Science.gov

Sample records for gyromagnetic radius

  1. Rotating spacetimes with asymptotic nonflat structure and the gyromagnetic ratio

    NASA Astrophysics Data System (ADS)

    Aliev, Alikram N.

    2008-02-01

    In general relativity, the gyromagnetic ratio for all stationary, axisymmetric, and asymptotically flat Einstein-Maxwell fields is known to be g=2. In this paper, we continue our previous works of examination of this result for rotating charged spacetimes with asymptotic nonflat structure. We first consider two instructive examples of these spacetimes: The spacetime of a Kerr-Newman black hole with a straight cosmic string on its axis of symmetry and the Kerr-Newman Taub-NUT (Newman-Unti-Tamburino) spacetime. We show that for both spacetimes the gyromagnetic ratio g=2 independent of their asymptotic structure. We also extend this result to a general class of metrics which admit separation of variables for the Hamilton-Jacobi and wave equations. We proceed with the study of the gyromagnetic ratio in higher dimensions by considering the general solution for rotating charged black holes in minimal five-dimensional gauged supergravity. We obtain the analytic expressions for two distinct gyromagnetic ratios of these black holes that are associated with their two independent rotation parameters. These expressions reveal the dependence of the gyromagnetic ratio on both the curvature radius of the AdS background and the parameters of the black holes: The mass, electric charge, and two rotation parameters. We explore some special cases of interest and show that when the two rotation parameters are equal to each other and the rotation occurs at the maximum angular velocity, the gyromagnetic ratio g=4 regardless of the value of the electric charge. This agrees precisely with our earlier result obtained for general Kerr-AdS black holes with a test electric charge. We also show that in the Bogomol’nyi-Prasad-Sommerfield (BPS) limit the gyromagnetic ratio for a supersymmetric black hole with equal rotation parameters ranges between 2 and 4.

  2. Rotating spacetimes with asymptotic nonflat structure and the gyromagnetic ratio

    SciTech Connect

    Aliev, Alikram N.

    2008-02-15

    In general relativity, the gyromagnetic ratio for all stationary, axisymmetric, and asymptotically flat Einstein-Maxwell fields is known to be g=2. In this paper, we continue our previous works of examination of this result for rotating charged spacetimes with asymptotic nonflat structure. We first consider two instructive examples of these spacetimes: The spacetime of a Kerr-Newman black hole with a straight cosmic string on its axis of symmetry and the Kerr-Newman Taub-NUT (Newman-Unti-Tamburino) spacetime. We show that for both spacetimes the gyromagnetic ratio g=2 independent of their asymptotic structure. We also extend this result to a general class of metrics which admit separation of variables for the Hamilton-Jacobi and wave equations. We proceed with the study of the gyromagnetic ratio in higher dimensions by considering the general solution for rotating charged black holes in minimal five-dimensional gauged supergravity. We obtain the analytic expressions for two distinct gyromagnetic ratios of these black holes that are associated with their two independent rotation parameters. These expressions reveal the dependence of the gyromagnetic ratio on both the curvature radius of the AdS background and the parameters of the black holes: The mass, electric charge, and two rotation parameters. We explore some special cases of interest and show that when the two rotation parameters are equal to each other and the rotation occurs at the maximum angular velocity, the gyromagnetic ratio g=4 regardless of the value of the electric charge. This agrees precisely with our earlier result obtained for general Kerr-AdS black holes with a test electric charge. We also show that in the Bogomol'nyi-Prasad-Sommerfield (BPS) limit the gyromagnetic ratio for a supersymmetric black hole with equal rotation parameters ranges between 2 and 4.

  3. Gyromagnetically induced transparency of metasurfaces.

    PubMed

    Mousavi, S Hossein; Khanikaev, Alexander B; Allen, Jeffery; Allen, Monica; Shvets, Gennady

    2014-03-21

    We demonstrate that the presence of a (gyro) magnetic substrate can produce an analog of electromagnetically induced transparency in Fano-resonant metamolecules. The simplest implementation of such gyromagnetically induced transparency (GIT) in a metasurface, comprised of an array of resonant antenna pairs placed on a gyromagnetic substrate and illuminated by a normally incident electromagnetic wave, is analyzed. Time reversal and spatial inversion symmetry breaking introduced by the dc magnetization makes metamolecules bianisotropic. This causes Fano interference between the otherwise uncoupled symmetric and antisymmetric resonances of the metamolecules giving rise to a sharp transmission peak through the otherwise reflective metasurface. We show that, for an oblique wave incidence, one-way GIT can be achieved by the combination of spatial dispersion and gyromagnetic effect. These theoretically predicted phenomena pave the way to nonreciprocal switches and isolators that can be dynamically controlled by electric currents. PMID:24702414

  4. Gyromagnetically Induced Transparency of Metasurfaces

    NASA Astrophysics Data System (ADS)

    Mousavi, S. Hossein; Khanikaev, Alexander B.; Allen, Jeffery; Allen, Monica; Shvets, Gennady

    2014-03-01

    We demonstrate that the presence of a (gyro) magnetic substrate can produce an analog of electromagnetically induced transparency in Fano-resonant metamolecules. The simplest implementation of such gyromagnetically induced transparency (GIT) in a metasurface, comprised of an array of resonant antenna pairs placed on a gyromagnetic substrate and illuminated by a normally incident electromagnetic wave, is analyzed. Time reversal and spatial inversion symmetry breaking introduced by the dc magnetization makes metamolecules bianisotropic. This causes Fano interference between the otherwise uncoupled symmetric and antisymmetric resonances of the metamolecules giving rise to a sharp transmission peak through the otherwise reflective metasurface. We show that, for an oblique wave incidence, one-way GIT can be achieved by the combination of spatial dispersion and gyromagnetic effect. These theoretically predicted phenomena pave the way to nonreciprocal switches and isolators that can be dynamically controlled by electric currents.

  5. Gyromagnetically-induced transparency for ferrites

    NASA Astrophysics Data System (ADS)

    Chang, Tsun-Hsu

    2016-04-01

    The magnetic permeability is generally a second-rank tensor for an anisotropic medium. By considering a dc bias magnetic field and an ac circularly polarized wave, a generalized permeability can be derived. The formula for the generalized permeability explains why most dielectrics, paramagnetic and diamagnetic materials, and even metals have a relative permeability close to unity. For ferromagnetic or ferrimagnetic materials, the permeability strongly depends on the applied magnetic field and the polarizations of the electromagnetic waves. This work discusses how a circularly polarized wave interacts with the magnetic dipole moment being induced by and precessing around the applied dc bias field. The gyromagnetic resonance between the wave and the induced dipole allows us to find a condition where the incident wave can propagate through the medium without reflection. This explains the mysterious effect of gyromagnetically induced transparency.

  6. Gyromagnetically induced transparency of metasurfaces (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady B.; Mousavi, Hossein; Khanikaev, Alexander; Allen, Jeffery W.; Allen, Monica

    2015-09-01

    The concept of symmetry pervades modern physics. Through the conservation laws derived from various symmetries, high-level restrictions and selection rules can be derived for a variety of physical systems without any need for detailed investigations of their specific properties. The spatial symmetries of electric charge distribution on the metamaterial's surface determine whether the EM resonance is "bright" (radiatively coupled to) or "dark" (radiatively de-coupled from) the EM continuum. As we demonstrate in this talk, other (non-spatial) symmetries and their breaking can also be crucial to determine the properties of EM resonances and enable their mutual coupling, which in turn can give rise to EM Fano interferences. I will consider a meta-surface formed by a two-dimensional array of double-antenna meta-molecules resting on a gyromagnetic ferrite substrate. In conclusion, I will use simple symmetry considerations to predict and numerically demonstrate two phenomena that occur in meta-surfaces when symmetry of the system is reduced by a gyromagnetic substrate: gyromagnetically induced transparency and nonreciprocal Fano interference. These phenomena hold significant promise for practical applications such as the dynamic control of resonant EM interactions using magnetic fields produced by the external currents, mitigation of co-site interference and improving isolation. Spectral positions, radiative lifetimes and quality factors of Fano resonances can be controlled by the magnitude of the external magnetic field. This class of effects may lead to a new generation of tunable and nonreciprocal Fano resonant systems for various applications where strong field enhancement, tunability and nonreciprocity are simultaneously required.

  7. Nonreciprocal optical diffraction by a single layer of gyromagnetic cylinders.

    PubMed

    Guo, Tian-Jing; Li, Teng-Fei; Yang, Mu; Cui, Hai-Xu; Guo, Qing-Hua; Cao, Xue-Wei; Chen, Jing

    2014-01-13

    We study the diffraction of optical waves by a single layer of gyromagnetic cylinders. We show that a nonvanishing rotating dipole momentum is excited in a single gyromagnetic cylinder because of the classic analog of the Zeeman effect on photonic angular momentum states (PAMSs). Consequently, different collective dipole modes are excited in a gyromagnetic cylinder array at opposite incident angles. Nonreciprocal optical diffraction effects can be observed, where the transmission and reflection coefficients depend on the sign of the incident angle. A novel phenomenon of nonreciprocal negative directional transmission is demonstrated and numerically analyzed. This work highlights the potential of PAMSs in manipulating the propagation of optical waves for various applications. PMID:24515014

  8. Possibility of observing dark matter via the gyromagnetic Faraday effect.

    PubMed

    Gardner, Susan

    2008-02-01

    If dark matter consists of cold, neutral particles with a nonzero magnetic moment, then, in the presence of an external magnetic field, a measurable gyromagnetic Faraday effect becomes possible. This enables direct constraints on the nature and distribution of such dark matter through detailed measurements of the polarization and temperature of the cosmic-microwave background radiation. PMID:18352256

  9. Relativistic AC gyromagnetic effects in ultraintense laser-matter interaction.

    PubMed

    Geindre, J P; Audebert, P; Marjoribanks, R S

    2006-08-25

    We demonstrate that in ultraintense ultrafast laser-matter interaction, the interplay of laser-induced oscillating space-charge fields with laser E and B fields can strongly affect whether the interaction is relativistic or not: stronger laser fields may not in fact produce more relativistic plasma interactions. We show that there exists a regime of interaction, in the relation of laser intensity and incident angle, for which the Brunel effect of electron acceleration is strongly suppressed by AC gyromagnetic fields, at a frequency different from the laser field. Analytically and with 1.5D particle-in-cell modeling, we show that from gyromagnetic effects, even in the absence of usual J x B second-harmonic contributions, there are strong effects on the harmonic emission and on the generation of attosecond pulses. PMID:17026310

  10. Hyperfine-enhanced gyromagnetic ratio of a nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Sangtawesin, S.; McLellan, C. A.; Myers, B. A.; Bleszynski Jayich, A. C.; Awschalom, D. D.; Petta, J. R.

    2016-08-01

    The nuclear spin gyromagnetic ratio can be enhanced by hyperfine coupling to the electronic spin. Here we show wide tunability of this enhancement on a 15N nuclear spin intrinsic to a single nitrogen-vacancy center in diamond. We perform control of the nuclear spin near the ground state level anti-crossing (GSLAC), where the enhancement of the gyromagnetic ratio from the ground state hyperfine coupling is maximized. We demonstrate a two order of magnitude enhancement of the effective nuclear gyromagnetic ratio compared to the value obtained at 500 G, a typical operating field that is suitable for nuclear spin polarization. Finally, we show that with strong enhancements, the nuclear spin ultimately suffers dephasing from the inhomogeneous broadening of the NMR transition frequency at the GSLAC.

  11. Simultaneous π/2 rotation of two spin species of different gyromagnetic ratios

    DOE PAGESBeta

    Chu, Ping -Han; Peng, Jen -Chieh

    2015-06-05

    Here, we examine the characteristics of the π/2 pulse for simultaneously rotating two spin species of different gyromagnetic ratios with the same sign. For a π/2 pulse using a rotating magnetic field, we derive an equation relating the frequency and strength of the pulse to the gyromagnetic ratios of the two particles and the strength of the constant holding field. For a π/2 pulse using a linear oscillatory magnetic field, we obtain the solutions numerically, and compare them with the solutions for the rotating π/2 pulse. Application of this analysis to the specific case of rotating neutrons and 3He atomsmore » simultaneously with a π/2 pulse, proposed for a neutron electric dipole moment experiment, is also presented.« less

  12. Spatial configuration of a plasma bunch formed under gyromagnetic resonance in a magnetic mirror trap

    NASA Astrophysics Data System (ADS)

    Andreev, V. V.; Novitskii, A. A.; Umnov, A. M.; Chuprov, D. V.

    2016-06-01

    The spatial configuration of a relativistic plasma bunch generated under the gyromagnetic autoresonance and confined in a magnetic mirror trap has been studied experimentally and numerically. The characteristics of bremsstrahlung generated by the plasma bunch from the gas and chamber walls were investigated using X-ray spectroscopy and radiometry, which made it possible to determine the localization of the bunch and analyze the dynamics of its confinement.

  13. Realization of self-guided unidirectional waveguides by a chain of gyromagnetic rods.

    PubMed

    Li, Zhen; Wu, Rui-Xin; Li, Qing-Bo; Poo, Yin

    2015-02-20

    To achieve a unidirectional transmission waveguide with miniature dimensions and flexible geometry, we propose a self-guided unidirectional waveguide composed of a chain of gyromagnetic rods. Two configurations of the waveguides were demonstrated. One is of a zigzag chain form, the other is a straight-line chain. These two types of waveguides have very wide one-way edge mode bandwidths. The simulated and experimental results illustrate their extraordinary wideband one-way transmission characteristics. They can also be expected to function as flexible platforms for practical applications because of their thin transverse dimensions and robustness to bending. PMID:25968186

  14. Large mode radius resonators

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.

    1987-01-01

    Resonator configurations permitting operation with large mode radius while maintaining good transverse mode discrimination are considered. Stable resonators incorporating an intracavity telescope and unstable resonator geometries utilizing an output coupler with a Gaussian reflectivity profile are shown to enable large radius single mode laser operation. Results of heterodyne studies of pulsed CO2 lasers with large (11mm e sup-2 radius) fundamental mode sizes are presented demonstrating minimal frequency sweeping in accordance with the theory of laser-induced medium perturbations.

  15. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines

    NASA Astrophysics Data System (ADS)

    Reale, D. V.; Bragg, J.-W. B.; Gonsalves, N. R.; Johnson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2014-05-01

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  16. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources

    NASA Astrophysics Data System (ADS)

    Reale, D. V.; Parson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2016-03-01

    A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV-55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructed more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW.

  17. Repetitive sub-gigawatt rf source based on gyromagnetic nonlinear transmission line.

    PubMed

    Romanchenko, Ilya V; Rostov, Vladislav V; Gubanov, Vladimir P; Stepchenko, Alexey S; Gunin, Alexander V; Kurkan, Ivan K

    2012-07-01

    We demonstrate a high power repetitive rf source using gyromagnetic nonlinear transmission line to produce rf oscillations. Saturated NiZn ferrites act as active nonlinear medium first sharpening the pumping high voltage nanosecond pulse and then radiating at central frequency of about 1 GHz: shock rise time excites gyromagnetic precession in ferrites forming damping rf oscillations. The optimal length of nonlinear transmission line was found to be of about 1 m. SINUS-200 high voltage driver with Tesla transformer incorporated into pulse forming line has been designed and fabricated to produce bursts of 1000 pulses with 200 Hz repetition rate. A band-pass filter and mode-converter have been designed to extract rf pulse from low-frequency component and to form TE(11) mode of circular waveguide with linear polarization. A wide-band horn antenna has been fabricated to form Gaussian distribution of radiation pattern. The peak value of electric field strength of a radiated pulse at the distance of 3.5 m away from antenna is measured to be 160 kV/m. The corresponding rf peak power of 260 MW was achieved. PMID:22852710

  18. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines.

    PubMed

    Reale, D V; Bragg, J-W B; Gonsalves, N R; Johnson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2014-05-01

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance. PMID:24880394

  19. On the Gyromagnetic and Gyrogravito-Magnetic Ratios of the Electron

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    2015-06-01

    The magnetic dipole moment of the Kerr-Newman metric, defined by mass , electrical charge and angular momentum , is , corresponding, for all values of , to a gyromagnetic ratio , which is also the value of the intrinsic gyromagnetic ratio of the electron, as first noted by Carter. Here, we argue that this result can be understood in terms of the particle-wave complementarity principle. For can only be defined at asymptotic spatial infinity, where the metric appears to describe a spinning point particle, and therefore setting , , we necessarily have a model of the electron. From the Dirac equation we can construct a covariantly conserved four-current that is the source of the electromagnetic field generated by the charge . The result then follows from the minimal gauge principle which is implicit in the formulation of the spinorial wave equation, and which can also be justified from the line action for a spin-1/2 point particle interacting with an external electromagnetic field, due to Berezin and Marinov. By contrast, analysis of the gyrogravito-magnetic effect, investigated classically by Wald and quantum mechanically by Adler et al., yields the result in all non-relativistic cases, which can be explained from the principle of equivalence. The results are in accord with the correspondence principle.

  20. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources.

    PubMed

    Reale, D V; Parson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2016-03-01

    A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV-55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructed more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW. PMID:27036802

  1. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines

    SciTech Connect

    Reale, D. V. Bragg, J.-W. B.; Gonsalves, N. R.; Johnson, J. M.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2014-05-15

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  2. The Proton Radius Puzzle

    NASA Astrophysics Data System (ADS)

    Downie, E. J.

    2016-03-01

    The proton radius puzzle is the difference between the proton radius as measured with electron scattering and in the excitation spectrum of atomic hydrogen, and that measured with muonic hydrogen spectroscopy. Since the inception of the proton radius puzzle in 2010 by the measurement of Pohl et al.[1], many possible resolutions to the puzzle have been postulated, but, to date, none has been generally accepted. New data are therefore necessary to resolve the issue. We briefly review the puzzle, the proposed solutions, and the new electron scattering and spectroscopy experiments planned and underway. We then introduce the MUSE experiment, which seeks to resolve the puzzle by simultaneously measuring elastic electron and muon scattering on the proton, in both charge states, thereby providing new information to the puzzle. MUSE addresses issues of two-photon effects, lepton universality and, possibly, new physics, while providing simultaneous form factor, and therefore radius, measurements with both muons and electrons.

  3. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source.

    PubMed

    Johnson, J M; Reale, D V; Krile, J T; Garcia, R S; Cravey, W H; Neuber, A A; Dickens, J C; Mankowski, J J

    2016-05-01

    In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed. PMID:27250448

  4. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source

    NASA Astrophysics Data System (ADS)

    Johnson, J. M.; Reale, D. V.; Krile, J. T.; Garcia, R. S.; Cravey, W. H.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J.

    2016-05-01

    In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.

  5. High power microwave beam steering based on gyromagnetic nonlinear transmission lines

    NASA Astrophysics Data System (ADS)

    Romanchenko, I. V.; Rostov, V. V.; Gunin, A. V.; Konev, V. Yu.

    2015-06-01

    We demonstrate electronically controlled beam steering by high power RF pulses produced by two gyromagnetic nonlinear transmission lines (NLTLs) connected to a one high voltage driver. Each NLTL is capable of producing several ns RF pulses with peak power from 50 to 700 MW (6% standard deviation) at frequencies from 0.5 to 1.7 GHz (1% standard deviation) with 100 Hz repetition rate. Using a helix antenna allows irradiating of RF pulses with almost circular polarization and 350 MW maximum peak power, which corresponds to 350 kV effective potential of radiation. At the installation of two identical channels, we demonstrate the possibility of beam steering within ±15° in the horizontal plane by coherent RF pulses with circular polarization at 1.0 GHz center frequency. Fourfold increase in the power flux density for in-phase irradiation of RF pulses is confirmed by comparison with one-channel operation.

  6. High power microwave beam steering based on gyromagnetic nonlinear transmission lines

    SciTech Connect

    Romanchenko, I. V. Rostov, V. V.; Gunin, A. V.; Konev, V. Yu.

    2015-06-07

    We demonstrate electronically controlled beam steering by high power RF pulses produced by two gyromagnetic nonlinear transmission lines (NLTLs) connected to a one high voltage driver. Each NLTL is capable of producing several ns RF pulses with peak power from 50 to 700 MW (6% standard deviation) at frequencies from 0.5 to 1.7 GHz (1% standard deviation) with 100 Hz repetition rate. Using a helix antenna allows irradiating of RF pulses with almost circular polarization and 350 MW maximum peak power, which corresponds to 350 kV effective potential of radiation. At the installation of two identical channels, we demonstrate the possibility of beam steering within ±15° in the horizontal plane by coherent RF pulses with circular polarization at 1.0 GHz center frequency. Fourfold increase in the power flux density for in-phase irradiation of RF pulses is confirmed by comparison with one-channel operation.

  7. Observation of broadband unidirectional transmission by fusing the one-way edge states of gyromagnetic photonic crystals.

    PubMed

    Li, Zhen; Wu, Rui-xin; Li, Qing-Bo; Lin, Zhi-fang; Poo, Yin; Liu, Rong-Juan; Li, Zhi-Yuan

    2015-04-20

    We experimentally demonstrate a broadband one-way transmission by merging the operating bands of two types of one-way edge modes that are associated with Bragg scattering and magnetic surface plasmon (MSP) resonance, respectively. By tuning the configuration of gyromagnetic photonic crystals and applied bias magnetic field, the fused bandwidth of unidirectional propagation is up to 2 GHz in microwave frequency range, much larger than either of the individual one-way bandwidth associated with Bragg scattering or MSP resonance. Our scheme for broadband one-way transmission paves the way for the practical applications of one-way transmission. PMID:25969002

  8. Distal radius fractures: current concepts.

    PubMed

    Schneppendahl, Johannes; Windolf, Joachim; Kaufmann, Robert A

    2012-08-01

    Despite the frequency of distal radius fractures, the optimal treatment remains without consensus opinion. A trend toward increased distal radius fracture open reduction and internal fixation has been identified, with biomechanical and clinical studies suggesting treatment advantages of certain fixation methods over others. Well-controlled patient trials are still missing to lend objective findings to management algorithms. This article reviews the literature over the past 5 years to guide our management regarding this common upper-extremity injury. PMID:22763062

  9. Laser differential confocal radius measurement.

    PubMed

    Zhao, Weiqian; Sun, Ruoduan; Qiu, Lirong; Sha, Dingguo

    2010-02-01

    A new laser differential confocal radius measurement (DCRM) is proposed for high precision measurement of radius. Based on the property of an axial intensity curve that the absolute zero precisely corresponds to the focus of the objective in a differential confocal system (DCS), DCRM uses the zero point of the DCS axial intensity curve to precisely identify the cat's-eye and confocal positions of the test lens, and measures the accurate distance between the two positions to achieve the high-precision measurement of radius of curvature (ROC). In comparison with the existing measurement methods, DCRM proposed has a high measurement precision, a strong environmental anti-interference capability and a low cost. The theoretical analyses and preliminary experimental results indicate that DCRM has a relative measurement error of better than 5 ppm. PMID:20174065

  10. Zeeman splitting, its specific features, and gyromagnetic ratios for configurations 1 snf ( n = 4-10) of the helium atom

    NASA Astrophysics Data System (ADS)

    Anisimova, G. P.; Gorbenko, A. P.; Dolmatova, O. A.; Krylov, I. R.; Mashek, I. Ch.; Tsygankova, G. A.

    2016-02-01

    The fine structure parameters of configurations 1 snf ( n = 4-10) with new refined energy values are calculated by the semiempirical method. The emphasis is on the study of the Zeeman structure in order to determine the gyromagnetic ratios of all four the levels of the configuration from the splitting. For this purpose, the matrices of an energy operator with allowance for the interaction between the atom and a magnetic field were diagonalized for all possible values of quantum number M. For each configuration, 17 values of crossing fields of the Zeeman sublevels with Δ M = ±1, ±2 and the regions of anticrossings with Δ M = 0 were determined. It is remarkable that, because the levels are closely spaced, anticrossings are observed for each pair of levels in these systems. The regions of linearity of a magnetic field, which are different for different configurations, and the levels in them are established. The g-factors are calculated from the coefficients of an intermediate coupling scheme in a magnetic field that is guaranteed to be linear. They are compared with the analogous values in the absence of a field.

  11. Radius of curvature controlled mirror

    DOEpatents

    Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.

    2006-01-17

    A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.

  12. Treatment of distal radius fractures.

    PubMed

    Lichtman, David M; Bindra, Randipsingh R; Boyer, Martin I; Putnam, Matthew D; Ring, David; Slutsky, David J; Taras, John S; Watters, William C; Goldberg, Michael J; Keith, Michael; Turkelson, Charles M; Wies, Janet L; Haralson, Robert H; Boyer, Kevin M; Hitchcock, Kristin; Raymond, Laura

    2010-03-01

    The clinical practice guideline is based on a systematic review of published studies on the treatment of distal radius fractures in adults. None of the 29 recommendations made by the work group was graded as strong; most are graded as inconclusive or consensus; seven are graded as weak. The remaining five moderate-strength recommendations include surgical fixation, rather than cast fixation, for fractures with postreduction radial shortening >3 mm, dorsal tilt >10 degrees , or intra-articular displacement or step-off >2 mm; use of rigid immobilization rather than removable splints for nonsurgical treatment; making a postreduction true lateral radiograph of the carpus to assess dorsal radial ulnar joint alignment; beginning early wrist motion following stable fixation; and recommending adjuvant treatment with vitamin C to prevent disproportionate pain. PMID:20190108

  13. Treatment of distal radius fractures.

    PubMed

    Murray, Jayson; Gross, Leeaht

    2013-08-01

    The American Academy of Orthopaedic Surgeons has developed Appropriate Use Criteria (AUC) for treating distal radius fractures (DRF). Evidence-based information, in conjunction with the clinical expertise of physicians, was used to develop the criteria to improve patient care and obtain best outcomes while considering the subtleties and distinctions necessary in making clinical decisions. The DRF AUC clinical patient scenarios were derived from patient indications that generally accompany a DRF, as well as from current evidence-based clinical practice guidelines and supporting literature. The 216 indications and 10 treatments were developed by the Writing Panel, a group of clinicians who are specialists in this AUC topic. Next, the Review Panel, a separate group of volunteer physicians, independently reviewed these materials to ensure that they were representative of patient scenarios that clinicians are likely to encounter in daily practice. Finally, the multidisciplinary Voting Panel (made up of specialists and nonspecialists) rated the appropriateness of treatment of each patient scenario using a 9-point scale to designate a treatment as Appropriate (median rating, 7 to 9), May Be Appropriate (median rating, 4 to 6), or Rarely Appropriate (median rating, 1 to 3). PMID:23908256

  14. Mirror with thermally controlled radius of curvature

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2010-06-22

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  15. Chondromyxoid Fibroma of Radius: A Case Report

    PubMed Central

    Bagewadi, Rajakumar M.; Hippargi, Surekha B.

    2016-01-01

    Chondromyxoid fibroma (CMF) is a rare benign cartilaginous tumour accounting to less than 1% of bone tumours. It is most commonly seen in lower extremity involving tibia. CMF of radius is rare. We report a rare case of CMF of proximal radius in a 37-year-old female who presented with swelling and pain over right elbow. Wide local excision of proximal radius along with radial head was done and above elbow POP slab was applied for one month. Elbow range of movement exercises started after one month. PMID:27437232

  16. Chondromyxoid Fibroma of Radius: A Case Report.

    PubMed

    Bagewadi, Rajakumar M; Nerune, Savitri Mallikarjun; Hippargi, Surekha B

    2016-05-01

    Chondromyxoid fibroma (CMF) is a rare benign cartilaginous tumour accounting to less than 1% of bone tumours. It is most commonly seen in lower extremity involving tibia. CMF of radius is rare. We report a rare case of CMF of proximal radius in a 37-year-old female who presented with swelling and pain over right elbow. Wide local excision of proximal radius along with radial head was done and above elbow POP slab was applied for one month. Elbow range of movement exercises started after one month. PMID:27437232

  17. Management of Complications of Distal Radius Fractures

    PubMed Central

    Chung, Kevin C.; Mathews, Alexandra L.

    2015-01-01

    Synopsis Treating a fracture of the distal radius may require the surgeon to make a difficult decision between surgical treatment and nonsurgical management. The use of surgical fixation has recently increased owing to complications associated with conservative treatment. However, conservative action may be necessary depending on certain patient factors. The treating surgeon must be aware of the possible complications associated with distal radius fracture treatments to prevent their occurrence. Prevention can be achieved with a proper understanding of the mechanism of these complications. This article discusses the most recent evidence on how to manage and prevent complications following a fracture of the distal radius. PMID:25934197

  18. Large-Larmor-radius interchange instability

    SciTech Connect

    Ripin, B.H.; McLean, E.A.; Manka, C.K.; Pawley, C.; Stamper, J.A.; Peyser, T.A.; Mostovych, A.N.; Grun, J.; Hassam, A.B.; Huba, J.

    1987-11-16

    We observe linear and nonlinear features of a strong plasma/magnetic field interchange Rayleigh-Taylor instability in the limit of large ion Larmor radius. The instability undergoes rapid linear growth culminating in free-streaming flute tips.

  19. Arthroscopic management of distal radius fractures.

    PubMed

    Wiesler, Ethan R; Chloros, George D; Mahirogullari, Mahir; Kuzma, Gary R

    2006-11-01

    Arthroscopy has the advantage of providing a direct and accurate assessment of the articular surfaces and detecting the presence of injuries associated with distal radius fractures. Current indications, although numerous and potentially expanding, also are controversial. This report presents a global view of the current status of arthroscopy in the management of distal radius fractures. The rationale of arthroscopic treatment, the available evidence, and finally the diagnosis and treatment are discussed. PMID:17095385

  20. Mass and radius of cosmic balloons

    NASA Technical Reports Server (NTRS)

    Wang, Yun

    1994-01-01

    Cosmic balloons are spherical domain walls with relativistic particles trapped inside. We derive the exact mass and radius relations for a static cosmic balloon using Gauss-Codazzi equations. The cosmic balloon mass as a function of its radius, M(R), is found to have a functional form similar to that of fermion soliton stars, with a fixed point at 2GM(R)/R approximately or equal to 0.486 which corresponds to the limit of infinite central density. We derive a simple analytical approximation for the mass density of a spherically symmetric relativistic gas star. When applied to the computation of the mass and radius of a cosmic balloon, the analytical approximation yields fairly good agreement with the exact numerical solutions.

  1. A Maximum Radius for Habitable Planets.

    PubMed

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope. PMID:26159097

  2. Inside the Bondi radius of M87

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; Fabian, A. C.; McNamara, B. R.; Broderick, A. E.

    2015-07-01

    Chandra X-ray observations of the nearby brightest cluster galaxy M87 resolve the hot gas structure across the Bondi accretion radius of the central supermassive black hole (SMBH), a measurement possible in only a handful of systems but complicated by the bright nucleus and jet emission. By stacking only short frame-time observations to limit pileup, and after subtracting the nuclear point spread function, we analysed the X-ray gas properties within the Bondi radius at 0.12-0.22 kpc (1.5-2.8 arcsec), depending on the black hole mass. Within 2 kpc radius, we detect two significant temperature components, which are consistent with constant values of 2 and 0.9 keV down to 0.15 kpc radius. No evidence was found for the expected temperature increase within ˜ 0.25 kpc due to the influence of the SMBH. Within the Bondi radius, the density profile is consistent with ρ ∝ r-1. The lack of a temperature increase inside the Bondi radius suggests that the hot gas structure is not dictated by the SMBH's potential and, together with the shallow density profile, shows that the classical Bondi rate may not reflect the accretion rate on to the SMBH. If this density profile extends in towards the SMBH, the mass accretion rate on to the SMBH could be at least two orders of magnitude less than the Bondi rate, which agrees with Faraday rotation measurements for M87. We discuss the evidence for outflow from the hot gas and the cold gas disc and for cold feedback, where gas cooling rapidly from the hot atmosphere could feed the cirumnuclear disc and fuel the SMBH. At 0.2 kpc radius, the cooler X-ray temperature component represents ˜20 per cent of the total X-ray gas mass and, by losing angular momentum to the hot gas component, could provide a fuel source of cold clouds within the Bondi radius.

  3. Exposure of the forearm and distal radius.

    PubMed

    Klausmeyer, Melissa A; Mudgal, Chaitanya

    2014-11-01

    Approaches to the forearm use internervous planes to allow adequate bone exposure and prevent muscle denervation. The Henry approach utilizes the plane between muscles supplied by the median and radial nerves. The Thompson approach utilizes the plane between muscles supplied by the radial and posterior interosseous nerves. The distal radius may be approached volarly. The extended flexor carpi radialis approach is useful for intraarticular fractures, subacute fractures, and malunions. The distal radius can be approached dorsally by releasing the third dorsal compartment and continuing the dissection subperiosteally. Choice of approach depends on the injury pattern and the need for exposure. PMID:25440071

  4. Distal radius fracture: diagnosis, treatment, and controversies.

    PubMed

    Tang, Jin Bo

    2014-07-01

    This article presents the diagnosis and treatment of distal radius fractures with emphasis on (1) current common principles, (2) the author's current practices, and (3) controversies. The author emphasizes that displaced distal radius fractures should be approached first with a trial of closed reduction, with or without percutaneous pinning. If this reduction is unstable or unsuccessful, open reduction is indicated. Early treatments include percutaneous pinning through the distal radioulnar joint, early or delayed reattachment/repair of the avulsed dorsal periphery of the triangular fibrocartilage complex (TFCC), reattachment of the TFCC to the ulna fovea, and late reconstruction. PMID:24996466

  5. The Tidal Radius of the Arches Cluster

    NASA Astrophysics Data System (ADS)

    Hosek, Matthew; Lu, Jessica R.; Anderson, Jay; Ghez, Andrea; Morris, Mark; Clarkson, William

    2015-08-01

    At a projected distance of just ˜26 pc from the center of the Milky Way, the Arches cluster allows us to examine the structure of a young massive cluster in the strong tidal environment of the Galactic center (GC). We use the HST WFC3IR camera to conduct an astrometric and photometric study of the outer region of the Arches cluster (R > 6.25”) in order to measure its radial profile. Using proper motions we separate cluster members from field stars down to F153M = 20 mag (˜2.5 M_sun) over a 120” x 120” field of view, covering an area 144 times larger than previous proper motion studies. This is a significant improvement over photometrically-determined cluster membership, which is complicated by the high degree of differential reddening across the field. Using cluster membership probabilities, a derived extinction map, and extensive completeness simulations, we construct the radial profile of the Arches cluster to a radius of ˜80” (˜3.1 pc assuming a distance of 8 kpc). Evidence of mass segregation out to this radius is observed, and no significant tidal tail structure is apparent. We find that the projected radial extent of the Arches cluster is significantly larger than its expected tidal radius. This result suggests either that the cluster is not as close to the GC as previously thought or that it is inflated beyond its nominal tidal radius.

  6. Proton radius from electron scattering data

    NASA Astrophysics Data System (ADS)

    Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent; Meekins, David; Norum, Blaine; Sawatzky, Brad

    2016-05-01

    Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon, and Stanford. Methods: We make use of stepwise regression techniques using the F test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. Results: Starting with the precision, low four-momentum transfer (Q2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q2 data on GE to select functions which extrapolate to high Q2, we find that a Padé (N =M =1 ) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, GE(Q2) =(1+Q2/0.66 GeV2) -2 . Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extremely-low-Q2 data or by use of the Padé approximant for extrapolation using a larger

  7. On solar radius measurements with PICARD

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Hauchecorne, A.; Corbard, T.; Hochedez, J. F.

    2014-12-01

    Solar diameter measurements performed from the ground for several decades seem to indicate a relation between the solar diameter and the solar activity. If this relationship is confirmed, it would be possible to use measurements of solar diameter as a proxy of solar activity in the past since the 1715 solar eclipses, and to use this input for the reconstruction of solar irradiance in climate models. However the interpretation of ground observations is controversial, ground-based measurements being affected by refraction, by atmospheric turbulence, and perhaps by atmospheric aerosols scattering. The only way to be free from atmospheric effects is to measure from space. This is the reason why, since the beginning, the PICARD program included a space and a ground component set up at the Calern site of the Observatoire de la Côte dAzur. During the last 4 years, the PICARD space mission has been used for observing the apparent solar diameter. First results of the astrometry program include a study of the June 2012 Venus transit for solar diameter determination. From this, the value of the solar radius from one astronomical unit was found to be equal to 959.86 arc-seconds at 607.1 nm. However, concerning observed variations in time of the solar radius, instrumental effects affect the results. Space is known to represent a harsh environment for optical instruments. Nevertheless, we can use the PICARD data to monitor the solar radius variation. PICARD aims to perpetuate historical series of the solar radius measurements, in particular during the solar cycle 24. This paper presents solar radius measurements obtained with PICARD.

  8. MASS-RADIUS RELATIONSHIPS FOR EXOPLANETS

    SciTech Connect

    Swift, D. C.; Eggert, J. H.; Hicks, D. G.; Hamel, S.; Caspersen, K.; Schwegler, E.; Collins, G. W.; Nettelmann, N.; Ackland, G. J.

    2012-01-01

    For planets other than Earth, particularly exoplanets, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass-radius and mass-pressure relations for key, relevant materials whose equation of state (EOS) is reasonably well established, and for differentiated Fe/rock. We find that variations in the EOS, such as may arise when extrapolating from low-pressure data, can have significant effects on predicted mass-radius relations and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets, broadly supporting recent inferences about exoplanet structures. Kepler-10b is apparently 'Earth-like', likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass-radius curves for H{sub 2}O and CH{sub 4}, suggesting an 'icy' composition with a relatively large core or a relatively large proportion of H{sub 2}O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5{sup +1.2}{sub -1.0} TPa. The central pressure in CoRoT-7b is probably close to 0.8 TPa, though may be up to 2 TPa. These pressures are accessible by planar

  9. The Epidemiology of Distal Radius Fractures

    PubMed Central

    Nellans, Kate W.; Kowalski, Evan; Chung, Kevin C.

    2012-01-01

    Distal radius fractures are one of the most common types of fractures, accounting for around 25% of fractures in the pediatric population and up to 18% of all fractures in the elderly age group. Although the pediatric and elderly populations are at the greatest risk for this injury, distal radius fractures still have a significant impact on the health and well-being of young adults. Data from the past 40 years has documented a trend towards an overall increase in the prevalence of this injury. For the pediatric population, this increase can likely be attributed to a surge in sports related activities. The growth of the elderly population and a rise in the number of active elderly are directly responsible for the increase seen in this age group. Understanding the epidemiology of this fracture is an important step towards the improvement of the treatment strategies and preventative measures which target this debilitating injury. PMID:22554654

  10. Running with the radius in RS1

    NASA Astrophysics Data System (ADS)

    Lewandowski, Adam; May, Michael J.; Sundrum, Raman

    2003-01-01

    We derive a renormalization group formalism for the Randall-Sundrum scenario, where the renormalization scale is set by a floating compactification radius. While inspired by the AdS-CFT conjecture, our results are derived concretely within higher-dimensional effective field theory. Matching theories with different radii leads to running hidden brane couplings. The hidden brane Lagrangian consists of four-dimensional local operators constructed from the induced value of the bulk fields on the brane. We find hidden Lagrangians which are nontrivial fixed points of the RG flow. Calculations in RS1 can be greatly simplified by “running down” the effective theory to a small radius. We demonstrate these simplifications by studying the Goldberger-Wise stabilization mechanism. In this paper, we focus on the classical and tree-level quantum field theory of bulk scalar fields, which demonstrates the essential features of the RG in the simplest context.

  11. Surgical exposures of the radius and ulna.

    PubMed

    Catalano, Louis W; Zlotolow, Dan A; Hitchcock, Phillip B; Shah, Suparna N; Barron, O Alton

    2011-07-01

    The forearm contains many muscles, nerves, and vascular structures that change position on forearm rotation. Exposure of the radial shaft is best achieved with the Henry (volar) or Thompson (dorsal) approach. The volar flexor carpi radialis approaches are used increasingly for exposure of the distal radius. Although the dorsal approach is a safe utilitarian option with many applications, its use for managing fracture of the distal radius has waned. Potential complications associated with radial exposure include injury to the superficial branch of the radial nerve, the lateral antebrachial cutaneous nerve, and the cephalic vein. Dorsal and ulnar proximal radial exposures are associated with increased risk of injury to the posterior interosseous nerve. With surgical exposure of the ulna, care is required to avoid injuring the dorsal cutaneous branch of the ulnar nerve. PMID:21724922

  12. Solar Radius Measurements at Mount Wilson

    NASA Astrophysics Data System (ADS)

    Lefebvre, S.; Bertello, L.; Ulrich, R. K.; Boyden, J. E.; Rozelot, J.

    2004-12-01

    Variations of the solar radius are not only important for solar physics but they also play a fundamental role in the research of terrestrial climate. In fact, changes in the apparent size of the Sun could account for a significant fraction of the total irradiance variations, and solar irradiance is known to be a primary force in driving atmospheric circulation. While the MDI instrument aboard SOHO is likely to provide the most accurate constraint on possible solar radius variations, the radius measurements obtained from ground base observations represent a unique resource due to their long temporal coverage. Since 1970, the Mount Wilson synoptic programme of solar magnetic observations carried out at the 150-foot tower scans the solar disk using the radiation in the neutral iron line at 525.0 nm. For these images, the radius has been determined and results are presented on this paper. We show first the temporal behavior of these measurements. Secondly, if data are gathered by heliolatitude, the shape of the Sun differs from a perfect ellipsoid and shows solar distortions. We compare these results with others obtained with the heliometer at the Pic du Midi observatory in France. The comparison show a similitude in the shape with a bulge near the equator extending on 20-30 degrees followed by a depression at higher latitude near 60-70 degrees. These solar distortions needs to be confirmed by future space measurements (PICARD microsatellite) but it already raises the problem of a better understanding of the physics in the sub-surface layers.

  13. Fractures of distal radius: an overview.

    PubMed

    Meena, Sanjay; Sharma, Pankaj; Sambharia, Abhishek Kumar; Dawar, Ashok

    2014-01-01

    Fractures of distal radius account for up to 20% of all fractures treated in emergency department. Initial assessment includes a history of mechanism of injury, associated injury and appropriate radiological evaluation. Treatment options include conservative management, internal fixation with pins, bridging and non-bridging external fixation, dorsal or volar plating with/without arthroscopy assistance. However, many questions regarding these fractures remain unanswered and good prospective randomized trials are needed. PMID:25657938

  14. Fractures of Distal Radius: An Overview

    PubMed Central

    Meena, Sanjay; Sharma, Pankaj; Sambharia, Abhishek Kumar; Dawar, Ashok

    2014-01-01

    Fractures of distal radius account for up to 20% of all fractures treated in emergency department. Initial assessment includes a history of mechanism of injury, associated injury and appropriate radiological evaluation. Treatment options include conservative management, internal fixation with pins, bridging and non-bridging external fixation, dorsal or volar plating with/without arthroscopy assistance. However, many questions regarding these fractures remain unanswered and good prospective randomized trials are needed. PMID:25657938

  15. Ulnar Shortening Osteotomy for Distal Radius Malunion

    PubMed Central

    Kamal, Robin N.; Leversedge, Fraser J.

    2014-01-01

    Background Malunion is a common complication of distal radius fractures. Ulnar shortening osteotomy (USO) may be an effective treatment for distal radius malunion when appropriate indications are observed. Methods The use of USO for treatment of distal radius fracture malunion is described for older patients (typically patients >50 years) with dorsal or volar tilt less than 20 degrees and no carpal malalignment or intercarpal or distal radioulnar joint (DRUJ) arthritis. Description of Technique Preoperative radiographs are examined to ensure there are no contraindications to ulnar shortening osteotomy. The neutral posteroanterior (PA) radiograph is used to measure ulnar variance and to estimate the amount of ulnar shortening required. An ulnar, mid-sagittal incision is used and the dorsal sensory branch of the ulnar nerve is preserved. An USO-specific plating system with cutting jig is used to create parallel oblique osteotomies to facilitate shortening. Intraoperative fluoroscopy and clinical range of motion are checked to ensure adequate shortening and congruous reduction of the ulnar head within the sigmoid notch. Results Previous outcomes evaluation of USO has demonstrated improvement in functional activities, including average flexion-extension and pronosupination motions, and patient reported outcomes. Conclusion The concept and technique of USO are reviewed for the treatment of distal radius malunion when specific indications are observed. Careful attention to detail related to surgical indications and to surgical technique typically will improve range of motion, pain scores, and patient-reported outcomes and will reduce the inherent risks of the procedure, such as ulnar nonunion or the symptoms related to unrecognized joint arthritis. Level of Evidence: Level IV PMID:25097811

  16. Measurement of the Radius of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien

    2012-07-01

    A physical understanding of the behavior of cold ultra-dense matter -- at and above nuclear density -- can only be achieved by the study of neutron stars. The recent 1.97+/-0.04 Msun measurement for PSR 1614-2230 suggests that strange quark matter and hyperons/kaons condensate equations of state (EoSs) are disfavored, in favor of hadronic EoSs. Over much of the neutron star mass-radius parameter space, the latter EoSs produce lines of nearly constant radii (within about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass x-ray binaries where we require the radius to be the same among all neutron stars analyzed. Our (preliminary) results suggest a neutron star radius much smaller than previously reported, in the range 7.5-10 km (90% confidence). The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to unmodelled spectrally hard components.

  17. Measurement of the Radius of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien; Rutledge, R. E.; Servillat, M.; Webb, N.

    2013-01-01

    A physical understanding of the behavior of cold ultra dense matter - at and above nuclear density - can only be achieved by the study of neutron stars. The recent 1.97 ± 0.04 M⊙ measurement for PSR 1614-2230 suggests that strange quark matter and hyperons/kaons condensate equations of state (EoSs) are disfavored, in favor of hadronic EoSs. Over much of the neutron star mass-radius parameter space, the latter EoSs produce lines of nearly constant radii (within about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass X-ray binaries where we require the radius to be the same among all neutron stars analyzed. Our (preliminary) results suggest a neutron star radius much smaller than previously reported, in the range 7.5-10 km (90% confidence). The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to unmodeled spectrally hard components.

  18. Solar radius change between 1925 and 1979

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Dunham, D. W.; Dunham, J. B.; Fiala, A. D.

    1983-01-01

    From an analysis of numerous reports from different locations on the duration of totality of the solar eclipses on January 24, 1925, and February 26, 1979, it is found that the solar radius at the earlier date was 0.5 arcsec (or 375 km) larger than at the later date. The correction to the standard solar radius found for each eclipse is different when different subsets of the observations are used (for example, edge of path of totality timings compared with central timings). This is seen as suggesting the existence of systematic inaccuracies in our knowledge of the lunar figure. The differences between the corrections for both eclipses, however, are very similar for all subsets considered, indicating that changes of the solar size may be reliably inferred despite the existence of the lunar figure errors so long as there is proper consideration of the distribution of the observations. These results are regarded as strong evidence in support of the occurrence of solar radius changes on shorter than evolutionary time scales.

  19. Electrode radius predicts lesion radius during radiofrequency energy heating. Validation of a proposed thermodynamic model

    SciTech Connect

    Haines, D.E.; Watson, D.D.; Verow, A.F. )

    1990-07-01

    Myocardial heating by transcatheter delivery of radiofrequency (RF) energy has been proposed as an effective means of arrhythmia ablation. A thermodynamic model describing the radial temperature gradient at steady state during RF-induced heating is proposed. If one assumes that RF power output is adjusted to maintain a constant electrode-tissue interface temperature at all times, then this thermodynamic model predicts that the radius of the RF-induced lesion will be directly proportional to the electrode radius. A total of 76 RF-induced lesions were created in a model of isolated canine right ventricular free wall perfused and superfused with oxygenated Krebs-Henseleit buffer. Electrode radius was varied between 0.75 and 2.25 mm. RF energy (500 kHz) was delivered for 90 seconds, and the power output was adjusted to maintain a constant electrode-tissue interface temperature of 60 degrees C. A strong linear correlation was observed between electrode radius and lesion radius in two dimensions: transverse (p = 0.0001, r = 0.85) and transmural (p = 0.0001, r = 0.89). With these data, the temperature correlation with irreversible myocardial injury in this model was calculated at 46.6-48.8 degrees C. Therefore, the proposed thermodynamic model closely predicts the observed relation between electrode radius and lesion size during RF myocardial heating.

  20. External fixation of distal radius fractures.

    PubMed

    Slutsky, David J

    2007-12-01

    External fixation has been used for the treatment of distal radius fractures for more than 50 years. Although the fixator configurations have undergone considerable modification over time, the type of fixator itself is not as important as the underlying principles that provide the foundation for external fixation. Although volar plate fixation is currently in vogue, the indications for external fixation remain largely unchanged. Newer fixator designs have also expanded the traditional usage to include nonbridging applications that allow early wrist motion. The following discussion focuses on the myriad uses for external fixation as well as the shortcomings and potential pitfalls. PMID:18070654

  1. [Arthroscopic treatment of distal radius fracture].

    PubMed

    Lindau, T

    2006-11-01

    The orthopaedic surgeons cannot predict the functional results after a distal intra articular radius fracture. The intra-articular incongruity of more than 1 mm is associated with the development of secondary osteoarthrosis. The wrist arthroscopy became an essential help for the reduction of these fractures. The hand is normally in an upright position with a traction of approximately 4-5 kg which facilitates the reduction of the extra-articular fracture component. It is possible to use a technique of horizontal traction. The arthroscopy allows the reduction and control of the fixing of the various fragments, but also the treatment associated lesions associated. One randomized study, which compared 34 arthroscopically treated fractures with 48 openly treated, concluded that the arthroscopy-treated group had better outcome, better reduction, better grip strength and better range of motion than the openly treated group. The treatment of intra articular distal radius fractures with arthroscopic assistance is thus the guaranteeing of the most anatomical reduction of articular surface. It allows the diagnosis and the treatment of the associated lesions, decreases the peripheral fibrous scars of soft tissues by avoiding initially extensive approaches and finally gives better functional results. PMID:17361885

  2. [Arthroscopic treatment of distal radius fracture.

    PubMed

    Lindau, T

    2006-11-01

    The orthopaedic surgeons cannot predict the functional results after a distal intra articular radius fracture. The intra-articular incongruity of more than 1 mm is associated with the development of secondary osteoarthrosis. The wrist arthroscopy became an essential help for the reduction of these fractures. The hand is normally in an upright position with a traction of approximately 4-5 kg which facilitates the reduction of the extra-articular fracture component. It is possible to use a technique of horizontal traction. The arthroscopy allows the reduction and control of the fixing of the various fragments, but also the treatment associated lesions associated. One randomized study, which compared 34 arthroscopically treated fractures with 48 openly treated, concluded that the arthroscopy-treated group had better outcome, better reduction, better grip strength and better range of motion than the openly treated group. The treatment of intra articular distal radius fractures with arthroscopic assistance is thus the guaranteeing of the most anatomical reduction of articular surface. It allows the diagnosis and the treatment of the associated lesions, decreases the peripheral fibrous scars of soft tissues by avoiding initially extensive approaches and finally gives better functional results. PMID:17349390

  3. Ultrasound-Assisted Distal Radius Fracture Reduction

    PubMed Central

    Socransky, Steve; Skinner, Andrew; Bromley, Mark; Smith, Andrew; Anawati, Alexandre; Middaugh, Jeff; Ross, Peter

    2016-01-01

    Introduction Closed reduction of distal radius fractures (CRDRF) is a commonly performed emergency department (ED) procedure. The use of point-of-care ultrasound (PoCUS) to diagnose fractures and guide reduction has previously been described. The primary objective of this study was to determine if the addition of PoCUS to CRDRF changed the perception of successful initial reduction. This was measured by the rate of further reduction attempts based on PoCUS following the initial clinical determination of achievement of best possible reduction. Methods  We performed a multicenter prospective cohort study, using a convenience sample of adult ED patients presenting with a distal radius fracture to five Canadian EDs. All study physicians underwent standardized PoCUS training for fractures. Standard clinically-guided best possible fracture reduction was initially performed. PoCUS was then used to assess the reduction adequacy. Repeat reduction was performed if deemed indicated. A post-reduction radiograph was then performed. Clinician impression of reduction adequacy was scored on a 5 point Likert scale following the initial clinically-guided reduction and following each PoCUS scan and the post-reduction radiograph. Results  There were 131 patients with 132 distal radius fractures. Twelve cases were excluded prior to analysis. There was no significant difference in the assessment of the initial reduction status by PoCUS as compared to the clinical exam (mean score: 3.8 vs. 3.9; p = 0.370; OR 0.89; 95% CI 0.46 to 1.72; p = 0.87). Significantly fewer cases fell into the uncertain category with PoCUS than with clinical assessment (2 vs 12; p = 0.008). Repeat reduction was performed in 49 patients (41.2%). Repeat reduction led to a significant improvement (p < 0.001) in the PoCUS determined adequacy of reduction (mean score: 4.3 vs 3.1; p < 0.001). In this group, the odds ratio for adequate vs. uncertain or inadequate reduction assessment using PoCUS was 12.5 (95% CI 3

  4. Ultrasound-Assisted Distal Radius Fracture Reduction.

    PubMed

    Socransky, Steve; Skinner, Andrew; Bromley, Mark; Smith, Andrew; Anawati, Alexandre; Middaugh, Jeff; Ross, Peter; Atkinson, Paul

    2016-01-01

    Introduction Closed reduction of distal radius fractures (CRDRF) is a commonly performed emergency department (ED) procedure. The use of point-of-care ultrasound (PoCUS) to diagnose fractures and guide reduction has previously been described. The primary objective of this study was to determine if the addition of PoCUS to CRDRF changed the perception of successful initial reduction. This was measured by the rate of further reduction attempts based on PoCUS following the initial clinical determination of achievement of best possible reduction. Methods  We performed a multicenter prospective cohort study, using a convenience sample of adult ED patients presenting with a distal radius fracture to five Canadian EDs. All study physicians underwent standardized PoCUS training for fractures. Standard clinically-guided best possible fracture reduction was initially performed. PoCUS was then used to assess the reduction adequacy. Repeat reduction was performed if deemed indicated. A post-reduction radiograph was then performed. Clinician impression of reduction adequacy was scored on a 5 point Likert scale following the initial clinically-guided reduction and following each PoCUS scan and the post-reduction radiograph. Results  There were 131 patients with 132 distal radius fractures. Twelve cases were excluded prior to analysis. There was no significant difference in the assessment of the initial reduction status by PoCUS as compared to the clinical exam (mean score: 3.8 vs. 3.9; p = 0.370; OR 0.89; 95% CI 0.46 to 1.72; p = 0.87). Significantly fewer cases fell into the uncertain category with PoCUS than with clinical assessment (2 vs 12; p = 0.008). Repeat reduction was performed in 49 patients (41.2%). Repeat reduction led to a significant improvement (p < 0.001) in the PoCUS determined adequacy of reduction (mean score: 4.3 vs 3.1; p < 0.001). In this group, the odds ratio for adequate vs. uncertain or inadequate reduction assessment using PoCUS was 12.5 (95% CI 3

  5. [Distal radius fractures: conservative or surgical treatment?].

    PubMed

    Mark, G; Ryf, C

    1993-07-01

    The "classical" Colles fracture of the distal radius is the most common fracture in the adult. In order to reduce the still rather high rate of permanent disability, this fracture involving a functionally important joint requires accurate reduction. The AO-fracture classification introduced by Müller not only defines the severity of an injury, but also allows for decision-making as to the most adequate treatment. Besides the purely conservative management by closed reduction and plaster cast for the type-A fractures, we have a number of other treatment modalities for the more complex-B and C-type fractures, such as closed reduction and percutaneous K-wire application or the use of the small external fixator as well as open reduction and internal fixation by plates and screws for a few selected indications. PMID:8211844

  6. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition

    SciTech Connect

    Lopez, Eric D.; Fortney, Jonathan J.

    2014-09-01

    Transiting planet surveys like Kepler have provided a wealth of information on the distribution of planetary radii, particularly for the new populations of super-Earth- and sub-Neptune-sized planets. In order to aid in the physical interpretation of these radii, we compute model radii for low-mass rocky planets with hydrogen-helium envelopes. We provide model radii for planets 1-20 M {sub ⊕}, with envelope fractions 0.01%-20%, levels of irradiation 0.1-1000 times Earth's, and ages from 100 Myr to 10 Gyr. In addition we provide simple analytic fits that summarize how radius depends on each of these parameters. Most importantly, we show that at fixed H/He envelope fraction, radii show little dependence on mass for planets with more than ∼1% of their mass in their envelope. Consequently, planetary radius is to a first order a proxy for planetary composition, i.e., H/He envelope fraction, for Neptune- and sub-Neptune-sized planets. We recast the observed mass-radius relationship as a mass-composition relationship and discuss it in light of traditional core accretion theory. We discuss the transition from rocky super-Earths to sub-Neptune planets with large volatile envelopes. We suggest ∼1.75 R {sub ⊕} as a physically motivated dividing line between these two populations of planets. Finally, we discuss these results in light of the observed radius occurrence distribution found by Kepler.

  7. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  8. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  9. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  10. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  11. Photospheric Radius Expansion During Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Watts, Anna L.; Kouveliotou, Chryssa; van der Horst, Alexander J.; Göǧüş, Ersin; Kaneko, Yuki; van der Klis, Michiel; Wijers, Ralph A. M. J.; Harding, Alice K.; Baring, Matthew G.

    2010-08-01

    On 2008 August 24 the new magnetar SGR 0501+4516 (discovered by Swift) emitted a bright burst with a pronounced double-peaked structure in hard X-rays, reminiscent of the double-peaked temporal structure seen in some bright thermonuclear bursts on accreting neutron stars. In the latter case this is due to Photospheric Radius Expansion (PRE): when the flux reaches the Eddington limit, the photosphere expands and cools so that emission becomes softer and drops temporarily out of the X-ray band, re-appearing as the photosphere settles back down. We consider the factors necessary to generate double-peaked PRE events, and show that such a mechanism could plausibly operate in magnetar bursts despite the vastly different emission process. Identification of the magnetic Eddington limit in a magnetar would constrain magnetic field and distance and could, in principle, enable a measurement of gravitational redshift. It would also locate the emitting region at the neutron star surface, constraining the burst trigger mechanism. Conclusive confirmation of PRE events will require more detailed radiative models for bursts. However, for SGR 0501+4516 the predicted critical flux (using the magnetic field strength inferred from timing and the distance suggested by its probable location in the Perseus arm of our Galaxy) is consistent with that observed in the August 24 burst.

  12. Experimental study of finite Larmor radius effects

    SciTech Connect

    Struve, K.W.

    1980-08-01

    Linear Z-pinches in Ar, Kr, Xe, N/sub 2/, and He are experimentally studied in regimes where strong finite Larmor radius effects could provide a significant stabilizing effect. Scaling arguments show that for deuterium such a pinch has an electron line density of order 2 x 10/sup 15//cm. For higher Z plasmas a higher line density is allowed, the exact value of which depends on the average ion charge. The pinch is formed by puffing gas axially through the cathode towards the anode of an evacuated pinch chamber. When the gas reaches the anode, the pinch bank is fired. The pinch current rises in 2 to 3 ..mu..sec to a maximum of 100 to 200 kA. The pinch bank capacitance is 900 ..mu..F, and the external inductance is 100 nH. Additionally, the bank is fused to increase dI/dt. The primary diagnostics are a framing camera, a spatially resolved Mach-Zehnder interferometer, and X-ray absorption.

  13. Tidal radius estimates for three open clusters

    NASA Astrophysics Data System (ADS)

    Danilov, V. M.; Loktin, A. V.

    2015-10-01

    A new method is developed for estimating tidal radii and masses of open star clusters (OCL) based on the sky-plane coordinates and proper motions and/or radial velocities of cluster member stars. To this end, we perform the correlation and spectral analysis of oscillations of absolute values of stellar velocity components relative to the cluster mass center along three coordinate planes and along each coordinate axis in five OCL models. Mutual correlation functions for fluctuations of absolute values of velocity field components are computed. The spatial Fourier transform of the mutual correlation functions in the case of zero time offset is used to compute wavenumber spectra of oscillations of absolute values of stellar velocity components. The oscillation spectra of these quantities contain series of local maxima at equidistant wavenumber k values. The ratio of the tidal radius of the cluster to the wavenumber difference Δ k of adjacent local maxima in the oscillation spectra of absolute values of velocity field components is found to be the same for all five OCL models. This ratio is used to estimate the tidal radii and masses of the Pleiades, Praesepe, and M67 based on the proper motions and sky-plane coordinates of the member stars of these clusters. The radial dependences of the absolute values of the tangential and radial projections of cluster star velocities computed using the proper motions relative to the cluster center are determined, along with the corresponding autocorrelation functions and wavenumber spectra of oscillations of absolute values of velocity field components. The Pleiades virial mass is estimated assuming that the cluster is either isolated or non-isolated. Also derived are the estimates of the Pleiades dynamical mass assuming that it is non-stationary and non-isolated. The inferred Pleiades tidal radii corresponding to these masses are reported.

  14. Contribution to the cloud droplet effective radius parameterization

    SciTech Connect

    Pontikis, C.; Hicks, E. )

    1992-11-01

    An analytic cloud droplet effective radius expression is derived and validated by using field experiment microphysical data. This expression shows that the effective radius depends simultaneously upon the cloud liquid water content, droplet concentration and droplet spectral dispersion. It further suggests that the variability in these parameters present at all scales, due to turbulent mixing and secondary droplet activation, could limit the accuracy of the effective radius parameterizations used in climate models. 12 refs.

  15. Discharge coefficients of cooling holes with radiused and chamfered inlets

    NASA Astrophysics Data System (ADS)

    Hay, N.; Spencer, A.

    1991-06-01

    The flow of cooling air within the internal passages of gas turbines is controlled and metered using holes in disks and casings. The effects of inlet radiusing and chamfering of these holes on the discharge coefficient are discussed. Experimental results for a range of radiusing and chamfering ratios for holes of different length to diameter ratios are presented, covering the range of pressure ratios of practical interest. The results indicate that radiusing and chamfering are both beneficial in increasing the discharge coefficient. Increases of 10-30 percent are possible. Chamfered holes give the more desirable performance characteristics in addition to being easier to produce than radiused holes.

  16. Improving optical bench radius measurements using stage error motion data

    SciTech Connect

    Schmitz, Tony L.; Gardner, Neil; Vaughn, Matthew; Medicus, Kate; Davies, Angela

    2008-12-20

    We describe the application of a vector-based radius approach to optical bench radius measurements in the presence of imperfect stage motions. In this approach, the radius is defined using a vector equation and homogeneous transformation matrix formulism. This is in contrast to the typical technique, where the displacement between the confocal and cat's eye null positions alone is used to determine the test optic radius. An important aspect of the vector-based radius definition is the intrinsic correction for measurement biases, such as straightness errors in the stage motion and cosine misalignment between the stage and displacement gauge axis, which lead to an artificially small radius value if the traditional approach is employed. Measurement techniques and results are provided for the stage error motions, which are then combined with the setup geometry through the analysis to determine the radius of curvature for a spherical artifact. Comparisons are shown between the new vector-based radius calculation, traditional radius computation, and a low uncertainty mechanical measurement. Additionally, the measurement uncertainty for the vector-based approach is determined using Monte Carlo simulation and compared to experimental results.

  17. The Origin of the Ionic-Radius Ratio Rules

    ERIC Educational Resources Information Center

    Jensen, William B.

    2010-01-01

    In response to a reader query, this article traces the origins of the ionic-radius ratio rules and their incorrect attribution to Linus Pauling in the chemical literature and to Victor Goldschmidt in the geochemical literature. In actual fact, the ionic-radius ratio rules were first proposed within the context of the coordination chemistry…

  18. Determination of Radius of Curvature for Teeth With Cycloid Profile

    NASA Astrophysics Data System (ADS)

    Shatalov, E. V.; Efremenkov, E. A.; Shibinskiy, K. G.

    2016-04-01

    In the article the geometric determination of curvature radius is considered for teeth with cycloid profile. The equations are obtained for the determination of a radius of curvature with point coordinates of a cycloid profile. The conditions of convexo-concavity of a teeth profile are defined for transmission with intermediate rollers.

  19. Decreasing the spectral radius of a graph by link removals.

    PubMed

    Van Mieghem, Piet; Stevanović, Dragan; Kuipers, Fernando; Li, Cong; van de Bovenkamp, Ruud; Liu, Daijie; Wang, Huijuan

    2011-07-01

    The decrease of the spectral radius, an important characterizer of network dynamics, by removing links is investigated. The minimization of the spectral radius by removing m links is shown to be an NP-complete problem, which suggests considering heuristic strategies. Several greedy strategies are compared, and several bounds on the decrease of the spectral radius are derived. The strategy that removes that link l=i~j with largest product (x(1))(i)(x(1))(j) of the components of the eigenvector x(1) belonging to the largest adjacency eigenvalue is shown to be superior to other strategies in most cases. Furthermore, a scaling law where the decrease in spectral radius is inversely proportional to the number of nodes N in the graph is deduced. Another sublinear scaling law of the decrease in spectral radius versus the number m of removed links is conjectured. PMID:21867251

  20. Thermoconvective vortices in a cylindrical annulus with varying inner radius

    NASA Astrophysics Data System (ADS)

    Castaño, D.; Navarro, M. C.; Herrero, H.

    2014-12-01

    This paper shows the influence of the inner radius on the stability and intensity of vertical vortices, qualitatively similar to dust devils and cyclones, generated in a cylindrical annulus non-homogeneously heated from below. Little relation is found between the intensity of the vortex and the magnitude of the inner radius. Strong stable vortices can be found for both small and large values of the inner radius. The Rankine combined vortex structure, that characterizes the tangential velocity in dust devils, is clearly observed when small values of the inner radius and large values of the ratio between the horizontal and vertical temperature differences are considered. A contraction on the radius of maximum azimuthal velocity is observed when the vortex is intensified by thermal mechanisms. This radius becomes then nearly stationary when frictional force balances the radial inflow generated by the pressure drop in the center, despite the vortex keeps intensifying. These results connect with the behavior of the radius of the maximum tangential wind associated with a hurricane.

  1. Thermoconvective vortices in a cylindrical annulus with varying inner radius.

    PubMed

    Castaño, D; Navarro, M C; Herrero, H

    2014-12-01

    This paper shows the influence of the inner radius on the stability and intensity of vertical vortices, qualitatively similar to dust devils and cyclones, generated in a cylindrical annulus non-homogeneously heated from below. Little relation is found between the intensity of the vortex and the magnitude of the inner radius. Strong stable vortices can be found for both small and large values of the inner radius. The Rankine combined vortex structure, that characterizes the tangential velocity in dust devils, is clearly observed when small values of the inner radius and large values of the ratio between the horizontal and vertical temperature differences are considered. A contraction on the radius of maximum azimuthal velocity is observed when the vortex is intensified by thermal mechanisms. This radius becomes then nearly stationary when frictional force balances the radial inflow generated by the pressure drop in the center, despite the vortex keeps intensifying. These results connect with the behavior of the radius of the maximum tangential wind associated with a hurricane. PMID:25554036

  2. On the Variation of Solar Radius in Rotation Cycles

    NASA Astrophysics Data System (ADS)

    Qu, Z. N.; Kong, D. F.; Xiang, N. B.; Feng, W.

    2015-01-01

    The Date Compensated Discrete Fourier Transform and CLEANest algorithm are used to study the temporal variations of the solar radius observed at Rio de Janeiro Observatory from 1998 March 2 to 2009 November 6. The CLEANest spectra show several significant periodicities around 400, 312, 93.5, 86.2, 79.4, 70.9, 53.2, and 26.3 days. Then, combining the data on the daily solar radius measured at Calern Observatory and Rio de Janeiro Observatory and the corresponding daily sunspot areas, we study the short-term periodicity of the solar radius and the role of magnetic field in the variation of the solar radius. The rotation period of the daily solar radius is determined to be statistically significant. Moreover, its temporal evolution is anti-phase with that of sunspot activity, and it is found anti-phase with solar activity. Generally, the stronger solar activity is, the more obvious is the anti-phase relation of radius with solar activity. This indicates that strong magnetic fields have a greater inhibitive effect than weak magnetic fields on the variation of the radius.

  3. ON THE VARIATION OF SOLAR RADIUS IN ROTATION CYCLES

    SciTech Connect

    Qu, Z. N.; Kong, D. F.; Xiang, N. B.; Feng, W.

    2015-01-10

    The Date Compensated Discrete Fourier Transform and CLEANest algorithm are used to study the temporal variations of the solar radius observed at Rio de Janeiro Observatory from 1998 March 2 to 2009 November 6. The CLEANest spectra show several significant periodicities around 400, 312, 93.5, 86.2, 79.4, 70.9, 53.2, and 26.3 days. Then, combining the data on the daily solar radius measured at Calern Observatory and Rio de Janeiro Observatory and the corresponding daily sunspot areas, we study the short-term periodicity of the solar radius and the role of magnetic field in the variation of the solar radius. The rotation period of the daily solar radius is determined to be statistically significant. Moreover, its temporal evolution is anti-phase with that of sunspot activity, and it is found anti-phase with solar activity. Generally, the stronger solar activity is, the more obvious is the anti-phase relation of radius with solar activity. This indicates that strong magnetic fields have a greater inhibitive effect than weak magnetic fields on the variation of the radius.

  4. An Asian Perspective on the Management of Distal Radius Fractures

    PubMed Central

    Sebastin, Sandeep J.; Chung, Kevin C.

    2012-01-01

    Synopsis There is little data with regards to the epidemiology, pathology, or management of distal radius fractures from centers in Asia. Asia includes five advanced economies, namely Hong Kong SAR, Japan, Korea, Singapore, and Taiwan and a number of emerging economies prominent among which are China, India, Malaysia, Philippines, and Thailand. This article examines the available epidemiological data from Asia, and compares the management of distal radius fractures in the advanced and emerging Asian economies and how they match up to the current management in the west. It concludes by offering solutions for improving outcomes of distal radius fractures in both the advanced and emerging economies of Asia. PMID:22554658

  5. Primary nonunion of the distal radius fractures in healthy children.

    PubMed

    Song, Kwang Soon; Lee, Si Wook; Bae, Ki Cheor; Yeon, Chang Jin; Naik, Premal

    2016-03-01

    There are no published case series of nonunion of distal radius fractures in healthy children because of the rarity of its occurrence. We searched for all reported cases of this condition in Pubmed, Google scholar, and SCOPUS. We found three series, which included one previously reported by our group. The aim of the present study was to define the predisposing factors leading to nonunion after treatment of distal radius fractures in healthy children. We also aimed to emphasize that nonunion should be included in the list of complications of distal radius fractures in children and be mentioned in the textbook of pediatric trauma. PMID:26583931

  6. New Precision Measurement for Proton Zemach Radius with Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Ishida, K.; Iwasaki, M.; Matsuzaki, Y.; Oishi, Y.; Okada, S.; Sato, M.; Midorikawa, K.; Saito, N.; Wada, S.; Aikawa, S.; Kanda, S.; Matsuda, Y.; Tanaka, K.; Takamine, A.

    2016-02-01

    In this proceeding, a new proposal aiming to improve the precision of the proton Zemach radius will be presented. A circularly polarized laser will be shed on a sample of muonic hydrogen in its ground state. By observing the maximum muon decay asymmetry during scanning laser wave length, the ground-state hyperfine splitting energy can be identified, which is directly related to Zemach radius.citedupays The precision of Zemach radius by this measurement is estimated to be three times better compared to PSI experiment. This result will contribute to the solution of proton size puzzle.

  7. An Asian perspective on the management of distal radius fractures.

    PubMed

    Sebastin, Sandeep J; Chung, Kevin C

    2012-05-01

    There is limited data regarding the epidemiology, pathology, and management of distal radius fractures from centers in Asia. The advanced economies in Asia include Hong Kong, Japan, Korea, Singapore, and Taiwan, whereas the prominent emerging economies are China, India, Malaysia, Philippines, and Thailand. This article examines the available epidemiological data from Asia, compares the management of distal radius fractures in the advanced and emerging Asian economies and how they compare with the current management in the west. It concludes by offering solutions for improving outcomes of distal radius fractures in Asia. PMID:22554658

  8. Study of a non-intrusive electron beam radius diagnostic

    SciTech Connect

    Kwan, T.J.T.; DeVolder, B.G.; Goldstein, J.C.; Snell, C.M.

    1997-12-01

    The authors have evaluated the usefulness and limitation of a non-intrusive beam radius diagnostic which is based on the measurement of the magnetic moment of a high-current electron beam in an axisymmetric focusing magnetic field, and relates the beam root-mean-square (RMS) radius to the change in magnetic flux through a diamagnetic loop encircling the beam. An analytic formula that gives the RMS radius of the electron beam at a given axial position and a given time is derived and compared with results from a 2-D particle-in-cell code. The study has established criteria for its validity and optimal applications.

  9. Laser confocal radius measurement method for unpolished spheres.

    PubMed

    Wang, Xu; Zhao, Weiqian; Qiu, Lirong; Yang, Shuai; Wang, Zhongyu

    2016-06-10

    A laser confocal radius measurement method for unpolished spheres (CRMUS) is proposed for measuring the radius of an unpolished sphere during optical sphere processing. CRMUS uses the laser confocal focusing technique to accurately identify the cat's eye and confocal positions of the unpolished sphere, and then uses the distance between the cat's eye and confocal positions measured by a distance measurement interferometer to derive the radius. The partially coherent optical theoretical model of the CRMUS derived indicates that the CRMUS is able to measure the radius of the unpolished sphere with a roughness of less than 0.15 μm. Using an unpolished sphere made of Schott BK7 as the test sphere, experimental results indicate that the CRMUS has a relative expanded uncertainty of less than 20 ppm. The CRMUS could greatly increase processing efficiency. PMID:27409012

  10. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device... small, hand held, single tube penscope or eye gauge magnifier. (b) Classification. Class I...

  11. Fixed Lunate Flexion Deformity in Distal Radius Fractures.

    PubMed

    Lee, Sanglim; Yu, Jae-Ha; Jeon, Suk Ha

    2016-06-01

    Carpal malalignments in malunion of distal radius fracture are considered as an adaptive response of the carpus to loss of normal architecture of the distal radius. This condition leads to mechanical overload, ligament attenuation and progressive dynamic instability around the wrist joint. Radial corrective osteotomy is suggested as a treatment option of carpal malalignment after distal radius malunion. In radiocarpal malalignment, the lunate is usually observed in flexion in contrast to its extension posture in the more common midcarpal malalignment. We report two cases of fixed lunate flexion deformity after a distal radius fracture, in which reduction and fixation of fresh fracture or corrective osteotomy of malunion were not successful. Arthritic changes were observed in the radiolunate joint on arthroscopy. Thus, fixed flexion deformity of the lunate might be associated with posttraumatic arthritic change in the radiolunate joint. PMID:27247752

  12. Fixed Lunate Flexion Deformity in Distal Radius Fractures

    PubMed Central

    Lee, Sanglim; Yu, Jae-Ha

    2016-01-01

    Carpal malalignments in malunion of distal radius fracture are considered as an adaptive response of the carpus to loss of normal architecture of the distal radius. This condition leads to mechanical overload, ligament attenuation and progressive dynamic instability around the wrist joint. Radial corrective osteotomy is suggested as a treatment option of carpal malalignment after distal radius malunion. In radiocarpal malalignment, the lunate is usually observed in flexion in contrast to its extension posture in the more common midcarpal malalignment. We report two cases of fixed lunate flexion deformity after a distal radius fracture, in which reduction and fixation of fresh fracture or corrective osteotomy of malunion were not successful. Arthritic changes were observed in the radiolunate joint on arthroscopy. Thus, fixed flexion deformity of the lunate might be associated with posttraumatic arthritic change in the radiolunate joint. PMID:27247752

  13. Isolated Diaphyseal Fractures of the Radius in Skeletally Immature Patients

    PubMed Central

    Guitton, Thierry G.; Van Dijk, Niek C.; Raaymakers, Ernst L.

    2009-01-01

    Diaphyseal radius fractures without associated ulna fracture or radioulnar dislocation (isolated fracture of the radius) are recognized in adults but are rarely described in skeletally immature patients. A search of our database (1974–2002) identified 17 pediatric patients that had an isolated fracture of the radius. Among the 13 patients with at least 1 year follow-up, ten were treated with manipulative reduction and immobilization in an above elbow cast and three had initial operative treatment with plate and screw fixation. These 13 patients were evaluated for an average of 18 months (range, 12 to 45 months) after injury using the system of Price and colleagues. The incidence of isolated diaphyseal radius fractures in skeletally immature patients was 0.56 per year in our database and represented 27% of the 63 patients with a diaphyseal forearm fracture. All 13 patients, with at least 1 year follow-up, regained full elbow flexion and extension and full forearm rotation. According to the classification system of Price, all 13 patients (100%) had an excellent result. As in adults, isolated radius fractures seem to occur in children more frequently than previously appreciated. Treatment of isolated radius fractures in skeletally immature patients has a low complication rate, and excellent functional outcomes are the rule. PMID:19859772

  14. LONG-TERM PERIODICITY VARIATIONS OF THE SOLAR RADIUS

    SciTech Connect

    Qu, Z. N.; Xie, J. L.

    2013-01-01

    In order to study the long-term periodicity variations of the solar radius, daily solar radius data from 1978 February to 2000 September at the Calern Observatory are used. Continuous observations of the solar radius are difficult due to the weather, seasonal effects, and instrument characteristics. Thus, to analyze these data, we first use the Dixon criterion to reject suspect values, then we measure the cross-correlation between the solar radius and sunspot numbers. The result indicates that the solar radius is in complete antiphase with the sunspot numbers and shows lead times of 74 months relative to the sunspot numbers. The Lomb-Scargle and date compensated discrete Fourier transform methods are also used to investigate the periodicity of the solar radius. Both methods yield similar significance periodicities around {approx}1 yr, {approx}2.6 yr, {approx}3.6 yr, and {approx}11 yr. Possible mechanisms for these periods are discussed. The possible physical cause of the {approx}11 yr period is the cyclic variation of the magnetic pressure of the concentrated flux tubes at the bottom of the solar convection zone.

  15. The radius distribution of planets around cool stars

    SciTech Connect

    Morton, Timothy D.; Swift, Jonathan

    2014-08-10

    We calculate an empirical, non-parametric estimate of the shape of the period-marginalized radius distribution of planets with periods less than 150 days using the small yet well-characterized sample of cool (T{sub eff} < 4000 K) dwarf stars in the Kepler catalog. In particular, we present and validate a new procedure, based on weighted kernel density estimation, to reconstruct the shape of the planet radius function down to radii smaller than the completeness limit of the survey at the longest periods. Under the assumption that the period distribution of planets does not change dramatically with planet radius, we show that the occurrence of planets around these stars continues to increase to below 1 R{sub ⊕}, and that there is no strong evidence for a turnover in the planet radius function. In fact, we demonstrate using many iterations of simulated data that a spurious turnover may be inferred from data even when the true distribution continues to rise toward smaller radii. Finally, the sharp rise in the radius distribution below ∼3 R{sub ⊕} implies that a large number of planets await discovery around cool dwarfs as the sensitivities of ground-based transit surveys increase.

  16. Evidence for a large radius of the 11Be projectile

    NASA Astrophysics Data System (ADS)

    So, W. Y.; Choi, K. S.; Cheoun, Myung-Ki; Kim, K. S.

    2016-05-01

    We investigate ratios of the elastic scattering cross section to Rutherford cross section, PE, and angular distributions of breakup cross section by using an optical model which exploits various long-range dynamic polarization potentials as well as short-range nuclear bare potentials for the 11Be projectile. From these simultaneous analyses, we extract a large radius of a halo projectile from the experimental data for PE and the angular distribution of the breakup cross section of the 11Be + 64Zn and 11 + 120Sn systems. It results from the fact that a large radius for the long-range nuclear potential is more reasonable for properly explaining these data simultaneously. The extracted reduced interaction radius turns out to be r0=3.18 ˜3.61 fm for 11Be nucleus, which is larger than the conventional value of r0=1.1 ˜1.5 fm used in the standard radius form R =r0A1 /3 . Furthermore, the larger radius as well as the normalization constant N is shown to be important for understanding Coulomb dipole strength distribution.

  17. Solar radius measurements with the space instrument HMI (SDO)

    NASA Astrophysics Data System (ADS)

    Irbah, Abdanour; Hauchecorne, Alain; Meftah, Mustapha; Damé, Luc; Keckhut, Philippe

    2016-04-01

    The solar radius variations and its effects on the Earth climate are still a long scientific debate. The observed variations from ground experiments were not totally admitted and several space missions have had these measures as a goal. The high angular resolution of radius measurements and its long-term trend is however a challenge in space. The first attempts with MDI (Soho) then SODISM (PICARD) and HMI (SDO) revealed the difficulties of such measures due to the hostile environment which introduces thermal variations on the instruments all along the satellite orbit. These variations have non-negligible impacts on the optical properties of the onboard telescopes and therefore on the images and the parameters which are extracted such as the solar radius. We need then to make a posteriori corrections using the thermal housekeeping's recorded together with the data science. We present here how we make such correction on the solar radius obtained from the HMI images. We will then compare and discuss the results with the solar radius recorded at 607 nm with the ground-based instrument of PICARD.

  18. Distal Radius Radiographic Indices and Perilunate Fracture Dislocation

    PubMed Central

    Bagherifard, Abolfazl; Jafari, Davod; Keihan Shokouh, Hassan; Motavallian, Ebrahim; Najd Mazhar, Farid

    2016-01-01

    Background Distal radius radiographic indices may play a role as risk factors in pathogenesis of Kienbock’s disease, scaphoid fracture and nonunion. Perilunate fracture dislocations are devastating wrist injuries, and their relationship and distal radius indices have not been addressed in the literature. Objectives The aim of this study was to evaluate the possible role of distal radius radiographic indices including radial height, radial inclination, ulnar variance and volar tilt as risk factors in the perilunate fracture dislocation injury of the wrist. Patients and Methods We studied distal radius radiographic indices including radial height, radial inclination, ulnar variance and volar tilt in 43 patients with perilunate fracture dislocations and compared them with 44 wrists in the control group. Results The mean values of the radial height, radial inclination, ulnar variance and volar tilt were 12.74 (5 - 18), 24.20 (7 - 35), -0.73 (-5 - 4) and 12.28 (2 - 20) in the patient group. These values were 12.68 (9 - 22), 23.22 (17 - 30), -0.11 (-4 - 3) and 11.05 (-3 - 20), respectively in the control group. There was no statistically significant difference between the two groups. Conclusions This study did not show that distal radius anatomical indices including the radial height, radial inclination, ulnar variance and volar tilt influence perilunate fracture dislocation as risk factors.

  19. The Mass - Radius Relation of Giant Gas Planets

    NASA Astrophysics Data System (ADS)

    Çelik Orhan, Zeynep; Kayhan, Cenk; Yildiz, Mutlu

    2016-07-01

    Thanks to CoRoT and Kepler space telescope, the thousand of exoplanets have been discovered. The only observational construct on planetary interior is planetary radius. Mass-radius relation is widely studied in the literature. Many mechanisms have been suggested in the literature to explain the inflated radii of these planets. In this study, our aim is to consider planet and host star interaction and assess the basic mechanisms responsible for excess in radius of transiting giant gas planets. We show that there is much more definite relation between radius and energy per gram per second (log (l- )). There is a good linear relation between planetary radius and log (l- ) for log (l- /l0 ) < 3.75. The relation changes if log (l- /l0 ) > 3.5. There is a relatively clump for the range log (l- /l0 ) > 3.75. The reason for the change in the relation may be related with the structure of the heated part of the planets. We focus on these inflated planet.

  20. ON THE CONSTANCY OF THE SOLAR RADIUS. III

    SciTech Connect

    Bush, R. I.; Emilio, M.; Kuhn, J. R. E-mail: memilio@uepg.b

    2010-06-20

    The Michelson Doppler Imager on board the Solar and Heliospheric Observatory satellite has operated for over a sunspot cycle. This instrument is now relatively well understood and provides a nearly continuous record of the solar radius in combination with previously developed algorithms. Because these data are obtained from above Earth's atmosphere, they are uniquely sensitive to possible long-term changes of the Sun's size. We report here on the first homogeneous, highly precise, and complete solar-cycle measurement of the Sun's radius variability. Our results show that any intrinsic changes in the solar radius that are synchronous with the sunspot cycle must be smaller than 23 mas peak to peak. In addition, we find that the average solar radius must not be changing (on average) by more than 1.2 mas yr{sup -1}. If ground- and space-based measurements are both correct, the pervasive difference between the constancy of the solar radius seen from space and the apparent ground-based solar astrometric variability can only be accounted for by long-term changes in the terrestrial atmosphere.

  1. FY15 Progress Report for PL14-Lg Radius SIMS-PD1Ea: Large Radius SIMS Support / Large Radius SIMS for Nuclear Materials Analysis and Characterization

    SciTech Connect

    Zimmer, Mindy M.; Naes, Benjamin E.; Willingham, David G.; Cloutier, Janet M.

    2015-09-15

    PNNL has been procured a Cameca 1280 Large Radius Secondary Ions Mass Spectrometer (LRSIMS) from the Amtek corporation out of France. This state-of-the-art instrument is aligning PNNL to deliver to NNSA the ability to address issues from proliferation detection to nuclear archeology of reactor operation and cascade enrichment history verification pushing beyond the limits of currently available methods and instrumentation at PNNL.

  2. Attractor radius, a new determination criterion of predictability limit

    NASA Astrophysics Data System (ADS)

    Liu, Deqiang; Ding, Ruiqiang; Li, Jianping; Feng, Jie

    2014-05-01

    Firstly, the definition of the attractor radius was given and then the property of that the attractor radius (AR) in a given n-dimensional attractor A is a constant was proved in theory. Secondly, the SV of the square of the RMS difference was separated into two components - the systematic error and the attractor radius, and it was proved that the observed global climatological RMS (OCR) difference is not equal to 71% of the SV of the RMS difference when the systematic error is existed, however, it is always equal to 71% of the AR. Then the physical understanding of the AR and also the predictability limit determinated by it were discussed. Finally, the spatial distributions of the predictability limit calculated from CFSv2 data by different criterions were compared.

  3. Hominid radius from the middle Pliocene of Lake Turkana, Kenya.

    PubMed

    Heinrich, R E; Rose, M D; Leakey, R E; Walker, A C

    1993-10-01

    A nearly complete left radius, KNM-ER 20419, was recovered from middle Pliocene sediments east of Lake Turkana, Kenya in 1988. Ape-like characteristics of the fossil include an eccentrically positioned articular fovea, relatively long radial neck, wide distal metaphysis, and large brachioradialis crest. The robustness of the radial neck in proportion to the radial head, and the semilunar shape of the distal diaphysis, however, clearly distinguish KNM-ER 20419 as hominid. The distal articular surface possesses a larger area for radius-lunate articulation than for radius and scaphoid, a radiocarpal arrangement that is associated with increased wrist adduction among quadrumanous climbers. Since this morphology is also found in hylobatids, Pongo, and other early australopithecines, it is argued to be plesiomorphic for hominoids. This further supports the argument that vertical climbing was an important locomotor behavior among both early hominoids and our more immediate prebipedal ancestors. PMID:8273826

  4. Stability of a Wheel with Various Radius Rim

    NASA Astrophysics Data System (ADS)

    Kinugasa, Tetsuya; Yoshida, Koji

    This paper describes the dynamics and impact model of a wheel with various radius rim. The dynamics is expressed by a rst order linear ordinary dierential equation with respect to the absolute orientation of the wheel, and an analytic solution is derived. Poincaré map is also derived analytically. Stability and basin of attraction (BoA) of the Poincaré map are discussed. Finally, the analysis is validated through some numerical simulations. As a result, the rim radius aects the stability and broadens its BoA. The analysis helps understanding of not only a geometric tracking control but also many underactuated control methods for bipeds.

  5. A Unified Approach to Outcomes Assessment for Distal Radius Fractures.

    PubMed

    Waljee, Jennifer F; Ladd, Amy; MacDermid, Joy C; Rozental, Tamara D; Wolfe, Scott W

    2016-04-01

    Distal radius fractures are one of the most common upper extremity injuries. Currently, outcome assessment after treatment of these injuries varies widely with respect to the measures that are used, timing of assessment, and the end points that are considered. A more consistent approach to outcomes assessment would provide a standard by which to assess treatment options and best practices. In this summary, we review the consensus regarding outcomes assessment after distal radius fractures and propose a systematic approach that integrates performance, patient-reported outcomes, pain, complications, and radiographs. PMID:26952734

  6. Consistency of electron scattering data with a small proton radius

    NASA Astrophysics Data System (ADS)

    Griffioen, Keith; Carlson, Carl; Maddox, Sarah

    2016-06-01

    We determine the charge radius of the proton by analyzing the published low momentum transfer electron-proton scattering data from Mainz. We note that polynomial expansions of the form factor converge for momentum transfers squared below 4 mπ2 , where mπ is the pion mass. Expansions with enough terms to fit the data, but few enough not to overfit, yield proton radii smaller than the CODATA or Mainz values and in accord with the muonic atom results. We also comment on analyses using a wider range of data, and overall obtain a proton radius RE=0.840 (16 ) fm.

  7. Proton Charge Radius (PRad) Experiment at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Peng, C.; Gao, H.

    2016-03-01

    The puzzle of proton charge radius was recently raised by the measurement of muonic hydrogen Lamb shift at Paul Scherrer Institute (PSI), whose results were seven standard deviations smaller than the CODATA recommended value. To investigate this discrepancy, the PRad experiment was proposed and approved at Thomas Jefferson National Accelerator Facility (JLab). The experiment will extract the proton charge radius with a sub-percent accuracy by measuring the cross-sections of unpolarized electronproton elastic scattering in an unprecedented low Q2 region (2×10-4 GeV2/c2).

  8. The PRad experiment and the proton radius puzzle

    SciTech Connect

    Gasparian, Ashot H.

    2014-06-01

    New results from the recent muonic hydrogen experiments seriously questioned our knowledge of the proton charge radius, r_p. The new value, with its unprecedented less than sub-percent precision, is currently up to eight standard deviation smaller than the average value from all previous experiments, triggering the well-known "proton charge radius puzzle" in nuclear and atomic physics. The PRad collaboration is currently preparing a novel, magnetic-spectrometer-free ep scattering experiment in Hall B at JLab for a new independent r_p measurement to address this growing "puzzle" in physics.

  9. Finite Larmor radius flute mode theory with end loss

    SciTech Connect

    Kotelnikov, I.A.; Berk, H.L.

    1993-08-01

    The theory of flute mode stability is developed for a two-energy- component plasma partially terminated by a conducting limiter. The formalism is developed as a preliminary study of the effect of end-loss in open-ended mirror machines where large Larmor radius effects are important.

  10. Observational Constraints on the White Dwarf Mass--Radius Relation

    NASA Astrophysics Data System (ADS)

    Oswalt, Terry D.; Dhital, Saurav; Mizusawa, Trisha; Holberg, Jay B.; Zhao, Jingkun

    2014-02-01

    We propose to measure gravitational redshifts for white dwarf stars that have distant, non-interacting main-sequence companions. With independent radius constraints obtained from parallaxes and surface gravity determinations obtained by fitting the Balmer series from our spectra, we will make improved estimates of white dwarf masses and radii that can be critically compared with theoretical mass-radius relations specific to each star. These observations will allow us to examine serious discrepancies between the theoretical and empirical measurements of the white dwarf mass-radius relation and extend the range of masses over which it has been tested, spanning 0.5-1.2 Msun. Currently, the measured radius for only a single WD matches its predicted value. Using the same spectra, we will also estimate the metallicity of the main-sequence companion and examine how the initial-final-mass ratio for WDs depends on metallicity. Thus, this project will put robust constraints on two fundamental relations that govern our understanding of white dwarfs: the mass-ratio and the initial-final-mass relations.

  11. Observational Constraints on the White Dwarf Mass-Radius Relation

    NASA Astrophysics Data System (ADS)

    Dhital, Saurav; Oswalt, Terry D.; Holberg, J. B.; Zhao, Jingkun

    2014-08-01

    We propose to measure gravitational redshifts for white dwarf stars that have distant, non-interacting main-sequence companions. With independent radius constraints obtained from parallaxes and surface gravity determinations obtained by fitting the Balmer series from our spectra, we will make improved estimates of white dwarf masses and radii that can be critically compared with theoretical mass-radius relations specific to each star. These observations will allow us to examine serious discrepancies between the theoretical and empirical measurements of the white dwarf mass-radius relation and extend the range of masses over which it has been tested, spanning 0.5-1.2 Msun. Currently, the measured radius for only a single WD matches its predicted value within 5%. With the expected precision of ≲5% for over half the sample, we will also distinguish whether the white dwarfs have ``thick'' or ``thin'' H envelopes. Using the same spectra, we will also estimate the metallicity of the main-sequence companion and examine how the initial-final-mass ratio for WDs depends on metallicity. Thus, this project will put robust constraints on two fundamental relations that govern our understanding of white dwarfs: the mass-ratio and the initial-final-mass relations.

  12. Hemiarthroplasty for Complex Distal Radius Fractures in Elderly Patients

    PubMed Central

    Vergnenègre, Guillaume; Hardy, Jérémy; Mabit, Christian; Charissoux, Jean-Louis; Marcheix, Pierre-Sylvain

    2015-01-01

    Background In elderly patients, distal radius fractures frequently occur in osteoporotic bone and may be nonreconstructable. It is our hypothesis that a hemiarthroplasty replacment of the articular surface can provide satisfactory results in terms of range of motion, pain, and function for immediate salvage of a fracture that is not amenable to internal fixation. Methods Between July 2009 and January 2012, eight elderly patients were treated with insertion of a Sophia distal radius implant (Biotech, Paris, France). Inclusion criteria consisted of an isolated AO type C2 distal radius fracture in patients over 70 years old. All patients were reviewed by an independent surgeon. Results The mean follow-up was 25 months (range, 17–36 months). Mean wrist range of motion (ROM) was 45° (40–50°) of flexion, 44° (40–50°) of extension, and a mean pronation-supination arc of 160°. Mean grip force was 18 kgf. The mean QuickDASH (Disabilities of the Arm, Shoulder and Hand) was 18.2/100 (6.82–29.55), and the mean visual analog scale (VAS) was 2.33 (0–4). X-ray images did not demonstrate implant loosening or ulnar translation of the carpus. Conclusions The Sophia hemiarthroplasty provided rapid recovery of independence in elderly patients with a nonreconstructable comminuted distal radius fracture. PMID:26261741

  13. Nonlinear buckling analyses of a small-radius carbon nanotube

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Wang, Yong-Gang; Li, Min; Jia, Jiao

    2014-04-01

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained.

  14. Multipurpose external fixator for intraarticular fracture of distal radius.

    PubMed

    Siripakarn, Yongyuth; Siripakarn, Zongyuti

    2010-12-01

    Fracture of distal radius is one of a complicated injury which can be difficult in reduction and maintaining its alignment and may result in malunion and shortening following a variety of fixation. Since Anderson's and O'neil described the use of sustain traction by extraskeletal device anchored to the radius and the first metacarpal of the hand. Vidal et al [1979] demonstrated that the ligamentotaxis could be used to reduce the fracture around the wrist, ankle, hip and knee. The external fixation frame can maintain radial length and inclination by the pullout force from the radial styloid. External fixation is useful for management of complex intraarticular fracture of distal radius. There are few types of commercially available fixator. It is important to use one that allow versatility and follow biomechanic principles of ligamentotaxis, which can be used to reduce the severe comminution and the most difficult fracture by distraction and stabilization effectively. The ideal characteristic of the external fixation are: Telescoping connecting frame fixed externally compose of two joints which can be easily adjust in any direction, two pins clamp connected to the external connecting rod. Our TU Multipurpose external fixator can be designed as a multiplana, can be used as a bridge or non bridge fixation, and can be adjusted to any direction which require for the treatment of distal radius fracture. It is differed to other commercially available devices. PMID:21294433

  15. Ultrasound-Guided Reduction of Distal Radius Fractures

    PubMed Central

    Sabzghabaei, Anita; Shojaee, Majid; Arhami Dolatabadi, Ali; Manouchehrifar, Mohammad; Asadi, Mahdi

    2016-01-01

    Introduction: Distal radius fractures are a common traumatic injury, particularly in the elderly population. In the present study we examined the effectiveness of ultrasound guidance in the reduction of distal radius fractures in adult patients presenting to emergency department (ED). Methods: In this prospective case control study, eligible patients were adults older than 18 years who presented to the ED with distal radius fractures. 130 consecutive patient consisted of two group of Sixty-Five patients were prospectively enrolled for around 1 years. The first group underwent ultrasound-guided reduction and the second (control group) underwent blind reduction. All procedures were performed by two trained emergency residents under supervision of senior emergency physicians. Results: Baseline characteristics between two groups were similar. The rate of repeat reduction was reduced in the ultrasound group (9.2% vs 24.6%; P = .019). The post reduction radiographic indices were similar between the two groups, although the ultrasound group had improved volar tilt (mean, 7.6° vs 3.7°; P = .000). The operative rate was reduced in the ultrasound groups (10.8% vs 27.7%; P = .014). Conclusion: Ultrasound guidance is effective and recommended for routine use in the reduction of distal radius fractures. PMID:27299141

  16. Effect of limiter end loss in finite Larmor radius theory

    SciTech Connect

    Berk, H.L.; Kotelnikov, I.A.

    1993-08-01

    We have examined the effect of incomplete line tying on the MHD flute mode with FLR (finite Larmor radius) effects. We show that the combination of line tying and FLR effects can slow down MHD instability, but cannot produce complete stabilization.

  17. A 4-Sphere With Noncentral Radius and its Instanton Sheaf

    NASA Astrophysics Data System (ADS)

    Cirio, Lucio Simone; Pagani, Chiara

    2015-02-01

    We build an SU(2)-Hopf bundle over a quantum toric four-sphere whose radius is noncentral. The construction is carried out using local methods in terms of sheaves of Hopf-Galois extensions. The associated instanton bundle is presented and endowed with a connection with anti-self-dual curvature.

  18. Nonlinear buckling analyses of a small-radius carbon nanotube

    SciTech Connect

    Liu, Ning Li, Min; Jia, Jiao; Wang, Yong-Gang

    2014-04-21

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained.

  19. Computational Analysis of Dual Radius Circulation Control Airfoils

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Vatsa, V. N.; Rumsey, C. L.

    2006-01-01

    The goal of the work is to use multiple codes and multiple configurations to provide an assessment of the capability of RANS solvers to predict circulation control dual radius airfoil performance and also to identify key issues associated with the computational predictions of these configurations that can result in discrepancies in the predicted solutions. Solutions were obtained for the Georgia Tech Research Institute (GTRI) dual radius circulation control airfoil and the General Aviation Circulation Control (GACC) dual radius airfoil. For the GTRI-DR airfoil, two-dimensional structured and unstructured grid computations predicted the experimental trend in sectional lift variation with blowing coefficient very well. Good code to code comparisons between the chordwise surface pressure coefficients and the solution streamtraces also indicated that the detailed flow characteristics were matched between the computations. For the GACC-DR airfoil, two-dimensional structured and unstructured grid computations predicted the sectional lift and chordwise pressure distributions accurately at the no blowing condition. However at a moderate blowing coefficient, although the code to code variation was small, the differences between the computations and experiment were significant. Computations were made to investigate the sensitivity of the sectional lift and pressure distributions to some of the experimental and computational parameters, but none of these could entirely account for the differences in the experimental and computational results. Thus, CFD may indeed be adequate as a prediction tool for dual radius CC flows, but limited and difficult to obtain two-dimensional experimental data prevents a confident assessment at this time.

  20. [Differential treatment of fractures of the distal radius].

    PubMed

    Oestern, H J; Hüls, E

    1994-01-01

    Treatment of distal fractures of the radius has undergone considerable change during recent years. The cause for this lies primarily in the poor results of conservative treatments. In addition to osseous instability, the fractures of the radius are frequently combined with ligamentary instability as well, thereby exceeding the ability of conservative treatment. Among the many classifications, the AO classification of these fractures has proven to be the best and most widely accepted. This classification allows the recommendation of suitable procedures of treatment. The problem with inadequately healed fractures of the radius lies in the inherent unphysiological loading of the joint in the characteristic dorsal tilted position. This leads to a pathological displacement of the radius of flexion and extension and thereby to an overloading of the dorsal joint cartilage. The shortening of the radius leads to a mechanical impingement of the triangular fibrocartilagenous complex. The Kirschner wire fixation is particularly indicated in type A and type C fractures when combined with an external fixator. Of great importance here is the crossing of the K-wires, best accomplished by inserting an additional wire in a proximal to distal direction to achieve maximal mechanical stability. Biodegradable fixation devices are not yet in widespread use, as high costs and possible foreign body reactions have prevented their acceptance. The plate osteosynthesis has its domain in the treatment of volar luxation fractures (B3) and the partially articular fractures of the radius (B2). The domain of the external fixator, on the other hand, lies in the C2 and C3 fractures in combination with the K-wire osteosynthesis. Changing the mode of treatment to a plate osteosynthesis after two to three weeks allows a functional postoperative treatment. By use of a differentiated treatment regimen, the complication rate can be significantly reduced whose cause frequently lies in repeatedly attempted

  1. Optimal Taylor-Couette flow: radius ratio dependence

    NASA Astrophysics Data System (ADS)

    Ostilla-Mónico, Rodolfo; Huisman, Sander G.; Jannink, Tim J. G.; Van Gils, Dennis P. M.; Verzicco, Roberto; Grossmann, Siegfried; Sun, Chao; Lohse, Detlef

    2014-05-01

    Taylor-Couette flow with independently rotating inner (i) and outer (o) cylinders is explored numerically and experimentally to determine the effects of the radius ratio {\\eta} on the system response. Numerical simulations reach Reynolds numbers of up to Re_i=9.5 x 10^3 and Re_o=5x10^3, corresponding to Taylor numbers of up to Ta=10^8 for four different radius ratios {\\eta}=r_i/r_o between 0.5 and 0.909. The experiments, performed in the Twente Turbulent Taylor-Couette (T^3C) setup, reach Reynolds numbers of up to Re_i=2x10^6$ and Re_o=1.5x10^6, corresponding to Ta=5x10^{12} for {\\eta}=0.714-0.909. Effective scaling laws for the torque J^{\\omega}(Ta) are found, which for sufficiently large driving Ta are independent of the radius ratio {\\eta}. As previously reported for {\\eta}=0.714, optimum transport at a non-zero Rossby number Ro=r_i|{\\omega}_i-{\\omega}_o|/[2(r_o-r_i){\\omega}_o] is found in both experiments and numerics. Ro_opt is found to depend on the radius ratio and the driving of the system. At a driving in the range between {Ta\\sim3\\cdot10^8} and {Ta\\sim10^{10}}, Ro_opt saturates to an asymptotic {\\eta}-dependent value. Theoretical predictions for the asymptotic value of Ro_{opt} are compared to the experimental results, and found to differ notably. Furthermore, the local angular velocity profiles from experiments and numerics are compared, and a link between a flat bulk profile and optimum transport for all radius ratios is reported.

  2. OBSERVATIONAL CONSTRAINTS ON THE DEGENERATE MASS-RADIUS RELATION

    SciTech Connect

    Holberg, J. B.; Oswalt, T. D.; Barstow, M. A. E-mail: toswalt@fit.edu

    2012-03-15

    The white dwarf mass-radius relationship is fundamental to modern astrophysics. It is central to routine estimation of DA white dwarf masses derived from spectroscopic temperatures and gravities. It is also the basis for observational determinations of the white dwarf initial-final-mass relation. Nevertheless, definitive and detailed observational confirmations of the mass-radius relation (MRR) remain elusive owing to a lack of sufficiently accurate white dwarf masses and radii. Current best estimates of masses and radii allow only broad conclusions about the expected inverse relation between masses and radii in degenerate stars. In this paper, we examine a restricted set of 12 DA white dwarf binary systems for which accurate (1) trigonometric parallaxes, (2) spectroscopic effective temperatures and gravities, and (3) gravitational redshifts are available. We consider these three independent constraints on mass and radius in comparison with an appropriate evolved MRR for each star. For the best-determined systems it is found that the DA white dwarfs conform to evolve theoretical MRRs at the 1{sigma} to 2{sigma} level. For the white dwarf 40 Eri B (WD 0413-077) we find strong evidence for the existence of a 'thin' hydrogen envelope. For other stars improved parallaxes will be necessary before meaningful comparisons are possible. For several systems current parallaxes approach the precision required for the state-of-the-art mass and radius determinations that will be obtained routinely from the Gaia mission. It is demonstrated here how these anticipated results can be used to firmly constrain details of theoretical mass-radius determinations.

  3. Gyromagnetic gs factors of the spin-1/2 particles in the (1/2+-1/2--3/2-) triad of the four-vector spinor, ψμ, irreducibility and linearity

    NASA Astrophysics Data System (ADS)

    Delgado Acosta, E. G.; Banda Guzmán, V. M.; Kirchbach, M.

    2015-07-01

    The gauged Klein-Gordon equation, extended by a gsσμνFμν/4 interaction, the contraction of the electromagnetic field strength tensor, Fμν, with the generators, σμν/2, of the Lorentz group in (1/2, 0) ⊕ (0, 1/2), and gs being the gyromagnetic factor, is examined with the aim to find out as to what extent it qualifies as a wave equation for general relativistic spin-1/2 particles transforming as (1/2, 0) ⊕ (0, 1/2) and possibly distinct from the Dirac fermions. This equation can be viewed as the generalization of the gs = 2 case, known under the name of the Feynman-Gell-Mann equation, the only one which allows for a bilinearization into the gauged Dirac equation and its conjugate. At the same time, it is well-known a fact that a gs = 2 value can also be obtained upon the bilinearization of the nonrelativistic Schrödinger into nonrelativistic Pauli equations. The inevitable conclusion is that it must not be necessarily relativity which fixes the gyromagnetic factor of the electron to g(1/2) = 2, but rather the specific form of the primordial quadratic wave equation obeyed by it, that is amenable to a linearization. The fact is that space-time symmetries alone define solely the kinematic properties of the particles and neither fix the values of their interacting constants, nor do they necessarily prescribe linear Lagrangians. Information on such properties has to be obtained from additional physical inputs involving the dynamics. We here provide an example in support of the latter statement. Our case is that the spin-1/2- fermion residing within the four-vector spinor triad, ψμ (1/2+-1/2--3/2-), whose sectors at the free particle level are interconnected by spin-up and spin-down ladder operators, does not allow for a description within a linear framework at the interacting level. Upon gauging, despite transforming according to the irreducible (1/2, 1) ⊕ (1, 1/2) building block of ψμ, and being described by 16-dimensional four-vector spinors, though

  4. Variable radius cartography - History and perspectives of a new discipline

    NASA Astrophysics Data System (ADS)

    Scalera, Giancarlo

    2014-05-01

    The map that Toscanelli sent to Columbus was an unconscious application of cartography at a smaller radius than the real. The first really conscious attempts to represent the geography of Earth on globes of radius less than the current one occurred after the formulation of the concept of expanding Earth through geological time. The American chemist and geologist Richard Owen (1810-1890) in his book Key to the geology of the globe (1857) described the principles of what he himself called Anatomical Geology, with the Earth growing as a biological organism. The book contained a global paleogeographic map of the Earth that would have had a radius of about 4000 kilometers. In 1928 J.A.H. Kerkhoff (under the pseudonym Aero-dilettant) published a series of paleogeographic globes on which the modern oceans disappeared. With the same artisan methods of transfer continental outlines from a sphere to a smaller one, in 1933 O.C. Hilgenberg represented three different geological epochs, and, later, for the first time mapped paleopoles with their site-pole segments of meridian. Even today the traditional method of Hilgenberg is followed by senior researchers (Klaus Vogel, 2003) and younger geologists (James Maxlow). In England Hugh Owen applied the methods of traditional cartography to the variable radius one. His Atlas of Continental Displacement was in the 70s and 80s, for this discipline, a real milestone. While in the field of constant radius paleogeography the adherents to plate tectonics created many computer codes of automatic mapping (Bullard et al., 1965; Smith & Hallam, 1970; Scotese et al., 1979; and many others), in the variable radius field few tried to reach the same task. In 1972 in United States a first very simple attempt (but was not further developed) came from a private, R.B. Perry, followed by the still not-computerized Atlas of Owen, and both them constituted inspiration for the construction of a FORTRAN variable radius mapping code at INGV, with which it

  5. Motion perception during variable-radius swing motion in darkness.

    PubMed

    Rader, A A; Oman, C M; Merfeld, D M

    2009-10-01

    Using a variable-radius roll swing motion paradigm, we examined the influence of interaural (y-axis) and dorsoventral (z-axis) force modulation on perceived tilt and translation by measuring perception of horizontal translation, roll tilt, and distance from center of rotation (radius) at 0.45 and 0.8 Hz using standard magnitude estimation techniques (primarily verbal reports) in darkness. Results show that motion perception was significantly influenced by both y- and z-axis forces. During constant radius trials, subjects' perceptions of tilt and translation were generally almost veridical. By selectively pairing radius (1.22 and 0.38 m) and frequency (0.45 and 0.8 Hz, respectively), the y-axis acceleration could be tailored in opposition to gravity so that the combined y-axis gravitoinertial force (GIF) variation at the subject's ears was reduced to approximately 0.035 m/s(2) - in effect, the y-axis GIF was "nulled" below putative perceptual threshold levels. With y-axis force nulling, subjects overestimated their tilt angle and underestimated their horizontal translation and radius. For some y-axis nulling trials, a radial linear acceleration at twice the tilt frequency (0.25 m/s(2) at 0.9 Hz, 0.13 m/s(2) at 1.6 Hz) was simultaneously applied to reduce the z-axis force variations caused by centripetal acceleration and by changes in the z-axis component of gravity during tilt. For other trials, the phase of this radial linear acceleration was altered to double the magnitude of the z-axis force variations. z-axis force nulling further increased the perceived tilt angle and further decreased perceived horizontal translation and radius relative to the y-axis nulling trials, while z-axis force doubling had the opposite effect. Subject reports were remarkably geometrically consistent; an observer model-based analysis suggests that perception was influenced by knowledge of swing geometry. PMID:19625542

  6. Measurements of small radius ratio turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    van der Veen, Roeland; Huisman, Sander; Merbold, Sebastian; Sun, Chao; Harlander, Uwe; Egbers, Christoph; Lohse, Detlef

    2014-11-01

    In Taylor-Couette flows, the radius ratio (η =ri /ro) is one of the key parameters of the system. For small η, the asymmetry of the inner and outer boundary layer becomes more important, affecting the general flow structure and boundary layer characteristics. Using high-resolution particle image velocimetry we measure flow profiles, local transport, and statistical properties of the flow for a radius ratio of 0.5 and a Reynolds number of up to 4 .104 . By measuring flow profiles at varying heights, roll structures are characterized for two different rotation ratios of the inner and outer cylinder. In addition, we systematically vary the rotation ratio and the Reynolds number. These results exemplify how curvature affects flow in strongly turbulent Taylor-Couette Flow.

  7. Maximal radius of the aftershock zone in earthquake networks

    NASA Astrophysics Data System (ADS)

    Mezentsev, A. Yu.; Hayakawa, M.

    2009-09-01

    In this paper, several seismoactive regions were investigated (Japan, Southern California and two tectonically distinct Japanese subregions) and structural seismic constants were estimated for each region. Using the method for seismic clustering detection proposed by Baiesi and Paczuski [M. Baiesi, M. Paczuski, Phys. Rev. E 69 (2004) 066106; M. Baiesi, M. Paczuski, Nonlin. Proc. Geophys. (2005) 1607-7946], we obtained the equation of the aftershock zone (AZ). It was shown that the consideration of a finite velocity of seismic signal leads to the natural appearance of maximal possible radius of the AZ. We obtained the equation of maximal radius of the AZ as a function of the magnitude of the main event and estimated its values for each region.

  8. Artificial gravity: head movements during short-radius centrifugation

    NASA Astrophysics Data System (ADS)

    Young, Laurence R.; Hecht, Heiko; Lyne, Lisette E.; Sienko, Kathleen H.; Cheung, Carol C.; Kavelaars, Jessica

    2001-08-01

    Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects of pitch and yaw head movements in participants placed supine on a rotating bed with their head at the center of rotation, feel at the rim. The vast majority of participants experienced motion sickness, inappropriate vertical nystagmus and illusory tilt and roll as predicted by a semicircular canal model. However, a small but significant number of the 28 participants experienced tilt in the predicted plane but in the opposite direction. Heart rate was elevated following one-second duration head turns. Significant adaptation occurred following a series of head turns in the light. Vertical nystagmus, motion sickness and illusory tilt all decreased with adaptation. Consequences for artificial gravity produced by short-radius centrifuges as a countermeasure are discussed.

  9. Flute waves at the ion Larmor radius scales

    SciTech Connect

    Onishchenko, O. G.

    2010-12-14

    The theory of the magnetic Rayleigh-Taylor instability (RTI) is discussed. Modified linear kinetic theory allows us to investigate RTI and flute waves with arbitrary perpendicular spatial scales compared to the ion Larmor radius. It is shown that in the linear limit a Fourier transform of these equations yields the dispersion relation which in the so-called Pade approximation corresponds to results of the kinetic theory. This analysis represents an extension of the previous study of the magnetic RTI obtained in the large wave scale approximation. It is shown that incorporation of the effects associated with wave scales of the order of the ion Larmor radius leads to a broader wave number range of the magnetic RTI.

  10. [Results following percutaneous intramedullary pin fixation in distal radius fractures].

    PubMed

    Kirchner, R; Hüttl, T; Krüger-Franke, M; Rosemeyer, B

    1994-01-01

    42 distal radius fractures have been submitted to further examination after percutaneous intramedullary pin fixation. The outcome were 95.3% of very good to good anatomic results and 90.5% of satisfying functional results. This showed the close link between the radiological-anatomical and functional results. The success of the treatment was very acceptable, although the Morbus Sudeck as the major complication--with 7.2%--was still relatively frequently observed. It could be seen that particularly fractures at the risk of dislocation with smash zone constituted an indication for the percutaneous intramedullary pin fixation, that is to say all fractures for which a retention is primarily difficult. It constitutes a supplement, as well as an extension to the therapy of the distal radius fractures. PMID:7516105

  11. Reverse wedge osteotomy of the distal radius in Madelung's deformity.

    PubMed

    Mallard, F; Jeudy, J; Rabarin, F; Raimbeau, G; Fouque, P-A; Cesari, B; Bizot, P; Saint-Cast, Y

    2013-06-01

    Madelung's deformity results from a growth defect in the palmar and ulnar region of the distal radius. It presents as an excessively inclined radial joint surface, inducing "spontaneous progressive palmar subluxation of the wrist". The principle of reverse wedge osteotomy (RWO) consists in the reorientation of the radial joint surface by taking a circumferential bone wedge, the base of which is harvested from the excess of the radial and dorsal cortical bone of the distal radius, then turning it over and putting back this reverse wedge into the osteotomy so as to obtain closure on the excess and opening on the deficient cortical bone. RWO corrects the palmar subluxation of the carpus and improves distal radio-ulnar alignment. All five bilaterally operated patients were satisfied, esthetically and functionally. Its corrective power gives RWO a place apart among the surgical techniques currently available in Madelung's deformity. PMID:23622863

  12. Proton Radius, Darwin-Foldy Term and Radiative Corrections

    NASA Astrophysics Data System (ADS)

    Jentschura, Ulrich

    2013-04-01

    It is not an easy task to define the proton charge radius. Namely, by definition, the proton radius is the slope of the GESachs form factor of the proton at zero momentum transfer, provided one has subtracted from the scattering cross sections, all effects due to QED. That means that radiative corrections must be subtracted; these otherwise ``mask'' the proton structure from the surroundings. On the other hand, the self-energy of the proton (not of the electron or of the muon) also influence the spectrum of atomic hydrogen, or muonic hydrogen, respectively. In the talk, we shall review the difficulties faced by a consistent definition, offer a way to resolve them, and review the current status of Lamb shift predictions in muonic hydrogen, with a special reference to the current experimental-theoretical discrepancy, as reported by the CREMA collaboration.

  13. Core Deuterium Fusion and Radius Inflation in Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Jaikumar, Prashanth; Rachid Ouyed

    2016-06-01

    Several laboratory-based studies have shown that the Deuterium fusion cross-section is enhanced in a solid deuterated target as compared to a gas target, attributable to enhanced mobility of deuterons in a metal lattice. As an application, we propose that, for core temperatures and compositions characterizing hot Jupiters, screened Deuterium fusion can occur deep in the interior, and show that the amount of radius inflation from this effect can be important if there is sufficient rock-ice in the core. The mechanism of screened Deuterium fusion, operating in the above temperature range, is generally consistent with the trend in radius anomaly with planetary equilibrium temperature. We also explore the trend with planetary mass using a simple analytic model.

  14. Medical management of fragility fractures of the distal radius.

    PubMed

    Morgan, Emily N; Crawford, David A; Scully, William F; Noce, Nicholas J

    2014-12-01

    Fragility fractures of the distal radius represent an opportunity to diagnose and treat osteoporosis before further fractures occur. The goal of this study was to determine the prevalence of prescriptions for calcium/vitamin D supplementation and the prevalence of dual-energy x-ray absorptiometry (DEXA) scans in patients who sustained fragility fractures of the distal radius. A further goal was to determine the prevalence of patients who received prescriptions for the treatment of osteoporosis after DEXA scans. The authors performed a retrospective review of all patients 50 years and older who sustained a fragility fracture of the distal radius and were treated by the orthopedic surgery service at the authors' institution from 2004 to 2010. After a fragility fracture of the distal radius, fewer than 25% of previously unidentified at-risk patients received a prescription for vitamin supplementation and underwent a DEXA scan. Women were 7 times more likely than men to receive calcium/vitamin D supplementation, 14 times more likely to undergo a DEXA scan for the evaluation of osteoporosis, and 25 times more likely to receive a prescription for bisphosphonates. Patients who underwent a DEXA scan were 9 times more likely to receive pharmacologic treatment than those who did not undergo this scan. More than half of patients did not receive a prescription for calcium/vitamin D supplementation and did not undergo DEXA scanning as recommended by current National Osteoporosis Foundation guidelines. Most patients who received prescriptions or underwent DEXA scans did so before rather than after fracture, indicating poor compliance with National Osteoporosis Foundation guidelines. PMID:25437080

  15. Thrombocytopenia with absent radius in a boy and his uncle.

    PubMed

    Schnur, R E; Eunpu, D L; Zackai, E H

    1987-09-01

    We report a boy and his maternal uncle who have Thrombocytopenia-Absent Radius (TAR) syndrome. The mother of the propositus is normal. A maternal aunt has mild radial hypoplasia, possibly representing partial expression of the syndrome. A review of the literature shows several pedigrees in which relatives other than sibs were affected with TAR. Thus, autosomal recessive inheritance may not account for all cases and alternate modes of transmission should be considered. PMID:3314504

  16. Radiographic Predictors of DRUJ Instability with Distal Radius Fractures

    PubMed Central

    Omokawa, Shohei; Iida, Akio; Fujitani, Ryotaro; Onishi, Tadanobu; Tanaka, Yasuhito

    2014-01-01

    Because the distal radioulnar joint (DRUJ) is an inherently unstable joint, the diagnosis and treatment of DRUJ instability is often difficult in a clinical hand surgery practice. Several soft tissue stabilizers are recognized, of which the deep limbs of the radioulnar ligament are primary stabilizers. This article discusses the predictors of DRUJ instability in distal radius fractures based on our clinical and biomechanical analyses. PMID:24533238

  17. Experimental bound on the charge radius of the electron neutrino

    SciTech Connect

    Allen, R.C.; Chen, H.H.; Doe, P.J.; Hausamann, R.; Lee, W.P.; Lu, X.; Mahler, H.J.; Potter, M.E.; Wang, K.C. ); Bowles, T.J.; Burman, R.L.; Carlini, R.D.; Cochran, D.R.F.; Frank, J.S.; Piasetzky, E.; Sandberg, V.D. ); Krakauer, D.A.; Talaga, R.L. )

    1991-01-01

    A limit on the electron-neutrino charge radius {vert bar}{ital r}{vert bar} is derived from a measurement of the weak-neutral-current vector coupling constant {ital g}{sub {ital V}} obtained in electron-neutrino electron elastic scattering. The 90%-confidence interval for {ital g}{sub {ital V}} is {minus}0.177{lt}{ital g}{sub {ital V}}{lt}0.187, which for sin{sup 2}{theta}{sub {ital W}}=0.227 implies that the {nu}{sub {ital e}} mean-square charge radius is in the range {minus}2.74{times}10{sup {minus}32}{lt}{l angle}{ital r}{sup 2}{r angle}{lt}4.88{times}10{sup {minus}32} cm{sup 2}, or simply {vert bar}{ital r}{vert bar}{lt}2.2{times}10{sup {minus}16} cm. This is the first experimental bound on the {nu}{sub {ital e}} charge radius, and is the same order of magnitude as bounds for {nu}{sub {mu}} structure.

  18. Ring polymer simulations with global radius of curvature.

    PubMed

    Neuhaus, T; Zimmermann, O; Hansmann, Ulrich H E

    2007-05-01

    We simulate three-dimensional flexible off-lattice ring polymers of length L up to L=4000 for various values of the global radius of curvature Rgrc=0.25 , 0.48, and 1.0 and Rgrc=2.0 . We utilize two different ensembles: one with a delta -function constraint on the radius, and the other with a theta -function. For both cases the global radius of curvature provides a valid regularization of polymers with thickness D=2Rgrc . The Flory-type critical exponent nu SAW of self-avoiding rings at D=2 is found to be nu SAW=0.5869(5) from the radii of gyration chain length scaling, while other D values produce consistent results. For our current implementation, the numerical effort of chain thickness calculations is bounded by a number O(LlnL) per single update. We also study low-temperature configurations of spatially dense Lennard-Jones homopolymers on a ring and identify some conformational building blocks. PMID:17677089

  19. Chondrosarcoma of the radius with distant metastasis in a dog.

    PubMed

    Boudrieau, R J; Schelling, S H; Pisanelli, E R

    1994-08-15

    A 9-year-old castrated male Doberman Pinscher was admitted for evaluation of lameness of the left forelimb. Radiography and examination of biopsy specimens revealed a moderately differentiated chondrosarcoma of the proximal portion of the radius. The dog was treated by local excision of the neoplasm, which involved resection of the radial head and proximal portion of the radius. Despite the large size of the dog and the weight-bearing forces exerted on the cubital joint, major problems with ambulation did not develop after surgery. Functional use of the limb returned slowly; however, substantial limb use was observed despite the development of mild degenerative changes of the joint and migration of the humeroulnar articulation. Six months after surgery, metastasis of a widely disseminated, poorly differentiated chondrosarcoma to the subcutaneous tissues and thoracic and abdominal cavities was diagnosed. Local redevelopment of the chondrosarcoma in the area of the cubital joint was not detected. Resection of the radial head and proximal portion of the radius may be considered a viable, alternative, limb-sparing technique. The biologically aggressive nature of this chondrosarcoma of the appendicular skeleton indicated that additional information was needed before a reliable prognosis could be established for this dog with this tumor type. Reports of low rates of metastasis have been based on insufficient numbers of dogs to adequately or accurately determine the long-term prognosis of dogs with chondrosarcoma of the appendicular skeleton. PMID:7961094

  20. Is the proton radius puzzle evidence of extra dimensions?

    NASA Astrophysics Data System (ADS)

    Dahia, F.; Lemos, A. S.

    2016-08-01

    The proton charge radius inferred from muonic hydrogen spectroscopy is not compatible with the previous value given by CODATA-2010, which, on its turn, essentially relies on measurements of the electron-proton interaction. The proton's new size was extracted from the 2S-2P Lamb shift in the muonic hydrogen, which showed an energy excess of 0.3 meV in comparison to the theoretical prediction, evaluated with the CODATA radius. Higher-dimensional gravity is a candidate to explain this discrepancy, since the muon-proton gravitational interaction is stronger than the electron-proton interaction and, in the context of braneworld models, the gravitational potential can be hugely amplified in short distances when compared to the Newtonian potential. Motivated by these ideas, we study a muonic hydrogen confined in a thick brane. We show that the muon-proton gravitational interaction modified by extra dimensions can provide the additional separation of 0.3 meV between the 2S and 2P states. In this scenario, the gravitational energy depends on the higher-dimensional Planck mass and indirectly on the brane thickness. Studying the behavior of the gravitational energy with respect to the brane thickness in a realistic range, we find constraints for the fundamental Planck mass that solve the proton radius puzzle and are consistent with previous experimental bounds.

  1. Neutron charge radius and the neutron electric form factor

    SciTech Connect

    Gentile, T. R.; Crawford, C. B.

    2011-05-15

    For nearly forty years, the Galster parametrization has been employed to fit existing data for the neutron electric form factor, G{sub E}{sup n}, vs the square of the four-momentum transfer, Q{sup 2}. Typically this parametrization is constrained to be consistent with experimental data for the neutron charge radius. However, we find that the Galster form does not have sufficient freedom to accommodate reasonable values of the radius without constraining or compromising the fit. In addition, the G{sub E}{sup n} data are now at sufficient precision to motivate a two-parameter fit (or three parameters if we include thermal neutron data). Here we present a modified form of a two-dipole parametrization that allows this freedom and fits both G{sub E}{sup n} (including recent data at both low and high four-momentum transfer) and the charge radius well with simple, well-defined parameters. Analysis reveals that the Galster form is essentially a two-parameter approximation to the two-dipole form but becomes degenerate if we try to extend it naturally to three parameters.

  2. Infected Nonunion of Radius and Ulna – Strategy of Approach

    PubMed Central

    Parihar, Mangal; Ahuja, Divya

    2012-01-01

    Introduction: Infected nonunion of radius and ulna are rare but difficult problems to deal. We report a case of successfully managed infected non-unonion of forearm bones and the reasoning behind strategy of approach to the case. Case Report: 42 year old female presented with history of closed forearm fracture three months back for which she was operated with open reduction and internal fixation using dynamic compression plate. There was pain and fever post-surgery and discharge and wound gape. This was treated with resuturing of the wound and oral antibiotics. She continued to have pain fever and discharge and consulted another surgeon who removed first the radius plate and then the ulna plate sequentially with stabilisation by external fixation. She presented to us at three months post injury with infected nonunion of radius and ulna with loosening of fixators, sequestrum on radiograph and wristdrop. A staged treatment was planned for her. As first stage debridement, antibiotic Calcium Sulphate cement bead insertion and intramedullary flexible nail fixation. She was given iv antibiotics as per culture report. At 3 months post surgery the infection had settled and pellets were resorbed. Double barrel vascularized fibula graft was used to fill the gap and fixation using long locked plates was done. At one year follow up radiographs showed good healing and clinically patient had a good elbow movements and was able to carry out her daily activities. Conclusions: Proper planning and staged management of such cases helps to achieve goals with good functional outcome.

  3. Plate presetting arthroscopic reduction technique for the distal radius fractures.

    PubMed

    Abe, Yukio; Tsubone, Tetsu; Tominaga, Yasuhiro

    2008-09-01

    Wrist arthroscopy for the distal radius fractures is an effective adjunct to evaluate the reduction of intraarticular fragments and soft tissue injuries. In recent years, volar locking plate fixation has become popular, and arthroscopic procedures for distal radius fracture reduction have become problematic because vertical traction has to be both on and off during surgery. We developed a plate presetting arthroscopic reduction technique to simplify the combination of plating and arthroscopy. The fracture was reduced, and anatomic alignment was regained under an image intensifier, and then the volar locking plate was preset. Wrist arthroscopy was introduced under vertical traction, and the intraarticular condition was assessed. If dislocations of the intraarticular fragments were residual, they were reduced arthroscopically, and soft tissue injuries were treated subsequently. Finally, the traction was removed, and the plate was securely fixed. Since May 2005, the authors have used this technique in more than 50 patients. This article will review the history, indications, contraindications, technique, rehabilitation, and complications for the plate presetting arthroscopic reduction technique for distal radius fractures. PMID:18776773

  4. Conversion of radius of curvature to power (and vice versa)

    NASA Astrophysics Data System (ADS)

    Wickenhagen, Sven; Endo, Kazumasa; Fuchs, Ulrike; Youngworth, Richard N.; Kiontke, Sven R.

    2015-09-01

    Manufacturing optical components relies on good measurements and specifications. One of the most precise measurements routinely required is the form accuracy. In practice, form deviation from the ideal surface is effectively low frequency errors, where the form error most often accounts for no more than a few undulations across a surface. These types of errors are measured in a variety of ways including interferometry and tactile methods like profilometry, with the latter often being employed for aspheres and general surface shapes such as freeforms. This paper provides a basis for a correct description of power and radius of curvature tolerances, including best practices and calculating the power value with respect to the radius deviation (and vice versa) of the surface form. A consistent definition of the sagitta is presented, along with different cases in manufacturing that are of interest to fabricators and designers. The results make clear how the definitions and results should be documented, for all measurement setups. Relationships between power and radius of curvature are shown that allow specifying the preferred metric based on final accuracy and measurement method. Results shown include all necessary equations for conversion to give optical designers and manufacturers a consistent and robust basis for decision-making. The paper also gives guidance on preferred methods for different scenarios for surface types, accuracy required, and metrology methods employed.

  5. Stokes radius determination of radioiodinated polypeptide hormones by gel filtration

    SciTech Connect

    Ribela, M.T.; Bartolini, P.

    1988-11-01

    A simple technique for determination of the molecular (Stokes) radius of radioiodinated proteins was developed using the same column and chromatographic conditions employed in routine radioimmunoassay tracer purification. The calibration curve for five radioiodinated standard proteins presented a highly significant correlation (r = -0.996; P less than 0.001) and allowed precise molecular radius determination for labeled human growth hormone (hGH), luteotropin (hLH), follicle-stimulating hormone (hFSH), thyrotropin (hTSH), prolactin (hPRL), and corticotropin (hACTH), enabling detection of differences of the order of +/- 3%. The validity of the method was verified by determining the molecular radius of hGH in both ''cold'' (unlabeled standards and unknowns) and ''hot'' (radioiodinated standards and unknowns) systems. The technique can be applied in a very simple manner, requiring just one simple additional calibration run before Sephadex G-100 tracer purification. Furthermore, it can be applied to any protein, even when only extremely limited amounts are available. Since the standards and unknowns are labeled and chromatographed under identical conditions, potential common alterations of the molecule due to oxidation, iodine incorporation, tracer-carrier interactions, etc., are automatically corrected for.

  6. Volar, Intramedullary, and Percutaneous Fixation of Distal Radius Fractures.

    PubMed

    Alluri, Ram; Longacre, Matthew; Pannell, William; Stevanovic, Milan; Ghiassi, Alidad

    2015-11-01

    Background The management of extra-articular distal radius fractures is highly variable, with no clear consensus regarding their optimal management. Purpose To assess comparatively the biomechanical stability of Kirschner wire (K-wire) fixation, volar plating, and intramedullary nailing for unstable, extra-articular distal radius fractures with both (1) constant and (2) cyclical axial compression, simulating forces experienced during early postoperative rehabilitation. Methods Twenty-six volar locking plate, intramedullary nail, and K-wire bone-implant constructs were biomechanically assessed using an unstable extra-articular distal radius bone model. Bone implant models were created for each type of construct. Three samples from each construct underwent compressive axial loading until fixation failure. The remaining samples from each construct underwent fatigue testing with a 50-N force for 2,000 cycles followed by repeat compressive axial loading until fixation failure. Results Axial loading revealed the volar plate was significantly stiffer than the intramedullary nail and K-wire constructs. Both the volar plate and intramedullary nail required greater than 300 N of force for fixation failure, while the K-wire construct failed at less than 150 N. Both the volar plate and intramedullary nail demonstrated less than 1 mm of displacement during cyclic loading, while the K-wire construct displaced greater than 3 mm. Postfatigue testing demonstrated the volar plate was stiffer than the intramedullary nail and K-wire constructs, and both the volar plate and intramedullary nail required greater than 300 N of force for fixation failure while the K-wire construct failed at less than 150 N. Conclusions Volar plating of unstable extra-articular distal radius fractures is biomechanically stiffer than K-wire and intramedullary fixation. Both the volar plate and intramedullary nail demonstrated the necessary stability and stiffness to maintain anatomic

  7. Maximum wind radius estimated by the 50 kt radius: improvement of storm surge forecasting over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Takagi, H.; Wu, W.

    2015-10-01

    Even though the maximum wind radius (Rmax) is an important parameter in determining the intensity and size of tropical cyclones, it has been overlooked in previous storm surge studies. This research reviewed the existing estimation methods of Rmax based on the central pressure or maximum wind speed. These over or underestimated Rmax because of the substantial variety of the data, though an average radius could be moderately estimated. Alternatively, we proposed an Rmax estimation method based on the radius of the 50 knot wind (R50). The data obtained during the passage of strong typhoons by a meteorological station network in the Japanese archipelago enabled us to derive the following formula, Rmax = 0.23R50. Although this new method substantially improved the estimation of Rmax compared to the existing models, an estimation error was unavoidable because of fundamental uncertainties regarding the typhoon's structure or insufficient number of available typhoon data. In fact, a numerical simulation from 2013 Typhoon Haiyan demonstrated a substantial difference in the storm surge height for different Rmax. Therefore, the variability of Rmax should be taken into account in storm surge simulations, independently of the model used, to minimize the risk of over or underestimation of storm surges. The proposed method is expected to increase the reliability of storm surge prediction and contribute to disaster risk management, particularly in the Western North Pacific, including countries such as Japan, China, Taiwan, Philippines, and Vietnam.

  8. [Radius fractures in children--causes and mechanisms of injury].

    PubMed

    Antabak, Anko; Stanić, Lana; Matković, Nikša; Papeš, Dino; Romić, Ivan; Fuchs, Nino; Luetić, Tomislav

    2015-01-01

    Radius fractures are the most common fractures in childhood. The main mechanism of injury is fall onto an outstretched hand. This retrospective study analyzed the data on 201 children admitted for radius fractures at KBC-Zagreb in the period 2011-2013. The study included 85 girls (42.3%) and 116 boys (57.7%) . The average age of the children was 9.6 years. Radius was injured in the distal segment in 79.1% of children. The sites of injuries were: park, campi and beach (24.9% of all children), playground, skate park and swimming pool (23.9%), kindergarten or school (20.9%), at home and around the house (17.9%), in the street (11.4%) and in the store or at a hotel (0.9%). The boys were mostly injured at playgrounds, during skating and at swimming pools (37.1% of all boys), while girls were mostly injured in parks, camps and at beach (42.4% girls). Fall was the major cause of the injury (49.3%), and children usually fell during ice skating and skating (32.3% of all falls). In 20.4% the injury was caused by pushing and hitting. The smallest percentage (9.5%) of children were injured in traffic accidents while riding a bike (only one child was hit by a car). Sport related activities caused injuries in 53.7% of the cases. Sport activities are the most important cause of the radial fractures in the pediatric population and falls during sports are the main mechanism of injury. The peak incidence is at 12 years for boys and at 10 years for girls, so intervention and/or prevention should be aimed at the age groups. Preventive actions should be focused on injuries that tend to occur in parks, schools and during sport activities. PMID:26065283

  9. Measurement of Capillary Radius and Contact Angle within Porous Media.

    PubMed

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°. PMID:26538412

  10. Ground solar radius survey in view of microsatellite missions

    NASA Astrophysics Data System (ADS)

    Delmas, C.; Morand, F.; Laclare, F.; Irbah, A.; Thuillier, G.; Bourget, P.

    For the last 25 years, ground time series of the solar radius have shown (different) apparent variations according to different instruments. The origin of these variations may search in the observer, the instrument, the atmosphere and up to the sun. Ground instruments are automated to reduce the “personnal equation” and place that origin in the atmosphere and/or in the sun. Astrometric satellites scheduled at the end of this decade will perform non ambiguous diameter measurements. A survey of the Solar radius has been initiated in 1975 by Francis Laclare, at the Calern site of the Observatoire de la Côte d’Azur, which have been chosen for hosting the ground segment of the Centre National d’Etudes Spatiales (CNES) Microsatellite PICARD mission, to be launched in 2008. This reference series was obtained by Visual observations of the Sun, with a Solar Astrolabe whose metrological character has to be stressed. Considering the Visual series results, we have compared the solar diameter variations with the solar activity cycle, and we found an opposite phase, for the whole series and at the different times of the cycles. Parallel to that series, CCD measurements were made with the same instrument and gave results which are perfectly blended together, within our quoted uncertainties. Located next to the Solar Astrolabe, DORAYSOL (Définition et Observation du Rayon Solaire) is a second generation instrument, which keeps the major features of the design of its predecessor and, which is designed to increase the number of CCD measurements and to be eventually automated. Since 1999, both series overlap correctly within our quoted uncertainties. Some information is added to explain the pattern of the PICARD mission ground segment, next to those instruments at Calern Observatory, as well as the international network intended to carry out the Sun’s Radius ground survey (R2S3: Réseau de Suivi au Sol du Rayon Solaire).

  11. Radiographic Outcomes of Volar Locked Plating for Distal Radius Fractures

    PubMed Central

    Mignemi, Megan E.; Byram, Ian R.; Wolfe, Carmen C.; Fan, Kang-Hsien; Koehler, Elizabeth A.; Block, John J.; Jordanov, Martin I.; Watson, Jeffry T.; Weikert, Douglas R.; Lee, Donald H.

    2013-01-01

    Purpose To assess the ability of volar locked plating to achieve and maintain normal radiographic parameters for articular stepoff, volar tilt, radial inclination, ulnar variance, and radial height in distal radius fractures. Methods We performed a retrospective review of 185 distal radius fractures that underwent volar locked plating with a single plate design over a 5-year period. We reviewed radiographs and recorded measurements for volar tilt, radial inclination, ulnar variance, radial height, and articular stepoff. We used logistic regression to determine the association between return to radiographic standard norms and fracture type. Results At the first and final postoperative follow-up visits, we observed articular congruence less than 2 mm in 92% of fractures at both times. Normal volar tilt (11°) was restored in 46% at the first follow-up and 48% at the final one. Radial inclination (22°) was achieved in 44% at the first follow-up and 43% at the final one, and ulnar variance (01 ± 2 mm) was achieved in 53% at the first follow-up and 53% at the final one. In addition, radial height (14 ± 1mm) was restored in 14% at the first follow-up and 12% at the final one. More complex, intra-articular fractures (AO class B and C and Frykman types 3, 4, 7, and 8) were less likely to be restored to normal radiographic parameters. However, because of the small sample size for some fracture types, it was difficult to discover significant associations between fracture type and radiographic outcome. Conclusions Volar locked plating for distal radius fractures achieved articular stepoff less than 2 mm in most fractures but only restored and maintained normal radiographic measurements for volar tilt, radial inclination, and ulnar variance in 50% of fractures. The ability of volar locked plating to restore and maintain ulnar variance and volar tilt decreased with more complex intra-articular fracture types. PMID:23218558

  12. HABITABILITY OF EXOMOONS AT THE HILL OR TIDAL LOCKING RADIUS

    SciTech Connect

    Hinkel, Natalie R.; Kane, Stephen R.

    2013-09-01

    Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. We have examined the flux phase profile of a simulated, hypothetical moon orbiting at a distant radius around the confirmed exoplanets {mu} Ara b, HD 28185 b, BD +14 4559 b, and HD 73534 b. The irradiated flux on a moon at its furthest, stable distance from the planet achieves its largest flux gradient, which places a limit on the flux ranges expected for subsequent (observed) moons closer in orbit to the planet. We have also analyzed the effect of planetary eccentricity on the flux on the moon, examining planets that traverse the habitable zone either fully or partially during their orbit. Looking solely at the stellar contributions, we find that moons around planets that are totally within the habitable zone experience thermal equilibrium temperatures above the runaway greenhouse limit, requiring a small heat redistribution efficiency. In contrast, exomoons orbiting planets that only spend a fraction of their time within the habitable zone require a heat redistribution efficiency near 100% in order to achieve temperatures suitable for habitability. This means that a planet does not need to spend its entire orbit within the habitable zone in order for the exomoon to be habitable. Because the applied systems comprise giant planets around bright stars, we believe that the transit detection method is most likely to yield an exomoon discovery.

  13. Concentration at a radius for Hardy class functions

    NASA Astrophysics Data System (ADS)

    Kelly, Brian P.

    2007-03-01

    In this paper we establish the fundamental properties of concentration at a radius for functions in the classical Hardy space on the unit disk. For f(z) which is not identically zero and given r, 0

  14. Trajectory Calculator for Finite-Radius Cutter on a Lathe

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan

    2009-01-01

    A computer program calculates the two-dimensional trajectory (radial vs. axial position) of a finite-radius-of-curvature cutting tool on a lathe so as to cut a workpiece to a piecewise-continuous, analytically defined surface of revolution. (In the original intended application, the tool is a diamond cutter, and the workpiece is made of a crystalline material and is to be formed into an optical resonator disk.) The program also calculates an optimum cutting speed as F/L, where F is a material-dependent empirical factor and L is the effective instantaneous length of the cutting edge.

  15. Progress towards a measurement of the proton radius in hydrogen

    NASA Astrophysics Data System (ADS)

    Vutha, A. C.; Bezginov, N.; Ferchichi, I.; George, M. C.; Weel, M.; Storry, C. H.; Hessels, E. A.

    2014-05-01

    The proton's charge radius continues to have a 7 standard-deviation discrepancy between its CODATA value and determinations from muonic hydrogen measurements. Improved measurements in atomic hydrogen will shed light on this discrepancy. We present a novel experimental scheme, using frequency-offset separated oscillatory fields in standing-wave waveguides, to measure the n=2 Lamb shift in a fast metastable hydrogen beam. We report on our progress, including our first observations of microwave transitions in a fast metastable beam and high signal-to-noise ratio detection in a large-solid-angle photoionization detector. We acknowledge funding from NSERC, CFI, CRC, ORF, and NIST.

  16. Method and apparatus for logging short radius horizontal drainholes

    SciTech Connect

    Taylor, D.E.

    1991-04-30

    This patent describes an apparatus for use in logging a short radius horizontal drainhole. It comprises: a tubing string having a low portion; the lower portion of the tubing string including sensor support means therein; the lower portion of the tubing string containing openings communicating with the interior thereof in the vicinity of the sensor support means to thereby exposed the interior to the pressure and temperature conditions of the horizontal drainhole; and the lower portion of the tubing string including an end portion extending transversely of the tubing sting.

  17. Management of Intercarpal Ligament Injuries Associated with Distal Radius Fractures.

    PubMed

    Desai, Mihir J; Kamal, Robin N; Richard, Marc J

    2015-08-01

    The prevalence of ligamentous injury associated with fractures of the distal radius is reported to be as high as 69% with injury to the scapholunate interosseous ligament and lunotriquetral interosseous ligament occurring in 16% to 40% and 8.5% to 15%, respectively. There is a lack of consensus on which patients should undergo advanced imaging, arthroscopy, and treatment and whether this changes their natural history. Overall, patients with high-grade intercarpal ligament injuries are shown to have longer-term disability and sequelae compared with those with lower-grade injuries. This article reviews the diagnosis and treatment options for these injuries. PMID:26205702

  18. Radius of gyration and intrinsic viscosity of polyelectrolyte solutions

    SciTech Connect

    Milas, M.; Borsali, R.; Rinaudo, M.

    1993-12-31

    Relatively low molecular weights polyelectrolytes (10{sup 4}-10{sup 6}) behave as worm-like chain when electrostatic repulsions are assumed to govern the excluded volume parameter. Under such conditions, predictions of chain expansion and effect of polyelectrolyte concentrations are made assuming that unperturbed dimensions could be obtained at infinite salt content. Experimental studies of an ionic polysaccharide, namely the Na-hyaluronate, were done and the values obtained for the radius of gyration as well as the intrinsic viscosity at different charge densities are in good agreement with the predictions.

  19. A variable-radius measure of local hospital market structure.

    PubMed Central

    Phibbs, C S; Robinson, J C

    1993-01-01

    OBJECTIVE. To provide a radius measure of the structure of local hospital markets that varies with hospital characteristics and is available for all hospitals in the United States. DATA SOURCES. 1982 American Hospital Association (AHA) Survey of Hospitals, 1982 Area Resource File (ARF), and 1983 California Office of Statewide Health Planning and Development (OSHPD) discharge abstracts. STUDY DESIGN. The OSHPD data were used to measure the radii necessary to capture 75 percent and 90 percent of each hospital's admissions. These radii were used as the dependent variables in regression models in which the independent variables were from the AHA and ARF. To estimate predicted market radii, the estimated parameters from the California models were applied to all nonfederal, short-term, general hospitals in the continental United States. These radii were used to define each hospital's service area, and all other hospitals within the calculated radii were considered potential competitors. Using this definition, we calculated two measures of local market structure: the number of other hospitals within the radius and a Herfindahl-Hirschman Index based on the distribution of hospital bed shares in the market. DATA EXTRACTION METHODS. These measures were calculated for all nonfederal, short-term, acute care hospitals in the continental United States for whom complete data were available (N = 4,884). CONCLUSIONS. These measures are available from the authors on computer-readable diskette, matched to hospital identifiers. PMID:8344822

  20. Normal Age-Related Alterations on Distal Radius Radiography

    PubMed Central

    Namazi, Hamid; Khaje, Rohallah

    2015-01-01

    Background: The present study was designed to ascertain serial changes on distal radius radiographic parameters attributable to aging. Methods: In this prospective study, the sample consisted of 120 healthy individuals who were divided into four age groups each containing 15 males and 15 females. In the two below-20-year-old groups, only ulnar variance could be investigated. Wrist radiography was taken and then parameters of the distal radius were measured and compared based on age and sex. Results: Average UV was -2.48 mm and -1.6 mm in the 2-9 and 10-19-year-old age groups, respectively. Also, in the two above-20-year-old groups, the average radial inclination (RI), palmar tilt (PT), radial length (RL), and UV was 23.7º, 12.4º, 10.5 and +1.1 mm, respectively. Considering ulnar variance, no significant difference was found between the 2-9- and 10-19-year-old groups, as well as among the two above-20-year-old groups. However, a significant difference was observed between the below 20 and above 20 groups. The study results showed no significant differences between males and females in any of the study groups. Discussion: There is significant ulnar variance change toward less negative ulnar variance with aging until maturity. PMID:26550588

  1. The energy-weighted sum rule and the nuclear radius

    NASA Astrophysics Data System (ADS)

    Schröder, Hans Peter

    2015-09-01

    The energy-weighted integrated cross-section for photon absorption --known as sum rule -- is under certain conditions proportional to the mean square nuclear radius (Levinger, Bethe (Phys. Rev. 78, 115 (1950))). Due to the energy weight factor the low-energy absorption components are emphasized and the dipole transitions in the region of giant resonances contribute enhanced at . Thus, the cross-section of the full interaction can be replaced in good approximation by the dipole cross-section. Under these aspects, we have calculated and the radii of various gg-nuclei. For our purpose, we have chosen a simple shell model where the integrals can be solved analytically, and the contributions of uncorrelated functions and correlation corrections can be shown explicitly. The mean square radius as a function of differs by a factor of 1.5/0.87 from the previous result of Levinger and Kent (Phys. Rev. 95, 418 (1954)) without correlation corrections. Plotting the function of the correlation corrections and the uncorrelated function as a ratio it shows that tends towards a limit. Finally, our results for the radii of gg-nuclei are in good agreement with recent experiments (I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013)).

  2. Artificial gravity: head movements during short-radius centrifugation

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Hecht, H.; Lyne, L. E.; Sienko, K. H.; Cheung, C. C.; Kavelaars, J.

    2001-01-01

    Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects of pitch and yaw head movements in participants placed supine on a rotating bed with their head at the center of rotation, feet at the rim. The vast majority of participants experienced motion sickness, inappropriate vertical nystagmus and illusory tilt and roll as predicted by a semicircular canal model. However, a small but significant number of the 28 participants experienced tilt in the predicted plane but in the opposite direction. Heart rate was elevated following one-second duration head turns. Significant adaptation occurred following a series of head turns in the light. Vertical nystagmus, motion sickness and illusory tilt all decreased with adaptation. Consequences for artificial gravity produced by short-radius centrifuges as a countermeasure are discussed. Grant numbers: NCC 9-58. c 2001. Elsevier Science Ltd. All rights reserved.

  3. Corrective osteotomies of the radius: Grafting or not?

    PubMed Central

    Mugnai, Raffaele; Tarallo, Luigi; Lancellotti, Enrico; Zambianchi, Francesco; Di Giovine, Ettore; Catani, Fabio; Adani, Roberto

    2016-01-01

    AIM: To review the current literature regarding corrective osteotomies to provide the best evidence of the rule of bone grafting. METHODS: Our MEDLINE literature search included 280 studies using the following key words “Malunited distal radius fracture” and 150 studies using key words “Corrective osteotomy of the distal radius”. Inclusion criteria were: Malunited distal radial, extra articular fracture, volar locking plate, use of iliac bone graft (cancellous or corticocancellous), non-use of bone graft. Twelve studies met the inclusion criteria. RESULTS: Seven of the 12 studies considered, described the use of a graft; the remaining five studies didn’t use any graft. Type of malunion was dorsal in most of the studies. The healing time was comparable using the graft or not (mean 12.5 wk), ranging from 7.5 to 16 wk. The mean disabilities of the arm, shoulder and hand score improvement was 23 points both in the studies that used the graft and in those not using the graft. CONCLUSION: This review demonstrated that corrective osteotomy of extra-articular malunited fractures of the distal radius treated by volar locking plate does not necessarily require bone graft. PMID:26925385

  4. Pion loop contribution to the electromagnetic pion charge radius

    SciTech Connect

    Roberts, C.D.; Bender, A.; Alkofer, R.

    1995-08-01

    There is a widely held misconception, based on a misrepresentation of the application of chiral perturbation theory, that the electromagnetic structure of the pion is dominated by the pion`s own pion-cloud. To clarify this the Global Color-symmetry Model (GCM), was used to calculate the electromagnetic charge radius of the pion. In this calculation the contributions from the quark core and pion loop were identified and compared. It was shown explicitly that the divergence of the charge radius in the chiral limit is due solely to the pion loop and that, at the physical value of the pion mass, this loop contributes less than 15% {l_angle}r{sub {pi}}{sup 2}{r_angle}; i.e. the quark core is the dominant determining characteristic for the pion. This suggests that quark-based models that fail to reproduce the m{sub {pi}} divergence of {l_angle}{sub {pi}}{sup 2}{r_angle} nevertheless incorporate the dominant characteristic of the pion: its quark core. The result`s studylend further support to the contention that, away from resonances, the dominant determining characteristic of kinematic and dynamical properties of hadrons is their quark core. A paper describing this work was submitted for publication.

  5. Automated bone age assessment of older children using the radius

    NASA Astrophysics Data System (ADS)

    Tsao, Sinchai; Gertych, Arkadiusz; Zhang, Aifeng; Liu, Brent J.; Huang, Han K.

    2008-03-01

    The Digital Hand Atlas in Assessment of Skeletal Development is a large-scale Computer Aided Diagnosis (CAD) project for automating the process of grading Skeletal Development of children from 0-18 years of age. It includes a complete collection of 1,400 normal hand X-rays of children between the ages of 0-18 years of age. Bone Age Assessment is used as an index of skeletal development for detection of growth pathologies that can be related to endocrine, malnutrition and other disease types. Previous work at the Image Processing and Informatics Lab (IPILab) allowed the bone age CAD algorithm to accurately assess bone age of children from 1 to 16 (male) or 14 (female) years of age using the Phalanges as well as the Carpal Bones. At the older ages (16(male) or 14(female) -19 years of age) the Phalanges as well as the Carpal Bones are fully developed and do not provide well-defined features for accurate bone age assessment. Therefore integration of the Radius Bone as a region of interest (ROI) is greatly needed and will significantly improve the ability to accurately assess the bone age of older children. Preliminary studies show that an integrated Bone Age CAD that utilizes the Phalanges, Carpal Bones and Radius forms a robust method for automatic bone age assessment throughout the entire age range (1-19 years of age).

  6. Hydrodynamic radius fluctuations in model DNA-grafted nanoparticles

    NASA Astrophysics Data System (ADS)

    Vargas-Lara, Fernando; Starr, Francis W.; Douglas, Jack F.

    2016-05-01

    We utilize molecular dynamics simulations (MD) and the path-integration program ZENO to quantify hydrodynamic radius (Rh) fluctuations of spherical symmetric gold nanoparticles (NPs) decorated with single-stranded DNA chains (ssDNA). These results are relevant to understanding fluctuation-induced interactions among these NPs and macromolecules such as proteins. In particular, we explore the effect of varying the ssDNA-grafted NPs structural parameters, such as the chain length (L), chain persistence length (lp), NP core size (R), and the number of chains (N) attached to the nanoparticle core. We determine Rh fluctuations by calculating its standard deviation (σRh) of an ensemble of ssDNA-grafted NPs configurations generated by MD. For the parameter space explored in this manuscript, σR h shows a peak value as a function of N, the amplitude of which depends on L, lp and R, while the broadness depends on R.

  7. Inductive voltage adder (IVA) for submillimeter radius electron beam

    SciTech Connect

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    1996-12-31

    The authors have already demonstrated the utility of inductive voltage adder accelerators for production of small-size electron beams. In this approach, the inductive voltage adder drives a magnetically immersed foilless diode to produce high-energy (10--20 MeV), high-brightness pencil electron beams. This concept was first demonstrated with the successful experiments which converted the linear induction accelerator RADLAC II into an IVA fitted with a small 1-cm radius cathode magnetically immersed foilless diode (RADLAC II/SMILE). They present here first validations of extending this idea to mm-scale electron beams using the SABRE and HERMES-III inductive voltage adders as test beds. The SABRE experiments are already completed and have produced 30-kA, 9-MeV electron beams with envelope diameter of 1.5-mm FWHM. The HERMES-III experiments are currently underway.

  8. Radius of the ρ meson determined from its decay constant

    NASA Astrophysics Data System (ADS)

    Krutov, A. F.; Polezhaev, R. G.; Troitsky, V. E.

    2016-02-01

    We present a unified model describing electroweak properties of the π and ρ mesons. Using a general method of the relativistic parametrization of matrix elements of local operators, adjusted for the nondiagonal in the total angular momentum case, we calculate the ρ -meson lepton-decay constant fρ using the same parameters of free constituent quarks that have ensured exclusively good results for the π meson previously. The only free parameter, characterizing quark interactions, which include an additional spin-spin contribution and hence differ from the π -meson case, is fixed by matching the decay constant to its experimental value. The mean square charge radius is calculated, ⟨rρ2⟩=(0.56 ±0.04 ) fm2 . This result confirms, for the ρ -meson case, the conjecture of equality between electromagnetic and strong radii of hadrons. This conjecture was tested previously for proton, π and K mesons.

  9. Muonic bound systems, virtual particles, and proton radius

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.

    2015-07-01

    The proton radius puzzle questions the self-consistency of theory and experiment in light muonic and electronic bound systems. Here we summarize the current status of virtual particle models as well as Lorentz-violating models that have been proposed in order to explain the discrepancy. Highly charged one-electron ions and muonic bound systems have been used as probes of the strongest electromagnetic fields achievable in the laboratory. The average electric field seen by a muon orbiting a proton is comparable to hydrogenlike uranium and, notably, larger than the electric field in the most advanced strong-laser facilities. Effective interactions due to virtual annihilation inside the proton (lepton pairs) and process-dependent corrections (nonresonant effects) are discussed as possible explanations of the proton size puzzle. The need for more experimental data on related transitions is emphasized.

  10. Inclusive jet spectrum for small-radius jets

    NASA Astrophysics Data System (ADS)

    Dasgupta, Mrinal; Dreyer, Frédéric A.; Salam, Gavin P.; Soyez, Gregory

    2016-06-01

    Following on our earlier work on leading-logarithmic (LL R ) resummations for the properties of jets with a small radius, R, we here examine the phenomenological considerations for the inclusive jet spectrum. We discuss how to match the NLO predictions with small- R resummation. As part of the study we propose a new, physically-inspired prescription for fixed-order predictions and their uncertainties. We investigate the R-dependent part of the next-to-next-to-leading order (NNLO) corrections, which is found to be substantial, and comment on the implications for scale choices in inclusive jet calculations. We also examine hadronisation corrections, identifying potential limitations of earlier analytical work with regards to their p t -dependence. Finally we assemble these different elements in order to compare matched (N)NLO+LLR predictions to data from ALICE and ATLAS, finding improved consistency for the R-dependence of the results relative to NLO predictions.

  11. Severely comminuted radius fracture presenting as a signature patterned injury

    PubMed Central

    Jain, Saurabh; Rajan, Sunil; Srivastava, Abhishek

    2016-01-01

    Dilemma still prevails, regarding the exact management of mangled extremity injuries between limb salvage versus amputation, each having there own set of complications. We here present a case of severely comminuted fractures of radius (bag of bones) along with the multiple criss-cross shaped lacerated wounds on the forearm and wrist presenting as a “signature pattern injury” caused by entrapment of the limb in the concrete mixer. MESS score of patient was 8, a score valid for amputation, but contrary, we successfully salvaged the patient's limb with use of radio-carpal distracter. Management of mangled injuries should be individualized, with due consideration to the mechanism and force of injury, associated injuries, and the patient profile. PMID:27053813

  12. Finite Larmor radius effect on ion pickup at Venus

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.; Luhmann, J. G.; Russell, C. T.; Moore, K. R.

    1987-01-01

    The interaction of the solar wind with Venus is influenced by the pickup of newly born exospheric oxygen ions by the convecting magnetosheath plasma. The flow and field configuration of the magnetosheath plasma, together with the large gyroradius of the pickup ions, cause mass loading to occur preferentially on one side of the magnetosheath. The observed hemispherical asymmetry in the magnetic field in the near-planet magnetosheath, attributed to this pickup process, is confirmed by direct observation of the picked-up planetary particles. Test particle calculations show that a current system created by ion pickup has the appropriate location and magnitude to account for the magnetic field asymmetry. The results indicate that a fluid treatment of the Venus mass-loading problem is not entirely appropriate; a hybrid or kinetic model is necessary to incorporate the finite Larmor radius of the pickup particles which produces the observed asymmetry.

  13. Radius of Curvature Measurements: An Independent Look at Accuracy Using Novel Optical Metrology

    NASA Technical Reports Server (NTRS)

    Taylor, Bryon; Kahan, Mark; Russell, Kevin (Technical Monitor)

    2002-01-01

    The AMSD (Advanced Mirror System Demonstrator) program mirror specifications include the ability to manufacture the mirror to a radius of curvature of 10 m +/- 1 mm and to control its radius at 30K to the same specification. Therefore, it is necessary for the Government Team to be able to measure mirror radius of curvature to an accuracy of better than 0.5 mm. This presentation discusses a novel optical metrology system for measuring radius of curvature.

  14. Maximum wind radius estimated by the 50 kt radius: improvement of storm surge forecasting over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Takagi, Hiroshi; Wu, Wenjie

    2016-03-01

    Even though the maximum wind radius (Rmax) is an important parameter in determining the intensity and size of tropical cyclones, it has been overlooked in previous storm surge studies. This study reviews the existing estimation methods for Rmax based on central pressure or maximum wind speed. These over- or underestimate Rmax because of substantial variations in the data, although an average radius can be estimated with moderate accuracy. As an alternative, we propose an Rmax estimation method based on the radius of the 50 kt wind (R50). Data obtained by a meteorological station network in the Japanese archipelago during the passage of strong typhoons, together with the JMA typhoon best track data for 1990-2013, enabled us to derive the following simple equation, Rmax = 0.23 R50. Application to a recent strong typhoon, the 2015 Typhoon Goni, confirms that the equation provides a good estimation of Rmax, particularly when the central pressure became considerably low. Although this new method substantially improves the estimation of Rmax compared to the existing models, estimation errors are unavoidable because of fundamental uncertainties regarding the typhoon's structure or insufficient number of available typhoon data. In fact, a numerical simulation for the 2013 Typhoon Haiyan as well as 2015 Typhoon Goni demonstrates a substantial difference in the storm surge height for different Rmax. Therefore, the variability of Rmax should be taken into account in storm surge simulations (e.g., Rmax = 0.15 R50-0.35 R50), independently of the model used, to minimize the risk of over- or underestimating storm surges. The proposed method is expected to increase the predictability of major storm surges and to contribute to disaster risk management, particularly in the western North Pacific, including countries such as Japan, China, Taiwan, the Philippines, and Vietnam.

  15. The Relation Between Radius, Mass, and Incident Flux of Exoplanets

    NASA Astrophysics Data System (ADS)

    Weiss, Lauren M.; Marcy, G. W.; Rowe, J.; Isaacson, H. T.; Howard, A.; Fortney, J. J.; Miller, N.; Demory, B.; Fischer, D.; Adams, E. A.; Dupree, A. K.; Howell, S. B.; Horch, E.; Everett, M. E.; Seager, S.; Fabrycky, D. C.

    2013-01-01

    We measure the mass of a modestly irradiated giant or "warm Jupiter," KOI-94d, in order to calculate its density. We wish to determine whether this planet, which is in a 22 day orbit and receives 107 times as much incident flux as the Earth, is bloated like "hot Jupiters" or as dense as our own Jupiter. In addition to its warm Jupiter, KOI-94 hosts at least 3 smaller planets, all of which were detected through transits by the Kepler Mission. This presents the opportunity to characterize a multi-planet system and to test dynamic stability and formation theory through observations of the masses and orbital elements of these planets. With 26 radial velocity measurements of KOI-94 from the W. M. Keck Observatory/HIRES, we measure the mass of the giant planet and upper limits to the masses of the three smaller planets. Transit timing variations will allow us to hone the mass measurements of the three smaller planets. Using the KOI-94 system and all other planets with published values for both mass and radius, we establish two fundamental planes for exoplanets that relate their mass, incident flux, and radius from a few Earth masses up to ten Jupiter masses: log(Rp/RE) = 0.007 + 0.53 log(M/ME) - 0.001 log(F/[erg/s/cm^2]) for Mp < 150ME; log(Rp/RE) = 0.67 - 0.036 log(M/ME) + 0.06 log(F/[erg/s/cm^2]) for Mp > 150ME. We also solve these planes in density-mass-flux space: log(ρp/[g/cm^3]) = 0.69 - 0.57 log(M/ME) + 0.02 log(F/[erg/s/cm^2]) for Mp < 150ME; log(ρp/[g/cm^3]) = -1.23 + 1.10 log(M/ME) - 0.18 log(F/[erg/s/cm^2]) for Mp > 150ME.

  16. What Is the Largest Einstein Radius in the Universe?

    SciTech Connect

    Oguri, Masamune; Blandford, Roger D.

    2008-08-05

    The Einstein radius plays a central role in lens studies as it characterizes the strength of gravitational lensing. In particular, the distribution of Einstein radii near the upper cutoff should probe the probability distribution of the largest mass concentrations in the universe. Adopting a triaxial halo model, we compute expected distributions of large Einstein radii. To assess the cosmic variance, we generate a number of Monte-Carlo realizations of all-sky catalogues of massive clusters. We find that the expected largest Einstein radius in the universe is sensitive to parameters characterizing the cosmological model, especially {sigma}{sub s}: for a source redshift of unity, they are 42{sub -7}{sup +9}, 35{sub -6}{sup +8}, and 54{sub -7}{sup +12} arcseconds (errors denote 1{sigma} cosmic variance), assuming best-fit cosmological parameters of the Wilkinson Microwave Anisotropy Probe five-year (WMAP5), three-year (WMAP3) and one-year (WMAP1) data, respectively. These values are broadly consistent with current observations given their incompleteness. The mass of the largest lens cluster can be as small as {approx} 10{sup 15} M{sub {circle_dot}}. For the same source redshift, we expect in all-sky {approx} 35 (WMAP5), {approx} 15 (WMAP3), and {approx} 150 (WMAP1) clusters that have Einstein radii larger than 2000. For a larger source redshift of 7, the largest Einstein radii grow approximately twice as large. While the values of the largest Einstein radii are almost unaffected by the level of the primordial non-Gaussianity currently of interest, the measurement of the abundance of moderately large lens clusters should probe non-Gaussianity competitively with cosmic microwave background experiments, but only if other cosmological parameters are well-measured. These semi-analytic predictions are based on a rather simple representation of clusters, and hence calibrating them with N-body simulations will help to improve the accuracy. We also find that these 'superlens

  17. System Estimates Radius of Curvature of a Segmented Mirror

    NASA Technical Reports Server (NTRS)

    Rakoczy, John

    2008-01-01

    A system that estimates the global radius of curvature (GRoC) of a segmented telescope mirror has been developed for use as one of the subsystems of a larger system that exerts precise control over the displacements of the mirror segments. This GRoC-estimating system, when integrated into the overall control system along with a mirror-segment- actuation subsystem and edge sensors (sensors that measure displacements at selected points on the edges of the segments), makes it possible to control the GROC mirror-deformation mode, to which mode contemporary edge sensors are insufficiently sensitive. This system thus makes it possible to control the GRoC of the mirror with sufficient precision to obtain the best possible image quality and/or to impose a required wavefront correction on incoming or outgoing light. In its mathematical aspect, the system utilizes all the information available from the edge-sensor subsystem in a unique manner that yields estimates of all the states of the segmented mirror. The system does this by exploiting a special set of mirror boundary conditions and mirror influence functions in such a way as to sense displacements in degrees of freedom that would otherwise be unobservable by means of an edge-sensor subsystem, all without need to augment the edge-sensor system with additional metrological hardware. Moreover, the accuracy of the estimates increases with the number of mirror segments.

  18. Kinetic theory of plasma adiabatic major radius compression in tokamaks

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Gorelenkov, N. N.; Azizov, E. A.; Romannikov, A. N.; Herrmann, H. W.

    1998-05-01

    In order to understand the individual charged particle behavior as well as plasma macroparameters (temperature, density, etc.) during the adiabatic major radius compression (R-compression) in a tokamak, a kinetic approach is used. The perpendicular electric field from the Ohm's law at zero resistivity is made use of in order to describe particle motion during the R-compression. Expressions for both passing and trapped particle energy and pitch angle change are derived for a plasma with high aspect ratio and circular magnetic surfaces. The particle behavior near the passing trapped boundary during the compression is studied to simulate the compression-induced collisional losses of alpha particles. Qualitative agreement is obtained with the alphas loss measurements in deuterium-tritium (D-T) experiments in the Tokamak Fusion Test Reactor (TFTR) [World Survey of Activities in Controlled Fusion Research [Nucl. Fusion special supplement (1991)] (International Atomic Energy Agency, Vienna, 1991)]. The plasma macroparameters evolution at the R-compression is calculated by solving the gyroaveraged drift kinetic equation.

  19. Placing molecules with Bohr radius resolution using DNA origami.

    PubMed

    Funke, Jonas J; Dietz, Hendrik

    2016-01-01

    Molecular self-assembly with nucleic acids can be used to fabricate discrete objects with defined sizes and arbitrary shapes. It relies on building blocks that are commensurate to those of biological macromolecular machines and should therefore be capable of delivering the atomic-scale placement accuracy known today only from natural and designed proteins. However, research in the field has predominantly focused on producing increasingly large and complex, but more coarsely defined, objects and placing them in an orderly manner on solid substrates. So far, few objects afford a design accuracy better than 5 nm, and the subnanometre scale has been reached only within the unit cells of designed DNA crystals. Here, we report a molecular positioning device made from a hinged DNA origami object in which the angle between the two structural units can be controlled with adjuster helices. To test the positioning capabilities of the device, we used photophysical and crosslinking assays that report the coordinate of interest directly with atomic resolution. Using this combination of placement and analysis, we rationally adjusted the average distance between fluorescent molecules and reactive groups from 1.5 to 9 nm in 123 discrete displacement steps. The smallest displacement step possible was 0.04 nm, which is slightly less than the Bohr radius. The fluctuation amplitudes in the distance coordinate were also small (±0.5 nm), and within a factor of two to three of the amplitudes found in protein structures. PMID:26479026

  20. Mass-radius relation of strongly magnetized white dwarfs

    NASA Astrophysics Data System (ADS)

    Bera, Prasanta; Bhattacharya, Dipankar

    2016-07-01

    We study the strongly magnetized white dwarf configurations in a self-consistent manner as a progenitor of the over-luminous type-Ia supernovae. We compute static equilibria of white dwarf stars containing a strong magnetic field and present the modification of white dwarf mass-radius relation caused by the magnetic field. From a static equilibrium study, we find that a maximum white dwarf mass of about 1.9 M_{⊙} may be supported if the interior poloidal field is as strong as approximately 10^{10} T. On the other hand, if the field is purely toroidal the maximum mass can be more than 5 M_⊙. All these modifications are mainly from the presence of Lorenz force. The effects of i) modification of equation of state due to Landau quantization ii) electrostatic interaction due to ions, ii) general relativistic calculation on the stellar structure and, iii) field geometry are also considered. These strongly magnetised configurations are sensitive to magnetic instabilities where the perturbations grow at the corresponding Alfven time scales.

  1. Placing molecules with Bohr radius resolution using DNA origami

    NASA Astrophysics Data System (ADS)

    Funke, Jonas J.; Dietz, Hendrik

    2016-01-01

    Molecular self-assembly with nucleic acids can be used to fabricate discrete objects with defined sizes and arbitrary shapes. It relies on building blocks that are commensurate to those of biological macromolecular machines and should therefore be capable of delivering the atomic-scale placement accuracy known today only from natural and designed proteins. However, research in the field has predominantly focused on producing increasingly large and complex, but more coarsely defined, objects and placing them in an orderly manner on solid substrates. So far, few objects afford a design accuracy better than 5 nm, and the subnanometre scale has been reached only within the unit cells of designed DNA crystals. Here, we report a molecular positioning device made from a hinged DNA origami object in which the angle between the two structural units can be controlled with adjuster helices. To test the positioning capabilities of the device, we used photophysical and crosslinking assays that report the coordinate of interest directly with atomic resolution. Using this combination of placement and analysis, we rationally adjusted the average distance between fluorescent molecules and reactive groups from 1.5 to 9 nm in 123 discrete displacement steps. The smallest displacement step possible was 0.04 nm, which is slightly less than the Bohr radius. The fluctuation amplitudes in the distance coordinate were also small (±0.5 nm), and within a factor of two to three of the amplitudes found in protein structures.

  2. Detection of periodic motion trajectories: Effects of frequency and radius.

    PubMed

    Wilkinson, Frances; Haque, Yousra; Or, Charles C-F; Gottlieb, Audrey S; Wilson, Hugh R

    2016-05-01

    Periodic trajectories are an important component of biological motion. Or, Thabet, Wilkinson, and Wilson (2011) studied radial frequency (RF) motion trajectory detection and concluded that, for RF2-5 trajectories, the threshold function paralleled that of static RF patterns. We have extended Or et al.'s (2011) findings to a broader range of RFs (three to 24 cycles) and across a 4-fold range of radii (1°-4°). We report that (a) thresholds for RF trajectories decrease as a power function of RF for low RF trajectories (three to six cycles) before approaching an asymptote at high RFs (12-24 cycles); (b) detection thresholds for RF trajectories scale proportionally with radius; and (c) there is no lower versus upper field advantage in the parafoveal field for stimuli displaced from fixation on the vertical midline. The results are compared to earlier findings for static RF thresholds, and we argue that our findings support the existence of parallel spatial and temporal processing channels that may contribute to both action perception and production. PMID:27183192

  3. Percutaneous pinning of fractures of the distal radius.

    PubMed

    Alm-Paulsen, Paal Sandoe; Rod, Oyvind; Rød, Kristian; Rajabi, Benjamin; Russwurm, Harald; Finsen, Vilhjalmur

    2012-09-01

    Reduction of fractures of the distal radius is often supplemented with percutaneous pinning, but there is little evidence that this affects the clinical outcome. A total of 43 patients with pinned, and 296 with conservatively-treated, fractures were reviewed a mean of 6 (range 3-13) years after injury. We found controls among the conservatively-treated patients who matched 30 of the patients with pinned fractures with respect to age, sex, trauma energy, and radiographic measurements at injury. Clinical and radiological results of the two groups were compared and contrasted. There was a trend for better radiological results in patients with pinned fractures, but not significantly so, and no difference in clinical variables. We identified seven published randomised studies in which pinning was compared with reduction and plaster of Paris alone. Most reported better radiological results at review. The three smallest studies with the shortest follow-up reported better clinical outcome for pinned fractures, while the remaining four studies found no significant clinical benefit from pinning. Although the radiological results were improved by percutaneous pinning in addition to reduction and plaster of Paris, the clinical outcome in extra-articular and simple intra-articular fractures seemed unaffected. PMID:22694081

  4. Mass-Radius Relation for Rocky Planets Based on PREM

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Sasselov, Dimitar D.; Jacobsen, Stein B.

    2016-03-01

    Several small dense exoplanets are now known, inviting comparisons to Earth and Venus. Such comparisons require translating their masses and sizes to composition models of evolved multi-layer interior planets. Such theoretical models rely on our understanding of the Earth’s interior, as well as independently derived equations of state, but so far have not involved direct extrapolations from Earth’s seismic model: the Preliminary Reference Earth Model (PREM). To facilitate more detailed compositional comparisons between small exoplanets and the Earth, we derive here a semi-empirical mass-radius relation for two-layer rocky planets based on PREM, \\frac{R}{{R}\\oplus }=(1.07-0.21\\cdot {CMF})\\cdot {≤ft(\\frac{M}{{M}\\oplus }\\right)}1/3.7, where CMF stands for core mass fraction. It is applicable to 1 ˜ 8 M⊕ and a CMF of 0.0 ˜ 0.4. Applying this formula to Earth and Venus and several known small exoplanets with radii and masses measured to better than ˜30% precision gives a CMF fit of 0.26 ± 0.07.

  5. The mass-radius relationship of massive compact stars

    SciTech Connect

    Chowdhury, Partha Roy

    2015-02-24

    The properties of pure hadronic and hybrid compact stars are reviewed using nuclear equation of state (EoS) for β-equilibrated neutron star (NS) matter obtained using a density-dependent M3Y (DDM3Y) effective nucleon-nucleon interaction. Depending on the model, the energy density of quark matter can be lower than that of this nuclear EoS at higher densities, implying the possibility of transition to quark matter inside the core and the transition density depends on the particular quark matter model used. The recent observations of the binary millisecond pulsar J1614–2230 by P.B. Demorest et al. [1] and PSR J0348+0432 by J. Antoniadis et al. [2] suggest that the masses lie within 1.97 ± 0.04 M{sub ⊙} and 2.01 ± 0.04 M{sub ⊙}, respectively, where M{sub ⊙} is the solar mass. In conformity with recent observations, a pure nucleonic EoS determines that the maximum mass of NS rotating with frequency ν∼ 667 Hz below r-mode instability is ∼ 1.95 M{sub ⊙} with radius ∼ 10 km. Compact stars with quark cores rotating with same frequency have the maximum mass of ∼ 1.72 M{sub ⊙} turns out to be lower than the observed masses.

  6. Massive radius-dependent flow slippage in carbon nanotubes.

    PubMed

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-01-01

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter. PMID:27604947

  7. MASS-RADIUS RELATIONSHIPS FOR VERY LOW MASS GASEOUS PLANETS

    SciTech Connect

    Batygin, Konstantin; Stevenson, David J.

    2013-05-20

    Recently, the Kepler spacecraft has detected a sizable aggregate of objects, characterized by giant-planet-like radii and modest levels of stellar irradiation. With the exception of a handful of objects, the physical nature, and specifically the average densities, of these bodies remain unknown. Here, we propose that the detected giant planet radii may partially belong to planets somewhat less massive than Uranus and Neptune. Accordingly, in this work, we seek to identify a physically sound upper limit to planetary radii at low masses and moderate equilibrium temperatures. As a guiding example, we analyze the interior structure of the Neptune-mass planet Kepler-30d and show that it is acutely deficient in heavy elements, especially compared with its solar system counterparts. Subsequently, we perform numerical simulations of planetary thermal evolution and in agreement with previous studies, show that generally, 10-20 M{sub Circled-Plus }, multi-billion year old planets, composed of high density cores and extended H/He envelopes can have radii that firmly reside in the giant planet range. We subject our results to stability criteria based on extreme ultraviolet radiation, as well as Roche-lobe overflow driven mass-loss and construct mass-radius relationships for the considered objects. We conclude by discussing observational avenues that may be used to confirm or repudiate the existence of putative low mass, gas-dominated planets.

  8. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe.

    PubMed

    Nakashima, Kenichi; Stoller, Roger E; Xu, Haixuan

    2015-08-26

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a0 to 3.3a0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster. PMID:26241190

  9. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    NASA Astrophysics Data System (ADS)

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    2015-08-01

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a0 to 3.3a0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.

  10. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    SciTech Connect

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    2015-01-01

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in neutron irradiated nuclear materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1:0a₀ to 3:3a₀ have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a₀ by taking the average of the recombination distances from 80 simulation cases. This value agrees well with the experimental estimate. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.

  11. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    DOE PAGESBeta

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    2015-01-01

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in neutron irradiated nuclear materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1:0a₀ to 3:3a₀ have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomicmore » level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a₀ by taking the average of the recombination distances from 80 simulation cases. This value agrees well with the experimental estimate. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.« less

  12. A Large Radius Human Centrifuge: The Human Hypergravity Havitat

    NASA Astrophysics Data System (ADS)

    van Loon, J. J. W. A.

    2008-06-01

    Life on Earth has developed at unit gravity, 9.81 m/s2, but how would plants and animals have evolved on a larger planet, i.e. larger than Earth? We are able to address this question simply by studies using centrifuges. In the past decades numerous experiments have been performed on cells, plants and animals grown for longer durations, even multi generations, under hypergravity conditions. Based on these studies we have gained interesting insights in the physiological process of these systems when exposed to artificial gravity. Animals and plants adapt themselves to this new high-g environment. Information of adaptation to hyper-g in mammals is interesting, or maybe even proof vital, for future human space flight programs especially in light of long duration missions to Moon and Mars. We know from long duration animal studies that numerous physiological processes and structures like muscles, bones, neuro-vestibular, or the cardiovascular system are affected. However, humans have never been exposed to a hyper-g environment for long durations. Human studies are mostly in the order of hours at most. Current work on human centrifuges is all focused on short arm systems to apply artificial gravity in long duration space missions. In this paper we want to address the possible usefulness of a large radius human centrifuge on Earth, or even on Moon or Mars, for both basic research and possible applications. In such a centrifuge a group of humans may be exposed to hypergravity for, in principle, an unlimited period of time.

  13. The radius of gyration of an apomyoglobin folding intermediate

    SciTech Connect

    Eliezer, D.; Jennings, P.A.; Wright, P.E.

    1995-10-20

    Apomyoglobin (apoMb) forms a stable compact partially folded state under acidic conditions. This {open_quotes}molten globule{close_quotes} intermediate is slightly expanded relative to the native form of the protein, with a radius of gyration (R{sub g}) of 23 ({plus_minus} 2) {Angstrom} versus 19 ({plus_minus}) {Angstrom}, and shows stable secondary structure in the A,G, and H helices. We demonstrated recently, with the use of stopped-flow circular dichroism and pulse-labeling hydrogen exchange measurements, that the earliest detectable intermediate (formed with 6 ms) in the apoMb kinetic refolding pathway closely resembles the equilibrium molten globule state populated under acid conditions. A key question remained as to how compact this kinetic intermediate is compared to the equilibrium and native states. The cooperative unfolding of the kinetic intermediate and the significant protection from amide proton exchange (as compared to corresponding isolated peptides in solution) led us to propose that the kinetic intermediate is also compact. Such a proposal could best be verified by direct determination of the size of the protein as it folds, but measurements of this nature were not feasible at the time. Newly developed improvements in time-resolved small angle x-ray scattering (SAXS) experiments allow direct measurement of the time-dependent change of R{sub g} of a protein as it folds in the millisecond to second time frame. We initiated studies of the refolding of apoMb using this technique, under conditions similar to those employed in our previous work. SAXS data collected during the first 100 ms after initiation of the refolding reaction are shown. 11 refs., 2 figs.

  14. VARIATION OF INNER RADIUS OF DUST TORUS IN NGC4151

    SciTech Connect

    Koshida, Shintaro; Sakata, Yu; Sugawara, Shota; Yoshii, Yuzuru; Minezaki, Takeo; Tomita, Hiroyuki; Kobayashi, Yukiyasu; Suganuma, Masahiro; Enya, Keigo; Aoki, Tsutomu; Peterson, Bruce A.

    2009-08-01

    Long-term optical and near-infrared monitoring observations for a type 1 active galactic nucleus (AGN) NGC 4151 were carried out for six years from 2001 to 2006 by using the MAGNUM telescope, and delayed response of flux variations in the K(2.2 {mu}m) band to those in the V(0.55 {mu}m) band was clearly detected. Based on cross-correlation analysis, we precisely measured a lag time {delta}t for eight separate periods and we found that {delta}t is not constant, changing between 30 and 70 d during the monitoring period. Since {delta}t is the light travel time from the central energy source out to the surrounding dust torus, this is the first convincing evidence that the inner radius of the dust torus did change in an individual AGN. In order to relate such a change of {delta}t with a change of AGN luminosity L, we present a method of taking an average of the observed V-band fluxes that corresponds to the measured value of {delta}t, and we find that the time-changing track of NGC 4151 in the {delta}t versus L diagram during the monitoring period deviates from the relation {delta}t {proportional_to} L {sup 0.5} expected from dust reverberation. This result, combined with the elapsed time from period to period for which {delta}t was measured, indicates that the timescale of dust formation is about one year, which should be taken into account as a new constraint in future studies of dust evolution in AGNs.

  15. A biomechanical approach to distal radius fractures for the emergency radiologist.

    PubMed

    Bunch, Paul M; Sheehan, Scott E; Dyer, George S; Sodickson, Aaron; Khurana, Bharti

    2016-04-01

    Distal radius fractures are the most common upper extremity fracture and account for approximately one sixth of all fractures treated in US emergency departments. These fractures are associated with significant morbidity and have a major economic impact. Radiographic evaluation of distal radius fractures is frequently performed in the emergency department setting, has a profound impact on initial management, and is essential to assessing the quality and relative success of the initial reduction. While the most appropriate definitive management of distal radius fractures remains controversial, overarching treatment principles reflect distal radius injury mechanisms and biomechanics. An intuitive understanding of the biomechanics of the distal radius and of common mechanisms of injury informs and improves the emergency radiologist's ability to identify key imaging findings with important management implications and to communicate the critical information that emergency physicians and orthopedic surgeons need to best manage distal radius fractures. PMID:26564022

  16. Contact Radius and the Insulator-Metal Transition in Films Comprised of Touching Semiconductor Nanocrystals.

    PubMed

    Lanigan, Deanna; Thimsen, Elijah

    2016-07-26

    Nanocrystal assemblies are being explored for a number of optoelectronic applications such as transparent conductors, photovoltaic solar cells, and electrochromic windows. Majority carrier transport is important for these applications, yet it remains relatively poorly understood in films comprised of touching nanocrystals. Specifically, the underlying structural parameters expected to determine the transport mechanism have not been fully elucidated. In this report, we demonstrate experimentally that the contact radius, between touching heavily doped ZnO nanocrystals, controls the electron transport mechanism. Spherical nanocrystals are considered, which are connected by a circular area. The radius of this circular area is the contact radius. For nanocrystals that have local majority carrier concentration above the Mott transition, there is a critical contact radius. If the contact radius between nanocrystals is less than the critical value, then the transport mechanism is variable range hopping. If the contact radius is greater than the critical value, the films display behavior consistent with metallic electron transport. PMID:27398597

  17. [Study on Tracheal Intubation's Circular Arc Radius Measuring Method Based on Machine Vision].

    PubMed

    Yu, Dong; Li, Genchi; Feng, Yunhao; Yang, Yonghuan; Hao, Xiali

    2015-03-01

    It is difficult to measure the circular arc radius for central angle less than 30 degrees. The existing measuring methods are of low efficiency and big error. Through designing the machine vision system and studying the image detecting method for measurement, It is obtained good results by using the new measurement for tracheal intubation's circular arc radius, Realized a rapid and accurate measurement of the circular arc radius, and expanded the application in the field of machine vision. PMID:26524788

  18. Minimum required capture radius in a coplanar model of the aerial combat problem

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.; Merz, A. W.

    1977-01-01

    Coplanar aerial combat is modeled with constant speeds and specified turn rates. The minimum capture radius which will always permit capture, regardless of the initial conditions, is calculated. This 'critical' capture radius is also the maximum range which the evader can guarantee indefinitely if the initial range, for example, is large. A composite barrier is constructed which gives the boundary, at any heading, of relative positions for which the capture radius is less than critical.

  19. A simple approach for fabrication of dual-disk electrodes with a nanometer-radius electrode and a micrometer-radius electrode.

    PubMed

    Gao, Ning; Lin, Xiaohong; Jia, Wenzhi; Zhang, Xiaoli; Jin, Wenrui

    2007-09-30

    We developed a new simple approach to fabricate dual-disk electrodes with a nanometer-radius electrode and a micrometer-radius electrode. First, nanometer-sized electrodes and micrometer-sized electrodes were constructed using 10-mum-radius metal wires, respectively. To fabricate the nanometer-sized electrode, after the apex of the 10-mum-radius metal wire was electrochemically etched to an ultrafine point with a nanometer-radius, the metal wire was electrochemically coated with a phenol-allyphenol copolymer film. The micrometer-sized electrode was fabricated by directly electrochemical coating the metal wire with an extremely thin phenol-allyphenol copolymer film. Then, the nanometer-radius electrode (the first electrode) and the 10-mum-radius electrode (the second electrode) were inserted into two sides of a thick-septum borosilicate theta (theta) tubing, respectively. The second electrode protruded from the top of the theta tubing. The top of the theta tubing was sealed with insulating ethyl alpha-cyanoacrylate. The top of the theta tubing with both electrodes was ground flat and polished successively with fine sandpaper and aluminum oxide powder until the tip of the first electrode was exposed. Since the second electrode protruded from the top of the theta tubing, its 10-mum-radius tip was naturally formed during polishing. The dual-disk electrodes were characterized by scanning electron microscopy and cyclic voltammetry. The success rate for fabrication of the dual-disk electrodes is approximately 80% due to double insurance from two coating layers of different polymers. PMID:19073075

  20. Radial shortening following a fracture of the proximal radius

    PubMed Central

    2011-01-01

    Background and purpose The Essex-Lopresti lesion is thought to be rare, with a varying degree of disruption to forearm stability probable. We describe the range of radial shortening that occurs following a fracture of the proximal radius, as well as the short-term outcome in these patients. Patients and methods Over an 18-month period, we prospectively assessed all patients with a radiographically confirmed proximal radial fracture. Patients noted to have ipsilateral wrist pain at initial presentation underwent bilateral radiography to determine whether there was disruption of the distal radio-ulnar joint suggestive of an Essex-Lopresti lesion. Outcome was assessed after a mean of 6 (1.5–12) months using clinical and radiographic results, including the Mayo elbow score (MES) and the short musculoskeletal function assessment (SMFA) questionnaire. One patient with a Mason type-I fracture was lost to follow-up after initial presentation. Results 60 patients had ipsilateral wrist pain at the initial assessment of 237 proximal radial fractures. Radial shortening of ≥ 2mm (range: 2–4mm) was seen in 22 patients (mean age 48 (19–79) years, 16 females). The most frequent mechanism of injury was a fall from standing height (10/22). 21 fractures were classified as being Mason type-I or type-II, all of which were managed nonoperatively. One Mason type-III fracture underwent acute radial head replacement. Functional outcome was assessed in 21 patients. We found an excellent or good MES in 18 of the 20 patients with a Mason type-I or type-II injury. Interpretation The incidence of the Essex-Lopresti lesion type is possibly under-reported as there is a spectrum of injuries, and subtle disruptions often go unidentified. A full assessment of all patients with a proximal radial fracture is required in order to identify these injuries, and the index of suspicion is raised as the complexity of the fracture increases. PMID:21504305

  1. Estimation of weapon-radius versus maneuverability trade-off for air-to-air combat

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Lefton, L.

    1977-01-01

    A chase in a horizontal plane between a pursuer with a large capture radius and a more maneuverable evading vehicle is examined with constant-speed vehicle models. An approximation to the 'sidestepping' maneuver of the Homicidal Chauffeur Game is modified to account for the effect of evader turning rate, and an estimate of capture radius required is so obtained which agrees remarkably well with Cockayne's point-capture result. The maneuver assumes central importance for barrier surfaces appearing in the Game of Two Cars. Results are given for required weapon capture-radius in terms of the maneuverability of the two vehicles. Some calculations of capture radius are presented.

  2. Effect of isospin dependence of radius on transverse flow and fragmentation in isobaric pairs

    NASA Astrophysics Data System (ADS)

    Gautam, Sakshi

    2013-11-01

    We study the role of nuclear structure effects through radius in reaction dynamics via transverse flow and multifragmentation of isobaric colliding pairs. Our study reveals that isospin-dependent radius [proposed by Royer and Rousseau [Eur. Phys. J. A10.1140/epja/i2008-10745-8 42, 541 (2009)] has significant effect towards isospin effects. The collective flow behavior and fragmentation pattern of neutron-rich system with respect to neutron-deficient system is found to get reversed with isospin-dependent radius compared to that with liquid drop radius.

  3. Separatrix radius measurement of field-reversed configuration plasma in FRX-L

    SciTech Connect

    Zhang, S.Y.; Tejero, E.M.; Taccetti, J.M.; Wurden, G.A.; Intrator, T.P.; Waganaar, W.J.; Perkins, R.

    2004-10-01

    Magnetic pickup coils and single turn flux loops are installed on the FRX-L device. The combination of the two measurements provides the excluded flux radius that approximates the separatrix radius of the field-reversed configuration (FRC) plasma. Arrays of similar probes are used to map out local magnetic field dynamics beyond both ends of the theta-coil confinement region to help understand the effects of cusp locations on flux trapping during the FRC formation process. Details on the probe design and system calibrations are presented. The overall system calibration of excluded flux radius measurement is examined by replacing FRC plasma with a known radius aluminum conductor cylinder.

  4. Evaluation of the Proton Charge Radius from Electron–Proton Scattering

    SciTech Connect

    Arrington, John; Sick, Ingo

    2015-09-15

    In light of the proton radius puzzle, the discrepancy between measurements of the proton charge radius from muonic hydrogen and those from electronic hydrogen and electron–proton (e–p) scattering measurements, we re-examine the charge radius extractions from electron scattering measurements. We provide a recommended value for the proton root-mean-square charge radius, r{sub E} = 0.879 ± 0.011 fm, based on a global examination of elastic e–p scattering data. The uncertainties include contributions to account for tension between different data sets and inconsistencies between radii using different extraction procedures.

  5. Application of three-body stability to globular clusters - I. The stability radius

    NASA Astrophysics Data System (ADS)

    Kennedy, Gareth F.

    2014-11-01

    The tidal radius is commonly determined analytically by equating the tidal field of the galaxy to the gravitational potential of the cluster. Stars crossing this radius can move from orbiting the cluster centre to independently orbiting the galaxy. In this paper, the stability radius of a globular cluster is estimated using a novel approach from the theoretical standpoint of the general three-body problem. This is achieved by an analytical formula for the transition radius between stable and unstable orbits in a globular cluster. A stability analysis, outlined by Mardling, is used here to predict the occurrence of unstable stellar orbits in the outermost region of a globular cluster in a distant orbit around a galaxy. It is found that the eccentricity of the cluster-galaxy orbit has a far more significant effect on the stability radius of globular clusters than previous theoretical results of the tidal radius have found. A simple analytical formula is given for determining the transition between stable and unstable orbits, which is analogous to the tidal radius for a globular cluster. The stability radius estimate is interior to tidal radius estimates and gives the innermost region from which stars can random walk to their eventual escape from the cluster. The time-scale for this random walk process is also estimated using numerical three-body scattering experiments.

  6. Studying the proton 'radius' puzzle with μp elastic scattering

    SciTech Connect

    Gilman, R.

    2013-11-07

    The disagreement between the proton radius determined from muonic hydrogen and from electronic measurements is called the proton radius puzzle. The resolution of the puzzle remains unclear and appears to require new experimental results. An experiment to measure muon-proton elastic scattering is presented here.

  7. Measuring the Radius of the Earth from a Mountain Top Overlooking the Ocean

    ERIC Educational Resources Information Center

    Gangadharan, Dhevan

    2009-01-01

    A clear view of the ocean may be used to measure the radius of the Earth. To an observer looking out at the ocean, the horizon will always form some angle [theta] with the local horizontal plane. As the observer's elevation "h" increases, so does the angle [theta]. From measurements of the elevation "h" and the angle [theta], the radius "R" of the…

  8. On the Tidal Radius of Satellites on Prograde and Retrograde Orbits

    NASA Astrophysics Data System (ADS)

    Gajda, Grzegorz; Łokas, Ewa L.

    2016-03-01

    A tidal radius is the distance from a satellite orbiting in a host potential beyond which its material is stripped by the tidal force. We derive a revised expression for the tidal radius of a rotating satellite that properly takes into account the possibility of prograde and retrograde orbits of stars. Besides the eccentricity of the satellite orbit, the tidal radius also depends on the ratio of the satellite internal angular velocity to the orbital angular velocity. We compare our formula to the results of two N-body simulations of dwarf galaxies orbiting a Milky-Way-like host on a prograde and retrograde orbit. The tidal radius for the retrograde case is larger than for the prograde. We introduce a kinematic radius that separates stars still orbiting the dwarf galaxy from those already stripped and following the potential of the host galaxy. We find that the tidal radius matches the kinematic radius very well. Our results provide a connection between the formalism of the tidal radius derivation and the theory of resonant stripping.

  9. Active space of pheromone plume and its relationship to effective attraction radius in applied models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Any lure’s semiochemical release rate that is attractive to flying insects has a specific effective attraction radius (EAR) that corresponds to the lure’s orientation response strength. The EAR was defined as the radius of a passive sphere that would intercept the same number of insects as a semioch...

  10. Radius scaling of X-radiation from gas-puff implosions on an inductive driver

    SciTech Connect

    Mosher, D.; Stephanakis, S. J.; Apruzese, J. P.; Black, D. C.; Boller, J. R.; Commisso, R. J.; Myers, M. C.; Peterson, G. G.; Weber, B. V.; Young, F. C.

    1997-05-05

    The output of X radiation from gas-puff implosions is studied in reference to its theoretical prediction by simple model. Results show that the gas-puff radius, but not implosion time, controls radiation yield. Radius-scaling models being fairly reliable may lead to an overestimation sometimes. (AIP)

  11. Incidence and Mortality after Distal Radius Fractures in Adults Aged 50 Years and Older in Korea

    PubMed Central

    2016-01-01

    The purpose of this study was to assess the incidence and mortality of distal radius fracture among patients 50 years of age and older with diagnosis code (ICD10; S52.5, S52.6) and treatment code using a nationwide claims database from 2008 to 2012. All patients were followed using patient identification code to identify deaths. Standardized mortality ratios (SMRs) of distal radius fracture were calculated based on age and gender-specific rates in the entire Korean population. The number of distal radius fractures increased by 54.2% over the 5-year study (48,145 in 2008 and 74,240 in 2012). The incidence of distal radius fracture increased from 367.4/100,000 in 2008 to 474.1/100,000 in 2012. The cumulative mortality rate over the first 12 months after distal radius fracture was decreased from 2.0% (968/48,145) in 2008 to 1.4% (1,045/74,240) in 2012. The mean year mortality over 5 years in men (2.6%, 1,279/50,128) over the first 12 months was 1.7-times higher than in women (1.5%, 3,952/257,045). The mean of SMR of distal radius fracture at 1 year post-fracture was 1.45 in men and 1.17 in women. This study using a nationwide database demonstrates that the distal radius fractures are increasing with a decreasing mortality in Korea. PMID:27051250

  12. The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds.

    NASA Astrophysics Data System (ADS)

    Martin, G. M.; Johnson, D. W.; Spice, A.

    1994-07-01

    Observations from the Meteorological Research Flight's Hercules C-130 aircraft of the microphysical characteristics of warm stratocumulus clouds have been analyzed to investigate the variation of the effective radius of cloud droplets in layer clouds. Results from experiments in the eastern Pacific, South Atlantic, subtropical regions of the North Atlantic, and the sea areas around the British Isles are presented. In situations where entrainment effects are small the (effective radius)3 is found to be a linear function of the (volume-averaged radius)3 in a given cloud and can thus be parameterized with respect to the liquid water content and the droplet number concentration in the cloud. However, the shape of the droplet size spectrum is very dependent on the cloud condensation nuclei (CCN) characteristics below cloud base, and the relationship between effective radius and volume-averaged radius varies between maritime air masses and continental air masses. This study also details comparisons that have been made in stratocumulus between the droplet number concentrations and (a) aerosol concentrations below cloud base in the size range 0.1 to 3.0 m and (b) CCN supersaturation spectra in the boundary layer. A parameterization relating droplet concentration and aerosol concentration is suggested. The effects of nonadiabatic processes on the parameterization of effective radius are discussed. Drizzle is found to have little effect near cloud top, but in precipitating stratocumulus clouds the parameterization breaks down near cloud base. Comparisons are made between this parameterization of effective radius and others used currently or in the past.

  13. Evolution of the solar radius during the solar cycle 24 rise time

    NASA Astrophysics Data System (ADS)

    Meftah, Mustapha

    2015-08-01

    One of the real motivations to observe the solar radius is the suspicion that it might be variable. Possible temporal variations of the solar radius are important as an indicator of internal energy storage and as a mechanism for changes in the total solar irradiance. Measurements of the solar radius are of great interest within the scope of the debate on the role of the Sun in climate change. Solar energy input dominates the surface processes (climate, ocean circulation, wind, etc.) of the Earth. Thus, it appears important to know on what time scales the solar radius and other fundamental solar parameters, like the total solar irradiance, vary in order to better understand and assess the origin and mechanisms of the terrestrial climate changes. The current solar cycle is probably going to be the weakest in 100 years, which is an unprecedented opportunity for studying the variability of the solar radius during this period. This paper presents more than four years of solar radius measurements obtained with a satellite and a ground-based observatory during the solar cycle 24 rise time. Our measurements show the benefit of simultaneous measurements obtained from ground and space observatories. Space observations are a priori most favourable, however, space entails also technical challenges, a harsh environment, and a finite mission lifetime. The evolution of the solar radius during the rising phase of the solar cycle 24 show small variations that are out of phase with solar activity.

  14. Solution to the discrepancy between the seismic and photospheric solar radius

    NASA Astrophysics Data System (ADS)

    Haberreiter, M.; Kosovichev, A. G.; Schmutz, W.

    2009-04-01

    Two methods are usually used to observationally determine the solar radius: One is the observation of the intensity profile at the limb, the other one uses f-mode frequencies to derive a 'seismic' solar radius which is then corrected to optical depth unity. The two methods are inconsistent and lead to a difference in the solar radius of approx. 0.3 Mm. Based on radiative transfer calculations we show that this discrepancy can be explained by the difference between the height at disk center where tau500=1 and the inflection point of the intensity profile on the limb. We calculate the intensity profile of the limb for the MDI continuum and the continuum at 5000 A for two atmosphere structures and compare the position of the inflection points with the radius at optical depth unity. The calculated difference between the 'seismic' radius and the inflection point is 0.347 Mm with respect to optical depth unity and 0.333 Mm with respect to the Rossland mean opacity. We conclude that the standard solar radius in evolutionary models has to be lowered by 0.333 Mm and is 695.66 Mm. This correction reconciles inflection point measurements and the seismic radius within the uncertainty. This finding is very important for the analysis of the solar diameter measurements with the SODISM instrument on PICARD.

  15. Outcomes Following Operative Treatment of open Fractures of the Distal Radius: A Case Control Study

    PubMed Central

    MacKay, Brendan J; Montero, Nicole; Paksima, Nader; Egol, Kenneth A

    2013-01-01

    Purpose To report radiographic, clinical, and patient-based functional outcomes following contemporary operative treatment of patients who sustained an open distal radius fracture and compare them to a similar group of patients treated operatively for closed distal radius fractures. Methods Over five years, 601 patients with a distal radius fracture presented to our academic medical center, including one Level 1 trauma hospital, and were prospectively enrolled in an upper extremity trauma database. Patients with open distal radius fractures underwent irrigation, debridement, and operative fixation within 24 hours of presentation. Closed distal radius fractures requiring operative fixation were treated electively. Retrospective review of the database identified eighteen open fractures of the distal radius (11 type I, 6 type II, 1 type IIIa). The open fracture patients were individually matched with eighteen closed distal radius fracture patients who underwent surgical fixation based on age, sex, injury to dominant extremity, fracture pattern, and method of fracture fixation. Clinical, radiographic, patient- based functional outcomes, and complications were recorded at routine postoperative intervals. Results Follow-up was greater than 77% in both groups at all time points. The open and closed groups were similar in regards to age, gender, BMI, race, tobacco use, income, employment status, hand dominance, injury to dominant extremity, mechanism of injury, fracture classification, method of fracture fixation, and presence of concomitant injury. Postoperative complications and reoperation rates were similar between the open and closed groups. Union rates and radiographic alignment one year postoperatively were similar between the open and closed fracture groups. At final follow-up, range of motion parameters, grip strengths, DASH indices, and subjective pain scores were similar between both groups. Discussion Open distal radius fractures treated with early debridement

  16. Radius of the Sun from observations of the total solar eclipse of 31 July 1981.

    NASA Astrophysics Data System (ADS)

    Akimov, L. A.; Belkina, I. L.; Dyatel, N. P.; Marchenko, G. P.

    The moments of local contacts of 24 points on the east and west solar limbs are determined from the cinematographic solar continuum observations during the 31 July 1981 eclipse. The value of the solar radius averaged over limb regions with different activity was found by the least-squares method - rs = 959.97±0.04″ The solar radius estimates made separately for active and quiet limb regions reveal that the effect of active regions on the measured radius value is significant and may be as much as 0.14″

  17. Radius of the sun from observations of the total solar eclipse of July 31, 1981

    NASA Astrophysics Data System (ADS)

    Akimov, L. A.; Belkina, I. L.; Dyatel, N. P.; Marchenko, G. P.

    1993-06-01

    Moments of the local contacts at 24 points on E and W solar limbs are determined from the July 31, 1981 solar eclipse cinematographic observations in the continuum. The r.m.s. value of the solar radius, averaged over limb regions with different activity, is rs = 959.97 +/- 0.04 arcsec. The solar radius estimates made separately for limb active regions and for undisturbed ones demonstrated the significance of the active region effects on the measured solar radius (up to 0.14 arcsec).

  18. Use of High-Speed X ray and Video to Analyze Distal Radius Fracture Pathomechanics.

    PubMed

    Gutowski, Christina; Darvish, Kurosh; Liss, Frederic E; Ilyas, Asif M; Jones, Christopher M

    2015-10-01

    The purpose of this study is to investigate the failure sequence of the distal radius during a simulated fall onto an outstretched hand using cadaver forearms and high-speed X ray and video systems. This apparatus records the beginning and propagation of bony failure, ultimately resulting in distal radius or forearm fracture. The effects of 3 different wrist guard designs are investigated using this system. Serving as a proof-of-concept analysis, this study supports this imaging technique to be used in larger studies of orthopedic trauma and protective devices and specifically for distal radius fractures. PMID:26410645

  19. Effect of microstructure and notch root radius on fracture toughness of an aluminum metal matrix composite

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Recent results on the effects of matrix aging condition (matrix temper) and notch root radius on the measured fracture toughness of a SiC particulate reinforced aluminum alloy are reviewed. Stress intensity factors at catastrophic fracture were obtained for both underaged and overaged composites reveal. The linear relation found between apparent fracture toughness and the square root of the notch root radius implies a linear dependence of the crack opening displacement on the notch root radius. The results suggest a strain controlled fracture process, and indicate that there are differences in the fracture micromechanisms of the two aging conditions.

  20. Mass-Radius Relationships for Low-Mass Planets: From Iron Planets to Water Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2007-01-01

    Transit observations, and radial velocity measurements, have begun to populate the mass radius diagram for extrasolar planets; fubture astrometric measurements and direct images promise more mass and radius information. Clearly, the bulk density of a planet indicates something about a planet s composition--but what? I will attempt to answer this question in general for low-mass planets (radius relationship: an expansion whose first term is M approx. R(sup 3).

  1. Initialization effects via the nuclear radius on transverse in-plane flow and its disappearance

    NASA Astrophysics Data System (ADS)

    Bansal, Rajni; Gautam, Sakshi

    2014-04-01

    We study the dependence of collective transverse flow and its disappearance on initialization effects via the nuclear radius within the framework of the Isospin-dependent Quantum Molecular Dynamics (IQMD) model. We calculate the balance energy using different parametrizations of the radius available in the literature for the reaction of 12C+12C to explain its measured balance energy. A mass-dependent analysis of the balance energy through out the periodic table is also carried out by changing the default liquid drop IQMD radius.

  2. Synchronous Multicentric Giant Cell Tumour of Distal Radius and Sacrum with Pulmonary Metastases

    PubMed Central

    Tandra, Varun Sharma; Kotha, Krishna Mohan Reddy; Satyanarayana, Moorthy Gadisetti Venkata; Vadlamani, Kali Varaprasad; Yerravalli, Vyjayanthi

    2015-01-01

    Giant cell tumour (GCT) is an uncommon primary bone tumour, and its multicentric presentation is exceedingly rare. We report a case of a 45-year-old female who presented to us with GCT of left distal radius. On the skeletal survey, osteolytic lesion was noted in her right sacral ala. Biopsy confirmed both lesions as GCT. Pulmonary metastasis was also present. Resection-reconstruction arthroplasty for distal radius and thorough curettage and bone grafting of the sacral lesion were done. Multicentric GCT involving distal radius and sacrum with primary sacral involvement is not reported so far to our knowledge. PMID:26106496

  3. Synchronous Multicentric Giant Cell Tumour of Distal Radius and Sacrum with Pulmonary Metastases.

    PubMed

    Tandra, Varun Sharma; Kotha, Krishna Mohan Reddy; Satyanarayana, Moorthy Gadisetti Venkata; Vadlamani, Kali Varaprasad; Yerravalli, Vyjayanthi

    2015-01-01

    Giant cell tumour (GCT) is an uncommon primary bone tumour, and its multicentric presentation is exceedingly rare. We report a case of a 45-year-old female who presented to us with GCT of left distal radius. On the skeletal survey, osteolytic lesion was noted in her right sacral ala. Biopsy confirmed both lesions as GCT. Pulmonary metastasis was also present. Resection-reconstruction arthroplasty for distal radius and thorough curettage and bone grafting of the sacral lesion were done. Multicentric GCT involving distal radius and sacrum with primary sacral involvement is not reported so far to our knowledge. PMID:26106496

  4. The Evolution of Distal Radius Fracture Management – A Historical Treatise

    PubMed Central

    Diaz-Garcia, Rafael J.; Chung, Kevin C.

    2012-01-01

    Distal radius fractures have been a common affliction for millennia, but their treatment is a more recent development as a result of human erudition. While immobilization has served as the only available treatment for most of our history, many advances have been made in the management of distal radius fractures over the last century as the field of orthopedics has grown. Yet, the topic remains hotly contested in the literature, and research continues to focus upon it given the frequency of the injury. In this article, we chronicle the evolution of distal radius fracture treatment in hopes of providing context for the future that lies ahead. PMID:22554653

  5. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from 55Cs to 80Hg

    NASA Astrophysics Data System (ADS)

    Tatewaki, Hiroshi; Hatano, Yasuyo; Noro, Takeshi; Yamamoto, Shigeyoshi

    2015-06-01

    We consider, for atoms from 55Cs to 80Hg, the effective atomic radius (rear), which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He2. The values of rear are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of rear decreases from 55Cs to 56Ba and undergoes increases and decreases with rising nuclear charge from 57La to 70Y b. In fact rear is understood as comprising two interlaced sequences; one consists of 57La, 58Ce, and 64Gd, which have electronic configuration (4fn-1)(5d1)(6s2), and the remaining atoms have configuration (4fn)(6s2). The sphere defined by rear contains 85%-90% of the 6s electrons. From 71Lu to 80Hg the radius rear also involves two sequences, corresponding to the two configurations 5dn+16s1 and 5dn6s2. The radius rear according to the present methodology is considerably larger than rvdW obtained by other investigators, some of who have found values of rvdW close to .

  6. Focal length and radius of curvature measurement using wavefront difference method

    NASA Astrophysics Data System (ADS)

    Yang, Zhongming; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Yuan, Qun

    2015-10-01

    A method for measuring the focal length of the lens and the radius of curvature of the spherical surface using wavefront difference method is proposed. Based on Fizeau interferometer, an experimental system for focal length measurements is set up to verify the principle. Based on the point diffraction interferometer, an experimental system for radius of curvature measurements is proposed to verify the proposed method. With the focal length testing system, both the positive and negative lens experimental results indicate that the measurement accuracy is less than 0.16%under normal experimental environment. With the radius of curvature testing system, the radius of curvature of spherical mirrors and the surface figure can be measured in a higher precision simultaneously. The experimental results indicate that the measurement accuracy is in the order of 10-4 .

  7. Radius of curvature measurement based on wavefront difference method by the point diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Yang, Zhongming; Gao, Zhishan; Yuan, Qun; Ye, Jingfei; Li, Minjue

    2014-05-01

    A method for measuring the radius of curvature with a pinhole point diffraction interferometer (PDI) is proposed. Using the wavefront difference method and the Gaussian imaging equation, the longitudinal displacement of the converging rays passing through a standard plane-parallel-plate sample in PDI interference cavity is determined. Based on this longitudinal displacement, a precise formula for radius of curvature calculation is deduced. An experimental system for radius of curvature measurements is set up to verify the principle. With this testing system, the radius of curvature of spherical mirrors and the surface figure can be measured in a higher precision simultaneously. Some sources of uncertainty in measurement are discussed based on detailed error analysis. The experimental results indicate that the measurement accuracy ΔR/R0 is in the order of 10-4.

  8. A formula for the high frequency longitudinal impedance of a tube with smoothly varying radius

    SciTech Connect

    Warnock, R.L.

    1993-04-01

    A formula for the longitudinal coupling impedance at frequencies above or below the tube cut-off is derived. The round tube is infinite in length, and has an arbitrary, smooth variation of radius over a finite interval.

  9. Reynolds Number Effects on Leading Edge Radius Variations of a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.; Owens, L. R.

    2001-01-01

    A computational study focused on leading-edge radius effects and associated Reynolds number sensitivity for a High Speed Civil Transport configuration at transonic conditions was conducted as part of NASA's High Speed Research Program. The primary purposes were to assess the capabilities of computational fluid dynamics to predict Reynolds number effects for a range of leading-edge radius distributions on a second-generation supersonic transport configuration, and to evaluate the potential performance benefits of each at the transonic cruise condition. Five leading-edge radius distributions are described, and the potential performance benefit including the Reynolds number sensitivity for each is presented. Computational results for two leading-edge radius distributions are compared with experimental results acquired in the National Transonic Facility over a broad Reynolds number range.

  10. Ionic Radius: Its Development and Use in the Teaching of Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Lewis, J. I; Waddling, R. E. L.

    1986-01-01

    The topic of ionic radius is generally given scant treatment in modern textbooks. Therefore, this article reviews some historical work and illustrates some of the applications of ionic radii in the teaching of inorganic chemistry. (JN)

  11. Design of roundness measurement model with multi-systematic error for cylindrical components with large radius

    NASA Astrophysics Data System (ADS)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Tang, Yangchao

    2016-02-01

    The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 μm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius.

  12. Design of roundness measurement model with multi-systematic error for cylindrical components with large radius.

    PubMed

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Tang, Yangchao

    2016-02-01

    The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 μm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius. PMID:26931894

  13. 21 CFR 886.1430 - Ophthalmic contact lens radius measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... an AC-powered device that is a microscope and dial gauge intended to measure the radius of a contact... notification procedures in subpart E of part 807 of this chapter, subject to the limitations in § 886.9....

  14. 21 CFR 886.1430 - Ophthalmic contact lens radius measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... an AC-powered device that is a microscope and dial gauge intended to measure the radius of a contact... notification procedures in subpart E of part 807 of this chapter, subject to the limitations in § 886.9....

  15. 21 CFR 886.1430 - Ophthalmic contact lens radius measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... an AC-powered device that is a microscope and dial gauge intended to measure the radius of a contact... notification procedures in subpart E of part 807 of this chapter, subject to the limitations in § 886.9....

  16. 21 CFR 886.1430 - Ophthalmic contact lens radius measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... an AC-powered device that is a microscope and dial gauge intended to measure the radius of a contact... notification procedures in subpart E of part 807 of this chapter, subject to the limitations in § 886.9....

  17. 21 CFR 886.1430 - Ophthalmic contact lens radius measuring device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... an AC-powered device that is a microscope and dial gauge intended to measure the radius of a contact... notification procedures in subpart E of part 807 of this chapter, subject to the limitations in § 886.9....

  18. Effective charge and effective radius of water droplet in dropwise cluster

    SciTech Connect

    Shavlov, A. V.; Romanyuk, S. N.; Dzhumandzhi, V. A.

    2013-02-15

    A particle with large electric charge Z (Z Much-Greater-Than 1) and radius R{sub 0} inserted into plasma is surrounded by a plasma shell, which is stable to weak and short-term external exposures. As a result, during experiments the particle can reveal an effective charge Z* lower than the true one (Z*{<=} Z), and an effective radius R* larger than the true one (R*{>=} R{sub 0}). The effective electric charge and the effective radius of a water droplet in a dropwise cluster have been calculated using the Poisson-Boltzmann equation. It has been recognized that these parameters are not the function of a droplet's true charge, but are the function of a droplet's true size and the Debye's radius of the plasma. Experimental data on the droplet properties in a dropwise cluster have been explained.

  19. Method for Determining the Radius Vector for a Planet from Two Observations of Position

    ERIC Educational Resources Information Center

    Gainer, Michael Kizinski

    1977-01-01

    Presents a method for determining the approximate radius vector of a planet or asteroid from two closely separated observation positions, using mathematics suitable for lower division college students. (MLH)

  20. Radius construction and structure in the orb-web of Zilla diodia (Araneidae).

    PubMed

    Zschokke, S

    2000-10-01

    In orb-webs, the tension of the sticky spiral produces a centripetal force on the radii, resulting in an increase in tension along each radius from the centre of the web to the periphery. Zilla diodia (Walckenaer, 1802) atypical of araneids, was found to adapt the structure of its radii to this tension gradient by building radii that are double stranded at the periphery of the web and single stranded near the centre. Furthermore, the proportion of each radius that is doubled was found to be larger in the upper part of the web - where the overall tensions in the radii are known to be higher than in the lower part of the web. suggesting that the spider adjusts the proportion of each radius that is doubled to the overall tension in the radius. PMID:11138801

  1. Open-grown crown radius of eleven bottomland hardwood species: Prediction and use in assessing stocking

    SciTech Connect

    Goelz, J.C.G.

    1996-08-01

    Equations were prepared to predict crown radius for eleven species of open-grown bottomland hardwood trees. Crown radius was predicted as a function of diameter at breast height (dbh) and as a function of dbh, total height, and crown ratio. Equations were prepared for individual species and species groups. Pecan has the largest crowns over a broad range of dbh. Eastern cottonwood has the smallest crowns for most levels of dbh. Sweetgum has relatively small crowns for trees of small dbh, but crown radius is comparable to most species at the largest dbh. The crown radius predictions may be used to calculate crown competition factor. B-lines of stocking may be calculated that represent a stand of one species as well as a mixed-species stand of any particular species proportion.

  2. Radiation Power Affected by Current and Wall Radius in Water Cooled Vortex Wall-stabilized Arc

    NASA Astrophysics Data System (ADS)

    Iwao, Toru; Nakamura, Takaya; Yanagi, Kentaro; Yamamoto, Shinji

    2015-11-01

    The arc lighting to obtain the environment to evacuate, save the life, keep the safety and be comfortable are focus on. The lack of radiation intensity and color rendering is problem because of inappropriate energy balance. Some researchers have researched the arc lamp mixed with metal vapor for improvement of color rendering spectrum. The metal vapor can emit the high intense radiation. In addition, the radiation is derived from the high temperature medium. Because the arc temperature can be controlled by current and arc radius, the radiation can be controlled by the current and arc radius. This research elucidates the radiation power affected by the current and wall radius in wall-stabilized arc of water-cooled vortex type. As a result, the radiation power increases with increasing the square of current / square of wall radius because of the temperature distribution which is derived from the current density at the simulation.

  3. Radius of Curvature of the Cornea--An Experiment for the Life-Science Physics Lab

    ERIC Educational Resources Information Center

    MacLatchy, C. S.

    1978-01-01

    Presents a quantitative laboratory experiment in geometrical optics. It involves the student in the measurement of the radius of curvature of the cornea and is based on an old method devised by Kohlrausch in 1839. (Author/GA)

  4. Reverberation measurements of the inner radius of the dust torus in 17 Seyfert galaxies

    SciTech Connect

    Koshida, Shintaro; Minezaki, Takeo; Yoshii, Yuzuru; Sakata, Yu; Sugawara, Shota; Kobayashi, Yukiyasu; Suganuma, Masahiro; Enya, Keigo; Tomita, Hiroyuki; Aoki, Tsutomu; Peterson, Bruce A. E-mail: minezaki@ioa.s.u-tokyo.ac.jp

    2014-06-20

    We present the results of a dust reverberation survey for 17 nearby Seyfert 1 galaxies, which provides the largest homogeneous data collection for the radius of the innermost dust torus. A delayed response of the K-band light curve after the V-band light curve was found for all targets, and 49 measurements of lag times between the flux variation of the dust emission in the K band and that of the optical continuum emission in the V band were obtained by the cross-correlation function analysis and also by an alternative method for estimating the maximum likelihood lag. The lag times strongly correlated with the optical luminosity in the luminosity range of M{sub V} = –16 to –22 mag, and the regression analysis was performed to obtain the correlation log Δt (days) = –2.11 – 0.2 M{sub V} assuming Δt∝L {sup 0.5}, which was theoretically expected. We discuss the possible origins of the intrinsic scatter of the dust lag-luminosity correlation, which was estimated to be approximately 0.13 dex, and we find that the difference of internal extinction and delayed response of changes in lag times to the flux variations could have partly contributed to intrinsic scatter. However, we could not detect any systematic change of the correlation with the subclass of the Seyfert type or the Eddington ratio. Finally, we compare the dust reverberation radius with the near-infrared interferometric radius of the dust torus and the reverberation radius of broad Balmer emission lines. The interferometric radius in the K band was found to be systematically larger than the dust reverberation radius in the same band by the about a factor of two, which could be interpreted by the difference between the flux-weighted radius and response-weighted radius of the innermost dust torus. The reverberation radius of the broad Balmer emission lines was found to be systematically smaller than the dust reverberation radius by about a factor of four to five, which strongly supports the unified

  5. Effect of tip radius on the incipient plasticity of chromium studied by nanoindentation

    SciTech Connect

    Wu, Dong; Morris, James R; Nieh, T. G.

    2015-01-01

    The onset of plasticity in Cr was investigated by nanoindentation using indenters with tip radii ranging from 60 to 759 nm. The stress for incipient plasticity was found to increase with decreasing tip radius. The cumulative pop-in probability on load could be described successfully by a combined model over the full range of tip radius, indicating that the incipient plasticity might be triggered either by the homogeneous nucleation of dislocation or by the activation of existing dislocations underneath the indenter.

  6. A high speed capacitance based system for gauging turbomachinery blading radius during the tip grind process

    NASA Astrophysics Data System (ADS)

    Sheard, A. G.; Westerman, G. C.; Killeen, B.; Fitzpatrick, M.

    1992-06-01

    A new method for measuring the rotor radius over individual blades is presented. This measurement method employs a capacitance based clearance measurement system that enables rotor radius to be measured over each blade while spinning fast enough to ensure that the blades are centrifugally loaded into their true working position. The results of an experimental program, employing a fully bladed compressor disk undertaken to ascertain system performance, are presented.

  7. Hubble Space Telescope secondary mirror vertex radius/conic constant test

    NASA Technical Reports Server (NTRS)

    Parks, Robert

    1991-01-01

    The Hubble Space Telescope backup secondary mirror was tested to determine the vertex radius and conic constant. Three completely independent tests (to the same procedure) were performed. Similar measurements in the three tests were highly consistent. The values obtained for the vertex radius and conic constant were the nominal design values within the error bars associated with the tests. Visual examination of the interferometric data did not show any measurable zonal figure error in the secondary mirror.

  8. Measurement of super large radius optics in the detection of gravitational waves

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Han, Sen; Wu, Quanying; Liang, Binming; Hou, Changlun

    2015-10-01

    The existence of Gravitational Wave (GW) is one of the greatest predictions of Einstein's relative theory. It has played an important part in the radiation theory, black hole theory, space explore and so on. The GW detection has been an important aspect of modern physics. With the research proceeding further, there are still a lot of challenges existing in the interferometer which is the key instrument in GW detection especially the measurement of the super large radius optics. To solve this problem, one solution , Fizeau interference, for measuring the super large radius has been presented. We change the tradition that curved surface must be measured with a standard curved surface. We use a flat mirror as a reference flat and it can lower both the cost and the test requirement a lot. We select a concave mirror with the radius of 1600mm as a sample. After the precision measurement and analysis, the experimental results show that the relative error of radius is better than 3%, and it can fully meet the requirements of the measurement of super large radius optics. When calculating each pixel with standard cylinder, the edges are not sharp because of diffraction or some other reasons, we detect the edge and calculate the diameter of the cylinder automatically, and it can improve the precision a lot. In general, this method is simple, fast, non-traumatic, and highly precision, it can also provide us a new though in the measurement of super large radius optics.

  9. Bilateral Distal Radius Fracture in Third Trimester of Pregnancy with Accelerated Union: A Rare Case Report

    PubMed Central

    TV, Ravikumar; P, Rahul; Samorekar, Bheemsingh

    2015-01-01

    Bilateral distal radius fracture is a rare entity. There is no literature reporting a bilateral distal radius fracture in pregnancy. Fracture healing is influenced by hormones. Hormonal changes of pregnancy will affect the healing of a fracture. A 28-year-old female at 34 wk of pregnancy sustained a bilateral distal radius fracture after a self fall. One side was managed conservatively and open reduction was done for the other side. Both fractures united at four weeks. This case is unique in three ways. First distal radius fractures commonly occur in elderly postmenopausal females due to oestrogen deficiency. In this case a distal radius fracture occurred following a self fall in third trimester of pregnancy – a hyperestrogenic state. Second the time taken for union was only four weeks signifying the hormonal effects on pregnancy on fracture healing. Third the occurrence of bilateral distal radius fracture itself is very rare in adults. In pregnancy there is a faster rate of fracture healing due to effects of oestrogen and increased cardiac output. Fractures in pregnancy require special attention. Surgical intervention should be done with a multidisciplinary approach. While management of fractures in pregnancy, effect of hormonal and physiological changes should be kept in mind. PMID:26023611

  10. Outcome Analysis of Fernandez Osteotomy in Malunited Extra-Articular Fractures of Distal Radius.

    PubMed

    Bhattacharyya, A; Kumar, S

    2016-07-01

    Deformity of wrist is very common after mal union of extra articular fractures over distal end of Radius. It causes limitation of movements too in different directions with or without pain. Deformity may be treated by different types of corrective osteotomy. We treated cases of this type of malunion with Fernandez osteotomy. This study is to observe the amount of correction and recovery of functional status in patients with malunited distal radius fractures treated with Fernandez osteotomy. This is a prospective study. We treated 10 cases of malunited radius with Fernandez osteotomy from February 2013 to October 2014 in the Departments of Orthopaedics, Medical College and Hospital, Kolkata, India. There were six males and four females with mean age of thirty years (with range from twenty to forty years. Indications for surgical intervention include pain and functional deficit severe enough to interfere significantly with daily activities. Radius is exposed through distal dorsal radial incision and radial osteotomy done two and half centimetre proximal to the wrist joint and after achieving correction; gap is filled with iliac bone graft and fixed with contoured distal radius T-plate. Follow up was for an average one year and three months. Results were excellent in one, satisfactory in four cases, good in four cases and bad in one case. Fernandez osteotomy is valuable option for correction of malunited distal radius fracture especially in young demanding patients. PMID:27612904

  11. The Effect of Pulse Length and Ejector Radius on Unsteady Ejector Performance

    NASA Technical Reports Server (NTRS)

    Wilson, Jack

    2005-01-01

    The thrust augmentation of a set of ejectors driven by a shrouded Hartmann-Sprenger tube has been measured at four different frequencies. Each frequency corresponded to a different length to diameter ratio of the pulse of air leaving the driver shroud. Two of the frequencies had length to diameter ratios below the formation number, and two above. The formation number is the value of length to diameter ratio below which the pulse converts to a vortex ring only, and above which the pulse becomes a vortex ring plus a trailing jet. A three level, three parameter Box-Behnken statistical design of experiment scheme was performed at each frequency, measuring the thrust augmentation generated by the appropriate ejectors from the set. The three parameters were ejector length, radius, and inlet radius. The results showed that there is an optimum ejector radius and length at each frequency. Using a polynomial fit to the data, the results were interpolated to different ejector radii and pulse length to diameter ratios. This showed that a peak in thrust augmentation occurs when the pulse length to diameter ratio equals the formation number, and that the optimum ejector radius is 0.87 times the sum of the vortex ring radius and the core radius.

  12. Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chao, Bo-Kai; Lin, Shih-Che; Nien, Li-Wei; Li, Jia-Han; Hsueh, Chun-Hway

    2015-12-01

    Corner radius is a concept to approximate the fabrication limitation due to the effective beam broadening at the corner in using electron-beam lithography. The purpose of the present study is to investigate the effects of corner radius on the electromagnetic field enhancement and resonance wavelength for three periodic polygon dimers of bowtie, twin square, and twin pentagon. The enhancement factor of surface-enhanced Raman spectroscopy due to the localized surface plasmon resonances in fabricated gold bowtie nanostructures was investigated using both Raman spectroscopy and finite-difference time-domain simulations. The simulated enhancement factor versus corner radius relation was in agreement with measurements and it could be fitted by a power-law relation. In addition, the resonance wavelength showed blue shift with the increasing corner radius because of the distribution of concentrated charges in a larger area. For different polygons, the corner radius instead of the tip angle is the dominant factor of the electromagnetic field enhancement because the surface charges tend to localize at the corner. Greater enhancements can be obtained by having both the smaller gap and sharper corner although the corner radius effect on intensity enhancement is less than the gap size effect.

  13. Assessment of penetration of dorsal screws after fixation of the distal radius using ultrasound: cadaveric study.

    PubMed

    Williams, D; Singh, J; Heidari, N; Ahmad, M; Noorani, A; Di Mascio, L

    2016-02-01

    Introduction Volar locking plates are used to treat unstable and displaced fractures of the distal radius. Potential advantages of stable anatomical reduction (eg early mobilisation) can be limited by penetration of dorsal screws, leading to synovitis and potential rupture of extensor tendons. Despite intraoperative imaging, penetration of dorsal screws continues to be a problem in volar plating of the distal radius. Ultrasound is a well recognised, readily available, diagnostic tool used to assess soft-tissue impingement by orthopaedic hardware. In this cadaveric study, we wished to ascertain the sensitivity and specificity of ultrasound for identification of protrusion of dorsal screws after volar plating of the distal radius. Methods Four adult, unpaired phenol-embalmed cadaveric distal radii were used. A VariAx™ Distal Radius Volar Locking Plate system (Stryker, Kalamazoo, MI, USA) was employed for instrumented fixation. A portable SIUI CTS 900 ultrasound machine (Providian Medical, Eastlake, OH, USA) was used to image the dorsal cortex to ascertain screw penetration. Results Specificity and sensitivity of ultrasound for detection of screw protrusion through the dorsal cortex was 100%. Conclusions Ultrasound was found to be a safe and accurate method for assessment of dorsal-screw penetration through the dorsal cortex of the radius after volar plating of the distal radius. It also aids diagnosis of associated tendon disorders (eg tenosynovitis) that might cause pain and limit wrist function. PMID:26829667

  14. Strong Near-Infrared Emission Interior to the Dust Sublimation Radius of Young Stellar Objects MWC 275 and AB Aurigae

    NASA Astrophysics Data System (ADS)

    Tannirkulam, A.; Monnier, J. D.; Millan-Gabet, R.; Harries, T. J.; Pedretti, E.; ten Brummelaar, T. A.; McAlister, H.; Turner, N.; Sturmann, J.; Sturmann, L.

    2008-04-01

    Using the longest optical-interferometeric baselines currently available, we have detected strong near-infrared (NIR) emission from inside the dust destruction radius of Herbig Ae stars MWC 275 and AB Aur. Our submilliarcsecond resolution observations unambiguously place the emission between the dust destruction radius and the magnetospheric corotation radius. We argue that this new component corresponds to hot gas inside the dust sublimation radius, confirming recent claims based on spectrally resolved interferometry and dust evaporation front modeling.

  15. Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    DOE PAGESBeta

    Horowitz, C. J.; Ahmed, Z.; Jen, C. -M.; Rakhman, A.; Souder, P. A.; Dalton, M. M.; Liyanage, N.; Paschke, K. D.; Saenboonruang, K.; Silwal, R.; et al

    2012-03-26

    We use distorted wave electron scattering calculations to extract the weak charge form factor FW(more » $$\\bar{q}$$), the weak charge radius RW, and the point neutron radius Rn, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer $$\\bar{q}$$ = 0.475 fm-1. We find FW($$\\bar{q}$$) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from FW($$\\bar{q}$$). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in RW from uncertainties in the surface thickness σ of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius Rn = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from RW. Here there is only a very small error (strange) from possible strange quark contributions. We find Rn to be slightly smaller than RW because of the nucleon's size. As a result, we find a neutron skin thickness of Rn-Rp = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where Rp is the point proton radius.« less

  16. The influence of clean air entrainment on the droplet effective radius of warm maritime convective clouds

    SciTech Connect

    Pontikis, C.A.; Hicks, E.M.

    1993-09-01

    The influence of clear air entrainment on the droplet effective radius of cloudy air parcels is investigated theoretically and experimentally by using data collected in 16 warm maritime tropical cumuli during the Joint Hawaii Warm Rain Project (1985). The theoretical study consists of calculations of the droplet spectrum, droplet effective radius, and liquid water content performed by an entraining cloud parcel model for different entrainment-mixing scenarios. The numerical simulation results are interpreted by means of an analytic equation of the droplet effective radius expressed as a function of both the liquid water content and the droplet concentration. In the experiment study, the behavior of the effective radius is examined at all scales as a function of the liquid water content, used as a dilution degree indicator. At a given cloud level, in the abscence of secondary droplet activation, the effective radius of the droplet spectrum of small-scale parcels (10-Hz data) is roughly independent of the liquid water content and appears unaffected by entrainment. In contrast, if secondary droplet activation occurs in diluted ascending cloud parcels, a wide range of effective radius values is observed for a given liquid water content as a result of the induced variation of the droplet concentration. Further, mean cloud pass effective radii increase with increasing mean pass liquid water contents and mean pass height above cloud base. The results limit the validity of the classical cloud effective radius parameterizations used in the radiative transfer calculations in climate models and some suggestions to improve these parameterizations are presented.

  17. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from {sub 55}Cs to {sub 80}Hg

    SciTech Connect

    Tatewaki, Hiroshi; Hatano, Yasuyo; Noro, Takeshi; Yamamoto, Shigeyoshi

    2015-06-15

    We consider, for atoms from {sub 55}Cs to {sub 80}Hg, the effective atomic radius (r{sub ear}), which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He{sub 2}. The values of r{sub ear} are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of r{sub ear} decreases from {sub 55}Cs to {sub 56}Ba and undergoes increases and decreases with rising nuclear charge from {sub 57}La to {sub 70}Y b. In fact r{sub ear} is understood as comprising two interlaced sequences; one consists of {sub 57}La, {sub 58}Ce, and {sub 64}Gd, which have electronic configuration (4f{sup n−1})(5d{sup 1})(6s{sup 2}), and the remaining atoms have configuration (4f{sup n})(6s{sup 2}). The sphere defined by r{sub ear} contains 85%–90% of the 6s electrons. From {sub 71}Lu to {sub 80}Hg the radius r{sub ear} also involves two sequences, corresponding to the two configurations 5d{sup n+1}6s{sup 1} and 5d{sup n}6s{sup 2}. The radius r{sub ear} according to the present methodology is considerably larger than r{sub vdW} obtained by other investigators, some of who have found values of r{sub vdW} close to .

  18. Measuring the Solar Radius from Space during the 2012 Venus Transit

    NASA Astrophysics Data System (ADS)

    Emilio, M.; Couvidat, S.; Bush, R. I.; Kuhn, J. R.; Scholl, I. F.

    2015-01-01

    We report in this work the determination of the solar radius from observations by the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory during the 2012 June Venus transit of the Sun. Two different methods were utilized to determine the solar radius using images of Sun taken by the HMI instrument. The first technique fit the measured trajectory of Venus in front of the Sun for seven wavelengths across the Fe I absorption line at 6173 Å. The solar radius determined from this method varies with the measurement wavelength, reflecting the variation in the height of line formation. The second method measured the area of the Sun obscured by Venus to determine the transit duration from which the solar radius was derived. This analysis focused on measurements taken in the continuum wing of the line, and applied a correction for the instrumental point spread function (PSF) of the HMI images. Measurements taken in the continuum wing of the 6173 Å line, resulted in a derived solar radius at 1 AU of 959.''57 ± 0.''02 (695, 946 ± 15 km). The AIA instrument observed the Venus transit at ultraviolet wavelengths. Using the solar disk obscuration technique, similar to that applied to the HMI images, analysis of the AIA data resulted in values of R ⊙ = 963.''04 ± 0.''03 at 1600 Å and R ⊙ = 961.''76 ± 0.''03 at 1700 Å.

  19. Space Inside a Liquid Sphere Transforms into De Sitter Space by Hilbert Radius

    NASA Astrophysics Data System (ADS)

    Rabounski, Dmitri; Borissova, Larissa

    2010-04-01

    Consider space inside a sphere of incompressible liquid, and space surrounding a mass-point. Metrics of the spaces were deduced in 1916 by Karl Schwarzschild. 1) Our calculation shows that a liquid sphere can be in the state of gravitational collapse (g00 = 0) only if its mass and radius are close to those of the Universe (M = 8.7x10^55 g, a = 1.3x10^28 cm). However if the same mass is presented as a mass-point, the radius of collapse rg (Hilbert radius) is many orders lesser: g00 = 0 realizes in a mass-point's space by other conditions. 2) We considered a liquid sphere whose radius meets, formally, the Hilbert radius of a mass-point bearing the same mass: a = rg, however the liquid sphere is not a collapser (see above). We show that in this case the metric of the liquid sphere's internal space can be represented as de Sitter's space metric, wherein λ = 3/a^2 > 0: physical vacuum (due to the λ-term) is the same as the field of an ideal liquid where ρ0 < 0 and p = -ρ0 c^2 > 0 (the mirror world liquid). The gravitational redshift inside the sphere is produced by the non-Newtonian force of repulsion (which is due to the λ-term, λ = 3/a^2 > 0); it is also calculated.

  20. MEASURING THE SOLAR RADIUS FROM SPACE DURING THE 2012 VENUS TRANSIT

    SciTech Connect

    Emilio, M.; Couvidat, S.; Bush, R. I.; Kuhn, J. R.; Scholl, I. F. E-mail: kuhn@ifa.hawaii.edu E-mail: couvidat@stanford.edu

    2015-01-01

    We report in this work the determination of the solar radius from observations by the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory during the 2012 June Venus transit of the Sun. Two different methods were utilized to determine the solar radius using images of Sun taken by the HMI instrument. The first technique fit the measured trajectory of Venus in front of the Sun for seven wavelengths across the Fe I absorption line at 6173 Å. The solar radius determined from this method varies with the measurement wavelength, reflecting the variation in the height of line formation. The second method measured the area of the Sun obscured by Venus to determine the transit duration from which the solar radius was derived. This analysis focused on measurements taken in the continuum wing of the line, and applied a correction for the instrumental point spread function (PSF) of the HMI images. Measurements taken in the continuum wing of the 6173 Å line, resulted in a derived solar radius at 1 AU of 959.''57 ± 0.''02 (695, 946 ± 15 km). The AIA instrument observed the Venus transit at ultraviolet wavelengths. Using the solar disk obscuration technique, similar to that applied to the HMI images, analysis of the AIA data resulted in values of R {sub ☉} = 963.''04 ± 0.''03 at 1600 Å and R {sub ☉} = 961.''76 ± 0.''03 at 1700 Å.

  1. Two peg spade plate for distal radius fractures: A novel technique

    PubMed Central

    Hardikar, Sharad M; Prakash, Sreenivas; Hardikar, Madan S; Kumar, Rohit

    2015-01-01

    Background: The management of distal radius fractures raises considerable debate among orthopedic surgeons. The amount of axial shortening of the radius correlates with the functional disability after the fracture. Furthermore, articular incongruity has been correlated with the development of arthritis at the radiocarpal joint. We used two peg volar spade plate to provide a fixed angle subchondral support in comminuted distal radius fractures with early mobilization of the joint. Materials and Methods: Forty patients (26 males and 14 females) from a period between January 2009 and December 2011 were treated with two peg volar spade plate fixation for distal radius fracture after obtaining reduction using a mini external fixator. Patients were evaluated using the demerit point system of Gartland and Werley and Sarmiento modification of Lindstrom criteria at final followup of 24 months. Results: The average age was 43.55 years (range 23-57 years). Excellent to good results were seen in 85% (n = 34) and in all patients when rated according to the demerit point system of Gartland and Werley and Sarmiento modification of Lindstrom criteria, respectively. Complications observed were wrist stiffness in 5% (n = 2) and reflex sympathetic dystrophy in 2.5% (n = 1). Conclusions: The two peg volar spade plate provides a stable subchondral support in comminuted intraarticular fractures and maintains reduction in osteoporotic fractures of the distal radius. Early mobilization with this implant helps in restoring wrist motion and to prevent development of wrist stiffness. PMID:26538760

  2. Effects of changes in convective efficiency on the solar radius and luminosity

    NASA Technical Reports Server (NTRS)

    Sweigart, A. V.

    1981-01-01

    A sequence of solar models has been constructed in order to investigate the sensitivity of the solar radius and luminosity to small changes in the ratio alpha of the mixing length lambda to the pressure-scale height Hp throughout the solar convective envelope. The basic procedure for determining this sensitivity was to impose a perturbation in alpha within the convective envelope and then to follow the resulting changes in the solar radius delta R and luminosity delta L for the next 10 to the 6th power yrs. These calculations gave the following results. (1) A perturbation in alpha produces immediate changes in the solar radius and luminosity. Initially delta L and delta alpha are related by delta L/L = 0.30 delta alpha/alpha. (2) The value of the ratio w = delta log R/delta log L is strongly time dependent. Its value just after the perturbation in alpha is 6.5 x 10 to the minus 4th power. (3) The ratio H = (delta log L) d delta log R/dt is much less time dependent and is a more suitable means for relating the changes in the solar radius and luminosity. (4) Both of these ratios imply that for any reasonable change in the solar luminosity the corresponding change in the solar radius is negligible.

  3. High precision measurement of the proton charge radius: The PRad experiment

    SciTech Connect

    Meziane, Mehdi

    2013-11-01

    The recent high precision measurements of the proton charge radius performed at PSI from muonic hydrogen Lamb shift puzzled the hadronic physics community. A value of 0.8418 {+-} 0.0007 fm was extracted which is 7{sigma} smaller than the previous determinations obtained from electron-proton scattering experiments and based on precision spectroscopy of electronic hydrogen. An additional extraction of the proton charge radius from electron scattering at Mainz is also in good agreement with these "electronic" determinations. An independent measurement of the proton charge radius from unpolarized elastic ep scattering using a magnetic spectrometer free method was proposed and fully approved at Jefferson Laboratory in June 2012. This novel technique uses the high precision calorimeter HyCal and a windowless hydrogen gas target which makes possible the extraction of the charge radius at very forward angles and thus very low momentum transfer Q{sup 2} up to 10{sup -4} (GeV/c){sup 2} with an unprecedented sub-percent precision for this type of experiment. In this paper, after a review of the recent progress on the proton charge radius extraction and the new high precision experiment PRad will be presented.

  4. Formula for the rms blur circle radius of Wolter telescope based on aberration theory

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Saha, Timo T.

    1990-01-01

    A formula for the rms blur circle for Wolter telescopes has been derived using the transverse ray aberration expressions of Saha (1985), Saha (1984), and Saha (1986). The resulting formula for the rms blur circle radius over an image plane and a formula for the surface of best focus based on third-, fifth-, and seventh-order aberration theory predict results in good agreement with exact ray tracing. It has also been shown that one of the two terms in the empirical formula of VanSpeybroeck and Chase (1972), for the rms blur circle radius of a Wolter I telescope can be justified by the aberration theory results. Numerical results are given comparing the rms blur radius and the surface of best focus vs the half-field angle computed by skew ray tracing and from analytical formulas for grazing incidence Wolter I-II telescopes and a normal incidence Cassegrain telescope.

  5. The binary Feige 24 - The mass, radius, and gravitational redshift of the DA white dwarf

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Shipman, Harry L.; Thorstensen, John R.; Thejll, Peter

    1991-01-01

    Observations are reported which refine the binary ephemeris of the Feige 24 system, which contains a peculiar hot DA white dwarf and an M dwarf with an atmosphere illuminated by extreme ultraviolet radiation from the white dwarf. With the new ephemeris and a set of IUE high-dispersion spectra, showing phase-dependent redshifted C IV, N V, and Si IV resonance lines, the orbital velocity, and hence the mass (0.54 + or - 0.20 solar masses), and the gravitational redshift of the white dwarf (14.1 + or - 5.2 km/s) are determined independently. It is shown that the measured Einstein redshift is consistent with an estimated radius for the white dwarf obtained from a model atmosphere solid angle and a parallax measurement. This radius is twice the Hamada-Salpeter radius for the given mass and offers a prospect to investigate the presence of a massive hydrogen envelope in that white dwarf star.

  6. Chemically etched modulation in wire radius for wire array Z-pinch perturbation studies

    SciTech Connect

    Jones, B.; Deeney, C.; McKenney, J.L.; Garrity, J.E.; Lobley, D.K.; Martin, K.L.; Griego, A.E.; Ramacciotti, J.P.; Bland, S.N.; Lebedev, S.V.; Bott, S.C.; Ampleford, D.J.; Palmer, J.B.A.; Rapley, J.; Hall, G.

    2004-11-01

    A technique for manufacturing wires with imposed modulation in radius with axial wavelengths as short as 1 mm is presented. Extruded aluminum 5056 with 15 {mu}m diameter was masked and chemically etched to reduce the radius by {approx}20% in selected regions. Characterized by scanning electron microscopy, the modulation in radius is a step function with a {approx}10 {mu}m wide conical transition between thick and thin segments, with some pitting in etched regions. Techniques for mounting and aligning these wires in arrays for fast z-pinch experiments will be discussed. Axially mass-modulated wire arrays of this type will allow the study of seeded Rayleigh-Taylor instabilities in z pinches, corona formation, wire initiation with varying current density in the wire core, and correlation of perturbations between adjacent wires. This tool will support magnetohydrodynamics code validation in complex three-dimensional geometries, and perhaps x-ray pulse shaping.

  7. A modified radius fractal dimension for capturing spatial complexity of a polycentric city

    NASA Astrophysics Data System (ADS)

    Lan, Tian; Zhang, Hong; Wu, Xun; Cao, Weiwei; He, Jing

    2015-12-01

    As one of the most important indexes for describing spatial complexity of urban road networks, radius fractal dimension has been proved to be useful in single-central cities. The method needs to choose a traffic hub as the center of measurement, but if the city has more than one traffic center, it will be difficult to choose a proper center and portray spatial complexity of the whole road network. The modified method proposed in this paper regards all the nodes of a network as centers of measurement and considers the whole effect of traffic centers in a polycentric city, so the modified radius fractal dimension describes the spatial complexity of a road network from an overall perspective and overcomes the problem that the traditional method relies on only one center. The experimental results show the modified radius fractal dimension is reliable, which can describe urban road networks in a new perspective.

  8. Bidirectional Dislocation of the Distal Radioulnar Joint After Distal Radius Fracture: Case Report.

    PubMed

    Arimitsu, Sayuri; Moritomo, Hisao

    2016-02-01

    We report a patient with bidirectional dislocation of the distal radioulnar joint after malunited distal radius fracture, in which the ulnar head dislocated dorsally during forearm pronation and palmarly during supination without manual compression of the ulnar head. The patient had chronic ulnar wrist pain and experienced a painful clunk during forearm rotation. The distal radioulnar joint ballottement test was positive in both the dorsal and palmar directions. Her distal radius was malunited with a 20° dorsal angulation and 18° pronation deformity. A corrective osteotomy of the radius with open repair of the triangular fibrocartilage complex foveal avulsion yielded success. At the 7-year follow-up, there was almost a normal range of wrist and forearm motion, 83% grip strength, no arthritis, and a stable distal radioulnar joint. PMID:26723478

  9. Reevaluating the Mass-Radius Relation for Low-mass, Main-sequence Stars

    NASA Astrophysics Data System (ADS)

    Feiden, Gregory A.; Chaboyer, Brian

    2012-09-01

    We examine the agreement between the observed and theoretical low-mass (<0.8 M ⊙) stellar main-sequence mass-radius relationship by comparing detached eclipsing binary (DEB) data with a new, large grid of stellar evolution models. The new grid allows for a realistic variation in the age and metallicity of the DEB population, characteristic of the local galactic neighborhood. Overall, our models do a reasonable job of reproducing the observational data. A large majority of the models match the observed stellar radii to within 4%, with a mean absolute error of 2.3%. These results represent a factor of two improvement compared to previous examinations of the low-mass mass-radius relationship. The improved agreement between models and observations brings the radius deviations within the limits imposed by potential starspot-related uncertainties for 92% of the stars in our DEB sample.

  10. Collisional damping of zonal flows due to finite Larmor radius effects

    NASA Astrophysics Data System (ADS)

    Ricci, Paolo; Rogers, B. N.; Dorland, W.

    2010-07-01

    The collisional damping of seeded E ×B zonal flows on the ion Larmor radius scale is studied using a gyrokinetic model. The focus is on flow damping due to finite Larmor radius effects, which cause a v∥/v anisotropy of the ion distribution function that is damped by ion-ion collisions. The gyrokinetic equations are solved in a slab geometry with no gradients or curvature, and a gyroaveraged Lorentz collision operator that conserves particle number, momentum, and energy is used. The solution of the gyrokinetic equations explores the dependence of the damping rate on the wavelength of the flows and the impact of the collisions on the ion distribution function. These numerical results can be used as a benchmark test during the implementation of finite Larmor radius effects in the collision operator of gyrokinetic codes.

  11. Efficiency Enhancement in a Tapered Free Electron Laser by Varying the Electron Beam Radius

    SciTech Connect

    Jiao, Yi; Wu, J.; Cai, Y.; Chao, A.W.; Fawley, W.M.; Frisch, J.; Huang, Z.; Nuhn, H.-D.; Pellegrini, C.; Reiche, S.; /PSI, Villigen

    2012-02-15

    Energy extraction efficiency of a free electron laser (FEL) can be increased when the undulator is tapered after the FEL saturation. By use of ray equation approximation to combine the one-dimensional FEL theory and optical guiding approach, an explicit physical model is built to provide insight to the mechanism of the electron-radiation coherent interaction with variable undulator parameters as well as electron beam radius. The contribution of variation in electron beam radius and related transverse effects are studied based on the presented model and numerical simulation. Taking a recent studied terawatt, 120 m long tapered FEL as an example, we demonstrate that a reasonably varied, instead of a constant, electron beam radius along the undulator helps to improve the optical guiding and thus the radiation output.

  12. [Disorders of the distal radioulnar joint following fractures of the distal end of the radius].

    PubMed

    Prommersberger, K-J; van Schoonhoven, J

    2008-03-01

    After a fracture of the distal radius, whether healed in an anatomic position or malunited, many patients complain about problems on the ulnar side of the wrist with pain and decreased range of forearm rotation. In addition many patients are unhappy with the unpleasant appearance of the wrist joint. The complaints are related to tears of the triangular fibrocartilaginous complex, instability, and/or incongruity of the distal radioulnar joint and degenerative changes. Malunion of the distal radius must be taken into account when discussing treatment options. The purpose of this paper is to describe a treatment algorithm with respect to the clinical symptoms, the pathology as well as the presence or absence of a deformity of the distal radius. PMID:18283425

  13. OSTEOTOMY OF THE DISTAL RADIUS USING A FIXED-ANGLE VOLAR PLATE

    PubMed Central

    de Oliveira, Ricardo Kaempf; Binz, Mário Arthur Rockenbach; Ferreira, Marco Tonding; Ruschel, Paulo Henrique; Serrano, Pedro Delgado; Praetzel, Rafael Pêgas

    2015-01-01

    Objective: Skewed consolidation of the distal radius, due to sequelae of fractures, may cause functional incapacity, thus leading such patients to present pain, loss of strength and diminished mobility. Based on the excellent results obtained from surgical treatment of unstable fractures of the distal radius through a volar approach and use of rigid fixation with a fixed-angle volar plate, we started to use the same method for osteotomy of the distal radius. Methods: A retrospective review was conducted, and 20 patients treated between February 2002 and October 2009 were found. The mean length of follow-up was 43.9 months (range: 12 to 96 months). The surgical indications were persistent pain, deformity and functional limitation subsequent to a dorsally displaced fracture. Results: The mean preoperative deformity was 27° of dorsal tilt of the distal radius, 87° of ulnar tilt, and 7.3 mm of shortening of the radius. All the osteotomies consolidated and the final mean volar tilt was 6.2°, with ulnar tilt of 69.3° and shortening of 1 mm. The mean mobility of the wrist increased by 19.9° (flexion) and by 24° (extension). Mean forearm supination increased by 23.5° and pronation by 21.7°. Grip strength increased from 13.4 to 34.5 pounds. Conclusion: Use of a fixed-angle volar plate for a volar approach towards osteotomy of the distal radius enables satisfactory correction of the deformities and eliminates the need for removal of the synthesis material caused by tendon complications PMID:27042618

  14. Anomaly Mediation and Radius Stabilization by a Boundary Constant Superpotential in a Warped Space

    SciTech Connect

    Maru, Nobuhito; Sakai, Norisuke; Uekusa, Nobuhiro

    2008-11-23

    We present a very simple model of the radius stabilization in a supersymmetric (SUSY) Randall-Sundrum model with a hypermultiplet and a boundary constant superpotential. A wide range of parameters where the anomaly mediation of SUSY breaking is dominated is found although there are many problematic bulk effects of SUSY breaking. A negative cosmological constant in the radius stabilized vacuum can be cancelled by a localized SUSY breaking. Making use of this localized SUSY breaking also solves the {mu}-problem by Giudice-Masiero mechanism.

  15. An Examination of Proton Charge Radius Extractions from e–p Scattering Data

    SciTech Connect

    Arrington, John

    2015-09-15

    A detailed examination of issues associated with proton radius extractions from elastic electron–proton scattering experiments is presented. Sources of systematic uncertainty and model dependence in the extractions are discussed, with an emphasis on how these may impact the proton charge and magnetic radii. A comparison of recent Mainz data to previous world data is presented, highlighting the difference in treatment of systematic uncertainties as well as tension between different data sets. We find several issues that suggest that larger uncertainties than previously quoted may be appropriate, but do not find any corrections which would resolve the proton radius puzzle.

  16. Proton radius of 14Be from measurement of charge-changing cross sections

    NASA Astrophysics Data System (ADS)

    Terashima, S.; Tanihata, I.; Kanungo, R.; Estradé, A.; Horiuchi, W.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Kimura, M.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Neff, T.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Suzuki, Y.; Takechi, M.; Tanaka, J.; Vargas, J.; Winfield, J. S.; Weick, H.

    2014-10-01

    The charge-changing cross sections of {}^{7,9-12,14}Be have been measured at 900AMeV on a carbon target. These cross sections are discussed both in terms of a geometrical and a Glauber model. From several different analyses of the cross sections, the proton distribution radius (proton radius) of {}^{14}Be is determined for the first time to be 2.41 ± 0.04 fm. A large difference in the proton and neutron radii is found. The proton radii are compared to the results of fermionic molecular dynamics (FMD) and antisymmetrized molecular dynamics (AMD) calculations.

  17. Effect of tip radius on the incipient plasticity of chromium studied by nanoindentation

    DOE PAGESBeta

    Wu, Dong; Morris, James R.; Nieh, T. G.

    2014-10-01

    The onset of plasticity in Cr was investigated by nanoindentation using indenters with tip radii ranging from 60 to 759 nm. The stress for incipient plasticity was found to increase with decreasing tip radius. We find that the cumulative pop-in probability on load could be described successfully by a combined model over the full range of tip radius, indicating that the incipient plasticity might be triggered either by the homogeneous nucleation of dislocation or by the activation of existing dislocations underneath the indenter.

  18. An Examination of Proton Charge Radius Extractions from e-p Scattering Data

    NASA Astrophysics Data System (ADS)

    Arrington, John

    2015-09-01

    A detailed examination of issues associated with proton radius extractions from elastic electron-proton scattering experiments is presented. Sources of systematic uncertainty and model dependence in the extractions are discussed, with an emphasis on how these may impact the proton charge and magnetic radii. A comparison of recent Mainz data to previous world data is presented, highlighting the difference in treatment of systematic uncertainties as well as tension between different data sets. We find several issues that suggest that larger uncertainties than previously quoted may be appropriate, but do not find any corrections which would resolve the proton radius puzzle.

  19. Sensitivity of hyperfine structure to nuclear radius and quark mass variation

    SciTech Connect

    Dinh, T. H.; Dunning, A.; Dzuba, V. A.; Flambaum, V. V.

    2009-05-15

    To search for the temporal variation in the fundamental constants, one needs to know dependence of atomic transition frequencies on these constants. We study the dependence of the hyperfine structure of atomic s levels on nuclear radius and, via radius, on quark masses. An analytical formula has been derived and tested by the numerical relativistic Hartree-Fock calculations for Rb, Cd{sup +}, Cs, Yb{sup +}, and Hg{sup +}. The results of this work allow the use of the results of past and future atomic clock experiments and quasar spectra measurements to put constraints on time variation in the quark masses.

  20. Longitudinal afterbody grooves and shoulder radiusing for low-speed bluff body drag reduction

    NASA Technical Reports Server (NTRS)

    Howard, F. G.; Quass, B. F.; Weinstein, L. M.; Bushnell, D. M.

    1981-01-01

    A new low-speed drag reduction approach is proposed which employs longitudinal surface V-shaped grooves cutting through the afterbody shoulder region. The test Reynolds number range was from 20,000 to 200,000 based on undisturbed free-stream flow and a body diameter of 6.08 cm. The V-grooves are shown to be most effective in reducing drag when the afterbody shoulder radius is zero. Reductions in drag of up to 33% have been measured for this condition. For large shoulder radius, the grooves are only effective at the lower Reynolds numbers of the test.

  1. Korean Type Distal Radius Anatomical Volar Plate System: A Preliminary Report

    PubMed Central

    Kim, Jeong Hwan; Kim, Jihyeung; Kim, Min Bom; Rhee, Seung Hwan; Gong, Hyun Sik; Lee, Young Ho

    2014-01-01

    Background Distal radius fracture is the most common fracture of the upper extremity, and approximately 60,000 distal radius fractures occur annually in Korea. Internal fixation with an anatomical volar locking plate is widely used in the treatment of unstable distal radius fractures. However, most of the currently used distal radius anatomical plate systems were designed based on the anatomical characteristics of Western populations. Recently, the Korean-type distal radius anatomical volar plate (K-DRAVP) system was designed and developed based on the anatomical characteristics of the distal radius of Koreans. The purpose of this study was to evaluate the preliminary results of the new K-DRAVP system, and to compare its radiologic and functional results with those of the other systems. Methods From March 2012 to October 2012, 46 patients with acute distal radius fractures who were treated with the K-DRAVP system at three hospitals were enrolled in this study. Standard posteroanterior and lateral radiographs were obtained to assess fracture healing, and three radiographic parameters (volar tilt, radial inclination, and radial length) were assessed to evaluate radiographic outcomes. The range of motion and grip strength, the Gartland and Werley scoring system, and the disabilities of the arm, shoulder and hand (DASH) questionnaire were used to assess clinical and functional outcomes. Results All radiologic parameters were restored to normal values, and maintained without any loosening or collapse until the time of final follow-up. Grip strength was restored to 84% of the value for the unaffected side. The mean range of motion of the wrist at final follow-up was restored to 77%-95% of the value for the unaffected side. According to the Gartland and Werley scoring system, there were 16 excellent, 26 good, and 4 fair results. The mean DASH score was 8.4 points. There were no complications after surgery. Conclusions The newly developed K-DRAVP system could be used to

  2. Technical tips for (dry) arthroscopic reduction and internal fixation of distal radius fractures.

    PubMed

    Del Piñal, Francisco

    2011-10-01

    Contrary to general belief, arthroscopic assisted reduction in distal radius fractures can be done in an expeditious manner and with minimal consumption of operating room resources. This article presents the steps for a pleasant arthroscopic experience in detail. The technique proposed combines the benefits of rigid fixation with volar locking plates (for the extra-articular component) and arthroscopic control of the reduction (for the articular component). It is important that the operation be carried out using the dry arthroscopic technique. However, arthroscopy is just an addition to conventional methods. Thorough knowledge of and facility with classic techniques of distal radius fracture treatment is essential for a good result. PMID:21971058

  3. A Non-Interfering Beam Radius Diagnostic Suitable For Induction Linacs

    SciTech Connect

    Nexsen, W E

    2005-06-07

    High current electron induction linacs operate in a parameter regime that allows the use of a diamagnetic loop (DML) to measure the beam magnetic moment. Under certain easily met conditions the beam radius can be derived from the moment measurement. The DML has the advantage over the present methods of measuring beam radius in that it is an electrical measurement with good time resolution that does not interfere with the beam transport. I describe experiments on the LLNL accelerators, ETA-II and FXR that give confidence in the use of a DML as a beam diagnostic.

  4. Epidemiology and changed surgical treatment methods for fractures of the distal radius

    PubMed Central

    2013-01-01

    Background and purpose The incidence of fractures of the distal radius may have changed over the last decade, and operative treatment has been commoner during that time. We investigated the incidence of fractures of the distal radius and changing trends in surgical treatment during the period 2004–2010. Patients and methods Registry data on 42,583 patients with a fracture of the distal radius from 2004 to 2010 were evaluated regarding diagnosis, age, sex, and surgical treatment. Results The crude incidence rate was 31 per 104 person-years with a bimodal distribution. After the age of 45 years, the incidence rate in women increased rapidly and leveled off first at a very high age. The incidence rate in postmenopausal women was lower than previously reported. In men, the incidence was low and it increased slowly until the age of 80 years, when it amounted to 31 per 104 person-years. The number of surgical procedures increased by more than 40% despite the fact that there was reduced incidence during the study period. In patients ≥ 18 years of age, the proportion of fractures treated with plating increased from 16% to 70% while the use of external fixation decreased by about the same amount. Interpretation The incidence rate of distal radius fractures in postmenopausal women appears to have decreased over the last few decades. There has been a shift in surgical treatment from external fixation to open reduction and plating. PMID:23594225

  5. Finite Larmor radius assisted velocity shear stabilization of the interchange instability in magnetized plasmas

    SciTech Connect

    Ng Sheungwah; Hassam, A.B.

    2005-06-15

    Finite Larmor radius (FLR) effects, originally shown to stabilize magnetized plasma interchange modes at short wavelength, are shown to assist velocity shear stabilization of long wavelength interchanges. It is shown that the FLR effects result in stabilization with roughly the same efficacy as the stabilization from dissipative (resistive and viscous) effects found earlier.

  6. The magnetic Rayleigh-Taylor instability and flute waves at the ion Larmor radius scales

    SciTech Connect

    Onishchenko, O. G.; Pokhotelov, O. A.; Stenflo, L.; Shukla, P. K.

    2011-02-15

    The theory of flute waves (with arbitrary spatial scales compared to the ion Larmor radius) driven by the Rayleigh-Taylor instability (RTI) is developed. Both the kinetic and hydrodynamic models are considered. In this way we have extended the previous analysis of RTI carried out in the long wavelength limit. It is found that complete finite ion Larmor radius stabilization is absent when the ion diamagnetic velocity attains the ion gravitation drift velocity. The hydrodynamic approach allowed us to deduce a new set of nonlinear equations for flute waves with arbitrary spatial scales. It is shown that the previously deduced equations are inadequate when the wavelength becomes of the order of the ion Larmor radius. In the linear limit a Fourier transform of these equations yields the dispersion relation which in the so-called Pade approximation corresponds to the results of the fully kinetic treatment. The development of such a theory gives us enough grounds for an adequate description of the RTI stabilization by the finite ion Larmor radius effect.

  7. Friction in metal-on-metal total disc arthroplasty: effect of ball radius.

    PubMed

    Moghadas, Parshia; Mahomed, Aziza; Hukins, David W L; Shepherd, Duncan E T

    2012-02-01

    Total disc arthroplasty (TDA) can be used to replace a degenerated intervertebral disc in the spine. There are different designs of prosthetic discs, but one of the most common is a ball-and-socket combination. Contact between the bearing surfaces can result in high frictional torque, which can then result in wear and implant loosening. This study was designed to determine the effects of ball radius on friction. Generic models of metal-on-metal TDA were manufactured with ball radii of 10, 12, 14 and 16 mm, with a radial clearance of 0.015 mm. A simulator was used to test each sample in flexion-extension, lateral bending and axial rotation at frequencies of 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 Hz under loads of 50, 600, 1200 and 2000 N, in new born calf serum. Frictional torque was measured and Stribeck curves were plotted to illustrate the lubrication regime in each case. It was observed that implants with a smaller ball radius showed lower friction and showed boundary and mixed lubrication regimes, whereas implants with larger ball radius showed boundary lubrication only. This study suggests designing metal-on-metal TDAs with ball radius of 10 or 12 mm, in order to reduce wear and implant loosening. PMID:22177670

  8. Prebending of a titanium elastic intramedullary nail in the treatment of distal radius fractures in children.

    PubMed

    Cai, Haoqi; Wang, Zhigang; Cai, Haiqing

    2014-01-01

    The aims of this study were to introduce a method to treat distal radius diaphyseal metaphyseal junction fractures by prebending an elastic intramedullary nail and to evaluate the factors influencing fracture apposition. Fifty-two consecutive patients (4 to 15 years old) with a distal radius diaphyseal metaphyseal junction fracture were included. The nail was inserted and advanced into the proximal radial fragment as normal. After bending the nail distally about 90° at the site predetermined to lie at the distal segment, the elastic intramedullary nail was advanced until the prebent part completely entered the marrow cavity. The fracture angular deformity was fully corrected in anterior-posterior and lateral views. The apposition rate was 90% to 100% in lateral view, >50% in anterior-posterior view. The operation time was 16.73 ± 6.253 minutes. The average time of fracture healing was 5 months (range, 4-7 months). During 12 to 19 months of follow-up, firm fracture healing and good remodeling were observed, and there was no impaired forearm rotation function or secondary fracture. Our study showed the treatment of distal radius diaphyseal metaphyseal junction fractures by prebent intramedullary nail could make up for the deficiency of Kirschner wires and steel plates and keep the fracture stable. Fracture type and the anatomical features of the distal radius were associated with fracture apposition. PMID:24833151

  9. Failure characteristics of the isolated distal radius in response to dynamic impact loading.

    PubMed

    Burkhart, Timothy A; Andrews, David M; Dunning, Cynthia E

    2012-06-01

    We examined the mechanical response of the distal radius pre-fracture and at fracture under dynamic impact loads. The distal third of eight human cadaveric radii were potted and placed in a custom designed pneumatic impact system. The distal intra-articular surface of the radius rested against a model scaphoid and lunate, simulating 45° of wrist extension. The scaphoid and lunate were attached to a load cell that in turn was attached to an impact plate. Impulsive impacts were applied at increasing energy levels, in 10 J increments, until fracture occurred. Three 45° stacked strain gauge rosettes were affixed along the length of the radius quantifying the bone strains. The mean (SD) fracture energy was 45.5 (16) J. The mean (SD) resultant impact reaction force (IRFr) at failure was 2,142 (1,229) N, resulting in high compressive strains at the distal (2,718 (1,698) µε) and proximal radius (3,664 (1,890) µε). We successfully reproduced consistent fracture patterns in response to dynamic loads. The fracture energy and forces reported here are lower and the strains are higher than those previously reported and can likely be attributed to the controlled, incremental, dynamic nature of the applied loads. PMID:22083972

  10. On the radius of spatial analyticity for the 1d Dirac-Klein-Gordon equations

    NASA Astrophysics Data System (ADS)

    Selberg, Sigmund; Tesfahun, Achenef

    2015-11-01

    We study the well-posedness of the Dirac-Klein-Gordon system in one space dimension with initial data that have an analytic extension to a strip around the real axis. It is proved that the radius of analyticity σ (t) of the solutions at time t cannot decay faster than 1 /t4 as | t | → ∞.

  11. Calculation of Neutral Beam Injected Torque and Its Effective Tangency Major Radius for EAST

    NASA Astrophysics Data System (ADS)

    Wu, Xingquan; Wan, Baonian; Lyu, Bo; Wu, Bin; Wang, Jinfang; Hu, Chundong

    2015-07-01

    Toroidal rotation has been recognized to have significant effects on the transport and magnetohydrodynamic (MHD) stability of tokamak plasmas. Neutral beam injection (NBI) is the most effective rotation generation method on current tokamak devices. To estimate the effective injected torque of the first neutral beam injection system on EAST, a simplified analytic method was derived. Calculated beam torque values were validated by those obtained from the NUBEAM code simulation. According to the results, for the collisional torque, the effective tangential radius for torque deposition is close to the beam tangency major radius. However, due to the dielectric property of tokamak plasma, the equivalent tangency major radius of the {{\\rightharpoonup}\\atop J}× {{\\rightharpoonup}\\atop B} torque is equal to the average major radius of the magnetic flux surface. The results will be useful for the research of toroidal momentum confinement and the experimental analysis of momentum transport related with NBI on EAST. supported by National Natural Science Foundation of China (Nos. 11247302, 11175211, 11175208), the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001 and 2013GB112004) and International Science and Technology Cooperation Program of China (No. 2014DFG61950)

  12. ROTATIONAL CORRECTIONS TO NEUTRON-STAR RADIUS MEASUREMENTS FROM THERMAL SPECTRA

    SciTech Connect

    Bauböck, Michi; Özel, Feryal; Psaltis, Dimitrios; Morsink, Sharon M.

    2015-01-20

    We calculate the rotational broadening in the observed thermal spectra of neutron stars spinning at moderate rates in the Hartle-Thorne approximation. These calculations accurately account for the effects of the second-order Doppler boosts as well as for the oblate shapes and the quadrupole moments of the neutron stars. We find that fitting the spectra and inferring the bolometric fluxes under the assumption that a star is not rotating causes an underestimate of the inferred fluxes and, thus, radii. The correction depends on the stellar spin, mass, radius, and the observer's inclination. For a 10 km, 1.4 M {sub ☉} neutron star spinning at 600 Hz, the rotational correction to the flux is ∼1%-4%, while for a 15 km neutron star with the same spin period, the correction ranges from 2% for pole-on sources to 12% for edge-on sources. We calculate the inclination-averaged corrections to inferred radii as a function of the neutron-star radius and mass and provide an empirical formula for the corrections. For realistic neutron-star parameters (1.4 M {sub ☉}, 12 km, 600 Hz), the stellar radius is on the order of 4% larger than the radius inferred under the assumption that the star is not spinning.

  13. Pearls and Pitfalls of the Volar Locking Plating for Distal Radius Fractures.

    PubMed

    Im, Jin-Hyung; Lee, Joo-Yup

    2016-06-01

    Volar locking plate fixation has been widely accepted method for the treatment of unstable distal radius fractures. Although the results of volar locking plate fixation are encouraging, it may cause implant-related complications such as flexor or extensor tendon injuries. In depth understanding of anatomy of the distal radius is mandatory in order to obtain adequate fixation of the fracture fragments and to avoid these complications. This article will review the anatomic characteristics of the distal radius because selecting proper implant and positioning of the plate is closely related to the volar surface anatomy of the distal radius. The number and the length of distal locking screws are also important to provide adequate fixation strength to maintain fracture fixation. We will discuss the pros and cons of the variable-angle locking plate, which was introduced in an effort to provide surgeons with more freedom for fixation. Finally, we will discuss about correcting radial length and volar tilt by using eccentric drill holes and distal locking first technique. PMID:27454625

  14. Study on warning radius of diffuse reflection laser warning based on fish-eye lens

    NASA Astrophysics Data System (ADS)

    Chen, Bolin; Zhang, Weian

    2013-09-01

    The diffuse reflection type of omni-directional laser warning based on fish-eye lens is becoming more and more important. As one of the key parameters of warning system, the warning radius should be put into investigation emphatically. The paper firstly theoretically analyzes the energy detected by single pixel of FPA detector in the system under complicated environment. Then the least energy detectable by each single pixel of the system is computed in terms of detector sensitivity, system noise, and minimum SNR. Subsequently, by comparison between the energy detected by single pixel and the least detectable energy, the warning radius is deduced from Torrance-Sparrow five-parameter semiempirical statistic model. Finally, a field experiment was developed to validate the computational results. It has been found that the warning radius has a close relationship with BRDF parameters of the irradiated target, propagation distance, angle of incidence, and detector sensitivity, etc. Furthermore, an important fact is shown that the experimental values of warning radius are always less than that of theoretical ones, due to such factors as the optical aberration of fish-eye lens, the transmissivity of narrowband filter, and the packing ratio of detector.

  15. Superhumps in Cataclysmic Binaries. XXV. qcrit, ɛ(q), and Mass-Radius

    NASA Astrophysics Data System (ADS)

    Patterson, Joseph; Kemp, Jonathan; Harvey, David A.; Fried, Robert E.; Rea, Robert; Monard, Berto; Cook, Lewis M.; Skillman, David R.; Vanmunster, Tonny; Bolt, Greg; Armstrong, Eve; McCormick, Jennie; Krajci, Thomas; Jensen, Lasse; Gunn, Jerry; Butterworth, Neil; Foote, Jerry; Bos, Marc; Masi, Gianluca; Warhurst, Paul

    2005-11-01

    We report on successes and failures in searching for positive superhumps in cataclysmic variables, and show the superhumping fraction as a function of orbital period. Basically, all short-period system do, all long-period systems do not, and a 50% success rate is found at Porb=3.1+/-0.2 hr. We can use this to measure the critical mass ratio for the creation of superhumps. With a mass-radius relation appropriate for cataclysmic variables, and an assumed mean white-dwarf mass of 0.75 Msolar, we find a mass ratio qcrit=0.35+/-0.02. We also report superhump studies of several stars of independently known mass ratio: OU Vir, XZ Eri, UU Aqr, and KV UMa (=XTE J1118+480). The latter two are of special interest, because they represent the most extreme mass ratios for which accurate superhump measurements have been made. We use these to improve the ɛ(q) calibration, by which we can infer the elusive q from the easy-to-measure ɛ (the fractional period excess of Psuperhump over Porb). This relation allows mass and radius estimates for the secondary star in any cataclysmic variable (CV) showing superhumps. The consequent mass-radius law shows an apparent discontinuity in radius near 0.2 Msolar, as predicted by the disrupted magnetic braking model for the 2.1-2.7 hr period gap. This is effectively the ``empirical main sequence'' for CV secondaries.

  16. Predictions of Crystal Structure Based on Radius Ratio: How Reliable Are They?

    ERIC Educational Resources Information Center

    Nathan, Lawrence C.

    1985-01-01

    Discussion of crystalline solids in undergraduate curricula often includes the use of radius ratio rules as a method for predicting which type of crystal structure is likely to be adopted by a given ionic compound. Examines this topic, establishing more definitive guidelines for the use and reliability of the rules. (JN)

  17. Extraction of the proton radius from electron-proton scattering data

    NASA Astrophysics Data System (ADS)

    Lee, Gabriel; Arrington, John R.; Hill, Richard J.

    2015-07-01

    We perform a new analysis of electron-proton scattering data to determine the proton electric and magnetic radii, enforcing model-independent constraints from form factor analyticity. A wide-ranging study of possible systematic effects is performed. An improved analysis is developed that rebins data taken at identical kinematic settings and avoids a scaling assumption of systematic errors with statistical errors. Employing standard models for radiative corrections, our improved analysis of the 2010 Mainz A1 Collaboration data yields a proton electric radius rE=0.895 (20 ) fm and magnetic radius rM=0.776 (38 ) fm . A similar analysis applied to world data (excluding Mainz data) implies rE=0.916 (24 ) fm and rM=0.914 (35 ) fm . The Mainz and world values of the charge radius are consistent, and a simple combination yields a value rE=0.904 (15 ) fm that is 4 σ larger than the CREMA Collaboration muonic hydrogen determination. The Mainz and world values of the magnetic radius differ by 2.7 σ , and a simple average yields rM=0.851 (26 ) fm . The circumstances under which published muonic hydrogen and electron scattering data could be reconciled are discussed, including a possible deficiency in the standard radiative correction model which requires further analysis.

  18. Stability Radius as a Method for Comparing the Dynamics of Neuromechanical Systems

    PubMed Central

    Bingham, Jeffrey T.; Ting, Lena H.

    2015-01-01

    Robust motor behaviors emerge from neuromechanical interactions that are nonlinear, have delays, and contain redundant neural and biomechanical components. For example, in standing balance a subject’s muscle activity (neural control) decreases as stance width (biomechanics) increases when responding to a lateral perturbation, yet the center-of-mass motion (behavior) is nearly identical regardless of stance width. We present stability radius, a technique from robust control theory, to overcome the limitations of classical stability analysis tools, such as gain margin, which are insufficient for predicting how concurrent changes in both biomechanics (plant) and neural control (controller) affect system behavior. We first present the theory and then an application to a neuromechanical model of frontal-plane standing balance with delayed feedback. We show that stability radius can quantify differences in the sensitivity of system behavior to parameter changes, and predict that narrowing stance width increases system robustness. We further demonstrate that selecting combinations of stance width (biomechanics) and feedback gains (neural control) that have the same stability radius produce similar center-of-mass behavior in simulation. Therefore, stability radius may provide a useful tool for understanding neuromechanical interactions in movement and could aid in the design of devices and therapies for improving motor function. PMID:23744699

  19. Estimate for the size of the compactification radius of a one extra dimension universe

    SciTech Connect

    Da Rosa, Felipe S; Pascoal, F; Oliveira, L F; Farina, C

    2008-01-01

    In this work, we use the Casimir effect to probe the existence of one extra dimension. We begin by evaluating the Casimir pressure between two plates in a M{sup 4} x S{sup 1} manifold, and then use an appropriate statistical analysis in order to compare the theoretical expression with a recent experimental data and set bounds for the compactification radius.

  20. Biomechanical Performance of Variable and Fixed Angle Locked Volar Plates for the Dorsally Comminuted Distal Radius

    PubMed Central

    Martineau, D; Shorez, J; Beran, C; Dass, A G; Atkinson, P

    2014-01-01

    Background The ideal treatment strategy for the dorsally comminuted distal radius fracture continues to evolve. Newer plate designs allow for variable axis screw placement while maintaining the advantages of locked technology. The purpose of this study is to compare the biomechanical properties of one variable axis plate with two traditional locked constructs. Methods Simulated fractures were created via a distal 1 cm dorsal wedge osteotomy in radius bone analogs. The analogs were of low stiffness and rigidity to create a worst-case strength condition for the subject radius plates. This fracture-gap model was fixated using one of three different locked volar distal radius plates: a variable axis plate (Stryker VariAx) or fixed axis (DePuy DVR, Smith & Nephew Peri-Loc) designs. The constructs were then tested at physiologic loading levels in axial compression and bending (dorsal and volar) modes. Construct stiffness was assessed by fracture gap motion during the different loading conditions. As a within-study control, intact bone analogs were similarly tested. Results All plated constructs were significantly less stiff than the intact control bone models in all loading modes (p<0.040). Amongst the plated constructs, the VariAx was stiffest axially (p=0.032) and the Peri-Loc was stiffest in bending (p<0.024). Conclusion In this analog bone fracture gap model, the variable axis locking technology was stiffer in axial compression than other plates, though less stiff in bending. PMID:25328471

  1. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    NASA Astrophysics Data System (ADS)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  2. How to Measure the Radius of the Earth on Your Beach Vacation.

    ERIC Educational Resources Information Center

    Levine, Zachary H.

    1993-01-01

    Describes a method for determining the distance to the horizon which leads to determining the radius of the Earth. The article answers two interesting science questions: (1) Can you see the state of Kansas from Pike's Peak in Colorado? and (2) Can you see two sunsets in one day on the Keys of Florida? (MVL)

  3. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  4. Wall-thickness and midwall-radius variations in ventricular mechanics.

    PubMed

    Chadwick, R S; Ohayon, J; Lewkowicz, M

    1989-05-01

    A fluid-fiber-collagen stress tensor is used to describe the rheology of the left ventricle of the heart. Linear theory is used to find the equilibrium solutions for the end-diastolic and end-systolic states of general axisymmetric shapes that are small perturbations of a thick-walled finite cylinder. The general problem can be studied by superposing the effects of variable midwall radius but constant wall thickness with those of variable wall thickness but constant midwall radius. A Fourier series representation is used to describe the midwall radius and thickness functions. Numerical calculations are performed to determine the deformed geometry and spatial distributions of tissue pressure, stresses, and fiber strains. The calculations proved to be highly accurate when compared to an analytical solution obtained for the special case of no fibers. The results show significant longitudinal differences when compared to results for the cylindrical geometry, with more sensitivity to variation in wall thickness than to variation in midwall radius. PMID:2717607

  5. Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms

    NASA Astrophysics Data System (ADS)

    Ji, Chen; Hernandez, Oscar Javier; Nevo Dinur, Nir; Bacca, Sonia; Barnea, Nir

    2016-03-01

    We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.

  6. Rotational Corrections to Neutron-star Radius Measurements from Thermal Spectra

    NASA Astrophysics Data System (ADS)

    Bauböck, Michi; Özel, Feryal; Psaltis, Dimitrios; Morsink, Sharon M.

    2015-01-01

    We calculate the rotational broadening in the observed thermal spectra of neutron stars spinning at moderate rates in the Hartle-Thorne approximation. These calculations accurately account for the effects of the second-order Doppler boosts as well as for the oblate shapes and the quadrupole moments of the neutron stars. We find that fitting the spectra and inferring the bolometric fluxes under the assumption that a star is not rotating causes an underestimate of the inferred fluxes and, thus, radii. The correction depends on the stellar spin, mass, radius, and the observer's inclination. For a 10 km, 1.4 M ⊙ neutron star spinning at 600 Hz, the rotational correction to the flux is ~1%-4%, while for a 15 km neutron star with the same spin period, the correction ranges from 2% for pole-on sources to 12% for edge-on sources. We calculate the inclination-averaged corrections to inferred radii as a function of the neutron-star radius and mass and provide an empirical formula for the corrections. For realistic neutron-star parameters (1.4 M ⊙, 12 km, 600 Hz), the stellar radius is on the order of 4% larger than the radius inferred under the assumption that the star is not spinning.

  7. Observations of a probable change in the solar radius between 1715 and 1979.

    PubMed

    Dunham, D W; Sofia, S; Fiala, A D; Herald, D; Muller, P M

    1980-12-12

    Solar eclipses were observed from locations near both edges of the paths of totality in England in 1715, in Australia in 1976, and in North America in 1979. Analysis of these observations shows that the solar radius has contracted by 0.34 +/- 0.2 arc second in 264 years. PMID:17810770

  8. Measuring a Kaluza-Klein radius smaller than the Planck length

    NASA Astrophysics Data System (ADS)

    Reifler, Frank; Morris, Randall

    2003-03-01

    Hestenes has shown that a bispinor field on a Minkowski space-time is equivalent to an orthonormal tetrad of one-forms together with a complex scalar field. More recently, the Dirac and Einstein equations were unified in a tetrad formulation of a Kaluza-Klein model which gives precisely the usual Dirac-Einstein Lagrangian. In this model, Dirac’s bispinor equation is obtained in the limit for which the radius of higher compact dimensions of the Kaluza-Klein manifold becomes vanishingly small compared with the Planck length. For a small but finite radius, the Kaluza-Klein model predicts the velocity splitting of single fermion wave packets. That is, the model predicts that a single fermion wave packet will split into two wave packets with slightly different group velocities. The observation of such wave packet splits would determine the size of the Kaluza-Klein radius. If wave packet splits were not observed in experiments with currently achievable accuracies, the Kaluza-Klein radius would be bounded by at most 10-25 times the Planck length.

  9. Self-reported disability following distal radius fractures: the influence of hand dominance.

    PubMed

    Beaulé, P E; Dervin, G F; Giachino, A A; Rody, K; Grabowski, J; Fazekas, A

    2000-05-01

    The purpose of this study was to record the spectrum of self-reported disability following distal radius fractures and to gauge for differences in hand dominance in the use of subjective outcome data. Items were generated through patient interviews, literature review, and peer consultation. Fifty-three items were evaluated by a group of 55 patients recovering from a fracture of the distal radius, which established the prevalence, mean severity score, and overall severity score (or impact) of each item as it related to physical function and social/emotional impact. Hand dominance, age, and gender were also recorded. The results confirm that many patients who sustain distal radius fractures experience substantial impairment across a spectrum of quality of life domains. Because patients who sustain a dominant wrist injury are likely to report greater functional impairment across a wider range of activities, they also possess a greater potential for improvement. The practical implication is that outcome studies for the treatment of distal radius fractures should take hand dominance into account. PMID:10811752

  10. Mercury's radius change estimates revisited using high incidence angle MESSENGER data

    NASA Astrophysics Data System (ADS)

    Di Achille, G.; Popa, C.; Massironi, M.; Ferrari, S.; Mazzotta Epifani, E.; Zusi, M.; Cremonese, G.; Palumbo, P.

    2012-04-01

    Estimates of Mercury's radius decrease obtained using the amount of strain recorded by tectonics on the planet range from 0.5 km to 2 km. These latter figures appear too low with respect to the radius contraction (up to 5-6 km) predicted by the most accredited studies based on thermo-mechanical evolution models. For this reason, it has been suggested that there may be hidden strain accommodated by features yet unseen on Mercury. Indeed, as it has been already cautioned by previous studies, the identification of tectonic features on Mercury might be largely biased by the lighting geometry of the used basemaps. This limitation might have affected the results of the extrapolations for estimating the radius change. In this study, we mapped tectonic features at the terminator thus using images acquired at high sun incidence angle (>50°) that represents the optimal condition for their observation. In fact, images with long shadows enhance the topography and texture of the surface and are ideal to detect tectonic structures. This favorable illumination conditions allowed us to infer reliable measurements of spatial distribution (i.e. frequency, orientation, and areal density) of tectonic features which can be used to estimate the average contractional strain and planetary radius decrease. We digitized tectonic structures within a region extending for an area of about 12 million sq. km (~16% of planet's surface). More than 1300 tectonic lineaments were identified and interpreted to be compressional features (i.e. lobate scarps, wrinkle ridges, and high relief ridges) with a total length of more than 12300 km. Assuming that the extensional strain is negligible within the area, the average contractional strain calculated for the survey area is ~0.21-0.28% (~0.24% for θ=30°). This strain, extrapolated to the entire surface, corresponds to a contraction in radius of about 2.5-3.4 km (~2.9 km for θ=30°). Interestingly, the values of contractional strain and radius decrease

  11. Functional limitation immediately after cast immobilization and closed reduction of distal radius fractures: preliminary report.

    PubMed

    Byl, N N; Kohlhase, W; Engel, G

    1999-01-01

    The majority of research on distal radius fractures consists of retrospective, descriptive studies of patients with unstable fractures requiring fixation. The purpose of this investigation was to report on impairments in flexibility, grip strength, and motor control and on the presence of swelling and atrophy immediately after cast immobilization of closed reductions of simple distal radius fractures. Sixteen adult subjects from Kaiser Permanente Medical Center, San Francisco, entered the study, and 13 completed it. At the initial evaluation, upper extremity ranges of motion, grip strength, forearm circumferences, two-point discrimination, and motor reaction times were measured on the uninvolved side. The same measurements were taken on the affected side within 48 hours after cast removal. All but one subject worked throughout the casting period. There were significant postcasting impairments in forearm rotation (40% deficit in pronation and supination); wrist flexion, extension, and radial and ulnar deviation (50% reduction in all motions); grip strength (-32 kg, or approximately 24% of the strength of the unaffected side); and forearm circumference (-1.1 cm) and wrist circumference (+1.5 cm). Patients complained of awkwardness of the involved hand. These measured impairments immediately after immobilization of simple radius fractures were greater than the reported impairments in patients after reduction of radius fractures with fixation 6 to 27 months after injury. To prevent long-term disability and recover flexibility, strength, and function, patients with simple distal radius fractures should be referred to a hand, occupational, or physical therapist for evaluation, education, and treatment after immobilization. Longitudinal studies are needed to quantify long-term functional recovery with regard to the type of fracture and the degree of impairment measured immediately after casting. PMID:10459528

  12. Three-dimensional tool radius compensation for multi-axis peripheral milling

    NASA Astrophysics Data System (ADS)

    Chen, Youdong; Wang, Tianmiao

    2013-05-01

    Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the case of tool size changing with tool wear in machining, a new NC program has to be recreated. A generic 3D tool radius compensation method for multi-axis peripheral milling in CNC systems is presented. The offset path is calculated by offsetting the tool path along the direction of the offset vector with a given distance. The offset vector is perpendicular to both the tangent vector of the tool path and the orientation vector of the tool axis relative to the workpiece. The orientation vector equations of the tool axis relative to the workpiece are obtained through homogeneous coordinate transformation matrix and forward kinematics of generalized kinematics model of multi-axis machine tools. To avoid cutting into the corner formed by the two adjacent tool paths, the coordinates of offset path at the intersection point have been calculated according to the transition type that is determined by the angle between the two tool path tangent vectors at the corner. Through the verification by the solid cutting simulation software VERICUT® with different tool radiuses on a table-tilting type five-axis machine tool, and by the real machining experiment of machining a soup spoon on a five-axis machine tool with the developed CNC system, the effectiveness of the proposed 3D tool radius compensation method is confirmed. The proposed compensation method can be suitable for all kinds of three- to five-axis machine tools as a general form.

  13. Adaptive evolution of a derived radius morphology in manakins (Aves, Pipridae) to support acrobatic display behavior.

    PubMed

    Friscia, Anthony; Sanin, Gloria D; Lindsay, Willow R; Day, Lainy B; Schlinger, Barney A; Tan, Josh; Fuxjager, Matthew J

    2016-06-01

    The morphology of the avian skeleton is often studied in the context of adaptations for powered flight. The effects of other evolutionary forces, such as sexual selection, on avian skeletal design are unclear, even though birds produce diverse behaviors that undoubtedly require a variety of osteological modifications. Here, we investigate this issue in a family of passerine birds called manakins (Pipridae), which have evolved physically unusual and elaborate courtship displays. We report that, in species within the genus Manacus, the shaft of the radius is heavily flattened and shows substantial solidification. Past work anecdotally notes this morphology and attributes it to the species' ability to hit their wings together above their heads to produce loud mechanical sonations. Our results show that this feature is unique to Manacus compared to the other species in our study, including a variety of taxa that produce other sonations through alternate wing mechanisms. At the same time, our data reveal striking similarities across species in total radius volume and solidification. Together, this suggests that supposedly adaptive alterations in radial morphology occur within a conserved framework of a set radius volume and solidness, which in turn is likely determined by natural selection. Further allometric analyses imply that the radius is less constrained by body size and the structural demands that underlie powered flight, compared to other forelimb bones that are mostly unmodified across taxa. These results are consistent with the idea that the radius is more susceptible to selective modification by sexual selection. Overall, this study provides some of the first insight into the osteological evolution of passerine birds, as well as the way in which opposing selective forces can shape skeletal design in these species. J. Morphol. 277:766-775, 2016. © 2016 Wiley Periodicals, Inc. PMID:27027525

  14. PICARD SOL mission, a ground-based facility for long-term solar radius measurement

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Corbard, T.; Morand, F.; Thuillier, G.; Hauchecorne, A.; Ikhlef, R.; Rouze, M.; Renaud, C.; Djafer, D.; Abbaki, S.; Assus, P.; Chauvineau, B.; Cissé, E. M.; Dalaudier, F.; D'Almeida, Eric; Fodil, M.; Laclare, F.; Lesueur, P.; Lin, M.; Marcovici, J. P.; Poiet, G.

    2012-09-01

    For the last thirty years, ground time series of the solar radius have shown different variations according to different instruments. The origin of these variations may be found in the observer, the instrument, the atmosphere and the Sun. These time series show inconsistencies and conflicting results, which likely originate from instrumental effects and/or atmospheric effects. A survey of the solar radius was initiated in 1975 by F. Laclare, at the Calern site of the Observatoire de la Cˆote d'Azur (OCA). PICARD is an investigation dedicated to the simultaneous measurements of the absolute total and spectral solar irradiance, the solar radius and solar shape, and to the Sun's interior probing by the helioseismology method. The PICARD mission aims to the study of the origin of the solar variability and to the study of the relations between the Sun and the Earth's climate by using modeling. These studies will be based on measurements carried out from orbit and from the ground. PICARD SOL is the ground segment of the PICARD mission to allow a comparison of the solar radius measured in space and on ground. PICARD SOL will enable to understand the influence of the atmosphere on the measured solar radius. The PICARD Sol instrumentation consists of: SODISM II, a replica of SODISM (SOlar Diameter Imager and Surface Mapper), a high resolution imaging telescope, and MISOLFA (Moniteur d'Images SOLaires Franco-Alǵerien), a seeing monitor. Additional instrumentation consists in a Sun photometer, which measures atmospheric aerosol properties, a pyranometer to measure the solar irradiance, a visible camera, and a weather station. PICARD SOL is operating since March 2011. First results from the PICARD SOL mission are briefly reported in this paper.

  15. Constraining the initial conditions of globular clusters using their radius distribution

    NASA Astrophysics Data System (ADS)

    Alexander, Poul E. R.; Gieles, Mark

    2013-05-01

    Studies of extragalactic globular clusters (GCs) have shown that the peak size of the GC radius distribution (RD) depends only weakly on galactic environment. We model RDs of GC populations using a simple prescription for a Hubble time of relaxation-driven evolution of cluster mass and radius. We consider a power-law cluster initial mass function (CIMF) with and without an exponential truncation, and focus in particular on a flat and a steep CIMF (power-law indices of 0 and -2, respectively). For the initial half-mass radii at birth, we adopt either Roche volume (RV) filling conditions (`filling', meaning that the ratio of half-mass to Jacobi radius is approximately rh/rJ ≃ 0.15) or strongly RV under-filling conditions (`under-filling', implying that initially rh/rJ ≪ 0.15). Assuming a constant orbital velocity about the galaxy centre, we find for a steep CIMF that the typical half-light radius scales with the galactocentric radius RG as R{^{1/3}_G}. This weak scaling is consistent with observations, but this scenario has the (well-known) problem that too many low-mass clusters survive. A flat CIMF with `filling' initial conditions results in the correct MF at old ages, but with too many large (massive) clusters at large RG. An `under-filling' GC population with a flat CIMF also results in the correct MF, and can also successfully reproduce the shape of the RD, with a peak size that is (almost) independent of RG. In this case, the peak size depends (almost) only on the peak mass of the GC MF. The (near) universality of the GC RD is therefore because of the (near) universality of the CIMF. There are some extended GCs in the outer halo of the Milky Way that cannot be explained by this model.

  16. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. I - Theory

    NASA Technical Reports Server (NTRS)

    Nakajima, Teruyuki; King, Michael D.

    1990-01-01

    A method is presented for determining the optical thickness and effective particle radius of stratiform cloud layers from reflected solar radiation measurements. A detailed study is presented which shows that the cloud optical thickness (tau c) and effective particle radius (r/e/) of water clouds can be determined solely from reflection function measurements at 0.75 micron and 2.16 microns, provided tau c is not less than 4 and r(e) is not less than 6 microns. For optically thin clouds, the retrieval becomes ambiguous, resulting in two possible solutions for the effective radius and optical thickness. Adding a third channel near 1.65 micron does not improve the situation noticeably, whereas the addition of a channel near 3.70 microns reduces the ambiguity in deriving the effective radius. The effective radius determined by the above procedure corresponds to the droplet radius at some optical depth within the cloud layer.

  17. Determination of the ^6He Nuclear Radius from the Total Reaction Cross Section of ^6He + ^9Be

    NASA Astrophysics Data System (ADS)

    Pires, K. C. C.; Appannababu, S.; Lichtenthäler, R.

    2016-05-01

    A new method to obtain the nuclear radius from low energies total reaction cross section measurements is presented. Elastic scattering angular distributions of ^6He on ^9Be at two energies, namely, E_{cm}= 9.72 and 12.78 MeV, were analysed previously and the total reaction cross sections obtained are used to assess the ^6He nuclear interaction radius. A comparison with the radius of the ^6He obtained at higher energies is presented.

  18. Radius and brightness temperature observations of Titan at centimeter wavelengths by the Very Large Array

    NASA Technical Reports Server (NTRS)

    Jaffe, W.; Caldwell, J.; Owen, T.

    1980-01-01

    Brightness and radius measurements of the surface of Titan at 6, 2, and 1.3 cm wavelengths obtained with the Very Large Array radio interferometer are presented. Combined results for the three wavelengths indicate that the radius is 2400 + or - 250 km, implying a density of 2.4 + or - 0.7 g/cu cm, and that the brightness temperature is 87 + or - 9 K. The surface temperature may be somewhat higher if the emissivity is less than unity. The new data do not permit a choice between an inversion model for the atmosphere of Titan that predicts a surface temperature of 78 K and a model with both a stratospheric temperature inversion and a modest greenhouse effect that would increase the surface temperature by 10-40 K.

  19. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  20. Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Connelly, Joseph

    2011-01-01

    The determination of radius of curvature (ROC) of optics typically uses either a phase measuring interferometer on an adjustable stage to determine the position of the ROC and the optics surface under test. Alternatively, a spherometer or a profilometer are used for this measurement. The difficulty of this approach is that for large optics, translation of the interferometer or optic under test is problematic because of the distance of translation required and the mass of the optic. Profilometry and spherometry are alternative techniques that can work, but require a profilometer or a measurement of subapertures of the optic. The proposed approach allows a measurement of the optic figure simultaneous with the full aperture radius of curvature.

  1. The core mass-radius relation for giants - A new test of stellar evolution theory

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Rappaport, S.; Lewis, W.

    1987-01-01

    It is demonstrated here that the measurable properties of systems containing degenerate dwarfs can be used as a direct test of the core mass-radius relation for moderate-mass giants if the final stages of the loss of the envelope of the progenitor giant occurred via stable critical lobe overflow. This relation directly probes the internal structure of stars at a relatively advanced evolutionary state and is only modestly influenced by adjustable parameters. The measured properties of six binary systems, including such diverse systems as Sirius and Procyon and two millisecond pulsars, are utilized to derive constraints on the empirical core mass-radius relation, and the constraints are compared to the theoretical relation. The possibility that the final stages of envelope ejection of the giant progenitor of Sirius B occurred via critical lobe overflow in historical times is considered.

  2. Analytical study of striated nozzle flow with small radius of curvature ratio throats

    NASA Technical Reports Server (NTRS)

    Norton, D. J.; White, R. E.

    1972-01-01

    An analytical method was developed which is capable of estimating the chamber and throat conditions in a nozzle with a low radius of curvature throat. The method was programmed using standard FORTRAN 4 language and includes chemical equilibrium calculation subprograms (modified NASA Lewis program CEC71) as an integral part. The method determines detailed and gross rocket characteristics in the presence of striated flows and gives detailed results for the motor chamber and throat plane with as many as 20 discrete zones. The method employs a simultaneous solution of the mass, momentum, and energy equations and allows propellant types, 0/F ratios, propellant distribution, nozzle geometry, and injection schemes to be varied so to predict spatial velocity, density, pressure, and other thermodynamic variable distributions in the chamber as well as the throat. Results for small radius of curvature have shown good comparison to experimental results. Both gaseous and liquid injection may be considered with frozen or equilibrium flow calculations.

  3. Estimation of snow temperature and mean crystal radius from remote multispectral passive microwave measurements

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1978-01-01

    Variation in crystal size and physical temperature of snowfield observations from space give large variations in the microwave brightness temperature. Since the brightness temperature is a function of wavelength, the microwave brightness temperature can be used to extract the snow temperature and mean crystal radius profiles. The Scanning Multichannel Microwave Radiometer (SMMR), to be launched on board the Nimbus-G and Seasat-A spacecraft, will make observations in wavelengths of 0.8, 1.4, 1.7, 2.8, and 4.6 cm. A statistical retrieval method was developed to determine the snowfield temperature profile and mean crystal size by using the scanning multifrequency microwave radiometer on board a spacecraft. The estimated errors for retrieval are approximately 1.5 K for temperature and 0.001 for crystal radius in the presence of 1 K rms noise for each SMMR channel.

  4. Two-dimensional positive column structure in a discharge tube with radius discontinuity

    SciTech Connect

    Zobnin, A. V. Usachev, A. D.; Petrov, O. F.; Fortov, V. E.

    2014-11-15

    The low-pressure (40 and 90 Pa) low-current (4 and 10 mA) direct current discharge in a tube with a sharp change of its radius is studied both numerically and experimentally. A fully self-consistent hybrid numerical model of a two-dimensional non-uniform positive column in neon is developed using a nonlocal approach. The model combines kinetic simulation of the electrons (under two-terms approach) and fluid description of the neon ions and permits to calculate the distribution of all plasma parameters in the direct current discharges in the cameras with cylindrical geometry and radius discontinuity. The simulation results are compared with the measured 585.3 nm neon spectral line absolute intensities and excited 1s{sub 3} metastable neon atom number densities. Non-local electron kinetics in the transition region and formation of standing strata are discussed.

  5. Proton Radius of 14Be from Measurement of Charge-Changing Cross Sections1

    NASA Astrophysics Data System (ADS)

    Terashima, S.; Tanihata, I.; Kanungo, R.; Estradé, A.; Horiuchi, W.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Kimura, M.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Neff, T.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Suzuki, Y.; Takeuchi, M.; Tanaka, J.; Vargas, J.; Winfield, J. S.; Weick, H.

    Charge-changing cross sections for 7,9-12,14Be have been measured at ˜900A MeV on a carbon target. These cross sections are discussed both in terms of a geometrical and a Glauber model. From several different analyses of the cross sections, the proton distribution radius (proton radius) of 14Be was determined for the first time to be 2.41 ± 0.04 fm. A large difference in the proton and neutron radii is found. The charge-changing cross sections and the proton distribution radii are compared to the results of fermionic molecular dynamics (FMD) and antisymmetrized molecular dynamics (AMD) under the Glauber model.

  6. The modulational instability in the extended Hasegawa-Mima equation with a finite Larmor radius

    SciTech Connect

    Gallagher, S.; Hnat, B.; Rowlands, G.; Connaughton, C.; Nazarenko, S.

    2012-12-15

    The effects of the finite Larmor radius on the generation of zonal flows by the four-wave modulational instability are investigated using an extended form of the Hasegawa-Mima equation. Growth rates of the zonal mode are quantified using analytical predictions from a four-mode truncated model, as well as from direct numerical simulation of the nonlinear extended Hasegawa-Mima equation. We not only consider purely zonal flows but also examine the generic oblique case and show that, for small Larmor radii, off-axis modes may become dominant. We find a key parameter M{sub {rho}} which characterises the behaviour of the system due to changes in the Larmor radius. We find that, similarly to previous results obtained by changing the driving wave amplitude, two separate dynamical regimes can be accessed. These correspond to oscillatory energy transfer between zonal flows and a driving wave and the fully saturated zonal flow.

  7. The modulational instability in the extended Hasegawa-Mima equation with a finite Larmor radius

    NASA Astrophysics Data System (ADS)

    Gallagher, S.; Hnat, B.; Connaughton, C.; Nazarenko, S.; Rowlands, G.

    2012-12-01

    The effects of the finite Larmor radius on the generation of zonal flows by the four-wave modulational instability are investigated using an extended form of the Hasegawa-Mima equation. Growth rates of the zonal mode are quantified using analytical predictions from a four-mode truncated model, as well as from direct numerical simulation of the nonlinear extended Hasegawa-Mima equation. We not only consider purely zonal flows but also examine the generic oblique case and show that, for small Larmor radii, off-axis modes may become dominant. We find a key parameter Mρ which characterises the behaviour of the system due to changes in the Larmor radius. We find that, similarly to previous results obtained by changing the driving wave amplitude, two separate dynamical regimes can be accessed. These correspond to oscillatory energy transfer between zonal flows and a driving wave and the fully saturated zonal flow.

  8. Limits on the effective quark radius from inclusive ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Behnke, O.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Boos, E. G.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Dementiev, R. K.; Devenish, R. C. E.; Dusini, S.; Foster, B.; Gach, G.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Golubkov, Yu. A.; Grzelak, G.; Guzik, M.; Gwenlan, C.; Hain, W.; Hlushchenko, O.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Januschek, F.; Jomhari, N. Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malka, J.; Mastroberardino, A.; Mohamad Idris, F.; Mohammad Nasir, N.; Myronenko, V.; Nagano, K.; Nobe, T.; Nowak, R. J.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N. S.; Polini, A.; Przybycień, M.; Roloff, P.; Ruspa, M.; Saxon, D. H.; Schioppa, M.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sukhonos, D.; Sztuk-Dambietz, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zotkin, D. S.

    2016-06-01

    The high-precision HERA data allows searches up to TeV scales for beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current ep scattering corresponding to a luminosity of around 1 fb-1 have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive ep data is presented; simultaneous fits of parton distribution functions together with contributions of "new physics" processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.43 ṡ10-16 cm.

  9. Defect association mediated ionic conductivity of rare earth doped nanoceria: Dependency on ionic radius

    NASA Astrophysics Data System (ADS)

    Anirban, Sk.; Sinha, A.; Bandyopadhyay, S.; Dutta, A.

    2016-05-01

    Rare earth doped nanoceria Ce0.9RE0.1O1.95 (RE = Pr, Nd, Eu and Gd) were prepared through citrate auto-ignition method. The single phase cubic fluorite structure with space group Fm3 ¯m of the compositions were confirmed from Rietveld analysis of XRD data. The particle size of the compositions were in the range 49.77 nm to 66.20 nm. An ionic radius dependent lattice parameter variation was found. The DC conductivity of each composition was evaluated using Random Barrier Model. The conductivity decreased and activation energy increased with increasing ionic radius from Gd to Pr doping due to the size mismatch with host ions and formation of stable defect associate. The formation of different defect associates and their correlation with ionic conductivity has been discussed.

  10. The effect of perturbations of convective energy transport on the luminosity and radius of the Sun

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Twigg, L. W.

    1982-01-01

    The response of solar models to perturbations of the efficiency of convective energy transport is studied for a number of cases. Such perturbations primarily effect the shallow superadiabatic layer of the convective envelope (at depth of approx. 1000 km below the photosphere). Independent of the details of the perturbation scheme, the resulting change in the solar radius is always very small compared to the change in luminosity. This appears to be true for any physical mechanism of solar variability which operates in the outer layers of the convection zone. Changes of the solar radius have been inferred from historical observations of solar eclipses. Considering the constraints on concurrent luminosity changes, this type of solar variability must be indicative of changes in the solar structure at substantial depths below the superadiabatic layer of the convective envelope.

  11. Estimating permeability using median pore-throat radius obtained from mercury intrusion porosimetry

    NASA Astrophysics Data System (ADS)

    Gao, Zhiye; Hu, Qinhong

    2013-04-01

    Mercury intrusion porosimetry (MIP) has been widely used to characterize the pore structure for various types of porous media. Several relationships between permeability and pore structure information (e.g., porosity and pore-size distribution) have been developed in the literature. This work is to introduce a new, and simpler, empirical equation to predict permeability by solely using the median pore-throat radius (r50), which is the pore-throat radius corresponding to 50% mercury saturation. The total of 18 samples used in this work have a wide range of permeability, from 10-6 to 103 mD, which makes the new equation more applicable. The predicted permeabilities by using the new equation are comparable with permeability values obtained from other measurement methods, as shown from ten samples with permeability data measured with nitrogen.

  12. [Treatment of long tubular bone pseudoarthrosis with revascularized cortical layer of radius].

    PubMed

    Milanov, N O; Trofimov, E I; Umerenkov, A G

    1997-01-01

    The method of osteogenesis without resection of the false joint was employed in the treatment of long tubular bone pseudarthrosis. The authors used a free revascularized radial flap, including the corticoperiosteal layer of the radius as a source of osteogenesis. A thin corticoperiosteal graft was taken from the distal third of the radius with or without a skin flap, if necessary. The graft was placed into the slotted bed of the false joint and fixed by two screws. Final fixation was made by using an Ilizarov apparatus or a metal plate. The authors used this procedure in the treatment of 12 patients with long tubular bone pseudarthrosis who had undergone at two operations on the false joint or fracture. Eight patients suffered from chronic osteomyelitis. Eleven patients completely recovered at postoperative month 12. Radiographic and scintigraphic investigations showed signs of bed-graft adhesion at month 3 after surgery and those of false joint ossification at month 6 postoperatively. PMID:9376741

  13. Investigation of 90° submicrometer radius bends of metal-insulator-silicon-insulator-metal waveguides.

    PubMed

    Kwon, Min-Suk; Shin, Jin-Soo

    2014-02-01

    We theoretically and experimentally investigate 90° submicrometer radius bends (SRB) of metal-insulator-silicon-insulator-metal (MISIM) waveguides that are plasmonic waveguides fabricated with standard CMOS technology. We focus on the bends of MISIM waveguides with a wide (e.g., 160-220 nm) silicon line. This study shows that the bend efficiently turns the direction of the MISIM waveguide by 90° if its radius is about 0.7 μm. Moreover, we discuss the fact that the bend may be superior to a SRB of a silicon photonic waveguide when it is used to implement a ring resonator with a high quality factor and small volume. PMID:24487907

  14. Energy balance of stellar coronae. III - Effect of stellar mass and radius

    NASA Technical Reports Server (NTRS)

    Hammer, R.

    1984-01-01

    A homologous transformation is derived which permits the application of the numerical coronal models of Hammer from a star with solar mass and radius to other stars. This scaling requires a few approximations concerning the lower boundary conditions and the temperature dependence of the conductivity and emissivity. These approximations are discussed and found to be surprisingly mild. Therefore, the scaling of the coronal models to other stars is rather accurate; it is found to be particularly accurate for main-sequence stars. The transformation is used to derive an equation that gives the maximum temperature of open coronal regions as a function of stellar mass and radius, the coronal heating flux, and the characteristic damping length over which the corona is heated.

  15. Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar

    SciTech Connect

    Whiteman, David N.; Melfi, S. Harvey

    1999-12-27

    A new technique for measuring cloud liquid water, mean droplet radius, and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid microspheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested. (c) 1999 American Geophysical Union.

  16. Mercury - Results on mass, radius, ionosphere, and atmosphere from Mariner 10 dual-frequency radio signals

    NASA Technical Reports Server (NTRS)

    Esposito, P. B.; Anderson, J. D.; Fjeldbo, G.; Kliore, A. J.; Levy, G. S.; Brunn, D. L.; Dickinson, R.; Edelson, R. E.; Martin, W. L.; Postal, R. B.

    1974-01-01

    Analysis of the radio-tracking data from Mariner 10 yields 6,023,600 plus or minus 600 for the ratio of the mass of the sun to that of Mercury, in very good agreement with values determined earlier from radar data alone. Occultation measurements yielded values for the radius of Mercury of 2440 plus or minus 2 and 2438 plus or minus 2 kilometers at latitudes of 2 N and 68 N, respectively, again in close agreement with the average equatorial radius of 2439 plus or minus 1 kilometers determined from radar data. The mean density of 5.44 grams per cubic centimeter deduced for Mercury from Mariner 10 data thus virtually coincides with the prior determination. No evidence of either an ionosphere or an atmosphere was found.

  17. Modified transfixation pinning of compound radius and ulna fracture in a heifer.

    PubMed

    Baxter, G M; Wallace, C E

    1991-02-15

    A 405-kg heifer sustained a compound fracture of the distal portion of the radius and ulna after being hit by a car. The fracture was thoroughly debrided, lavaged, and reduced with the heifer under general anesthesia. The fracture was immobilized with a modified walking cast, using 2 fully threaded 6.4-mm (outside diameter) Steinmann pins placed through the proximal portion of the radius. The pins were incorporated into a full-limb fiberglass cast, and a 0.5-cm X 2.25-cm aluminum walking bar was positioned medially and laterally on the limb. The modified walking cast was removed after 7 weeks, and the fracture healed without complication. The transfixation pins and aluminum walking bar helped reduce the strong compressive and rotational forces at the fracture site. The modified walking cast can potentially be used for fixation of a variety of fractures in large animals. PMID:2019540

  18. [Intra-articular fracture of the distal radius: results following osteosynthesis with a support plate].

    PubMed

    Ferguson, G A; Leutenegger, A; Mark, G; Breiter, H; Rüedi, T

    1989-01-01

    The treatment of comminuted intra-articular fractures of the distal radius often requires an operative fixation. Beside the recently recommended external fixator, the support plate fixation offers a helpful alternative to treatment. Between 1980 and 1986, 30 wrists in 29 patients with intra-articular fractures of the distal radius were stabilized with a buttress plate an the Kantonsspital Chur, Switzerland. The mean follow-up-time was 15 months. These follow-ups showed that the buttress plate in treatment of complicated intra-articular fractures allows a satisfactory reduction and stabilization with restoration of the articular congruity and the possibility for early active assisted motion. Buttress plate fixation still remains a demanding technique, which in complicated cases, should be reserved for the experienced surgeon. PMID:2500786

  19. RADIUS DETERMINATION OF SOLAR-TYPE STARS USING ASTEROSEISMOLOGY: WHAT TO EXPECT FROM THE KEPLER MISSION

    SciTech Connect

    Stello, Dennis; Bruntt, Hans; Bedding, Timothy R.; Chaplin, William J.; Elsworth, Yvonne; Creevey, Orlagh L.; Jimenez-Reyes, Sebastian J.; Garcia-Hernandez, Antonio; Moya, Andres; Suarez, Juan-Carlos; Monteiro, Mario J. P. F. G.; Sousa, Sergio G.; Quirion, Pierre-Olivier; Arentoft, Torben; Christensen-Dalsgaard, Joergen; Appourchaux, Thierry; Ballot, Jerome; Fletcher, Stephen T.; Garcia, Rafael A.

    2009-08-01

    For distant stars, as observed by the NASA Kepler satellite, parallax information is currently of fairly low quality and is not complete. This limits the precision with which the absolute sizes of the stars and their potential transiting planets can be determined by traditional methods. Asteroseismology will be used to aid the radius determination of stars observed during NASA's Kepler mission. We report on the recent asteroFLAG hare-and-hounds Exercise no. 2, where a group of 'hares' simulated data of F-K main-sequence stars that a group of 'hounds' sought to analyze, aimed at determining the stellar radii. We investigated stars in the range 9 < V < 15, both with and without parallaxes. We further test different uncertainties in T {sub eff}, and compare results with and without using asteroseismic constraints. Based on the asteroseismic large frequency spacing, obtained from simulations of 4 yr time series data from the Kepler mission, we demonstrate that the stellar radii can be correctly and precisely determined, when combined with traditional stellar parameters from the Kepler Input Catalogue. The radii found by the various methods used by each independent hound generally agree with the true values of the artificial stars to within 3%, when the large frequency spacing is used. This is 5-10 times better than the results where seismology is not applied. These results give strong confidence that radius estimation can be performed to better than 3% for solar-like stars using automatic pipeline reduction. Even when the stellar distance and luminosity are unknown we can obtain the same level of agreement. Given the uncertainties used for this exercise we find that the input log g and parallax do not help to constrain the radius, and that T {sub eff} and metallicity are the only parameters we need in addition to the large frequency spacing. It is the uncertainty in the metallicity that dominates the uncertainty in the radius.

  20. DISCOVERY AND ATMOSPHERIC CHARACTERIZATION OF GIANT PLANET KEPLER-12b: AN INFLATED RADIUS OUTLIER

    SciTech Connect

    Fortney, Jonathan J.; Nutzman, Philip; Demory, Brice-Olivier; Desert, Jean-Michel; Buchhave, Lars A.; Charbonneau, David; Fressin, Francois; Rowe, Jason; Caldwell, Douglas A.; Jenkins, Jon M.; Ciardi, David; Gautier, Thomas N.; Bryson, Stephen T.; Howell, Steve B.; Everett, Mark; and others

    2011-11-01

    We report the discovery of planet Kepler-12b (KOI-20), which at 1.695 {+-} 0.030 R{sub J} is among the handful of planets with super-inflated radii above 1.65 R{sub J}. Orbiting its slightly evolved G0 host with a 4.438 day period, this 0.431 {+-} 0.041 M{sub J} planet is the least irradiated within this largest-planet-radius group, which has important implications for planetary physics. The planet's inflated radius and low mass lead to a very low density of 0.111 {+-} 0.010 g cm{sup -3}. We detect the occultation of the planet at a significance of 3.7{sigma} in the Kepler bandpass. This yields a geometric albedo of 0.14 {+-} 0.04; the planetary flux is due to a combination of scattered light and emitted thermal flux. We use multiple observations with Warm Spitzer to detect the occultation at 7{sigma} and 4{sigma} in the 3.6 and 4.5 {mu}m bandpasses, respectively. The occultation photometry timing is consistent with a circular orbit at e < 0.01 (1{sigma}) and e < 0.09 (3{sigma}). The occultation detections across the three bands favor an atmospheric model with no dayside temperature inversion. The Kepler occultation detection provides significant leverage, but conclusions regarding temperature structure are preliminary, given our ignorance of opacity sources at optical wavelengths in hot Jupiter atmospheres. If Kepler-12b and HD 209458b, which intercept similar incident stellar fluxes, have the same heavy-element masses, the interior energy source needed to explain the large radius of Kepler-12b is three times larger than that of HD 209458b. This may suggest that more than one radius-inflation mechanism is at work for Kepler-12b or that it is less heavy-element rich than other transiting planets.

  1. High performance reversed shear plasmas with a large radius transport barrier in JT-60U

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Hatae, T.; Oikawa, T.; Takeji, S.; Shirai, H.; Koide, Y.; Ishida, S.; Ide, S.; Ishii, Y.; Ozeki, T.; Higashijima, S.; Yoshino, R.; Kamada, Y.; Neyatani, Y.

    1998-02-01

    The operation of reversed shear plasmas in JT-60U has been extended to the low-q, high-Ip region keeping a large radius transport barrier, and a high fusion performance has been achieved. Record values of deuterium-tritium (DT)-equivalent power gain in JT-60U have been obtained: QDTeq = 1.05, τE = 0.97 s, nD(0) = 4.9 × 1019 m-3 and Ti(0) = 16.5 keV. A large improvement in confinement resulted from the formation of an internal transport barrier (ITB) with a large radius, which was characterized by steep gradients in electron density, electron temperature and ion temperature just inside the position of qmin. Large negative shear regions, up to 80% of the plasma minor radius in the low-qmin regime (qmin~2), were obtained by plasma current ramp-up after the formation of the ITB with the pressure and current profiles being controlled by adjustment of plasma volume and beam power. The ITB was established by on-axis beam heating into a low density target plasma with reversed shear that was formed by current ramp-up without beam heating. The confinement time increased with the radius of the ITB and the decrease of qmin at a fixed toroidal field. High H factors, up to 3.3, were achieved with an L mode edge. The effective one fluid thermal diffusivity χeff had its minimum in the ITB. The values of H/q95 and βt increased with the decrease of q95, and the highest performance was achieved at q95 ~3.1 (2.8 MA). The performance was limited by disruptive beta collapses with βN~2 at qmin~2.

  2. The Impact of Surface Temperature Inhomogeneities on Quiescent Neutron Star Radius Measurements

    NASA Astrophysics Data System (ADS)

    Elshamouty, K. G.; Heinke, C. O.; Morsink, S. M.; Bogdanov, S.; Stevens, A. L.

    2016-08-01

    Fitting the thermal X-ray spectra of neutron stars (NSs) in quiescent X-ray binaries can constrain the masses and radii of NSs. The effect of undetected hot spots on the spectrum, and thus on the inferred NS mass and radius, has not yet been explored for appropriate atmospheres and spectra. A hot spot would harden the observed spectrum, so that spectral modeling tends to infer radii that are too small. However, a hot spot may also produce detectable pulsations. We simulated the effects of a hot spot on the pulsed fraction and spectrum of the quiescent NSs X5 and X7 in the globular cluster 47 Tucanae, using appropriate spectra and beaming for hydrogen atmosphere models, incorporating special and general relativistic effects, and sampling a range of system angles. We searched for pulsations in archival Chandra HRC-S observations of X5 and X7, placing 90% confidence upper limits on their pulsed fractions below 16%. We use these pulsation limits to constrain the temperature differential of any hot spots, and to then constrain the effects of possible hot spots on the X-ray spectrum and the inferred radius from spectral fitting. We find that hot spots below our pulsation limit could bias the spectroscopically inferred radius downward by up to 28%. For Cen X-4 (which has deeper published pulsation searches), an undetected hot spot could bias its inferred radius downward by up to 10%. Improving constraints on pulsations from quiescent LMXBs may be essential for progress in constraining their radii.

  3. Bone density of the radius, spine, and proximal femur in osteoporosis

    SciTech Connect

    Mazess, R.B.; Barden, H.; Ettinger, M.; Schultz, E.

    1988-02-01

    Bone mineral density (BMD) was measured in 140 normal young women (aged 20 to 39 years) and in 423 consecutive women over age 40 referred for evaluation of osteoporosis. Lumbar spine and proximal femur BMD was measured using dual-photon absorptiometry (/sup 153/Gd), whereas the radius shaft measurement used single-photon absorptiometry (/sup 125/I). There were 324 older women with no fractures, of which 278 aged 60 to 80 years served as age-matched controls. There were 99 women with fractures including 32 with vertebral and 22 with hip fractures. Subsequently, another 25 women with hip fractures had BMD measured in another laboratory; their mean BMD was within 2% of that of the original series. The mean age in both the nonfracture and fracture groups was 70 +/- 5 years. The BMD in the age-matched controls was 20% to 25% below that of normal young women for the radius, spine, and femur, but the Ward's triangle region of the femur showed even greater loss (35%). The mean BMD at all sites in the crush fracture cases was about 10% to 15% below that of age-matched controls. Spinal abnormality was best discriminated by spine and femoral measurements (Z score about 0.9). In women with hip fractures, the BMD was 10% below that of age-matched controls for the radius and the spine, and the BMD for the femoral sites was about 25% to 30% below that of age-matched control (Z score about 1.6). Femoral densities gave the best discrimination of hip fracture cases and even reflected spinal osteopenia. In contrast, neither the spine nor the radius reflected the full extent of femoral osteopenia in hip fracture.

  4. Unitarity limits on the mass and radius of dark matter particles

    NASA Technical Reports Server (NTRS)

    Griest, Kim; Kamionkowski, Marc

    1989-01-01

    Using partial wave unitarity and the observed density of the Universe, it is show that a stable elementary particle which was once in thermal equilibrium cannot have a mass greater than 340 TeV. An extended object which was once in thermal equilibrium cannot have a radius less than 7.5 x 10(exp -7) fm. A lower limit to the relic abundance of such particles is also found.

  5. [Osteosynthesis by plate in fractures of the distal end of the radius].

    PubMed

    Piétu, G; Raynaud, G

    1994-01-01

    The authors recall the place of apposed plate fixation of fractures of the lower end of the radius, most of which are anterior. The ideal indication is the simple fracture by articular or supra-articular, compression-flexion. The importance of modelling and positioning of the plate is emphasised. The use of other types of fixation for composite systems is possible in complex fractures. Anatomical reconstruction must be obtained to ensure a satisfactory functional result. PMID:8161162

  6. Study on singular radius and surface boundary constraint in refractive beam shaper design

    SciTech Connect

    Liu, C.; Zhang, Shukui

    2007-10-01

    Abstract: This paper presents analysis on important issues associated with the design of the refractive laser beam shaping system. The concept of â singular radiusâ is introduced along with solutions to minimize its adverse effect on the shaper performance. In addition, the surface boundary constraint is also discussed in details. This study provides useful guidelines against possible general design errors that would degrade the shaper quality or add undesired complication to the system.

  7. The radius of gyration of native and reductively methylated myosin subfragment-1 from neutron scattering.

    PubMed Central

    Stone, D B; Schneider, D K; Huang, Z; Mendelson, R A

    1995-01-01

    Reductive methylation of nearly all lysine groups of myosin subfragment-1 (S1) was required for crystallization and solution of its structure at atomic resolution. Possible effects of such methylation on the radius of gyration of chicken skeletal muscle myosin S1 have been investigated by using small-angle neutron scattering. In addition, we have investigated the effect of MgADP.Vi, which is thought to produce an analog of the S1.ADP.Pi state, on the S1 radius of gyration. We find that although methylation of S1, with or without SO42- ion addition, does not significantly alter the structure, addition of ADP plus vanadate does decrease the radius of gyration significantly. The S1 crystal structure predicts a radius of gyration close to that measured here by neutron scattering. These results suggest that the overall shape by crystallography resembles nucleotide-free S1 in solution. In order to estimate the effect of residues missing from the crystal structure, the structure of missing loops was estimated by secondary-structure prediction methods. Calculations using the complete crystal structure show that a simple closure of the nucleotide cleft by a rigid-body torsional rotation of residues (172-180 to 670) around an axis running along the base of the cleft alone does not produce changes as large as seen here and in x-ray scattering results. On the other hand, a rigid body rotation of either the light-chain binding domain (767 to 843 plus light chains) or of a portion of 20-kDa peptide plus this domain (706 to 843 plus light chains) is more readily capable of producing such changes. Images FIGURE 1 FIGURE 3 FIGURE 6 PMID:8519977

  8. Inter- and intra-observer agreement of the AO classification for operatively treated distal radius fractures.

    PubMed

    van Buijtenen, Jesse M; van Tunen, Mischa L C; Zuidema, Wietse P; Heilbron, Emile A; de Haan, Jeroen; de Vet, Henrica C W; Derksen, Robert J

    2015-11-01

    The reproducibility of the AO classification for distal radius fractures remains a topic of debate. Previous studies showed variable reproducibility results. Important treatment decisions depend on correct classification, especially in comminuted, intra-articular fractures. Therefore, reliable reproducibility results need to be undisputedly determined. Hence, the study objective was to assess inter- and intra-observer agreement of the AO classification for operatively treated distal radius fractures. A database of 54 radiographs of all AO types (A, B and C) and groups (A2-3, B1-3, and C1-3) of distal radius fractures was assessed in twofold. Likewise, a subset of 152 radiographs of solely C-type groups (C1-3) was assessed. All fractures were classified by six observers with different experience levels: three consultant trauma surgeons, one sixth-year trauma surgery resident, a consultant trauma radiologist, and an intern with limited experienced. The inter-observer agreement of both main types and groups was moderate (κ = 0.49 resp. κ = 0.48) in combination with a good intra-observer agreement (κ = 0.68 resp. κ = 0.70). The inter-observer agreement of the subset C-type fractures group was fair (κ = 0.27) with moderate intra-observer agreement (κ = 0.43). According to these results, the reproducibility of the AO classification of main types and groups of distal radius fractures based on conventional radiographs is insufficient (κ < 0.50), especially at group level of C-type fractures. PMID:26614083

  9. Volar Plate Fixation of Intra-Articular Distal Radius Fractures: A Retrospective Study

    PubMed Central

    Fok, Margaret W. M.; Klausmeyer, Melissa A.; Fernandez, Diego L.; Orbay, Jorge L.; Bergada, Alex Lluch

    2013-01-01

    Background Intra-articular fractures of the distal radius represent a therapeutic challenge as compared with the unstable extra-articular fractures. With the recent development of specifically designed internal fixation materials for the distal radius, treatment of these fractures by fragment-specific implants using two or more incisions has been advocated. Purpose The purpose of this study was to investigate the efficacy of a fixed-angle locking plate applied through a single volar approach in maintaining the radiographic alignment of unstable intra-articular fractures as well as to report the clinical outcomes. We only excluded those with massive comminution, as is discussed in greater detail in the text. Patients and Methods This is a multicentered, retrospective study involving three hospitals situated in Spain, Switzerland, and the United States. In the period between January 2000 and March 2006, 97 patients with 101 intra-articular distal radius fractures, including 13 volarly displaced and 88 dorsally angulated fractures were analyzed. Over 80% were C2/C3 fractures, based on the AO classification. 16 open fractures were noted. Results With an average follow-up of 28 months (range 24-70 months), the range of movement of the wrist was very satisfactory, and the mean grip strength was 81% of the opposite wrist. The Disabilities of the Arm, Shoulder, and Hand (DASH) score was 8. The complications rate was < 5%, including loss of reduction in two patients. All fractures healed by 3 months postinjury. Conclusions Irrespective of the direction and amount of initial displacement, a great majority of intra-articular fractures of the distal radius can be managed with a fixed-angle volar plate through a single volar approach. Level IV retrospective case series PMID:24436824

  10. Mid-term functional outcome after the internal fixation of distal radius fractures

    PubMed Central

    2012-01-01

    Background Distal radius fracture is a common injury with a variety of operative and non-operative management options. There remains debate as to the optimal treatment for a given patient and fracture. Despite the popularity of volar locking plate fixation, there are few large cohort or long term follow up studies to justify this modality. Our aim was to report the functional outcome of a large number of patients at a significant follow up time after fixation of their distal radius with a volar locking plate. Methods 180 patients with 183 fractures and a mean age of 62.4 years were followed up retrospectively at a mean of 30 months (Standard deviation = 10.4). Functional assessment was performed using the Disabilities of the Arm, Shoulder and Hand (DASH) and modified MAYO wrist scores. Statistical analysis was performed to identify possible variables affecting outcome and radiographs were assessed to determine time to fracture union. Results The median DASH score was 2.3 and median MAYO score was 90 for the whole group. Overall, 133 patients (74%) had a good or excellent DASH and MAYO score. Statistical analysis showed that no specific variable including gender, age, fracture type, post-operative immobilisation or surgeon grade significantly affected outcome. Complications occurred in 27 patients (15%) and in 11 patients were major (6%). Conclusion This single centre large population series demonstrates good to excellent results in the majority of patients after volar locking plate fixation of the distal radius, with complication rates comparable to other non-operative and operative treatment modalities. On this basis we recommend this mode of fixation for distal radius fractures requiting operative intervention. PMID:22280557

  11. Intrafocal pin plate fixation of distal ulna fractures associated with distal radius fractures.

    PubMed

    Foster, Brian J; Bindra, Randy R

    2012-02-01

    Subcapital ulnar fractures in association with distal radius fractures in elderly patients increase instability and pose a treatment challenge. Fixation of the ulnar fracture with traditional implants is difficult due to the subcutaneous location, comminution, and osteoporosis. We describe an intrafocal pin plate that provides fixation by a locking plate on the distal ulna and intramedullary fixation within the shaft. The low profile and percutaneous technique make this device a useful alternative for treatment of subcapital ulna fractures in the elderly. PMID:22192166

  12. Using a Video Camera to Measure the Radius of the Earth

    ERIC Educational Resources Information Center

    Carroll, Joshua; Hughes, Stephen

    2013-01-01

    A simple but accurate method for measuring the Earth's radius using a video camera is described. A video camera was used to capture a shadow rising up the wall of a tall building at sunset. A free program called ImageJ was used to measure the time it took the shadow to rise a known distance up the building. The time, distance and length of…

  13. Radius Determination of Solar-type Stars Using Asteroseismology: What to Expect from the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Stello, Dennis; Chaplin, William J.; Bruntt, Hans; Creevey, Orlagh L.; García-Hernández, Antonio; Monteiro, Mario J. P. F. G.; Moya, Andrés; Quirion, Pierre-Olivier; Sousa, Sergio G.; Suárez, Juan-Carlos; Appourchaux, Thierry; Arentoft, Torben; Ballot, Jerome; Bedding, Timothy R.; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne; Fletcher, Stephen T.; García, Rafael A.; Houdek, Günter; Jiménez-Reyes, Sebastian J.; Kjeldsen, Hans; New, Roger; Régulo, Clara; Salabert, David; Toutain, Thierry

    2009-08-01

    For distant stars, as observed by the NASA Kepler satellite, parallax information is currently of fairly low quality and is not complete. This limits the precision with which the absolute sizes of the stars and their potential transiting planets can be determined by traditional methods. Asteroseismology will be used to aid the radius determination of stars observed during NASA's Kepler mission. We report on the recent asteroFLAG hare-and-hounds Exercise#2, where a group of "hares" simulated data of F-K main-sequence stars that a group of "hounds" sought to analyze, aimed at determining the stellar radii. We investigated stars in the range 9 < V < 15, both with and without parallaxes. We further test different uncertainties in T eff, and compare results with and without using asteroseismic constraints. Based on the asteroseismic large frequency spacing, obtained from simulations of 4 yr time series data from the Kepler mission, we demonstrate that the stellar radii can be correctly and precisely determined, when combined with traditional stellar parameters from the Kepler Input Catalogue. The radii found by the various methods used by each independent hound generally agree with the true values of the artificial stars to within 3%, when the large frequency spacing is used. This is 5-10 times better than the results where seismology is not applied. These results give strong confidence that radius estimation can be performed to better than 3% for solar-like stars using automatic pipeline reduction. Even when the stellar distance and luminosity are unknown we can obtain the same level of agreement. Given the uncertainties used for this exercise we find that the input log g and parallax do not help to constrain the radius, and that T eff and metallicity are the only parameters we need in addition to the large frequency spacing. It is the uncertainty in the metallicity that dominates the uncertainty in the radius.

  14. [Fracture of the diaphyseal radius during Cyr wheel practice - an uncommon injury of wheel gymnastics].

    PubMed

    Kauther, M D; Rummel, S; Hussmann, B; Lendemans, S; Nast-Kolb, D; Wedemeyer, C

    2011-12-01

    The cyr wheel is a modified gymnastic wheel with only one ring that can lead to extreme forces on the gymnast. We report on a distal radius shaft fracture (AO 22 A 2.1) and a fracture of the styloid process of the ulna that occurred after holding on to a slipping Cyr wheel and exposition to high pressure on the lower arm. The fracture was fixed by screws and a plate. PMID:22161268

  15. HZ Her: Stellar radius from X-ray eclipse observations, evolutionary state, and a new distance

    SciTech Connect

    Leahy, D. A.; Abdallah, M. H.

    2014-10-01

    Observations of HZ Her/Her X-1 by the Rossi X-Ray Timing Explorer (RXTE) covering high state eclipses of the neutron star are analyzed here. Models of the eclipse are used to measure the radius and atmospheric scale height of HZ Her, the stellar companion to the neutron star. The radius is 2.58-3.01 × 10{sup 11} cm, depending on system inclination and mass ratio (q), with an accuracy of ∼1 part in 1000 for given inclination and q. We fit Kurucz model stellar atmosphere models to archival optical observations. The resulting effective temperature (T {sub eff}) of the unheated face of HZ Her is determined to be in the 2σ range of 7720 K-7865 K, and metallicity (log (Z/Z {sub ☉})) in the range of –0.27 to +.03. The model atmosphere surface flux and new radius yield a new distance to HZ Her/Her X-1, depending on system inclination and q: a best-fit value of 6.1 kpc with upper and lower limits of 5.7 kpc and 7.0 kpc. We calculate stellar evolution models for the range of allowed masses (from orbital parameters) and allowed metallicities (from optical spectrum fits). The stellar models agree with T {sub eff} and the radius of HZ Her for two narrow ranges of mass: 2.15-2.20 M {sub ☉} and 2.35-2.45 M {sub ☉}. This lower mass range implies a low neutron star mass (1.3 M {sub ☉}), whereas the higher mass range implies a high neutron star mass (1.5-1.7 M {sub ☉}).

  16. Estimation of the radius of a star based on its effective temperature and surface gravity

    NASA Astrophysics Data System (ADS)

    Sichevskij, S. G.

    2016-06-01

    Amethod for determining the radius of a star using its effective temperature and surface gravity is proposed. The method assumes that the relationship between the radius, effective temperature, and surface gravity can be approximated using models for the internal structure and evolution of the star. The method is illustrated using the Geneva-Toulouse evolutionary computations for two metal abundances—solar and one-tenth of solar. Analysis of the systematic errors shows that the accuracy of the method is better than 10% over most part of the Hertzsprung-Russell diagram, and is about 5% for main-sequence stars. The maximum relative systematic error due to the simplifications underlying the method is about 15%. A test using eclipsing binaries confirms the viability of the proposed method for estimating stellar radii. In the region of the main sequence, systematic deviations do not exceed 2%, and the relative standard deviation is ≤4.7%. It is expected that th maximum relative error over the rest of the Hertzsprung-Russell diagram will likewise be close to the systematic error, about 15-20%. The method is applied to estimate the radii of model stellar atmospheres. Such estimates can be used to synthesize the color index and luminosity of a star. The method can be used whenever accuracies of about 10% in the estimated stellar radius and luminosity are acceptable.

  17. The neutron star radius and the dense-matter equation of state

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien; Servillat, M.; Webb, N.; Rutledge, R. E.

    2014-01-01

    A physical understanding of the behaviour of cold ultra-dense matter - at and above nuclear density - can only be achieved by the study of neutron stars, and the thermal emission from quiescent low-mass X-ray binaries inside globular clusters have proven very useful for that purpose. The recent 1.97±0.04 Msun measurement for the radio pulsar PSR 1614-2230 suggests that strange quark matter and hyperons/kaons condensate equations of states (EoS) are disfavoured, in favour of hadronic "normal matter" EoSs. Over much of the neutron star mass-radius parameter space, "normal matter" EoSs produce lines of quasi-constant radii (within the measurement uncertainties, of about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass X-ray binaries where we require the radius to be the same among all neutron stars analyzed. The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to un-modelled spectrally hard components. Our results suggest a neutron star radius much smaller than previously reported, with a value Rns = 9.1±1.4 km, at 90% confidence, using conservative assumptions, which suggests that neutron start matter is best described by the softest "normal matter" equations of state.

  18. Measuring the neutron star radius to constrain the dense-matter equation of state.

    NASA Astrophysics Data System (ADS)

    Guillot, Sebastien; Servillat, Mathieu; Webb, Natalie; Rutledge, Robert E.

    2014-08-01

    A physical understanding of the behaviour of cold ultra-dense matter - at and above nuclear density - can only be achieved by the study of neutron stars, and the thermal emission from quiescent low-mass X-ray binaries inside globular clusters have proven very useful for that purpose. The recent ~2M⊙ mass measurements suggest that strange quark matter and hyperons/kaons condensate equations of states (EoS) are disfavoured, in favour of hadronic "normal matter" EoSs. Over much of the neutron star mass-radius parameter space, "normal matter" EoSs produce lines of quasi-constant radii (within the measurement uncertainties, of about 10%). We present a simultaneous spectral analysis of several globular cluster quiescent low-mass X-ray binaries where we require the radius to be the same among all neutron stars analyzed. The Markov-Chain Monte-Carlo method and the Bayesian approach developed in this analysis permits including uncertainties in the distance, in the hydrogen column density, and possible contributions to the spectra due to un-modelled spectrally hard components. Our results suggest a neutron star radius much smaller than previously reported, with a value RNS = 9.1±1.4 km, at 90% confidence, using conservative assumptions, which suggests that neutron star matter is best described by the softest "normal matter" equations of state.

  19. Finite ion Larmor radius effects and wall effects on m = 1 instabilities

    SciTech Connect

    Cayton, T.E.

    1980-12-01

    A set of fluid-like equations that simultaneously includes effects due to geometry and finite ion gyroradii is used to examine the stability of a straight, radially diffuse screw pinch in the regime where the poloidal magnetic field is very small compared with the axial magnetic field. It is shown that this pinch may be rendered completely stable through a combination of finite Larmor radius effects and wall effects. Many of the m = 1 modes of the diffuse pinch can be stabilized by finite ion Larmor radius effects, just as all flute modes can be stabilized. Because of the special nature of the m = 1 eigenfunctions, finite ion gyroradius effects are negligible for the kink modes of very large wavelength. This special nature of the eigenfunctions, however, makes these modes good candidates for wall stabilization. The finite Larmor radius stabilization of m = 1 modes of a diffuse pinch is contrary to the conventional wisdom that has evolved from studies of sharp-boundary, skin-current models of the pinch.

  20. The binary Feige 24 - The mass, radius, and gravitational redshift of the DA white dwarf

    SciTech Connect

    Vennes, S.; Shipman, H.L.; Thorstensen, J.R.; Thejll, P. Dartmouth College, Hanover, NH NORDITA, Copenhagen, Denmark )

    1991-05-01

    Observations are reported which refine the binary ephemeris of the Feige 24 system, which contains a peculiar hot DA white dwarf and an M dwarf with an atmosphere illuminated by extreme ultraviolet radiation from the white dwarf. With the new ephemeris and a set of IUE high-dispersion spectra, showing phase-dependent redshifted C IV, N V, and Si IV resonance lines, the orbital velocity, and hence the mass (0.54 + or {minus} 0.20 solar masses), and the gravitational redshift of the white dwarf (14.1 + or {minus} 5.2 km/s) are determined independently. It is shown that the measured Einstein redshift is consistent with an estimated radius for the white dwarf obtained from a model atmosphere solid angle and a parallax measurement. This radius is twice the Hamada-Salpeter radius for the given mass and offers a prospect to investigate the presence of a massive hydrogen envelope in that white dwarf star. 27 refs.

  1. THE NEUTRON STAR MASS-RADIUS RELATION AND THE EQUATION OF STATE OF DENSE MATTER

    SciTech Connect

    Steiner, Andrew W.; Brown, Edward F.; Lattimer, James M. E-mail: ebrown@pa.msu.edu

    2013-03-01

    The equation of state (EOS) of dense matter has been a long-sought goal of nuclear physics. EOSs generate unique mass versus radius (M-R) relations for neutron stars, the ultra-dense remnants of stellar evolution. In this work, we determine the neutron star mass-radius relation and, based on recent observations of both transiently accreting and bursting sources, we show that the radius of a 1.4 solar mass neutron star lies between 10.4 and 12.9 km, independent of assumptions about the composition of the core. We show, for the first time, that these constraints remain valid upon removal from our sample of the most extreme transient sources or of the entire set of bursting sources; our constraints also apply even if deconfined quark matter exists in the neutron star core. Our results significantly constrain the dense matter EOS and are furthermore consistent with constraints from both heavy-ion collisions and theoretical studies of neutron matter. We predict a relatively weak dependence of the symmetry energy on the density and a value for the neutron skin thickness of lead which is less than 0.20 fm, results that are testable in forthcoming experiments.

  2. Interior phase transformations and mass-radius relationships of silicon-carbon planets

    SciTech Connect

    Wilson, Hugh F.; Militzer, Burkhard

    2014-09-20

    Planets such as 55 Cancri e orbiting stars with a high carbon-to-oxygen ratio may consist primarily of silicon and carbon, with successive layers of carbon, silicon carbide, and iron. The behavior of silicon-carbon materials at the extreme pressures prevalent in planetary interiors, however, has not yet been sufficiently understood. In this work, we use simulations based on density functional theory to determine high-pressure phase transitions in the silicon-carbon system, including the prediction of new stable compounds with Si{sub 2}C and SiC{sub 2} stoichiometry at high pressures. We compute equations of state for these silicon-carbon compounds as a function of pressure, and hence derive interior structural models and mass-radius relationships for planets composed of silicon and carbon. Notably, we predict a substantially smaller radius for SiC planets than in previous models, and find that mass radius relationships for SiC planets are indistinguishable from those of silicate planets. We also compute a new equation of state for iron. We rederive interior models for 55 Cancri e and are able to place more stringent restrictions on its composition.

  3. New Technique for Dorsal Fragment Reduction in Distal Radius Fractures by Using Volar Bone Fenestration

    PubMed Central

    TSUCHIYA, Fumika; NAITO, Kiyohito; MOGAMI, Atsuhiko; OBAYASHI, Osamu

    2013-01-01

    Introduction: For intra-articular distal radius fractures (AO Classification, type B2) with a displaced dorsal fragment, there remains much discussion on the fixation method for the dorsal fragment. To reduce the displaced dorsal fragment, we developed a new technique consisting of fenestration of the volar bone cortex, reduction using an intramedullary procedure, and fixation using a volar plate. This avoids necessity of dorsal approach. Technical Note: We performed this surgical technique in 2 patients and achieved a good reduced position without much injury to the bone cortex at the site of volar plate placement. This surgical technique allows reduction of the dorsal fragment using an intramedullary procedure by only a volar approach, and, therefore, does not affect the dorsal soft tissue (extensor tendon). For intra-articular distal radius fractures, complete reduction of the articular surface is extremely difficult, and, in patients with a remaining gap on the articular surface, a variable angle locking screw system may be useful. In the 2 patients, the angle of the locking screw was adjusted to catch the displaced dorsal fragment, and adequate reduction and fixation could be achieved. Conclusion: This technique using fenestration of the volar bone cortex allows reduction and fixation of the displaced dorsal fragment in distal radius fractures and thus avoids the necessity of a dorsal approach. PMID:27298898

  4. Radius dependent shift in surface plasmon frequency in large metallic nanospheres: Theory and experiment

    SciTech Connect

    Jacak, W.; Jacak, J.; Gonczarek, R.; Jacak, L.; Krasnyj, J.; Chepok, A.; Hu, D. Z.; Schaadt, D.

    2010-06-15

    Theoretical description of oscillations of electron liquid in large metallic nanospheres (with radius of few tens of nanometer) is formulated within random-phase-approximation semiclassical scheme in jellium model with retardation included via Lorentz friction. Spectrum of plasmons is determined including both surface and volume type excitations. It is demonstrated that only surface plasmons of dipole type can be excited by homogeneous dynamical electric field. The Lorentz friction due to irradiation of electromagnetic wave by plasmon oscillations is analyzed with respect to the sphere dimension. The resulting shift in resonance frequency turns out to be strongly sensitive to the sphere radius. The form of electromagnetic (e-m) response of the system of metallic nanospheres embedded in the dielectric medium is found. The theoretical predictions are verified by a measurement of extinction of light due to plasmon excitations in nanosphere colloidal water solutions, for Au and Ag metallic components with radius from 10 to 75 nm. Theoretical predictions and experiments clearly agree in the positions of surface plasmon resonances and in an emergence of the first volume plasmon resonance in the e-m response of the system for limiting big nanosphere radii, when dipole approximation is not exact.

  5. Probabilistic Mass-Radius Relationship for Sub-Neptune-Sized Planets

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie; Rogers, Leslie Anne; Ford, Eric B.

    2015-08-01

    The Kepler Mission has discovered thousands of super-Earths, paving the way for the first statistical studies of the dynamics, formation, and evolution of these planets. Planetary masses are an important physical property that these studies consider, and yet the vast majority of Kepler planet candidates do not have theirs measured. A key concern for these studies is therefore how to map the measured radii to mass estimates, in this regime of planetary sizes where there are no Solar System analogs. Previous works have derived deterministic, one-to-one relationships between radius and mass. However, if these planets span a range of compositions as expected, then an intrinsic scatter about this relationship must exist in the population. Here we present the first probabilistic mass-radius relationship (M-R relation) evaluated within a Bayesian framework, which both quantifies this intrinsic dispersion and the uncertainties on the M-R relation parameters given the data. We analyze how the details depend on the radius range of the sample, and on the method used to provide the mass measurements. Assuming that the M-R relation can be described as a power law with a dispersion that is constant and normally distributed, we find that M/M_Earth = 2.7 (R/R_Earth)^1.2 and a scatter in mass of 1.7 M_Earth is the "best-fit" probabilistic M-R relation for the sample of RV-measured transiting sub-Neptunes.

  6. THE LICK AGN MONITORING PROJECT: ALTERNATE ROUTES TO A BROAD-LINE REGION RADIUS

    SciTech Connect

    Greene, Jenny E.; Hood, Carol E.; Barth, Aaron J.; Bentz, Misty C.; Walsh, Jonelle L.; Bennert, Vardha N.; Treu, Tommaso; Filippenko, Alexei V.; Gates, Elinor; Malkan, Matthew A.; Woo, Jong-Hak

    2010-11-01

    It is now possible to estimate black hole (BH) masses across cosmic time, using broad emission lines in active galaxies. This technique informs our views of how galaxies and their central BHs coevolve. Unfortunately, there are many outstanding uncertainties associated with these 'virial' mass estimates. One of these comes from using the accretion luminosity to infer a size for the broad-line region (BLR). Incorporating the new sample of low-luminosity active galaxies from our recent monitoring campaign at Lick Observatory, we recalibrate the radius-luminosity relation with tracers of the accretion luminosity other than the optical continuum. We find that the radius of the BLR scales as the square root of the X-ray and H{beta} luminosities, in agreement with recent optical studies. On the other hand, the scaling appears to be marginally steeper with narrow-line luminosities. This is consistent with a previously observed decrease in the ratio of narrow-line to X-ray luminosity with increasing total luminosity. The radius of the BLR correlates most tightly with H{beta} luminosity, while the X-ray and narrow-line relations both have comparable scatter of a factor of 2. These correlations provide useful alternative virial BH masses in objects with no detectable optical/UV continuum emission, such as high-redshift galaxies with broad emission lines, radio-loud objects, or local active galaxies with galaxy-dominated continua.

  7. Mass-Radius Relation for White Dwarfs Models at Zero Temperature

    NASA Astrophysics Data System (ADS)

    Carvalho, A.; MarinhoJr, R. M.; Malheiro, M.

    2016-04-01

    In this work we investigate the structure of WD stars using the Tolman-Oppenheimer-Volkoff equations and compare with the Newtonian equations of gravitation in order to put in evidence the importance of the General Relativity in the study of these stars. We solved the equations using the exact relativistic energy equation for the model of completely degenerate electron gas and we also use the politropic EoS for ultra and non-relativistic limit. We find a good fit of the TOV solution with the general EoS for the WD mass-radius diagram. We propose that our fit has to be used as relation between mass and radius for general relativistic WD instead of that Newtonian M ∼ 1/R3, this fit is given by M = R/ (a+bR+cR2+dR3+kR4), where a, b, c and d are parameters and 1/k is the constant of the Newtonian mass-radius relation and it can be used in simulation study of binary systems that occurs accretion.

  8. The importance of GR for the radius of massive white dwarfs

    SciTech Connect

    Carvalho, Geanderson; Marinho, Rubens; Malheiro, Manuel

    2015-12-17

    In this work we investigate the structure of WD stars using the Tolman-Oppenheimer-Volkoff equations and compare with the Newtonian equations of gravitation in order to put in evidence the importance of the General Relativity in the study of these stars. Instead of using politropic equations of state we have solved the equations using the exact relativistic energy equation for the model of completely degenerate electron gas. We find a good fit of the TOV solution with the general EoS for the WD mass-radius diagram. We propose that our fit has to be used as relation between mass and radius for general relativistic WD instead of that Newtonian M ∼ 1/R{sup 3}, this fit is given by M = R/(a + bR + cR{sup 2} + dR{sup 3} + kR{sup 4}), where a, b, c and d are parameters and 1/k is the constant of the Newtonian mass-radius relation and it can be used in simulation study of binary systems that occurs accretion.

  9. Determination of recombination radius in Si for binary collision approximation codes

    SciTech Connect

    Vizkelethy, Gyorgy; Foiles, Stephen M.

    2015-09-11

    Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this “displacement energy” is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets, such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. As a result, the calculations showed that a single recombination radius of ~7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.

  10. Solar spectral irradiance model validation using Solar Spectral Irradiance and Solar Radius measurements

    NASA Astrophysics Data System (ADS)

    Thuillier, Gérard; Zhu, Ping; Shapiro, Alexander; Sofia, Sabatino; Tagirov, Rinat; Van Ruymbeke, Michel; Schmutz, Werner

    2016-04-01

    The importance of the reliable solar spectral irradiance (SSI) data for solar and climate physics is now well acknowledged. In particular, the irradiance time series are necessary for most of the current studies concerning climate evolution. However, space instruments are vulnerable to the degradation due to the environment while ground based measurements are limited in wavelength range and need atmospheric effects corrections. This is why SSI modeling is necessary to understand the mechanism of the solar irradiance variability and to provide long and uninterrupted irradiance records to climate and Earth atmosphere scientists. Here we present COSI (COde for Solar Irradiance) model of the SSI variability. The COSI model is based on the Non local thermodynamic Equilibrium Spectral SYnthesis Code (NESSY). We validate NESSY by two independent datasets: - The SSI at solar minimum occurring in 2008, - The radius variation with wavelength and absolute values determined from PREMOS and BOS instruments onboard the PICARD spacecraft. Comparisons between modeling and measured SSI will be shown. However, since SSI measurements have an accuracy estimated between 2 to 3%, the comparison with the solar radius data provides a very important additional constrains on model. For that, 17 partial solar occultations by the Moon are used providing solar radii clearly showing the dependence of the solar radius with wavelength. These results are compared with the NESSY predictions. The agreement between NESSY and observations is within the model and measurements accuracy.

  11. Radius vertical graded nanoscale interlaced-coupled photonic crystal sensors array

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Tian, Huiping; Yang, Daquan; Liu, Qi; Zhou, Jian; Huang, Lijun; Ji, Yuefeng

    2015-11-01

    A radius vertical graded photonic crystal sensors array based on a monolithic substrate is proposed, which is potentially to be used as label-free detection in aqueous environments. The sensors array device consists of five resonant cavities including three H1 cavities and two L2 cavities which are interlaced-coupled to a radius vertical graded single photonic crystal line defect waveguide (W1). Each resonator has a different resonant wavelength dip which can shift independently with crosstalk lower than -13 dB in response to the refractive index change of air holes around every cavity. With three-dimensional finite-difference time-domain (3D-FDTD) method, simulation results demonstrate that the quality factors of microcavities are over 104. Besides, the refractive index sensitivity is 100 nm/RIU with the detection limit approximately of 5.63×10-4. Meanwhile, the radius vertical graded photonic crystal with more interlaced cavities is more suited to ultracompact optical monolithic integration.

  12. Determination of recombination radius in Si for binary collision approximation codes

    NASA Astrophysics Data System (ADS)

    Vizkelethy, Gyorgy; Foiles, Stephen M.

    2016-03-01

    Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this "displacement energy" is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets, such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. The calculations showed that a single recombination radius of ∼7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.

  13. Trace metal analysis following locked volar plating for unstable fractures of the distal radius.

    PubMed

    Rylander, Lucas S; Milbrandt, Joseph C; Armington, Evan; Wilson, Marty; Olysav, David J

    2010-01-01

    An increase in the utilization of metallic devices for orthopaedic interventions from joint replacement to fracture fixation has raised concern over local metal ion release and possible systemic sequelae due to dissemination of these ions. Our purpose was to determine whether serum titanium concentrations were elevated in patients who had previously received a locked volar distal radius plate. Our hypothesis was that the simple presence of titanium alone in a relatively fixed implant was not enough to raise serum titanium levels. Twenty-two potential subjects who had received a volar locked distal radius plate were identified through review of a single surgeon's operative logs. Eleven met inclusion criteria. Serum titanium levels were measured in these subjects and compared to both current and historical control groups. We found no difference between controls and our study group with the exception of one control subject who is employed as a welder. This is in contrast to previous studies from our institution which found increases in titanium levels in hip and spine implants. We conclude that a locking titanium volar distal radius plate does not raise serum titanium levels in this population. PMID:21045978

  14. Cartilage defect of lunate facet of distal radius after fracture treated with osteochondral autograft from knee.

    PubMed

    Mall, Nathan A; Rubin, David A; Brophy, Robert H; Goldfarb, Charles A

    2013-07-01

    We describe using an osteochondral autograft from the lateral femoral condyle of the knee to treat a symptomatic die-punch lesion of the lunate facet of the distal radius. An 18-year-old woman who sustained a distal radius fracture remained symptomatic after nonoperative treatment and diagnostic wrist arthroscopy with microfracture. We used a commercial harvesting system to transfer an osteochondral plug into a cartilage defect involving the lunate facet of the distal radius. At final follow-up, 34 months after surgery, the patient was assessed with a visual analog scale (VAS) and Disabilities of the Arm, Shoulder, and Hand (DASH) scores and with a comprehensive physical examination. Magnetic resonance arthrogram was used to assess articular cartilage status. VAS pain score improved from 7 before surgery to 0.5 after surgery. Postoperative DASH score was 0. The patient was asymptomatic and had satisfactory wrist motion without mechanical symptoms. Magnetic resonance arthrogram showed the transferred osteochondral autograft incorporated in excellent position. PMID:24078947

  15. Tool holder for preparation and inspection of a radiused edge cutting tool

    DOEpatents

    Asmanes, Charles

    1979-01-01

    A tool holding fixture is provided for removably holding a radiused edge cutting tool in a tool edge lapping apparatus. The fixture allows the operator to preset the lapping radius and angle before the tool holder is placed in the fixture and the holder may be removed from the lapping apparatus to inspect the tool and simply replaced in the fixture to continue lapping in accordance with a precise alignment without realignment of the tool relative to the lap. The tool holder includes a pair of self aligning bearings in the form of precision formed steel balls connected together by a rigid shaft. The tool is held by an arm extending from the shaft and the balls set in fixed position bearing cups and the holder is oscillated back and forth about a fixed axis of rotation to lap the tool radius by means of a reversibly driven belt-pulley arrangement coupled to the shaft between the bearings. To temporarily remove the holder, the drive belt is slipped over the rearward end of the holder and the holder is lifted out of the bearing cups.

  16. On the Radius Anomaly of Hot Jupiters: Reexamination of the Possibility and Impact of Layered Convection

    NASA Astrophysics Data System (ADS)

    Kurokawa, Hiroyuki; Inutsuka, Shu-ichiro

    2015-12-01

    Observations have revealed that a significant number of hot Jupiters have anomalously large radii. Layered convection induced by compositional inhomogeneity has been proposed to account for the radius anomaly of hot Jupiters. To reexamine the impact of the compositional inhomogeneity, we perform an evolutionary calculation by determining the convection regime at each evolutionary time step according to the criteria from linear analyses. It is shown that the impact is limited in the case of the monotonic gradient of heavy-element abundance. The layered convection is absent for the first 1 Gyr from the formation of hot Jupiters, and instead overturning convection develops. The superadiabaticity of the temperature gradient is limited by the neutrally stable state for the Ledoux stability criterion. The effect of the increased mass of heavy elements essentially compensates the effect of the delayed contraction on the planetary radius caused by compositional inhomogeneity. In addition, even in the case where the layered convection is artificially imposed, this mechanism requires extremely thin layers (˜101-103 cm) to account for the observed radius anomaly. The long-term stability of such thin layers remains to be studied. Therefore, if the criteria adopted in this paper are adequate, it might be difficult to explain the inflated radii of hot Jupiters by the monotonic gradient of heavy-element abundance alone.

  17. Interior Phase Transformations and Mass-Radius Relationships of Silicon-Carbon Planets

    NASA Astrophysics Data System (ADS)

    Wilson, Hugh F.; Militzer, Burkhard

    2014-09-01

    Planets such as 55 Cancri e orbiting stars with a high carbon-to-oxygen ratio may consist primarily of silicon and carbon, with successive layers of carbon, silicon carbide, and iron. The behavior of silicon-carbon materials at the extreme pressures prevalent in planetary interiors, however, has not yet been sufficiently understood. In this work, we use simulations based on density functional theory to determine high-pressure phase transitions in the silicon-carbon system, including the prediction of new stable compounds with Si2C and SiC2 stoichiometry at high pressures. We compute equations of state for these silicon-carbon compounds as a function of pressure, and hence derive interior structural models and mass-radius relationships for planets composed of silicon and carbon. Notably, we predict a substantially smaller radius for SiC planets than in previous models, and find that mass radius relationships for SiC planets are indistinguishable from those of silicate planets. We also compute a new equation of state for iron. We rederive interior models for 55 Cancri e and are able to place more stringent restrictions on its composition.

  18. The Distance, Mass, and Radius of the Neutron Star in 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Güver, Tolga; Özel, Feryal; Cabrera-Lavers, Antonio; Wroblewski, Patricia

    2010-04-01

    Low-mass X-ray binaries (LMXBs) that show thermonuclear bursts are ideal sources for constraining the equation of state of neutron star matter. The lack of independent distance measurements for most of these sources, however, prevent a systematic exploration of the masses and radii of the neutron stars, hence limiting the equation-of-state studies. We present here a measurement of the distance to the LMXB 4U 1608-52 that is based on the study of the interstellar extinction toward the source. We first model the individual absorption edges of the elements Ne and Mg in the high-resolution X-ray spectrum obtained with XMM-Newton. We then combine this information with a measurement of the run of reddening with distance using red clump stars and determine a minimum distance to the source of 3.9 kpc, with a most probable value of 5.8 kpc. Finally, we analyze time-resolved X-ray spectra of Type I X-ray bursts observed from this source to measure the mass and the radius of the neutron star. We find a mass of M = 1.74 ± 0.14 M sun and a radius of R = 9.3 ± 1.0 km, respectively. This mass and radius can be achieved by several multi-nucleon equations of state.

  19. THE DISTANCE, MASS, AND RADIUS OF THE NEUTRON STAR IN 4U 1608-52

    SciTech Connect

    Guever, Tolga; Oezel, Feryal; Wroblewski, Patricia; Cabrera-Lavers, Antonio

    2010-04-01

    Low-mass X-ray binaries (LMXBs) that show thermonuclear bursts are ideal sources for constraining the equation of state of neutron star matter. The lack of independent distance measurements for most of these sources, however, prevent a systematic exploration of the masses and radii of the neutron stars, hence limiting the equation-of-state studies. We present here a measurement of the distance to the LMXB 4U 1608-52 that is based on the study of the interstellar extinction toward the source. We first model the individual absorption edges of the elements Ne and Mg in the high-resolution X-ray spectrum obtained with XMM-Newton. We then combine this information with a measurement of the run of reddening with distance using red clump stars and determine a minimum distance to the source of 3.9 kpc, with a most probable value of 5.8 kpc. Finally, we analyze time-resolved X-ray spectra of Type I X-ray bursts observed from this source to measure the mass and the radius of the neutron star. We find a mass of M = 1.74 +- 0.14 M{sub sun} and a radius of R = 9.3 +- 1.0 km, respectively. This mass and radius can be achieved by several multi-nucleon equations of state.

  20. Monitoring the Solar Radius from the Royal Observatory of the Spanish Navy since 1773

    NASA Astrophysics Data System (ADS)

    Vaquero, J. M.; Gallego, M. C.; Ruiz-Lorenzo, J. J.; López-Moratalla, T.; Carrasco, V. M. S.; Aparicio, A. J. P.; González-González, F. J.; Hernández-García, E.

    2016-08-01

    The solar diameter has been monitored at the Royal Observatory of the Spanish Navy (today the Real Instituto y Observatorio de la Armada: ROA) almost continuously since its creation in 1753 ( i.e. during the past 250 years). After a painstaking effort to collect data in the historical archive of this institution, we present here the data of the solar semidiameter from 1773 to 2006, making up an extensive new database for solar-radius measurements, which can be considered. We have calculated the solar semidiameter from the transit times registered by the observers (except for values of the solar radius from the modern Danjon astrolabe, which were published by ROA). These data were analysed to reveal any significant long-term trends, but no such trends were found. Therefore, the data sample confirms the constancy of the solar diameter during the past 250 years (approximately) within instrumental and methodological limits. Moreover, no relationship between solar radius and the new sunspot-number index has been found from measurements of the ROA. Finally, the mean value for the solar semidiameter (with one standard deviation) calculated from the observations made in the ROA (1773 - 2006), after applying corrections for refraction and diffraction, is equal to 958.87^''±1.77^''.

  1. Argon gas-puff radius optimiaztion for Saturn operating in the long-pulse mode.

    SciTech Connect

    Apruzese, John P.; Jackson, S. L.; Commisso, Robert J.; Weber, Bruce V.; Mosher, Daniel A.

    2010-06-01

    Argon gas puff experiments using the long pulse mode of Saturn (230-ns rise time) have promise to increase the coupled energy and simplify operations because the voltage is reduced in vacuum and the forward-going energy is higher for the same Marx charge. The issue addressed in this work is to determine if the 12-cm-diameter triple nozzle used in Saturn long-pulse-mode experiments to date provides maximum K-shell yield, or if a different-radius nozzle provides additional radiation. Long-pulse implosions are modeled by starting with measured density distributions from the existing 12-cm-diameter nozzle, and then varying the outer radius in an implosion-energy-conserving self-similar manner to predict the gas-puff diameter that results in the maximum K-shell yield. The snowplow-implosions and multi-zone radiation transport models used in the analysis are benchmarked against detailed measurements from the 12-cm-diameter experiments. These calculations indicate that the maximum K-shell emission is produced with very nearly the existing nozzle radius.

  2. THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES. II. DETAILED ABUNDANCE RATIOS AT LARGE RADIUS

    SciTech Connect

    Greene, Jenny E.; Murphy, Jeremy D.; Graves, Genevieve J.; Gunn, James E.; Raskutti, Sudhir; Comerford, Julia M.; Gebhardt, Karl

    2013-10-20

    We study the radial dependence in stellar populations of 33 nearby early-type galaxies with central stellar velocity dispersions σ{sub *} ∼> 150 km s{sup –1}. We measure stellar population properties in composite spectra, and use ratios of these composites to highlight the largest spectral changes as a function of radius. Based on stellar population modeling, the typical star at 2R{sub e} is old (∼10 Gyr), relatively metal-poor ([Fe/H] ≈ –0.5), and α-enhanced ([Mg/Fe] ≈ 0.3). The stars were made rapidly at z ≈ 1.5-2 in shallow potential wells. Declining radial gradients in [C/Fe], which follow [Fe/H], also arise from rapid star formation timescales due to declining carbon yields from low-metallicity massive stars. In contrast, [N/Fe] remains high at large radius. Stars at large radius have different abundance ratio patterns from stars in the center of any present-day galaxy, but are similar to average Milky Way thick disk stars. Our observations are thus consistent with a picture in which the stellar outskirts are built up through minor mergers with disky galaxies whose star formation is truncated early (z ≈ 1.5-2)

  3. Measure the Earth's Radius and the Speed of Light with Simple and Inexpensive Computer-Based Experiments

    ERIC Educational Resources Information Center

    Martin, Michael J.

    2004-01-01

    With new and inexpensive computer-based methods, measuring the speed of light and the Earth's radius--historically difficult endeavors--can be simple enough to be tackled by high school and college students working in labs that have limited budgets. In this article, the author describes two methods of estimating the Earth's radius using two…

  4. Modeling distributions of flying insects: Effective attraction radius of pheromone in two and three dimensions. Journal of Theoretical Biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effective attraction radius (EAR) of an attractive pheromone-baited trap was defined as the radius of a passive “sticky” sphere that would intercept the same number of flying insects as the attractant. The EAR for a particular attractant and insect species in nature is easily determined by a cat...

  5. Distal radius anatomy applied to the treatment of wrist fractures by plate: a review of recent literature

    PubMed Central

    Obert, Laurent; Loisel, François; Gasse, Nicolas; Lepage, Daniel

    2015-01-01

    Few studies on the anatomy of the radial epiphysis have been published in the past 10 years. However, with the availability of new intra- and extra-medullary implants and the recent rash of avoidable iatrogenic injuries, now is the time for a more detailed description of the metaphyseal-epiphyseal regions in the distal radius. Published studies on distal radius anatomy in recent years have focused on three aspects: distal limit and watershed line, dorsal tubercle, and wrist columns. Furthermore, a fresh look at distal radius biomechanics shows that the loads experienced by the distal radius vary greatly. This information should be taken into account during volar plating of distal radius fractures. PMID:27163070

  6. Characterization of exoplanets from their formation. II. The planetary mass-radius relationship

    NASA Astrophysics Data System (ADS)

    Mordasini, C.; Alibert, Y.; Georgy, C.; Dittkrist, K.-M.; Klahr, H.; Henning, T.

    2012-11-01

    Context. The research of extrasolar planets has entered an era in which we characterize extrasolar planets. This has become possible with measurements of the radii of transiting planets and of the luminosity of planets observed by direct imaging. Meanwhile, the precision of radial velocity surveys makes it possible to discover not only giant planets but also very low-mass ones. Aims: Uniting all these different observational constraints into one coherent picture to better understand planet formation is an important and simultaneously difficult undertaking. One approach is to develop a theoretical model that can make testable predictions for all these observational techniques. Our goal is to have such a model and use it in population synthesis calculations. Methods: In a companion paper, we described how we have extended our formation model into a self-consistently coupled formation and evolution model. In this second paper, we first continue with the model description. We describe how we calculate the internal structure of the solid core of the planet and include radiogenic heating. We also introduce an upgrade of the protoplanetary disk model. Finally, we use the upgraded model in population synthesis calculations. Results: We present how the planetary mass-radius relationship of planets with primordial H2/He envelopes forms and evolves in time. The basic shape of the mass-radius relationship can be understood from the core accretion model. Low-mass planets cannot bind massive envelopes, while super-critical cores necessarily trigger runway gas accretion, leading to "forbidden" zones in the M - R plane. For a given mass, there is a considerable diversity of radii, mainly due to different bulk compositions, reflecting different formation histories. We compare the synthetic M - R plane with the observed one, finding good agreement for a > 0.1 AU. The synthetic planetary radius distribution is characterized by a strong increase towards small R and a second, lower

  7. THE MASS-RADIUS RELATION FOR 65 EXOPLANETS SMALLER THAN 4 EARTH RADII

    SciTech Connect

    Weiss, Lauren M.; Marcy, Geoffrey W.

    2014-03-01

    We study the masses and radii of 65 exoplanets smaller than 4 R {sub ⊕} with orbital periods shorter than 100 days. We calculate the weighted mean densities of planets in bins of 0.5 R {sub ⊕} and identify a density maximum of 7.6  g cm{sup –3} at 1.4 R {sub ⊕}. On average, planets with radii up to R {sub P} = 1.5 R {sub ⊕} increase in density with increasing radius. Above 1.5 R {sub ⊕}, the average planet density rapidly decreases with increasing radius, indicating that these planets have a large fraction of volatiles by volume overlying a rocky core. Including the solar system terrestrial planets with the exoplanets below 1.5 R {sub ⊕}, we find ρ{sub P} = 2.43 + 3.39(R {sub P}/R {sub ⊕}) g cm{sup –3} for R {sub P} < 1.5 R {sub ⊕}, which is consistent with rocky compositions. For 1.5 ≤ R {sub P}/R {sub ⊕} < 4, we find M {sub P}/M {sub ⊕} = 2.69(R {sub P}/R {sub ⊕}){sup 0.93}. The rms of planet masses to the fit between 1.5 and 4 R {sub ⊕} is 4.3 M {sub ⊕} with reduced χ{sup 2} = 6.2. The large scatter indicates a diversity in planet composition at a given radius. The compositional diversity can be due to planets of a given volume (as determined by their large H/He envelopes) containing rocky cores of different masses or compositions.

  8. The Impact of Subsampling on MODIS Level-3 Statistics of Cloud Optical Thickness and Effective Radius

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros

    2004-01-01

    The MODIS Level-3 optical thickness and effective radius cloud product is a gridded l deg. x 1 deg. dataset that is derived from aggregation and subsampling at 5 km of 1 km, resolution Level-2 orbital swath data (Level-2 granules). This study examines the impact of the 5 km subsampling on the mean, standard deviation and inhomogeneity parameter statistics of optical thickness and effective radius. The methodology is simple and consists of estimating mean errors for a large collection of Terra and Aqua Level-2 granules by taking the difference of the statistics at the original and subsampled resolutions. It is shown that the Level-3 sampling does not affect the various quantities investigated to the same degree, with second order moments suffering greater subsampling errors, as expected. Mean errors drop dramatically when averages over a sufficient number of regions (e.g., monthly and/or latitudinal averages) are taken, pointing to a dominance of errors that are of random nature. When histograms built from subsampled data with the same binning rules as in the Level-3 dataset are used to reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The results in this paper provide guidance to users of MODIS Level-3 optical thickness and effective radius cloud products on the range of errors due to subsampling they should expect and perhaps account for, in scientific work with this dataset. In general, subsampling errors should not be a serious concern when moderate temporal and/or spatial averaging is performed.

  9. Devising for a distal radius fracture fixation focus on the intra-articular volar dislocated fragment

    PubMed Central

    Sugiyama, Yoichi; Naito, Kiyohito; Obata, Hiroyuki; Kinoshita, Mayuko; Aritomi, Kentaro; Kaneko, Kazuo; Obayashi, Osamu

    2016-01-01

    Introduction Distal radius fracture (DRF) accompanied by intra-articular volar displaced fragment is difficult to reduce. This volar fragment remains when treated with a simple buttress effect alone, and V-shaped deformity may remain on the articular surface. We attempted to improve dorsal rotational deviation of volar fragment by osteosynthesis applying the condylar stabilizing technique. We report the surgical procedure and results. Materials and methods The subjects were 10 cases of DRF accompanied by intra-articular volar displaced fragments surgically treated (mean age: 69 years old). The fracture type based on the AO classification was B3 in 1 case, C1 in 4, C2 in 2, and C3 in 3 cases. All cases were treated with a volar locking plate. Reduction was applied utilizing the angle stability of the volar locking plate, similarly to the condylar stabilizing technique. On the final follow-up, we evaluated clinical and radiologic evaluation. To evaluate V-shaped valley deformity of the articular surface, the depth of the lunate fossa of the radius was measured using computed tomography (CT). Results The duration of postoperative follow-up was 11 (6–24) months. Mayo wrist score was 93 (Excellent in 10 cases). No general complication associated with a volar locking plate was noted in any case. Volar tilt on radiography were 11° (4–14). The depth of the lunate fossa on CT was 3.9 ± 0.7 mm in the patients. Conclusion This procedure may be useful for osteosynthesis of distal radius fracture accompanied by intra-articular volar displaced fragments. PMID:27144008

  10. Probabilistic Mass-Radius Relationship for Sub-Neptune-Sized Planets

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie; Rogers, Leslie A.; Ford, Eric B.

    2016-07-01

    The Kepler Mission has discovered thousands of planets with radii <4 {R}\\oplus , paving the way for the first statistical studies of the dynamics, formation, and evolution of these sub-Neptunes and super-Earths. Planetary masses are an important physical property for these studies, and yet the vast majority of Kepler planet candidates do not have theirs measured. A key concern is therefore how to map the measured radii to mass estimates in this Earth-to-Neptune size range where there are no Solar System analogs. Previous works have derived deterministic, one-to-one relationships between radius and mass. However, if these planets span a range of compositions as expected, then an intrinsic scatter about this relationship must exist in the population. Here we present the first probabilistic mass–radius relationship (M–R relation) evaluated within a Bayesian framework, which both quantifies this intrinsic dispersion and the uncertainties on the M–R relation parameters. We analyze how the results depend on the radius range of the sample, and on how the masses were measured. Assuming that the M–R relation can be described as a power law with a dispersion that is constant and normally distributed, we find that M/{M}\\oplus =2.7{(R/{R}\\oplus )}1.3, a scatter in mass of 1.9{M}\\oplus , and a mass constraint to physically plausible densities, is the “best-fit” probabilistic M–R relation for the sample of RV-measured transiting sub-Neptunes (R pl < 4 {R}\\oplus ). More broadly, this work provides a framework for further analyses of the M–R relation and its probable dependencies on period and stellar properties.

  11. Distal Radius Volar Rim Fracture Fixation Using DePuy-Synthes Volar Rim Plate.

    PubMed

    Kachooei, Amir Reza; Tarabochia, Matthew; Jupiter, Jesse B

    2016-03-01

    Background To assess the results of distal radius fractures with the involvement of the volar rim fixed with the DePuy-Synthes Volar Rim Plate. Case Description We searched for the patients with volar rim fracture and/or volar rim fractures as part of a complex fracture fixed with a volar rim plate. Ten patients met the inclusion criteria: three patients with type 23B3, six patients with type 23C, and one patient with very distal type 23A. The mean follow-up was 14 months (range: 2-26). Fractures healed in all patients. Of the three patients with isolated volar rim fractures (type 23B3), two patients had no detectable deficits in motion. These patients had an average Gartland and Werley score of 9 (range: 2-14). Of the other seven patients (six with type 23C and one with type 23A fracture), three patients healed with full range of motion and four had some deficits in range of motion. Two patients had excellent results, three had good results, and two had fair results using the Gartland and Werley categorical rating. One patient healed with a shortened radius and ulnar impingement requiring a second surgery for ulnar head resection arthroplasty. Literature Review Results after nonoperative treatment of volar rim fractures are not satisfactory and often require subsequent corrective osteotomy. Satisfactory outcomes are achieved when the fragments are well reduced and secured regardless of the device type. Clinical Relevance Volar rim plates give an adequate buttress of the volar radius distal to volar projection of the lunate facet and do not interfere with wrist mobility. Furthermore, the dorsal fragments can be fixed securely through the volar approach eliminating the need for a secondary posterior incision. However, patients should be informed of the potential problems and the need to remove the plate if symptoms develop. PMID:26855829

  12. MRI of bone marrow in the distal radius: in vivo precision of effective transverse relaxation times

    NASA Technical Reports Server (NTRS)

    Grampp, S.; Majumdar, S.; Jergas, M.; Lang, P.; Gies, A.; Genant, H. K.

    1995-01-01

    The effective transverse relaxation time T2* is influenced by the presence of trabecular bone, and can potentially provide a measure of bone density as well as bone structure. We determined the in vivo precision of T2* in repeated bone marrow measurements. The T2* measurements of the bone marrow of the distal radius were performed twice within 2 weeks in six healthy young volunteers using a modified water-presaturated 3D Gradient-Recalled Acquisition at Steady State (GRASS) sequence with TE 7, 10, 12, 20, and 30; TR 67; flip angle (FA) 90 degrees. An axial volume covering a length of 5.6 cm in the distal radius was measured. Regions of interest (ROIs) were determined manually and consisted of the entire trabecular bone cross-section extending proximally from the radial subchondral endplate. Reproducibility of T2* and area measurements was expressed as the absolute precision error (standard deviation [SD] in ms or mm2) or as the relative precision error (SD/mean x 100, or coefficient of variation [CV] in %) between the two-point measurements. Short-term precision of T2* and area measurements varied depending on section thickness and location of the ROI in the distal radius. Absolute precision errors for T2* times were between 1.3 and 2.9 ms (relative precision errors 3.8-9.5 %) and for area measurements between 20 and 55 mm2 (relative precision errors 5.1-16.4%). This MR technique for quantitative assessment of trabecular bone density showed reasonable reproducibility in vivo and is a promising future tool for the assessment of osteoporosis.

  13. A Galactic ring of minimum stellar density near the solar orbit radius

    NASA Astrophysics Data System (ADS)

    Barros, D. A.; Lépine, J. R. D.; Junqueira, T. C.

    2013-11-01

    We analyse the secular effects of a long-lived Galactic spiral structure on the stellar orbits with mean radii close to the corotation resonance. By test-particle simulations and different spiral potential models with parameters constrained on observations, we verified the formation of a minimum with amplitude ˜30-40 per cent of the background disc stellar density at corotation. Such a minimum is formed by the secular angular momentum transfer between stars and the spiral density wave on both sides of corotation. We demonstrate that the secular loss (gain) of angular momentum and decrease (increase) of mean orbital radius of stars just inside (outside) corotation can counterbalance the opposite trend of exchange of angular momentum shown by stars orbiting the librational points L4/5 at the corotation circle. Such secular processes actually allow steady spiral waves to promote radial migration across corotation. We propose some pieces of observational evidence for the minimum stellar density in the Galactic disc, such as its direct relation to the minimum in the observed rotation curve of the Galaxy at the radius r ˜ 9 kpc (for R0 = 7.5 kpc), as well as its association with a minimum in the distribution of Galactic radii of a sample of open clusters older than 1 Gyr. The closeness of the solar orbit radius to the corotation resonance implies that the solar orbit lies inside a ring of minimum surface density (stellar + gas). This also implies a correction to larger values for the estimated total mass of the Galactic disc, and consequently, a greater contribution of the disc component to the inner rotation curve of the Galaxy.

  14. Nearly arc-length tool path generation and tool radius compensation algorithm research in FTS turning

    NASA Astrophysics Data System (ADS)

    Zhao, Minghui; Zhao, Xuesen; Li, Zengqiang; Sun, Tao

    2014-08-01

    In the non-rotational symmetrical microstrcture surfaces generation using turning method with Fast Tool Servo(FTS), non-uniform distribution of the interpolation data points will lead to long processing cycle and poor surface quality. To improve this situation, nearly arc-length tool path generation algorithm is proposed, which generates tool tip trajectory points in nearly arc-length instead of the traditional interpolation rule of equal angle and adds tool radius compensation. All the interpolation points are equidistant in radial distribution because of the constant feeding speed in X slider, the high frequency tool radius compensation components are in both X direction and Z direction, which makes X slider difficult to follow the input orders due to its large mass. Newton iterative method is used to calculate the neighboring contour tangent point coordinate value with the interpolation point X position as initial value, in this way, the new Z coordinate value is gotten, and the high frequency motion components in X direction is decomposed into Z direction. Taking a typical microstructure with 4μm PV value for test, which is mixed with two 70μm wave length sine-waves, the max profile error at the angle of fifteen is less than 0.01μm turning by a diamond tool with big radius of 80μm. The sinusoidal grid is machined on a ultra-precision lathe succesfully, the wavelength is 70.2278μm the Ra value is 22.81nm evaluated by data points generated by filtering out the first five harmonics.

  15. Combining ergometer exercise and artificial gravity in a compact-radius centrifuge

    NASA Astrophysics Data System (ADS)

    Diaz, Ana; Trigg, Chris; Young, Laurence R.

    2015-08-01

    Humans experience physiological deconditioning during space missions, primarily attributable to weightlessness. Some of these adverse consequences include bone loss, muscle atrophy, sensory-motor deconditioning, and cardiovascular alteration, which may lead to orthostatic intolerance when astronauts return to Earth. Artificial gravity could provide a comprehensive countermeasure capable of challenging all the physiological systems at once, particularly if combined with exercise, thereby maintaining overall health during extended exposure to weightlessness. A new Compact Radius Centrifuge (CRC) platform was designed and built on the existing Short Radius Centrifuge (SRC) at the Massachusetts Institute of Technology (MIT). The centrifuge has been constrained to a radius of 1.4 m, the upper radial limit for a centrifuge to fit within an International Space Station (ISS) module without extensive structural alterations. In addition, a cycle ergometer has been added for exercise during centrifugation. The CRC now includes sensors of foot forces, cardiovascular parameters, and leg muscle electromyography. An initial human experiment was conducted on 12 subjects to analyze the effects of different artificial gravity levels (0 g, 1 g, and 1.4 g, measured at the feet) and ergometer exercise intensities (25 W warm-up, 50 W moderate and 100 W vigorous) on the musculoskeletal function as well as motion sickness and comfort. Foot forces were measured during the centrifuge runs, and subjective comfort and motion sickness data were gathered after each session. Preliminary results indicate that ergometer exercise on a centrifuge may be effective in improving musculoskeletal function. The combination is well tolerated and motion sickness is minimal. The MIT CRC is a novel platform for future studies of exercise combined with artificial gravity. This combination may be effective as a countermeasure to space physiological deconditioning.

  16. Determination of recombination radius in Si for binary collision approximation codes

    DOE PAGESBeta

    Vizkelethy, Gyorgy; Foiles, Stephen M.

    2015-09-11

    Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this “displacement energy” is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets,more » such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. As a result, the calculations showed that a single recombination radius of ~7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.« less

  17. THE RADIUS DISCREPANCY IN LOW-MASS STARS: SINGLE VERSUS BINARIES

    SciTech Connect

    Spada, F.; Demarque, P.; Kim, Y.-C.; Sills, A.

    2013-10-20

    A long-standing issue in the theory of low-mass stars is the discrepancy between predicted and observed radii and effective temperatures. In spite of the increasing availability of very precise radius determinations from eclipsing binaries and interferometric measurements of radii of single stars, there is no unanimous consensus on the extent (or even the existence) of the discrepancy and on its connection with other stellar properties (e.g., metallicity, magnetic activity). We investigate the radius discrepancy phenomenon using the best data currently available (accuracy ∼< 5%). We have constructed a grid of stellar models covering the entire range of low-mass stars (0.1-1.25 M{sub ☉}) and various choices of the metallicity and mixing length parameter, α. We used an improved version of the Yale Rotational stellar Evolution Code, implementing surface boundary conditions based on the most up-to-date PHOENIX atmosphere models. Our models are in good agreement with others in the literature and improve and extend the low mass end of the Yale-Yonsei isochrones. Our calculations include rotation-related quantities, such as moments of inertia and convective turnover timescales, useful in studies of magnetic activity and rotational evolution of solar-like stars. Consistent with previous works, we find that both binaries and single stars have radii inflated by about 3% with respect to the theoretical models; among binaries, the components of short orbital period systems are found to be the most deviant. We conclude that both binaries and single stars are comparably affected by the radius discrepancy phenomenon.

  18. CLINICAL ASSESSMENT OF THE 1/3rd RADIUS USING A NEW DESKTOP ULTRASONIC BONE DENSITOMETER

    PubMed Central

    Stein, Emily M.; Rosete, Fernando; Young, Polly; Kamanda-Kosseh, Mafo; McMahon, Donald J.; Luo, Gangming; Kaufman, Jonathan J.; Shane, Elizabeth; Siffert, Robert S.

    2012-01-01

    The objectives of this study were to evaluate the capability of a novel ultrasound device to clinically estimate bone mineral density (BMD) at the 1/3rd radius. The device rests on a desktop and is portable, and permits real-time evaluation of the radial BMD. The device measures two (2) net time delay (NTD) parameters, NTDDW and NTDCW. NTDDW is defined as the difference between the transit time of an ultrasound pulse to travel through soft-tissue, cortex and medullary cavity, and the transit time through soft tissue only of equal overall distance. NTDCW is defined as the difference between the transit time of an ultrasound pulse to travel through soft-tissue and cortex only, and the transit time through soft tissue only again of equal overall distance. The square root of the product of these two parameters is a measure of the radial BMD at the 1/3rd location as measured by dual-energy x-ray absorptiometry (DXA). A clinical IRB-approved study measured ultrasonically sixty adults at the 1/3rd radius. BMD was also measured at the same anatomical site and time using DXA. A linear regression using NTD produced a linear correlation coefficient of 0.93 (P<0.001). These results are consistent with previously reported simulation and in vitro studies. In conclusion, although x-ray methods are effective in bone mass assessment, osteoporosis remains one of the largest undiagnosed and under-diagnosed diseases in the world today. The research described here should enable significant expansion of diagnosis and monitoring of osteoporosis through a desktop device that ultrasonically assesses bone mass at the 1/3rd radius. PMID:23312957

  19. Prophylactic corticosteroid injection in ulnar wrist pain in distal radius fracture

    PubMed Central

    Saied, Alireza; Heshmati, Afshin; Sadeghifar, Amirreza; Mousavi, Alia Ayatollahi; Arabnejad, Fateme; Pooladsanj, Alireza

    2015-01-01

    Background: Ulnar sided wrist pain is one of the most common complications of distal radius fractures. The simplest method for decreasing pain for this affliction is corticosteroid injection. The present study was designed to assess the effect of corticosteroid injection in the prevention of ulnar sided wrist pain. Materials and Methods: In this clinical trial patients with distal radius fractures scheduled for closed reduction and percutaneous pin fixation were divided into control and corticosteroid groups. In the corticosteroid group, the patient received a single betamethasone injection in the dorsoulnar side of the wrist before reduction, while the control group received placebo. The patients were to be followed for at least 6 months. Results: 82 patients were followed for 6 months. At the end of the 3 months followup the difference between the two groups about the number of individuals without ulnar sided wrist pain was statistically significant (P = 0.038), so that less patients in the control group were painless, while this was not the case in the 6 months followup (P = 0.507), but in the both time frames the mean grip power, visual analog pain score and the disabilities of the arm, shoulder and hand (DASH) score showed statistically significant difference between the two groups, so that the corticosteroid groups demonstrated greater power grip and less scores in pain and DASH (P < 0.05). Conclusion: Based on the findings of the present study it seems that prophylactic corticosteroid injection will be associated with a decrease in the severity of wrist pain in patients with acute distal radius fractures. With regard to the decrease in the number of painless individuals, it seems that the decrease is not persistent. Overall the need for a study with longer followup is obvious. PMID:26229158

  20. The cadaveric anatomy of the distal radius: implications for the use of volar plates

    PubMed Central

    McCann, PA; Clarke, D; Amirfeyz, R; Bhatia, R

    2012-01-01

    INTRODUCTION Fractures of the distal radius are common upper limb injuries, representing a substantial proportion of the trauma workload in orthopaedic units. With ever increasing advancements in implant technology, operative intervention is becoming more frequent. As growing numbers of surgeons are performing operative fixation of distal radial fractures, an accurate understanding of the relevant surgical anatomy is paramount. The flexor carpi radialis (FCR) tendon forms the cornerstone of the Henry approach to the volar cortex of the distal radius. A number of key neurovascular structures around the wrist are potentially at risk during this approach, especially when the FCR is mobilised and placed under retractors. METHODS In order to clarify the safe margins of the FCR approach, ten fresh frozen human cadaver limbs were dissected. The location of the radial artery, the median nerve, the palmar cutaneous branch of the median nerve and the superficial branch nerve were measured with respect to the FCR tendon. Measurements were taken on a centre-to-centre basis in the coronal plane at the watershed level. In addition, the distances between the tendons of brachioradialis, abductor pollicis longus and flexor pollicis longus, and the radial artery and median nerve were measured to create a complete picture of the anatomy of the FCR approach to the distal radius. RESULTS The structure most at risk was the palmar cutaneous branch of the median nerve. It was located on average 3.4mm from the FCR tendon. The radial artery and the main trunk of the median nerve were located 7.8mm and 8.9mm from the tendon. The superficial branch of the radial nerve was 24.4mm from the FCR tendon and 11.1mm from the brachioradialis tendon. CONCLUSIONS Operative intervention is not without complication. We believe a more accurate understanding of the surgical anatomy is key to the prevention of neurovascular damage arising from the surgical management of distal radial fractures. PMID

  1. Nerve Stimulator Guided Axillary Block in Painless Reduction of Distal Radius Fractures; a Randomized Clinical Trial

    PubMed Central

    Alimohammadi, Hossein; Shojaee, Majid; Samiei, Mehdi; Abyari, Somayeh; Vafaee, Ali; Mirkheshti, Alireza

    2013-01-01

    Introduction: Given the high prevalence of upper extremity fractures and increasing need to perform painless reduction in the emergency departments, the use of analgesic methods with fewer complications and more satisfaction appears to be essential. The aim of this study is comparison the nerve stimulator guided axillary block (NSAB) with intravenous sedation in induction of analgesia for painless reduction of distal radius fractures. Methods: In the present randomized clinical trial, 60 patients (18-70 years of age) suffered from distal radius fractures, were divided into two equal groups. One group received axillary nerve block by nerve stimulator guidance and the other procedural sedation and analgesia (PSA) using midazolam/fentanyl. Onset of analgesia, duration of analgesic effect, total procedure time and pain scores were recorded using visual analogue scale (VAS) and the outcomes were compared. Chi-squared and student t test were performed to evaluate differences between two groups. Results: Sixty patients were randomly divided into two groups (83.3% male). The mean age of patients was 31 ±0.7 years. While the onset of analgesia was significantly longer in the NSAB group, the mean total time of procedure was shorter than PSA (p<0.001). The NSAB group needed a shorter post-operative observation time (P<0.001). Both groups experienced equal pain relief before, during and after procedure (p>0.05). Conclusion: It seems that shorter post-operative monitoring time and consequently lesser total time of procedure, make nerve stimulator guided axillary block as an appropriate alternative for procedural sedation and analgesia in painless reduction of distal radius fractures in emergency department. PMID:26495329

  2. [Efficacy of compound Xiatianwu tablets in elderly patients with osteoporotic distal radius fractures].

    PubMed

    Zhang, Bin; Chen, Gang; Li, Hai-long; Ren, Hai-peng; Yang, Tao; Chen, Min; Guo, Li-gang

    2015-06-01

    Xiatianwu tablet is based on the theory of traditional Chinese medicine (TCM), combined with modern TCM pharmacology and selected 33 famous traditional Chinese crude drugs to compose. Its recipe helps cure rheumatism, relax tendons, promote blood circulation to relieve pain, et al. Although Xiatianwu tablets are widely applied to clinical remedy such as rheumatic arthritis, lumbar disc hernia, osteoarthritis and so on, there is no report about its application in fracture. This article is to observe the efficacy of compound Xiatianwu tablets in elderly patients with osteoporotic distal radius fractures and its impact on the wrist function and complications. 180 elderly patients with osteoporotic distal radius fractures, from January 2011 to June 2014, were divided into observation group and control group by the method of random number table, each group had 90 cases. The control group were gave Caltrate D after manipulative reduction and plaster immobilization, observation group were treated with compound Xiatianwu tablets in the basis of the control group. Efficacy, wrist function and complication rates were observed in two groups after treatment. The excellent and good rate was 95.56% in observation group better than 77.78% in control group, the difference was statistically significant (χ2 = 4.712, P < 0.05). The complication rate in observation group was significantly lower compared with the control group (P < 0.05). This study shows that compound Xiatianwu tablets can improve the efficacy in elderly patients with osteoporotic distal radius fractures, reduce the incidence of complications and relieve the pain of patients which plays a significant role in improving the quality of life. PMID:26591540

  3. Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics

    PubMed Central

    Scerpella, T. A.

    2011-01-01

    Summary Development of optimal skeletal strength should decrease adult bone fragility. Nongymnasts (NON) were compared with girls exposed to gymnastics during growth (EX/GYM), using peripheral quantitative computed tomography (pQCT) to evaluate postmenarcheal bone geometry, density, and strength. Pre- and perimenarcheal gymnastic loading yields advantages in indices of postmenarcheal bone geometry and skeletal strength. Introduction Two prior studies using pQCT have reported bone density and size advantages in Tanner I/II gymnasts, but none describe gymnasts’ bone properties later in adolescence. The current study used pQCT to evaluate whether girls exposed to gymnastics during late childhood growth and perimenarcheal growth exhibited greater indices of distal radius geometry, density, and skeletal strength. Methods Postmenarcheal subjects underwent 4% and 33% distal radius pQCT scans, yielding: 1) vBMD and cross-sectional areas (CSA) (total bone, compartments); 2) polar strength-strain index; 3) index of structural strength in axial compression. Output was compared for EX/GYM vs. NON, adjusting for gynecological age and stature (maturity and body size), reporting means, standard errors, and significance. Results Sixteen postmenarcheal EX/GYM (age 16.7 years; gynecological age 3.4 years) and 13 NON (age 16.2 years; gynecological age 3.6 years) were evaluated. At both diaphysis and metaphysis, EX/GYM exhibited greater CSA and bone strength indices than NON; EX/GYM exhibited 79% larger intramedullary CSA than NON (p<0.05). EX/GYM had significantly higher 4% trabecular vBMD; differences were not detected for 4% total vBMD and 33% cortical vBMD. Conclusions Following pre-/perimenarcheal gymnastic exposure, relative to nongymnasts, postmenarcheal EX/GYM demonstrated greater indices of distal radius geometry and skeletal strength (metaphysis and diaphysis) with greater metaphyseal trabecular vBMD; larger intramedullary cavity size was particularly striking. PMID

  4. Measurement of Malrotation on Direct Radiography in Pediatric Distal Radius Fractures

    PubMed Central

    Duymus, Tahir Mutlu; Mutlu, Serhat; Komur, Baran; Mutlu, Harun; Yucel, Bulent; Parmaksizoglu, Atilla Sancar

    2016-01-01

    Abstract The aim of this prospective study was to test a mathematical method of measuring the malrotation of pediatric distal radius fractures (PDRFs) from direct radiographs. A total of 70 pediatric patients who presented at the Emergency Department with a distal radius fracture were evaluated. For 38 selected patients conservative treatment for PDRF was planned. Anteroposterior and lateral radiographs were taken of all of the patients for comparison before and after reduction. Radius bone diameters were measured in the coronal and sagittal planes on the healthy and fractured sides. Using the diameter values on the healthy side and the new diameter values on the fractured side in the rotation formula, the degree of malrotation between the fracture ends was calculated. The mean follow-up period was 13.5 months. Patients’ mean age was 10.00 ± 3.19 years (range, 4–12 years). The rotation degree in the sagittal plane significantly differed between the proximal (26.52°±2.84°) and distal fracture ends (20.96°±2.73°) (P = 0.001). The rotation degree in the coronal plane significantly differed between the proximal (26.70°±2.38°) and distal fracture ends (20.26°±2.86°) (P = 0.001). The net rotation deformity of the fracture line was determined to be 5.55°± 3.54° on lateral radiographs and 5.44°± 3.35° on anteroposterior radiographs, no significant difference was observed between measurements (P >0.05). The malrotation deformity in PDRF occurs with greater rotation in the proximal fragment than in the distal fragment. The net rotation deformity created between the fracture ends can be calculated on direct radiographs. Level of Evidence: Diagnostic, Level II PMID:27149480

  5. Surgery versus conservative treatment in patients with type A distal radius fractures, a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Fractures of the distal radius are common and account for an estimated 17% of all fractures diagnosed. Two-thirds of these fractures are displaced and require reduction. Although distal radius fractures, especially extra-articular fractures, are considered to be relatively harmless, inadequate treatment may result in impaired function of the wrist. Initial treatment according to Dutch guidelines consists of closed reduction and plaster immobilisation. If fracture redisplacement occurs, surgical treatment is recommended. Recently, the use of volar locking plates has become more popular. The aim of this study is to compare the functional outcome following surgical reduction and fixation with a volar locking plate with the functional outcome following closed reduction and plaster immobilisation in patients with displaced extra-articular distal radius fractures. Design This single blinded randomised controlled trial will randomise between open reduction and internal fixation with a volar locking plate (intervention group) and closed reduction followed by plaster immobilisation (control group). The study population will consist of all consecutive adult patients who are diagnosed with a displaced extra-articular distal radius fracture, which has been adequately reduced at the Emergency Department. The primary outcome (functional outcome) will be assessed by means of the Disability Arm Shoulder Hand Score (DASH). Secondary outcomes comprise the Patient-Rated Wrist Evaluation score (PRWE), quality of life, pain, range of motion, radiological parameters, complications and cross-overs. Since the treatment allocated involves a surgical procedure, randomisation status will not be blinded. However, the researcher assessing the outcome at one year will be unaware of the treatment allocation. In total, 90 patients will be included and this trial will require an estimated time of two years to complete and will be conducted in the Academic Medical Centre Amsterdam and

  6. Absence of Complete Finite-Larmor-Radius Stabilization in Extended MHD

    SciTech Connect

    Zhu, P.; Schnack, D. D.; Ebrahimi, F.; Zweibel, E. G.; Suzuki, M.; Hegna, C. C.; Sovinec, C. R.

    2008-08-22

    The dominant finite-Larmour-radius (FLR) stabilization effects on interchange instability can be retained by taking into account the ion gyroviscosity or the generalized Ohm's law in an extended MHD model. However, recent simulations and theoretical calculations indicate that complete FLR stabilization of the interchange mode may not be attainable by ion gyroviscosity or the two-fluid effect alone in the framework of extended MHD. For a class of plasma equilibria in certain finite-{beta} or nonisentropic regimes, the critical wave number for complete FLR stabilization tends toward infinity.

  7. Limits on the radius and a possible atmosphere of Charon from its 1980 stellar occultation

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Young, L. A.

    1991-01-01

    Walker's (1980) stellar occultation data for Charon are presently fit by a model which encompasses the possibility of differential refraction by an atmosphere, followed by a sudden occultation behind Charon's limb. The 601.5-km Charon radius lower limit thus obtained may serve as a constraint in models of the mutual event data; while the model fits considered support a Charonian atmosphere of indeterminate composition, time resolution is insufficient for certainty and the data may be interpretable as indications of either a slight extinction near Charon or an entirely unidentified and unassociated effect.

  8. Comments on finite Larmor radius models for ion cyclotron range of frequencies heating in tokamaks

    SciTech Connect

    Phillips, C.K.; Wilson, J.R.; Hosea, J.C.; Majeski, R. ); Smithe, D.N. )

    1994-12-01

    The accuracy of standard finite Larmor radius (FLR) models for wave propagation in the ion cyclotron range of frequencies (ICRF) is compared against full hot plasma models. For multiple ion species plasmas, the FLR model is shown to predict the presence of a spurious second harmonic ion--ion type resonance between the second harmonic cyclotron layers of two ion species. It is shown explicitly here that the spurious resonance is an artifact of the FLR models and that no absorption occurs in the plasma as a result of this resonance.''

  9. EXPLORATIONS INTO THE VIABILITY OF COUPLED RADIUS-ORBIT EVOLUTIONARY MODELS FOR INFLATED PLANETS

    SciTech Connect

    Ibgui, Laurent; Spiegel, David S.; Burrows, Adam E-mail: dsp@astro.princeton.edu

    2011-02-01

    The radii of some transiting extrasolar giant planets are larger than would be expected by the standard theory. We address this puzzle with the model of coupled radius-orbit tidal evolution developed by Ibgui and Burrows. The planetary radius is evolved self-consistently with orbital parameters, under the influence of tidal torques and tidal dissipation in the interior of the planet. A general feature of this model, which we have previously demonstrated in the generic case, is that a possible transient inflation of the planetary radius can temporarily interrupt its standard monotonic shrinking and can lead to the inflated radii that we observe. Importantly, we demonstrate that the use of a constant time lag model for the orbital evolution does not improve the accuracy of the evolutionary calculations. First, though formulated in a closed form by the equations of Hut, it is not valid at large eccentricities, as for the constant phase lag model truncated at the second order in eccentricity that we adopt; ambiguities in tidal theories are perhaps the most significant source of uncertainty in evolutionary calculations. Second, we find evolutionary tracks that fit within the 1{sigma} error bars, the radius, the eccentricity, and the semimajor axis of HD 209458b in its current estimated age range, using the constant time lag model, as we find fitting tracks with the constant phase lag model. Both models show that a bloated planet with a circular orbit may still be inflated, due to thermal inertia. We have modified our constant phase lag model to include an orbital period dependence of the tidal dissipation factor in the star, Q'{sub *} {proportional_to} P{sup {gamma}}, -1 {<=} {gamma} {<=} 1. For some inflated planets (WASP-6b and WASP-15b), we find fitting tracks; for another (TrES-4), we do not; and for others (WASP-4b and WASP-12b), we find fitting tracks, but our model might imply that we are observing the planets at a special time. Finally, we stress a 2-3 order

  10. Long-term evolution of broken wakefields in finite-radius plasmas.

    PubMed

    Lotov, K V; Sosedkin, A P; Petrenko, A V

    2014-05-16

    A novel effect of fast heating and charging a finite-radius plasma is discovered in the context of plasma wakefield acceleration. As the plasma wave breaks, most of its energy is transferred to plasma electrons. The electrons gain substantial transverse momentum and escape the plasma radially, which gives rise to a strong charge-separation electric field and azimuthal magnetic field around the plasma. The slowly varying field structure is preserved for hundreds of wakefield periods and contains (together with hot electrons) up to 80% of the initial wakefield energy. PMID:24877943

  11. Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering

    DOE PAGESBeta

    Abrahamyan, Sergey; Albataineh, Hisham; Aniol, Konrad; Armstrong, David; Armstrong, Whitney; Averett, Todd; Babineau, Benjamin; Barbieri, A.; Bellini, Vincenzo; Beminiwattha, Rakitha; et al

    2012-03-15

    We report the first measurement of the parity-violating asymmetry APV in the elastic scattering of polarized electrons from 208Pb. APV is sensitive to the radius of the neutron distribution (Rn). The result APV = 0.656 ± 0.060 (stat) ± 0.013 (syst) corresponds to a difference between the radii of the neutron and proton distributions Rn-Rp = 0.33-0.18+0.16 fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

  12. Comments on finite Larmor radius models for ion cyclotron range of frequencies heating in tokamaks

    SciTech Connect

    Phillips, C.K.; Wilson, J.R.; Hosea, J.C.; Majeski, R.; Smithe, D.N.

    1994-06-01

    The accuracy of standard finite Larmor radius (FLR) models for wave propagation in the ion cyclotron range of frequencies (ICRF) is compared against full hot plasma models. For multiple ion species plasmas, the FLR model is shown to predict the presence of a spurious second harmonic ion-ion type resonance between the second harmonic cyclotron layers of two ion species. It is shown explicitly here that the spurious resonance is an artifact of the FLR models and that no absorption occurs in the plasma as a result of this ``resonance.``

  13. Jeans instability of magnetized quantum plasma: Effect of viscosity, rotation and finite Larmor radius corrections

    SciTech Connect

    Jain, Shweta Sharma, Prerana; Chhajlani, R. K.

    2015-07-31

    The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability.

  14. Finite Larmor radius effects on the coupled trapped electron and ion temperature gradient modes

    SciTech Connect

    Sandberg, I.; Isliker, H.; Pavlenko, V. P.

    2007-09-15

    The properties of the coupled trapped electron and toroidal ion temperature gradient modes are investigated using the standard reactive fluid model and taking rigorously into account the effects attributed to the ion polarization drift and to the drifts associated with the lowest-order finite ion Larmor radius effects. In the flat density regime, where the coupling between the modes is relatively weak, the properties of the unstable modes are slightly modified through these effects. For the peak density regions, where the coupling of the modes is rather strong, these second-order drifts determine the spectra of the unstable modes near the marginal conditions.

  15. On the Response of the Accretion Disk Radius to a Temporary Enhancement of Mass Transfer

    NASA Astrophysics Data System (ADS)

    Smak, J.

    Livio and Verbunt (1988) showed that a sudden enhancement of the mass transfer leads to an initial shrinking of the disk radius, followed by its subsequent expansion and concluded that this is consistent with observations of dwarf nova outbursts. It is argued here that (1) the expansion can begin only after the enhanced accretion wave has reached the central star thereby producing already a major brightening of the disk, and (2) the predicted initial shrinking is, in fact, inconsistent with observational evidence for U Gem where disk begins to expand at the very onset of an outburst.

  16. Fat drops in wrist tendon sheaths on MRI in conjunction with a radius fracture.

    PubMed

    Verhagen, Martijn V; Chesaru, Ileana

    2016-08-01

    A case is presented in which fat drops are seen on MRI inside extensor compartment 2 and 3, in conjunction with a radius fracture. The occurrence of traumatic tendon sheath fat-fluid levels has been sparsely reported on CT and MR imaging. This case is the first report of post-traumatic tendon sheath fat drops. Although the clinical relevance of tendon sheath fat drops seems to be limited, it is important to detect and correctly diagnose these fat drops in order to provide an accurate and complete radiologic report. PMID:27170371

  17. Hydrocarbons imbibition for geometrical characterization of porous media through the effective radius approach

    NASA Astrophysics Data System (ADS)

    Labajos-Broncano, L.; Antequera-Barroso, J. A.; González-Martín, M. L.; Bruque, J. M.

    2006-11-01

    Surface energetic characterization of porous solids usually requires the determination of the contact angle. This quantity is deduced by imbibition experiments carried out in such media with high surface tension liquids. Now then, this methodology needs the geometrical characterization of the porous medium by means of the deduction of its effective radius. Normally, this is made by imbibition experiments with n-alkanes, liquids whose surface tension is low enough as to suppose their contact angles with the solid surface are null. However, this last procedure is not free from some criticisms. Among them, the possible influence of the imbibition velocity on the contact angle, the effect of the precursor liquid film ahead the advancing liquid front on the driving force that gives rise to the movement, or the dependence of the effective radius on the length of the hydrocarbon chain of the n-alkanes. In an attempt of going deeply in these questions, imbibition experiments with n-alkanes have been carried out in porous columns of powdered calcium fluoride. These experiments have consisted of the measurement of the increase in the weight of the columns caused by the migration of the liquids through their interstices. The analysis of their results has been carried out by means of a new procedure based on the study of the velocity profile associated to the weight increase. This analysis has permitted us to conclude that, at least in the calcium fluoride columns, the contact angle of the n-alkane is not influenced by the capillary rise velocity, it taking in fact a null value during the process. On the other hand, it has been also proved that the driving force of the movement is caused by the replacement of the solid-vapour interface by the solid-liquid interface that happens during the imbibition, which means that only the Laplace's pressure, and not the precursor liquid film, contributes to the development of the phenomenon. Finally, it has been compared the values of the

  18. Conservative Treatment Is Sufficient for Acute Distal Radioulnar Joint Instability With Distal Radius Fracture.

    PubMed

    Lee, Sang Ki; Kim, Kap Jung; Cha, Yong Han; Choy, Won Sik

    2016-09-01

    Treatments for acute distal radioulnar joint (DRUJ) instability with distal radius fracture vary from conservative to operative treatment, although it seems to be no consensus regarding which treatment is optimal. This prospective randomized study was designed to compare the clinical outcomes for operative and conservative treatment of acute DRUJ instability with distal radius fracture, according to the presence or absence and type of ulnar styloid process fracture and the degree of its displacement. Between July 2008 and February 2013, we enrolled 157 patients who exhibited an unstable DRUJ during intraoperative manual stress testing (via the ballottement test) after fixation of the distal radius. Patients were classified according to the type of the ulnar styloid process fracture, using preoperative wrist radiography, and each group was divided into subgroups, according to their treatment method. We then compared the clinical outcomes between the conservative and operative treatments, using their range of motion; Disabilities of the Arm, Shoulder, and Hand score; modified Mayo wrist score; and grip strength. At 3 months after surgery, among patients without ulnar styloid process fracture, the flexion-extension range was 79 ± 15° after supination sugar-tong splinting (group A-1), 91 ± 14° after DRUJ transfixation (group A-2), and 89 ± 10° after arthroscopic triangular fibrocartilage complex repair (group A-3); the operative treatments provided greater joint motion ranges than conservative treatment. The groups with ulnar styloid process fractures at the tip (group B) or base (group C) also exhibited better clinical outcomes after the operative treatments, compared with after the conservative treatment. However, at the final follow-up, groups A-1, A-2, and A-3 exhibited similar flexion-extension ranges (122 ± 25°, 119° ± 18°, and 120° ± 16°, respectively) and modified Mayo wrist scores (87 ± 7, 89 ± 8, and 85 ± 9). Thus, the conservative and

  19. Measurement of the neutron radius of 208Pb through parity violation in electron scattering.

    PubMed

    Abrahamyan, S; Ahmed, Z; Albataineh, H; Aniol, K; Armstrong, D S; Armstrong, W; Averett, T; Babineau, B; Barbieri, A; Bellini, V; Beminiwattha, R; Benesch, J; Benmokhtar, F; Bielarski, T; Boeglin, W; Camsonne, A; Canan, M; Carter, P; Cates, G D; Chen, C; Chen, J-P; Hen, O; Cusanno, F; Dalton, M M; De Leo, R; de Jager, K; Deconinck, W; Decowski, P; Deng, X; Deur, A; Dutta, D; Etile, A; Flay, D; Franklin, G B; Friend, M; Frullani, S; Fuchey, E; Garibaldi, F; Gasser, E; Gilman, R; Giusa, A; Glamazdin, A; Gomez, J; Grames, J; Gu, C; Hansen, O; Hansknecht, J; Higinbotham, D W; Holmes, R S; Holmstrom, T; Horowitz, C J; Hoskins, J; Huang, J; Hyde, C E; Itard, F; Jen, C-M; Jensen, E; Jin, G; Johnston, S; Kelleher, A; Kliakhandler, K; King, P M; Kowalski, S; Kumar, K S; Leacock, J; Leckey, J; Lee, J H; LeRose, J J; Lindgren, R; Liyanage, N; Lubinsky, N; Mammei, J; Mammoliti, F; Margaziotis, D J; Markowitz, P; McCreary, A; McNulty, D; Mercado, L; Meziani, Z-E; Michaels, R W; Mihovilovic, M; Muangma, N; Muñoz-Camacho, C; Nanda, S; Nelyubin, V; Nuruzzaman, N; Oh, Y; Palmer, A; Parno, D; Paschke, K D; Phillips, S K; Poelker, B; Pomatsalyuk, R; Posik, M; Puckett, A J R; Quinn, B; Rakhman, A; Reimer, P E; Riordan, S; Rogan, P; Ron, G; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Shahinyan, A; Silwal, R; Sirca, S; Slifer, K; Solvignon, P; Souder, P A; Sperduto, M L; Subedi, R; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Troth, W; Urciuoli, G M; Waidyawansa, B; Wang, D; Wexler, J; Wilson, R; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yim, V; Zana, L; Zhan, X; Zhang, J; Zhang, Y; Zheng, X; Zhu, P

    2012-03-16

    We report the first measurement of the parity-violating asymmetry A(PV) in the elastic scattering of polarized electrons from 208Pb. A(PV) is sensitive to the radius of the neutron distribution (R(n)). The result A(PV)=0.656±0.060(stat)±0.014(syst) ppm corresponds to a difference between the radii of the neutron and proton distributions R(n)-R(p)=0.33(-0.18)(+0.16) fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus. PMID:22540469

  20. Solid variant of aneurysmal bone cist on the distal extremity of the radius in a child.

    PubMed

    Ferreira, Adriano Jander; de Almeida Leitão, Sebastião; Rocha, Murilo Antônio; Nascimento, Valdênia das Graças; Lima, Giovanni Bessa Pereira; de Meneses, Antonio Carlos Oliveira

    2016-01-01

    The solid variant of aneurismal bone cysts (ABC) is considered rare. It occurs with greater frequency in pediatric patients and in the tibia, femur, pelvis and humerus. We present a case of a metaphyseal lytic lesion on the distal extremity of the radius in a child whose radiograph was requested after low-energy trauma. The hypothesis of a pathological bone fracture secondary to an aneurysmal bone cyst was suggested. After biopsy, the child underwent intralesional excision without bone grafting and the histopathological findings were compatible with the solid variant of aneurysmal bone cyst. PMID:27274493

  1. Finite Larmor radius effects on the (m = 2, n = 1) cylindrical tearing mode

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Chowdhury, J.; Parker, S. E.; Wan, W.

    2015-04-01

    New field solvers are developed in the gyrokinetic code GEM [Chen and Parker, J. Comput. Phys. 220, 839 (2007)] to simulate low-n modes. A novel discretization is developed for the ion polarization term in the gyrokinetic vorticity equation. An eigenmode analysis with finite Larmor radius effects is developed to study the linear resistive tearing mode. The mode growth rate is shown to scale with resistivity as γ ˜ η1/3, the same as the semi-collisional regime in previous kinetic treatments [Drake and Lee, Phys. Fluids 20, 1341 (1977)]. Tearing mode simulations with gyrokinetic ions are verified with the eigenmode calculation.

  2. Absence of complete finite-Larmor-radius stabilization in extended MHD.

    PubMed

    Zhu, P; Schnack, D D; Ebrahimi, F; Zweibel, E G; Suzuki, M; Hegna, C C; Sovinec, C R

    2008-08-22

    The dominant finite-Larmour-radius (FLR) stabilization effects on interchange instability can be retained by taking into account the ion gyroviscosity or the generalized Ohm's law in an extended MHD model. However, recent simulations and theoretical calculations indicate that complete FLR stabilization of the interchange mode may not be attainable by ion gyroviscosity or the two-fluid effect alone in the framework of extended MHD. For a class of plasma equilibria in certain finite-beta or nonisentropic regimes, the critical wave number for complete FLR stabilization tends toward infinity. PMID:18764628

  3. Measurement of the Neutron Radius of Pb208 through Parity Violation in Electron Scattering

    NASA Astrophysics Data System (ADS)

    Abrahamyan, S.; Ahmed, Z.; Albataineh, H.; Aniol, K.; Armstrong, D. S.; Armstrong, W.; Averett, T.; Babineau, B.; Barbieri, A.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bielarski, T.; Boeglin, W.; Camsonne, A.; Canan, M.; Carter, P.; Cates, G. D.; Chen, C.; Chen, J.-P.; Hen, O.; Cusanno, F.; Dalton, M. M.; de Leo, R.; de Jager, K.; Deconinck, W.; Decowski, P.; Deng, X.; Deur, A.; Dutta, D.; Etile, A.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Fuchey, E.; Garibaldi, F.; Gasser, E.; Gilman, R.; Giusa, A.; Glamazdin, A.; Gomez, J.; Grames, J.; Gu, C.; Hansen, O.; Hansknecht, J.; Higinbotham, D. W.; Holmes, R. S.; Holmstrom, T.; Horowitz, C. J.; Hoskins, J.; Huang, J.; Hyde, C. E.; Itard, F.; Jen, C.-M.; Jensen, E.; Jin, G.; Johnston, S.; Kelleher, A.; Kliakhandler, K.; King, P. M.; Kowalski, S.; Kumar, K. S.; Leacock, J.; Leckey, J., IV; Lee, J. H.; Lerose, J. J.; Lindgren, R.; Liyanage, N.; Lubinsky, N.; Mammei, J.; Mammoliti, F.; Margaziotis, D. J.; Markowitz, P.; McCreary, A.; McNulty, D.; Mercado, L.; Meziani, Z.-E.; Michaels, R. W.; Mihovilovic, M.; Muangma, N.; Muñoz-Camacho, C.; Nanda, S.; Nelyubin, V.; Nuruzzaman, N.; Oh, Y.; Palmer, A.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Poelker, B.; Pomatsalyuk, R.; Posik, M.; Puckett, A. J. R.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Riordan, S.; Rogan, P.; Ron, G.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Slifer, K.; Solvignon, P.; Souder, P. A.; Sperduto, M. L.; Subedi, R.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Troth, W.; Urciuoli, G. M.; Waidyawansa, B.; Wang, D.; Wexler, J.; Wilson, R.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yim, V.; Zana, L.; Zhan, X.; Zhang, J.; Zhang, Y.; Zheng, X.; Zhu, P.

    2012-03-01

    We report the first measurement of the parity-violating asymmetry APV in the elastic scattering of polarized electrons from Pb208. APV is sensitive to the radius of the neutron distribution (Rn). The result APV=0.656±0.060(stat)±0.014(syst)ppm corresponds to a difference between the radii of the neutron and proton distributions Rn-Rp=0.33-0.18+0.16fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

  4. Determination of variations of the solar radius from solar eclipse observations

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Dunham, D. W.; Fiala, A. D.

    1980-01-01

    This paper describes the method to determine the solar radius and its variations from observations made during total solar eclipses. In particular, the procedure to correct the spherical moon predictions for the effects of lunar mountains and valleys on the width and location of the path of totality is addressed in detail. The errors affecting this technique are addressed, a summary of the results of its application to three solar eclipses are presented, and the implications of the results on the constancy of the solar constant are described.

  5. Moire deflectometry with a focused beam: radius of curvature, microscopy, and thickness analysis.

    PubMed

    Kafri, O; Keren, E; Kreske, K; Zac, Y

    1990-01-01

    Three uses of moire deflectometry employing a focused beam are described. A microscopic mode provides inspection of magnified images of the test object. The moire fringes are used as a noncontact tunable caliper for measuring the dimensions of small imperfections and other features of the surface. The tunable scale is independent of the zooming ratio. The spherometer mode measures the radius of curvature of concave or convex spherical objects. Deviations from spherical shape are measured with variable sensitivity. The thickness of transparent objects is measured by focusing the beam on each face in turn. PMID:20556078

  6. Sensitivity bias in the mass-radius distribution from transit timing variations and radial velocity measurements

    NASA Astrophysics Data System (ADS)

    Steffen, Jason H.

    2016-04-01

    Motivated by recent discussions, both in private and in the literature, we use a Monte Carlo simulation of planetary systems to investigate sources of bias in determining the mass-radius distribution of exoplanets for the two primary techniques used to measure planetary masses - radial velocities (RVs) and transit timing variations (TTVs). We assert that mass measurements derived from these two methods are comparably reliable - as the physics underlying their respective signals is well understood. Nevertheless, their sensitivity to planet mass varies with the properties of the planets themselves. We find that for a given planet size, the RV method tends to find planets with higher mass while the sensitivity of TTVs is more uniform. This `sensitivity bias' implies that a complete census of TTV systems is likely to yield a more robust estimate of the mass-radius distribution provided there are not important physical differences between planets near and far from mean-motion resonance. We discuss differences in the sensitivity of the two methods with orbital period and system architecture, which may compound the discrepancies between them (e.g. short-period planets detectable by RVs may be more dense due to atmospheric loss). We advocate for continued mass measurements using both approaches as a means both to measure the masses of more planets and to identify potential differences in planet structure that may result from their dynamical and environmental histories.

  7. Hummingbirds control turning velocity using body orientation and turning radius using asymmetrical wingbeat kinematics.

    PubMed

    Read, Tyson J G; Segre, Paolo S; Middleton, Kevin M; Altshuler, Douglas L

    2016-03-01

    Turning in flight requires reorientation of force, which birds, bats and insects accomplish either by shifting body position and total force in concert or by using left-right asymmetries in wingbeat kinematics. Although both mechanisms have been observed in multiple species, it is currently unknown how each is used to control changes in trajectory. We addressed this problem by measuring body and wingbeat kinematics as hummingbirds tracked a revolving feeder, and estimating aerodynamic forces using a quasi-steady model. During arcing turns, hummingbirds symmetrically banked the stroke plane of both wings, and the body, into turns, supporting a body-dependent mechanism. However, several wingbeat asymmetries were present during turning, including a higher and flatter outer wingtip path and a lower more deviated inner wingtip path. A quasi-steady analysis of arcing turns performed with different trajectories revealed that changes in radius were associated with asymmetrical kinematics and forces, and changes in velocity were associated with symmetrical kinematics and forces. Collectively, our results indicate that both body-dependent and -independent force orientation mechanisms are available to hummingbirds, and that these kinematic strategies are used to meet the separate aerodynamic challenges posed by changes in velocity and turning radius. PMID:27030042

  8. Measurement Of Neutron Radius In Lead By Parity Violating Scattering Flash ADC DAQ

    SciTech Connect

    Ahmed, Zafar

    2012-06-01

    This dissertation reports the experiment PREx, a parity violation experiment which is designed to measure the neutron radius in {sup 208}Pb. PREx is performed in hall A of Thomas Jefferson National Accelerator Facility from March 19th to June 21st. Longitudionally polarized electrons at energy 1 GeV scattered at and angle of {theta}{sub lab} = 5.8 {degrees} from the Lead target. Beam corrected pairty violaing counting rate asymmetry is (A{sub corr} = 594 ± 50(stat) ± 9(syst))ppb at Q{sup 2} = 0.009068GeV {sup 2}. This dissertation also presents the details of Flash ADC Data Acquisition(FADC DAQ) system for Moller polarimetry in Hall A of Thomas Jefferson National Accelerator Facility. The Moller polarimeter measures the beam polarization to high precision to meet the specification of the PREx(Lead radius experiment). The FADC DAQ is part of the upgrade of Moller polarimetery to reduce the systematic error for PREx. The hardware setup and the results of the FADC DAQ analysis are presented

  9. An improved method for susceptibility and radius quantification of cylindrical objects from MRI.

    PubMed

    Hsieh, Ching-Yi; Cheng, Yu-Chung N; Neelavalli, Jaladhar; Haacke, E Mark; Stafford, R Jason

    2015-05-01

    A new method is developed to measure the magnetic susceptibilities and radii of small cylinder-like objects at arbitrary orientations accurately. This method for most biological substances only requires a standard gradient echo sequence with one or two echo times, depending on the orientation of an object relative to the main magnetic field. For objects oriented at the magic angle, however, this method is not applicable. As a byproduct of this method, the cross-sectional area as well as signals inside and outside the object can be determined. The uncertainty of each measurement is estimated from the error propagation method. Partial volume, dephasing, and phase aliasing effects are naturally included in the equations of this method. A number of simulations, phantom, and pilot in-vivo human studies are carried out to validate the theory. When the maximal phase value at the boundary of a given cylindrical object is larger than 3 radians, and the phase inside the object is more than 1 radian, the susceptibility can be accurately quantified within 15%. The radius of the object can be determined to subpixel accuracy. This is the case when the signal-to-noise ratio inside the object is about 6:1 or higher and the radius of the object is about one pixel or larger. These conditions are realistic when considering medullary and pial veins for example. PMID:25633922

  10. Linear vs. nonlinear acceleration in plasma turbulence. II. Hall–finite-Larmor-radius magnetohydrodynamics

    SciTech Connect

    Ghosh, Sanjoy; Parashar, Tulasi N.

    2015-04-15

    The local k-space ratio of linear and nonlinear accelerations associated with a variety of initial conditions undergoing steady relaxation is investigated for the Hall–finite-Larmor-radius magnetohydrodynamics (MHD) system in the presence of a mean magnetic field. Building on a related study (Paper I) where it was shown that discrepancies exist between describing the global and local characterizations of the pure MHD system with mean magnetic field, we find regions of the Fourier space that are consistently dominated by linear acceleration and other regions that are consistently dominated by nonlinear acceleration, independent of the overall system's description as linear, weakly nonlinear, or turbulent. In general, dynamics within a certain angular range of the mean magnetic field direction are predominantly linear, while dynamics adjacent the Hall scales along the field-parallel direction and dynamics adjacent the finite Larmor radius scales in the field-perpendicular direction can become strongly nonlinear. The nonlinear influences are particularly significant as the plasma beta increases from unity to higher values.

  11. Is sparing the pronator quadratus muscle possible in volar plating of the distal radius?

    PubMed

    Heidari, N; Clement, H; Kosuge, D; Grechenig, W; Tesch, N P; Weinberg, A M

    2012-06-01

    We measured the length of the distal radius that can be exposed by mobilizing the distal edge of pronator quadratus (PQ) without detaching its radial attachment. Measurements were made in 20 cadaveric upper limbs from the distal margin of the radius in line with the scaphoid and lunate fossae to the distal margin of the PQ, before and after mobilization of the muscle from its distal attachment. The mean distance from the distal edge of the PQ to the scaphoid fossa was 13.1 mm and to the lunate fossa was 10.7 mm. This increased to a mean of 26.2 mm for the scaphoid and a mean of 23.8 mm for the lunate fossa following mobilization of PQ. Subperiosteal retrograde release of the PQ from its distal margin will allow for the placement of a volar plate and insertion of locking peri-articular screws in the great majority of volar locking plate systems on the market. PMID:22067296

  12. Defining the role of intramedullary nailing for fractures of the distal radius: a systematic review.

    PubMed

    Jordan, R W; Saithna, A

    2015-10-01

    This article is a systematic review of the published literature about the biomechanics, functional outcome and complications of intramedullary nailing of fractures of the distal radius. We searched the Medline and EMBASE databases and included all studies which reported the outcome of intramedullary (IM) nailing of fractures of the distal radius. Data about functional outcome, range of movement (ROM), strength and complications, were extracted. The studies included were appraised independently by both authors using a validated quality assessment scale for non-controlled studies and the CONSORT statement for randomised controlled trials (RCTs). The search strategy revealed 785 studies, of which 16 were included for full paper review. These included three biomechanical studies, eight case series and five randomised controlled trials (RCTs). The biomechanical studies concluded that IM nails were at least as strong as locking plates. The clinical studies reported that IM nailing gave a comparable ROM, functional outcome and grip strength to other fixation techniques. However, the mean complication rate of intramedullary nailing was 17.6% (0% to 50%). This is higher than the rates reported in contemporary studies for volar plating. It raises concerns about the role of intramedullary nailing, particularly when comparative studies have failed to show that it has any major advantage over other techniques. Further adequately powered RCTs comparing the technique to both volar plating and percutaneous wire fixation are needed. PMID:26430012

  13. Effects of distal radius malunion on distal radioulnar joint mechanics--an in vivo study.

    PubMed

    Crisco, Joseph J; Moore, Douglas C; Marai, G Elisabeta; Laidlaw, David H; Akelman, Edward; Weiss, Arnold-Peter C; Wolfe, Scott W

    2007-04-01

    Patients with a malunited distal radius often have painful and limited forearm rotation, and may progress to arthritis of the distal radioulnar joint (DRUJ). The purpose of this study was to determine if DRUJ congruency and mechanics were altered in patients with malunited distal radius fractures. In nine subjects with unilateral malunions, interbone distances and dorsal and palmar radioulnar ligament lengths were computed from tomographic images of both forearms in multiple forearm positions using markerless bone registration (MBR) techniques. The significance of the changes were assessed using a generalized linear model, which controlled for forearm rotation angle (-60 degrees to 60 degrees ). In the malunited forearm, compared to the contralateral uninjured arm, we found that ulnar joint space area significantly decreased by approximately 25%, the centroid of this area moved an average of 1.3 mm proximally, and the dorsal radioulnar ligament elongated. Despite our previous findings of insignificant changes in the pattern of radioulnar kinematics in patients with malunited fractures, we found significant changes in DRUJ joint area and ligament lengthening. These findings suggest that alterations in joint mechanics and soft tissues may play an important role in the dysfunction associated with these injuries. PMID:17262830

  14. Period and Disk Radius Changes in the Dwarf Nova Ip-Pegasi

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Mantel, K. H.; Horne, K.; Barwig, H.; Schoembs, R.; Baernbantner, O.

    1993-06-01

    We present UBVRI observations of 49 eclipses of the dwarf nova IP Peg obtained during a long term observing campaign between July 1990 and December 1991. We combine these data with previously published ones in order to study long term period variations and to measure changes in disk radius associated with the dwarf nova outbursts. Analysis of white dwarf egress timings from 1984-1991 shows that the 3.8 h orbital period varies sinusoidally with a period of 4.7 years. This change can be explained by a third body (late M dwarf) with a most probable mass of 0.10 Msun. Attempts to explain the change in period by magnetic activity on the secondary star fail, because the required variation in luminosity of the secondary is not observed. From measurements of hot spot ingress and egress timings we determine a mass ratio q = M2/M1 of 0.6 and a steadily decreasing disk radius during decline from outburst.

  15. Low Velocity Impacts of Variable Tip Radius on Carbon/Epoxy Plates

    NASA Astrophysics Data System (ADS)

    Delaney, Mac P.

    With a growing use of composite materials in aircraft structures, there is a greater need to understand the response of these materials to low velocity impacts. Low velocity impacts from tool drops or ground equipment collisions can be of varying bluntness and can leave little or no visible evidence of damage. Therefore, a need exists to investigate the initiation of internal damage and the relationship between this internal damage and the external visible damage with respect to the bluntness of the impactor. A pendulum impactor was used to impact 76.2 x 127 mm carbon/epoxy panels that were 8, 16, and 24 plies thick. The panels were impacted by hardened steel tips with radii of 12.7 to 76.2 mm. The experimental results show that the failure threshold energies for each panel thickness and tip radius combination occur at a distinct and consistent energy. This threshold increases with impactor bluntness, and this effect is greater for the 8 ply panel than it is for the 16 or 24 ply panels. To describe the visibility of impact damage, the area of delamination was compared to the depth of the dents resulting from the impacts. For the sharper impact tips, there is a clear relationship between the delamination area and the depth of the dents. However, these relationships are dependent on the radius of the impact tip, and for the blunter impact tips no strong correlation could be determined between the delamination area and the depth of the dents.

  16. Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Zinner, Tobias; Ackerman, S.

    2008-01-01

    Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.

  17. M Dwarf Luminosity, Radius, and α-enrichment from I-band Spectral Features

    NASA Astrophysics Data System (ADS)

    Terrien, Ryan C.; Mahadevan, Suvrath; Bender, Chad F.; Deshpande, Rohit; Robertson, Paul

    2015-03-01

    Despite the ubiquity of M dwarfs and their growing importance to studies of exoplanets, Galactic evolution, and stellar structure, methods for precisely measuring their fundamental stellar properties remain elusive. Existing techniques for measuring M dwarf luminosity, mass, radius, or composition are calibrated over a limited range of stellar parameters or require expensive observations. We find a strong correlation between the KS-band luminosity (MK), the observed strength of the I-band sodium doublet absorption feature, and [Fe/H] in M dwarfs without strong Hα emission. We show that the strength of this feature, coupled with [Fe/H] and spectral type, can be used to derive M dwarf MK and radius without requiring parallax. Additionally, we find promising evidence that the strengths of the I-band sodium doublet and the nearby I-band calcium triplet may jointly indicate α-element enrichment. The use of these I-band features requires only moderate-resolution near-infrared spectroscopy to provide valuable information about the potential habitability of exoplanets around M dwarfs, and surface gravity and distance for M dwarfs throughout the Galaxy. This technique has immediate applicability for both target selection and candidate planet-host system characterization for exoplanet missions such as TESS and K2.

  18. Pluto Atmospheric Activity, Ephemeris Offset and Charon Orbital Radius Constrained by Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Boissel, Y.; Colas, F.; Roques, F.; Widemann, T.; Assafin, M.; Camargo, J. I. B.; da Silva Neto, D. N.; Ribas, F. B.; Vieira Martins, R.; Andrei, A. H.; Behrend, R.; Beisker, W.; Herald, D.; Bolt, G.; Broughton, J.; Dobosz, T.; Gault, D.; Groom, R.; Kerr, S.; Anderson, P.; Batista, V.; Blair, L.; Greenhill, J.; Frappa, E.; Benard, F.; Teng, J. P.; Gruhn, C.; Blanchard, G.; Castets, M.

    2008-09-01

    We have pursued in 2008 our observing program of stellar occultations by Pluto and its satellites. This program started in 2002, and revealed a two-fold increase of Pluto atmospheric pressure between 1988 and 2002. Various occultations observed in 2006 and 2007 did not reveal any further increase in pressure. Also, a measure of Charon's radius was made using an occultation observed on 11 July 2005. At the moment of writing this abstract, two Pluto occultations have been successfully observed, one on 22 June 2008 (with five positive detections from Australia) and one on 24 June 2008 (with one positive detection from CFHT/Mauna Kea, Hawaii). Furthermore, one positive observation of a Charon occultation has been achieved on 22 June 2008 from La Reunion Island. Data are still being analyzed, and three different results will be presented: (1) The evolution of Pluto's atmospheric pressure since 2002, (2) the evolution of Pluto's positional offset with respect to the DE413 barycentric ephemeris since 2005, showing in particular a linear trend and an offset in declination of more than +0.1 arcsec in 2008, and (3) a new, independent measure of the distance Pluto-Charon using the 22 June 2008 occultation, taking advantage that Pluto and Charon occulted the same target star. Note that since only one occultation chord is available for that event, it is not possible to update Charon's radius using this data.

  19. The Dense Matter Equation of State from Neutron Star Radius and Mass Measurements

    NASA Astrophysics Data System (ADS)

    Özel, Feryal; Psaltis, Dimitrios; Güver, Tolga; Baym, Gordon; Heinke, Craig; Guillot, Sebastien

    2016-03-01

    We present a comprehensive study of spectroscopic radius measurements of twelve neutron stars obtained during thermonuclear bursts or in quiescence. We incorporate, for the first time, a large number of systematic uncertainties in the measurement of the apparent angular sizes, Eddington fluxes, and distances, in the composition of the interstellar medium, and in the flux calibration of X-ray detectors. We also take into account the results of recent theoretical calculations of rotational effects on neutron star radii, of atmospheric effects on surface spectra, and of relativistic corrections to the Eddington critical flux. We employ Bayesian statistical frameworks to obtain neutron star radii from the spectroscopic measurements as well as to infer the equation of state from the radius measurements. Combining these with the results of experiments in the vicinity of nuclear saturation density and the observations of ˜ 2 {M}⊙ neutron stars, we place strong and quantitative constraints on the properties of the equation of state between ≈ 2{--}8 times the nuclear saturation density. We find that around M=1.5{M}⊙ , the preferred equation of state predicts radii between 10.1 and 11.1 km. When interpreting the pressure constraints in the context of high density equations of state based on interacting nucleons, our results suggest a relatively weak contribution of the three-body interaction potential.

  20. Nanoscale contact-radius determination by spectral analysis of polymer roughness images.

    PubMed

    Knoll, Armin W

    2013-11-12

    In spite of the long history of atomic force microscopy (AFM) imaging of soft materials such as polymers, little is known about the detailed effect of a finite tip size and applied force on the imaging performance on such materials. Here we exploit the defined scaling of roughness amplitudes on amorphous polymer films to determine the transfer function imposed by the imaging tip. The finite indentation of the nanometer-scale tip into the comparatively soft polymer surface leads to a finite contact area, which in turn effectively acts as a moving average filter for the surface roughness. In the power spectral density (PSD), this leads to an attenuation of the roughness amplitudes related to the Airy pattern known from light diffraction of a circular aperture. This transfer function is affected by the roughness-induced local modulation of the tip height and contact area, which is studied by performing simulations of the polymer roughness and the imaging process. We find that for typical polymer parameters and sharp tips the contact radius of the tip-sample contact can be recovered from the roughness spectrum. We experimentally verify and demonstrate the method by measuring the nanoscale contact radius as a function of applied load and travel distance on a highly cross-linked model polymer. The data are consistent with the Johnson-Kendall-Roberts (JKR) contact model and verifies its applicability at the nanometer scale. Using the model, quantitative values of the elastic sample parameters can be determined. PMID:24151855

  1. TRACING THE GAS TO THE VIRIAL RADIUS (R{sub 100}) IN A FOSSIL GROUP

    SciTech Connect

    Humphrey, Philip J.; Buote, David A.; Flohic, Helene M. L. G.; Gastaldello, Fabio; Brighenti, Fabrizio; Mathews, William G.

    2012-03-20

    We present a Chandra, Suzaku, and ROSAT study of the hot intragroup medium (IGrM) of the relaxed fossil group/poor cluster RX J1159+5531. This group exhibits an advantageous combination of flat surface brightness profile, high luminosity, and optimal distance, allowing the gas to be detected out to the virial radius (R{sub vir}{identical_to} R{sub 108} = 1100 kpc) in a single Suzaku pointing, while the complementary Chandra data reveal a round morphology and relaxed IGrM image down to kpc scales. We measure the IGrM entropy profile over {approx}3 orders of magnitude in radius, including three data bins beyond {approx}0.5R{sub 200} that have good azimuthal coverage (>30%). We find no evidence that the profile flattens at large scales (>R{sub 500}), and when corrected for the enclosed gas fraction, the entropy profile is very close to the predictions from self-similar structure formation simulations, as seen in massive clusters. Within R{sub vir}, we measure a baryon fraction of 0.17 {+-} 0.02, consistent with the cosmological value. These results are in sharp contrast to the gas behavior at large scales recently reported in the Virgo and Perseus clusters and indicate that substantial gas clumping cannot be ubiquitous near R{sub vir}, at least in highly evolved (fossil) groups.

  2. Solar cycle dependence of the sun's radius at lambda = 525.0 nm

    NASA Technical Reports Server (NTRS)

    Ulrich, Roger K.; Bertello, L.

    1995-01-01

    The Mount Wilson (California) synoptic program of solar magnetic observations scans the solar disk between 1 and 20 times per day. As part of this program, the radius is determined as an average distance between the image center and the point where the intensity in the FeI line at lambda = 525.0 nm drops to 25 percent of its value at the disk's center. The data base of information was analyzed and corrected for effects such as scattered light and atmospheric reflection. The solar variability and the measurement techniques are described. The observation data sets, the corrections made to the data, and the observed variations, are discussed. It is stated that similar spectral lines at lambda = 525.0 nm, which are common in the solar spectrum, probably exhibit similar radius changes. All portions of the sun are weighted equally so that it is concluded that, within spectral lines, the radiating area of the sun is increased at the solar maximum.

  3. Idealized global nonhydrostatic atmospheric test cases on a reduced-radius sphere

    NASA Astrophysics Data System (ADS)

    Klemp, J. B.; Skamarock, W. C.; Park, S.-H.

    2015-09-01

    Idealized simulations on a reduced-radius sphere can provide a useful vehicle for evaluating the behavior of nonhydrostatic processes in nonhydrostatic global atmospheric dynamical cores provided the simulated cases exhibit good agreement with corresponding flows in a Cartesian geometry, and for which there are known solutions. Idealized test cases on a reduced-radius sphere are presented here that focus on both dry and moist dynamics. The dry dynamics cases are variations of mountain-wave simulations designed for the Dynamical Core Model Intercomparison Project (DCMIP), and permit quantitative comparisons with linear analytic mountain-wave solutions in a Cartesian geometry. To evaluate moist dynamics, an idealized supercell thunderstorm is simulated that has strong correspondence to results obtained on a flat plane, and which can be numerically converged by specifying a constant physical diffusion. A simple Kessler-type routine for cloud microphysics is provided that can be readily implemented in atmospheric simulation models. Results for these test cases are evaluated for simulations with the Model for Prediction across scales (MPAS). They confirm close agreement with corresponding simulations in a Cartestian geometry; the mountain-wave results agree well with analytic mountain-wave solutions, and the simulated supercells are consistent with other idealized supercell simulation studies and exhibit convergent behavior.

  4. Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Bhutiani, P. K.; Vogt, P. G.

    1984-01-01

    The experimental and analytical results of a scale model simulated flight acoustic exploratory investigation of high radius ratio coannular plug nozzles with inverted velocity and temperature profiles are summarized. Six coannular plug nozzle configurations and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. It was found that in simulate flight, the high radius ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass struts will not significantly affect the acousticn noise reduction features of a General Electric type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insights into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further benificial research efforts.

  5. A fluid finite ion Larmor radius model of the magnetopause layer

    SciTech Connect

    Stasiewicz, K. )

    1989-07-01

    A model of the magnetopause current layer is constructed on the basis of fluid equations for collision-free plasmas with finite ion Larmor radius (FLR). The model provides self-consistent solutions for the plasma flow vector, magnetic field, and electric currents inside the magnetopause layer. This is the first fluid model that offers explanations for some observations at the terrestrial magnetopause that are inexplicable by earlier models. In particular, it is shown that the erosion of the dayside magnetosphere can be explained by the normal component of the gyroviscous stress tensor that is related to the intensity of field-aligned currents inside the magnetopause layer. It is found that the sense of rotation of the magnetic field across the magnetopause is determined by the ratio of the normal component of the Alfven velocity to the normal flow velocity {xi}={ital B}{sub {ital n}}/({mu}{sub 0}{rho}){sup 1/2}{ital V}{sub {ital n}}. For {vert bar} {xi} {vert bar}{gt}1 the sense of rotation corresponds to electron polarization, and {vert bar} {xi} {vert bar}{lt}1 yields proton polarization. It is argued that the case {vert bar} {xi} {vert bar}=1 corresponds to the formation of transient flux transfer events. The observed departures from MHD jump conditions across the magnetopause are explained by additional, finite Larmor radius terms in the moment equations. An expression is also derived for the characteristic thickness of the magnetopause layer. {copyright} American Geophysical Union 1989

  6. Testing Hydrostatic Equilibrium of the Intracluster Medium from the Core to the Virial Radius Ic

    NASA Astrophysics Data System (ADS)

    Okabe, Nobuhiro

    2012-01-01

    We repropose to conduct a diagnostic of the intracluster medium (ICM) states and a stringent test for hydrostatic equilibrium from the core to the virial radius on the basis of accurate weak lensing (WL) mass measurements, incorporating with the Suzaku X-ray satellite. Although our proposals were approved in previous semesters, we could not obtain any data due to winter storm or cooling system incident. It is therefore URGENT and important to measure cluster masses through this proposal. We perform a systematic WL study of a sample of three very nearby galaxy clusters with deep Suprime-Cam imaging for making an accurate determination of the cluster mass profile. Our project unveils the physical interplay between the ICM and the dark matter from the central region to the virial radius. We aims to (1) measure accurately mass profile from the WL measurement, (2) compare the lensing mass with the hydrostatic estimate from X-ray observations, (3) constrain the additional pressure to the thermal pressure by comparing the total pressure to balance fully the gravity of the lensing mass, and (4) investigate correlations between the thermalization process and cosmological large-scale structure environments, and mass dependence.

  7. Galaxies as Clocks: the Radius -- Velocity Relationship of HI Rich Galaxies

    NASA Astrophysics Data System (ADS)

    Meurer, Gerhardt; Obreschkow, D.; Hanish, D.; Wong, O.; Zheng, Z.; de Blok, E.; Thilker, D. A.; SINGG Team; SUNGG Team

    2014-01-01

    We show that the outskirts of HI rich galaxies obey a linear radius (R) versus rotational velocity (Vrot) relationship. This means they behave like clocks: they have the same orbital time of ~800 Myr. The relationship is valid over the full range for which we have data - a factor of 30 from dwarf galaxies with R ~ 1 kpc and Vrot ~ 10 km/s to giant spirals with R = 30 kpc and Vrot = 300 km/s with an intrinsic scatter smaller than 40%. A linear R -- Vrot relationship is expected for Cold Dark Matter (CDM) dominated halos. The fact that the collapsed baryons of disk galaxies obey this relationship can be readily understood within the CDM paradigm. We show what is required for the situation to occur. The mean density within the outer radius is 3e-3 Msun/pc^3, requiring that the baryonic component of disk galaxies to have collapsed by a factor of ~40. We outline the practical uses of the relationship and the implications for galaxy evolution.

  8. New Insights for High-precision Asteroseismology: Acoustic Radius of KIC 6225718

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Li, Yan

    2016-02-01

    Asteroseismology is a powerful tool for probing stellar interiors and determining stellar fundamental parameters. In previous works, the {χ }2-minimization method is usually used to find the best-matching model to characterize observations. In this Letter, we adopt the {χ }2-minimization method but only use the observed high-precision oscillation to constrain theoretical models for solar-like oscillating star KIC 6225718, which is observed by the Kepler satellite. We also take into account the influence of model precision. Finally, we find that the time resolution of stellar evolution cannot be ignored in high-precision asteroseismic analysis. Based on this, we find the acoustic radius {τ }0 is the only global parameter that can be accurately measured by the {χ }ν 2-matching method between observed frequencies and theoretical model calculations. We obtain {τ }0={4601.5}-8.3+4.4 s. In addition, we analyze the distribution of {χ }ν 2-minimization models (CMMs) and find that the distribution range of CMMs is slightly enlarged by some extreme cases, which possess both a larger mass and a higher (or lower) heavy element abundance, at the lower acoustic radius end.

  9. Treatment of scaphoid nonunion with vascularised and nonvascularised dorsal bone grafting from the distal radius

    PubMed Central

    Medina, Carlos Eduardo Gonzalez; Mattar, Rames; Ulson, Heitor Jose Rizzardo; de Resende, Marcelo Rosa; Etchebehere, Mauricio

    2009-01-01

    We conducted a prospective randomised study comparing the clinical, functional and radiographic results of 46 patients treated for scaphoid nonunion using a vascularised bone graft from the dorsal and distal aspect of the radius (group I), relative to 40 patients treated by means of a conventional non-vascularised bone graft from the distal radius (group II). Surgical findings included 30 sclerotic, poorly-vascularised scaphoids in group I versus 20 in group II. Bone fusion was achieved in 89.1% of group I and 72.5% of group II patients (p = 0.024). Functional results were good to excellent in 72.0% of the patients in group I and 57.5% in group II. Considering only patients with sclerotic, poorly-vascularised scaphoids, the mean final outcome scores obtained were 7.5 and 6.0 for groups I and group II, respectively. We conclude that vascularised bone grafting yields superior results and is more efficient when there is a sclerotic, poorly-vascularised proximal pole in patients in scaphoid nonunion. PMID:19730861

  10. A PRECISE ASTEROSEISMIC AGE AND RADIUS FOR THE EVOLVED SUN-LIKE STAR KIC 11026764

    SciTech Connect

    Metcalfe, T. S.; Monteiro, M. J. P. F. G.; Thompson, M. J.; Molenda-Zakowicz, J.; Appourchaux, T.; Chaplin, W. J.; Dogan, G.; Eggenberger, P.; Bedding, T. R.; Stello, D.; Bruntt, H.; Creevey, O. L.; Quirion, P.-O.; Bonanno, A.; Silva Aguirre, V.; Basu, S.; Esch, L.; Gai, N.; Di Mauro, M. P.; Kosovichev, A. G.

    2010-11-10

    The primary science goal of the Kepler Mission is to provide a census of exoplanets in the solar neighborhood, including the identification and characterization of habitable Earth-like planets. The asteroseismic capabilities of the mission are being used to determine precise radii and ages for the target stars from their solar-like oscillations. Chaplin et al. published observations of three bright G-type stars, which were monitored during the first 33.5 days of science operations. One of these stars, the subgiant KIC 11026764, exhibits a characteristic pattern of oscillation frequencies suggesting that it has evolved significantly. We have derived asteroseismic estimates of the properties of KIC 11026764 from Kepler photometry combined with ground-based spectroscopic data. We present the results of detailed modeling for this star, employing a variety of independent codes and analyses that attempt to match the asteroseismic and spectroscopic constraints simultaneously. We determine both the radius and the age of KIC 11026764 with a precision near 1%, and an accuracy near 2% for the radius and 15% for the age. Continued observations of this star promise to reveal additional oscillation frequencies that will further improve the determination of its fundamental properties.

  11. The Mass-Radius-Eccentricity Distribution of Near-Resonant Transiting Exoplanet Pairs Detected by Kepler

    NASA Astrophysics Data System (ADS)

    Shabram, Megan; Jontof-Hutter, Daniel; Ford, Eric B.

    2015-12-01

    We characterize the mass-radius-eccentricity distribution of transiting planets near first-order mean motion resonances using Transit Timing Variation (TTV) observations from NASA's Kepler mission. Kepler's precise measurements of transit times (Mazeh et al. 2014; Rowe et al. 2015) constrain the planet-star mass ratio, eccentricity and pericenter directions for hundreds of planets. Strongly-interacting planetary systems allow TTVs to provide precise measurements of masses and orbital eccentricities separately (e.g., Kepler-36, Carter et al. 2012). In addition to these precisely characterized planetary systems, there are several systems harboring at least two planets near a mean motion resonance (MMR) for which TTVs provide a joint constraint on planet masses, eccentricities and pericenter directions (Hadden et al. 2015). Unfortunately, a near degeneracy between these parameters leads to a posterior probability density with highly correlated uncertainties. Nevertheless, the population encodes valuable information about the distribution of planet masses, orbital eccentricities and the planet mass-radius relationship. We characterize the distribution of masses and eccentricities for near-resonant transiting planets by combining a hierarchical Bayesian model with an analytic model for the TTV signatures of near-resonant planet pairs (Lithwick & Wu 2012). By developing a rigorous statistical framework for analyzing the TTV signatures of a population of planetary systems, we significantly improve upon previous analyses. For example, our analysis includes transit timing measurements of near-resonant transiting planet pairs regardless of whether there is a significant detection of TTVs, thereby avoiding biases due to only including TTV detections.

  12. Multiple ruptures of the extensor tendons after volar fixation for distal radius fracture: a case report.

    PubMed

    Caruso, Giancarlo; Vitali, Andrea; del Prete, Ferdinando

    2015-12-01

    A 62-year-old woman was admitted to our hospital after a bicycle accident with a displaced left (non-dominant) distal radius fracture. After closed reduction a long cast was applied. Due to loss of reduction, twenty-four days later open reduction internal fixation with locking compression plate (LCP) was performed. The patient returned to her normal activities but nineteen months after surgery showed functional impairment of the left thumb for Extensor Pollicis Longus (EPL) injury for which she necessitated transposition surgery. Twenty-six months after ORIF, functional deficit of the extension of the third and fourth left finger was noted secondary to injury of extensor tendons. Ultrasound and CT scan showed protrusion of the angular stability screws in LCP plate that caused a progressive wear resulting in rupture of the extensor tendons. Another tendon transposition surgery was performed with dorsal approach while the plate was removed utilising the original volar incision. Reconstruction of distal radius fractures with volar plating, requires accurate plate application with precise measurement of the length of the screws in order to prevent dorsal protrusion and thus avoiding tendon injuries. PMID:26738455

  13. RADIUS-DEPENDENT ANGULAR MOMENTUM EVOLUTION IN LOW-MASS STARS. I

    SciTech Connect

    Reiners, Ansgar; Mohanty, Subhanjoy

    2012-02-10

    Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar structure evolution, and the behavior of stellar magnetic fields. Here we show that the empirical picture of angular momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux and formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in rotation at the boundary to full convection arises primarily from the large change in radius across this boundary and does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope decoupling among solar-type stars and field saturation at longer periods in very low mass stars. For solar-type stars, our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory, we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.

  14. The Definition and Significance of an Effective Radius for Ice Clouds.

    NASA Astrophysics Data System (ADS)

    McFarquhar, Greg M.; Heymsfield, Andrew J.

    1998-06-01

    Single scattering shortwave properties of ice clouds are frequently derived in terms of the `effective' radius (re) of the ice crystal population. Substantial discrepancies between definitions exist, making interpretation and comparison of various radiative parameterization schemes and satellite retrieval techniques difficult. Each definition of effective radius can be related to more physically based parameters, such as the crystal dimension of median mass. For vertically inhomogeneous clouds, the relative importance of different cloud heights in determining the retrieved re is examined, and a definition of re for vertically inhomogeneous clouds composed of hexagonal columns is proposed. This definition shows reasonable agreement with the re values that would be retrieved using visible and near-infrared channels for some microphysical data acquired in tropical ice clouds near Kwajalein, Marshall Islands, in the mid-1970s. Because only the upper parts of a thick ice cloud are detected by satellite, and because the near-infrared channels demonstrate reduced sensitivity to large crystals, it may not be possible to obtain information about typical particle sizes over the entire depth of thick clouds using current satellite retrievals alone.

  15. A new volar plate DiPhos-RM for fixation of distal radius fracture: preliminary report.

    PubMed

    Tarallo, Luigi; Mugnai, Raffaele; Adani, Roberto; Catani, Fabio

    2013-03-01

    We analyzed the efficiency of a new plate DiPhos-RM in CFR-PEEK [carbon-fiber-reinforced poly (etheretherketone)] for the volar fixation of distal radius fractures. The new plate's composition has the advantage of x-ray absolute transparency, therefore allowing to monitor the healing of the fracture. The desired combination of high strength and low rigidity is obtained through the use of the polymer composites CFR-PEEK. In this preliminary study (from March 2012 to June 2012), 10 cases of intra-articular distal radius fractures were treated with DiPhos-RM produced by Lima Corporate (Italy). The fractures were classified according to the AO classification, 4 fractures were type C1, 3 type C2, and 3 were A2. A preoperative computed tomography scan was carried out in all patients. One patient also underwent a postoperative computed tomography scan. Grip strength, range of motion, and DASH score were evaluated at follow-up. There were no cases of hardware failure. Specifically, no loss of position or alignment of fixed-angle locking screws or breakage of the plate were observed. Radiographic union was present at an average of 6 weeks (range, 5 to 8 wk). The overall preliminary experience with this new plate is favorable. The new plate is easy to apply and provides the surgeon dual options of fixed-angle or variable-angle screws. It was rigid enough to maintain the reduction also in AO type C articular fractures. PMID:23423235

  16. The Mass-Radius Relation of Young Stars from K2

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Cody, Ann Marie; Covey, Kevin R.; Rizzuto, Aaron C.; Mann, Andrew; Ireland, Michael; Jensen, Eric L. N.; Muirhead, Philip Steven

    2016-01-01

    Evolutionary models of pre-main sequence stars remain largely uncalibrated, especially for masses below that of the Sun, and dynamical masses and radii pose valuable tests of these theoretical models. Stellar mass dependent features of star formation (such as disk evolution, planet formation, and even the IMF) are fundamentally tied to these models, which implies a systematic uncertainty that can only be improved with precise measurements of calibrator stars. We will describe the discovery and characterization of ten eclipsing binary systems in the Upper Scorpius star-forming region from K2 Campaign 2 data, spanning from B stars to the substellar boundary. We have obtained complementary RV curves, spectral classifications, and high-resolution imaging for these targets; the combination of these data yield high-precision masses and radii for the binary components, and hence a dense sampling of the (nominally coeval) mass-radius relation of 10 Myr old stars. We already reported initial results from this program for the young M4.5 eclipsing binary UScoCTIO 5 (Kraus et al. 2015), demonstrating that theoretically predicted masses are discrepant by ~50% for low-mass stars. K2's unique radius measurements allow us to isolate the source of the discrepancy: models of young stars do not predict luminosities that are too low, as is commonly thought, but rather temperatures that are too warm.

  17. Experimental research on radius of curvature measurement of spherical lenses based on laser differential confocal technique

    NASA Astrophysics Data System (ADS)

    Ding, Xiang; Sun, Ruoduan; Li, Fei; Zhao, Weiqian; Liu, Wenli

    2011-11-01

    A new approach based on laser differential confocal technique is potential to achieve high accuracy in radius of curvature (ROC) measurement. It utilizes two digital microscopes with virtual pinholes on the CCD detectors to precisely locate the cat's-eye and the confocal positions, which can enhance the focus-identification resolution. An instrumental system was established and experimental research was carried out to determine how error sources contribute to the uncertainty of ROC measurement, such as optical axis misalignment, dead path of the interferometer, surface figure error of tested lenses and temperature fluctuation, etc. Suggestions were also proposed on how these factors could be avoided or suppressed. The system performance was tested by employing four pairs of template lenses with a serial of ROC values. The relative expanded uncertainty was analyzed and calculated based on theoretical analysis and experimental determination, which was smaller than 2x10-5 (k=2). The results were supported by comparison measurement between the differential confocal radius measurement (DCRM) system and an ultra-high accuracy three-dimensional profilometer, showing good consistency. It demonstrated that the DCRM system was capable of high-accuracy ROC measurement.

  18. Palæomagnetic evidence relevant to a change in the earth's radius

    USGS Publications Warehouse

    Cox, Allan; Doell, Richard R.

    1961-01-01

    INTEREST in the hypothesis that the Earth's radius has increased during geological history has been renewed in recent years because of several sets of independent observations and interpretations. From studies of the deformation of mountain ranges and the distribution of faults and oceans, Carey1 proposes an increase in the Earth's area of 45 per cent since the Palæozoic era. Heezen2 similarly interprets submarine topography as indicating that the oceans may be immense rift valleys formed by a pulling apart of the continents as the Earth expanded. Using a different approach, Egyed3,4 infers a rate of increase of the Earth's radius of 0.4–0.8 mm. per year. This calculation is based on a decrease in the total amount of continental area covered by oceans during the past 400 million years, as determined palæographically. Egyed4 has also pointed out the desirability of using palæomagnetic data to test this hypothesis.

  19. Measurement of humerus and radius bone mineral content in the term and preterm infant

    SciTech Connect

    Vyhmeister, N.R.; Linkhart, T.A.

    1988-07-01

    We compared two anatomic sites for single-photon absorptiometric measurement of bone mineral content (BMC) in term and preterm infants. The distal one third of the radius and the midportion of the humerus were evaluated for measurements of BMC with an unmodified, commercially available bone densitometer. We assessed reproducibility of BMC and bone width (BW) measurements and defined normal at-birth ranges of BMC, BW, and BMC/BW ratio for infants with gestational ages of 24 to 42 weeks. Humerus BMC correlated with gestational age, birth weight, and BW of patients and did not differ from humerus BMC values determined over the same range of gestational ages at another center. Representative serial measurements of two very low birth weight (VLBW) infants are presented to demonstrate the feasibility of using humerus BMC in longitudinal studies to assess changes in bone mineralization. We conclude that bone densitometer measurements of mid-humerus BMC can be successfully performed and are preferable to similar measurements of the radius for VLBW infants. Normal humerus BMC values were defined for use in diagnosis and evaluation of the efficacy of treatment in VLBW infants who are at high risk of developing osteopenia of prematurity.

  20. Redisplacement of Distal Radius Fracture after Initial Closed Reduction: Analysis of Prognostic Factors

    PubMed Central

    Jung, Ho-Wook; Hong, Hanpyo; Jung, Hong Jun; Kim, Jin Sam; Park, Ho Youn; Bae, Kun Hyung

    2015-01-01

    Background To evaluate risk factors of redisplacement and remind surgeons of key factors regarding conservative treatment of distal radius fracture. Methods A total of 132 patients who received conservative treatment for distal radius fractures between March 2008 and February 2011 were included in this study. Radial inclination, radial length, volar tilting angle, ulnar variance, fragment translation, and presence of dorsal metaphyseal comminution were measured on the X-rays taken immediately after reduction, one week after injury during the first follow-up outpatient clinic visit, and after the gain of radiological union. Secondary displacement was defined as a loss of reduction during the follow-up period, and was divided into 'early' and 'late' categories. We analyzed the influence of initial displacement radiologic variables, dorsal cortex comminution, and patient age on the development of secondary displacement. Results Development of secondary displacement was significantly associated only with initial displacement radiologic variables (p < 0.001), development of the late secondary displacement was significantly associated with age (p = 0.005), and initial displacement radiologic variables were associated significantly with a serial increase in ulnar variance (p = 0.003). Conclusions Greater displacement on the initial radiographs indicates a higher possibility of development for secondary displacement, and older patients had a higher probability of late secondary displacement development. Furthermore, dorsal comminutions did not affect secondary displacement directly. PMID:26330962

  1. Treatment of intra-articular fractures of the distal radius: fluoroscopic or arthroscopic reduction?

    PubMed

    Varitimidis, S E; Basdekis, G K; Dailiana, Z H; Hantes, M E; Bargiotas, K; Malizos, K

    2008-06-01

    In a randomised prospective study, 20 patients with intra-articular fractures of the distal radius underwent arthroscopically- and fluoroscopically-assisted reduction and external fixation plus percutaneous pinning. Another group of 20 patients with the same fracture characteristics underwent fluoroscopically-assisted reduction alone and external fixation plus percutaneous pinning. The patients were evaluated clinically and radiologically at follow-up of 24 months. The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire and modified Mayo wrist score were used at 3, 9, 12 and 24 months postoperatively. In the arthroscopically- and fluoroscopically-assisted group, triangular fibrocartilage complex tears were found in 12 patients (60%), complete or incomplete scapholunate ligament tears in nine (45%), and lunotriquetral ligament tears in four (20%). They were treated either arthroscopically or by open operation. Patients who underwent arthroscopically- and fluoroscopically-assisted treatment had significantly better supination, extension and flexion at all time points than those who had fluoroscopically-assisted surgery. The mean DASH scores were similar for both groups at 24 months, whereas the difference in the mean modified Mayo wrist scores remained statistically significant. Although the groups are small, it is clear that the addition of arthroscopy to the fluoroscopically-assisted treatment of intra-articular distal radius fractures improves the outcome. Better treatment of associated intra-articular injuries might also have been a reason for the improved outcome. PMID:18539672

  2. Ulnar Shortening Osteotomy After Distal Radius Fracture Malunion: Review of Literature.

    PubMed

    Barbaric, Katarina; Rujevcan, Gordan; Labas, Marko; Delimar, Domagoj; Bicanic, Goran

    2015-01-01

    Malunion of distal radius fracture is often complicated with shortening of the radius with disturbed radio- ulnar variance, frequently associated with lesions of triangular fibrocartilage complex and instability of the distal radioulnar joint. Positive ulnar variance may result in wrist pain located in ulnar part of the joint, limited ulnar deviation and forearm rotation with development of degenerative changes due to the overloading that occurs between the ulnar head and corresponding carpus. Ulnar shortening osteotomy (USO) is the standard procedure for correcting positive ulnar variance. Goal of this procedure is to minimize the symptoms by restoring the neutral radio - ulnar variance. In this paper we present a variety of surgical techniques available for ulnar shorthening osteotomy, their advantages and drawbacks. Methods of ulnar shortening osteotomies are divided into intraarticular and extraarticular. Intraarticular method of ulnar shortening can be performed arthroscopically or through open approach. Extraarticular methods include subcapital osteotomy and osteotomy of ulnar diaphysis, which depending on shape can be transverse, oblique, and step cut. All of those osteotomies can be performed along wrist arthroscopy in order to dispose and treat possibly existing triangular fibrocartilage complex injuries. At the end we described surgical procedures that can be done in case of ulnar shorthening osteotomy failure. PMID:26157524

  3. Ulnar Shortening Osteotomy After Distal Radius Fracture Malunion: Review of Literature

    PubMed Central

    Barbaric, Katarina; Rujevcan, Gordan; Labas, Marko; Delimar, Domagoj; Bicanic, Goran

    2015-01-01

    Malunion of distal radius fracture is often complicated with shortening of the radius with disturbed radio- ulnar variance, frequently associated with lesions of triangular fibrocartilage complex and instability of the distal radioulnar joint. Positive ulnar variance may result in wrist pain located in ulnar part of the joint, limited ulnar deviation and forearm rotation with development of degenerative changes due to the overloading that occurs between the ulnar head and corresponding carpus. Ulnar shortening osteotomy (USO) is the standard procedure for correcting positive ulnar variance. Goal of this procedure is to minimize the symptoms by restoring the neutral radio - ulnar variance. In this paper we present a variety of surgical techniques available for ulnar shorthening osteotomy, their advantages and drawbacks. Methods of ulnar shortening osteotomies are divided into intraarticular and extraarticular. Intraarticular method of ulnar shortening can be performed arthroscopically or through open approach. Extraarticular methods include subcapital osteotomy and osteotomy of ulnar diaphysis, which depending on shape can be transverse, oblique, and step cut. All of those osteotomies can be performed along wrist arthroscopy in order to dispose and treat possibly existing triangular fibrocartilage complex injuries. At the end we described surgical procedures that can be done in case of ulnar shorthening osteotomy failure. PMID:26157524

  4. An improved method for susceptibility and radius quantification of cylindrical objects from MRI

    PubMed Central

    Hsieh, Ching-Yi; Cheng, Yu-Chung N.; Neelavalli, Jaladhar; Haacke, E. Mark; Stafford, R. Jason

    2015-01-01

    A new method is developed to measure the magnetic susceptibilities and radii of small cylinder-like objects at arbitrary orientations accurately. This method for most biological substances only requires a standard gradient echo sequence with one or two echo times, depending on the orientation of an object relative to the main magnetic field. For objects oriented at the magic angle, however, this method is not applicable. As a byproduct of this method, the cross-sectional area as well as signals inside and outside the object can be determined. The uncertainty of each measurement is estimated from the error propagation method. Partial volume, dephasing, and phase aliasing effects are naturally included in the equations of this method. A number of simulations, phantom, and pilot in-vivo human studies are carried out to validate the theory. When the maximal phase value at the boundary of a given cylindrical object is larger than 3 radians, and the phase inside the object is more than 1 radian, the susceptibility can be accurately quantified within 15%. The radius of the object can be determined to subpixel accuracy. This is the case when the signal-to-noise ratio inside the object is about 6:1 or higher and the radius of the object is about one pixel or larger. These conditions are realistic when considering medullary and pial veins for example. PMID:25633922

  5. Two-dimensional continuum percolation threshold for diffusing particles of nonzero radius.

    PubMed

    Saxton, Michael J

    2010-09-01

    Lateral diffusion in the plasma membrane is obstructed by proteins bound to the cytoskeleton. The most important parameter describing obstructed diffusion is the percolation threshold. The thresholds are well known for point tracers, but for tracers of nonzero radius, the threshold depends on the excluded area, not just the obstacle concentration. Here thresholds are obtained for circular obstacles on the continuum. Random obstacle configurations are generated by Brownian dynamics or Monte Carlo methods, the obstacles are immobilized, and the percolation threshold is obtained by solving a bond percolation problem on the Voronoi diagram of the obstacles. The percolation threshold is expressed as the diameter of the largest tracer that can cross a set of immobile obstacles at a prescribed number density. For random overlapping obstacles, the results agree with the known analytical solution quantitatively. When the obstacles are soft disks with a 1/r(12) repulsion, the percolating diameter is approximately 20% lower than for overlapping obstacles. A percolation model predicts that the threshold is highly sensitive to the tracer radius. To our knowledge, such a strong dependence has so far not been reported for the plasma membrane, suggesting that percolation is not the factor controlling lateral diffusion. A definitive experiment is proposed. PMID:20816061

  6. MEASURING THE SOLAR RADIUS FROM SPACE DURING THE 2003 AND 2006 MERCURY TRANSITS

    SciTech Connect

    Emilio, M.; Kuhn, J. R.; Scholl, I. F.; Bush, R. I. E-mail: kuhn@ifa.hawaii.edu E-mail: rock@sun.stanford.edu

    2012-05-10

    The Michelson Doppler Imager (MDI) aboard the Solar and Heliospheric Observatory observed the transits of Mercury on 2003 May 7 and 2006 November 8. Contact times between Mercury and the solar limb have been used since the seventeenth century to derive the Sun's size but this is the first time that high-quality imagery from space, above the Earth's atmosphere, has been available. Unlike other measurements, this technique is largely independent of optical distortion. The true solar radius is still a matter of debate in the literature as measured differences of several tenths of an arcsecond (i.e., about 500 km) are apparent. This is due mainly to systematic errors from different instruments and observers since the claimed uncertainties for a single instrument are typically an order of magnitude smaller. From the MDI transit data we find the solar radius to be 960.''12 {+-} 0.''09 (696, 342 {+-} 65 km). This value is consistent between the transits and consistent between different MDI focus settings after accounting for systematic effects.

  7. [Conservative treatment of distal radius fracture. Consequences of an uncritical follow-up].

    PubMed

    Huber-Wagner, S; Beirer, M; Neu, J

    2014-11-01

    A 74-year-old woman sustained a fracture of the distal radius with an additional fracture of the styloid process of the ulna due to a fall. After reduction under local anesthesia immobilization treatment in a forearm cast was initiated. Despite increasing secondary dislocation during radiological x-ray follow-up control, the bone was described as correctly aligned by the treating physician and non-operative treatment was continued. After a total treatment period of 9 months including 7 months of physiotherapy the patient still presented a limited range of motion and local soft tissue swelling of the right wrist. The patient filed a complaint for wrong treatment of the distal radius fracture resulting in severe pain and considerable deformity of the right wrist leading to a significant handicap during activities of daily living. The expert opinion of the arbitration board ascertained a case of medical malpractice in terms of the indications. Due to the initial presence of criteria of radiological instability, an operative treatment had already been indicated at the first presentation. In addition, secondary dislocation during radiological follow-up examination should have led to conversion of treatment in favor of surgery. The arbitration board furthermore concluded that iatrogenic malpractice led to a severe deformity of the right wrist which would result in a loss of grip strength and future arthritic deformation of the wrist. Legal aspects of the case are discussed. PMID:25277732

  8. Design-Optimization and Material Selection for a Proximal Radius Fracture-Fixation Implant

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Xie, X.; Arakere, G.; Grujicic, A.; Wagner, D. W.; Vallejo, A.

    2010-11-01

    The problem of optimal size, shape, and placement of a proximal radius-fracture fixation-plate is addressed computationally using a combined finite-element/design-optimization procedure. To expand the set of physiological loading conditions experienced by the implant during normal everyday activities of the patient, beyond those typically covered by the pre-clinical implant-evaluation testing procedures, the case of a wheel-chair push exertion is considered. Toward that end, a musculoskeletal multi-body inverse-dynamics analysis is carried out of a human propelling a wheelchair. The results obtained are used as input to a finite-element structural analysis for evaluation of the maximum stress and fatigue life of the parametrically defined implant design. While optimizing the design of the radius-fracture fixation-plate, realistic functional requirements pertaining to the attainment of the required level of the devise safety factor and longevity/lifecycle were considered. It is argued that the type of analyses employed in the present work should be: (a) used to complement the standard experimental pre-clinical implant-evaluation tests (the tests which normally include a limited number of daily-living physiological loading conditions and which rely on single pass/fail outcomes/decisions with respect to a set of lower-bound implant-performance criteria) and (b) integrated early in the implant design and material/manufacturing-route selection process.

  9. The Mass-Radius-Luminosity-Rotation Relationship for M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Han, Eunkyu; Muirhead, Philip Steven; Swift, Jonathan; Isaacson, Howard T.; DeFelippis, Daniel

    2016-01-01

    NASA's future Transiting Exoplanet Survey Satellite (TESS) mission is expected to discover hundreds of terrestrial exoplanets orbiting around M dwarf stars, which will be nearby and amenable to detailed characterization. To accurately measure radii and equilibrium temperatures of these exoplanets, we need to know the host star properties, specifically mass, radius and luminosity, to equal accuracy. However, relationships for M dwarf stellar properties are poorly constrained, which leaves us unprepared to characterize exoplanets to be discovered by the TESS mission. The best way to determine relationships for M dwarf stars is to study mutually eclipsing binaries because the photometric and spectroscopic data empirically determine the physical parameters of the stars. We are conducting an on-going survey to measure infrared eclipses and individual spectra of carefully selected M dwarf eclipsing binary targets. We are using Mimir, a near-infrared wide-field imager, on the 72-inch Perkins Telescope near Flagstaff, Arizona, to determine the J, H, and K band magnitudes of the individual stars, and we are using Keck HIRES to measure the radial velocities of each component. Combining the observations, we determine the masses, radii and the semi-major axes of each component to an accuracy of 1%. We are also using measured parallaxes to determine the individual components' absolute infrared magnitudes and bolometric luminosities. The ultimate goal is to combine the measurements to determine the mass-radius-luminosity-rotation relationship for M dwarf stars. The relationship is critical for choosing the best TESS M dwarf exoplanets for detailed characterization.

  10. Grout Long Radius Flow Testing to Support Saltstone Disposal Unit 6 Design - 13352

    SciTech Connect

    Stefanko, D.B.; Langton, C.A.; Serrato, M.G.; Brooks, T.E. II; Huff, T.H.

    2013-07-01

    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as 'Saltstone'. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a 'mega vault' and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; Saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (Saltstone premix plus water) were

  11. Grout long radius flow testing to support Saltstone disposal Unit 5 design

    SciTech Connect

    Stefanko, D. B.; Langton, C. A.; Serrato, M. G.; Brooks, T. E. II; Huff, T. H.

    2013-02-24

    The Saltstone Facility, located within the Savannah River Site (SRS) near Aiken, South Carolina, consists of two facility segments: The Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). The SPF receives decontaminated legacy low level sodium salt waste solution that is a byproduct of prior nuclear material processing. The salt solution is mixed with cementitious materials to form a grout slurry known as “Saltstone”. The grout is pumped to the SDF where it is placed in a Saltstone Disposal Unit (SDU) to solidify. SDU 6 is referred to as a “mega vault” and is currently in the design stage. The conceptual design for SDU 6 is a single cell, cylindrical geometry approximately 114.3 meters in diameter by 13.1 meter high and is larger than previous cylindrical SDU designs, 45.7 meters in diameter by 7.01 meters high (30 million gallons versus 2.9 million gallons of capacity). Saltstone slurry will be pumped into the new waste disposal unit through roof openings at a projected flow rate of about 34.1 cubic meters per hour. Nine roof openings are included in the design to discharge material into the SDU with an estimated grout pour radius of 22.9 to 24.4 meters and initial drop height of 13.1 meters. The conceptual design for the new SDU does not include partitions to limit the pour radius of the grout slurry during placement other than introducing material from different pour points. This paper addresses two technical issues associated with the larger diameter of SDU 6; saltstone flow distance in a tank 114.3 meters in diameter and quality of the grout. A long-radius flow test scaled to match the velocity of an advancing grout front was designed to address these technology gaps. The emphasis of the test was to quantify the flow distance and to collect samples to evaluate cured properties including compressive strength, porosity, density, and saturated hydraulic conductivity. Two clean cap surrogate mixes (saltstone premix plus water

  12. Vascularized proximal fibular autograft for treatment of post-traumatic segmental bony defects in the distal radius.

    PubMed

    Shimizu, Takamasa; Yajima, Hiroshi; Kobata, Yasunori; Shigematsu, Koji; Kawamura, Kenji; Takakura, Yoshinori

    2008-11-01

    Vascularized proximal fibular autograft is reported as one of the reconstructive procedures for the wrists following tumor resection in the distal end of the radius. However, it is rarely performed for the treatment of segmental bony defects in the distal radius after trauma. A 19-year-old man who had traumatic bony defects in the distal radius involving the articular surface underwent vascularized proximal fibular grafting for reconstruction of the wrist. After surgery, he regained wrist functions, with 40 degrees of flexion, 45 degrees of extension, 90 degrees of pronation, and 45 degrees of supination. No evidence of instability or degenerative changes was noted in the reconstructed wrist at 3 years after surgery. Vascularized proximal fibular autograft appears a useful procedure both for reconstruction of the wrist in cases with segmental bony defects in the distal radius after trauma, as well as for after tumor resection. PMID:18925543

  13. The channel radius and energy of cloud-to-ground lightning discharge plasma with multiple return strokes

    SciTech Connect

    Wang, Xuejuan; Yuan, Ping; Cen, Jianyong; Liu, Jianguo; Li, Yajun

    2014-03-15

    Using the spectra of a cloud-to-ground (CG) lightning flash with multiple return strokes and combining with the synchronous radiated electrical field information, the linear charge density, the channel radius, the energy per unit length, the thermal energy, and the energy of dissociation and ionization in discharge channel are calculated with the aid of an electrodynamic model of lightning. The conclusion that the initial radius of discharge channel is determined by the duration of the discharge current is confirmed. Moreover, the correlativity of several parameters has been analyzed first. The results indicate that the total intensity of spectra is positive correlated to the channel initial radius. The ionization and thermal energies have a linear relationship, and the dissociation energy is correlated positively to the ionization and thermal energies, the energy per unit length is in direct proportion to the square of initial radius in different strokes of one CG lightning.

  14. A Simple 3-Dimensional Printed Aid for a Corrective Palmar Opening Wedge Osteotomy of the Distal Radius.

    PubMed

    Honigmann, Philipp; Thieringer, Florian; Steiger, Regula; Haefeli, Mathias; Schumacher, Ralf; Henning, Julia

    2016-03-01

    The reconstruction of malunited distal radius fractures is often challenging. Virtual planning techniques and guides for drilling and resection have been used for several years to achieve anatomic reconstruction. These guides have the advantage of leading to better operative results and faster surgery. Here, we describe a technique using a simple implant independent 3-dimensional printed drill guide and template to simplify the surgical reconstruction of a malunited distal radius fracture. PMID:26787406

  15. Correlation between dorsovolar translation and rotation of the radius on the distal radioulnar joint during supination and pronation of forearm.

    PubMed

    Lee, Sang Ki; Song, Young Dong; Choy, Won Sik

    2015-09-01

    This study aimed to describe the patterns of movements about radius and ulna in individual degrees of forearm rotation. And, we also determined the effect of forearm rotation on translation and rotation of the radius with reference to the ulna, and to measure the relationship between forearm rotation, translation and rotation of the radius. Computed tomography of multiple, individual forearm positions, from 90° pronation to 90° supination, was conducted in 26 healthy volunteers (mean age, 43.9 years) to measure dorsovolar translation and rotation of the radius in the DRUJ in each forearm position. The mean dorsovolar translations were within 1.99 mm at 90° pronation to -2.03 mm at 90° supination. The rotations of the radius were 71.20° at 90° pronation and -46.63° at 90° supination. There were strong correlations between degrees of forearm rotation and dorsovolar translation (r=0.861, p<0.001) and rotation of the radius (r=0.960, p<0.001), suggesting that the DRUJ, carpal joints, and rotatory laxity of the carpal ligament, especially in supination, contribute to forearm supination and pronation. These findings provide an understanding of wrist kinematics, are may be useful in reconstructive wrist surgery to achieve normal range of motion, and are may be helpful for the design of DRUJ reconstruction using prostheses. PMID:26435248

  16. Implications of the contact radius to line step (CRLS) ratio in AFM for nanotribology measurements.

    PubMed

    Helt, James M; Batteas, James D

    2006-07-01

    Investigating the mechanisms of defect generation and growth at surfaces on the nanometer scale typically requires high-resolution tools such as the atomic force microscope (AFM). To accurately assess the kinetics and activation parameters of defect production over a wide range of loads (F(z)), the AFM data should be properly conditioned. Generally, AFM wear trials are performed over an area defined by the length of the slow (L(sscan)) and fast scan axes. The ratio of L(sscan) to image resolution (res, lines per image) becomes an important experimental parameter in AFM wear trials because it defines the magnitude of the line step (LS = L(sscan)/res), the distance the AFM tip steps along the slow scan axis. Comparing the contact radius (a) to the line step (LS) indicates that the overlap of successive scans will result unless the contact radius-line step ratio (CRLS) is < or =(1)/(2). If this relationship is not considered, then the scan history (e.g., contact frequency) associated with a single scan is not equivalent at different loads owing to the scaling of contact radius with load (a proportional variant F(z)(1/3)). Here, we present a model in conjunction with empirical wear tests on muscovite mica to evaluate the effects of scan overlap on surface wear. Using the Hertz contact mechanics definition of a, the CRLS model shows that scan overlap pervades AFM wear trials even under low loads. Such findings indicate that simply counting the number of scans (N(scans)) in an experiment underestimates the full history conveyed to the surface by the tip and translates into an error in the actual extent to which a region on the surface is contacted. Utilizing the CRLS method described here provides an approach to account for image scan history accurately and to predict the extent of surface wear. This general model also has implications for any AFM measurement where one wishes to correlate scan-dependent history to image properties as well as feature resolution in scanned

  17. Primary Wrist Hemiarthroplasty for Irreparable Distal Radius Fracture in the Independent Elderly.

    PubMed

    Herzberg, Guillaume; Burnier, Marion; Marc, Antoine; Izem, Yadar

    2015-08-01

    Background Volar plating for acute distal radius fractures (DRF) in the elderly has been recommended. Some studies have suggested that open reduction with internal fixation (ORIF) in this situation results in frequent complications. Our purposes were to provide a definition of irreparable DRF in independent elderly patients and to review the results of a preliminary retrospective series of wrist hemiarthroplasty (WHA) in this patient population. Materials Between 2011 and 2014, 11 consecutive independent elderly patients (12 wrists) with irreparable intra-articular DRF were treated with primary WHA at the acute stage. A resection of the ulnar head was associated in nine wrists. A total of 11 wrists with more than 2 years of follow-up form the basis of this paper. Description of Technique The approach was dorsal longitudinal. An osteotome longitudinally entered the dorsal aspect of the fracture medial to the Lister tubercle. Two thick osteoperiosteal flaps were elevated radially and ulnarly in a fashion similar to opening a book. The distal radius articular surface was excised. The implant was pressed into the radial canal with attention to restoring distal radius length. The two osteoperiosteal flaps were brought back together and sutured so as to close, again like a book, the osseous and soft tissues around the implant. Results At mean follow-up of 30 months, average visual analog scale (VAS) pain was 1/10. Mean QuickDASH (Disabilities of the Arm, Shoulder and Hand) score was 32, and mean Patient-Rated Wrist Evaluation (PRWE) score was 24. Mean forearm rotation arc was 151°. Mean active flexion-extension arc was 60°. Mean active extension was 34°. Mean grip strength was 14 kg (64% of contralateral wrist). Mean Lyon wrist score was 73%. Bone healing around the implants was satisfactory in all but one case. Conclusions Out data suggest that treatment of irreparable DRF in the independent elderly patient with a bone-preserving WHA may be a viable

  18. Primary Wrist Hemiarthroplasty for Irreparable Distal Radius Fracture in the Independent Elderly

    PubMed Central

    Herzberg, Guillaume; Burnier, Marion; Marc, Antoine; Izem, Yadar

    2015-01-01

    Background Volar plating for acute distal radius fractures (DRF) in the elderly has been recommended. Some studies have suggested that open reduction with internal fixation (ORIF) in this situation results in frequent complications. Our purposes were to provide a definition of irreparable DRF in independent elderly patients and to review the results of a preliminary retrospective series of wrist hemiarthroplasty (WHA) in this patient population. Materials Between 2011 and 2014, 11 consecutive independent elderly patients (12 wrists) with irreparable intra-articular DRF were treated with primary WHA at the acute stage. A resection of the ulnar head was associated in nine wrists. A total of 11 wrists with more than 2 years of follow-up form the basis of this paper. Description of Technique The approach was dorsal longitudinal. An osteotome longitudinally entered the dorsal aspect of the fracture medial to the Lister tubercle. Two thick osteoperiosteal flaps were elevated radially and ulnarly in a fashion similar to opening a book. The distal radius articular surface was excised. The implant was pressed into the radial canal with attention to restoring distal radius length. The two osteoperiosteal flaps were brought back together and sutured so as to close, again like a book, the osseous and soft tissues around the implant. Results At mean follow-up of 30 months, average visual analog scale (VAS) pain was 1/10. Mean QuickDASH (Disabilities of the Arm, Shoulder and Hand) score was 32, and mean Patient-Rated Wrist Evaluation (PRWE) score was 24. Mean forearm rotation arc was 151°. Mean active flexion-extension arc was 60°. Mean active extension was 34°. Mean grip strength was 14 kg (64% of contralateral wrist). Mean Lyon wrist score was 73%. Bone healing around the implants was satisfactory in all but one case. Conclusions Out data suggest that treatment of irreparable DRF in the independent elderly patient with a bone-preserving WHA may be a viable

  19. Observational constraints on star cluster formation theory. I. The mass-radius relation

    NASA Astrophysics Data System (ADS)

    Pfalzner, S.; Kirk, H.; Sills, A.; Urquhart, J. S.; Kauffmann, J.; Kuhn, M. A.; Bhandare, A.; Menten, K. M.

    2016-02-01

    Context. Stars form predominantly in groups usually denoted as clusters or associations. The observed stellar groups display a broad spectrum of masses, sizes, and other properties, so it is often assumed that there is no underlying structure in this diversity. Aims: Here we show that the assumption of an unstructured multitude of cluster or association types might be misleading. Current data compilations of clusters in the solar neighbourhood show correlations among cluster mass, size, age, maximum stellar mass, etc. In this first paper we take a closer look at the correlation of cluster mass and radius. Methods: We use literature data to explore relations in cluster and molecular core properties in the solar neighbourhood. Results: We show that for embedded clusters in the solar neighbourhood a clear correlation exists between cluster mass and half-mass radius of the form Mc = CRcγ with γ = 1.7 ± 0.2. This correlation holds for infrared K-band data, as well as for X-ray sources and clusters containing a hundred stars up to those consisting of a few tens of thousands of stars. The correlation is difficult to verify for clusters containing fewer than 30 stars owing to low-number statistics. Dense clumps of gas are the progenitors of the embedded clusters. We find almost the same slope for the mass-size relation of dense, massive clumps as for the embedded star clusters. This might point to a direct translation from gas to stellar mass: however, it is difficult to relate size measurements for clusters (stars) to those for gas profiles. Taking multiple paths for clump mass into cluster mass into account, we obtain an average star-formation efficiency of 18%+9.3-5.7 for the embedded clusters in the solar neighbourhood. Conclusions: The derived mass-radius relation gives constraints for the theory of clustered star formation. Analytical models and simulations of clustered star formation have to reproduce this relation in order to be realistic.

  20. Fixed-Angle Volar Plate Fixation for Distal Radius Fractures in Immunosuppressed Patients

    PubMed Central

    Peterson, Erik D.

    2008-01-01

    The aim of this study was to define the outcome and complications following open reduction and internal fixed-angle plating of distal radius fractures for patients on chronic immunosuppression medications. A retrospective study identified 11 patients with distal radius fractures that had been on chronic immunosuppressive medication. The mean patient age was 59.9 years (40–82 years). According to the Orthopedic Trauma Association classification, there was one 23A3, one 23B3, and nine 23C type fractures. There were two open fractures. All patients received preoperative antibiotics and underwent reduction and fixation with a volar, fixed-angle plate. Postoperative measurements included postoperative and final radiographic indices, wrist flexion and extension, forearm rotation, and grip strength. Clinical follow-up averaged 13 months, and radiographic follow-up averaged 14.9 months. Statistical analysis was performed comparing means of various parameters with a two-sided t test with an alpha value ≤0.05. All fractures healed, and there were no infections. The final mean ulnar variance, volar tilt, and radial inclination were −0.1 mm (ulnar negative; −2.0 to +2.5 mm), 13° (5–23°), and 21° (15–27°), respectively. The mean articular gap or step was 0.4 mm. There was a small but significant decrease between the final and postoperative mean ulnar variance (p = 0.03). Mean wrist flexion was 47°, extension 47°, pronation 77°, and supination was 76°. Grip strength averaged 16.3 kg versus 25.1 kg for the opposite extremity. The one major complication included a postoperative carpal tunnel syndrome. Fixed-angle volar plate fixation for distal radius fractures in patients with chronic immunosuppression was associated with union (with acceptable radiographic alignment), no wound-healing problems or infections, and with functional wrist and forearm motion and grip strength. PMID:18780023

  1. Gyromagnetic factors in {sup 144-150}Nd

    SciTech Connect

    Giannatiempo, A.

    2011-09-15

    The U(5) to SU(3) evolution of the nuclear structure in the even {sup 144-156}Nd isotopes has been investigated in the framework of the interacting boson approximation (IBA-2) model, taking into account the effect of the partial Z=64 subshell closure on the structure of the states of a collective nature. The analysis, which led to a satisfactory description of excitation energy patterns, quadrupole moments, and decay properties of the states (even when important M1 components were present in the transitions), is extended to the available data on g factors, in {sup 144-150}Nd. Their values are reasonably reproduced by the calculations.

  2. Gravitational anisotropies of gyromagnetic ratios and tests of general relativity

    NASA Astrophysics Data System (ADS)

    Gallop, J. C.; Petley, B. W.

    1983-05-01

    Consideration is given to experiments which may have demonstrated frequency shifts in an NMR clock that display a gravitational redshift. The experiments have been performed to test the Einstein equivalence principle that two clocks at the same point in space-time will run at the same rate. Comparisons have been made between the ticks of a cesium clock and the NMR clock, which has a time signal originating from the free precession of a sample of polarized nuclear spins in a stable and uniform magnetic field. Nonzero measurements of gravity-affected precessions have thus far not been obtained, indicating an isotropy of space or the exactness of the local Lorentz invariance. The NMR clocks, placed in the earth's magnetic field, have a sensitivity of 10 to the -17th eV for energy shifts caused by the gravitational field. Studies of the isotropy of the gravitational interaction for spin 1/2 particles in the fields of the earth, sun, and galaxy are shown to have been made with instruments which are barely capable of detecting the variations in the precession frequencies, and instrumentation which would be capable of detecting the changes are indicated.

  3. Precision Measurement of the Electron/Muon Gyromagnetic Factors

    NASA Astrophysics Data System (ADS)

    Awobode, Ayodeji

    2009-05-01

    Clear, persuasive arguments are brought forward to motivate the need for highly precise measurements of the electron/muon orbital g, i.e. gL, as a test of QED. It is demonstrated, using the data of Kusch & Foley on the measurement of (δS - 2δL) together with the modern precise measurements of the electron δS (δS ≡ gS -- 2)), that δL may be a small (--0.6 x 10-4), non-zero quantity, where we have assumed Russel-Saunders (LS) coupling and proposed, along with Kusch and Foley, that gS = 2 + δS and gL = 1 + δL. Therefore, there is probable evidence from experimental data that gL is not equal to 1 exactly; the expectation that quantum effects will significantly modify the classical value of the orbital g is therefore reasonable. It is significant that available spectroscopic data indicate that gS and gL are probably modified such that gS is increased by δS while gL is decreased by δL. Modern, high precision measurements of the electron and muon orbital gL are therefore required, in order to properly determine by experiments the true value of gL -- 1, perhaps to about one part in a trillion as was recently done for gS -- 2.

  4. Ion finite Larmor radius effects on the interchange instability in an open system

    SciTech Connect

    Katanuma, I.; Sato, S.; Okuyama, Y.; Kato, S.; Kubota, R.

    2013-11-15

    A particle simulation of an interchange instability was performed by taking into account the ion finite Larmor radius (FLR) effects. It is found that the interchange instability with large FLR grows in two phases, that is, linearly growing phase and the nonlinear phase subsequent to the linear phase, where the instability grows exponentially in both phases. The linear growth rates observed in the simulation agree well with the theoretical calculation. The effects of FLR are usually taken in the fluid simulation through the gyroviscosity, the effects of which are verified in the particle simulation with large FLR regime. The gyroviscous cancellation phenomenon observed in the particle simulation causes the drifts in the direction of ion diamagnetic drifts.

  5. Interchange and Flow Velocity Shear Instabilities in the Presence of Finite Larmor Radius Effects

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Mishin, E.; Genoni, T.; Rose, D.; Mehlhorn, T.

    2014-09-01

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during Equatorial Plasma Bubbles (EPBs) events. However, the existing ionospheric models do not describe density irregularities with typical scales of several ion Larmor radii that affect UHF and L bands. These irregularities can be produced in the process of nonlinear evolution of interchange or flow velocity shear instabilities. The model of nonlinear development of these instabilities based on two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. The derived nonlinear equations will be numerically solved by using the code Flute, which was originally developed for High Energy Density applications and modified to describe interchange and flow velocity shear instabilities in the ionosphere. The high-resolution simulations will be driven by the ambient conditions corresponding to the AFRL C/NOFS satellite low-resolution data during EPBs.

  6. Aerothermal Performance Constraints for Hypervelocity Small Radius Unswept Leading Edges and Nosetips

    NASA Technical Reports Server (NTRS)

    Kolodziej, Paul

    1997-01-01

    Small radius leading edges and nosetips were utilized to minimize wave drag in early hypervelocity vehicle concepts until further analysis demonstrated that extreme aerothermodynamic heating would cause severe ablation or blunting of the available thermal protection system materials. Recent studies indicate that ultrahigh temperature ceramic (UHTC) materials are shape stable at temperatures approaching 3033 K and will be available for use as sharp UHTC leading edge components in the near future. Aerothermal performance constraints for sharp components made from these materials are presented in this work to demonstrate the effects of convective blocking, surface catalycity, surface emissivity, and rarefied flow effects on steady state operation at altitudes from sea level to 90 km. These components are capable of steady state operation at velocities up to 7.9 km/s at attitudes near 90 km.

  7. Intermediate clinical follow-up of a dual-radius acetabular component.

    PubMed

    Van Flandern, G J; Bierbaum, B E; Newberg, A H; Gomes, S L; Mattingly, D A; Karpos, P A

    1998-10-01

    In this study, 92 primary total hip arthroplasties were performed in 83 patients using a porous-coated, dual-radius, cementless, acetabular component. All hips underwent line-to-line dome reaming with press-fit implantation that was judged to have complete bone contact. This acetabular shell provides a 1-mm oversized peripheral rim, which adds excellent initial stability while allowing complete bone contact in all hips. No fractures occurred. In 83% of hips, adjunctive screw fixation was not necessary. At a minimum of 4 years, follow-up, there were no revisions, no acetabular migration, one case of acetabular erosion consistent with osteolysis, and the average Harris Hip Score was 95. The design features of this new acetabular component have provided excellent fixation with complete initial bone contact, resulting in satisfactory intermediate clinical and radiographic results. The design provides excellent peripheral stability and complete bone contact. PMID:9802669

  8. Schwarzschild Radius Before General Relativity: Why Does Michell-Laplace Argument Provide the Correct Answer?

    NASA Astrophysics Data System (ADS)

    Preti, Giovanni

    2009-09-01

    A famous Newtonian argument by Michell and Laplace, regarding the existence of “dark bodies” and dating back to the end of the 18th century, is able to provide an exact general-relativistic result, namely the exact formula for the Schwarzschild radius. Since general relativity was formulated more than a century after this argument had been issued, it looks quite surprising that such a correct prediction could have been possible. Far from being merely a fortuitous coincidence (as one might justifiably be induced to think), this fact can find a reasonable explanation once the question is approached the other way round, i.e. from the general-relativistic point of view. By reexamining Laplace’s proof from this point of view, we discuss here the reasons why Michell-Laplace argument can be so “unexpectedly" correct in its general-relativistic prediction.

  9. Radius of electron as a consequence of Poincaré group

    NASA Astrophysics Data System (ADS)

    Laserra, E.; Pavlotsky, I. P.; Strianese, M.

    1995-02-01

    The so-called no-interaction theorem of D.G. Currie, T.F.Jordan, E.C. Sudarshan, H.Leutwyler, G.Marmo and N.Mukunda makes it possible to construct relativistic quasi-classical particle dynamics in the post-Galilean approximation only. We found that in this approximation the Lagrangians are singular on some surfaces of the phase space. The dynamical properties are essentially peculiar on the singular surfaces which we studied. It is shown in this paper that in the case of rectilinear motion of two electrons, the so-called “radius of electron” (the minimal distance between the particles) can be interpreted as the dynamical property of motion on the singular surface generated by the Lagrangian of Darwin.

  10. TRENDS IN DWARF EARLY-TYPE KINEMATICS WITH CLUSTER-CENTRIC RADIUS DRIVEN BY TIDAL STIRRING

    SciTech Connect

    Benson, A. J.; Toloba, E.; Simon, J. D.; Mayer, L.; Guhathakurta, P.

    2015-02-01

    We model the dynamics of dwarf early-type galaxies in the Virgo cluster when subject to a variety of environmental processes. We focus on how these processes imprint trends in the dynamical state (rotational versus pressure support as measured by the λ{sub Re/2}{sup ∗} statistic) with projected distance from the cluster center, and compare these results to observational estimates. We find a large scatter in the gradient of λ{sub Re/2}{sup ∗} with projected radius. A statistical analysis shows that models with no environmental effects produce gradients as steep as those observed in none of the 100 cluster realizations we consider, while in a model incorporating tidal stirring by the cluster potential 34% of realizations produce gradients as steep as that observed. Our results suggest that tidal stirring may be the cause of the observed radial dependence of dwarf early-type dynamics in galaxy clusters.

  11. [Secondary dislocations in fractures of the distal end of the radius].

    PubMed

    Zdun, H; Kanchanlall, W

    1990-01-01

    In the group of 31 patients treated by immobilization of the forearm we observed 71% of secondary dislocations and in group of 46 with the full-arm plaster 65% of secondary dislocation occurred. In the group of 20 patients with the full-arm plaster and the X-ray done between the 7th and 10th day after reduction to correct possible dislocation, followed always by the new, similar plaster cast, we observed 40% of secondary dislocations. Whenever the full-arm plaster was used Sudeck syndrome was observed very rarely. No direct relationship between kind of plaster used and the degree of shortening of the radius length after healing of the fracture was found. Comminuted fractures and osteoporosis are in favour for secondary dislocations. PMID:1369865

  12. [Technique and results of modified percutaneous bore wire osteosynthesis of the distal radius].

    PubMed

    Habernek, H; Schmid, L

    1992-07-01

    A modified technique for percutaneous K-wire pinning of distal radius fractures is presented. With this method, three to four K-wires are introduced from the radial styloid process towards and through the dorsal, volar and ulnar proximal cortical wall, respectively. After the fracture fragments have been demonstrated to be stable, the wires are cut, bent over and fixed. Then a dorsal plaster splint is applied, which should be worn for 4-6 weeks, depending on whether or not there is a dorsal comminution zone. Fifty-five patients have been operated on by this method. At follow-up 6 months after the operation, no secondary dislocation, wire migration, infection, Sudeck syndrome or functional disturbance was seen. The advantage of this method is emphasized as compared with the usual, previously published method. PMID:1502573

  13. Response of Ambulatory Human Subjects to Artificial Gravity (Short Radius Centrifugation)

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Arya, Maneesh; Newby, Nathaniel; Tucker, Jon-Michael; Jarchow, Thomas; Young, Laurence

    2006-01-01

    Prolonged exposure to microgravity results in significant adaptive changes, including cardiovascular deconditioning, muscle atrophy, bone loss, and sensorimotor reorganization, that place individuals at risk for performing physical activities after return to a gravitational environment. Planned missions to Mars include unprecedented hypogravity exposures that would likely result in unacceptable risks to crews. Artificial gravity (AG) paradigms may offer multisystem protection from the untoward effects of adaptation to the microgravity of space or the hypogravity of planetary surfaces. While the most effective AG designs would employ a rotating spacecraft, perceived issues may preclude their use. The questions of whether and how intermittent AG produced by a short radius centrifuge (SRC) could be employed have therefore sprung to the forefront of operational research. In preparing for a series of intermittent AG trials in subjects deconditioned by bed rest, we have examined the responses of several healthy, ambulatory subjects to SRC exposures.

  14. A possible correlation between planetary radius and orbital period for small planets

    NASA Astrophysics Data System (ADS)

    Helled, Ravit; Lozovsky, Michael; Zucker, Shay

    2016-01-01

    We suggest the existence of a correlation between the planetary radius and orbital period for planets with radii smaller than 4 R⊕. Using the Kepler data, we find a correlation coefficient of 0.5120, and suggest that the correlation is not caused solely by survey incompleteness. While the correlation coefficient could change depending on the statistical analysis, the statistical significance of the correlation is robust. Further analysis shows that the correlation originates from two contributing factors. One seems to be a power-law dependence between the two quantities for intermediate periods (3-100 d), and the other is a dearth of planets with radii larger than 2 R⊕ in short periods. This correlation may provide important constraints for small-planet formation theories and for understanding the dynamical evolution of planetary systems.

  15. Mass, radius and composition of the outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Hempel, Matthias; Schaffner-Bielich, Jürgen

    2008-01-01

    The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick and Sutherland, which was extended by including higher order corrections of the atomic binding, screening, exchange and zero-point energy. The most recent experimental nuclear data from the atomic mass table of Audi, Wapstra and Thibault from 2003 are used. Extrapolation to the drip line is utilized by various state-of-the-art theoretical nuclear models (finite range droplet, relativistic nuclear field and non-relativistic Skyrme Hartree Fock parameterizations). The different nuclear models are compared with respect to the mass and radius of the outer crust for different neutron star configurations and the nuclear compositions of the outer crust.

  16. Orientation illusions and heart-rate changes during short-radius centrifugation

    NASA Technical Reports Server (NTRS)

    Hecht, H.; Kavelaars, J.; Cheung, C. C.; Young, L. R.

    2001-01-01

    Intermittent short-radius centrifugation is a promising countermeasure against the adverse effects of prolonged weightlessness. To assess the feasibility of this countermeasure, we need to understand the disturbing sensory effects that accompany some movements carried out during rotation. We tested 20 subjects who executed yaw and pitch head movements while rotating at constant angular velocity. They were supine with their main body axis perpendicular to earth gravity. The head was placed at the centrifuge's axis of rotation. Head movements produced a transient elevation of heart-rate. All observers reported head-contingent sensations of body tilt although their bodies remained supine. Mostly, the subjective sensations conform to a model based on semicircular canal responses to angular acceleration. However, some surprising deviations from the model were found. Also, large inter-individual differences in direction, magnitude, and quality of the illusory body tilt were observed. The results have implications for subject screening and prediction of subjective tolerance for centrifugation.

  17. The Hα surface brightness — radius plane as a diagnostic tool for photoionized nebulae

    NASA Astrophysics Data System (ADS)

    Frew, David J.; Bojičić, Ivan S.; Parker, Quentin A.

    2016-07-01

    The Hα surface brightness - radius (SHα-r) relation is a robust distance indicator for planetary nebulae (PNe), further enhanced by different populations of PNe having distinct loci in SHα-r space. Other types of photoionized nebulae also plot in quite distinct regions in the SHa-r plane, allowing its use as a diagnostic tool. In particular, the nova shells and massive star ejecta (MSE) plot on relatively tight loci illustrating their evolutionary sequences. For the MSE, there is potential to develop a distance indicator for these objects, based on their trend in SHα-r space. As high-resolution, narrowband surveys of the nearest galaxies become more commonplace, the SHα-r plane is a potentially useful diagnostic tool to help identify the various ionized nebulae in these systems.

  18. Acute plastic bowing of the radius with a distal radioulnar joint injury: a case report.

    PubMed

    Uehara, Masashi; Yamazaki, Hiroshi; Kato, Hiroyuki

    2010-01-01

    Acute plastic bowing is an incomplete fracture with a deformation that shows no obvious macroscopic fracture line or cortical discontinuity. Although cases of acute plastic bowing of the ulna with a dislocation of the radial head have been previously reported, we present here a rare case of acute plastic bowing of the radius with a distal radioulnar joint injury in a 16-year-old boy. Internal fixation of the detached fragment to the ulnar styloid and repair of the triangular fibrocartilagenous complex resulted in the disappearance of wrist pain. In cases of distal radioulnar joint injuries in children or adolescents, radiographs of the entire forearm should be taken to evaluate the existence of radial bowing. PMID:21089197

  19. Transport IV characterisation of MgB2 conductor at a bend radius of 50mm

    NASA Astrophysics Data System (ADS)

    Young, E. A.; Falorio, I.; Beduz, C.; Bailey, W. O. S.; Yang, Y.

    2014-05-01

    Performance of state of the art MgB2 multifilamentary conductor at a required bend radius is essential for many applications including but not limited to magnets and motors. The characterisation is generally done with benchmark transport Ic but further detail can be seen in IV characteristics which are undertaken in this paper. Two conductors with the same architecture but different diameters, 0.89 and 0.45 mm were measured from 32 K to 20 K in self-field in conditions of as received and deformed to a 50 mm bend diameter, corresponding to strains of 1.4 % and 0.7 % respectively. The qualifying 0.45mm conductor was further measured in background fields up to 3 T. The smaller diameter wire was found to have no signs of degradation of critical behaviour in Ic or IV characteristics.

  20. Measurement of the Earth's radius based on historical evidence of its curvature

    NASA Astrophysics Data System (ADS)

    Roura, Pere; Calbó, Josep

    2005-09-01

    Probably the most direct observation of the Earth’s curvature is how objects appear from over the horizon when we approach them and disappear as we get further away from them. Similarly, the portion of a high object (a building or a mountain) that is visible depends on the height of the site where the observation is made. Based upon these very obvious facts, a simple method to estimate the Earth's radius R has been applied. The method does not need either sophisticated instrumentation or complex mathematics. In our application of the method presented here, the result is R = 6600 +/- 600 km in the best case. A discussion is presented about the possible use of this method in ancient times. Surprisingly enough, we have not found any reference to the use of this method despite its being simpler than, for example, the classical approach of Eratosthenes.