obtained sequence information for 14,213 high-quality expressed sequence tags (ESTs). Based on homology to sequences present in GenBank, our EST collection contains orthologs for genes involved in the 1-deoxy-D: -xylulose-5-phosphate (DXP) and the mevalonic acid (MVA) pathways of terpenoid biosynthesis, and for known terpene synthases and prenyl transferases. To gain insight into the regulation of terpene metabolism in lavender flowers, we evaluated the transcriptional activity of the genes encoding for 1-deoxy-D: -xylulose-5-phosphate synthase (DXS) and HMG-CoA reductase (HMGR), which represent regulatory steps of the DXP and MVA pathways, respectively, in glandular trichomes (oil glands) by real-time PCR. While HMGR transcripts were barely detectable, DXS was heavily expressed in this tissue, indicating that essential oil constituents are predominantly produced through the DXP pathway in lavender glandular trichomes. As anticipated, the linalool synthase (LinS)-the gene responsible for the production of linalool, a major constituent of lavender essential oil-was also strongly expressed in glands. Surprisingly, the most abundant transcript in floral glandular trichomes corresponded to a sesquiterpene synthase (cadinene synthase, CadS), although sesquiterpenes are minor constituents of lavender essential oils. This result, coupled to the weak activity of the MVA pathway (the main route for sesquiterpene production) in trichomes, indicates that precursor supply may represent a bottleneck in the biosynthesis of sesquiterpenes in lavender flowers.

  3. Attraction and electroantennogram responses of male Mediterranean fruit fly to volatile chemicals from Persea, Litchi and Ficus wood.

    PubMed

    Niogret, Jerome; Montgomery, Wayne S; Kendra, Paul E; Heath, Robert R; Epsky, Nancy D

    2011-05-01

    Trimedlure is the most effective male-targeted lure for the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). A similar response is elicited by plant substances that contain α-copaene, a naturally-occurring sesquiterpene. α-Copaene is a complex, highly-volatile, widely-distributed plant compound, and male C. capitata respond to material from both hosts (e.g., Litchi chinensis) and non-hosts (e.g., Ficus benjamina) that contain α-copaene. Avocado, Persea americana, recently was found to contain varying amounts of α-copaene in the bark and underlying cambial tissue. Short-range attraction bioassays and electroantennography (EAG) were used to quantify responses of sterile male C. capitata to samples of rasped wood from four avocado genotypes, L. chinensis, and F. benjamina. Gas chromatography-mass spectral (GC-MS) analysis was used to identify and quantify the major sesquiterpenes. Attraction and EAG amplitude were correlated, with L. chinensis eliciting the highest and F. benjamina the lowest responses. Responses to the avocado genotypes were intermediate, but varied among the four types. GC-MS identified 13 sesquiterpenes, including α-copaene, from all samples. Amounts of α-copaene in volatile collections from samples (3 g) ranged from 11.8 μg in L. chinensis to 0.09 μg in F. benjamina, which correlated with short-range attraction and EAG response. α-Copaene ranged from 8.0 to 0.8 μg in the avocado genotypes, but attraction and EAG responses were not correlated with the amount of α-copaene. Differences in enantiomeric structure of the α-copaene in the different genotypes and/or presence of additional sesquiterpenes may be responsible for the variation in male response. EAG responses were correlated with the amount of several other sesquiterpenes including α-humulene, and this compound elicited a strong antennal response when tested alone.

  4. Essential-Oil Variability in Natural Populations of Pinus mugo Turra from the Julian Alps.

    PubMed

    Bojović, Srdjan; Jurc, Maja; Ristić, Mihailo; Popović, Zorica; Matić, Rada; Vidaković, Vera; Stefanović, Milena; Jurc, Dušan

    2016-02-01

    The composition and variability of the terpenes and their derivatives isolated from the needles of a representative pool of 114 adult trees originating from four natural populations of dwarf mountain pine (Pinus mugo Turra) from the Julian Alps were investigated by GC-FID and GC/MS analyses. In total, 54 of the 57 detected essential-oil components were identified. Among the different compound classes present in the essential oils, the chief constituents belonged to the monoterpenes, comprising an average content of 79.67% of the total oil composition (74.80% of monoterpene hydrocarbons and 4.87% of oxygenated monoterpenes). Sesquiterpenes were present in smaller amounts (average content of 19.02%), out of which 16.39% were sesquiterpene hydrocarbons and 2.62% oxygenated sesquiterpenes. The most abundant components in the needle essential oils were the monoterpenes δ-car-3-ene, β-phellandrene, α-pinene, β-myrcene, and β-pinene and the sesquiterpene β-caryophyllene. From the total data set of 57 detected compounds, 40 were selected for principal-component analysis (PCA), discriminant analysis (DA), and cluster analysis (CA). The overlap tendency of the four populations suggested by PCA, was as well observed by DA. CA also demonstrated similarity among the populations, which was the highest between Populations I and II. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Secondary Metabolites in Allergic Plant Pollen Samples Modulate Afferent Neurons and Murine Tracheal Rings.

    PubMed

    Božičević, Alen; De Mieri, Maria; Nassenstein, Christina; Wiegand, Silke; Hamburger, Matthias

    2017-11-22

    Plant pollens are strong airborne elicitors of asthma. Their proteinaceous allergens have been studied intensively, but little is known about a possible contribution of pollen secondary metabolites to the nonallergic exacerbation of asthma. Pollen samples originating from 30 plant species were analyzed by HPLC coupled to PDA, ESIMS, and ELSD detectors and off-line NMR spectroscopy. Polyamine conjugates, flavonoids, and sesquiterpene lactones were identified. Polyamine conjugates were characteristic of all Asteraceae species. The presence of sesquiterpene lactones in Asteraceae pollen varied between species and pollen lots. All plant pollen, including those from non-Asteraceae species, contained to some extent electrophiles as determined by their reaction with N-acetyl-l-cysteine. Selected pollen extracts and pure compounds were tested in murine afferent neurons and in murine tracheal preparations. Tetrahydrofuran extracts of Ambrosia artemisiifolia and Ambrosia psilostachya pollen and a mixture of sesquiterpene lactones coronopilin/parthenin increased the intracellular Ca 2+ concentration in 15%, 32%, and 37% of cinnamaldehyde-responsive neurons, respectively. In organ bath experiments, only the sesquiterpene lactones tested induced a weak dilatation of naïve tracheas and strongly lowered the maximal methacholine-induced tracheal constriction. A tetrahydrofuran extract of A. psilostachya and coronopilin/parthenin led to a time-dependent relaxation of the methacholine-preconstricted trachea. These results provide the first evidence for a potential role of pollen secondary metabolites in the modulation of the tracheal tone.

  6. Chemical Constituents and Evaluation of Antimicrobial and Cytotoxic Activities of Kielmeyera coriacea Mart. & Zucc. Essential Oils

    PubMed Central

    Martins, Carla de M.; do Nascimento, Evandro A.; de Morais, Sérgio A. L.; de Oliveira, Alberto; Chang, Roberto; Cunha, Luís C. S.; Martins, Mário M.; Martins, Carlos Henrique G.; Moraes, Thaís da S.; Rodrigues, Paulla V.; da Silva, Cláudio V.; de Aquino, Francisco J. T.

    2015-01-01

    Many essential oils (EOs) of different plant species possess interesting antimicrobial effects on buccal microorganisms and cytotoxic properties. EOs of Kielmeyera coriacea Mart. & Zucc. were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The EO from leaves is rich in sesquiterpenes hydrocarbons and oxygenated sesquiterpenes. The three major compounds identified were germacrene-D (24.2%), (E)-caryophyllene (15.5%), and bicyclogermacrene (11.6%). The inner bark EO is composed mainly of sesquiterpenes hydrocarbons and the major components are alpha-copaene (14.9%) and alpha-(E)-bergamotene (13.0%). The outer bark EO is composed mainly of oxygenated sesquiterpenes and long-chain alkanes, and the major components are alpha-eudesmol (4.2%) and nonacosane (5.8%). The wood EO is mainly composed of long-chain alkanes and fatty acids, and the major components are nonacosane (9.7%) and palmitic acid (16.2%). The inner bark EO showed the strongest antimicrobial activity against the anaerobic bacteria Prevotella nigrescens (minimum inhibitory concentration-MIC of 50 µg mL−1). The outer bark and wood EOs showed MICs of 100 µg mL−1 for all aerobic microorganisms tested. The EOs presented low toxicity to Vero cells. These results suggest that K. coriacea, a Brazilian plant, provide initial evidence of a new and alternative source of substances with medicinal interest. PMID:25960759

  7. Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): a source of valuable bioactive terpenic compounds.

    PubMed

    Ramos, Patrícia A B; Guerra, Ângela R; Guerreiro, Olinda; Freire, Carmen S R; Silva, Artur M S; Duarte, Maria F; Silvestre, Armando J D

    2013-09-04

    Lipophilic extracts of Cynara cardunculus L. var. altilis (DC) from the south of Portugal (Baixo Alentejo) were studied by gas chromatography-mass spectrometry. One sesquiterpene lactone, four pentacyclic triterpenes, and four sterols were reported for the first time as cultivated cardoon components, namely, deacylcynaropicrin, β- and α-amyrin, lupenyl and ψ-taraxasteryl acetates, stigmasterol, 24-methylenecholesterol, campesterol, and Δ(5)-avenasterol. In addition, other new compounds were identified: ten fatty acids, eight long-chain aliphatic alcohols, and six aromatic compounds. Four triterpenyl fatty acid esters were also detected. Sesquiterpene lactones and pentacyclic triterpenes were the major lipophilic families, representing respectively 2-46% and 10-89% of the detected compounds. Cynaropicrin was the most abundant sesquiterpene lactone, while taraxasteryl acetate was the main pentacyclic triterpene. Fatty acids and sterols, mainly hexadecanoic acid and β-sitosterol, were present at lower amounts (1-20% and 1-11% of the detected compounds). Long-chain aliphatic alcohols and aromatic compounds were detected at reduced abundances (1-6% of the detected compounds).

  8. Molecular cloning and characterization of drimenol synthase from valerian plant (Valeriana officinalis).

    PubMed

    Kwon, Moonhyuk; Cochrane, Stephen A; Vederas, John C; Ro, Dae-Kyun

    2014-12-20

    Drimenol, a sesquiterpene alcohol, and its derivatives display diverse bio-activities in nature. However, a drimenol synthase gene has yet to be identified. We identified a new sesquiterpene synthase cDNA (VoTPS3) in valerian plant (Valeriana officinalis). Purification and NMR analyses of the VoTPS3-produced terpene, and characterization of the VoTPS3 enzyme confirmed that VoTPS3 synthesizes (-)-drimenol. In feeding assays, possible reaction intermediates, farnesol and drimenyl diphosphate, could not be converted to drimenol, suggesting that the intermediate remains tightly bound to VoTPS3 during catalysis. A mechanistic consideration of (-)-drimenol synthesis suggests that drimenol synthase is likely to use a protonation-initiated cyclization, which is rare for sesquiterpene synthases. VoTPS3 can be used to produce (-)-drimenol, from which useful drimane-type terpenes can be synthesized. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Divergent synthesis and identification of the cellular targets of deoxyelephantopins

    NASA Astrophysics Data System (ADS)

    Lagoutte, Roman; Serba, Christelle; Abegg, Daniel; Hoch, Dominic G.; Adibekian, Alexander; Winssinger, Nicolas

    2016-08-01

    Herbal extracts containing sesquiterpene lactones have been extensively used in traditional medicine and are known to be rich in α,β-unsaturated functionalities that can covalently engage target proteins. Here we report synthetic methodologies to access analogues of deoxyelephantopin, a sesquiterpene lactone with anticancer properties. Using alkyne-tagged cellular probes and quantitative proteomics analysis, we identified several cellular targets of deoxyelephantopin. We further demonstrate that deoxyelephantopin antagonizes PPARγ activity in situ via covalent engagement of a cysteine residue in the zinc-finger motif of this nuclear receptor.

  10. Further amphoricarpolides from the surface extracts of Amphoricarpos complex from Montenegro.

    PubMed

    Cvetković, Mirjana; Ethorđević, Iris; Jadranin, Milka; Vajs, Vlatka; Vučković, Ivan; Menković, Nebojša; Milosavljević, Slobodan; Tešević, Vele

    2014-09-01

    Analysis of composition of sesquiterpene lactone fraction of leaf cuticular neutral lipids of Amphoricarpos complex from two different localities in north Montenegro, i.e., canyon of river Tara (A. autariatus ssp. autariatus) and mountain Zeletin (A. autariatus ssp. bertisceus) afforded sesquiterpene lactones with guaianolide skeletons (17 compounds), so called amphoricarpolides, typical for this genus. Nine of them, 9-17, were new compounds, and their structures were elucidated by detailed analyses of IR, NMR, and MS data. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Quantification of Terpenes by 1DGC-MS and 2DGC-TOF-MS

    NASA Astrophysics Data System (ADS)

    Flores, R. M.; Perlinger, J. A.; Doskey, P. V.

    2009-12-01

    Biogenic emissions are the primary source of volatile organic compounds in the global troposphere. Deciduous and coniferous forests are the principal emitters of a complex mixture of isoprene (C5H8), monoterpenes (C10H16), and sesquiterpenes (C15H24). Sesquiterpenes are readily oxidized in the atmosphere producing secondary organic aerosols (SOA) with 100% yields. The SOA are hydrophilic and scatter light, and thus, increase albedo and lead to a cooling effect. In addition, both monoterpene and sesquiterpene generated SOA are effective cloud condensation nuclei leading to an increase in the particle number concentration and to the formation of clouds that also increase albedo. To quantify the complex mixture of terpenes and their oxidation products requires development of on-line extraction and comprehensive two-dimensional gas chromatographic techniques. One objective of this work was to compare one-dimensional gas chromatography-mass spectrometry (1DGC-MS) and two-dimensional gas chromatography time-of-flight mass spectrometry (2DGC-TOFMS) for quantifying eight monoterpenes (alpha- and beta-pinene, limonene, 3-carene, linalool, terpinolene, myrcene and ocimene) and eight sesquiterpenes (beta-caryophyllene, humulene, alpha-cedrene, cis-nerolidol, trans-nerolidol, cedrol, camphene and farnesene) in air samples collected in Northern Michigan. Future research involves coupling thermal desorption and supercritical fluid extraction devices to a GC×2GC for routine quantification of the complex mixture of terpenes and their oxidation products in rural and urban air.

  12. Molecular cloning and characterization of (+)-epi-α-bisabolol synthase, catalyzing the first step in the biosynthesis of the natural sweetener, hernandulcin, in Lippia dulcis.

    PubMed

    Attia, Mohamed; Kim, Soo-Un; Ro, Dae-Kyun

    2012-11-01

    Hernandulcin, a C15 sesquiterpene ketone, is a natural sweetener isolated from the leaves of Lippia dulcis. It is a promising sugar substitute due to its safety and low caloric potential. However, the biosynthesis of hernandulcin in L. dulcis remains unknown. The first biochemical step of hernandulcin is the synthesis of (+)-epi-α-bisabolol from farnesyl diphosphate, which is presumed to be catalyzed by a unique sesquiterpene synthase in L. dulcis. In order to decipher hernandulcin biosynthesis, deep transcript sequencings (454 and Illumina) were performed, which facilitated the molecular cloning of five new sesquiterpene synthase cDNAs from L. dulcis. In vivo activity evaluation of these cDNAs in yeast identified them as the sesquiterpene synthases for α-copaene/δ-cadinene, bicyclogermacrene, β-caryophyllene, trans-α-bergamotene, and α-bisabolol. The engineered yeast could synthesize a significant amount (~0.3 mg per mL) of α-bisabolol in shake-flask cultivation. This efficient in vivo production was congruent with the competent kinetic properties of recombinant α-bisabolol synthase (K(m) 4.8 μM and k(cat) 0.04 s(-1)). Detailed chemical analyses of the biosynthesized α-bisabolol confirmed its configuration to be (+)-epi-α-bisabolol, the core skeleton of hernandulcin. These results demonstrated that enzymatic, stereoselective synthesis of (+)-epi-α-bisabolol can be achieved, promising the heterologous production of a natural sweetener, hernandulcin. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Germacrene C synthase from Lycopersicon esculentum cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase

    PubMed Central

    Colby, Sheila M.; Crock, John; Dowdle-Rizzo, Barbara; Lemaux, Peggy G.; Croteau, Rodney

    1998-01-01

    Germacrene C was found by GC-MS and NMR analysis to be the most abundant sesquiterpene in the leaf oil of Lycopersicon esculentum cv. VFNT Cherry, with lesser amounts of germacrene A, guaia-6,9-diene, germacrene B, β-caryophyllene, α-humulene, and germacrene D. Soluble enzyme preparations from leaves catalyzed the divalent metal ion-dependent cyclization of [1-3H]farnesyl diphosphate to these same sesquiterpene olefins, as determined by radio-GC. To obtain a germacrene synthase cDNA, a set of degenerate primers was constructed based on conserved amino acid sequences of related terpenoid cyclases. With cDNA prepared from leaf epidermis-enriched mRNA, these primers amplified a 767-bp fragment that was used as a hybridization probe to screen the cDNA library. Thirty-one clones were evaluated for functional expression of terpenoid cyclase activity in Escherichia coli by using labeled geranyl, farnesyl, and geranylgeranyl diphosphates as substrates. Nine cDNA isolates expressed sesquiterpene synthase activity, and GC-MS analysis of the products identified germacrene C with smaller amounts of germacrene A, B, and D. None of the expressed proteins was active with geranylgeranyl diphosphate; however, one truncated protein converted geranyl diphosphate to the monoterpene limonene. The cDNA inserts specify a deduced polypeptide of 548 amino acids (Mr = 64,114), and sequence comparison with other plant sesquiterpene cyclases indicates that germacrene C synthase most closely resembles cotton δ-cadinene synthase (50% identity). PMID:9482865

  14. Essential oil composition from two species of Piperaceae family grown in Colombia.

    PubMed

    Pino Benitez, Nayive; Meléndez León, Erika M; Stashenko, Elena E

    2009-10-01

    Essential oil compositions of aerial parts from two species in the Piper (Piperaceae family) genera: Piper lanceaefolium Kunth and Piper hispidum Sw., frequently called deflated (for the anti-inflammatory activity) or cord. Piperaceae leaves were collected in different regions of the Chocó department in northwestern Colombia and identified by botanists from Colombian National Herbarium, where a voucher of each specimen were deposited (No- COL 519993 and No- COL 519969, respectively). The essential oils were obtained by microwave-assisted hydrodistillation (MWHD) and analyzed by gas chromatography-mass spectrometry (GC-MS). The P. lanceaefolium essential oil was sesquiterpenoid type (71.7%). This composition was represented by sesquiterpenes hydrocarbons (58.5%) and by their oxygenated derivates (13.2%); the main compounds were, trans-beta-caryophyllene (11.6%) and germacrene D (10.7%) followed by alpha-selinene (7.8%), beta-pinene (5.4%), beta-selinene (4.8%), and alpha-cubebene (4.3%). The Piper hispidum essential oil also was sesquiterpene type (74.4%) and oxygenated sesquiterpenes (46.4%) followed by sesquiterpenes hydrocarbons (28.0%). The main compounds were trans-nerolidol (23.6%) and caryophyllene oxide (5.4%) followed by beta-elemene (5.1%), trans-beta-caryophyllene (5.1%), curzerene (4.9%), and germacrene B (4.5%). Trans-beta-caryophyllene presents the higher percentage of the common compounds in the two species' essential oil (11.6% and 5.1% in P. lanceaefolium and P. hispidum, respectively).

  15. Chemical composition of Juniperus communis L. fruits supercritical CO2 extracts: dependence on pressure and extraction time.

    PubMed

    Barjaktarović, Branislava; Sovilj, Milan; Knez, Zeljko

    2005-04-06

    Ground fruits of the common juniper (Juniperus communis L.), with a particle size range from 0.250-0.400 mm, forming a bed of around 20.00 +/- 0.05 g, were extracted with supercritical CO(2) at pressures of 80, 90, and 100 bars and at a temperature of 40 degrees C. The total amount of extractable substances or global yield (mass of extract/mass of raw material) for the supercritical fluid extraction process varied from 0.65 to 4.00% (wt). At each investigated pressure, supercritical CO(2) extract fractions collected in successive time intervals over the course of the extraction were analyzed by capillary gas chromatography, using flame ionization (GC-FID) and mass spectrometric detection (GC-MS). More than 200 constituents were detected in the extracts, and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene, and oxygenated sesquiterpene hydrocarbon groups on the extraction time was investigated, and conditions that favored the yielding of each terpene groups were emphasized. At all pressures, monoterpene hydrocarbons were almost completely extracted from the berries in the first 0.6 h. It was possible to extract oxygenated monoterpenes at 100 bar in 0.5 h and at 90 bar in 1.2 h. Contrary to that, during an extraction period of 4 h at 80 bar, it was possible to extract only 75% of the maximum yielded value of oxygenated monoterpene at 100 bar. Intensive extraction of sesquiterpenes could be by no means avoided at any pressure, but at the beginning of the process (the first 0.5 h) at 80 bar, they were extracted about 8 and 3 times slower than at 100 and 90 bar, respectively. Oxygenated sesquiterpenes were yielded at fast, constant extraction rates at 100 and 90 bar in 1.2 and 3 h, respectively. This initial fast extraction period was consequently followed by much slower extraction of oxygenated sesquiterpenes.

  16. Development and stability of semisolid preparations based on a supercritical CO2 Arnica extract.

    PubMed

    Bilia, Anna Rita; Bergonzi, Maria Camilla; Mazzi, Giovanni; Vincieri, Franco Francesco

    2006-05-03

    Conventional herbal drug preparations (HDP) based on Arnica montana L. have a low content of the active principles, sesquiterpene lactones, which show poor stability and low physical compatibility in semisolid formulations. Recently, an innovative supercritical carbon dioxide (CO2) extract with high sesquiterpene content has been marketed. Development of six semisolid preparations (cetomacrogol, polysorbate 60, polawax, anphyphil, natrosol and sepigel) based on this innovative CO2 extract is discussed. Stability of these preparations was investigated according to ICH guidelines. The evaluation of in vitro release of active constituents was performed using the cell method reported in the European Pharmacopoeia. Preliminary data on in vivo permeation of three selected formulations is demonstrated using the "skin stripping" test, according to the FDA, in healthy subjects. Analysis of sesquiterpene lactones within the extract and in vitro and in vivo studies was performed by RP-HPLC-DAD-MS method. The cetomacrogol showed the best release profile in the in vitro test, while in the in vivo test the best preparation resulted polysorbate 60 and polawax.

  17. An overlooked horticultural crop, Smyrnium olusatrum, as a potential source of compounds effective against African trypanosomiasis.

    PubMed

    Petrelli, Riccardo; Ranjbarian, Farahnaz; Dall'Acqua, Stefano; Papa, Fabrizio; Iannarelli, Romilde; Ngahang Kamte, Stephane L; Vittori, Sauro; Benelli, Giovanni; Maggi, Filippo; Hofer, Anders; Cappellacci, Loredana

    2017-04-01

    Among natural products, sesquiterpenes have shown promising inhibitory effects against bloodstream forms of Trypanosoma brucei, the protozoan parasite causing human African trypanosomiasis (HAT). Smyrnium olusatrum (Apiaceae), also known as Alexanders or wild celery, is a neglected horticultural crop characterized by oxygenated sesquiterpenes containing a furan ring. In the present work we explored the potential of its essential oils obtained from different organs and the main oxygenated sesquiterpenes, namely isofuranodiene, germacrone and β-acetoxyfuranoeudesm-4(15)-ene, as inhibitors of Trypanosoma brucei. All essential oils effectively inhibited the growth of parasite showing IC 50 values of 1.9-4.0μg/ml. Among the main essential oil constituents, isofuranodiene exhibited a significant and selective inhibitory activity against T. brucei (IC 50 of 0.6μg/ml, SI=30), with β-acetoxyfuranoeudesm-4(15)-ene giving a moderate potentiating effect. These results shed light on the possible application of isofuranodiene as an antiprotozoal agent to be included in combination treatments aimed not only at curing patients but also at preventing the diffusion of HAT. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance

    PubMed Central

    Araniti, Fabrizio; Graña, Elisa; Krasuska, Urszula; Bogatek, Renata; Reigosa, Manuel J.; Abenavoli, Maria Rosa; Sánchez-Moreiras, Adela M.

    2016-01-01

    Mode of action of farnesene, a volatile sesquiterpene commonly found in the essential oils of several plants, was deeply studied on the model species Arabidopsis thaliana. The effects of farnesene on the Arabidopsis root morphology were evaluated by different microscopic techniques. As well, microtubules immunolabeling, phytohormone measurements and ROS staining helped us to elucidate the single or multi-modes of action of this sesquiterpene on plant metabolism. Farnesene-treated roots showed a strong growth inhibition and marked modifications on morphology, important tissue alterations, cellular damages and anisotropic growth. Left-handed growth of farnesene-treated roots, reverted by taxol (a known microtubule stabilizer), was related to microtubule condensation and disorganization. As well, the inhibition of primary root growth, lateral root number, lateral root length, and both root hairs length and density could be explained by the strong increment in ethylene production and auxin content detected in farnesene-treated seedlings. Microtubule alteration and hormonal unbalance appear as important components in the mode of action of farnesene and confirm the strong phytotoxic potential of this sesquiterpene. PMID:27490179

  19. Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance.

    PubMed

    Araniti, Fabrizio; Graña, Elisa; Krasuska, Urszula; Bogatek, Renata; Reigosa, Manuel J; Abenavoli, Maria Rosa; Sánchez-Moreiras, Adela M

    2016-01-01

    Mode of action of farnesene, a volatile sesquiterpene commonly found in the essential oils of several plants, was deeply studied on the model species Arabidopsis thaliana. The effects of farnesene on the Arabidopsis root morphology were evaluated by different microscopic techniques. As well, microtubules immunolabeling, phytohormone measurements and ROS staining helped us to elucidate the single or multi-modes of action of this sesquiterpene on plant metabolism. Farnesene-treated roots showed a strong growth inhibition and marked modifications on morphology, important tissue alterations, cellular damages and anisotropic growth. Left-handed growth of farnesene-treated roots, reverted by taxol (a known microtubule stabilizer), was related to microtubule condensation and disorganization. As well, the inhibition of primary root growth, lateral root number, lateral root length, and both root hairs length and density could be explained by the strong increment in ethylene production and auxin content detected in farnesene-treated seedlings. Microtubule alteration and hormonal unbalance appear as important components in the mode of action of farnesene and confirm the strong phytotoxic potential of this sesquiterpene.

  20. Volatile chemicals identified in extracts from leaves of Japanese mugwort (Artemisia princeps pamp.).

    PubMed

    Umano, K; Hagi, Y; Nakahara, K; Shoji, A; Shibamoto, T

    2000-08-01

    Extracts from leaves of Japanese mugwort (Artemisia princeps Pamp.) were obtained using two methods: steam distillation under reduced pressure followed by dichloromethane extraction (DRP) and simultaneous purging and extraction (SPSE). A total of 192 volatile chemicals were identified in the extracts obtained by both methods using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). They included 47 monoterpenoids (oxygenated monoterpenes), 26 aromatic compounds, 19 aliphatic esters, 18 aliphatic alcohols, 17 monoterpenes (hydrocarbon monoterpenes), 17 sesquiterpenes (hydrocarbon sesquiterpenes), 13 sesquiterpenoids (oxygenated sesquiterpenes), 12 aliphatic aldehydes, 8 aliphatic hydrocarbons, 7 aliphatic ketones, and 9 miscellaneous compounds. The major volatile constituents of the extract by DRP were borneol (10.27 ppm), alpha-thujone (3.49 ppm), artemisia alcohol (2.17 ppm), verbenone (1.85 ppm), yomogi alcohol (1.50 ppm), and germacren-4-ol (1.43 ppm). The major volatile constituents of the extract by SPSE were 1,8-cineole (8.12 ppm), artemisia acetate (4.22 ppm), alpha-thujone (3.20 ppm), beta-caryophyllene (2.39 ppm), bornyl acetate (2.05 ppm), borneol (1.80 ppm), and trans-beta-farnesene (1. 78 ppm).

  1. Nitric Oxide Production Inhibition and Anti-Mycobacterial Activity of Extracts and Halogenated Sesquiterpenes from the Brazilian Red Alga Laurencia Dendroidea J. Agardh

    PubMed Central

    Biá Ventura, Thatiana Lopes; da Silva Machado, Fernanda Lacerda; de Araujo, Marlon Heggdorne; de Souza Gestinari, Lísia Mônica; Kaiser, Carlos Roland; de Assis Esteves, Francisco; Lasunskaia, Elena B.; Soares, Angélica Ribeiro; Muzitano, Michelle Frazão

    2015-01-01

    Background: Red algae of the genus Laurencia J. V. Lamouroux are a rich source of secondary metabolites with important pharmacological activities such as anti-tumoral, anti-inflammatory, anti-fungal, anti-viral, anti-leishmanial, anti-helminthic, anti-malarial, anti-trypanosomal, anti-microbial as well as anti-bacterial against Mycobacterium tuberculosis. Objective: In the present study, we evaluated the inhibition of nitric oxide (NO) and tumor necrosis factor-α production and the anti-mycobacterial activity of crude extracts from the red Alga Laurencia dendroidea (from the South-Eastern coast of Brazil). Halogenated sesquiterpenes elatol (1), obtusol (2) and cartilagineol (3), previously isolated from this Alga by our group, were also studied. Materials and Methods: The lipopolysaccharide-activated macrophage cells (RAW 264.7) were used as inflammation model. Cytotoxic effect was determined using a commercial lactate dehydrogenase (LDH) kit and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The growing Mycobacterium inhibition was verified against Mycobacterium bovis Bacillus Calmette–Guérin and M. tuberculosis H37 Rv strains. Results: The crude extract from Alga collected at Angra dos Reis, RJ, Brazil, was the most active inhibitor of both mycobacterial growth (half maximal inhibitory concentration [IC50] 8.7 ± 1.4 μg/mL) and NO production by activated macrophages (IC50 5.3 ± 1.3 μg/mL). The assays with isolated compounds revealed the anti-mycobacterial activity of obtusol (2), whereas (-)-elatol (1) inhibited the release of inflammatory mediators, especially NO. To our knowledge, this is the first report describing an anti-mycobacterial effect of L. dendroidea extract and demonstrating the association of this activity with obtusol (2). Conclusion: The described effects of active compounds from L. dendroidea are promising for the control of inflammation in infectious diseases and specifically, against mycobacterial infections

  2. Analysis of black pepper volatiles by solid phase microextraction-gas chromatography: A comparison of terpenes profiles with hydrodistillation.

    PubMed

    Jeleń, Henryk H; Gracka, Anna

    2015-10-30

    Solid phase microextraction (SPME) is widely used in food flavor compounds analysis in majority for profiling volatile compounds. Based on such profiles conclusions are often drawn concerning the percentage composition of volatile compounds in particular food, spices or raw materials. This paper focuses on the usefulness of SPME for the profiling of volatile compounds from spices using black pepper as an example. SPME profiles obtained in different analytical conditions were compared to the profile of pepper volatiles obtained using hydrodistillation in Clevenger apparatus. The profiles of both monoterpenes and sesquiterpenes of black pepper were highly dependent on sample weight (0.1 and 1g samples were tested), and extraction time (durations from 2 to 120min were tested), regardless of the SPME fiber used (PDMS and CAR/PDMS coatings were used). The characteristic phenomenon for extraction from dry ground pepper was the decrease of monoterpenes % share in volatiles with increasing extraction times, whereas at the same time the % contents of sesquiterpenes increased. Addition of water to ground pepper substantially changed extraction kinetics and mutual proportions of mono to sesquiterpenes compared to dry samples by minimizing changes in mono- to sesquiterpenes ratio in different extraction times. Obtained results indicate that SPME can be a fast extraction method for volatiles of black pepper. Short extraction times (2-10min) in conjunction with the fast GC analysis (2.1min) proposed here may offer fast alternative to hydrodistillation allowing black pepper terpenes characterization. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Heterologous expression of cytotoxic sesquiterpenoids from the medicinal mushroom Lignosus rhinocerotis in yeast.

    PubMed

    Yap, Hui-Yeng Yeannie; Muria-Gonzalez, Mariano Jordi; Kong, Boon-Hong; Stubbs, Keith A; Tan, Chon-Seng; Ng, Szu-Ting; Tan, Nget-Hong; Solomon, Peter S; Fung, Shin-Yee; Chooi, Yit-Heng

    2017-06-12

    Genome mining facilitated by heterologous systems is an emerging approach to access the chemical diversity encoded in basidiomycete genomes. In this study, three sesquiterpene synthase genes, GME3634, GME3638, and GME9210, which were highly expressed in the sclerotium of the medicinal mushroom Lignosus rhinocerotis, were cloned and heterologously expressed in a yeast system. Metabolite profile analysis of the yeast culture extracts by GC-MS showed the production of several sesquiterpene alcohols (C 15 H 26 O), including cadinols and germacrene D-4-ol as major products. Other detected sesquiterpenes include selina-6-en-4-ol, β-elemene, β-cubebene, and cedrene. Two purified major compounds namely (+)-torreyol and α-cadinol synthesised by GME3638 and GME3634 respectively, are stereoisomers and their chemical structures were confirmed by 1 H and 13 C NMR. Phylogenetic analysis revealed that GME3638 and GME3634 are a pair of orthologues, and are grouped together with terpene synthases that synthesise cadinenes and related sesquiterpenes. (+)-Torreyol and α-cadinol were tested against a panel of human cancer cell lines and the latter was found to exhibit selective potent cytotoxicity in breast adenocarcinoma cells (MCF7) with IC 50 value of 3.5 ± 0.58 μg/ml while α-cadinol is less active (IC 50  = 18.0 ± 3.27 μg/ml). This demonstrates that yeast-based genome mining, guided by transcriptomics, is a promising approach for uncovering bioactive compounds from medicinal mushrooms.

  4. Job strain and hypertension in women: Estudo Pro-Saúde (Pro-Health Study).

    PubMed

    Alves, Márcia Guimarães de Mello; Chor, Dóra; Faerstein, Eduardo; Werneck, Guilherme L; Lopes, Claudia S

    2009-10-01

    This study aimed to analyze the association between job strain and hypertension in the female population. A cross-sectional study was performed with 1,819 women who participated in the Estudo Pró-Saúde (Pro-Health Study), in the city of Rio de Janeiro, Southeastern Brazil, between 1999 and 2001. The Brazilian version of the short version of the Job Stress Scale (demand-control model) was used. Overall prevalence of measured hypertension (> or =140/90 mmHg and/or antihypertensive drug use) was 24%. Compared to participants with jobs classified as low strain, adjusted prevalence ratios for hypertension in women who performed passive and active high-strain jobs were, respectively, 0.93 (95% CI: 0.72;1.20), 1.06 (95% CI: 0.86;1.32) and 1.14 (95% CI: 0.88;1.47). Longitudinal analyses should be performed to clarify the role of these work environment psychosocial characteristics as a determinant of hypertension.

  5. Um estudo espectrofotométrico da variável cataclísmica V3885 Sgr

    NASA Astrophysics Data System (ADS)

    Ribeiro, F. M. A.; Diaz, M. P.

    2003-08-01

    Variáveis Cataclísmicas são sistemas binários cerrados compostos de uma anã vermelha que transfere matéria para uma anã branca, em sistemas não magnéticos ocorre a formação de um disco de acresção em torno da anã branca. V3885 Sgr é uma variável cataclísmica classificada como sendo do tipo nova-like. É apresentado um estudo espectrofotométrico de V3885 Sgr de alta resolução temporal feito na região do visível. A região observada é centrada em Ha e abrange também a linha de HeI 6678. O primeiro resultado obtido neste estudo é a determinação do período orbital a partir de medidas da velocidade radial da linha de Ha como sendo 0,20716071(22) dias, resolvendo inconsistências quanto a esse valor na literatura e definindo uma efeméride a longo prazo para o sistema. Com este período e as medidas de velocidade radial do perfil de linha de Ha foi construído um diagrama de massas, através do qual restringimos as massas das componentes estelares do sistema e limitamos a inclinação orbital do sistema. Foram construídos diagramas de Greenstein para as linhas de Ha e HeI, onde os espectros médios em cada intervalo de fase são representados lado a lado em escala de cinza, indicando a existência de uma emissão intensa proveniente da parte posterior do disco. A partir da tomografia Doppler obtivemos perfis de emissividade radial para o disco tanto para a linha de Ha como para HeI. Os resultados obtidos são comparados com os de outros sistemas estudados com a mesma técnica. Serão apresentados também resultados da tomografia de flickering para o sistema.

  6. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms

    NASA Astrophysics Data System (ADS)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka

    2010-11-01

    Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.

  7. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    PubMed

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Preparative separation of α- and β-santalenes and (Z)-α- and (Z)-β-santalols using silver nitrate-impregnated silica gel medium pressure liquid chromatography and analysis of sandalwood oil.

    PubMed

    Daramwar, Pankaj P; Srivastava, Prabhakar Lal; Priyadarshini, Balaraman; Thulasiram, Hirekodathakallu V

    2012-10-07

    The major sesquiterpene constituents of East-Indian sandalwood oil (Z)-α- and (Z)-β-santalols have shown to be responsible for most of the biological activities and organoleptic properties of sandalwood oil. The work reported here describes the strategic use of medium pressure liquid chromatography (MPLC) for the separation of both α- and β-santalenes and (Z)-α- and (Z)-β-santalols. Silver nitrate impregnated silica gel was used as the stationary phase in MPLC for quantitative separation of α- and β-santalenes and (Z)-α- and (Z)-β-santalols with mobile phases hexane and dichloromethane, respectively. The purities of α-santalene and (Z)-α-santalol obtained were >96%; however, β-santalene and (Z)-β-santalol were obtained with their respective inseparable epi-isomers. Limits of quantification (LoQ) relative to the FID detector were measured for important sesquiterpene alcohols of heartwood oil of S. album using serial dilutions of the standard stock solutions and demonstrated that the quality of the commercial sandalwood oil can be assessed for the content of individual sesquiterpene alcohols regulated by Australian Standard (AS2112-2003), International Organization for Standardization ISO 3518:2002 (E) and European Union (E. U.).

  9. Variation in essential oil composition of Teucrium hircanicum L. from Iran-A rich source of (E)-α-bergamotene.

    PubMed

    Rahimi, Mohammad Ali; Nazeri, Vahideh; Andi, Seyed Ali; Sefidkon, Fatemeh

    2018-05-21

    In present work, the chemical composition of the essential oils obtained from dried flowering aerial parts of Teucrium hircanicum L. (Labiatae) originated from ten wild populations in Iran was analyzed by a GC-FID and GC/MS system. The oil yields varied from 0.04% to 0.1%. A total of thirty-two compounds representing 67.6-97.7% of the oil were identified. The essential oil was found to be rich in sesquiterpene hydrocarpons (E)-α-bergamotene (17.5-86.9%) and (E)-β-farnesene (0.5-21.4%). Of the total identified compounds, sesquiterpene hydrocarpons (36.1-89.7%) were included the greatest essential oil fraction in all the populations, followed by oxygenated monoterpenes (2.2-21.6%), oxygenated sesquiterpenes (0.0-14.4%) and monoterepene hydrocarbons (0.0-9.5%). Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) were used to distinguish any geographical variations, indicating that the clustering of populations is related to their geographic origin. According to the GC/MS analysis, two chemotypes consisting of (E)-α-bergamotene and (E)-α-bergamotene-(E)-β-farnesene were identified in the populations.

  10. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review

    PubMed Central

    Dhifi, Wissal; Bellili, Sana; Jazi, Sabrine; Bahloul, Nada; Mnif, Wissem

    2016-01-01

    This review covers literature data summarizing, on one hand, the chemistry of essential oils and, on the other hand, their most important activities. Essential oils, which are complex mixtures of volatile compounds particularly abundant in aromatic plants, are mainly composed of terpenes biogenerated by the mevalonate pathway. These volatile molecules include monoterpenes (hydrocarbon and oxygenated monoterpens), and also sesquiterpenes (hydrocarbon and oxygenated sesquiterpens). Furthermore, they contain phenolic compounds, which are derived via the shikimate pathway. Thanks to their chemical composition, essential oils possess numerous biological activities (antioxidant, anti-inflammatory, antimicrobial, etc…) of great interest in food and cosmetic industries, as well as in the human health field. PMID:28930135

  11. The key role of peltate glandular trichomes in symbiota comprising clavicipitaceous fungi of the genus periglandula and their host plants.

    PubMed

    Steiner, Ulrike; Kucht, Sabine Hellwig neé; Ahimsa-Müller, Mahalia A; Grundmann, Nicola; Li, Shu-Ming; Drewke, Christel; Leistner, Eckhard

    2015-04-16

    Clavicipitaceous fungi producing ergot alkaloids were recently discovered to be epibiotically associated with peltate glandular trichomes of Ipomoea asarifolia and Turbina corymbosa, dicotyledonous plants of the family Convolvulaceae. Mediators of the close association between fungi and trichomes may be sesquiterpenes, main components in the volatile oil of different convolvulaceous plants. Molecular biological studies and microscopic investigations led to the observation that the trichomes do not only secrete sesquiterpenes and palmitic acid but also seem to absorb ergot alkaloids from the epibiotic fungal species of the genus Periglandula. Thus, the trichomes are likely to have a dual and key function in a metabolic dialogue between fungus and host plant.

  12. A bioactive sesquiterpene from Bixa orellana.

    PubMed

    Raga, Dennis D; Espiritu, Rafael A; Shen, Chien-Chang; Ragasa, Consolacion Y

    2011-01-01

    A dichloromethane extract of the air-dried leaves of Bixa orellana afforded ishwarane 1, phytol 2, polyprenol 3, and a mixture of stigmasterol 4a and sitosterol 4b by silica gel chromatography. The structure of 1 was elucidated by extensive 1D and 2D NMR spectroscopy. Compound 1 at three doses (25, 50, and 100 mg/kg BW) was tested for prophylactic, gastrointestinal motility, analgesic, hypoglycemic, and antimicrobial potentials. Results of the prophylactic assay demonstrated the anti-toxic property of 1 at 100 mg/kg BW. A 50 mg/kg BW dose of 1 resulted in a more propulsive movement of the gastrointestinal tract (88.38 ± 13.59%) compared to the negative control (78.47 ± 10.61%). Tail flick and acetic acid writhing tests indicated that 100 mg/kg BW 1 had minimal analgesic activity. Compound 1 demonstrated no hypoglycemic potential on the animals tested. Compound 1 exhibited moderate antifungal activity against C. albicans, low activity against T. mentagrophytes, and low antibacterial activity against E. coli, S. aureus, and P. aeruginosa. It was inactive against B. subtilis and A. niger.

  13. Terpenoid biosynthesis in Euphorbia lathyris and Copaifera spp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrukrud, C.L.

    1987-07-01

    Biosynthesis of triterpenoids by isolated latex of Euphorbia lathyris was investigated. The rate of in vitro incorporation of mevalonic acid into triterpenoids was thirty times greater than acetate incorporation indicating that the rate-limiting step in the pathway occurs prior to mevalonate. Both HMG-CoA reductase (EC 1.1.1.34) and HMG-CoA lyase (EC 4.1.3.4) activities were detected in isolated latex. HMG-CoA reductase was localized to a membrane-bound fraction of a 5000g pellet of latex. The rate of conversion of HMG-CoA to mevalonate by this enzyme is comparable to the overall rate of acetate incorporation into the triterpenoids suggesting that this enzyme is rate-determiningmore » in the biosynthesis of triterpenoids in E. lathyris latex. HMG-CoA reductase of E. lathyris vegetative tissue was localized to the membrane-bound portion of a particulate fraction (18,000g), and was solubilized by treatment with 2% polyoxyethylene ether W-1. Differences in the optimal pH for activity of HMG-CoA reductase from the latex and vegetative tissue suggest that isozymes of the enzyme may be present in the two tissue types. Studies of the incorporation of various precursors into leaf discs and cuttings taken from Copaifera spp. show differences in the rate of incorporation into Copaifera sesquiterpenes suggesting that the site of sesquiterpene biosynthesis may differ in its accessibility to the different substrates and/or reflecting the metabolic controls on carbon allocation to the terpenes. Mevalonate incorporation by Copaifera langsdorfii cuttings into sesquiterpenes was a hundred-fold greater than either acetate or glucose incorporation, however, its incorporation into squalene and triterpenoids was also a hundred-fold greater than the incorporation into sesquiterpenes. 119 refs., 58 figs., 16 tabs.« less

  14. Hernandulcin in hairy root cultures of Lippia dulcis.

    PubMed

    Sauerwein, M; Yamazaki, T; Shimomura, K

    1991-02-01

    The hairy root culture of Lippia dulcis Trev., Verbenaceae, was established by transformation with Agrobacterium rhizogenes A4. The transformed roots grew well in Murashige and Skoog medium containing 2% sucrose. The roots turned light green when they were cultured under 16 h/day light. The green hairy roots produced the sweet sesquiterpene hernandulcin (ca. 0.25 mg/g dry wt) together with 20 other mono- and sesquiterpenes, while no terpenes were detected in the nontransformed root cultures. The growth and hernandulcin production in the hairy root cultures were influenced by the addition of auxins to the medium. The addition of a low concentration of chitosan (0.2 - 10.0 mg / l) enhanced the production of hernandulcin 5-fold.

  15. Screening for anti-inflammatory activity of 12 Arnica (Asteraceae) species assessed by inhibition of NF-kappaB and release of human neutrophil elastase.

    PubMed

    Ekenäs, Catarina; Zebrowska, Anna; Schuler, Barbara; Vrede, Tobias; Andreasen, Katarina; Backlund, Anders; Merfort, Irmgard; Bohlin, Lars

    2008-12-01

    Several species in the genus Arnica have been used in traditional medicine to treat inflammatory-related disorders. Extracts of twelve Arnica species and two species closely related to arnica ( Layia hieracioides and Madia sativa) were investigated for inhibition of human neutrophil elastase release and inhibition of transcription factor NF-kappaB. Statistical analyses reveal significant differences in inhibitory capacities between extracts. Sesquiterpene lactones of the helenanolide type, of which some are known inhibitors of human neutrophil elastase release and NF-kappaB, are present in large amounts in the very active extracts of A. montana and A. chamissonis. Furthermore, A. longifolia, which has previously not been investigated, shows a high activity similar to that of A. montana and A. chamissonis in both bioassays. Sesquiterpene lactones of the xanthalongin type are present in large amounts in A. longifolia and other active extracts and would be interesting to evaluate further. COX-2:cyclooxygenase 2 EMSA:electrophoretic mobility shift assay fMLP: N-formyl-methionyl-leucyl-phenylalanine HaCaT:human keratinocyte HNE:human neutrophil elastase IkappaB:inhibitory subunit of kappaB iNOS:inducible nitric oxide synthase NF-kappaB:nuclear factor kappaB PAF:platelet activating factor STL:sesquiterpene lactone TNF-alpha:tumor necrosis factor alpha.

  16. Trichome differentiation on leaf primordia of Helianthus annuus (Asteraceae): morphology, gene expression and metabolite profile.

    PubMed

    Aschenbrenner, Anna-Katharina; Amrehn, Evelyn; Bechtel, Lisa; Spring, Otmar

    2015-04-01

    Sunflower trichomes fully develop on embryonic plumula within 3 days after start of germination. Toxic sesquiterpene lactones are produced immediately thereafter thus protecting the apical bud of the seedling against herbivory. Helianthus annuus harbors non-glandular and two different types of multicellular glandular trichomes, namely the biseriate capitate glandular trichomes and the uniseriate linear glandular trichomes. The development of capitate glandular trichomes is well known from anther tips on sunflower disk florets, but not from leaves and no information is yet available on the development of the linear glandular trichomes. Scanning electron microscopy of sunflower seedlings unravelled that within the first 40 h of seed germination all three types of trichomes started to emerge on primordia of the first true leaves. Within the following 20-30 h trichomes developed from trichoblasts to fully differentiated hairs. Gene expression studies showed that genes involved in the trichome-based sesquiterpene lactone formation were up-regulated between 72 and 96 h after start of germination. Metabolite profiling with HPLC confirmed the synthesis of sesquiterpene lactones which may contribute to protect the germinating seedlings from herbivory. The study has shown that sunflower leaf primordia can serve as a fast and easy to handle model system for the investigation of trichome development in Asteraceae.

  17. Permeation of bioactive constituents from Arnica montana preparations through human skin in-vitro.

    PubMed

    Tekko, I A; Bonner, M C; Bowen, R D; Williams, A C

    2006-09-01

    This study investigated and characterised transdermal permeation of bioactive agents from a topically applied Arnica montana tincture. Permeation experiments conducted over 48 h used polydimethylsiloxane (silastic) and human epidermal membranes mounted in Franz-type diffusion cells with a methanol-water (50:50 v/v) receptor fluid. A commercially available tincture of A. montana L. derived from dried Spanish flower heads was a donor solution. Further donor solutions prepared from this stock tincture concentrated the tincture constituents 1, 2 and 10 fold and its sesquiterpene lactones 10 fold. Permeants were assayed using a high-performance liquid chromatography method. Five components permeated through silastic membranes providing peaks with relative retention factors to an internal standard (santonin) of 0.28, 1.18, 1.45, 1.98 and 2.76, respectively. No permeant was detected within 12 h of applying the Arnica tincture onto human epidermal membranes. However, after 12 h, the first two of these components were detected. These were shown by Zimmermann reagent reaction to be sesquiterpene lactones and liquid chromatography/diode array detection/mass spectrometry indicated that these two permeants were 11,13-dihydrohelenalin (DH) analogues (methacrylate and tiglate esters). The same two components were also detected within 3 h of topical application of the 10-fold concentrated tincture and the concentrated sesquiterpene lactone extract.

  18. Essential Oil Composition and Volatile Profile of Seven Helichrysum Species Grown in Italy.

    PubMed

    Giovanelli, Silvia; De Leo, Marinella; Cervelli, Claudio; Ruffoni, Barbara; Ciccarelli, Daniela; Pistelli, Luisa

    2018-03-06

    Helichrysum genus consists of about 600 species widespread throughout the world, especially in South Africa and in the Mediterranean area. In this study the aroma profile (HS-SPME) and the EO compositions of seven Helichrysum species (H. cymosum, H. odoratissimum, H. petiolare, H. fontanesii, H. saxatile, H. sanguineum, and H. tenax) were evaluated. All the plants were grown in Italy under the same growth conditions. The volatile constituents, particularly monoterpenes, depended by the plant's genotype and ecological adaptation. This study represents the first headspace evaluation on the selected plants and the results evidenced that monoterpenes represented the main class of constituents in five of the seven species analysed (from 59.2% to 95.0%). The higher content in sesquiterpene hydrocarbons was observed in the Mediterranean species of H. sanguineum (68.0%). Only H. saxatile showed relative similar abundance of monoterpenes and sesquiterpene hydrocarbons. The essential oil composition of the majority of examined species are characterised by high percentage of sesquiterpenes (especially β-caryophyllene and δ-cadinene) ranging from 51.3% to 92.0%, except for H. cymosum, H. tenax, and H. sanguineum leaves where monoterpenes predominated (from 51.7% to 74.7%). © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  19. Bidirectional Secretions from Glandular Trichomes of Pyrethrum Enable Immunization of Seedlings[W

    PubMed Central

    Ramirez, Aldana M.; Stoopen, Geert; Menzel, Tila R.; Gols, Rieta; Bouwmeester, Harro J.; Dicke, Marcel; Jongsma, Maarten A.

    2012-01-01

    Glandular trichomes are currently known only to store mono- and sesquiterpene compounds in the subcuticular cavity just above the apical cells of trichomes or emit them into the headspace. We demonstrate that basipetal secretions can also occur, by addressing the organization of the biosynthesis and storage of pyrethrins in pyrethrum (Tanacetum cinerariifolium) flowers. Pyrethrum produces a diverse array of pyrethrins and sesquiterpene lactones for plant defense. The highest concentrations accumulate in the flower achenes, which are densely covered by glandular trichomes. The trichomes of mature achenes contain sesquiterpene lactones and other secondary metabolites, but no pyrethrins. However, during achene maturation, the key pyrethrin biosynthetic pathway enzyme chrysanthemyl diphosphate synthase is expressed only in glandular trichomes. We show evidence that chrysanthemic acid is translocated from trichomes to pericarp, where it is esterified into pyrethrins that accumulate in intercellular spaces. During seed maturation, pyrethrins are then absorbed by the embryo, and during seed germination, the embryo-stored pyrethrins are recruited by seedling tissues, which, for lack of trichomes, cannot produce pyrethrins themselves. The findings demonstrate that plant glandular trichomes can selectively secrete in a basipetal direction monoterpenoids, which can reach distant tissues, participate in chemical conversions, and immunize seedlings against insects and fungi. PMID:23104830

  20. Modulation of GABAA receptors by valerian extracts is related to the content of valerenic acid.

    PubMed

    Trauner, Gabriele; Khom, Sophia; Baburin, Igor; Benedek, Birgit; Hering, Steffen; Kopp, Brigitte

    2008-01-01

    Valeriana Officinalis L . is a traditionally used sleep remedy, however, the mechanism of action and the substances responsible for its sedative and sleep-enhancing properties are not fully understood. As we previously identified valerenic acid as a subunit-specific allosteric modulator of GABAA receptors, we now investigated the relation between modulation of GABAA receptors by Valerian extracts of different polarity and the content of sesquiterpenic acids (valerenic acid, acetoxyvalerenic acid). All extracts were analysed by HPLC concerning the content of sesquiterpenic acids. GABAA receptors composed of alpha 1, beta 2 and gamma 2S subunits were expressed in Xenopus laevis oocytes and the modulation of chloride currents through GABAA receptors (IGABA) by Valerian extracts was investigated using the two-microelectrode voltage clamp technique. Apolar extracts induced a significant enhancement of IGABA, whereas polar extracts showed no effect. These results were confirmed by fractionating a highly active ethyl acetate extract: again fractions with high contents of valerenic acid exhibited strong receptor activation. In addition, removal of sesquiterpenic acids from the ethyl acetate extract led to a loss of I (GABA) enhancement. In conclusion, our data show that the extent of GABAA receptor modulation by Valerian extracts is related to the content of valerenic acid.

  1. Um Breve Balanço dos Estudos em Astronomia e Educação no Brasil no Período de 2010 a 2013

    NASA Astrophysics Data System (ADS)

    Goncalves, Erica de Oliveira; Kern, C.

    2014-10-01

    No Brasil, as pesquisas em ensino de astronomia para a Educação Básica vem ganhando destaque. Posto como importante área do conhecimento para estudantes e professores, os estudos em astronomia conquistam espaços nos documentos oficiais da educação e nos currículos escolares. Diante desse cenário, fez-se, neste trabalho, um mapeamento no banco de dados da Biblioteca Digital Brasileira de Teses e Dissertações , com base nas palavras-chave "astronomia" e "educação" no período de 2010 a 2013. Para compor o que aqui denominamos de balanço da área de estudo, foram selecionados trabalhos e analisados os títulos, os resumos, as considerações finais e as referências, bem como identificamos as fontes epistemológicas correntes nas pesquisas de pós-graduação no período supracitado. Identificou-se, na maior parte dos trabalhos pesquisados, referenciais teóricos relacionados & agrave; área de física, ciências e astronomia que envolvem discussões sobre currículo e práticas pedagógicas vinculados ao ensino de astronomia no ensino fundamental e médio da Educação Bãsica e nos cursos de formação de professores.

  2. Use of P450 cytochrome inhibitors in studies of enokipodin biosynthesis

    PubMed Central

    Ishikawa, Noemia Kazue; Tahara, Satoshi; Namatame, Tomohiro; Farooq, Afgan; Fukushi, Yukiharu

    2013-01-01

    Enokipodins A, B, C, and D are antimicrobial sesquiterpenes isolated from the mycelial culture medium of Flammulina velutipes, an edible mushroom. The presence of a quaternary carbon stereocenter on the cyclopentane ring makes enokipodins A-D attractive synthetic targets. In this study, nine different cytochrome P450 inhibitors were used to trap the biosynthetic intermediates of highly oxygenated cuparene-type sesquiterpenes of F. velutipes. Of these, 1-aminobenzotriazole produced three less-highly oxygenated biosynthetic intermediates of enokipodins A-D; these were identified as (S)-(−)-cuparene-1,4-quinone and epimers at C-3 of 6-hydroxy-6-methyl-3-(1,2,2-trimethylcyclopentyl)-2-cyclohexen-1-one. One of the epimers was found to be a new compound. PMID:24688524

  3. Antimycoplasmic activity and seasonal variation of essential oil of Eugenia hiemalis Cambess. (Myrtaceae).

    PubMed

    Zatelli, Gabriele Andressa; Zimath, Priscila; Tenfen, Adrielli; Mendes de Cordova, Caio Maurício; Scharf, Dilamara Riva; Simionatto, Edésio Luiz; Alberton, Michele Debiasi; Falkenberg, Miriam

    2016-09-01

    The purpose of this work was to study the chemical composition and antimycoplasmic and anticholinesterase activities of the essential oil of Eugenia hiemalis leaves collected throughout the year. A total of 42 compounds were identified by CG, and are present in almost every seasons. Sesquiterpenes were dominant (86.01-91.48%), and non-functionalised sesquiterpenes comprised the major fraction, which increased in the summer; monoterpenes were not identified. The major components were spathulenol (5.36-16.06%), δ-cadinene (7.50-15.93%), bicyclogermacrene (5.70-14.24%) and β-caryophyllene (4.80-9.43%). The highest oil yield was obtained in summer and autumn. Essential oils presented activity against three evaluated Mycoplasma strains, but no activity was observed in the anticholinesterase assay.

  4. Antispasmodic activity of fractions and cynaropicrin from Cynara scolymus on guinea-pig ileum.

    PubMed

    Emendörfer, Fernanda; Emendörfer, Fabiane; Bellato, Fernanda; Noldin, Vânia Floriani; Cechinel-Filho, Valdir; Yunes, Rosendo Augusto; Delle Monache, Franco; Cardozo, Alcíbia Maia

    2005-05-01

    This study describes the antispasmodic activity of some fractions and cynaropicrin, a sesquiterpene lactone from Cynara scolymus, cultivated in Brazil, against guinea-pig ileum contracted by acetylcholine. The dichloromethane fraction showed the most promising biological effects, with an IC(50) of 0.93 (0.49-1.77) mg/ml. Its main active component, the sesquiterpene lactone cynaropicrin, exhibited potent activity, with IC(50) of 0.065 (0.049-0.086) mg/ml, being about 14-fold more active than dichloromethane fraction and having similar potency to that of papaverine, a well-known antispasmodic agent. The results confirm the popular use of artichoke for the treatment of gastrointestinal disturbances, and encourage new studies on this compound, in order to obtain new antispasmodic agents.

  5. Profilaxia da trombose venosa profunda em cirurgia bariátrica: estudo comparativo com doses diferentes de heparina de baixo peso molecular

    PubMed Central

    Goslan, Carlos José; Baretta, Giórgio Alfredo Pedroso; de Souza, Hemuara Grasiela Pestana; Orsi, Bruna Zanin; Zanoni, Esdras Camargo A.; Lopes, Marco Antonio Gimenez; Engelhorn, Carlos Alberto

    2018-01-01

    Resumo Contexto A cirurgia bariátrica é considerada a melhor opção para o tratamento da obesidade, cujos pacientes são considerados de alto risco para fenômenos tromboembólicos. Objetivos Comparar o uso de doses diferentes de heparina de baixo peso molecular (HBPM) na profilaxia da trombose venosa profunda (TVP) em pacientes candidatos à cirurgia bariátrica em relação ao risco de TVP, alteração na dosagem do fator anti-Xa e sangramento pré ou pós-operatório. Métodos Estudo comparativo transversal em pacientes submetidos à cirurgia bariátrica distribuídos em dois grupos, que receberam doses de HBPM de 40 mg (grupo controle, GC) e 80 mg (grupo de estudo, GE). Foram avaliados por ultrassonografia vascular e dosagem de KPTT, TAP, plaquetas e fator anti-Xa. Resultados Foram avaliados 60 pacientes, sendo 34 no GC e 26 no GE. Foi observada diferença significativa somente no peso (p = 0,003) e índice de massa corporal (p = 0,018) no GE em relação ao GC. Não houve diferença na dosagem de KPTT, TAP, plaquetas e fator anti-Xa entre os grupos. Não foram detectados TVP ou sangramentos significativos em ambos os grupos. Conclusões Não houve diferença estatisticamente significativa na utilização de doses maiores de HBPM na profilaxia da TVP em pacientes candidatos à cirurgia bariátrica em relação ao risco de TVP, dosagem do fator anti-Xa e sangramento pré ou pós-operatório.

  6. Sesquiterpenoids and phenolics from Taraxacum hondoense.

    PubMed

    Kisiel, Wanda; Michalska, Klaudia

    2005-09-01

    Eleven sesquiterpene lactones, including the new guaianolide 11beta-hydroxydeacetylmatricarin-8-O-beta-glucopyranoside, along with four known phenolic glucosides were isolated from Taraxacum hondoense. The compounds were characterized by spectral methods.

  7. Changes of Metabolomic Profile in Helianthus annuus under Exposure to Chromium(VI) Studied by capHPLC-ESI-QTOF-MS and MS/MS

    PubMed Central

    Gonzalez Ibarra, Alan Alexander; Wrobel, Kazimierz; Yanez Barrientos, Eunice; Corrales Escobosa, Alma Rosa; Gutierrez Corona, J. Felix; Enciso Donis, Israel

    2017-01-01

    The application of capHPLC-ESI-QTOF-MS and MS/MS to study the impact of Cr(VI) on metabolites profile in Helianthus annuus is reported. Germinated seeds were grown hydroponically in the presence of Cr(VI) (25 mgCr/L) and root extracts of the exposed and control plants were analyzed by untargeted metabolomic approach. The main goal was to detect which metabolite groups were mostly affected by Cr(VI) stress; two data analysis tools (ProfileAnalysis, Bruker, and online XCMS) were used under criteria of intensity threshold 5 · 104 cps, fold change ≥ 5, and p ≤ 0.01, yielding precursor ions. Molecular formulas were assigned based on data processing with two computational tools (SIRIUS and MS-Finder); annotation of candidate structures was performed by database search using CSI:FingerID and MS-Finder. Even though ultimate identification has not been achieved, it was demonstrated that secondary metabolism became activated under Cr(VI) stress. Among 42 candidate compounds returned from database search for seven molecular formulas, ten structures corresponded to isocoumarin derivatives and eleven were sesquiterpenes or sesquiterpene lactones; three benzofurans and four glycoside or pyrane derivatives of phenolic compounds were also suggested. To gain further insight on the effect of Cr(VI) in sunflower, isocoumarins and sesquiterpenes were selected as the target compounds for future study. PMID:29359067

  8. Trans-β-Caryophyllene: An Effective Antileishmanial Compound Found in Commercial Copaiba Oil (Copaifera spp.)

    PubMed Central

    Soares, Deivid C.; Portella, Nathalya A.; Ramos, Mônica Freiman de S.; Siani, Antonio C.; Saraiva, Elvira M.

    2013-01-01

    This study investigated the leishmanicidal activity against Leishmania amazonensis of four commercial oils from Copaifera spp. named as C1, C2, C3, and C4, the sesquiterpene and diterpene pools obtained from distilling C4, and isolated β-caryophyllene (CAR). Copaiba oils chemical compositions were analyzed by gas chromatography and correlated with biological activities. Diterpenes-rich oils C2 and C3 showed antipromastigote activity. Sesquiterpenes-rich C1 and C4, and isolated CAR presented a dose-dependent activity against intracellular amastigotes, with IC50s of 2.9 µg/mL, 2.3 µg/mL, and 1.3 µg/mL (6.4 µM), respectively. Based on the highest antiamastigote activity and the low toxicity to the host cells, C4 was steamdistillated to separate pools of sesquiterpenes and diterpenes. Both pools were less active against L. amazonensis and more toxic for the macrophages than the whole C4 oil. The leishmanicidal activity of C3 and C4 oils, as well as C4 fractions and CAR, appears to be independent of nitric oxide production by macrophages. This study pointed out β-caryophyllene as an effective antileishmanial compound and also to its role as potential chemical marker in copaiba oils or fractions derived thereof, aiming further development of this rainforest raw material for leishmaniasis therapy. PMID:23864897

  9. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    PubMed Central

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  10. Trypanosoma brucei Inhibition by Essential Oils from Medicinal and Aromatic Plants Traditionally Used in Cameroon (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea and Echinops giganteus).

    PubMed

    Kamte, Stephane L Ngahang; Ranjbarian, Farahnaz; Campagnaro, Gustavo Daniel; Nya, Prosper C Biapa; Mbuntcha, Hélène; Woguem, Verlaine; Womeni, Hilaire Macaire; Ta, Léon Azefack; Giordani, Cristiano; Barboni, Luciano; Benelli, Giovanni; Cappellacci, Loredana; Hofer, Anders; Petrelli, Riccardo; Maggi, Filippo

    2017-07-06

    Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants ( Azadirachta indica , Aframomum melegueta , Aframomum daniellii , Clausena anisata , Dichrostachys cinerea , and Echinops giganteus ) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica , A . daniellii , and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC 50 ) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils.

  11. Isoprenoid based alternative diesel fuel

    DOEpatents

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  12. Global Emissions of Terpenoid VOCs from Terrestrial Vegetation in the Last Millennium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acosta Navarro, J. C.; Smolander, S.; Struthers, H.

    2014-06-16

    We investigated the millennial variability of global BVOC emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene and sesquiterpene and Lund-Potsdam-Jena General Ecosystem Simulator (LPJ8 GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have signicant short term globalmore » effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during during 1750-1850 and 1000- 15 1200, respectively) and LPJ-GUESS emissions were 323 TgC yr-1 (15% and 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1 (10% and 6% higher than during 1750-1850 and 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% 19 20 less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1 (10% and 4% higher than during1750-1850 and 1000-1200, respectively). Although both models capture similar We investigated the millennial variability of global BVOC emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene and sesquiterpene and Lund-Potsdam-Jena General Ecosystem Simulator (LPJ8GUESS), for isoprene and monoterpenes. We found the millennial trends ofglobal isoprene emissions to be mostly a*ected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission were dominated by temperature change. Isoprene emissions declined substantially in regions with large and

  13. Model Representation of Secondary Organic Aerosol in CMAQ v4.7

    EPA Science Inventory

    Numerous scientific upgrades to the representation of secondary organic aerosol (SOA) are incorporated into the Community Multiscale Air Quality (CMAQ) modeling system. Additions include several recently identified SOA precursors: benzene, isoprene, and sesquiterpenes; and pathwa...

  14. Baccharis pteronioides toxicity

    USDA-ARS?s Scientific Manuscript database

    Baccharis pteronioides DC. occasionally poisons livestock in the southwestern United States. Various toxins including diterpenic lactones, sesquiterpenes , flavonoids, saponins, tannins, phenolic compounds and essential oils have been isolated and described from several Baccharis species, but none...

  15. Maize terpene volatiles serve as precursors to an array of defensive phytoalexins following insect and pathogen attack

    USDA-ARS?s Scientific Manuscript database

    Phytoalexins are inducible biochemicals that locally protect plant tissues against biotic attack. Due to their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses which include insect-inducible monoterpene and sesquiterpene vol...

  16. Maize terpene volatiles serve as precursors to an array of defensive phytoalexins following insect and pathogen attack

    USDA-ARS?s Scientific Manuscript database

    Phytoalexins are inducible biochemicals that locally protect plant tissues against biotic attack. Due to their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses which include insect-inducible monoterpene and sesquiterpene volatiles. ...

  17. FACTORS CONTROLLING THE EMISSIONS OF MONOTERPENES AND OTHER VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Plants contain a number of volatile organic compounds, including isoprene, mono- and sesquiterpenes, alcohols, aldehydes, ketones, and esters. ndividual plant species have unique combinations of these compounds; consequently, the emission pattern for each species is also specific...

  18. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis).

    PubMed

    Green, Sol A; Chen, Xiuyin; Nieuwenhuizen, Niels J; Matich, Adam J; Wang, Mindy Y; Bunn, Barry J; Yauk, Yar-Khing; Atkinson, Ross G

    2012-03-01

    Flowers of the kiwifruit species Actinidia chinensis produce a mixture of sesquiterpenes derived from farnesyl diphosphate (FDP) and monoterpenes derived from geranyl diphosphate (GDP). The tertiary sesquiterpene alcohol (E)-nerolidol was the major emitted volatile detected by headspace analysis. Contrastingly, in solvent extracts of the flowers, unusually high amounts of (E,E)-farnesol were observed, as well as lesser amounts of (E)-nerolidol, various farnesol and farnesal isomers, and linalool. Using a genomics-based approach, a single gene (AcNES1) was identified in an A. chinensis expressed sequence tag library that had significant homology to known floral terpene synthase enzymes. In vitro characterization of recombinant AcNES1 revealed it was an enzyme that could catalyse the conversion of FDP and GDP to the respective (E)-nerolidol and linalool terpene alcohols. Enantiomeric analysis of both AcNES1 products in vitro and floral terpenes in planta showed that (S)-(E)-nerolidol was the predominant enantiomer. Real-time PCR analysis indicated peak expression of AcNES1 correlated with peak (E)-nerolidol, but not linalool accumulation in flowers. This result, together with subcellular protein localization to the cytoplasm, indicated that AcNES1 was acting as a (S)-(E)-nerolidol synthase in A. chinensis flowers. The synthesis of high (E,E)-farnesol levels appears to compete for the available pool of FDP utilized by AcNES1 for sesquiterpene biosynthesis and hence strongly influences the accumulation and emission of (E)-nerolidol in A. chinensis flowers.

  19. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis)

    PubMed Central

    Green, Sol A.; Chen, Xiuyin; Nieuwenhuizen, Niels J.; Matich, Adam J.; Wang, Mindy Y.; Bunn, Barry J.; Yauk, Yar-Khing; Atkinson, Ross G.

    2012-01-01

    Flowers of the kiwifruit species Actinidia chinensis produce a mixture of sesquiterpenes derived from farnesyl diphosphate (FDP) and monoterpenes derived from geranyl diphosphate (GDP). The tertiary sesquiterpene alcohol (E)-nerolidol was the major emitted volatile detected by headspace analysis. Contrastingly, in solvent extracts of the flowers, unusually high amounts of (E,E)-farnesol were observed, as well as lesser amounts of (E)-nerolidol, various farnesol and farnesal isomers, and linalool. Using a genomics-based approach, a single gene (AcNES1) was identified in an A. chinensis expressed sequence tag library that had significant homology to known floral terpene synthase enzymes. In vitro characterization of recombinant AcNES1 revealed it was an enzyme that could catalyse the conversion of FDP and GDP to the respective (E)-nerolidol and linalool terpene alcohols. Enantiomeric analysis of both AcNES1 products in vitro and floral terpenes in planta showed that (S)-(E)-nerolidol was the predominant enantiomer. Real-time PCR analysis indicated peak expression of AcNES1 correlated with peak (E)-nerolidol, but not linalool accumulation in flowers. This result, together with subcellular protein localization to the cytoplasm, indicated that AcNES1 was acting as a (S)-(E)-nerolidol synthase in A. chinensis flowers. The synthesis of high (E,E)-farnesol levels appears to compete for the available pool of FDP utilized by AcNES1 for sesquiterpene biosynthesis and hence strongly influences the accumulation and emission of (E)-nerolidol in A. chinensis flowers. PMID:22162874

  20. Molecular regulation of santalol biosynthesis in Santalum album L.

    PubMed

    Rani, Arti; Ravikumar, Puja; Reddy, Manjunatha Damodara; Kush, Anil

    2013-09-25

    Santalum album L. commonly known as East-Indian sandal or chandan is a hemiparasitic tree of family santalaceae. Santalol is a bioprospecting molecule present in sandalwood and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. Santalol is a sesquiterpene synthesized through mevalonate or non-mevalonate pathways. First step of santalol biosynthesis involves head to tail condensation of isopentenyl pyrophosphate (IPP) with its allylic co-substrate dimethyl allyl pyrophosphate (DMAPP) to produce geranyl pyrophosphate (GPP; C10 - a monoterpene). GPP upon one additional condensation with IPP produces farnesyl pyrophosphate (FPP; C15 - an open chain sesquiterpene). Both the reactions are catalyzed by farnesyl diphosphate synthase (FDS). Santalene synthase (SS), a terpene cyclase catalyzes cyclization of open ring FPP into a mixture of cyclic sesquiterpenes such as α-santalene, epi-β-santalene, β-santalene and exo bergamotene, the main constituents of sandal oil. The objective of the present work was to generate a comprehensive knowledge on the genes involved in santalol production and study their molecular regulation. To achieve this, sequences encoding farnesyl diphosphate synthase and santalene synthase were isolated from sandalwood using suppression subtraction hybridization and 2D gel electrophoresis technology. Functional characterization of both the genes was done through enzyme assays and tissue-specific expression of both the genes was studied. To our knowledge, this is the first report on studies on molecular regulation, and tissue-specific expression of the genes involved in santalol biosynthesis. © 2013.

  1. Molecular cloning and functional characterization of three terpene synthases from unripe fruit of black pepper (Piper nigrum).

    PubMed

    Jin, Zhehao; Kwon, Moonhyuk; Lee, Ah-Reum; Ro, Dae-Kyun; Wungsintaweekul, Juraithip; Kim, Soo-Un

    2018-01-15

    To identify terpene synthases (TPS) responsible for the biosynthesis of the sesquiterpenes that contribute to the characteristic flavors of black pepper (Piper nigrum), unripe peppercorn was subjected to the Illumina transcriptome sequencing. The BLAST analysis using amorpha-4,11-diene synthase as a query identified 19 sesquiterpene synthases (sesqui-TPSs), of which three full-length cDNAs (PnTPS1 through 3) were cloned. These sesqui-TPS cDNAs were expressed in E. coli to produce recombinant enzymes for in vitro assays, and also expressed in the engineered yeast strain to assess their catalytic activities in vivo. PnTPS1 produced β-caryophyllene as a main product and humulene as a minor compound, and thus was named caryophyllene synthase (PnCPS). Likewise, PnTPS2 and PnTPS3 were, respectively, named cadinol/cadinene synthase (PnCO/CDS) and germacrene D synthase (PnGDS). PnGDS expression in yeast yielded β-cadinene and α-copaene, the rearrangement products of germacrene D. Their k cat /K m values (20-37.7 s -1  mM -1 ) were comparable to those of other sesqui-TPSs. Among three PnTPSs, the transcript level of PnCPS was the highest, correlating with the predominant β-caryophyllene biosynthesis in the peppercorn. The products and rearranged products of three PnTPSs could account for about a half of the sesquiterpenes in number found in unripe peppercorn. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Trypanosoma brucei Inhibition by Essential Oils from Medicinal and Aromatic Plants Traditionally Used in Cameroon (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea and Echinops giganteus)

    PubMed Central

    Ngahang Kamte, Stephane L.; Ranjbarian, Farahnaz; Campagnaro, Gustavo Daniel; Biapa Nya, Prosper C.; Mbuntcha, Hélène; Woguem, Verlaine; Womeni, Hilaire Macaire; Tapondjou, Léon Azefack; Giordani, Cristiano; Benelli, Giovanni; Hofer, Anders

    2017-01-01

    Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea, and Echinops giganteus) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica, A. daniellii, and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC50) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils. PMID:28684709

  3. Similarities in pheromonal communication of flea beetles Phyllotreta cruciferae Goeze and Ph. vittula Redtenbacher (Coleoptera, Chrysomelidae)

    USDA-ARS?s Scientific Manuscript database

    Remarkable similarities have been found in the pheromonal communication of Phyllotreta vittula Redtenbacher and of Ph. cruciferae Goeze (European population) (Coleoptera, Chrysomelidae). In previous European field tests with Ph. cruciferae, only the major male-produced sesquiterpene identified from ...

  4. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Chatani, Satoru; Matsunaga, Sou N.; Nakatsuka, Seiji

    2015-11-01

    A new gridded database has been developed to estimate the amount of isoprene, monoterpene, and sesquiterpene emitted from all the broadleaf and coniferous trees in Japan with the Model of Emissions of Gases and Aerosols from Nature (MEGAN). This database reflects the vegetation specific to Japan more accurately than existing ones. It estimates much lower isoprene emitted from other vegetation than trees, and higher sesquiterpene emissions mainly emitted from Cryptomeria japonica, which is the most abundant plant type in Japan. Changes in biogenic emissions result in the decrease in ambient ozone and increase in organic aerosol simulated by the air quality simulation over the Tokyo Metropolitan Area in Japan. Although newly estimated biogenic emissions contribute to a better model performance on overestimated ozone and underestimated organic aerosol, they are not a single solution to solve problems associated with the air quality simulation.

  5. Facile preparation of bioactive seco-guaianolides and guaianolides from Artemisia gorgonum and evaluation of their phytotoxicity.

    PubMed

    Macías, Francisco A; Santana, Alejandro; Yamahata, Azusa; Varela, Rosa M; Fronczek, Frank R; Molinillo, José M G

    2012-11-26

    Commercially available santonin was used to synthesize seven sesquiterpene lactones using a facile strategy that involved a high-yielding photochemical reaction. Three natural products from Artemisia gorgonum were synthesized in good yields, and in the case of two compounds, absolute configurations were determined from X-ray quality crystals. The structures previously reported for these compounds were revised. Sesquiterpene lactones were tested using the etiolated wheat coleoptile bioassay, and the most active compounds were assayed in standard target species. seco-Guaianolide (4) showed higher phytotoxic activities than the known herbicide Logran. This high activity could be due to the presence of a cyclopentenedione ring. These results suggest that compound 4 should be involved in defense of A. gorgorum, displaying a wide range of activities that allow proposing them as new leads for development of a natural herbicide model with a seco-guaianolide skeleton.

  6. Proteomic analysis of a mutant of Trichoderma arundinaceum impaired in the trichothecene biosynthesis reveals a systemic function of these compounds in the fungal physiology

    USDA-ARS?s Scientific Manuscript database

    Trichothecenes are sesquiterpene mycotoxins produced by several fungal genera including Fusarium, Trichothecium, Myrothecium, Stachybotrys, and Trichoderma. These toxins have attracted great attention because they are frequent contaminants of food and animal feed, and can be easily absorbed by anim...

  7. DRYING AFFECTS ARTEMISININ, DIHYDROARTEMISINIC ACID, ARTEMISINIC ACID, AND THE ANTIOXIDANT CAPACITY OF ARTEMISIA ANNUA L. LEAVES

    USDA-ARS?s Scientific Manuscript database

    The anti-parasitic, anti-cancer, and anti-viral sesquiterpene lactone artemisinin, commercially extracted from Artemisia annua, is in high demand worldwide. However, limited information is available on how post-harvest drying procedures affect plant biochemistry leading to the biosynthesis of artem...

  8. Genetic architecture of capitate glandular trichome density in florets of domesticated sunflower (Helianthus annuus L.)

    USDA-ARS?s Scientific Manuscript database

    Capitate glandular trichomes (CGT), one type of glandular trichomes, are most common in Asteraceae species. Capitate glandular trichomes can produce various secondary metabolites such as sesquiterpene lactones (STLs) and provide durable resistance to insect pests. In sunflower, CGT-based host resist...

  9. Engineering a Synthetic Microbial Consortium for Comprehensive Conversion of Algae Biomass into Terpenes for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weihua; Wu, Benjamin Chiau-Pin; Davis, Ryan Wesley

    Recent strategies for algae-based biofuels have primarily focused on biodiesel production by exploiting high algal lipid yields under nutrient stress conditions. However, under conditions supporting robust algal biomass accumulation, carbohydrate and proteins typically comprise up to ~80% of the ash-free dry weight of algae biomass. Therefore, comprehensive utilization of algal biomass for production of multipurpose intermediate- to high-value bio-based products will promote scale-up of algae production and processing to commodity volumes. Terpenes are hydrocarbon and hydrocarbon-like (C:O>10:1) compounds with high energy density, and are therefore potentially promising candidates for the next generation of value added bio-based chemicals and “drop-in” replacementsmore » for petroleum-based fuels. In this study, we demonstrated the feasibility of bioconversion of proteins into sesquiterpene compounds as well as comprehensive bioconversion of algal carbohydrates and proteins into biofuels. To achieve this, the mevalonate pathway was reconstructed into an E. coli chassis with six different terpene synthases (TSs). Strains containing the various TSs produced a spectrum of sesquiterpene compounds in minimal medium containing amino acids as the sole carbon source. The sesquiterpene production was optimized through three different regulation strategies using chamigrene synthase as an example. The highest total terpene titer reached 166 mg/L, and was achieved by applying a strategy to minimize mevalonate accumulation in vivo. The highest yields of total terpene were produced under reduced IPTG induction levels (0.25 mM), reduced induction temperature (25°C), and elevated substrate concentration (20 g/L amino acid mixture). A synthetic bioconversion consortium consisting of two engineering E. coli strains (DH1-TS and YH40-TS) with reconstructed terpene biosynthetic pathways was designed for comprehensive single-pot conversion of algal carbohydrates and proteins to

  10. Identification of a trichothecene gene cluster and description of the harzianum A biosynthesis pathway in the fungus Trichoderma arundinaceum

    USDA-ARS?s Scientific Manuscript database

    Trichothecenes are sesquiterpenes that act like mycotoxins. Their biosynthesis has been mainly studied in the fungal genera Fusarium, where most of the biosynthetic genes (tri) are grouped in a cluster regulated by ambient conditions and regulatory genes. Unexpectedly, few studies are available abou...

  11. Ozonolysis of α/β-farnesene mixture: Analysis of gas-phase and particulate reaction products

    EPA Science Inventory

    Atmospheric oxidation of sesquiterpenes has been of considerable interest recently because of their likely contribution to ambient organic aerosol, but farnesene oxidation has been reported in only a few studies and with limited data. In the present study, a detailed chemical ana...

  12. Potential ecological roles of Artemisinin produced by Artemisis annua L

    USDA-ARS?s Scientific Manuscript database

    Artemisia annua L. (annual wormwood, Asteraceae) and its secondary metabolite artemisinin, a unique sesquiterpene lactone with an endoperoxide bridge, has gained much attention due to its antimalarial properties. Artemisinin is a complex structure that is requires a significant amount of energy for ...

  13. Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes

    USDA-ARS?s Scientific Manuscript database

    The sesquiterpene alcohol zingiberenol, or 1,10-bisaboladien-3-ol, was isolated some time ago from ginger, Zingiber officinale, rhizomes, but its absolute configuration had not been determined. With three chiral centers present in the molecule, zingiberenol can exist in eight stereoisomeric forms. ...

  14. Chemical assessment and in vitro antioxidant capacity of Ficus carica latex.

    PubMed

    Oliveira, Andreia P; Silva, Luís R; Ferreres, Federico; Guedes de Pinho, Paula; Valentão, Patrícia; Silva, Branca M; Pereira, José A; Andrade, Paula B

    2010-03-24

    Ficus species possess latex-like material within their vasculatures, affording protection and self-healing from physical attacks. In this work, metabolite profiling was performed on Ficus carica latex. Volatiles profile was determined by HS-SPME/GC-IT-MS, with 34 compounds being identified, distributed by distinct chemical classes: 5 aldehydes, 7 alcohols, 1 ketone, 9 monoterpenes, 9 sesquiterpenes and 3 other compounds. Sesquiterpenes constituted the most abundant class in latex (ca. 91% of total identified compounds). Organic acids composition was also characterized, by HPLC-UV, and oxalic, citric, malic, quinic, shikimic and fumaric acids were determined. Malic and shikimic acids were present in higher amounts (ca. 26%, each). The antioxidant potential of this material was checked by distinct in vitro chemical assays. A concentration-dependent activity was noticed against DPPH, nitric oxide and superoxide radicals. Additionally, acetylcholinesterase inhibitory capacity was evaluated, but a weak effect was found.

  15. The Tomato Terpene Synthase Gene Family1[W][OA

    PubMed Central

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  16. Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, Santalum album L.

    PubMed

    Jones, Christopher G; Keeling, Christopher I; Ghisalberti, Emilio L; Barbour, Elizabeth L; Plummer, Julie A; Bohlmann, Jörg

    2008-09-01

    Sandalwood, Santalum album (Santalaceae) is a small hemi-parasitic tropical tree of great economic value. Sandalwood timber contains resins and essential oils, particularly the santalols, santalenes and dozens of other minor sesquiterpenoids. These sesquiterpenoids provide the unique sandalwood fragrance. The research described in this paper set out to identify genes involved in essential oil biosynthesis, particularly terpene synthases (TPS) in S. album, with the long-term aim of better understanding heartwood oil production. Degenerate TPS primers amplified two genomic TPS fragments from S. album, one of which enabled the isolation of two TPS cDNAs, SamonoTPS1 (1731bp) and SasesquiTPS1 (1680bp). Both translated protein sequences shared highest similarity with known TPS from grapevine (Vitis vinifera). Heterologous expression in Escherichia coli produced catalytically active proteins. SamonoTPS1 was identified as a monoterpene synthase which produced a mixture of (+)-alpha-terpineol and (-)-limonene, along with small quantities of linalool, myrcene, (-)-alpha-pinene, (+)-sabinene and geraniol when assayed with geranyl diphosphate. Sesquiterpene synthase SasesquiTPS1 produced the monocyclic sesquiterpene alcohol germacrene D-4-ol and helminthogermacrene, when incubated with farnesyl diphosphate. Also present were alpha-bulnesene, gamma-muurolene, alpha- and beta-selinenes, as well as several other minor bicyclic compounds. Although these sesquiterpenes are present in only minute quantities in the distilled sandalwood oil, the genes and their encoded enzymes described here represent the first TPS isolated and characterised from a member of the Santalaceae plant family and they may enable the future discovery of additional TPS genes in sandalwood.

  17. Choleretic Activity of Turmeric and its Active Ingredients.

    PubMed

    Wang, Yonglu; Wang, Liyao; Zhu, Xinyi; Wang, Dong; Li, Xueming

    2016-07-01

    Turmeric, a rhizome of Curcumin longa L. is widely used as both a spice and an herbal medicine. The traditional use of turmeric in gastroenterology is mainly based on its choleretic activity. The aim of this study is to determine the effects of turmeric on bile flow (BF) and total bile acids (TBAs) excretion in a bile fistula rat model after acute duodenal administration. A significant dose-dependent enhancement in both BF and TBAs was detected after treatment with the turmeric decoctions which suggested the choleretic activity was bile acid-dependent secretion. In order to direct the active group of compounds, aqueous (AE), ethyl acetate (EtOAc), and petroleum ether (PE) extracts were investigated. The EtOAc and PE extracts showing high effects were purified to locate the active ingredients. Three curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) and 2 sesquiterpenes (bisacurone B and ar-turmerone) were isolated. It was found Bisacurone B was the most potent choleretic ingredient followed by ar-turmerone, bisdemethoxycurcumin demethoxycurcumin, and then curcumin. The amounts of the active ingredients were quantitatively analyzed by high-performance liquid chromatography. The EtOAc and PE extracts had high sesquiterpenes and curcuminoids content, while the AE extract had poor content of sesquiterpenes and curcuminoids which affected neither BF nor TBAs. Based on the results of multiple linear regression analysis, the content of BIS and TUR were dominant factors (P < 0.01) of controlling BL and TBAs in EtOAC and PE extracts. © 2016 Institute of Food Technologists®

  18. Molecular Insights into the Potential Insecticidal Interaction of β-Dihydroagarofuran Derivatives with the H Subunit of V-ATPase.

    PubMed

    Wei, Jielu; Li, Ding; Xi, Xin; Liu, Lulu; Zhao, Ximei; Wu, Wenjun; Zhang, Jiwen

    2017-10-11

    Celangulin V (CV), one of dihydroagarofuran sesquiterpene polyesters isolated from Chinese bittersweet ( Celastrus angulatus Maxim), is famous natural botanical insecticide. Decades of research suggests that is displays excellent insecticidal activity against some insects, such as Mythimna separata Walker. Recently, it has been validated that the H subunit of V-ATPase is one of the target proteins of the insecticidal dihydroagarofuran sesquiterpene polyesters. As a continuation of the development of new pesticides from these natural products, a series of β-dihydroagarofuran derivatives have been designed and synthesized. The compound JW-3, an insecticidal derivative of CV with a p -fluorobenzyl group, exhibits higher insecticidal activity than CV. In this study, the potential inhibitory effect aused by the interaction of JW-3 with the H subunit of V-ATPase c was verified by confirmatory experiments at the molecular level. Both spectroscopic techniques and isothermal titration calorimetry measurements showed the binding of JW-3 to the subunit H of V-ATPase was specific and spontaneous. In addition, the possible mechanism of action of the compound was discussed. Docking results indicated compound JW-3 could bind well in 'the interdomain cleft' of the V-ATPase subunit H by the hydrogen bonding and make conformation of the ligand-protein complex become more stable. All results are the further validations of the hypothesis, that the target protein of insecticidal dihydroagarofuran sesquiterpene polyesters and their β-dihydroagarofuran derivatives is the subunit H of V-ATPase. The results also provide new ideas for developing pesticides acting on V-ATPase of insects.

  19. Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium.

    PubMed

    Acosta Navarro, J C; Smolander, S; Struthers, H; Zorita, E; Ekman, A M L; Kaplan, J O; Guenther, A; Arneth, A; Riipinen, I

    2014-06-16

    We investigated the millennial variability (1000 A.D.-2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission trends were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have significant short-term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr -1 (13% and 19% less than during 1750-1850 and 1000-1200, respectively), and LPJ-GUESS emissions were 323 TgC yr -1 (15% and 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr -1 (10% and 6% higher than during 1750-1850 and 1000-1200, respectively) in MEGAN, and 24 TgC yr -1 (2% higher and 5% less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr -1 (10% and 4% higher than during 1750-1850 and 1000-1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.

  20. Botrydial and botcinins produced by Botrytis cinerea regulate expression of Trichoderma arundinaceum genes involved in trichothecene biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Trichoderma arundinaceum (Ta37) and Botrytis cinerea produce the sesquiterpenes harzianum A (HA) and botrydial (BOT), respectively, and also the polyketides aspinolides (Asp) and botcinines (Botc), respectively. In the present work, we analyzed the role of BOT and Botcs in the T. arundinaceum-B. cin...

  1. New regulatory tricks for an old toxin cluster

    USDA-ARS?s Scientific Manuscript database

    Trichothecenes are among the mycotoxins of greatest concern to food and feed safety and are produced by at least two lineages of Fusarium: F. sambucinum (FSAMSC) and F. incarnatum-equiseti (FIESC) species complexes. Trichothecene biosynthesis begins with the formation of a cyclic sesquiterpene follo...

  2. Adaption and agronomic performance of Artemisia annua L. under lowland humid tropical conditions

    USDA-ARS?s Scientific Manuscript database

    Demand for new chemotherapies against malaria is increasing as Plasmodium, the causative organism of the disease, has shown a high degree of resistance against most standard anti-malarial drugs. One the few highly effective compounds is artemisinin, the major sesquiterpene for the production of art...

  3. Meroterpenoids with antiproliferative activity from a Hawaiian-plant associated fungus Peyronellaea coffeae-arabicae FT238

    USDA-ARS?s Scientific Manuscript database

    Three unusual polyketide-sesquiterpene metabolites peyronellins A-C (1-3), along with the new epoxyphomalin analog 11-dehydroxy epoxyphomalin A (4), have been isolated from the endophytic fungus Peyronellaea cof feae-arabicae FT238, which was isolated from the native Hawaiian plant Pritchardia lowre...

  4. Novel Zn(II)2Cys6 transcription factor in Fusarium equiseti trichothecene gene cluster is a pathway specific and global regulator

    USDA-ARS?s Scientific Manuscript database

    Trichothecenes are among the mycotoxins of greatest concern to food and feed safety and are produced by at least two lineages of Fusarium: the F. sambucinum (FSAMSC) and F. incarnatum-equiseti (FIESC) species complexes. Trichothecene biosynthesis begins with the formation of a cyclic sesquiterpene f...

  5. ß-CARYOPHYLLINIC ACID: AN ATMOSPHERIC TRACER FOR ß-CARYOPHYLLENE SECONDARY ORGANIC AEROSOL

    EPA Science Inventory

    The chemical compositions of ambient PM2.5 samples, collected in Research Triangle Park, North Carolina, USA, and a sample of secondary organic aerosol, formed by irradiating a mixture of the sesquiterpene, ß-caryophyllene, and oxides of nitrogen in a smog chamber, wer...

  6. Nepetalactones from essential oil of Nepeta cataria represent a stable fly feeding and oviposition repellent

    USDA-ARS?s Scientific Manuscript database

    We have discovered that catnip oil reduced the feeding of stable flies by more than 96% in the laboratory bioassays, when compared with other sesquiterpene-rich amyris and sandalwood oils. Catnip oil further demonstrated with a strong repellency against stable flies, relative to other newly identifi...

  7. A repellent against the coffee berry borer (Coleoptera: Curculionidae: Scolytinae)

    USDA-ARS?s Scientific Manuscript database

    The coffee berry borer continues to pose a formidable challenge to coffee growers worldwide. Due to the cryptic life habit of the insect inside coffee berries, effective pest management strategies have been difficult to develop. A sesquiterpene, (E,E)-a-farnesene, produced by infested coffee berries...

  8. Wood and Chemistry – or How to Combine Bob Heath's Two Passions into Entomology Research

    USDA-ARS?s Scientific Manuscript database

    Plants generally produce complex mixtures of terpenoids that may differ greatly among species. Terpenoids, such C10 monoterpenes and C15 sesquiterpenes, are known to play an important role in the biology and ecology of plants, directly or indirectly influencing their interactions with their biotic e...

  9. Identification of methyl farnesoate from the hemolymph of insects

    USDA-ARS?s Scientific Manuscript database

    Juvenile hormones (JH) have been a focal point of study in insect endocrinology for more than 80 years and are implicated in regulation of more physiological and behavioral functions than any other insect hormone. Indeed, evidence has suggested that JHs are the only sesquiterpene hormone products s...

  10. Terpene evolution during the development of Vitis vinifera L. cv. Shiraz grapes.

    PubMed

    Zhang, Pangzhen; Fuentes, Sigfredo; Siebert, Tracey; Krstic, Mark; Herderich, Markus; Barlow, Edward William R; Howell, Kate

    2016-08-01

    The flavour of wine is derived, in part, from the flavour compounds present in the grape, which change as the grapes accumulate sugar and ripen. Grape berry terpene concentrations may vary at different stages of berry development. This study aimed to investigate terpene evolution in grape berries from four weeks post-flowering to maturity. Grape bunches were sampled at fortnightly intervals over two vintages (2012-13 and 2013-14). In total, five monoterpenoids, 24 sesquiterpenes, and four norisoprenoids were detected in grape samples. The highest concentrations of total monoterpenoids, total sesquiterpenes, and total norisoprenoids in grapes were all observed at pre-veraison. Terpenes derived from the same biosynthetic pathway had a similar production pattern during berry development. Terpenes in grapes at harvest might not necessarily be synthesised at post-veraison, since the compounds or their precursors may already exist in grapes at pre-veraison, with the veraison to harvest period functioning to convert these precursors into final products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Potential Contribution of Fish Feed and Phytoplankton to the Content of Volatile Terpenes in Cultured Pangasius (Pangasianodon hypophthalmus) and Tilapia (Oreochromis niloticus).

    PubMed

    Podduturi, Raju; Petersen, Mikael A; Mahmud, Sultan; Rahman, Md Mizanur; Jørgensen, Niels O G

    2017-05-10

    Geosmin and 2-methylisoborneol are the most recognized off-flavors in freshwater fish, but terpenes may also contribute off-flavor in fish. We identified six monoterpenes, 11 sesquiterpenes, and three terpene-related compounds in pangasius and tilapia from aquaculture farms in Bangladesh. The concentrations of most of the volatiles were below published odor thresholds, except for α-pinene, limonene, β-caryophyllene, α-humulene, and β-ionone in tilapia, and limonene and β-ionone in pangasius. To identify sources of the terpenes, terpene profiles of fish feed and phytoplankton in the ponds were analyzed. In feed and mustard cake (feed ingredient), five monoterpenes and two sesquiterpenes were identified, and five of these compounds were also detected in the fish. In phytoplankton, 11 monoterpenes were found and three also occurred in the fish. The higher number of terpenes common to both fish and feed, than to fish and phytoplankton, suggests that feed was a more abundant source of odor-active terpenes in the fish than phytoplankton.

  12. Chemotypes and Biomarkers of Seven Species of New Caledonian Liverworts from the Bazzanioideae Subfamily.

    PubMed

    Métoyer, Benjamin; Lebouvier, Nicolas; Hnawia, Edouard; Herbette, Gaëtan; Thouvenot, Louis; Asakawa, Yoshinori; Nour, Mohammed; Raharivelomanana, Phila

    2018-06-05

    Volatile components of seven species of the Bazzanioideae sub-family (Lepidoziaceae) native to New Caledonia, including three endemic species ( Bazzania marginata , Acromastigum caledonicum and A. tenax ), were analyzed by GC-FID-MS in order to index these plants to known or new chemotypes. Detected volatile constituents in studied species were constituted mainly by sesquiterpene, as well as diterpene compounds. All so-established compositions cannot successfully index some of them to known chemotypes but afforded the discovery of new chemotypes such as cuparane/fusicoccane. The major component of B. francana was isolated and characterized as a new zierane-type sesquiterpene called ziera-12(13),10(14)-dien-5-ol ( 23 ). In addition, qualitative intraspecies variations of chemical composition were very important particularly for B. francana which possessed three clearly defined different compositions. We report here also the first phytochemical investigation of Acromastigum species. Moreover, crude diethyl ether extract of B. vitatta afforded a new bis(bibenzyl) called vittatin ( 51 ), for which a putative biosynthesis was suggested.

  13. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species.

    PubMed

    Zhang, Haipeng; Xie, Yunxia; Liu, Cuihua; Chen, Shilin; Hu, Shuangshuang; Xie, Zongzhou; Deng, Xiuxin; Xu, Juan

    2017-09-01

    The volatile profiles of fruit peels and juice sacs from 108 citrus accessions representing seven species were analyzed. Using GC-MS 162 and 107 compounds were determined in the peels and juice sacs, respectively. In the peels, monoterpene alcohols were accumulated in loose-skin mandarins; clementine tangerines and papedas were rich in sesquiterpene alcohols, sesquiterpenes, monoterpene alcohols and monoterpene aldehydes. β-pinene and sabinene were specifically accumulated in 4 of 5 lemon germplasms. Furthermore, concentrations of 34 distinctive compounds were selected to best represent the volatile profiles of seven species for HCA analysis, and the clustering results were in agreement with classic citrus taxonomy. Comparison of profiles from different growing seasons and production areas indicated that environmental factors play important roles in volatile metabolism. In addition, a few citrus germplasms that accumulated certain compounds were determined as promising breeding materials. Notably, volatile biosynthesis via MVA pathway in C. ichangensis 'Huaihua' was enhanced. Copyright © 2017. Published by Elsevier Ltd.

  14. Effect of Trans, Trans-Farnesol on Pseudogymnoascus destructans and Several Closely Related Species.

    PubMed

    Raudabaugh, Daniel B; Miller, Andrew N

    2015-12-01

    Bat white-nose syndrome, caused by the psychrophilic fungus Pseudogymnoascus destructans, has dramatically reduced the populations of many hibernating North American bat species. The search for effective biological control agents targeting P. destructans is of great importance. We report that the sesquiterpene trans, trans-farnesol, which is also a Candida albicans quorum sensing compound, prevented in vitro conidial germination for at least 14 days and inhibited growth of preexisting hyphae of five P. destructans isolates in filtered potato dextrose broth at 10 °C. Depending on the inoculation concentrations, both spore and hyphal inhibition occurred upon exposure to concentrations as low as 15-20 µM trans, trans-farnesol. In contrast, most North American Pseudogymnoascus isolates were more tolerant to the exposure of trans, trans-farnesol. Our results suggest that some Candida isolates may have the potential to inhibit the growth of P. destructans and that the sesquiterpene trans, trans-farnesol has the potential to be utilized as a biological control agent.

  15. Investigating sub-2 μm particle stationary phase supercritical fluid chromatography coupled to mass spectrometry for chemical profiling of chamomile extracts.

    PubMed

    Jones, Michael D; Avula, Bharathi; Wang, Yan-Hong; Lu, Lu; Zhao, Jianping; Avonto, Cristina; Isaac, Giorgis; Meeker, Larry; Yu, Kate; Legido-Quigley, Cristina; Smith, Norman; Khan, Ikhlas A

    2014-10-17

    Roman and German chamomile are widely used throughout the world. Chamomiles contain a wide variety of active constituents including sesquiterpene lactones. Various extraction techniques were performed on these two types of chamomile. A packed-column supercritical fluid chromatography-mass spectrometry method was designed for the identification of sesquiterpenes and other constituents from chamomile extracts with no derivatization step prior to analysis. Mass spectrometry detection was achieved by using electrospray ionization. All of the compounds of interest were separated within 15 min. The chamomile extracts were analyzed and compared for similarities and distinct differences. Multivariate statistical analysis including principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to differentiate between the chamomile samples. German chamomile samples confirmed the presence of cis- and trans-tonghaosu, chrysosplenols, apigenin diglucoside whereas Roman chamomile samples confirmed the presence of apigenin, nobilin, 1,10-epioxynobilin, and hydroxyisonobilin. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Chemical Composition and Antioxidant Activity of Essential Oils from Cinnamodendron dinisii Schwacke and Siparuna guianensis Aublet

    PubMed Central

    Andrade, Milene Aparecida; Cardoso, Maria das Graças; de Andrade, Juliana; Silva, Lucilene Fernandes; Teixeira, Maria Luisa; Resende, Juliana Maria Valério; Figueiredo, Ana Cristina da Silva; Barroso, José Gonçalves

    2013-01-01

    The objectives of this study were to chemically characterize and evaluate the antioxidant activity of essential oils Cinnamodendron dinisii Schwacke (pepper) and Siparuna guianensis Aublet (negramina). The essential oil was isolated by hydrodistillation using a Clevenger modified apparatus, and the identification and quantification of constituents, through GC/MS and GC-FID analysis. The antioxidant activity was evaluated using β-carotene/linoleic acid system and the DPPH radical sequestering method. In chromatographic analysis, the majority constituents found in the essential oil of C. dinisii were bicyclic monoterpenes, α-pinene (35.41%), β-pinene (17.81%), sabinene (12.01%) and sesquiterpene bicyclogermacrene (7.59%). In the essential oil of the fresh leaves of Siparuna guianensis Aublet, acyclic monoterpene, β-myrcene (13.14%), and sesquiterpenes, germacrene-D (8.68%) and bicyclogermacrene (16.71%) were identified. The antioxidant activity was low by the β-carotene/linoleic acid test and was not evidenced by the DPPH test, for both oils evaluated. PMID:26784471

  17. Resolution of co-eluting compounds of Cannabis Sativa in comprehensive two-dimensional gas chromatography/mass spectrometry detection with Multivariate Curve Resolution-Alternating Least Squares.

    PubMed

    Omar, Jone; Olivares, Maitane; Amigo, José Manuel; Etxebarria, Nestor

    2014-04-01

    Comprehensive Two Dimensional Gas Chromatography - Mass Spectrometry (GC × GC/qMS) analysis of Cannabis sativa extracts shows a high complexity due to the large variety of terpenes and cannabinoids and to the fact that the complete resolution of the peaks is not straightforwardly achieved. In order to support the resolution of the co-eluted peaks in the sesquiterpene and the cannabinoid chromatographic region the combination of Multivariate Curve Resolution and Alternating Least Squares algorithms was satisfactorily applied. As a result, four co-eluting areas were totally resolved in the sesquiterpene region and one in the cannabinoid region in different samples of Cannabis sativa. The comparison of the mass spectral profiles obtained for each resolved peak with theoretical mass spectra allowed the identification of some of the co-eluted peaks. Finally, the classification of the studied samples was achieved based on the relative concentrations of the resolved peaks. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Evolution of Volatile Emission in Rhus coriaria Organs During Different Stages of Growth and Evaluation of the Essential Oil Composition.

    PubMed

    Reidel, Rose Vanessa Bandeira; Cioni, Pier Luigi; Majo, Luigi; Pistelli, Luisa

    2017-11-01

    Rhus coriaria, also known as Sumac, has been traditionally used in many countries as spice, condiment, dying agent, and medicinal herb. The chemical composition of essential oils (EOs) and the volatile emissions from different organs of this species collected in Sicily (Italy) were analyzed by gas chromatography-flame ionization detection and gas chromatography/mass spectrometry. Monoterpene and sesquiterpene hydrocarbons were the most abundant class in the volatile emissions with β-caryophyllene and α-pinene were the main constituents in the majority of the examined samples. The EO composition was characterized by high amount of monoterpene and sesquiterpene hydrocarbons together with diterpenes. The main compounds in the EO obtained from the leaves and both stages of fruit maturation were cembrene and β-caryophyllene, while α-pinene and tridecanoic acid were the key compounds in the flower EO. All the data were submitted to multivariate statistical analysis showing many differences among the different plant parts and their ontogenetic stages. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  19. Chemical compositions and antioxidant/antimicrobial activities of various samples prepared from Schinus terebinthifolius leaves cultivated in Egypt.

    PubMed

    El-Massry, Khaled F; El-Ghorab, Ahmed H; Shaaban, Hamdy A; Shibamoto, Takayuki

    2009-06-24

    Essential oil, dichloromethane extract, and ethanol extract were prepared from fresh Schinus terebinthifolius leaves cultivated in Egypt. The essential oil was analyzed by gas chromatography and gas chromatography/mass spectrometry. The essential oil comprised 4.97% monoterpenes, 56.96% sesquiterpenes, 34.37% oxygenated monoterpenes, and 3.32% oxygenated sesquiterpenes. The major compounds in the essential oil were cis-beta-terpineol (GC peak area%, 17.87%), (E)-caryophyllene (17.56%), beta-cedrene (9.76%), and citronellal (7.03%). The major phenolic compounds identified in the ethanol extract were caffeic acid (5.07 mg/100 mg extract), coumaric acid (1.64 mg), and syringic acid (1.59 mg). The antioxidant activity of ethanol extract, which was comparable with that of butylhydroquinone, was superior to essential oil and dichloromethane extract in 2,2-diphenylpicrylhydrazyl and beta-carotene/bleaching assays. The dichloromethane extract exhibited the greatest antimicrobial activity against 6 strains, followed by the ethanol extract and the essential oil.

  20. First evaluation of drug-in-cyclodextrin-in-liposomes as an encapsulating system for nerolidol.

    PubMed

    Azzi, Joyce; Auezova, Lizette; Danjou, Pierre-Edouard; Fourmentin, Sophie; Greige-Gerges, Hélène

    2018-07-30

    Nerolidol, a naturally occurring sesquiterpene with antimicrobial activities, is a promising candidate as a natural alternative for synthetic preservatives in food. However, its application is limited by low aqueous solubility and stability. In this study, conventional liposomes and drug-in-cyclodextrin-in-liposomes (DCLs) were evaluated for the first time as encapsulating materials for nerolidol. The size, encapsulation efficiency (EE%), loading rate (LR%), photo- and storage stabilities of both systems were characterized. Moreover, the in vitro release of nerolidol from liposomes and DCLs was investigated over time. Nerolidol was efficiently entrapped in both carriers with high EE% and LR% values. In addition, DCLs prolonged the release of nerolidol over one week and enhanced the photostability more effectively than conventional liposomes. Finally, all formulations were stable after 12 months of storage at 4 °C (>60% incorporated nerolidol). Therefore, DCLs are promising carriers for new applications of sesquiterpenes in the pharmaceutical and food industries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi.

    PubMed

    Cho, Gyeongjun; Kim, Junheon; Park, Chung Gyoo; Nislow, Corey; Weller, David M; Kwak, Youn-Sig

    2017-07-01

    Streptomyces spp. have the ability to produce a wide variety of secondary metabolites that interact with the environment. This study aimed to discover antifungal volatiles from the genus Streptomyces and to determine the mechanisms of inhibition. Volatiles identified from Streptomyces spp. included three major terpenes, geosmin, caryolan-1-ol and an unknown sesquiterpene. antiSMASH and KEGG predicted that the volatile terpene synthase gene clusters occur in the Streptomyces genome. Growth inhibition was observed when fungi were exposed to the volatiles. Biological activity of caryolan-1-ol has previously not been investigated. Fungal growth was inhibited in a dose-dependent manner by a mixture of the main volatiles, caryolan-1-ol and the unknown sesquiterpene, from Streptomyces sp. S4-7. Furthermore, synthesized caryolan-1-ol showed similar antifungal activity. Results of chemical-genomics profiling assays showed that caryolan-1-ol affected the endomembrane system by disrupting sphingolipid synthesis and normal vesicle trafficking in the fungi. © 2017 The Authors.

  2. Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia

    NASA Astrophysics Data System (ADS)

    Alves, Eliane G.; Jardine, Kolby; Tota, Julio; Jardine, Angela; Yãnez-Serrano, Ana Maria; Karl, Thomas; Tavares, Julia; Nelson, Bruce; Gu, Dasa; Stavrakou, Trissevgeni; Martin, Scot; Artaxo, Paulo; Manzi, Antonio; Guenther, Alex

    2016-03-01

    Tropical rainforests are an important source of isoprenoid and other volatile organic compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, vertical profiles of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, were measured within and above the canopy, in a primary rainforest in central Amazonia, using a proton transfer reaction - mass spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011, encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene - 2.68 ± 0.9 ppbv, total monoterpenes - 0.67 ± 0.3 ppbv; total sesquiterpenes - 0.09 ± 0.07 ppbv) than the wet season (isoprene - 1.66 ± 0.9 ppbv, total monoterpenes - 0.47 ± 0.2 ppbv; total sesquiterpenes - 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 µmol m-2 h-1) and total monoterpenes (1.77 ± 0.05 µmol m-2 h-1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 µmol m-2 h-1). These flux estimates suggest that the canopy is the main source of isoprenoids emitted into the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an important driver of seasonal

  3. Isolation, NMR studies, and biological activities of onopordopicrin from Centaurea sonchifolia.

    PubMed

    Lonergan, G; Routsi, E; Georgiadis, T; Agelis, G; Hondrelis, J; Matsoukas, J; Larsen, L K; Caplan, F R

    1992-02-01

    A sesquiterpene lactone, onopordopicrin [1], has been isolated from Centaurea sonchifolia. Its structure was established by 2D nmr (1H-1H and 13C-1H correlations), and the conformation in CHCl3 was examined by nOe studies. Cytotoxic, antibacterial, and antifungal activities are reported.

  4. An (E,E)-a-farnesene synthase gene of soybean has a role in defense against nematodes and is involved in synthesizing insect-induced volatiles

    USDA-ARS?s Scientific Manuscript database

    Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here we report the functional characterization of one member of the soybean TP S gene family, which was designated GmAFS. Recombinant GmAFS produced in E.coli catalyzed the formation of a sesquiterpene (E,E)-a-farnesene....

  5. A natural agonist of mosquito TRPA1 from the medicinal plant Cinnamosma fragrans that is toxic, antifeedant, and repellent to the yellow fever mosquito Aedes aegypti.

    PubMed

    Inocente, Edna Alfaro; Shaya, Marguerite; Acosta, Nuris; Rakotondraibe, L Harinantenaina; Piermarini, Peter M

    2018-02-01

    Plants produce various secondary metabolites that offer a potential source of novel insecticides and repellents for the control of mosquito vectors. Plants of the genus Cinnamosma are endemic to, and widely-distributed throughout, the island of Madagascar. The barks of these species are commonly used in traditional medicines for treating a wide range of maladies. The therapeutic nature of the bark is thought to be associated with its enrichment of pungent drimane sesquiterpenes, which elicit antifeedant and toxic effects in some insects. Here we test the hypothesis that a bark extract of Cinnamosma fragrans (CINEX) and its major drimane sesquiterpenes are insecticidal, antifeedant, and repellent to Aedes aegypti, the principal mosquito vector of chikungunya, dengue, yellow fever, and Zika viruses. We demonstrate that CINEX is 1) toxic to larval and adult female mosquitoes, and 2) antifeedant and repellent to adult female mosquitoes. Moreover, we show that cinnamodial (CDIAL), a sesquiterpene dialdehyde isolated from CINEX, duplicates these bioactivities and exhibits similar toxic potency against pyrethroid-susceptible and -resistant strains of Ae. aegypti. Importantly, we show that CDIAL is an agonist of heterologously-expressed mosquito Transient Receptor Potential A1 (TRPA1) channels, and the antifeedant activity of CDIAL is dampened in a TRPA1-deficient strain of Ae. aegypti (TRPA1-/-). Intriguingly, TRPA1-/- mosquitoes do not exhibit toxic resistance to CDIAL. The data indicate that modulation of TRPA1 is required for the sensory detection and avoidance of CDIAL by mosquitoes, but not for inducing the molecule's toxicity. Our study suggests that CDIAL may serve as a novel chemical platform for the development of natural product-based insecticides and repellents for controlling mosquito vectors.

  6. Chemical characterisation of Piper amalago (Piperaceae) essential oil by comprehensive two-dimensional gas chromatography coupled with rapid-scanning quadrupole mass spectrometry (GC×GC/qMS) and their antilithiasic activity and acute toxicity.

    PubMed

    Dos Santos, Anaí L; Novaes, Antônio da Silva; Polidoro, Allan Dos S; de Barros, Márcio Eduardo; Mota, Jonas S; Lima, Daiane B M; Krause, Laiza C; Cardoso, Cláudia A L; Jacques, Rosângela A; Caramão, Elina B

    2018-02-26

    Piper amalago has a distribution from Mexico to Brazil; their aerial parts have been used in folk medicine to treat diuretic and kidney diseases. The purpose of this study was to obtain a deeper understanding of the chemical composition of essential oils (EOs) extracted from both the leaves and stems of P. amalago, compare them, and evaluate their antilithiasic activity and acute toxicity. Extraction was performed by hydrodistillation, whereas chemical characterisation by two-dimensional gas chromatography coupled with rapid-scanning quadrupole mass spectrometry (GC×GC/qMS). The antilithiasic activity was evaluated by the effect of the EOs on calcium oxalate crystallisation in vitro. The turbidity index and the number of crystals formed were determined and used as an estimative of the activity. In the acute toxicity assay, the effects of a single oral dose of the EOs in Wistar rats were determined. General behaviour, adverse effects, and mortality were determined. A total of 322 compounds were identified in the EOs. The sesquiterpenes displayed the highest contribution in leaves EOs among which included bicyclogermacrene and δ-cadinene. Sesquiterpenes and oxygenated sesquiterpenes displayed the highest contribution in EOs from stems, among which included bicyclogermacrene and α-cadinol. The EOs demonstrated an excellent action on the crystals growth inhibition, and the oral dose tested did not induce significant changes in the parameters for acute toxicity. The oils have a high chemical complexity, and there are differences between their compositions, which could explain the observed differences in antilithiasic activity. The findings support the use of this plant in folk medicine to treat kidney diseases. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium

    PubMed Central

    Acosta Navarro, J C; Smolander, S; Struthers, H; Zorita, E; Ekman, A M L; Kaplan, J O; Guenther, A; Arneth, A; Riipinen, I

    2014-01-01

    We investigated the millennial variability (1000 A.D.–2000 A.D.) of global biogenic volatile organic compound (BVOC) emissions by using two independent numerical models: The Model of Emissions of Gases and Aerosols from Nature (MEGAN), for isoprene, monoterpene, and sesquiterpene, and Lund-Potsdam-Jena-General Ecosystem Simulator (LPJ-GUESS), for isoprene and monoterpenes. We found the millennial trends of global isoprene emissions to be mostly affected by land cover and atmospheric carbon dioxide changes, whereas monoterpene and sesquiterpene emission trends were dominated by temperature change. Isoprene emissions declined substantially in regions with large and rapid land cover change. In addition, isoprene emission sensitivity to drought proved to have significant short-term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr−1 (13% and 19% less than during 1750–1850 and 1000–1200, respectively), and LPJ-GUESS emissions were 323 TgC yr−1(15% and 20% less than during 1750–1850 and 1000–1200, respectively). Monoterpene emissions were 89 TgC yr−1(10% and 6% higher than during 1750–1850 and 1000–1200, respectively) in MEGAN, and 24 TgC yr−1 (2% higher and 5% less than during 1750–1850 and 1000–1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr−1(10% and 4% higher than during 1750–1850 and 1000–1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation. PMID:25866703

  8. Reprogramming the Chemodiversity of Terpenoid Cyclization by Remolding the Active Site Contour of epi-Isozizaene Synthase

    PubMed Central

    2015-01-01

    The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2–100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity. PMID:24517311

  9. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  10. The Use of California Sagebrush (Artemisia californica) Liniment to Control Pain.

    PubMed

    Adams, James D

    2012-09-27

    The incidence of arthritis is increasing every year, as does the need for pain medication. The current work reviews an American Indian liniment that is traditionally used for pain therapy. The chemistry, therapeutic use and safety of the liniment are reviewed. The liniment contains monoterpenoids, sesquiterpenes, flavonoids, alkaloids and other compounds.

  11. Antifungal activity of extracts from Piper aduncum leaves prepared by different solvents and extraction techniques against dermatophytes Trichophyton rubrum and Trichophyton interdigitale.

    PubMed

    Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção

    2013-12-01

    The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis.

  12. Binding and molecular dynamic studies of sesquiterpenes (2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol) derived from marine Streptomyces sp. VITJS8 as potential anticancer agent.

    PubMed

    Naine, S Jemimah; Devi, C Subathra; Mohanasrinivasan, V; Doss, C George Priya; Kumar, D Thirumal

    2016-03-01

    ) analysis showed that protein-ligand complex reaches equilibration state around 10 ns that illustrates the docked complex is stable. We propose the possible mechanism of sesquiterpenes to play a significant role in antitumor cascade. Hence, our studies open up a new facet for a potent drug as an anticancer agent.

  13. The Use of California Sagebrush (Artemisia californica) Liniment to Control Pain

    PubMed Central

    Adams, James D.

    2012-01-01

    The incidence of arthritis is increasing every year, as does the need for pain medication. The current work reviews an American Indian liniment that is traditionally used for pain therapy. The chemistry, therapeutic use and safety of the liniment are reviewed. The liniment contains monoterpenoids, sesquiterpenes, flavonoids, alkaloids and other compounds. PMID:24281255

  14. Antifungal activity of extracts from Piper aduncum leaves prepared by different solvents and extraction techniques against dermatophytes Trichophyton rubrum and Trichophyton interdigitale

    PubMed Central

    Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção

    2013-01-01

    The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis. PMID:24688522

  15. Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia

    DOE PAGES

    Alves, Eliane G.; Jardine, Kolby; Tota, Julio; ...

    2016-03-23

    Tropical rainforests are an important source of isoprenoid and other volatile organic compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, vertical profiles of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, were measured within and above the canopy, in a primary rainforest in central Amazonia, using a proton transfer reaction – mass spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011,more » encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene – 2.68 ± 0.9 ppbv, total monoterpenes – 0.67 ± 0.3 ppbv; total sesquiterpenes – 0.09 ± 0.07 ppbv) than the wet season (isoprene – 1.66 ± 0.9 ppbv, total monoterpenes – 0.47 ± 0.2 ppbv; total sesquiterpenes – 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 µmol m -2 h -1) and total monoterpenes (1.77 ± 0.05 µmol m -2 h -1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 µmol m -2 h -1). These flux estimates suggest that the canopy is the main source of isoprenoids emitted into the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, Eliane G.; Jardine, Kolby; Tota, Julio

    Tropical rainforests are an important source of isoprenoid and other volatile organic compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, vertical profiles of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, were measured within and above the canopy, in a primary rainforest in central Amazonia, using a proton transfer reaction – mass spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011,more » encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene – 2.68 ± 0.9 ppbv, total monoterpenes – 0.67 ± 0.3 ppbv; total sesquiterpenes – 0.09 ± 0.07 ppbv) than the wet season (isoprene – 1.66 ± 0.9 ppbv, total monoterpenes – 0.47 ± 0.2 ppbv; total sesquiterpenes – 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 µmol m -2 h -1) and total monoterpenes (1.77 ± 0.05 µmol m -2 h -1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 µmol m -2 h -1). These flux estimates suggest that the canopy is the main source of isoprenoids emitted into the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an

  17. Seasonality of isoprenoid emissions from a primary rainforest in central Amazonia

    NASA Astrophysics Data System (ADS)

    Alves, E. G.; Jardine, K.; Tota, J.; Jardine, A.; Yáñez-Serrano, A. M.; Karl, T.; Tavares, J.; Nelson, B.; Gu, D.; Stavrakou, T.; Martin, S.; Manzi, A.; Guenther, A.

    2015-10-01

    Tropical rainforests are an important source of isoprenoid and other Volatile Organic Compound (VOC) emissions to the atmosphere. The seasonal variation of these compounds is however still poorly understood. In this study, profiles were collected of the vertical profile of mixing ratios of isoprene, total monoterpenes and total sesquiterpenes, within and above the canopy, in a primary rainforest in central Amazonia, using a Proton Transfer Reaction-Mass Spectrometer (PTR-MS). Fluxes of these compounds from the canopy into the atmosphere were estimated from PTR-MS measurements by using an inverse Lagrangian transport model. Measurements were carried out continuously from September 2010 to January 2011, encompassing the dry and wet seasons. Mixing ratios were higher during the dry (isoprene - 2.68 ± 0.9 ppbv, total monoterpenes - 0.67 ± 0.3 ppbv; total sesquiterpenes - 0.09 ± 0.07 ppbv) than the wet season (isoprene - 1.66 ± 0.9 ppbv, total monoterpenes - 0.47 ± 0.2 ppbv; total sesquiterpenes - 0.03 ± 0.02 ppbv) for all compounds. Ambient air temperature and photosynthetically active radiation (PAR) behaved similarly. Daytime isoprene and total monoterpene mixing ratios were highest within the canopy, rather than near the ground or above the canopy. By comparison, daytime total sesquiterpene mixing ratios were highest near the ground. Daytime fluxes varied significantly between seasons for all compounds. The maximums for isoprene (2.53 ± 0.5 μmol m-2 h-1) and total monoterpenes (1.77 ± 0.05 μmol m-2 h-1) were observed in the late dry season, whereas the maximum for total sesquiterpenes was found during the dry-to-wet transition season (0.77 ± 0.1 μmol m-2 h-1). These flux estimates suggest that the canopy is the main source of isoprenoids to the atmosphere for all seasons. However, uncertainties in turbulence parameterization near the ground could affect estimates of fluxes that come from the ground. Leaf phenology seemed to be an important driver of

  18. Two key polymorphisms in a newly discovered allele of the Vitis vinifera TPS24 gene are responsible for the production of the rotundone precursor α-guaiene.

    PubMed

    Drew, Damian Paul; Andersen, Trine Bundgaard; Sweetman, Crystal; Møller, Birger Lindberg; Ford, Christopher; Simonsen, Henrik Toft

    2016-02-01

    Rotundone was initially identified as a grape-derived compound responsible for the peppery aroma of Shiraz wine varieties. It has subsequently been found in black and white pepper and several other spices. Because of its potent aroma, the molecular basis for rotundone formation is of particular relevance to grape and wine scientists and industry. We have identified and functionally characterized in planta a sesquiterpene synthase, VvGuaS, from developing grape berries, and have demonstrated that it produces the precursor of rotundone, α-guaiene, as its main product. The VvGuaS enzyme is a novel allele of the sesquiterpene synthase gene, VvTPS24, which has previously been reported to encode VvPNSeInt, an enzyme that produces a variety of selinene-type sesquiterpenes. This newly discovered VvTPS24 allele encodes an enzyme 99.5% identical to VvPNSeInt, with the differences comprising just 6 out of the 561 amino acid residues. Molecular modelling of the enzymes revealed that two of these residues, T414 and V530, are located in the active site of VvGuaS within 4 Å of the binding-site of the substrate, farnesyl pyrophosphate. Mutation of these two residues of VvGuaS into the corresponding polymorphisms in VvPNSeInt results in a complete functional conversion of one enzyme into the other, while mutation of each residue individually produces an intermediate change in the product profile. We have therefore demonstrated that VvGuaS, an enzyme responsible for production of the rotundone precursor, α-guaiene, is encoded by a novel allele of the previously characterized grapevine gene VvTPS24 and that two specific polymorphisms are responsible for functional differences between VvTPS24 alleles. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis PlantsW⃞

    PubMed Central

    Aharoni, Asaph; Giri, Ashok P.; Deuerlein, Stephan; Griepink, Frans; de Kogel, Willem-Jan; Verstappen, Francel W. A.; Verhoeven, Harrie A.; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.

    2003-01-01

    Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants. PMID:14630967

  20. Phase, composition, and growth mechanism for secondary organic aerosol from the ozonolysis of α-cedrene

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Wingen, Lisa M.; Perraud, Véronique; Finlayson-Pitts, Barbara J.

    2016-03-01

    Sesquiterpenes are an important class of biogenic volatile organic compounds (BVOCs) and have a high secondary organic aerosol (SOA) forming potential. However, SOA formation from sesquiterpene oxidation has received less attention compared to other BVOCs such as monoterpenes, and the underlying mechanisms remain poorly understood. In this work, we present a comprehensive experimental investigation of the ozonolysis of α-cedrene both in a glass flow reactor (27-44 s reaction times) and in static Teflon chambers (30-60 min reaction times). The SOA was collected by impaction or filters, followed by analysis using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and electrospray ionization mass spectrometry (ESI-MS), or measured online using direct analysis in real-time mass spectrometry (DART-MS) and aerosol mass spectrometry (AMS). The slow evaporation of 2-ethylhexyl nitrate that was incorporated into the SOA during its formation and growth gives an estimated diffusion coefficient of 3 × 10-15 cm2 s-1 and shows that SOA is a highly viscous semisolid. Possible structures of four newly observed low molecular weight (MW ≤ 300 Da) reaction products with higher oxygen content than those previously reported were identified. High molecular weight (HMW) products formed in the early stages of the oxidation have structures consistent with aldol condensation products, peroxyhemiacetals, and esters. The size-dependent distributions of HMW products in the SOA, as well as the effects of stabilized Criegee intermediate (SCI) scavengers on HMW products and particle formation, confirm that HMW products and reactions of SCI play a crucial role in early stages of particle formation. Our studies provide new insights into mechanisms of SOA formation and growth in α-cedrene ozonolysis and the important role of sesquiterpenes in new particle formation as suggested by field measurements.

  1. Phase, composition and growth mechanism for secondary organic aerosol from the ozonolysis of α-cedrene

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Wingen, L. M.; Perraud, V.; Finlayson-Pitts, B. J.

    2015-12-01

    Sesquiterpenes are an important class of biogenic volatile organic compounds (BVOCs) and have a high secondary organic aerosol (SOA) forming potential. However, SOA formation from sesquiterpene oxidation has received less attention compared to other BVOCs such as monoterpenes, and the underlying mechanisms remain poorly understood. In this work, we present a comprehensive experimental investigation of the ozonolysis of α-cedrene both in a glass flow reactor (27-44 s reaction times) and in static Teflon chambers (30-60 min reaction times). The SOA was collected by impaction or filters, followed by analysis using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and electrospray ionization mass spectrometry (ESI-MS), or measured on line using direct analysis in real time (DART-MS) and aerosol mass spectrometry (AMS). The slow evaporation of 2-ethylhexyl nitrate that was incorporated into the SOA during its formation and growth gives an estimated diffusion coefficient of 3 × 10-15 cm2 s-1 and shows that SOA is a highly viscous semi-solid. Possible structures of four newly observed low molecular weight (MW ≤ 300 Da) reaction products with higher oxygen content than those previously reported were identified. High molecular weight (HMW) products formed in the early stages of the oxidation have structures consistent with aldol condensation products, peroxyhemiacetals, and esters. The size-dependent distributions of HMW products in the SOA, as well as the effects of stabilized Criegee intermediate (SCI) scavengers on HMW products and particle formation, confirm that HMW products and reactions of Criegee intermediates play a crucial role in early stages of particle formation. Our studies provide new insights into mechanisms of SOA formation and growth in α-cedrene ozonolysis and the important role of sesquiterpenes in new particle formation as suggested by field measurements.

  2. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula

    PubMed Central

    Ibrahim, Mohamed A.; Mäenpää, Maarit; Hassinen, Viivi; Kontunen-Soppela, Sari; Malec, Lukáš; Rousi, Matti; Pietikäinen, Liisa; Tervahauta, Arja; Kärenlampi, Sirpa; Holopainen, Jarmo K.; Oksanen, Elina J.

    2010-01-01

    Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 °C) while daytime temperature was kept at a constant 22 °C. VOC emissions were collected during the daytime and analysed by gas chromatography–mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and β-ocimene increased from 6 °C to 14 °C, while several other monoterpenes and the SQTs (Z,E)-α-farnesene and (E,E)-α-farnesene increased up to 18 °C. Total monoterpene and sesquiterpene emission peaked at 18 °C, whereas isoprene emissions decreased at 22 °C. Leaf area increased across the temperature range of 6–22 °C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees. PMID:20181662

  3. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils.

    PubMed

    Irmisch, Sandra; Krause, Sandra T; Kunert, Grit; Gershenzon, Jonathan; Degenhardt, Jörg; Köllner, Tobias G

    2012-06-08

    The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS), the key enzymes in constructing terpene carbon skeletons. Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita). Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (-)-(E)-β-caryophyllene (MrTPS1), (+)-germacrene A (MrTPS3), (E)-β-ocimene (MrTPS4) and (-)-germacrene D (MrTPS5). A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (-)-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+)-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils.

  4. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils

    PubMed Central

    2012-01-01

    Background The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS), the key enzymes in constructing terpene carbon skeletons. Results Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita). Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (−)-(E)-β-caryophyllene (MrTPS1), (+)-germacrene A (MrTPS3), (E)-β-ocimene (MrTPS4) and (−)-germacrene D (MrTPS5). A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (−)-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. Conclusions The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+)-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils. PMID:22682202

  5. Synthetic Strategies to Terpene Quinones/Hydroquinones

    PubMed Central

    Gordaliza, Marina

    2012-01-01

    The cytotoxic and antiproliferative properties of many natural sesquiterpene-quinones and -hydroquinones from sponges offer promising opportunities for the development of new drugs. A review dealing with different strategies for obtaining bioactive terpenyl quinones/hydroquinones is presented. The different synthetic approches for the preparation of the most relevant quinones/hydroquinones are described. PMID:22412807

  6. Chemical composition and biological activities of the essential oil from Rubus pungens var. oldhamii.

    PubMed

    Zhang, Yaojie; Chen, Jiajing; Wang, Lizhi; Cao, Jingjing; Xu, Lishan

    2017-06-01

    This paper presents a study on chemical composition, antimicrobial, antioxidant and tyrosinase inhibitory properties of the essential oil from leaves of Rubus pungens var. oldhamii (REO). The major component of the REO is sesquiterpenes (36.04%), which consists of 1,5-Cyclooctadiene,3-(1-me thylallyl)-(8CI)(17.66%), 5,6-Diethenyl-1-methylcyclohexene (12%), (+) - γ-Elemene (10.48%) and β-Caryophyllene (8.39%).The REO is shown to be moderately active against Staphylococcus aureus, Aspergillus niger and Penicillium glaucum, and has weak antioxidant activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Furthermore, tyrosinase inhibition was investigated against monophenolase (L-tyrosine). IC 50 values of REO and arbutin were found 0.923 and 0.657 mg/mL, respectively. The REO exerted potential antityrosinase activity. Our test results indicated that the REO was rich in sesquiterpenes, and also exhibited good antityrosinase activity, and moderate antimicrobial activity against pathogenic micro-organisms. The REO can be used as a natural source of promising antimicrobial and tyrosinase inhibiting agent.

  7. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana.

    PubMed

    Joel, Daniel M; Chaudhuri, Swapan K; Plakhine, Dina; Ziadna, Hammam; Steffens, John C

    2011-05-01

    The germination of the obligate root parasites of the Orobanchaceae depends on the perception of chemical stimuli from host roots. Several compounds, collectively termed strigolactones, stimulate the germination of the various Orobanche species, but do not significantly elicit germination of Orobanche cumana, a specific parasite of sunflower. Phosphate starvation markedly decreased the stimulatory activity of sunflower root exudates toward O. cumana, and fluridone - an inhibitor of the carotenoid biosynthesis pathway - did not inhibit the production of the germination stimulant in both shoots and roots of young sunflower plants, indicating that the stimulant is not a strigolactone. We identified the natural germination stimulant from sunflower root exudates by bioassay-driven purification. Its chemical structure was elucidated as the guaianolide sesquiterpene lactone dehydrocostus lactone (DCL). Low DCL concentrations effectively stimulate the germination of O. cumana seeds but not of Phelipanche aegyptiaca (syn. Orobanche aegyptiaca). DCL and other sesquiterpene lactones were found in various plant organs, but were previously not known to be exuded to the rhizosphere where they can interact with other organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Essential oils from fruits with different colors and leaves of Neomitranthes obscura (DC.) N. Silveira: an endemic species from Brazilian Atlantic forest.

    PubMed

    Amaral, Raquel R; Fernandes, Caio P; Caramel, Otávio P; Tietbohl, Luis A C; Santos, Marcelo G; Carvalho, José C T; Rocha, Leandro

    2013-01-01

    Neomitranthes obscura (DC.) N. Silveira is an endemic plant of Brazilian Atlantic Forest and widely spread in the sandbanks of "Restinga de Jurubatiba" National Park. It is popularly known by local population as "camboim-de-cachorro" or "cambuí-preto" and recognized by its black ripe fruits. However, specimens with yellow ripe fruits were localized in the "Restinga de Jurubatiba" National Park. The aim of the present study was to evaluate chemical composition of essential oils obtained from leaves and fruits of N. obscura specimens with different fruit color (black and yellow) by GC and GC-MS. Essential oils from leaves of specimens with black and yellow fruits indicated a predominance of sesquiterpenes (81.1% and 84.8%, resp.). Meanwhile, essential oil from black fruits presented a predominance of monoterpenes (50.5%), while essential oil from yellow fruits had sesquiterpenes (39.9%) as major substances. Despite previous studies about this species, including essential oil extraction, to our knowledge this is the first report on N. obscura fruits with different colors. Our results suggest the occurrence of unless two different varieties for this species.

  9. Chemical Composition, Cytotoxic and Antibacterial Activities of the Essential Oil from the Tunisian Ononis angustissima L. (Fabaceae).

    PubMed

    Ghribi, Lotfi; Ben Nejma, Aymen; Besbes, Malek; Harzalla-Skhiri, Fethia; Flamini, Guido; Ben Jannet, Hichem

    2016-01-01

    The chemical composition, cytotoxic and antibacterial activities of the hydrodistilled essential oil of the aerial parts of Ononis angustissima from south Tunisia has been evaluated. The oil yield was 0.04% (w/w). The chemical composition, determined by GC and GC-MS is reported for the first time. Forty-five components, accounting for 93.7% of the total oil have been identified. The oil was characterized by a high proportion of oxygenated sesquiterpenes (33.2%), followed by sesquiterpene hydrocarbons (6.3%) and apocarotenoids (10.3%). The main components of the oil were α-eudesmol (22.4%), 2-tridecanone (9.3%) and acetophenone (7.4%). The essential oil was tested for its possible cytotoxic activity towards the human cervical cell line HeLa using the MTT assay and the antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and the clinical strain Acinetobacter sp. This oil exerted a cytotoxic activity with an IC50 of 0.53 ± 0.02 mg/mL and a significant antibacterial effect against P. aeruginosa and E. faecalis.

  10. Effects of seasonal changes in feeding management under part-time grazing on terpene concentrations of ewes' milk.

    PubMed

    Abilleira, Eunate; Virto, Mailo; Nájera, Ana Isabel; Albisu, Marta; Pérez-Elortondo, Francisco José; Ruiz de Gordoa, Juan Carlos; de Renobales, Mertxe; Barron, Luis Javier R

    2011-05-01

    Terpene composition of ewes' raw milk from nine commercial flocks was analysed from February to July. Ewes' diet consisted of concentrate and conserved forage in winter (indoor feeding) and part-time grazing from spring (transition and outdoor feeding). Regardless of the feeding, limonene and β-phellandrene were the most abundant monoterpenes and β-caryophyllene showed the highest concentrations among sesquiterpenes. Terpene content increased in the milks of commercial flocks when animals were reared under grazing management. Monoterpenes were detected in the milks of all the commercial flocks throughout the season, whereas sesquiterpenes were only detected in the milks from flocks grazing on non-cultivated community-owned grasslands in which a higher biodiversity of plant species grew. These preliminary results indicated that β-caryophyllene could be a potential pasture-diet marker in the case of milks from animals grazing a higher biodiversity of plant species but in-depth studies including information on terpene composition of plants ingested by the animals are necessary to evaluate the suitability of β-caryophyllene or another terpenoid compound as pasture biomarker.

  11. Functional Expression of an Orchid Fragrance Gene in Lactococcus lactis

    PubMed Central

    Song, Adelene Ai Lian; Abdullah, Janna O.; Abdullah, Mohd Puad; Shafee, Norazizah; Rahim, Raha A.

    2012-01-01

    Vanda Mimi Palmer (VMP), an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA) pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile. PMID:22408409

  12. Cedrol, a malaria mosquito oviposition attractant is produced by fungi isolated from rhizomes of the grass Cyperus rotundus.

    PubMed

    Eneh, Lynda K; Saijo, Hiromi; Borg-Karlson, Anna-Karin; Lindh, Jenny M; Rajarao, Gunaratna Kuttuva

    2016-09-17

    Cedrol, a sesquiterpene alcohol, is the first identified oviposition attractant for African malaria vectors. Finding the natural source of this compound might help to elucidate why Anopheles gambiae and Anopheles arabiensis prefer to lay eggs in habitats containing it. Previous studies suggest that cedrol may be a fungal metabolite and the essential oil of grass rhizomes have been described to contain a high amount of different sesquiterpenes. Rhizomes of the grass Cyperus rotundus were collected in a natural malaria mosquito breeding site. Two fungi were isolated from an aqueous infusion with these rhizomes. They were identified as Fusarium falciforme and a species in the Fusarium fujikuroi species complex. Volatile compounds were collected from the headspace above fungal cultures on Tenax traps which were analysed by gas chromatography-mass spectrometry (GCMS). Cedrol and a cedrol isomer were detected in the headspace above the F. fujikuroi culture, while only cedrol was detected above the F. falciforme culture. Cedrol an oviposition attractant for African malaria vectors is produced by two fungi species isolated from grass rhizomes collected from a natural mosquito breeding site.

  13. Eugenol and methyl eugenol chemotypes of essential oil of species Ocimum gratissimum L. and Ocimum campechianum Mill. from Colombia.

    PubMed

    Pino Benitez, Nayive; Meléndez León, Erika M; Stashenko, Elena E

    2009-10-01

    Essential oils chemical constituents of leaves of O. gratissimum and O. campechianum of the Lamiaceae family, collected in Chocó of northwest Colombian, were obtained by microwave-assisted hydrodistillation and analyzed by gas chromatography coupled with mass spectrometry. A total of 33 and 37 compounds were identified in the essential oil of O. gratissimum and O. campechianum, respectively. O. gratissimum's main essential oils were eugenol (43.2%), 1,8-cineole (12.8%) and beta-selinene (9.0%); in the O. campechianum essential oil, the main components were methyl eugenol (12.0%), germacrene D (10.1%), and eugenol (9.0%). Main distribution of compounds in these essential oils are 25.0% monoterpenes hydrocarbons, 15.0% monoterpenes oxygenated, 35.0% sesquiterpenes hydrocarbons, 7.5% other oxygenated components for O. gratissimum, 33.9% sesquiterpenes hydrocarbons, and 10.7% their respective oxygenated derivates; for O. campechianum, the distribution was 10.7% monoterpenes hydrocarbons and 7.1% their respective oxygenated derivates and 3.6% phenylpropanes. According to the essential oils chemical composition of Ocimum gratissimum and O. campechianum, they are classified as eugenol and methyl eugenol chemotype, respectively.

  14. Further sesquiterpenoids and phenolics from Taraxacum officinale.

    PubMed

    Kisiel, W; Barszcz, B

    2000-06-01

    Five germacrane- and guaiane-type sesquiterpene lactones, including two previously described taraxinic acid derivatives, were isolated from the roots of Taraxacum officinale, together with benzyl glucoside, dihydroconiferin, syringin and dihydrosyringin. The other three lactones were identified as 11beta, 13-dihydrolactucin, ixerin D and ainslioside. Moreover, the stereochemistry at C-11 in dihydrotaraxinic acid was assigned.

  15. Taraxacin, a new guaianolide from Taraxacum wallichii.

    PubMed

    Ahmad, V U; Yasmeen, S; Ali, Z; Khan, M A; Choudhary, M I; Akhtar, F; Miana, G A; Zahid, M

    2000-07-01

    A new guaianolide, taraxacin (1), and a known sesquiterpene ketolactone (2) have been isolated from an ethyl acetate-soluble part of a methanolic extract of Taraxacum wallichii. The structure of 1 was established using NMR, MS, and X-ray crystallographic methods. The (13)C NMR data of 2 is also being reported for the first time.

  16. Attractiveness of harlequin bug, Murgantia histrionica (Hemiptera: Pentatomidae), aggregation pheromone: field response to isomers, ratios and dose

    USDA-ARS?s Scientific Manuscript database

    A two-component sesquiterpene pheromone, (3S,6S,7R,10S)- and (3S,6S,7R,10R)-10,11-epoxy-1-bisabolen-3-ol (murgantiol), present in emissions from adult male harlequin bugs Murgantia histrionica, is most attractive in field bioassays to adults and nymphs in the naturally-occurring approximately 1.4:1...

  17. Estudo comparativo entre estrelas centrais de nebulosas planetárias deficientes em hidrogênio

    NASA Astrophysics Data System (ADS)

    Marcolino, W. L. F.; de Araújo, F. X.

    2003-08-01

    Apresentamos neste trabalho o resultado de um estudo das principais características espectrais das estrelas centrais de nebulosas planetárias (ECNP) deficientes em hidrogênio. A origem e a evolução dessas estrelas ainda constitui um problema em aberto na evolução estelar. Geralmente esses objetos são divididos em [WCE], [WCL] e [WELS]. Os tipos [WCE] e [WCL] apresentam um espectro típico de uma estrela Wolf-Rayet carbonada de população I e as [WELS] apresentam linhas fracas de carbono e oxigênio em emissão. Existem evidências que apontam a seguinte sequência evolutiva : [WCL] = > [WCE] = > [WELS] = > PG 1159 (pré anã-branca). No entanto, tal cenário apresenta falhas como por exemplo a falta de ECNP entre os tipos [WCL] e [WCE]. Baseados em uma amostra de 24 objetos obtida no telescópio de 1.52m em La Silla, Chile (acordo ESO/ON), ao longo do ano 2000, apresentamos os resultados da comparação das larguras equivalentes de diversas linhas relevantes entre os tipos [WCL], [WCE] e [WELS]. Verificamos que nossos dados estão de acordo com a sequência evolutiva. Baseado nas linhas de C IV, conseguimos dividir pela primeira vez as [WELS] em dois grupos principais. Além disso, os dados reforçam a afirmação de que as [WCE] são as estrelas que possuem a maior temperatura entre as ECNP deficientes em hidrogênio. Discutimos ainda, a escassez de dados disponíveis na literatura e a necessidade da obtenção de parametros físicos para estes objetos.

  18. Isolongifolenone: A Novel Sesquiterpene Repellent of Ticks and Mosquitoes

    DTIC Science & Technology

    2009-01-01

    Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center-West, Beltsville, MD 20705. 2 Corresponding author, e-mail...AND ADDRESS(ES) U.S. Department of Agriculture -Agricultural Research Center,Invasive Insect Biocontrol and Behavior Laboratory,Beltsville

  19. Neuronal growth promoting sesquiterpene-neolignans; syntheses and biological studies.

    PubMed

    Cheng, Xu; Harzdorf, Nicole; Khaing, Zin; Kang, Danby; Camelio, Andrew M; Shaw, Travis; Schmidt, Christine E; Siegel, Dionicio

    2012-01-14

    The use of small molecules that can promote neuronal growth represents a promising approach to regenerative science. Along these lines we have developed separate short or modular syntheses of the natural products caryolanemagnolol and clovanemagnolol, small molecules previously shown to promote neuronal growth and induce choline acetyltransferase activity. The postulated biosynthetic pathways, potentially leading to the assembly of these molecules in nature, have guided the laboratory syntheses, allowing the preparation of both natural products in as few as two steps. With synthetic access to the compounds as single enantiomers we have examined clovanemagnolol's ability to promote the growth of embryonic hippocampal and cortical neurons. Clovanemagnolol has been shown to be a potent neurotrophic agent, promoting neuronal growth at concentrations of 10 nM.

  20. [Educational status and patterns of weight gain in adulthood in Brazil: Estudo Pró-Saúde].

    PubMed

    Fonseca, Maria de Jesus Mendes da; França, Rosana de Figueiredo; Faerstein, Eduardo; Werneck, Guilherme Loureiro; Chor, Dóra

    2012-11-01

    The aim of the present study was to investigate the association between participant and parental educational status (considered as an indicator of socioeconomic status) and participant pattern of weight gain in adulthood. We analyzed data from 2 582 baseline participants (1999) of Estudo Pró-Saúde (Pro-Health Study), a longitudinal investigation of civil servants from a public university in Rio de Janeiro, Brazil. Self-administered questionnaires were used to identify patterns of weight gain in adulthood. Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated for the association between parental and participant educational status and steady weight gain or weight cycling, with stable weight as a reference, using multinomial logistic regression models. For males, lower paternal educational level entailed a chance about 55% lower of weight cycling as compared to stable weight (OR = 0.45; IC95% = 0.26-0.78), whereas lower maternal schooling was related to increased risk of weight cycling, although without reaching statistical significance (OR = 1.68; IC95% = 0.94-3.00). The association between participant educational status and weight history was not statistically significant among men. In women, lower educational status entailed a chance 94% higher of self-reported weight cycling (OR = 1.94; 95% CI = 1.17-3.23), and there was no association between parental educational level and history of weight gain. In this study, changes in weight throughout life, both steady and cyclic, were associated with parental and participant educational status, with major differences between genders.

  1. Ozone, OH and NO3 sink terms at a coniferous forest site in Central Germany: Role of biogenic VOCs

    NASA Astrophysics Data System (ADS)

    Bonn, B.; Bourtsoukidis, S.; Haunold, W.; Sitals, R.; Jacobi, S.

    2012-04-01

    Oxidation capacities of ecosystems are important to facilitate an ecosystem feedback on oxidation stress and in order to survive. We have conducted seasonal ambient measurements of a series of biogenic VOCs using a plant enclosure technique and determined the ambient levels of ozone, NOx as well as basic meteorological parameters at a managed spruce forest site in Central Germany (Mt. Kleiner Feldberg). The site is 810 m a.s.l. and faces distinct anthropogenic contributions from the Rhine-Main-area including the airport and major traffic routes in from the southeast. The opposite direction is moderately polluted and can be classified as Central German background condition. Since atmospheric chemistry and pollutants become very important especially for this site, which is the most polluted one in Germany with respect to ozone we approximated the sink terms for the atmospheric oxidation agents of interest at this site, i.e ozone, OH and NO3 using the measurements and box model steady state calculations for intermediate species not measured directly between the first of April and the start of November 2011. BVOC measurements were obtained with PTR-MS every 36 s and averaged for 30 min intervals afterwards to facilitate the inclusion of the monitoring data of the Hessian Agency for the Environment and Geology (HLUG) in Wiesbaden, Germany: temperature, humidity, global radiation, ozone and NOx. Analysis was performed with Matlab (Mathworks Inc.) and included the gas-phase chemistry set-up described by the Master Chemical Mechanism (MCM, v3, [1]). This resulted in the following outcome for sinks of oxidants: Ozone: Significant contributions were found for mono- and sesquiterpenes as well as for NOx. The individual contributions vary notably with the time of the day and the year and the emission strength of biogenic VOCs. Especially for the early season in April sesquiterpene reactions dominated the sink by up to 80% during nighttime, while NOx reactions dominated the

  2. Toxicological evaluation of the natural products and some semisynthetic derivatives of Heterotheca inuloides Cass (Asteraceae).

    PubMed

    Rodríguez-Chávez, José Luis; Coballase-Urrutia, Elvia; Sicilia-Argumedo, Gloria; Ramírez-Apan, Teresa; Delgado, Guillermo

    2015-12-04

    Heterotheca ineuloides Cass (Asteraceae), popularly known as árnica mexicana, is widely used in Mexican traditional medicine to treat bruises, dermatological problems, rheumatic pains, and other disorders as cancer. The major constituents in H. inuloides are cadinane type sesquiterpenes, flavonoids and phytosterols. Compounds with a cadinane skeleton have been proved to possess cytotoxic activity against human-tumor cell lines and brine shrimp, and display toxic effects in different animal species. Although this plant has been widely used, there is little available information on the safety and toxicity especially of pure compounds. Evaluate the potential toxicity of the natural products isolated from H. inuloides and some semisynthetic derivatives. The toxic aspects of the following natural products isolated from dried flowers of H. inuloides: 7-hydroxy-3,4-dihydrocadalene (1), 7-hydroxycadalene (2), 3,7-dihydroxy-3(4H)-isocadalen-4-one (3), (1R,4R)-1-hydroxy-4H-1,2,3,4- tetrahydrocadalen-15-oic acid (4), D-chiro-inositol (5), quercetin (6), quercetin-3,7,3'-trimethyl ether (7), quercetin-3,7,3',4'-tetramethyl ether (8), eriodictyol-7,4'-dimethyl ether (9), α-spinasterol (10), caryolan-1,9β-diol (11) and 7-(3,3-dimethylallyloxy)-coumarin (12) as well as the toxic aspects of the semisynthetic compounds 7-acetoxy-3,4-dihydrocadalene (13), 7-benzoxy-3,4-dihydrocadalene (14), 7-acetoxycadalene (15), 7-benzoxycadalene (16), quercetin pentaacetate (17), 7-hydroxycalamenene (18), 3,8-dimethyl-5-(1-methylethyl)-1,2-naphthoquinone (19), and 4-isopropyl-1,6-dimethylbenzo[c]oxepine-7,9-dione (20). Toxic activities of compounds were determined by sulforhodamine B (SRB) assay, Artemia salina assay, RAW264.7 macrophage cells. Additionally, the acute toxicity in mouse of compound 1, the major natural sesquiterpene isolated from the acetone extract, was evaluated. The best cytotoxicity activity was observed for mansonone C (19) on K562 cell line with IC50 1.45 ± 0.14 μM, for

  3. Flavonoids and terpenoids from Helichrysum forskahlii.

    PubMed

    Al-Rehaily, Adnan J; Albishi, Omar A; El-Olemy, Mahmoud M; Mossa, Jaber S

    2008-06-01

    Three new flavonoids, namely helichrysone A (1), helichrysone B (2) and helichrysone C (3) were isolated from the aerial parts of Helichrysum forskahlii, together with 10 known flavonoids, three triterpenes, and one sesquiterpene. The structures of the new flavonoids 1-3 were established by 1D and 2D NMR spectral data. In addition, the antimicrobial activities of the isolated compounds were determined.

  4. Construção de um catálogo de aglomerados abertos para estudo da dinâmica da estrutura espiral da Galáxia

    NASA Astrophysics Data System (ADS)

    Carlos, I. M.; Lépine, J. R. D.

    2003-08-01

    Os aglomerados abertos são objetos de grande valor para o estudo da dinâmica da Galáxia devido esses objetos terem uma faixa de idade relativamente ampla. O trabalho visa estudar a dinâmica da estrutura espiral da Galáxia principalmente através do uso desses aglomerados, uma vez que o estudo da cinemática desses objetos é fundamental para esse objetivo. Nosso grupo trabalha no sentido de construir uma base de dados de aglomerados abertos contendo coordenadas, distância, idade, movimentos próprios e velocidades radiais e já disponibiliza uma nova versão do catálogo de aglomerados abertos o qual é uma compilação de edições anteriores, principalmente Lynga (1987), Mermilliod (1995) e ESO-B (Lauberts 1982). Nossa amostra possui cerca de 1630 aglomerados, mas nem todos os parâmetros acima citados foram determinados em sua totalidade. Para determinarmos esses parâmetros, derivamos as cores intrínsecas das estrelas membro de cada aglomerado a partir de seus tipos espectrais (busca feita no SIMBAD) obtendo assim o excesso de cor individual. A distribuição dos excessos de cor foi então utilizada para derivarmos o avermelhamento médio para cada aglomerado. De maneira similar, os tipos espectrais foram usados para estimar as magnitudes absolutas, e com as magnitudes absolutas e aparentes determinamos a respectiva distribuição do módulo de distância e finalmente a distância. Para determinar as idades foram confeccionados os diagramas cor-magnitude das estrelas de cada aglomerado onde foram superpostas a Seqüência Principal de Idade Zero (ZAMS). Superpomos a ZAMS de Schmidt-Kaler e isócronas de composição solar. Essas isócronas foram usadas para determinação das idades dos aglomerados. Uma vez que não temos ainda resultados finais, apresentamos então alguns diagramas cor-magnitude os quais foram usados para determinação, principalmente, da distância e idade dos aglomerados.

  5. The seamy side of natural medicines: contact sensitization to arnica (Arnica montana L.) and marigold (Calendula officinalis L.).

    PubMed

    Reider, N; Komericki, P; Hausen, B M; Fritsch, P; Aberer, W

    2001-11-01

    Medical remedies of plant origin have gained increasing popularity in recent years. Both anaphylactic and eczematous allergic reactions are on the rise, accordingly. Arnica and marigold, both of the Compositae family, are in widespread use, but only limited data are available on their allergenic potential. We tested 443 consecutive patients, in addition to the European standard and other series, with Compositae mix, sesquiterpene lactone mix, arnica, marigold, and propolis. 5 subjects ( approximately 1.13%) reacted to arnica, 9 ( approximately 2.03%) to marigold. The Compositae mix was positive in 18 cases ( approximately 4.06%). Among them were 3 out of 5 individuals with a sensitization to arnica, and 4 out of 9 who reacted to marigold. Sensitization to arnica and marigold was often accompanied by reactions to nickel, Myroxylon Pereirae resin, fragrance mix, propolis, and colophonium. We conclude that Compositae allergy contributes significantly to the epidemiology of contact dermatitis and that sensitization to arnica and marigold cannot be assessed by testing with the Compositae or sesquiterpene mix alone. As extracts of these plants are frequently used in occupational and cosmetic products, patch testing with additional plant extracts or adjustment of the commercial Compositae mix to regional conditions is recommended.

  6. Chemical composition of the frontal gland secretion ofSyntermes soldiers (Isoptera, Termitidae).

    PubMed

    Baker, R; Coles, H R; Edwards, M; Evans, D A; Howse, P E; Walmsley, S

    1981-01-01

    The defensive secretions from the frontal glands of soldier termites of the genusSyntermes contain similar mixtures of mono- and sesquiterpene hydrocarbons. The major components inS. dirus, S. molestus, S. brevimalatus, S. peruanus, and a new species (Syntermes sp. n), iscis-β-ocimene. A substantial amount of aristolochene is found inSyntermes sp. n. and is present at lower levels in all the other species;S. brevimalatus contains onlycis-β-ocimene and aristolochene. The four other species also contain minor amounts of epi-α-selinene and germacrene A. The latter compound has been identified on the basis of its rearrangement product β-elemene. The termiteS. grandis differed markedly from the otherSyntermes species in that no terpenoid components were found in the soldier extract. With the obvious exception ofS. grandis, the same soldier-specific mono- and sesquiterpenes occurred in all species. The total amount of secretion per unit weight of soldiers varies with the species and is inversely proportional to the development of the mandibular apparatus. InS. molestus smaller gland size is compensated for by a greater number of soldiers foraging trails.

  7. Application of a multidimensional gas chromatography system with simultaneous mass spectrometric and flame ionization detection to the analysis of sandalwood oil.

    PubMed

    Sciarrone, Danilo; Costa, Rosaria; Ragonese, Carla; Tranchida, Peter Quinto; Tedone, Laura; Santi, Luca; Dugo, Paola; Dugo, Giovanni; Joulain, Daniel; Mondello, Luigi

    2011-01-07

    The production and trade of Indian sandalwood oil is strictly regulated, due to the impoverishment of the plantations; for such a reason, Australian sandalwood oil has been evaluated as a possible substitute of the Indian type. International directives report, for both the genuine essential oils, specific ranges for the sesquiterpene alcohols (santalols). In the present investigation, a multidimensional gas chromatographic system (MDGC), equipped with simultaneous flame ionization and mass spectrometric detection (FID/MS), has been successfully applied to the analysis of a series of sandalwood oils of different origin. A detailed description of the system utilized is reported. Three santalol isomers, (Z)-α-trans-bergamotol, (E,E)-farnesol, (Z)-nuciferol, epi-α-bisabolol and (Z)-lanceol have been quantified. LoD (MS) and LoQ (FID) values were determined for (E,E)-farnesol, used as representative of the oxygenated sesquiterpenic group, showing levels equal to 0.002% and 0.003%, respectively. A great advantage of the instrumental configuration herein discussed, is represented by the fact that identification and quantitation of target analytes are carried out in one step, without the need to perform two separate analyses. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Vibrational and structural study of onopordopicrin based on the FTIR spectrum and DFT calculations.

    PubMed

    Chain, Fernando E; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César A N; Fortuna, Mario; Brandán, Silvia Antonia

    2015-01-01

    In the present work, the structural and vibrational properties of the sesquiterpene lactone onopordopicrin (OP) were studied by using infrared spectroscopy and density functional theory (DFT) calculations together with the 6-31G(∗) basis set. The harmonic vibrational wavenumbers for the optimized geometry were calculated at the same level of theory. The complete assignment of the observed bands in the infrared spectrum was performed by combining the DFT calculations with Pulay's scaled quantum mechanical force field (SQMFF) methodology. The comparison between the theoretical and experimental infrared spectrum demonstrated good agreement. Then, the results were used to predict the Raman spectrum. Additionally, the structural properties of OP, such as atomic charges, bond orders, molecular electrostatic potentials, characteristics of electronic delocalization and topological properties of the electronic charge density were evaluated by natural bond orbital (NBO), atoms in molecules (AIM) and frontier orbitals studies. The calculated energy band gap and the chemical potential (μ), electronegativity (χ), global hardness (η), global softness (S) and global electrophilicity index (ω) descriptors predicted for OP low reactivity, higher stability and lower electrophilicity index as compared with the sesquiterpene lactone cnicin containing similar rings. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Essential Oils from Fruits with Different Colors and Leaves of Neomitranthes obscura (DC.) N. Silveira: An Endemic Species from Brazilian Atlantic Forest

    PubMed Central

    Amaral, Raquel R.; Fernandes, Caio P.; Caramel, Otávio P.; Tietbohl, Luis A. C.; Santos, Marcelo G.; Carvalho, José C. T.; Rocha, Leandro

    2013-01-01

    Neomitranthes obscura (DC.) N. Silveira is an endemic plant of Brazilian Atlantic Forest and widely spread in the sandbanks of “Restinga de Jurubatiba” National Park. It is popularly known by local population as “camboim-de-cachorro” or “cambuí-preto” and recognized by its black ripe fruits. However, specimens with yellow ripe fruits were localized in the “Restinga de Jurubatiba” National Park. The aim of the present study was to evaluate chemical composition of essential oils obtained from leaves and fruits of N. obscura specimens with different fruit color (black and yellow) by GC and GC-MS. Essential oils from leaves of specimens with black and yellow fruits indicated a predominance of sesquiterpenes (81.1% and 84.8%, resp.). Meanwhile, essential oil from black fruits presented a predominance of monoterpenes (50.5%), while essential oil from yellow fruits had sesquiterpenes (39.9%) as major substances. Despite previous studies about this species, including essential oil extraction, to our knowledge this is the first report on N. obscura fruits with different colors. Our results suggest the occurrence of unless two different varieties for this species. PMID:23484148

  10. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia).

    PubMed

    Landmann, Christian; Fink, Barbara; Festner, Maria; Dregus, Márta; Engel, Karl-Heinz; Schwab, Wilfried

    2007-09-15

    The essential oil of lavender (Lavandula angustifolia) is mainly composed of mono- and sesquiterpenes. Using a homology-based PCR strategy, two monoterpene synthases (LaLIMS and LaLINS) and one sesquiterpene synthase (LaBERS) were cloned from lavender leaves and flowers. LaLIMS catalyzed the formation of (R)-(+)-limonene, terpinolene, (1R,5S)-(+)-camphene, (1R,5R)-(+)-alpha-pinene, beta-myrcene and traces of alpha-phellandrene. The proportions of these products changed significantly when Mn(2+) was supplied as the cofactor instead of Mg(2+). The second enzyme LaLINS produced exclusively (R)-(-)-linalool, the main component of lavender essential oil. LaBERS transformed farnesyl diphosphate and represents the first reported trans-alpha-bergamotene synthase. It accepted geranyl diphosphate with higher affinity than farnesyl diphosphate and also produced monoterpenes, albeit at low rates. LaBERS is probably derived from a parental monoterpene synthase by the loss of the plastidial signal peptide and by broadening its substrate acceptance spectrum. The identification and description of the first terpene synthases from L. angustifolia forms the basis for the biotechnological modification of essential oil composition in lavender.

  11. Probing the Structure-Activity Relationship of the Natural Antifouling Agent Polygodial against both Micro- and Macrofoulers by Semisynthetic Modification.

    PubMed

    Moodie, Lindon W K; Trepos, Rozenn; Cervin, Gunnar; Larsen, Lesley; Larsen, David S; Pavia, Henrik; Hellio, Claire; Cahill, Patrick; Svenson, Johan

    2017-02-24

    The current study represents the first comprehensive investigation into the general antifouling activities of the natural drimane sesquiterpene polygodial. Previous studies have highlighted a high antifouling effect toward macrofoulers, such as ascidians, tubeworms, and mussels, but no reports about the general antifouling effect of polygodial have been communicated before. To probe the structural and chemical basis for antifouling activity, a library of 11 polygodial analogues was prepared by semisynthesis. The library was designed to yield derivatives with ranging polarities and the ability to engage in both covalent and noncovalent interactions, while still remaining within the drimane sesquiterpene scaffold. The prepared compounds were screened against 14 relevant marine micro- and macrofouling species. Several of the polygodial analogues displayed inhibitory activities at sub-microgram/mL concentrations. These antifouling effects were most pronounced against the macrofouling ascidian Ciona savignyi and the barnacle Balanus improvisus, with inhibitory activities observed for selected compounds comparable or superior to several commercial antifouling products. The inhibitory activity against the microfouling bacteria and microalgae was reversible and significantly less pronounced than for the macrofoulers. This study illustrates that the macro- and microfoulers are targeted by the compounds via different mechanisms.

  12. Performance of a commercially available plant allergen series in the assessment of suspected occupational contact dermatitis to plants in north Indian patients.

    PubMed

    De, Dipankar; Khullar, Geeti; Handa, Sanjeev

    2015-01-01

    Parthenium hysterophorus is the leading cause of phytogenic allergic contact dermatitis in India. The Indian Standard Series currently supplied by Systopic Laboratories Ltd and manufactured by Chemotechnique Diagnostics ® contains parthenolide as the only allergen representing plant allergens. The study was conducted to assess the performance of the Chemotechnique plant series (PL-1000), consisting of 14 allergens, in patients with clinically suspected occupational contact dermatitis to plant allergens. Ninety patients were patch tested with the Chemotechnique plant series from 2011 to 2013. Demographic details, clinical diagnosis and patch test results were recorded in the contact dermatitis clinic proforma. Of 90 patients, 24 (26.7%) showed positive reactions to one or more allergens in the plant series. Positive patch tests were elicited most commonly by sesquiterpene lactone mix in 19 (78.6%) patients, followed by parthenolide in 14 (57.1%), Achillea millefolium in 10 (42.9%) and others in decreasing order. The plant allergen series prepared by Chemotechnique Diagnostics is possibly not optimal for diagnosing suspected allergic contact dermatitis to plants in north Indians. Sesquiterpene lactone mix should replace parthenolide as the plant allergen in the Indian Standard Series until relevant native plant extracts are commercially available for patch testing.

  13. Sesquiterpenoids with PTP1B Inhibitory Activity and Cytotoxicity from the Edible Mushroom Pleurotus citrinopileatus.

    PubMed

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Wang, Wen-Zhao; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-05-01

    One new perhydrobenzannulated 5,5-spiroketal sesquiterpene, pleurospiroketal F (1), as well as six new modified bisabolene sesquiterpenes pleurotins A-F (2-7) were isolated from solid-state fermentation of Pleurotus citrinopileatus. The structures of compounds 1-7 were determined by NMR and MS spectroscopic analysis. The absolute configuration of 1 was determined by X-ray diffraction analysis, while the absolute configurations of 3-7 were assigned using the in situ dimolybdenum circular dichroism method and circular dichroism data comparison. Protein tyrosine phosphatase 1B plays a crucial role as a negative regulator of the insulin-dependent signal cascades. Therefore, the protein tyrosine phosphatase 1B inhibitor can be used for treating type 2 diabetes mellitus and obesity. Compounds 2 and 6 showed moderate inhibitory effects on protein tyrosine phosphatase 1B with IC50 s of 32.1 µM and 30.5 µM, respectively. The kinetic study confirmed compound 2 to be a noncompetitive inhibitor. Compounds 1-7 did not show cytotoxic activity against cancer cell lines (IC50 > 50 µM). Georg Thieme Verlag KG Stuttgart · New York.

  14. Chemical composition of essential oil from ripe fruit of Schinus terebinthifolius Raddi and evaluation of its activity against wild strains of hospital origin.

    PubMed

    Cole, E R; dos Santos, R B; Lacerda Júnior, V; Martins, J D L; Greco, S J; Cunha Neto, A

    2014-01-01

    The essential oil (EO) composition of ripe fruit of S. terebinthifolius Raddi was analyzed by GC-MS. The oil extraction yielded 6.54 ± 1.06% (w/w). Seventeen compounds were identified, accounting for 91.15% of the total oil, where monoterpenes constituted the main chemical class (85.81%), followed by sesquiterpenes (5.34%). The major monoterpene identified was δ-3-carene (30.37%), followed by limonene (17.44%), α-phellandrene (12.60%) and α-pinene (12.59%). Trans-caryophyllene (1.77%) was the major sesquiterpene identified. The antibacterial activity of the essential oil was evaluated against wild strains of hospital origin (Escherichia coli, Pseudomonas sp., Klebsiella oxytoca, Corynebacterium sp., Staphylococcus aureus, Enterobacter sp., Enterobacter agglomerans, Bacillus sp., Nocardia sp. and Streptococcus group D). The essential oil of the ripe fruit of S. terebinthifolius Raddi has shown to be active against all tested wild strains, with minimum inhibitory concentration ranging from 3.55 μg/mL to 56.86 μg/mL. However, it has revealed some differences in susceptibility: the general, Gram-positive species showed greater sensitivity to the action of EO, which is probably due to the lower structural complexity of their cell walls.

  15. Total synthesis of (+)-antroquinonol and (+)-antroquinonol D.

    PubMed

    Sulake, Rohidas S; Chen, Chinpiao

    2015-03-06

    The first total synthesis of (+)-antroquinonol and (+)-antroquinonol D, two structurally unique quinonols with a sesquiterpene side chain, is described. The route features an iridium-catalyzed olefin isomerization-Claisen rearrangement reaction (ICR), lactonization, and Grubbs olefin metathesis. The requisite α,β-unsaturation was achieved via the selenylation/oxidation protocol and elimination of β-methoxy group to provide two natural products from a common intermediate.

  16. (-)-3 beta,4 beta-epoxyvalerenic acid from Valeriana officinalis.

    PubMed

    Dharmaratne, H Ranjith; Nanayakkara, N P; Khan, Ikhlas A

    2002-07-01

    Chemical investigation of the root extract of Valeriana officinalis afforded a new bicyclic sesquiterpene acid, (-)-3 beta,4 beta-epoxyvalerenic acid together with valerenic acid and hexadecanoic acid. The structure of the new compound was elucidated by spectroscopic data and confirmed by partial synthesis of its methyl ester from valerenic acid. Methyl (-)-3 alpha,4 alpha-epoxyvalerenate was obtained as a minor product from the above reaction.

  17. sarA as a Target for the Treatment and Prevention of Staphylococcal Biofilm-Associated Infection

    DTIC Science & Technology

    2015-02-01

    M.S., Compadre, C.M. 2011. Sesquiterpene lactons from Gynoxys verrucosa and their anti - MRSA activity. Journal of Ethnopharmacology, 137:1055-1059. 11...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this

  18. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2013-09-01

    Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene < limonene < sabinene < ß-pinene). Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous

  19. Volatilizable Biogenic Organic Compounds (VBOCs) with two dimensional Gas Chromatography-Time of Flight Mass Spectrometry (GC × GC-TOFMS): sampling methods, VBOC complexity, and chromatographic retention data

    NASA Astrophysics Data System (ADS)

    Pankow, J. F.; Luo, W.; Melnychenko, A. N.; Barsanti, K. C.; Isabelle, L. M.; Chen, C.; Guenther, A. B.; Rosenstiel, T. N.

    2012-02-01

    Two dimensional gas chromatography (GC × GC) with detection by time-of-flight mass spectrometry (TOFMS) was applied in the rapid analysis of air samples containing highly complex mixtures of volatilizable biogenic organic compounds (VBOCs). VBOC analytical methodologies are briefly reviewed, and optimal conditions are discussed for sampling with both adsorption/thermal desorption (ATD) cartridges and solid-phase microextraction (SPME) fibers. Air samples containing VBOC emissions from leaves of two tree species (Cedrus atlantica and Calycolpus moritzianus) were obtained by both ATD and SPME. The optimized gas chromatographic conditions utilized a 45 m, 0.25 mm I.D. low-polarity primary column (DB-VRX, 1.4 μm film) and a 1.5 m, 0.25 mm I.D. polar secondary column (StabilwaxTM, 0.25 μm film). Excellent separation was achieved in a 36 min temperature programmed GC × GC chromatogram. Thousands of VBOC peaks were present in the sample chromatograms; hundreds of tentative identifications by NIST mass spectral matching are provided. Very few of the tentatively identified compounds are currently available as authentic standards. Minimum detection limit values for a 5 l ATD sample were 3.5 pptv (10 ng m-3) for isoprene, methyl vinyl ketone, and methacrolein, and ~1.5 pptv (~10 ng m-3) for monoterpenes and sesquiterpenes. Kovats-type chromatographic retention index values on the primary column and relative retention time values on the secondary column are provided for 21 standard compounds and for 417 tentatively identified VBOCs. 19 of the 21 authentic standard compounds were found in one of the Cedrus atlantica SPME samples. In addition, easily quantifiable levels of at least 13 sesquiterpenes were found in an ATD sample obtained from a branch enclosure of Calycolpus moritzianus. Overall, the results obtained via GC × GC-TOFMS highlight an extreme, and largely uncharacterized diversity of VBOCs, consistent with the hypothesis that sesquiterpenes and other compounds

  20. Volatilizable biogenic organic compounds (VBOCs) with two dimensional gas chromatography-time of flight mass spectrometry (GC × GC-TOFMS): sampling methods, VBOC complexity, and chromatographic retention data

    NASA Astrophysics Data System (ADS)

    Pankow, J. F.; Luo, W.; Melnychenko, A. N.; Barsanti, K. C.; Isabelle, L. M.; Chen, C.; Guenther, A. B.; Rosenstiel, T. N.

    2011-06-01

    Two dimensional gas chromatography (GC × GC) with detection by time-of-flight mass spectrometry (TOFMS) was applied in the rapid analysis of air samples containing highly complex mixtures of volatilizable biogenic organic compounds (VBOCs). VBOC analytical methodologies are briefly reviewed, and optimal conditions are discussed for sampling with both adsorption/thermal desorption (ATD) cartridges and solid-phase microextraction (SPME) fibers. Air samples containing VBOC emissions from leaves of two tree species (Cedrus atlantica and Calycolpus moritzianus) were obtained by both ATD and SPME. The optimized gas chromatographic conditions utilized a 45 m, 0.25 mm I.D. low-polarity primary column (DB-VRX, 1.4 μm film) and a 1.5 m, 0.25 mm I.D. polar secondary column (Stabilwax® 0.25 μm film). Excellent separation was achieved in a 36 min temperature programmed GC × GC chromatogram. Thousands of VBOC peaks were present in the sample chromatograms; hundreds of tentative identifications by NIST mass spectral matching are provided. Very few of the tentatively identified compounds are currently available as authentic standards. Method detection limit values for a 5 l ATD sample were 3.5 pptv (10 ng m-3) for isoprene, methyl vinyl ketone, and methacrolein, and ~1.5 pptv (~10 ng m-3) for monoterpenes and sesquiterpenes. Kovats-type chromatographic retention index values on the primary column and relative retention time values on the secondary column are provided for 21 standard compounds and for 417 tentatively identified VBOCs. 19 of the 21 authentic standard compounds were found in one of the Cedrus atlantica SPME samples. In addition, easily quantifiable levels of at least 13 sesquiterpenes were found in an ATD sample obtained from a branch enclosure of Calycolpus moritzianus. Overall, the results obtained via GC × GC-TOFMS highlight an extreme, and largely uncharacterized diversity of VBOCs, consistent with the hypothesis that sesquiterpenes and other compounds

  1. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species.

    PubMed

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Tolunay, Doganay; Odabasi, Mustafa; Elbir, Tolga

    2014-08-15

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO2) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m(2)s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/gh was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/gh. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and beta

  2. Biotransformation of an africanane sesquiterpene by the fungus Mucor plumbeus.

    PubMed

    Fraga, Braulio M; Díaz, Carmen E; Amador, Leonardo J; Reina, Matías; López-Rodriguez, Matías; González-Coloma, Azucena

    2017-03-01

    Biotransformation of 8β-hydroxy-african-4(5)-en-3-one angelate by the fungus Mucor plumbeus afforded as main products 6α,8β-dihydroxy-african-4(5)-en-3-one 8β-angelate and 1α,8β-dihydroxy-african-4(5)-en-3-one 8β-angelate, which had been obtained, together with the substrate, from transformed root cultures of Bethencourtia hermosae. This fact shows that the enzyme system involved in these hydroxylations in both organisms, the fungus and the plant, acts with the same regio- and stereospecificity. In addition another twelve derivatives were isolated in the incubation of the substrate, which were identified as the (2'R,3'R)- and (2'S,3'S)-epoxy derivatives of the substrate and of the 6α- and 1α-hydroxy alcohols, the 8β-(2'R,3'R)- and 8β-(2'S,3'S)-epoxyangelate of 8β,15-dihydroxy-african-4(5)-en-3-one, the hydrolysis product of the substrate, and three isomers of 8β-hydroxy-african-4(5)-en-3-one 2ξ,3ξ-dihydroxy-2-methylbutanoate. The insect antifeedant effects of the pure compounds were tested against chewing and sucking insect species along with their selective cytotoxicity against insect (Sf9) and mammalian (CHO) cell lines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Chemical constituents from roots of Taraxacum formosanum.

    PubMed

    Leu, Yann-Lii; Wang, Yu-Li; Huang, Shih-Chin; Shi, Li-Shian

    2005-07-01

    Two new compounds, taraxafolide (1) and (+)-taraxafolin-B (2) together with eighteen known compounds, which include one sesquiterpene, thirteen benzenoids, two indole alkaloids, one pyridine derivative and steroid mixtures were isolated and characterized from the fresh roots of Taraxacum formosanum. Structures of new compounds were determined by spectral analysis. (+)-Taraxafolin-B had the bioactive caffeic acid moiety, but its activity was weaker than alpha-tocopherol in DPPH radicals scavenging activity assay.

  4. Constituents from the roots of Taraxacum platycarpum and their effect on proliferation of human skin fibroblasts.

    PubMed

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio

    2012-01-01

    A MeOH extract from the roots of Taraxacum platycarpum has shown significant effects on the proliferation of normal human skin fibroblasts. Chemical analysis of the extract resulted in the isolation of 26 compounds, including eight new triterpenes, one new sesquiterpene glycoside, and seventeen known compounds. The structure of each new compound was established using NMR spectroscopy. Some triterpenes had a significant effect on the proliferation of normal human skin fibroblasts.

  5. Modulation of inherent dynamical tendencies of the bisabolyl cation via preorganization in epi-isozizaene synthase.

    PubMed

    Pemberton, Ryan P; Ho, Krystina C; Tantillo, Dean J

    2015-04-01

    The relative importance of preorganization, selective transition state stabilization and inherent reactivity are assessed through quantum chemical and docking calculations for a sesquiterpene synthase ( epi -isozizaene synthase, EIZS). Inherent reactivity of the bisabolyl cation, both static and dynamic, appears to determine the pathway to product, although preorganization and selective binding of the final transition state structure in the multi-step carbocation cascade that forms epi -isozizaene appear to play important roles.

  6. Guajavadimer A, a Dimeric Caryophyllene-Derived Meroterpenoid with a New Carbon Skeleton from the Leaves of Psidium guajava.

    PubMed

    Li, Chuang-Jun; Ma, Jie; Sun, Hua; Zhang, Dan; Zhang, Dong-Ming

    2016-01-15

    Guajavadimer A (1), a dimeric sesquiterpene-based meroterpenoid which possessed an unprecedented two caryophyllenes, a benzylphlorogulcinol, and a flavonone-fused complicated stereochemical skeleton, was isolated from the leaves of Psidium guajava L. Its structure and absolute configuration were elucidated on the basis of spectroscopic data and X-ray crystallography. Guajavadimer A (1) showed moderate hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced toxicity in HepG2 cells.

  7. Methods for high yield production of terpenes

    DOEpatents

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  8. Chemical Components and Cardiovascular Activities of Valeriana spp.

    PubMed Central

    Chen, Heng-Wen; Wei, Ben-Jun; He, Xuan-Hui; Liu, Yan; Wang, Jie

    2015-01-01

    Valeriana spp. is a flowering plant that is well known for its essential oils, iridoid compounds such as monoterpenes and sesquiterpenes, flavonoids, alkaloids, amino acids, and lignanoids. Valeriana spp. exhibits a wide range of biological activities such as lowering blood pressure and heart rate, antimyocardial ischemia reperfusion injury, antiarrhythmia, and regulation of blood lipid levels. This review focuses on the chemical constituents and cardiovascular activities of Valeriana spp. PMID:26788113

  9. Constituents of Cajanus cajan (L.) Millsp., Moringa oleifera Lam., Heliotropium indicum L. and Bidens pilosa L. from Nigeria.

    PubMed

    Ogunbinu, Akinola O; Flamini, Guido; Cioni, Pier L; Adebayo, Muritala A; Ogunwande, Isiaka A

    2009-04-01

    The essential oils of four plant species from Nigeria have been extracted by hydrodistillation and analyzed by GC and GC-MS. The oils of Cajanus cajan were comprised of sesquiterpenes (92.5%, 81.2% and 94.3% respectively in the leaves, stem and seeds). The major compounds identified were alpha-himachalene (9.0-11.5%), beta-himachalene (8.0-11.0%), gamma-himachalene (6.9-8.1%), alpha-humulene (7.1-8.7%) and alpha-copaene (4.5-5.6%). However, monoterpenoid compounds (81.8%) dominated the oil of Moringa oleifera with an abundance of alpha-phellandrene (25.2%) and p-cymene (24.9%). On the other hand, aldehydes (52.8%) occurred in the highest amount in Heliotropium indicum, represented by phenylacetaldehyde (22.2%), (E)-2-nonenal (8.3%) and (E, Z)-2-nonadienal (6.1%), with a significant quantity of hexahydrofarnesylacetone (8.4%). The leaf and stem oils of Bidens pilosa were dominated by sesquiterpenes (82.3% and 59.3%, respectively). The main compounds in the leaf oil were caryophyllene oxide (37.0%), beta-caryophyllene (10.5%) and humulene oxide (6.0%), while the stem oils had an abundance of hexahydrofarnesyl acetone (13.4%), delta-cadinene (12.0%) and caryophyllene oxide (11.0%). The observed chemical patterns differ considerably from previous investigations.

  10. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha[OPEN

    PubMed Central

    Zhuang, Xun; Jiang, Zuodong; Jia, Qidong; Babbitt, Patricia C.

    2016-01-01

    Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg2+ binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases. PMID:27650333

  11. Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae).

    PubMed

    Conti, Barbara; Canale, Angelo; Bertoli, Alessandra; Gozzini, Francesca; Pistelli, Luisa

    2010-11-01

    Laboratory bioassays on insecticidal activity of essential oils (EOs) extracted from six Mediterranean plants (Achillea millefolium, Lavandula angustifolia, Helichrysum italicum, Foeniculum vulgare, Myrtus communis, and Rosmarinus officinalis) were carried out against the larvae of the Culicidae mosquito Aedes albopictus. The chemical composition of the six EOs was also investigated. Results from applications showed that all tested oils had insecticidal activity, with differences in mortality rates as a function of both oil and dosage. At the highest dosage (300 ppm), EOs from H. italicum, A. millefolium, and F. vulgare caused higher mortality than the other three oils, with mortality rates ranging from 98.3% to 100%. M. communis EO induced only 36.7% larval mortality at the highest dosage (300 ppm), a similar value to those recorded at the same dosage by using R. officinalis and L. angustifolia (51.7% and 55%, respectively). Identified compounds ranged from 91% to 99%. The analyzed EOs had higher content of monoterpenoids (80-99%) than sesquiterpenes (1-15%), and they can be categorized into three groups on the basis of their composition. Few EOs showed the hydrocarbon sesquiterpenes, and these volatile compounds were generally predominant in comparison with the oxygenated forms, which were detected in lower quantities only in H. italicum (1.80%) and in M. communis (1%).

  12. The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum).

    PubMed

    Moniodis, Jessie; Jones, Christopher G; Barbour, E Liz; Plummer, Julie A; Ghisalberti, Emilio L; Bohlmann, Joerg

    2015-05-01

    The fragrant heartwood oil of West Australian sandalwood (Santalum spicatum) contains a mixture of sesquiterpene olefins and alcohols, including variable levels of the valuable sesquiterpene alcohols, α- and β-santalol, and often high levels of E,E-farnesol. Transcriptome analysis revealed sequences for a nearly complete set of genes of the sesquiterpenoid biosynthetic pathway in this commercially valuable sandalwood species. Transcriptome sequences were produced from heartwood xylem tissue of a farnesol-rich individual tree. From the assembly of 12,537 contigs, seven different terpene synthases (TPSs), several cytochromes P450, and allylic phosphatases were identified, as well as transcripts of the mevalonic acid and methylerythritol phosphate pathways. Five of the S. spicatum TPS sequences were previously unknown. The full-length cDNA of SspiTPS4 was cloned and the enzyme functionally characterized as a multi-product sesquisabinene B synthase, which complements previous characterization of santalene and bisabolol synthases in S. spicatum. While SspiTPS4 and previously cloned sandalwood TPSs do not explain the prevalence of E,E-farnesol in S. spicatum, the genes identified in this and previous work can form a basis for future studies on natural variation of sandalwood terpenoid oil profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Cyclooxygenase inhibitory compounds from Gymnosporia heterophylla aerial parts.

    PubMed

    Ochieng, Charles O; Opiyo, Sylvia A; Mureka, Edward W; Ishola, Ismail O

    2017-06-01

    Gymnosporia heterophylla (Celastraceae) is an African medicinal plants used to treat painful and inflammatory diseases with partial scientific validation. Solvent extractions followed by repeated chromatographic purification of the G. heterophylla aerial parts led to the isolation of one new β-dihydroagarofuran sesquiterpene alkaloid (1), and two triterpenes (2-3). In addition, eight known compounds including one β-dihydroagarofuran sesquiterpene alkaloid (4), and six triterpenes (5-10) were isolated. All structures were determined through extensive analysis of the NMR an MS data as well as by comparison with literature data. These compounds were evaluated for the anti-inflammatory activities against COX-1 and -2 inhibitory potentials. Most of the compound isolated showed non selective COX inhibitions except for 3-Acetoxy-1β-hydroxyLupe-20(29)-ene (5), Lup-20(29)-ene-1β,3β-diol (6) which showed COX-2 selective inhibition at 0.54 (1.85), and 0.45 (2.22) IC 50 , in mM (Selective Index), respectively. The results confirmed the presence of anti-inflammatory compounds in G. heterophylla which are important indicators for development of complementary medicine for inflammatory reactions; however, few could be useful as selective COX-2 inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Investigation of the Anti-Melanogenic and Antioxidant Characteristics of Eucalyptus camaldulensis Flower Essential Oil and Determination of Its Chemical Composition

    PubMed Central

    Huang, Huey-Chun; Ho, Ya-Chi; Lim, Jia-Min; Chang, Tzu-Yun; Ho, Chen-Lung; Chang, Tsong-Min

    2015-01-01

    The effects of essential oil from Eucalyptus camaldulensis flowers oil on melanogenesis and the oil’s antioxidant characteristics were investigated. Assays of mushroom and cellular tyrosinase activities and melanin content of mouse melanoma cells were performed spectrophotometrically, and the expression of melanogenesis-related proteins was determined by Western blotting. The possible signaling pathways involved in essential oil-mediated depigmentation were also investigated using specific protein kinase inhibitors. The results revealed that E. camaldulensis flower essential oil effectively suppresses intracellular tyrosinase activity and decreases melanin amount in B16F10 mouse melanoma cells. The essential oil also exhibits antioxidant properties and effectively decreases intracellular reactive oxygen species (ROS) levels. The volatile chemical composition of the essential oil was analyzed with gas chromatography–mass spectrometry (GC/MS). The chemical constituents in the essential oil are predominately oxygenated monoterpenes (34.9%), followed by oxygenated sesquiterpenes (31.8%), monoterpene hydrocarbons (29.0%) and sesquiterpene hydrocarbons (4.3%). Our results indicated that E. camaldulensis flower essential oil inhibits melanogenesis through its antioxidant properties and by down-regulating both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways. The present study indicates that the essential oil has the potential to be developed into a skin care product. PMID:25961954

  15. Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Alfarra, M. R.; Robinson, N.; Ward, M. W.; Lewis, A. C.; McFiggans, G. B.; Coe, H.; Allan, J. D.

    2013-11-01

    Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding these transformation processes has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a Southeast Asian tropical rainforest in Borneo were characterised using liquid chromatography-ion trap mass spectrometry, high-resolution aerosol mass spectrometry and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyl tetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.

  16. Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Alfarra, M. R.; Robinson, N.; Ward, M. W.; Lewis, A. C.; McFiggans, G. B.; Coe, H.; Allan, J. D.

    2013-07-01

    Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding the process of these transformations has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a South East Asian tropical rainforest in Borneo were characterised using liquid chromatography-ion trap mass spectrometry, high resolution aerosol mass spectrometry and fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyltetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.

  17. Terpenoid trans-caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adult Arabidopsis.

    PubMed

    Araniti, F; Sánchez-Moreiras, A M; Graña, E; Reigosa, M J; Abenavoli, M R

    2017-01-01

    trans-Caryophyllene (TC) is a sesquiterpene commonly found as volatile component in many different aromatic plants. Although the phytotoxic effects of trans-caryophyllene on seedling growth are relatively explored, not many information is available regarding the phytotoxicity of this sesquiterpenes on weed germination and on adult plants. The phytotoxic potential of TC was assayed in vitro on weed germination and seedling growth to validate its phytotoxic potential on weed species. Moreover, it was assayed on the metabolism of Arabidopsis thaliana adult plants, through two different application ways, spraying and watering, in order to establish the primary affected organ and to deal with the unknown mobility of the compound. The results clearly indicated that TC inhibited both seed germination and root growth, as demonstrated by comparison of the ED50 values. Moreover, although trans-caryophyllene-sprayed adult Arabidopsis plants did not show any effect, trans-caryophyllene-watered plants became strongly affected. The results suggested that root uptake was a key step for the effectiveness of this natural compound and its phytotoxicity on adult plants was mainly due to the alteration of plant water status accompanied by oxidative damage. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Investigation of the Anti-Melanogenic and Antioxidant Characteristics of Eucalyptus camaldulensis Flower Essential Oil and Determination of Its Chemical Composition.

    PubMed

    Huang, Huey-Chun; Ho, Ya-Chi; Lim, Jia-Min; Chang, Tzu-Yun; Ho, Chen-Lung; Chang, Tsong-Min

    2015-05-07

    The effects of essential oil from Eucalyptus camaldulensis flowers oil on melanogenesis and the oil's antioxidant characteristics were investigated. Assays of mushroom and cellular tyrosinase activities and melanin content of mouse melanoma cells were performed spectrophotometrically, and the expression of melanogenesis-related proteins was determined by Western blotting. The possible signaling pathways involved in essential oil-mediated depigmentation were also investigated using specific protein kinase inhibitors. The results revealed that E. camaldulensis flower essential oil effectively suppresses intracellular tyrosinase activity and decreases melanin amount in B16F10 mouse melanoma cells. The essential oil also exhibits antioxidant properties and effectively decreases intracellular reactive oxygen species (ROS) levels. The volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The chemical constituents in the essential oil are predominately oxygenated monoterpenes (34.9%), followed by oxygenated sesquiterpenes (31.8%), monoterpene hydrocarbons (29.0%) and sesquiterpene hydrocarbons (4.3%). Our results indicated that E. camaldulensis flower essential oil inhibits melanogenesis through its antioxidant properties and by down-regulating both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways. The present study indicates that the essential oil has the potential to be developed into a skin care product.

  19. Chemical composition of essential oil from ripe fruit of Schinus terebinthifolius Raddi and evaluation of its activity against wild strains of hospital origin

    PubMed Central

    Cole, E.R.; dos Santos, R.B.; Júnior, V. Lacerda; Martins, J.D.L.; Greco, S.J.; Neto, A. Cunha

    2014-01-01

    The essential oil (EO) composition of ripe fruit of S. terebinthifolius Raddi was analyzed by GC-MS. The oil extraction yielded 6.54 ± 1.06% (w/w). Seventeen compounds were identified, accounting for 91.15% of the total oil, where monoterpenes constituted the main chemical class (85.81%), followed by sesquiterpenes (5.34%). The major monoterpene identified was δ-3-carene (30.37%), followed by limonene (17.44%), α-phellandrene (12.60%) and α-pinene (12.59%). Trans-caryophyllene (1.77%) was the major sesquiterpene identified. The antibacterial activity of the essential oil was evaluated against wild strains of hospital origin (Escherichia coli, Pseudomonas sp., Klebsiella oxytoca, Corynebacterium sp., Staphylococcus aureus, Enterobacter sp., Enterobacter agglomerans, Bacillus sp., Nocardia sp. and Streptococcus group D). The essential oil of the ripe fruit of S. terebinthifolius Raddi has shown to be active against all tested wild strains, with minimum inhibitory concentration ranging from 3.55 μg/mL to 56.86 μg/mL. However, it has revealed some differences in susceptibility: the general, Gram-positive species showed greater sensitivity to the action of EO, which is probably due to the lower structural complexity of their cell walls. PMID:25477913

  20. Immunomodulatory action of Copaifera spp oleoresins on cytokine production by human monocytes.

    PubMed

    Santiago, Karina Basso; Conti, Bruno José; Murbach Teles Andrade, Bruna Fernanda; Mangabeira da Silva, Jonas Joaquim; Rogez, Hervé Louis Ghislain; Crevelin, Eduardo José; Beraldo de Moraes, Luiz Alberto; Veneziani, Rodrigo; Ambrósio, Sérgio Ricardo; Bastos, Jairo Kenupp; Sforcin, José Maurício

    2015-03-01

    Copaifera spp oleoresins have been used in folk medicine for centuries; nevertheless, its immunomodulatory action has not been investigated. Thus, the goal of this study was to characterize different oleoresins and to verify their action on human monocytes regarding pro- and anti-inflammatory cytokine production (TNF-α and IL-10, respectively). The chemical composition of Brazilian Copaifera reticulata, Copaifera duckey and Copaifera multijuga oleoresins was analyzed by HPLC-MS. Cell viability was assessed by MTT method after incubation of cells with Copaifera spp. Noncytotoxic concentrations of oleoresins were incubated with human monocytes from healthy donors, and cytokine production was determined by ELISA. HPLC-MS analysis for terpenes allowed the identification of six diterpene acids and one sesquiterpene acid. Oleoresins exerted no cytotoxic effects on human monocytes. All oleoresins had a similar profile: LPS-induced TNF-α production was maintained by oleoresins, while a significant inhibitory action on IL-10 production was seen. Copaifera oleoresins seemed to exert an activator profile on human monocytes without affecting cell viability. Such effect may be due to the presence of either diterpene or sesquiterpene acids; however, further studies are necessary to determine the involvement of such compounds in Copaifera immunomodulatory effects. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Study of flavour compounds from orange juices by HS-SPME and GC-MS

    NASA Astrophysics Data System (ADS)

    Schmutzer, G.; Avram, V.; Covaciu, F.; Feher, I.; Magdas, A.; David, L.; Moldovan, Z.

    2013-11-01

    The flavour of the orange juices, which gives the taste and odour of the product, is an important criterion about the products quality for consumers. A fresh single strength and two commercial orange juices (obtained from concentrate) flavour profile were studied using a selective and sensitive gas chromatography - mass spectrometry (GC-MS) analytical system, after a solvent free, single step preconcentration and extraction technique, the headspace solid phase microextraction (HP-SPME). In the studied orange juices 55 flavour compounds were detected and classified as belonging to the esters, alcohols, ketones, monoterpenes and sesquiterpenes chemical families. The fresh single strength orange juice was characterized by high amount of esters, monoterpenes and sesquiterpenes. Limonene and valencene were the most abundant flavours in this fresh natural orange juice. Alcohols and ketones were found in higher concentration in the commercial orange juices made from concentrate, than in the single strength products. Nevertheless, in commercial juices the most abundant flavour was limonene and α-terpineol. The results highlight clear differences between fresh singles strength orange juice and juice from concentrate. The orange juices reconstructed from concentrate, made in Romania, present low quantity of flavour compounds, suggesting the absence or a low rearomatization process, but extraneous components were not detected.

  2. Chemical Composition, Enantiomeric Analysis, AEDA Sensorial Evaluation and Antifungal Activity of the Essential Oil from the Ecuadorian Plant Lepechinia mutica Benth (Lamiaceae).

    PubMed

    Ramírez, Jorge; Gilardoni, Gianluca; Jácome, Miriam; Montesinos, José; Rodolfi, Marinella; Guglielminetti, Maria Lidia; Cagliero, Cecila; Bicchi, Carlo; Vidari, Giovanni

    2017-12-01

    This study describes the GC-FID, GC/MS, GC-O, and enantioselective GC analysis of the essential oil hydrodistilled from leaves of Lepechinica mutica (Lamiaceae), collected in Ecuador. GC-FID and GC/MS analyses allowed the characterization and quantification of 79 components, representing 97.3% of the total sample. Sesquiterpene hydrocarbons (38.50%) and monoterpene hydrocarbons (30.59%) were found to be the most abundant volatiles, while oxygenated sesquiterpenes (16.20%) and oxygenated monoterpenes (2.10%) were the minor components. In order to better characterize the oil aroma, the most important odorants, from the sensorial point of view, were identified by Aroma Extract Dilution Analysis (AEDA) GC-O. They were α-Pinene, β-Phellandrene, and Dauca-5,8-diene, exhibiting the characteristic woody, herbaceus, and earthy odors, respectively. Enantioselective GC analysis of L. mutica essential oil revealed the presence of twelve couples and two enantiomerically pure chiral monoterpenoids. Their enantiomeric excesses were from a few percent units to 100%. Moreover, the essential oil exhibited moderate in vitro activity against five fungal strains, being especially effective against M. canis, which is a severe zoophilic dermatophyte causal agent of pet and human infections. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  3. Terpene chemodiversity of relict conifers Picea omorika, Pinus heldreichii, and Pinus peuce, endemic to Balkan.

    PubMed

    Nikolić, Biljana; Ristić, Mihailo; Tešević, Vele; Marin, Petar D; Bojović, Srdjan

    2011-12-01

    Terpenes are often used as ecological and chemotaxonomic markers of plant species, as well as for estimation of geographic variability. Essential oils of relic and Balkan endemic/subendemic conifers, Picea omorika, Pinus heldreichii, and P. peuce, in central part of Balkan Peninsula (Serbia and Montenegro), on the level of terpene classes and common terpene compounds were investigated. In finding terpene combinations, which could show the best diversity between species and their natural populations, several statistical methods were applied. Apart from the content of different terpene classes (P. omorika has the most abundant O-containing monoterpenes and sesquiterpenes; P. heldreichii and P. peuce have the largest abundance of sesquiterpene and monoterpene hydrocarbons, resp.), the species are clearly separated according to terpene profile with 22 common compounds. But, divergences in their populations were established only in combination of several compounds (specific for each species), and they were found to be the results of geomorphologic, climatic, and genetic factors. We found similarities between investigated species and some taxa from literature with respect to terpene composition, possibly due to hybridization and phylogenetic relations. Obtained results are also important regarding to chemotaxonomy, biogeography, phylogeny, and evolution of these taxa. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Two Naturally Occurring Terpenes, Dehydrocostuslactone and Costunolide, Decrease Intracellular GSH Content and Inhibit STAT3 Activation

    PubMed Central

    Butturini, Elena; Cavalieri, Elisabetta; Carcereri de Prati, Alessandra; Darra, Elena; Rigo, Antonella; Shoji, Kazuo; Murayama, Norie; Yamazaki, Hiroshi; Watanabe, Yasuo; Suzuki, Hisanori; Mariotto, Sofia

    2011-01-01

    The main purpose of the present study is to envisage the molecular mechanism of inhibitory action ofdehydrocostuslactone (DCE) andcostunolide (CS), two naturally occurring sesquiterpene lactones, towards the activation of signal transducer and activator of transcription 3 (STAT3). We report that, in human THP-1 cell line, they inhibit IL-6-elicited tyrosine phosphorylation of STAT3 and its DNA binding activity with EC50 of 10 µM with concomitantdown-regulation ofthe phosphorylation of the tyrosine Janus kinases JAK1, JAK2 and Tyk2. Furthermore, these compounds that contain an α-β-unsatured carbonyl moiety and function as potent Michael reaction acceptor, induce a rapid drop in intracellular glutathione (GSH) concentration by direct interaction with it, thereby triggering S-glutathionylation of STAT3. Dehydrocostunolide (HCS), the reduced form of CS lacking only the α-β-unsaturated carbonyl group, fails to exert any inhibitory action. Finally, the glutathione ethylene ester (GEE), the cell permeable GSH form, reverts the inhibitory action of DCE and CS on STAT3 tyrosine phosphorylation. We conclude that these two sesquiterpene lactones are able to induce redox-dependent post-translational modification of cysteine residues of STAT3 protein in order to regulate its function. PMID:21625597

  5. Sesquiterpenoids and phenolics from roots of Taraxacum udum.

    PubMed

    Michalska, Klaudia; Marciniuk, Jolanta; Kisiel, Wanda

    2010-07-01

    From roots of Taraxacum udum, two new and four known sesquiterpene lactones were isolated, together with five known phenolic compounds. The new compounds were characterized as 11beta, 13-dihydrotaraxinic acid and taraxinic acid 6-O-acetyl-beta-glucopyranosyl ester by spectroscopic methods, especially 1D and 2D NMR, and by comparison with structurally related compounds. The plant material was shown to be a good source of taraxinic acid derivatives. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Guapsidial A and Guadials B and C: Three New Meroterpenoids with Unusual Skeletons from the Leaves of Psidium guajava.

    PubMed

    Jian, Yu-Qing; Huang, Xiao-Jun; Zhang, Dong-Mei; Jiang, Ren-Wang; Chen, Min-Feng; Zhao, Bing-Xin; Wang, Ying; Ye, Wen-Cai

    2015-06-15

    A novel sesquiterpene-based Psidium meroterpenoid, possessing an unusual coupling pattern, and two new monoterpene-based meroterpenoids with unprecedented skeletons were isolated from the leaves of Psidium guajava. Their structures and absolute configurations were elucidated by spectroscopic, X-ray diffraction, and computational methods. The plausible biosynthetic pathway of these meroterpenoids as well as their cytotoxicities toward HepG2 and HepG2/ADM cells were also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Seasonal monoterpene and sesquiterpene emissions from Pinus taeda and Pinus virginiana

    EPA Science Inventory

    Seasonal volatile organic compound emission data from loblolly pine (Pinus taeda) and Virginia pine (Pinus virginiana) were collected using branch enclosure techniques in Central North Carolina, USA. Pinus taeda monoterpene emission rates were at least ten times higher than oxyge...

  8. Multi-Season Monoterpene and Sesquiterpene Analysis of Pinus taeda Needle Tissue

    EPA Science Inventory

    Pinus taeda (Loblolly pine) is one of the worlds most important timber crop and accounts for a significant portion of the southeastern U.S. landcover. Biogenic voltile organic compound (BVOC) content was extracted from the tissue material of P. taeda needles and analyzed over a m...

  9. Variability in chemical composition and abundance of the rare tertiary relict Pinus heldreichii in Serbia.

    PubMed

    Bojović, Srdjan; Nikolić, Biljana; Ristić, Mihailo; Orlović, Saša; Veselinović, Milorad; Rakonjac, Ljubinko; Dražić, Dragana

    2011-09-01

    The particular significance of the whitebark pine (Pinus heldreichii Christ.) stems from the fact that it is a tertiary relict and Balkanic subendemite covering a very narrow and intermittent area in Serbia. A representative pool of 48 adult trees originating from three populations, one recently discovered natural (Population I) and two planted populations (Populations II and III) was investigated in order to evaluate the intra- and interpopulation variability of the essential oil of the complete fund of P. heldreichii in Serbia. In the pine-needle-terpene profile, 104 compounds were detected, 84 of which could be identified. Among the essential-oil constituents, monoterpenes and sesquiterpenes dominated, comprising ca. 90% of the essential oil. The terpenic profile of Population I was characterized by a predominance of monoterpenes (e.g., limonene (1), α-pinene, and Δ(3) -carene (4)), while sesquiterpenes (e.g., germacrene D (2) and β-caryophyllene (3)) obviously preponderated in the profile of Populations II and III. This study also demonstrated that the abundance of whitebark pines in Serbia had significantly changed over the last few decades. The number of individuals in the natural population had increased, while the number of individuals in the planted populations had decreased. Today, the whitebark pine fund in Serbia comprises less than 250 trees. 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  10. Does co-inoculation of Lactuca serriola with endophytic and arbuscular mycorrhizal fungi improve plant growth in a polluted environment?

    PubMed

    Ważny, Rafał; Rozpądek, Piotr; Jędrzejczyk, Roman J; Śliwa, Marta; Stojakowska, Anna; Anielska, Teresa; Turnau, Katarzyna

    2018-04-01

    Phytoremediation of polluted sites can be improved by co-inoculation with mycorrhizal and endophytic fungi. In this study, the effects of single- and co-inoculation of Lactuca serriola with an arbuscular mycorrhizal (AM) fungus, Rhizoglomus intraradices, and endophytic fungi, Mucor sp. or Trichoderma asperellum, on plant growth, vitality, toxic metal accumulation, sesquiterpene lactone production and flavonoid concentration in the presence of toxic metals were evaluated. Inoculation with the AM fungus increased biomass yield of the plants grown on non-polluted and polluted substrate. Co-inoculation with the AM fungus and Mucor sp. resulted in increased biomass yield of plants cultivated on the polluted substrate, whereas co-inoculation with T. asperellum and the AM fungus increased plant biomass on the non-polluted substrate. In the presence of Mucor sp., mycorrhizal colonization and arbuscule richness were increased in the non-polluted substrate. Co-inoculation with the AM fungus and Mucor sp. increased Zn concentration in leaves and roots. The concentration of sesquiterpene lactones in plant leaves was decreased by AM fungus inoculation in both substrates. Despite enhanced host plant costs caused by maintaining symbiosis with numerous microorganisms, interaction of wild lettuce with both mycorrhizal and endophytic fungi was more beneficial than that with a single fungus. The study shows the potential of double inoculation in unfavourable environments, including agricultural areas and toxic metal-polluted areas.

  11. GC and GC/MS Analysis of Essential Oil Composition of the Endemic Soqotraen Leucas virgata Balf.f. and Its Antimicrobial and Antioxidant Activities

    PubMed Central

    Mothana, Ramzi A.; Al-Said, Mansour S.; Al-Yahya, Mohammed A.; Al-Rehaily, Adnan J.; Khaled, Jamal M.

    2013-01-01

    Leucas virgata Balf.f. (Lamiaceae) was collected from the Island Soqotra (Yemen) and its essential oil was obtained by hydrodistillation. The chemical composition of the oil was investigated by GC and GC-MS. Moreover, the essential oil was evaluated for its antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria, and one yeast species by using broth micro-dilution assay for minimum inhibitory concentrations (MIC) and antioxidant activity by measuring the scavenging activity of the DPPH radical. The investigation led to the identification of 43 constituents, representing 93.9% of the total oil. The essential oil of L. virgata was characterized by a high content of oxygenated monoterpenes (50.8%). Camphor (20.5%) exo-fenchol (3.4%), fenchon (5.4%), and borneol (3.1%) were identified as the main components. Oxygenated sesquiterpenes were found as the second major group of compounds (21.0%). β-Eudesmol (6.1%) and caryophyllene oxide (5.1%) were the major compounds among oxygenated sesquiterpenes. The results of the antimicrobial assay showed that the oil exhibited a great antibacterial activity against the tested S. aureus, B. subtilis, and E. coli. No activity was found against P. aeruginosa and C. albicans. Moreover, the DPPH-radical scavenging assay exhibited only a moderate antioxidant activity (31%) for the oil at the highest concentration tested (1 mg/mL). PMID:24284402

  12. Phytotoxicity Study on Bidens sulphurea Sch. Bip. as a Preliminary Approach for Weed Control.

    PubMed

    da Silva, Bruna P; Nepomuceno, Mariluce P; Varela, Rosa M; Torres, Ascensión; Molinillo, José M G; Alves, Pedro L C A; Macías, Francisco A

    2017-06-28

    Farmers of the Franca region in Brazil observed that Bidens sulphurea was able to eliminate the Panicum maximum weed, which infected coffee plantations, without affecting the crop. In an effort to determine if the inhibitory effects observed were due to the presence of phytotoxic compounds from leaves and roots, a biodirected isolation and spectroscopic characterization has been carried out. The leaf dichloromethane and root acetone extracts were the most active, and the former appeared to be more phytotoxic to the target species, including four weeds. A total of 26 compounds were isolated from leaves and roots, and four of them are described here for the first time. The major compounds in the leaf extract are the sesquiterpene lactones costunolide, reynosin, and santamarine, and these showed marked inhibition. Amaranthus viridis and Panicum maximum were the most sensitive species of the weeds tested. These three phytotoxic lactones were also evaluated on A. viridis and P. maximum under hydroponic conditions. A. viridis was the most affected species with the three lactones, and santamarine was the most phytotoxic compound on both. This is the first time that the phytotoxicity of sesquiterpene lactones has been evaluated on hydroponic culture. The work described here is a preliminary approach for the use of B. sulphurea for weed control in agriculture, both as a cover crop and by use of its components as natural herbicide leads.

  13. Composition of the volatile fraction of a sample of Brazilian green propolic and its phytotoxic activity.

    PubMed

    Fernandes-Silva, Caroline C; Lima, Carolina A; Negri, Giuseppina; Salatino, Maria L F; Salatino, Antonio; Mayworm, Marco A S

    2015-12-01

    Propolis is a resinous material produced by honeybees, containing mainly beeswax and plant material. Despite the wide spectrum of biological activity of propolis, to our knowledge no studies have been carried out about phytotoxic properties of Brazilian propolis and its constituents. The aims of this study were to analyze the chemical composition and to evaluate the phytotoxic activity of the volatile fraction of a sample of Brazilian green propolis. Main constituents are the phenylpropanoid 3-prenylcinnamic acid allyl ester (26.3%) and the sesquiterpene spathulenol (23.4%). Several other sesquiterpenes and phenylpropanoids, in addition to linalool and α-terpineol (monoterpenes), were also detected. The activity of solutions of the volatile fraction at 1.0, 0.5 and 0.1% was tested on lettuce seeds and seedlings. The solution at 1% inhibited completely the seed germination and solutions at 0.1 and 0.5% reduced the germination rate index. The solution at 0.5% reduced the growth of the hypocotyl-radicle axis and the development of the cotyledon leaf. The chemical composition of the volatile fraction of this Brazilian green propolis is different from those previously described, and these results may contribute to a better understanding about the chemical variations in propolis. The volatile fraction of Brazilian green propolis influences both germination of seed lettuce and the growth of its seedlings, showing an phytotoxic potential. © 2014 Society of Chemical Industry.

  14. Overproduction of isoprenoids by Saccharomyces cerevisiae in a synthetic grape juice medium in the absence of plant genes.

    PubMed

    Camesasca, L; Minteguiaga, M; Fariña, L; Salzman, V; Aguilar, P S; Gaggero, C; Carrau, F

    2018-06-06

    The objective of this work is to demonstrate if the hexaprenyl pyrophosphate synthetase Coq1p might be involved in monoterpenes synthesis in Saccharomyces cerevisiae, although its currently known function in yeast is to catalyze the first step in ubiquinone biosynthesis. However, in a BY4743 laboratory strain, the presence of an empty plasmid in a chemically defined grape juice medium results in a statistically significant increase of linalool, (E)-nerolidol and (E,E)-farnesol. When COQ1 is overexpressed from a plasmid, the levels of the volatile isoprenoids are further increased. Furthermore, overexpression of COQ1 in the same genetic context but with a mutated farnesyl pyrophosphate synthetase (erg20 mutation K197E), results in statistically significant higher levels of linalool (above 750 μg/L), geraniol, α-terpineol, and the sesquiterpenes, farnesol and nerolidol (total concentration of volatile isoprenoids surpasses 1300 μg/L). We show that the levels of monoterpenes and sesquiterpenes that S. cerevisiae can produce, in the absence of plant genes, depend on the composition of the medium and the genetic context. To the best of our knowledge, this is the highest level of linalool produced by S. cerevisiae up to now. Further research will be needed for understanding how COQ1 and the medium composition might interact to increase flavor complexity of fermented beverages. Copyright © 2018. Published by Elsevier B.V.

  15. Volatiles and Nonvolatiles in Flourensia campestris Griseb. (Asteraceae), How Much Do Capitate Glandular Trichomes Matter?

    PubMed

    Piazza, Leonardo A; López, Daniela; Silva, Mariana P; López Rivilli, Marisa J; Tourn, Mónica G; Cantero, Juan J; Scopel, Ana L

    2018-03-01

    The distribution and ultrastructure of capitate glandular trichomes (GTs) in Flourensia species (Asteraceae) have been recently elucidated, but their metabolic activity and potential biological function remain unexplored. Selective nonvolatile metabolites from isolated GTs were strikingly similar to those found on leaf surfaces. The phytotoxic allelochemical sesquiterpene (-)-hamanasic acid A ((-)-HAA) was the major constituent (ca. 40%) in GTs. Although GTs are quaternary ammonium compounds (QACs)-accumulating species, glycine betaine was not found in GTs; it was only present in the leaf mesophyll. Two (-)-HAA accompanying surface secreted products: compounds 4-hydroxyacetophenone (piceol; 1) and 2-hydroxy-5-methoxyacetophenone (2), which were isolated and fully characterized (GC/MS, NMR), were present in the volatiles found in GTs. The essential oils of fresh leaves revealed ca. 33% monoterpenes, 26% hydrocarbon- and 30% oxygenated sesquiterpenes, most of them related to cadinene and bisabolene derivatives. Present results suggest a main role of GTs in determining the volatile and nonvolatile composition of F. campestris leaves. Based on the known activities of the compounds identified, it can be suggested that GTs in F. campestris would play key ecological functions in plant-pathogen and plant-plant interactions. In addition, the strikingly high contribution of compounds derived from cadinene and bisabolene pathways, highlights the potential of this species as a source of high-valued bioproducts. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  16. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot1[OPEN

    PubMed Central

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-01-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  17. Influence of various growth parameters on fungal growth and volatile metabolite production by indoor molds.

    PubMed

    Polizzi, Viviana; Adams, An; De Saeger, Sarah; Van Peteghem, Carlos; Moretti, Antonio; De Kimpe, Norbert

    2012-01-01

    A Penicillium polonicum, an Aspergillus ustus and a Periconia britannica strain were isolated from water-damaged environments and the production of microbial volatile organic compounds (MVOCs) was investigated by means of headspace solid-phase microextraction followed by GC-MS analysis. The most important MVOCs produced were 2-methylisoborneol, geosmin and daucane-type sesquiterpenes for P. polonicum, 1-octen-3-ol, 3-octanone, germacrene D, δ-cadinene and other sesquiterpenes for A. ustus and the volatile mycotoxin precursor aristolochene together with valencene, α-selinene and β-selinene for P. britannica. Different growth conditions (substrate, temperature, relative humidity) were selected, resembling indoor parameters, to investigate their influence on fungal metabolism in relation with the sick building syndrome and the results were compared with two other fungal strains previously analyzed under the same conditions. In general, the range of MVOCs and the emitted quantities were larger on malt extract agar than on wallpaper and plasterboard, but, overall, the main MVOC profile was conserved also on the two building materials tested. The influence of temperature and relative humidity on growth and metabolism is different for different fungal species, and two main patterns of behavior could be distinguished. Results show that, even at suboptimal conditions for growth, production of fungal volatiles can be significant. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi.

    PubMed

    Malmierca, Mónica G; McCormick, Susan P; Cardoza, Rosa E; Alexander, Nancy J; Monte, Enrique; Gutiérrez, Santiago

    2015-08-01

    Trichothecenes are phytotoxic sesquiterpenic mycotoxins that can act as virulence factors in plant diseases. Harzianum A (HA) is a non-phytotoxic trichothecene produced by Trichoderma arundinaceum. The first step in HA biosynthesis is the conversion of farnesyl diphosphate to trichodiene (TD), a volatile organic compound (VOC), catalysed by a sesquiterpene synthase encoded by the tri5 gene. Expression of tri5 in the biocontrol strain Trichoderma harzianum CECT 2413 resulted in production of TD in parallel with a reduction of ergosterol biosynthesis and an unexpected increase in the level of squalene. Transformants expressing tri5 displayed low chitinase activity and induced expression of Botrytis cinerea BOT genes, although their total antagonistic potential against phytopathogenic fungi was not reduced. VOCs released by the tri5-transformant induced expression of tomato defence genes related to salicylic acid (SA), and TD itself strongly induced the expression of SA-responsive genes and reduced the development of lateral roots. Together, these results suggest that TD acts as a signalling VOC in the interactions of Trichoderma with plants and other microorganisms by modulating the perception of this fungus to a given environment. Moreover, the TD ability to induce systemic defences indicates that complex trichothecene structures may not be necessary for inducing such responses. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. GC/MS Analysis of the Essential Oil of Vernonia cinerea.

    PubMed

    Joshi, Rajesh K

    2015-07-01

    The hydro-distilled essential oil obtained from the roots of V. cinerea Less. (Asteraceae) was investigated by gas chromatography equipped with flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). Twenty-five constituents were identified, which represented 97.4% of the total oil. The major compounds were α-muurolene (30.7%), β-caryophyllene (9.6%), α-selinene (8.7%), cyperene (6.7%) and α-gurjunene (6.5%). The essential oil was dominated by sesquiterpene hydrocarbons (87.8%).

  20. Microtropiosides A-F: ent-Labdane diterpenoid glucosides from the leaves of Microtropis japonica (Celastraceae).

    PubMed

    Koyama, Yuka; Matsunami, Katsuyoshi; Otsuka, Hideaki; Shinzato, Takakazu; Takeda, Yoshio

    2010-04-01

    From a 1-BuOH-soluble fraction of a MeOH extract of the leaves of Microtropis japonica, collected in the Okinawa islands, six ent-labdane glucosides, named microtropiosides A-F, were isolated together with one known acyclic sesquiterpene glucoside. Their structures were elucidated by a combination of spectroscopic analyses, and their absolute configurations determined by application of the beta-D-glucopyranosylation-induced shift-trend rule in (13)C NMR spectroscopy and the modified Mosher's method. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Antiprotozoal activity of Neurolaena lobata.

    PubMed

    Berger, I; Passreiter, C M; Cáceres, A; Kubelka, W

    2001-06-01

    Extracts, fractions and sesquiterpene lactones from Neurolaena lobata (L.) R. Br. (Asteraceae), a traditional medicinal plant from Guatemala, were tested in vitro against Leishmania spp. promastigotes, Trypanosoma cruzi trypomastigotes and epimastigotes and Trichomonas vaginalis trophozoites. The ethanol extract inhibited the parasite growth of L. mexicana, T. cruzi and T. vaginalis significantly. The pure germacranolides 1 and a mixture of 2 and 3, isolated from the ethonal extract, were highly active against L. mexicana and T. cruzi. Copyright 2001 John Wiley & Sons, Ltd.

  2. Composition of the essential oil of Helichrysum chasmolycicum growing wild in Turkey.

    PubMed

    Chalchat, J C; Ozcan, M M

    2006-01-01

    The chemical compositions of the essential oil obtained from the aerial parts of Helichrysum chasmolycicum were analyzed by gas chromatography and gas chromatography-mass spectrometry. From the 57 identified constituents, representing 66.55% of the oil, the main constituents of the oil were beta-caryophyllene (27.6%), beta-selinene (8.9%), alpha-selinene (8.4%), caryophyllene oxide (7.3%), and carvacrol (2.4%). The essential oil was almost totally characterized by sesquiterpene hydrocarbons such as beta-caryophyllene and alpha- and beta-selinene.

  3. Total synthesis of panicein A2

    PubMed Central

    Yeung, Lili; Pilkington, Lisa I; Cadelis, Melissa M; Copp, Brent R

    2015-01-01

    Summary The first total synthesis of the unusual aromatic sesquiterpene panicein A2 is reported and the structure of the natural product has been confirmed. When tested by the NCI against a range of human cancer cell lines, it was found that panicein A2 exhibits very little antiproliferative activity at 10 μM – an observation that is at odds with the earlier report that stated panicein A2 exhibits in vitro cytotoxicity against a number of tumour cell lines. PMID:26664619

  4. Desacetylmatricarin, an anti-allergic component from Taraxacum platycarpum.

    PubMed

    Cheong, H; Choi, E J; Yoo, G S; Kim, K M; Ryu, S Y; Ho, C

    1998-08-01

    The bioassay-guided fractionation of Taraxacum platycarpum (Compositae) extract led to the isolation of a desacetylmatricarin (1) as an active principle responsible for the anti-allergic property. It showed a potent inhibitory activity upon the beta-hexosaminidase release from RBL-2H3 cells in a dose-dependent manner and the IC50 was 7.5 microM. Two structurally related guaianolide sesquiterpenes, achillin and leucodin, were also examined and their IC50 values were determined as 100 microM and 80 microM, respectively.

  5. Isometachromin, a new cytotoxic sesquiterpenoid from a deep water sponge of the family Spongiidae.

    PubMed

    McConnell, O J; Longley, R; Gunasekera, M

    1992-09-15

    Isometachromin (1), a new sesquiterpene-quinone that is related structurally to metachromin C (2), and the known compounds ilimaquinone (3) and 5-epi-ilimaquinone (4), were isolated from a deep water sponge in the family Spongiidae; the structure of isometachromin was elucidated by spectral methods. Isometachromin exhibits in vitro cytotoxicity against the human lung cancer cell line A549 (IC50 = 2.6 micrograms/ml), but not against P388 murine leukemia (IC 50 > or equal to 10 micrograms/ml) and also exhibits antimicrobial activity.

  6. Yomogin, an inhibitor of nitric oxide production in LPS-activated macrophages.

    PubMed

    Ryu, J H; Lee, H J; Jeong, Y S; Ryu, S Y; Han, Y N

    1998-08-01

    In activated macrophages the inducible form of nitric oxide synthase (i-NOS) generates high amounts of toxic mediator, nitric oxide (NO) which contributes to the circulatory failure associated with septic shock. A sesquiterpene lactone compound (yomogin) isolated from medicinal plant Artemisia princeps Pampan inhibited the production of NO in LPS-activated RAW 264.7 cells by suppressing i-NOS enzyme expression. Thus, yomogin may be a useful candidate for the development of new drugs to treat endotoxemia and inflammation accompanied by the overproduction of NO.

  7. F-12509A, a new sphingosine kinase inhibitor, produced by a discomycete.

    PubMed

    Kono, K; Tanaka, M; Ogita, T; Hosoya, T; Kohama, T

    2000-05-01

    In the course of our screening for inhibitors of sphingosine kinase, we found an active compound from a culture broth of a discomycete, Trichopezizella barbata SANK 25395. The structure of the compound, named F-12509A, was elucidated by a combination of spectroscopic analyses, to be a new sesquiterpene quinone consisting of a drimane moiety and a dihydroxybenzoquinone. Enzyme kinetic analyses showed that F-12509A inhibits sphingosine kinase activity in a competitive manner with respect to sphingosine, with a Ki value of 18 microM.

  8. Chemodiversity of a Scots pine stand and implications for terpene air concentrations

    NASA Astrophysics Data System (ADS)

    Bäck, J.; Aalto, J.; Henriksson, M.; Hakola, H.; He, Q.; Boy, M.

    2012-02-01

    Atmospheric chemistry in background areas is strongly influenced by natural vegetation. Coniferous forests are known to produce large quantities of volatile vapors, especially terpenes. These compounds are reactive in the atmosphere, and contribute to the formation and growth of atmospheric new particles. Our aim was to analyze the variability of mono- and sesquiterpene emissions between Scots pine trees, in order to clarify the potential errors caused by using emission data obtained from only a few trees in atmospheric chemistry models. We also aimed at testing if stand history and seed origin has an influence on the chemotypic diversity. The inherited, chemotypic variability in mono- and sesquiterpene emission was studied in a seemingly homogeneous 48 yr-old stand in Southern Finland, where two areas differing in their stand regeneration history could be distinguished. Sampling was conducted in August 2009. Terpene concentrations in the air had been measured at the same site for seven years prior to branch sampling for chemotypes. Two main compounds, α-pinene and Δ3-carene formed together 40-97% of the monoterpene proportions in both the branch emissions and in the air concentrations. The data showed a bimodal distribution in emission composition, in particular in Δ3-carene emission within the studied population. 10% of the trees emitted mainly α-pinene and no Δ3-carene at all, whereas 20% of the trees where characterized as high Δ3-carene emitters (Δ3-carene forming >80% of total emitted monoterpene spectrum). An intermediate group of trees emitted equal amounts of both α-pinene and Δ3-carene. The emission pattern of trees at the area established using seeding as the artificial regeneration method differed from the naturally regenerated or planted trees, being mainly high Δ3-carene emitters. Some differences were also seen in e.g. camphene and limonene emissions between chemotypes, but sesquiterpene emissions did not differ significantly between trees

  9. Chemodiversity in terpene emissions at a boreal Scots pine stand

    NASA Astrophysics Data System (ADS)

    Bäck, J.; Aalto, J.; Henriksson, M.; Hakola, H.; He, Q.; Boy, M.

    2011-10-01

    Atmospheric chemistry in background areas is strongly influenced by natural vegetation. Coniferous forests are known to produce large quantities of volatile vapors, especially terpenes to the surrounding air. These compounds are reactive in the atmosphere, and contribute to the formation and growth of atmospheric new particles. Our aim was to analyze the variability of mono- and sesquiterpene emissions between Scots pine trees, in order to clarify the potential errors caused by using emission data obtained from only a few trees in atmospheric chemistry models. We also aimed at testing if stand history and seed origin has an influence on the chemotypic diversity. The inherited, chemotypic variability in mono- and sesquiterpene emission was studied in a seemingly homogeneous 47-yr-old stand in Southern Finland, where two areas differing in their stand regeneration history could be distinguished. Sampling was conducted in August 2009. Terpene concentrations in the air had been measured at the same site for seven years prior to branch sampling for chemotypes. Two main compounds, α-pinene and Δ3-carene formed together 40-97% of the monoterpene proportions in both the branch emissions and in the air concentrations. The data showed a bimodal distribution in emission composition, in particular in Δ3-carene emission within the studied population. 10% of the trees emitted mainly α-pinene and no Δ3-carene at all, whereas 20% of the trees where characterized as high Δ3-carene emitters (Δ3-carene forming >80% of total emitted monoterpene spectrum). An intermediate group of trees emitted equal amounts of both α-pinene and Δ3-carene. The emission pattern of trees at the area established using seeding as the artificial regeneration method differed from the naturally regenerated or planted trees, being mainly high Δ3-carene emitters. Some differences were also seen in e.g. camphene and limonene emissions between chemotypes, but sesquiterpene emissions did not differ

  10. Boreal forest BVOC exchange: emissions versus in-canopy sinks

    NASA Astrophysics Data System (ADS)

    Zhou, Putian; Ganzeveld, Laurens; Taipale, Ditte; Rannik, Üllar; Rantala, Pekka; Petteri Rissanen, Matti; Chen, Dean; Boy, Michael

    2017-12-01

    A multilayer gas dry deposition model has been developed and implemented into a one-dimensional chemical transport model SOSAA (model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to calculate the dry deposition velocities for all the gas species included in the chemistry scheme. The new model was used to analyse in-canopy sources and sinks, including gas emissions, chemical production and loss, dry deposition, and turbulent transport of 12 featured biogenic volatile organic compounds (BVOCs) or groups of BVOCs (e.g. monoterpenes, isoprene+2-methyl-3-buten-2-ol (MBO), sesquiterpenes, and oxidation products of mono- and sesquiterpenes) in July 2010 at the boreal forest site SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations). According to the significance of modelled monthly-averaged individual source and sink terms inside the canopy, the selected BVOCs were classified into five categories: 1. Most of emitted gases are transported out of the canopy (monoterpenes, isoprene + MBO). 2. Chemical reactions remove a significant portion of emitted gases (sesquiterpenes). 3. Bidirectional fluxes occur since both emission and dry deposition are crucial for the in-canopy concentration tendency (acetaldehyde, methanol, acetone, formaldehyde). 4. Gases removed by deposition inside the canopy are compensated for by the gases transported from above the canopy (acetol, pinic acid, β-caryophyllene's oxidation product BCSOZOH). 5. The chemical production is comparable to the sink by deposition (isoprene's oxidation products ISOP34OOH and ISOP34NO3). Most of the simulated sources and sinks were located above about 0.2 hc (canopy height) for oxidation products and above about 0.4 hc for emitted species except formaldehyde. In addition, soil deposition (including deposition onto understorey vegetation) contributed 11-61 % to the overall in-canopy deposition. The emission sources peaked at about 0.8-0.9 hc, which was higher than 0.6 hc

  11. SUMO-fusion, purification, and characterization of a (+)-zizaene synthase from Chrysopogon zizanioides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartwig, S.; Frister, T.; Alemdar, S.

    2015-03-20

    An uncharacterized plant cDNA coding for a polypeptide presumably having sesquiterpene synthase activity, was expressed in soluble and active form. Two expression strategies were evaluated in Escherichia coli. The enzyme was fused to a highly soluble SUMO domain, in addition to being produced in an unfused form by a cold-shock expression system. Yields up to ∼325 mg/L{sup −1} were achieved in batch cultivations. The 6x-His-tagged enzyme was purified employing an Ni{sup 2+}-IMAC-based procedure. Identity of the protein was established by Western Blot analysis as well as peptide mass fingerprinting. A molecular mass of 64 kDa and an isoelectric point of pImore » 4.95 were determined by 2D gel electrophoresis. Cleavage of the fusion domain was possible by digestion with specific SUMO protease. The synthase was active in Mg{sup 2+} containing buffer and catalyzed the production of (+)-zizaene (syn. khusimene), a precursor of khusimol, from farnesyl diphosphate. Product identity was confirmed by GC–MS and comparison of retention indices. Enzyme kinetics were determined by measuring initial reaction rates for the product, using varying substrate concentrations. By assuming a Michaelis–Menten model, kinetic parameters of K{sub M} = 1.111 μM (±0.113), v{sub max} = 0.3245 μM min{sup −1} (±0.0035), k{sub cat} = 2.95 min{sup −1}, as well as a catalytic efficiency k{sub cat}/K{sub M} = 4.43 × 10{sup 4} M{sup −1} s{sup −1} were calculated. Fusion to a SUMO moiety can substantially increase soluble expression levels of certain hard to express terpene synthases in E. coli. The kinetic data determined for the recombinant synthase are comparable to other described plant sesquiterpene synthases and in the typical range of enzymes belonging to the secondary metabolism. This leaves potential for optimizing catalytic parameters through methods like directed evolution. - Highlights: • Uncharacterized (+)-zizaene synthase from C. zizanoides was

  12. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae.

    PubMed

    Paramasivan, Kalaivani; Mutturi, Sarma

    2017-12-01

    Terpenes are natural products with a remarkable diversity in their chemical structures and they hold a significant market share commercially owing to their distinct applications. These potential molecules are usually derived from terrestrial plants, marine and microbial sources. In vitro production of terpenes using plant tissue culture and plant metabolic engineering, although receiving some success, the complexity in downstream processing because of the interference of phenolics and product commercialization due to regulations that are significant concerns. Industrial workhorses' viz., Escherichia coli and Saccharomyces cerevisiae have become microorganisms to produce non-native terpenes in order to address critical issues such as demand-supply imbalance, sustainability and commercial viability. S. cerevisiae enjoys several advantages for synthesizing non-native terpenes with the most significant being the compatibility for expressing cytochrome P450 enzymes from plant origin. Moreover, achievement of high titers such as 40 g/l of amorphadiene, a sesquiterpene, boosts commercial interest and encourages the researchers to envisage both molecular and process strategies for developing yeast cell factories to produce these compounds. This review contains a brief consideration of existing strategies to engineer S. cerevisiae toward the synthesis of terpene molecules. Some of the common targets for synthesis of terpenes in S. cerevisiae are as follows: overexpression of tHMG1, ERG20, upc2-1 in case of all classes of terpenes; repression of ERG9 by replacement of the native promoter with a repressive methionine promoter in case of mono-, di- and sesquiterpenes; overexpression of BTS1 in case of di- and tetraterpenes. Site-directed mutagenesis such as Upc2p (G888A) in case of all classes of terpenes, ERG20p (K197G) in case of monoterpenes, HMG2p (K6R) in case of mono-, di- and sesquiterpenes could be some generic targets. Efforts are made to consolidate various studies

  13. Increased biogenic volatile organic compounds emission in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, H.; Liu, H.; Wu, Q.

    2017-12-01

    Beijing is suffering the severe ozone pollution during the summer period and reliable biogenic volatile organic compounds (BVOCs) emission inventories would help to understand the local ozone pollution. According to the National Forest Resource Survey (NFRS), the forest coverage rate rises from 20.56% to 35.84% during 1998-2013 in Beijing. In this study, we recalculated local BVOC inventory in Beijing based on the latest MEGAN v2.1 model and satellite products. We adopted three independent leaf area index (LAI) products and three independent land cover (LC) products and designed five experiments, E1-E5, to test the sensitivity and uncertainty of local BVOC inventory. According to the estimation from the model, we conclude that: (1) the total amount of BVOCs is about 73.99 98.88 Gg. The estimated annual amount of isoprene, monoterpene, sesquiterpene and other VOC kinds are 38.79 50.93 Gg, 8.39 10.95 Gg, 1.04 1.49 Gg and 25.77 35.64 Gg, respectively. (2) Indicated by results of baseline experiment (E1), the proportions of isoprene, monoterpene, sesquiterpene and other VOCs are 52.57 %, 11.09 %, 1.39 % and 34.95%. (3) The variance of GEOV2 and GLASS LAI products only lead to 1% difference of total BVOC emissions. (4) The difference of PFTs affects the spatial distribution and emission density. The E4 with MODIS land cover leads to about 5.0% decline of BVOC compared with the E1 because of uneven meteorological conditions, e.g. DSW. The CCI-LC leads to a sharp decline of total BVOC emissions with percentage of 25.95%, which is owing to the relative low cover percentage of forest. (5) The broadleaf trees, as the dominant contributor, account for the 68.25% total annual BVOCs in Beijing in 2013. For the specific species, broadleaf trees contribute 94.52% of isoprene, 53.30% of monoterpene, 53.78% of sesquiterpene and 34.06% of other VOCs. (6) The estimated emission of BVOC in this study is much higher than the earlier estimation, and the development of forest area as

  14. Isolation and Characterization of Three New Monoterpene Synthases from Artemisia annua

    PubMed Central

    Ruan, Ju-Xin; Li, Jian-Xu; Fang, Xin; Wang, Ling-Jian; Hu, Wen-Li; Chen, Xiao-Ya; Yang, Chang-Qing

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography–mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant–environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant. PMID:27242840

  15. Comparison of the chemical composition of three species of smartweed (genus Persicaria) with a focus on drimane sesquiterpenoids.

    PubMed

    Prota, N; Mumm, R; Bouwmeester, H J; Jongsma, M A

    2014-12-01

    The genus Persicaria is known to include species accumulating drimane sesquiterpenoids, but a comparative analysis highlighting the compositional differences has not been done. In this study, the secondary metabolites of both flowers and leaves of Persicariahydropiper, Persicariamaculosa and Persicariaminor, three species which occur in the same habitat, were compared. Using gas chromatography-mass spectrometry (GC-MS) analysis of extracts, overall 21/29 identified compounds in extracts were sesquiterpenoids and 5/29 were drimanes. Polygodial was detected in all species, though not in every sample of P. maculosa. On average, P. hydropiper flowers contained about 6.2 mg g FW(-1) of polygodial, but P. minor flowers had 200-fold, and P. maculosa 100,000 fold lower concentrations. Comparatively, also other sesquiterpenes were much lower in those species, suggesting the fitness benefit to depend on either investing a lot or not at all in terpenoid-based secondary defences. For P. hydropiper, effects of flower and leaf development and headspace volatiles were analysed as well. The flower stage immediately after fertilisation was the one with the highest content of drimane sesquiterpenoids and leaves contained about 10-fold less of these compounds compared to flowers. The headspace of P. hydropiper contained 8 compounds: one monoterpene, one alkyl aldehyde and six sesquiterpenes, but none were drimanes. The potential ecological significance of the presence or absence of drimane sesquiterpenoids and other metabolites for these plant species are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Presence of Putative Male-Produced Sex Pheromone in Lutzomyia cruciata (Diptera: Psychodidae), Vector of Leishmania mexicana.

    PubMed

    Serrano, A K; Rojas, J C; Cruz-López, L C; Malo, Edi A; Mikery, O F; Castillo, A

    2016-11-01

    Lutzomyia cruciata (Coquillet) is a vector of cutaneous leishmaniasis in Mexico and Central America. However, several aspects of its ecology and behavior are unknown, including whether a male pheromone partially mediates the sexual behavior of this sand fly. In this study, we evaluated the behavioral response of females to male abdominal extracts in a Y-tube olfactometer. The volatile compounds from male abdominal extracts were identified by gas chromatography-mass spectrometry and compared with those of female abdominal extracts. Finally, the disseminating structures of the putative sex pheromone were examined by scanning electron microscopy in the male abdomen. Females were more attracted to male abdominal extract than to the hexane control, suggesting the presence of male-produced sex pheromone. The male abdominal extracts were characterized by the presence of 12 sesquiterpene compounds. The major component, an unknown sesquiterpene with an abundance of 60%, had a mass spectrum with molecular ion of m/z 262. In contrast, the abdominal female extracts contained saturated fatty acids. Finally, we detected the presence of small "papules" with a mammiform morphology distributed on the abdominal surface of tergites IV-VII of male Lu. cruciata These structures are not present in females. We conclude that Lu. cruciata males likely produce a pheromone involved in attracting or courting females. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Genetic and Metabolite Diversity of Sardinian Populations of Helichrysum italicum

    PubMed Central

    Melito, Sara; Sias, Angela; Petretto, Giacomo L.; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Background Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. Key results The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. Conclusions The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil. PMID:24260149

  18. Alantolactone and Isoalantolactone Prevent Amyloid β25-35 -induced Toxicity in Mouse Cortical Neurons and Scopolamine-induced Cognitive Impairment in Mice.

    PubMed

    Seo, Ji Yeon; Lim, Soon Sung; Kim, Jiyoung; Lee, Ki Won; Kim, Jong-Sang

    2017-05-01

    Given the evidence for detoxifying/antioxidant enzyme-inducing activities by alantolactone (AL) and isoalantolactone (IAL), the purpose of this study was to investigate the effects of AL and IAL on Aβ 25-35 -induced cell death in mouse cortical neuron cells and to determine their effects on scopolamine-induced amnesia in mice. Our data demonstrated that both compounds effectively attenuated the cytotoxicity of Aβ 25-35 (10 μM) in neuronal cells derived from the mouse cerebral cortex. It was also found that the production of intracellular reactive oxygen species, including superoxide anion induced by Aβ 25-35 , was inhibited. Moreover, the administration of the sesquiterpenes reversed scopolamine-induced cognitive impairments as assessed by Morris water, Y-maze, and the passive avoidance tests, and the compounds decreased acetylcholinesterase (AChE) activities in a dose-dependent manner. Interestingly, AL and IAL did not improve scopolamine-induced cognitive deficit in Nrf2 -/- mice, suggesting that memory improvement by sesquiterpenes was mediated not only by the activation of the Nrf2 signaling pathway but also by their inhibitory activity against AChE. In conclusion, our results showed that AL and IAL had neuroprotective effects and reversed cognitive impairments induced by scopolamine in a mouse model. Therefore, AL and IAL deserve further study as potential therapeutic agents for reactive oxygen species-related neurodegenerative diseases. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation.

    PubMed

    Liu, Zhenhua; Boachon, Benoît; Lugan, Raphaël; Tavares, Raquel; Erhardt, Mathieu; Mutterer, Jérôme; Demais, Valérie; Pateyron, Stéphanie; Brunaud, Véronique; Ohnishi, Toshiyuki; Pencik, Ales; Achard, Patrick; Gong, Fan; Hedden, Peter; Werck-Reichhart, Danièle; Renault, Hugues

    2015-12-07

    Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  20. Biochemical analysis of 'kerosene tree' Hymenaea courbaril L. under heat stress.

    PubMed

    Gupta, Dinesh; Eldakak, Moustafa; Rohila, Jai S; Basu, Chhandak

    2014-01-01

    Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants.

  1. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei.

    PubMed

    Afoulous, Samia; Ferhout, Hicham; Raoelison, Emmanuel Guy; Valentin, Alexis; Moukarzel, Béatrice; Couderc, François; Bouajila, Jalloul

    2013-06-01

    The essential oil from Cedrelopsis grevei leaves, an aromatic and medicinal plant from Madagascar, is widely used in folk medicine. Essential oil was characterized by GC-MS and quantified by GC-FID. Sixty-four components were identified. The major constituents were: (E)-β-farnesene (27.61%), δ-cadinene (14.48%), α-copaene (7.65%) and β-elemene (6.96%). The essential oil contained a complex mixture consisting mainly sesquiterpene hydrocarbons (83.42%) and generally sesquiterpenes (98.91%). The essential oil was tested cytotoxic (on human breast cancer cells MCF-7), antimalarial (Plasmodium falciparum), antiinflammatory and antioxidant (ABTS and DPPH assays) activities. C. grevei essential oil was active against MCF-7 cell lines (IC50=21.5 mg/L), against P. falciparum, (IC50=17.5mg/L) and antiinflammatory (IC50=21.33 mg/L). The essential oil exhibited poor antioxidant activity against DPPH (IC50>1000 mg/L) and ABTS (IC50=110 mg/L) assays. A bibliographical review was carried out of all essential oils identified and tested with respect to antiplasmodial, anticancer and antiinflammatory activities. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial, anticancer and antiinflammatory). According to the obtained correlations, 1,4-cadinadiene (R(2)=0.61) presented a higher relationship with antimalarial activity. However, only (Z)-β-farnesene (R(2)=0.73) showed a significant correlation for anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Characterization of the first naturally thermostable terpene synthases and development of strategies to improve thermostability in this family of enzymes.

    PubMed

    Styles, Matthew Q; Nesbitt, Edward A; Marr, Scott; Hutchby, Marc; Leak, David J

    2017-06-01

    The terpenoid family of natural products is being targeted for heterologous microbial production as a cheaper and more reliable alternative to extraction from plants. The key enzyme responsible for diversification of terpene structure is the class-I terpene synthase (TS), and these often require engineering to improve properties such as thermostability, robustness and catalytic activity before they are suitable for industrial use. Improving thermostability typically relies on screening a large number of mutants, as there are no naturally thermostable TSs described upon which to base rational design decisions. We have characterized the first examples of natural TSs exhibiting thermostability, which catalyse the formation of the sesquiterpene τ-muurolol at temperatures up to 78 °C. We also report an enzyme with a k cat value of 0.95 s -1 at 65 °C, the highest k cat recorded for a bacterial sesquiterpene synthase. In turn, these thermostable enzymes were used as a model to inform the rational engineering of another TS, with the same specificity but low sequence identity to the model. The newly engineered variant displayed increased thermostability and turnover. Given the high structural homology of the class-I TS domain, this approach could be generally applicable to improving the properties of other enzymes in this class. Model data are available in the PMDB database under the accession number PM0080780. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  3. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE PAGES

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; ...

    2016-04-05

    Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt −1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through amore » combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated ( R 2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  4. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum.

    PubMed

    Melito, Sara; Sias, Angela; Petretto, Giacomo L; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil.

  5. Nerolidol production in agroinfiltrated tobacco: Impact of protein stability and membrane targeting of strawberry (Fragraria ananassa) NEROLIDOL SYNTHASE1.

    PubMed

    Andrade, Paola; Manzano, David; Ramirez-Estrada, Karla; Caudepon, Daniel; Arro, Montserrat; Ferrer, Albert; Phillips, Michael A

    2018-02-01

    The sesquiterpene alcohol nerolidol, synthesized from farnesyl diphosphate (FDP), mediates plant-insect interactions across multiple trophic levels with major implications for pest management in agriculture. We compared nerolidol engineering strategies in tobacco using agroinfiltration to transiently express strawberry (Fragraria ananassa) linalool/nerolidol synthase (FaNES1) either at the endoplasmic reticulum (ER) or in the cytosol as a soluble protein. Using solid phase microextraction and gas chromatography-mass spectrometry (SPME-GCMS), we have determined that FaNES1 directed to the ER via fusion to the transmembrane domain of squalene synthase or hydroxymethylglutaryl - CoA reductase displayed significant improvements in terms of transcript levels, protein accumulation, and volatile production when compared to its cytosolic form. However, the highest levels of nerolidol production were observed when FaNES1 was fused to GFP and expressed in the cytosol. This SPME-GCMS method afforded a limit of detection and quantification of 1.54 and 5.13 pg, respectively. Nerolidol production levels, which ranged from 0.5 to 3.0 μg/g F.W., correlated more strongly to the accumulation of recombinant protein than transcript level, the former being highest in FaNES-GFP transfected plants. These results indicate that while the ER may represent an enriched source of FDP that can be exploited in metabolic engineering, protein accumulation is a better predictor of sesquiterpene production. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.

    Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt −1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through amore » combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated ( R 2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  7. Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing

    PubMed Central

    Wang, Wei; Wang, Yejun; Zhang, Qing; Qi, Yan; Guo, Dianjing

    2009-01-01

    Background Glandular trichomes produce a wide variety of commercially important secondary metabolites in many plant species. The most prominent anti-malarial drug artemisinin, a sesquiterpene lactone, is produced in glandular trichomes of Artemisia annua. However, only limited genomic information is currently available in this non-model plant species. Results We present a global characterization of A. annua glandular trichome transcriptome using 454 pyrosequencing. Sequencing runs using two normalized cDNA collections from glandular trichomes yielded 406,044 expressed sequence tags (average length = 210 nucleotides), which assembled into 42,678 contigs and 147,699 singletons. Performing a second sequencing run only increased the number of genes identified by ~30%, indicating that massively parallel pyrosequencing provides deep coverage of the A. annua trichome transcriptome. By BLAST search against the NCBI non-redundant protein database, putative functions were assigned to over 28,573 unigenes, including previously undescribed enzymes likely involved in sesquiterpene biosynthesis. Comparison with ESTs derived from trichome collections of other plant species revealed expressed genes in common functional categories across different plant species. RT-PCR analysis confirmed the expression of selected unigenes and novel transcripts in A. annua glandular trichomes. Conclusion The presence of contigs corresponding to enzymes for terpenoids and flavonoids biosynthesis suggests important metabolic activity in A. annua glandular trichomes. Our comprehensive survey of genes expressed in glandular trichome will facilitate new gene discovery and shed light on the regulatory mechanism of artemisinin metabolism and trichome function in A. annua. PMID:19818120

  8. Towards a better understanding of Artemisia vulgaris: Botany, phytochemistry, pharmacological and biotechnological potential.

    PubMed

    Abiri, Rambod; Silva, Abraão Lincoln Macedo; de Mesquita, Ludmilla Santos Silva; de Mesquita, José Wilson Carvalho; Atabaki, Narges; de Almeida, Eduardo Bezerra; Shaharuddin, Noor Azmi; Malik, Sonia

    2018-07-01

    Artemisia vulgaris is one of the important medicinal plant species of the genus Artemisia, which is usually known for its volatile oils. The genus Artemisia has become the subject of great interest due to its chemical and biological diversity as well as the discovery and isolation of promising anti-malarial drug artemisinin. A. vulgaris has a long history in treatment of human ailments by medicinal plants in various parts of the world. This medicinal plant possesses a broad spectrum of therapeutic properties including: anti-malarial, anti-inflammatory, anti-hypertensive, anti-oxidant, anti-tumoral, immunomodulatory, hepatoprotective, anti-spasmodic and anti-septic. These activities are mainly attributed to the presence of various classes of secondary metabolites, including flavonoids, sesquiterpene lactones, coumarins, acetylenes, phenolic acids, organic acids, mono- and sesquiterpenes. Studies related to A. vulgaris morphology, anatomy and phytochemistry has gained a significant interest for better understanding of production and accumulation of therapeutic compounds in this species. Recently, phytochemical and pharmacological investigations have corroborated the therapeutic potential of bioactive compounds of A. vulgaris. These findings provided further evidence for gaining deeper insight into the identification and isolation of novel compounds, which act as alternative sources of anti-malarial drugs in a cost-effective manner. Considering the rising demand and various medical applications of A. vulgaris, this review highlights the recent reports on the chemistry, biological activities and biotechnological interventions for controlled and continuous production of bioactive compounds from this plant species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Illicium verum: a review on its botany, traditional use, chemistry and pharmacology.

    PubMed

    Wang, Guo-Wei; Hu, Wen-Ting; Huang, Bao-Kang; Qin, Lu-Ping

    2011-06-14

    The fruit of Illicium verum Hook. f. (Chinese star anise) has long been used in traditional Chinese medicine and food industry with the actions of dispelling cold, regulating the flow of Qi and relieving pain. A bibliographic investigation was carried out by analyzing recognized books including Chinese herbal classic, and worldwide accepted scientific databases (Pubmed, SciFinder, Scopus and Web of Science) were searched for the available information on I. verum. I. verum is an aromatic evergreen tree of the family Illiciaceae. It is sometimes contaminated with highly toxic Japanese star anise (I. anisatum L.) and poisonous star anise (I. lanceolatum A. C. Smith), which contain several neurotoxic sesquiterpenes. Traditional uses of I. verum are recorded throughout Asia and Northern America, where it has been used for more than 10 types of disorders. Numerous compounds including volatiles, seco-prezizaane-type sesquiterpenes, phenylpropanoids, lignans, flavonoids and other constituents have been identified from I. verum. Modern pharmacology studies demonstrated that its crude extracts and active compounds possess wide pharmacological actions, especially in antimicrobial, antioxidant, insecticidal, analgesic, sedative and convulsive activities. In addition, it is the major source of shikimic acid, a primary ingredient in the antiflu drug (Tamiflu). This review summarizes the up-to-date and comprehensive information concerning the botany, traditional use, phytochemistry and pharmacology of I. verum together with the toxicology, and discusses the possible trend and scope for future research of I. verum. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum

    PubMed Central

    Wichmann, Julian; Baier, Thomas; Frohwitter, Jonas; Risse, Joe M.; Peters-Wendisch, Petra; Kruse, Olaf

    2018-01-01

    Patchoulol is a sesquiterpene alcohol and an important natural product for the perfume industry. Corynebacterium glutamicum is the prominent host for the fermentative production of amino acids with an average annual production volume of ~6 million tons. Due to its robustness and well established large-scale fermentation, C. glutamicum has been engineered for the production of a number of value-added compounds including terpenoids. Both C40 and C50 carotenoids, including the industrially relevant astaxanthin, and short-chain terpenes such as the sesquiterpene valencene can be produced with this organism. In this study, systematic metabolic engineering enabled construction of a patchoulol producing C. glutamicum strain by applying the following strategies: (i) construction of a farnesyl pyrophosphate-producing platform strain by combining genomic deletions with heterologous expression of ispA from Escherichia coli; (ii) prevention of carotenoid-like byproduct formation; (iii) overproduction of limiting enzymes from the 2-c-methyl-d-erythritol 4-phosphate (MEP)-pathway to increase precursor supply; and (iv) heterologous expression of the plant patchoulol synthase gene PcPS from Pogostemon cablin. Additionally, a proof of principle liter-scale fermentation with a two-phase organic overlay-culture medium system for terpenoid capture was performed. To the best of our knowledge, the patchoulol titers demonstrated here are the highest reported to date with up to 60 mg L−1 and volumetric productivities of up to 18 mg L−1 d−1. PMID:29673223

  11. Spider Mite-Induced (3S)-(E)-Nerolidol Synthase Activity in Cucumber and Lima Bean. The First Dedicated Step in Acyclic C11-Homoterpene Biosynthesis1

    PubMed Central

    Bouwmeester, Harro J.; Verstappen, Francel W.A.; Posthumus, Maarten A.; Dicke, Marcel

    1999-01-01

    Many plant species respond to herbivory with de novo production of a mixture of volatiles that attracts carnivorous enemies of the herbivores. One of the major components in the blend of volatiles produced by many different plant species in response to herbivory by insects and spider mites is the homoterpene 4,8-dimethyl-1,3(E),7-nonatriene. One study (J. Donath, W. Boland [1995] Phytochemistry 39: 785–790) demonstrated that a number of plant species can convert the acyclic sesquiterpene alcohol (3S)-(E)-nerolidol to this homoterpene. Cucumber (Cucumis sativus L.) and lima bean (Phaseolus lunatus L.) both produce 4,8-dimethyl-1,3(E),7-nonatriene in response to herbivory. We report the presence in cucumber and lima bean of a sesquiterpene synthase catalyzing the formation of (3S)-(E)-nerolidol from farnesyl diphosphate. The enzyme is inactive in uninfested cucumber leaves, slightly active in uninfested lima bean leaves, and strongly induced by feeding of the two-spotted spider mite (Tetranychus urticae Koch) on both plant species, but not by mechanical wounding. The activities of the (3S)-(E)-nerolidol synthase correlated well with the levels of release of 4,8-dimethyl-1,3(E),7-nonatriene from the leaves of the different treatments. Thus, (3S)-(E)-nerolidol synthase is a good candidate for a regulatory role in the release of the important signaling molecule 4,8-dimethyl-1,3(E),7-nonatriene. PMID:10482672

  12. [Chemical components of Vetiveria zizanioides volatiles].

    PubMed

    Huang, Jinghua; Li, Huashou; Yang, Jun; Chen, Yufen; Liu, Yinghu; Li, Ning; Nie, Chengrong

    2004-01-01

    The chemical components of the volatiles from Vetiveria zizanioides were analyzed by SPME and GC-MS. In the roots, the main component was valencene (30.36%), while in the shoots and leaves, they were 9-octadecenamide (33.50%), 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene (27.46%), and 1,2-benzendicarboxylic acid, diisooctyl ester(18.29%). The results showed that there were many terpenoids in the volatils. In shoot volatiles, there existed 3 monoterpenes, 2 sequiterpenes and 1 triterpene. Most of the volatiles in roots were sesquiterpenes.

  13. Novel spirobicyclic artemisinin analogues (artemalogues): Synthesis and antitumor activities.

    PubMed

    Liu, Gang; Song, Shanshan; Shu, Shiqi; Miao, Zehong; Zhang, Ao; Ding, Chunyong

    2015-10-20

    The sesquiterpene lactone framework of artemisinin was used as a drug repositioning prototype for the development of novel antitumor drugs. Several series of novel artemisinin analogues (artemalogues) were designed and synthesized through 1,3-dipolar cycloaddition of artemisitene with nitrile oxides or nitrones. The isoxazolidine-containing spirobicyclic artemalogue 11b turns out to be the most potent with low micromolar IC₅₀ values against all three tumor cells, which were at least 4- to 14-fold more potent than the parent artemisinin. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. A new labdane diterpene from the rhizomes of Alpinia officinarum.

    PubMed

    Zou, Qiong-Yu; Wu, Hai-Feng; Tang, Yu-Lian; Chen, Di-Zhao

    2016-01-01

    A new labdane diterpene, (Z)-12,14-labdadien-15(16)-olide-17-oic acid (1), and a new natural cadinane sesquiterpene, 4-isopropyl-6-methyl-1-naphthalenemethanol (2), were isolated from the ethanolic extract of the rhizomes of Alpinia officinarum, together with three other products, galangin (3), kaempferol (4) and quercetin (5). Their structures were elucidated by using extensive spectroscopic methods. Compounds 1 and 2 showed no remarkable cytotoxic activity against HeLa and HepG2 cancer cell lines with IC50>50 μg mL(- 1).

  15. Lupane, friedelane, oleanane, and ursane triterpenes from the stem of Siphonodon celastrineus Griff.

    PubMed

    Kaweetripob, Wirongrong; Mahidol, Chulabhorn; Prawat, Hunsa; Ruchirawat, Somsak

    2013-12-01

    Twenty-one triterpenes consisting of a lupane derivative, two friedelanes, an oleanane derivative, and 17 ursane-type triterpenoids, together with three known triterpenes, three sterols, a fatty acid, a sesquiterpene alkaloid, and a glycerol derivative, were isolated from the stem of Siphonodon celastrineus. Their structures were characterized by various spectroscopic techniques, as well as comparison with literature data. Twenty-seven metabolites of these were evaluated for cytotoxic activity against six human cancer cell lines. The biosynthetic formation of a 1,4-dioxane bridge is also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Stereoselective synthesis of hernandulcin, peroxylippidulcine A, lippidulcines A, B and C and taste evaluation

    PubMed Central

    Rigamonti, Marco Giulio

    2015-01-01

    Summary The first stereoselective synthesis of lippidulcines A, B and C has been accomplished starting from (+)-hernandulcin, which has been prepared on a multigram scale. The previously assigned absolute configurations have been confirmed. The key steps of this synthesis are based on a modified version of the Kornblum–DeLaMare rearrangement, and on a highly regioselective and stereoselective ketone reduction with the MeCBS reagent. The taste evaluations indicate that none of these sesquiterpenes are sweet, instead the lippidulcine A is a cooling agent with a mint after taste. PMID:26664632

  17. Synthesis of Illudinine from Dimedone.

    PubMed

    Morrison, Alec E; Hoang, Tung T; Birepinte, Mélodie; Dudley, Gregory B

    2017-02-17

    A total synthesis of the illudalane sesquiterpene illudinine was realized in eight steps and 14% overall yield from commercially available dimedone. The approach features tandem fragmentation/Knoevenagel-type condensation and microwave-assisted oxidative cycloisomerization to establish the isoquinoline core. Completion of the synthesis involves a recently reported cascade S N Ar/Lossen rearrangement on a densely functionalized aryl bromide and an optimized procedure for O-methylation of 8-hydroxyisoquinolines. The oxidative cycloisomerization proceeds by way of a novel inverse-demand intramolecular dehydro-Diels-Alder cycloaddition, which has a potentially broader appeal for preparing substituted isoquinolines.

  18. DFT molecular modeling and NMR conformational analysis of a new longipinenetriolone diester

    NASA Astrophysics Data System (ADS)

    Cerda-García-Rojas, Carlos M.; Guerra-Ramírez, Diana; Román-Marín, Luisa U.; Hernández-Hernández, Juan D.; Joseph-Nathan, Pedro

    2006-05-01

    The structure and conformational behavior of the new natural compound (4 R,5 S,7 S,8 R,9 S,10 R,11 R)-longipin-2-en-7,8,9-triol-1-one 7-angelate-9-isovalerate (1) isolated from Stevia eupatoria, were studied by molecular modeling and NMR spectroscopy. A Monte Carlo search followed by DFT calculations at the B3LYP/6-31G* level provided the theoretical conformations of the sesquiterpene framework, which were in full agreement with results derived from the 1H- 1H coupling constant analysis.

  19. Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition of 1-yne/ene-vinylcyclopropanes and CO: homologous Pauson-Khand reaction and total synthesis of (+/-)-alpha-agarofuran.

    PubMed

    Jiao, Lei; Lin, Mu; Zhuo, Lian-Gang; Yu, Zhi-Xiang

    2010-06-04

    A novel Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition, which can be regarded as a homologous Pauson-Khand reaction, was developed to synthesize bicyclic cyclohexenones and cyclohexanones, enabling a new approach for synthesis of six-membered carbocycles ubiquitously found in natural products and pharmaceutics. The significance of the Rh-catalyzed [(3 + 2) + 1] cycloaddition has been demonstrated by the total synthesis of a furanoid sesquiterpene natural product, alpha-agarofuran, in which the bicyclic skeleton was constructed by the [(3 + 2) + 1] reaction of 1-yne-VCP and CO.

  20. Hydroxyurea derivatives of irofulven with improved antitumor efficacy.

    PubMed

    Staake, Michael D; Kashinatham, Alisala; McMorris, Trevor C; Estes, Leita A; Kelner, Michael J

    2016-04-01

    Irofulven is a semi-synthetic derivative of Illudin S, a toxic sesquiterpene isolated from the mushroom Omphalotus illudens. Irofulven has displayed significant antitumor activity in various clinical trials but displayed a limited therapeutic index. A new derivative of irofulven was prepared by reacting hydroxyurea with irofulven under acidic conditions. Acetylation of this new compound with acetic anhydride produced a second derivative. Both of these new derivatives displayed significant antitumor activity in vitro and in vivo comparable to or exceeding that of irofulven. Copyright © 2016 Elsevier Ltd. All rights reserved.