These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

NMR Spectroscopy  

NSDL National Science Digital Library

Quiz questions from the organic chemistry question bank provide students with an excellent opportunity to review key concepts. These questions pertain to Nuclear magnetic resonance (NMR) spectroscopy and include topics such as: Chemical Shift, Proton NMR, and Carbon NMR.

Reich, Ieva

2

Dynamic High-Resolution H-1 and P-31 NMR Spectroscopy and H-1 T-2 Measurements in Postmortem Rabbit Muscles Using Slow Magic Angle Spinning  

SciTech Connect

Postmortem changes in rabbit muscle tissue with different glycogen status (normal vs low) were followed continuously from 13 min postmortem until 8 h postmortem and again 20 h postmortem using simultaneous magic angle spinning 1H and 31P NMR spectroscopy together with measurement of the transverse relaxation time, T2, of the muscle water. The 1H metabolite spectra were measured using the phase-altered spinning sidebands (PASS) technique at a spinning rate of 40 Hz. pH values calculated from the 31P NMR spectra using the chemical shifts of the C-6 line of histidine in the 1H spectra and the chemical shifts of inorganic phosphate in the 31P spectra confirmed the different muscle glycogen status in the tissues. High-resolution 1H spectra obtained from the PASS technique revealed the presence of a new resonance line at 6.8 ppm during the postmortem period, which were absent in muscles with low muscle glycogen content. This new resonance line may originate from the aminoprotons in creatine, and its appearance may be a result of a pH effect on the exchange rate between the amino and the water protons and thereby the NMR visibility. Alternatively, the new resonance line may originate from the aromatic protons in tyrosine, and its appearance may be a result of a pH-induced protein unfolding exposing hydrophobic amino acid residues to the aqueous environment. Further studies are needed to evaluate these hypotheses. Finally, distributed analysis of the water T2 relaxation data revealed three relaxation populations and an increase in the population believed to reflect extramyofibrillar water through the postmortem period. This increase was significantly reduced (p < 0.0001) in samples from animals with low muscle glycogen content, indicating that the pH is controlling the extent of postmortem expulsion of water from myofibrillar structures. The significance of the postmortem increase in the amount extramyofibrillar water on the water-holding capacity was verified by centrifugation, which showed a reduced centrifugation loss in muscles with low preslaughter glycogen status (0.9 vs 1.9%, p 0.07).

Bertram, Hanne Christine; Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Andersen, Henrik J.

2004-05-05

3

NMR spectroscopy  

SciTech Connect

In a method of heteronuclear decoupling in high resolution pulsed NMR spectroscopy, during acquisition of signals emanating from a nuclear species to be observed (e.g. carbon-13), irradiation of an interfering nuclear species (e.g. protons) is effected by means of a train of composite pulses, each of which approximately inverts the longitudinal magnetization. The pulses are of two types respectively having opposite R.F. phases, and the train constitutes a repeated sequence which consists of 2 /SUP N/ /sup +1/ pulses of each type (where N is a positive integer) and which has a form chosen in accordance with specific rules to ensure effective decoupling.

Levitt, M.H.; Frenkiel, Th.A.

1984-09-04

4

NMR Spectroscopy  

NSDL National Science Digital Library

This site contains web-based programs that allow the user to predict chemical shifts, spin-spin coupling patterns and NMR line shapes affected by dynamic chemical exchange. This site will be most useful for students with a good background in the fundamentals of NMR theory.

Shattuck, Thomas W.

2011-07-01

5

Extended hopane derivatives in sediments - Identification by H-1 NMR  

NASA Technical Reports Server (NTRS)

Sedimentary C32 hopanoic acid, one of the most abundant in nature and of probable bacterial origin, has been isolated for the first time as a single component and characterized by H-1 NMR. The 17 alpha H, 21 beta H configuration of the C31 alkane has been similarly confirmed.

Taylor, J.; Wardroper, A. M. K.; Maxwell, J. R.

1980-01-01

6

NMR Spectroscopy in Ionic Liquds  

NASA Astrophysics Data System (ADS)

Today, NMR spectroscopy is the most important analytical tool for synthetically working chemists. This review describes the development of NMR spectroscopic methods for use in ionic liquid media and the state-of-the art in terms of routine analytics as well as modern advanced techniques.

Giernoth, Ralf

7

Understanding NMR Spectroscopy  

NSDL National Science Digital Library

This site provides links to a series of PDF files that represent chapters of an e-text on the basics of NMR. While many other textbooks on NMR are available, the chief merit of this one is that it has a nice chapter on the NMR instrumentation (ch. 5) which should be accessible to undergraduates. The text also provides a relatively mathematics-free or maybe more accurately Dirac bracket notation-free introduction to 1-D and 2-D (COSY and NOESY) experiments that would be appreciated by advanced undergraduates or beginning graduate students involved in undergraduate research experiences using NMR.

Keeler, James

2011-04-15

8

Two-dimensional NMR spectroscopy  

SciTech Connect

Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.

Croasmun, W.R.; Carlson, R.M.K.

1987-01-01

9

NMR Spectroscopy - Theory  

NSDL National Science Digital Library

This web site begins with a simple quantum description of NMR and proceeds to introduce resonance absorption, relaxation, chemical shifts, and scalar couplings. This site will be useful for advanced undergraduate students needing a description of NMR that is more detailed than that given in most introductory Organic texts.

Lord, J. R.

2011-06-30

10

Hyperpolarized 131Xe NMR spectroscopy  

PubMed Central

Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I?1/2 nuclei is presented. PMID:21051249

Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

2011-01-01

11

Hyperpolarized (131)Xe NMR spectroscopy.  

PubMed

Hyperpolarized (hp) (131)Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T(1) relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent (131)Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in (129)Xe SEOP. (131)Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase (131)Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp (131)Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp (131)Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I ? 1/2 nuclei is presented. PMID:21051249

Stupic, Karl F; Cleveland, Zackary I; Pavlovskaya, Galina E; Meersmann, Thomas

2011-01-01

12

NMR Spectroscopy and Its Value: A Primer  

ERIC Educational Resources Information Center

Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

Veeraraghavan, Sudha

2008-01-01

13

Enzyme dynamics from NMR spectroscopy.  

PubMed

Conspectus Biological activities of enzymes, including regulation or coordination of mechanistic stages preceding or following the chemical step, may depend upon kinetic or equilibrium changes in protein conformations. Exchange of more open or flexible conformational states with more closed or constrained states can influence inhibition, allosteric regulation, substrate recognition, formation of the Michaelis complex, side reactions, and product release. NMR spectroscopy has long been applied to the study of conformational dynamic processes in enzymes because these phenomena can be characterized over multiple time scales with atomic site resolution. Laboratory-frame spin-relaxation measurements, sensitive to reorientational motions on picosecond-nanosecond time scales, and rotating-frame relaxation-dispersion measurements, sensitive to chemical exchange processes on microsecond-millisecond time scales, provide information on both conformational distributions and kinetics. This Account reviews NMR spin relaxation studies of the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations of the bacterial ribonuclease H enzymes show that the handle region, one of three loop regions that interact with substrates, interconverts between two conformations. Comparison of these conformations with the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed state is inhibitory to binding. The large population of the closed conformation in T. thermophilus ribonuclease H contributes to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized a conformational transition in AlkB between an open state, in which the side chains of methionine residues in the active site are disordered, and a closed state, in which these residues are ordered. The open state is highly populated in the AlkB/Zn(II) complex, and the closed state is highly populated in the AlkB/Zn(II)/2OG/substrate complex, in which 2OG is the 2-oxoglutarate cosubstrate and the substrate is a methylated DNA oligonucleotide. The equilibrium is shifted to approximately equal populations of the two conformations in the AlkB/Zn(II)/2OG complex. The conformational shift induced by 2OG ensures that 2OG binds to AlkB/Zn(II) prior to the substrate. In addition, the opening rate of the closed conformation limits premature release of substrate, preventing generation of toxic side products by reaction with water. Closure of active site loop 6 in triosephosphate isomerase is critical for forming the Michaelis complex, but reopening of the loop after the reaction is (partially) rate limiting. NMR spin relaxation and MD simulations of triosephosphate isomerase in complex with glycerol 3-phosphate demonstrate that closure of loop 6 is a highly correlated rigid-body motion. The MD simulations also indicate that motions of Gly173 in the most flexible region of loop 6 contribute to opening of the active site loop for product release. Considered together, these three enzyme systems illustrate the power of NMR spin relaxation investigations in providing global insights into the role of conformational dynamic processes in the mechanisms of enzymes from initial activation to final product release. PMID:25574774

Palmer, Arthur G

2015-02-17

14

"Shim pulses" for NMR spectroscopy and imaging.  

PubMed

A way to use adiabatic radiofrequency pulses and modulated magnetic-field gradient pulses, together constituting a "shim pulse," for NMR spectroscopy and imaging is demonstrated. These pulses capitalize on phase shifts derived from probe gradient coils to compensate for nonlinear intrinsic main magnetic field homogeneity for spectroscopy, as well as for deviations from linear gradients for imaging. This approach opens up the possibility of exploiting cheaper, less-than-perfect magnets and gradient coils for NMR applications. PMID:15591105

Topgaard, Daniel; Martin, Rachel W; Sakellariou, Dimitris; Meriles, Carlos A; Pines, Alexander

2004-12-21

15

Hyperpolarized Hadamard spectroscopy using flow NMR.  

PubMed

The emergence of the dissolution dynamic nuclear polarization (D-DNP) technique provides an important breakthrough to overcome inherent sensitivity limitations in nuclear magnetic resonance (NMR) experiments. In dissolution DNP, only a small amount of frozen sample is polarized, dissolved, and injected into an NMR spectrometer. Although substantially enhanced NMR signals can be obtained, the single scan nature of this technique a priori impedes the use of correlation experiments, which represent some of the most powerful applications of NMR spectroscopy. Here, an alternative method for multiscan spectroscopy from D-DNP samples utilizing a flow NMR probe is described. Multiple hyperpolarized segments of sample are sequentially injected using a purpose designed device. Hadamard spectroscopy can then be applied for obtaining chemical shift correlation information even from a small number of scans. This capability is demonstrated with a four-scan data set for obtaining the [(13)C,(1)H] correlations in the test molecule 1-butanol. Because of the effects of spin-lattice relaxation and concentration gradients in the D-DNP experiment, the subtractive process for Hadamard reconstruction requires an additional step of intensity scaling. For this purpose, a reconstruction procedure was developed that uses entropy maximization and is robust with respect to noise and signal overlap. In a broader sense, the multiscan NMR as described here is amenable to various correlation NMR experiments, and increases the versatility of D-DNP in small-molecule characterization. PMID:23834163

Chen, Hsueh-Ying; Hilty, Christian

2013-08-01

16

Structural analysis of galactomannans by NMR spectroscopy  

Microsoft Academic Search

The structure of naturally occurring galactomannans was characterized by high resolution NMR spectroscopy involving two-dimensional (2D) NMR measurements of the field gradient DQF-COSY, HMQC, HMBC, and ROESY experiments. Four galactomannans with different proportions of galactose (G) and mannose (M), from fenugreek gum (FG), guar gum (GG), tara gum (TG), and locust bean gum (LG), were investigated. Because these galactomannans had

Tegshi Muschin; Takashi Yoshida

17

H-1 NMR study of ternary ammonia-alkali metal-graphite intercalation compounds  

NASA Technical Reports Server (NTRS)

For the first-stage ternary ammonia-alkali metal-graphite intercalation compounds M(NH3)(x)C24(x of about 4, M = K, Rb, Cs), three sets of triplet H-1 NMR spectral lines have been observed at various temperatures and orientations due to the H-1 - H-1 and N-14 - H-1 dipolar interactions. The structures of these compounds have been inferred as mobile (liquid-like) intercalant layers of planar M(NH3)4 ions in between the carbon layers. For the intercalated ammonia molecules, the potential barrier is about 0.2 eV and the molecular geometry is very close to the free NH3 in gas phase.

Tsang, T.; Fronko, R. M.; Resing, H. A.; Qian, X. W.; Solin, S. A.

1987-01-01

18

Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary  

SciTech Connect

The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

Matwiyoff, N.A.

1983-01-01

19

QUANTITATIVE 15N NMR SPECTROSCOPY  

EPA Science Inventory

Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

20

Molecular Structure and Dynamics by NMR Spectroscopy  

NSDL National Science Digital Library

This site provides PowerPoint slides for a lecture for a graduate-level course in NMR spectroscopy. The slides include useful animations which help to demonstrate the concepts described. While the casual student may find it hard to follow everything on the slides without an accompanying lecture, the files should be very useful for advanced students or educators putting together similar courses.

Edison, Arthur S.; Long, Joanna

2011-07-04

21

Picoliter 1H NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

In this study, a 267-?m-diameter solenoid transceiver is used to acquire localized 1H NMR spectra and the measured signal-to-noise ratio (SNR) at 500 MHz is shown to be within 20-30% of theoretical limits formulated by considering only its resistive losses. This is illustrated using a 100-?m-diameter globule of triacylglycerols (˜900 mM) that may be an oocyte precursor in young Xenopus laevis frogs and a water sample containing choline at a concentration often found in live mammalian cells (˜33 mM). In chemical shift imaging (CSI) experiments performed using a few thousand total scans, the choline methyl line is shown to have an acceptable SNR in resolved volume elements containing only 50 pL of sample, and localized spectra are resolved from just 5 pL in the Xenopus globule. These findings demonstrate the feasibility of performing 1H NMR on picoliter-scale sample volumes in biological cells and tissues and illustrate how the achieved SNR in spectroscopic images can be predicted with reasonable accuracy at microscopic spatial resolutions.

Minard, Kevin R.; Wind, Robert A.

2002-02-01

22

Solid-state NMR studies of the prion protein H1 fragment.  

PubMed

Conformational changes in the prion protein (PrP) seem to be responsible for prion diseases. We have used conformation-dependent chemical-shift measurements and rotational-resonance distance measurements to analyze the conformation of solid-state peptides lacking long-range order, corresponding to a region of PrP designated H1. This region is predicted to undergo a transformation of secondary structure in generating the infectious form of the protein. Solid-state NMR spectra of specifically 13C-enriched samples of H1, residues 109-122 (MKHMAGAAAAGAVV) of Syrian hamster PrP, have been acquired under cross-polarization and magic-angle spinning conditions. Samples lyophilized from 50% acetonitrile/50% water show chemical shifts characteristic of a beta-sheet conformation in the region corresponding to residues 112-121, whereas samples lyophilized from hexafluoroisopropanol display shifts indicative of alpha-helical secondary structure in the region corresponding to residues 113-117. Complete conversion to the helical conformation was not observed and conversion from alpha-helix back to beta-sheet, as inferred from the solid-state NMR spectra, occurred when samples were exposed to water. Rotational-resonance experiments were performed on seven doubly 13C-labeled H1 samples dried from water. Measured distances suggest that the peptide is in an extended, possibly beta-strand, conformation. These results are consistent with the experimental observation that PrP can exist in different conformational states and with structural predictions based on biological data and theoretical modeling that suggest that H1 may play a key role in the conformational transition involved in the development of prion diseases. PMID:8844854

Heller, J; Kolbert, A C; Larsen, R; Ernst, M; Bekker, T; Baldwin, M; Prusiner, S B; Pines, A; Wemmer, D E

1996-08-01

23

Solid-state NMR studies of the prion protein H1 fragment.  

PubMed Central

Conformational changes in the prion protein (PrP) seem to be responsible for prion diseases. We have used conformation-dependent chemical-shift measurements and rotational-resonance distance measurements to analyze the conformation of solid-state peptides lacking long-range order, corresponding to a region of PrP designated H1. This region is predicted to undergo a transformation of secondary structure in generating the infectious form of the protein. Solid-state NMR spectra of specifically 13C-enriched samples of H1, residues 109-122 (MKHMAGAAAAGAVV) of Syrian hamster PrP, have been acquired under cross-polarization and magic-angle spinning conditions. Samples lyophilized from 50% acetonitrile/50% water show chemical shifts characteristic of a beta-sheet conformation in the region corresponding to residues 112-121, whereas samples lyophilized from hexafluoroisopropanol display shifts indicative of alpha-helical secondary structure in the region corresponding to residues 113-117. Complete conversion to the helical conformation was not observed and conversion from alpha-helix back to beta-sheet, as inferred from the solid-state NMR spectra, occurred when samples were exposed to water. Rotational-resonance experiments were performed on seven doubly 13C-labeled H1 samples dried from water. Measured distances suggest that the peptide is in an extended, possibly beta-strand, conformation. These results are consistent with the experimental observation that PrP can exist in different conformational states and with structural predictions based on biological data and theoretical modeling that suggest that H1 may play a key role in the conformational transition involved in the development of prion diseases. PMID:8844854

Heller, J.; Kolbert, A. C.; Larsen, R.; Ernst, M.; Bekker, T.; Baldwin, M.; Prusiner, S. B.; Pines, A.; Wemmer, D. E.

1996-01-01

24

Fast multidimensional NMR spectroscopy for sparse spectra.  

PubMed

Multidimensional NMR spectroscopy is widely used for studies of molecular and biomolecular structure. A major disadvantage of multidimensional NMR is the long acquisition time which, regardless of sensitivity considerations, may be needed to obtain the final multidimensional frequency domain coefficients. In this article, a method for under-sampling multidimensional NMR acquisition of sparse spectra is presented. The approach is presented in the case of two-dimensional NMR acquisitions. It relies on prior knowledge about the support in the two-dimensional frequency domain to recover an over-determined system from the under-determined system induced in the linear acquisition model when under-sampled acquisitions are performed. This over-determined system can then be solved with linear least squares. The prior knowledge is obtained efficiently at a low cost from the one-dimensional NMR acquisition, which is generally acquired as a first step in multidimensional NMR. If this one-dimensional acquisition is intrinsically sparse, it is possible to reconstruct the corresponding two-dimensional acquisition from far fewer observations than those imposed by the Nyquist criterion, and subsequently to reduce the acquisition time. Further improvements are obtained by optimizing the sampling procedure for the least-squares reconstruction using the sequential backward selection algorithm. Theoretical and experimental results are given in the case of a traditional acquisition scheme, which demonstrate reliable and fast reconstructions with acceleration factors in the range 3-6. The proposed method outperforms the CS methods (OMP, L1) in terms of the reconstruction performance, implementation and computation time. The approach can be easily extended to higher dimensions and spectroscopic imaging. PMID:24664959

Merhej, Dany; Ratiney, Hélène; Diab, Chaouki; Khalil, Mohamad; Sdika, Michaël; Prost, Rémy

2014-06-01

25

Study of Paramagnetic Chromocenes by Solid-State NMR Spectroscopy  

E-print Network

-state NMR spectroscopy to polycrystalline paramagnetic sand- wich compounds was tested for chromocene (Cp2CrStudy of Paramagnetic Chromocenes by Solid-State NMR Spectroscopy Janet Blu¨mel,* Martin Herker), deuteriated chromocene (Cp2Cr-d10), and decamethyl- chromocene (Cp*2Cr). The bulk properties of paramagnetic

Bluemel, Janet

26

Web Spectra: Problems in NMR and IR spectroscopy  

NSDL National Science Digital Library

This site was established to provide chemistry students with a library of spectroscopy problems. Interpretation of spectra is a technique that requires practice - this site provides 1H NMR and 13 C NMR, DEPT, COSY and IR spectra of various compounds for students to interpret. Hopefully, these problems will provide a useful resource to better understand spectroscopy.

Merlic, Craig A.

27

WebSpectra: Problems in NMR and IR Spectroscopy  

NSDL National Science Digital Library

From the University of California at Los Angeles's Chemistry Department, WebSpectra provides chemistry students with a searchable library of Nuclear Magnetic Resonance (NMR) and Infrared (IR) spectroscopy problems. According to the makers of this innovative site, "Interpretation of spectra is a technique that requires practice - this site provides 1H NMR and 13C NMR, DEPT, COSY and IR spectra of various compounds for students to interpret." A set of instructional documents are entitled Solving Spectral Problems, Overview of NMR Spectroscopy, Notes on NMR Solvents, Types of NMR Spectra, Introduction to IR Spectra, and a Table of IR Absorptions. A wide variety of compounds and their spectra are available for interpretation and have been organized in categories from Beginning to Advanced. Spectrum for each compound may be magnified 16X by clicking on peaks. This is an outstanding learning tool for students coming to grips with interpreting NMR and IR spectra.

28

4'-C-[(4-trifluoromethyl-1H-1,2,3-triazol-1-yl)methyl]thymidine as a sensitive (19)F NMR sensor for the detection of oligonucleotide secondary structures.  

PubMed

4'-C-[(4-Trifluoromethyl-1H-1,2,3-triazol-1-yl)methyl]thymidine was synthesized and incorporated as a phosphoramidite into oligonucleotide sequences. Its applicability as a sensor for the (19)F NMR spectroscopic detection of DNA and RNA secondary structures was demonstrated. On DNA, the (19)F NMR measurements were focused on monitoring of duplex-triplex conversion, for which this fluorine-labeled 2'-deoxynucleoside proved to be a powerful sensor. This sensor seemingly favors DNA, but its behavior in the RNA environment also turned out to be informative. As a demonstration, invasion of a 2'-O-methyl oligoribonucleotide into an RNA hairpin model (HIV-1 TAR) was monitored by (19)F NMR spectroscopy. According to the thermal denaturation studies by UV spectroscopy, the effect of the 4'-C-(4-trifluoromethyl-1H-1,2,3-triazol-1-yl)methyl moiety on the stability of these DNA and RNA models was marginal. PMID:24678774

Granqvist, Lotta; Virta, Pasi

2014-04-18

29

WebSpectra: Problems in NMR and IR Spectroscopy  

NSDL National Science Digital Library

This site was established to provide chemistry students with a library of spectroscopy problems. Interpretation of spectra is a technique that requires practice - this site provides 1H NMR and 13C NMR, DEPT, COSY and IR spectra of various compounds for students to interpret.

30

NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy  

ERIC Educational Resources Information Center

A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

Alonso, David E.; Warren, Steven E.

2005-01-01

31

An Integrated Laboratory Project in NMR Spectroscopy.  

ERIC Educational Resources Information Center

Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

Hudson, Reggie L.; Pendley, Bradford D.

1988-01-01

32

Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory  

ERIC Educational Resources Information Center

Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

2013-01-01

33

Study of stretched polypropylene fibres by 1H pulsed and CW NMR spectroscopy.  

PubMed

A set of stretched isotactic polypropylene fibres prepared with the draw ratio lambda=4 at four different stretching temperatures was investigated by H1 pulsed relaxation NMR methods and CW NMR spectroscopy. We have studied the influence of the stretching temperature and draw ratio upon the changes of structure and molecular mobility. Some information on the influence of these conditions was obtained from CW NMR measurements by means of the temperature dependences of second moment M(2) and decomposition of NMR spectra into elementary components corresponding to the chains with different mobility. H1 CW NMR spectra were measured at two (14.1 and 10.5 MHz) Larmor frequencies in the temperature range 200-420 K. An analysis of the experimental data shows that the stretching of the fibres at different temperature results in a change of molecular mobility. Spin-lattice relaxation times in laboratory (T(1)) and rotating (T(1rho)) frames were also measured on the set of the fibres in the temperature range 239-423 K at 30 MHz Larmor frequency employing a home made pulse spectrometer. In the rotating frame spin-lattice relaxation time measurements in the temperature range above 278 K three relaxation times T(1rho) have been observed. The minima of the temperature dependences of the observed relaxation times reflect an alpha-relaxation process in crystalline regions and beta-relaxation process related to a double glass transition in the non-crystalline regions of the studied fibres. PMID:19857943

Sevcovic, L; Mucha, L'

2009-11-01

34

Membrane Protein Structure and Dynamics from NMR Spectroscopy  

PubMed Central

We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, interatomic distances, oligomeric structure, protein dynamics, ligand structure and dynamics, and protein orientation and depth of insertion in the lipid bilayer. Using solid-state NMR, researchers have studied potassium channels, proton channels, Ca2+ pumps, G protein–coupled receptors, bacterial outer membrane proteins, and viral fusion proteins to elucidate their mechanisms of action. Many of these membrane proteins have also been investigated in detergent micelles using solution NMR. Comparison of the solid-state and solution NMR structures provides important insights into the effects of the solubilizing environment on membrane protein structure and dynamics. PMID:22136620

Hong, Mei; Zhang, Yuan; Hu, Fanghao

2014-01-01

35

Perfusion of cell spheroids for study by NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Many anchorage-dependent types of cells can be cultured in suspension as small clumps of defined size known as spheroids. These spheroids are particularly suited for study with NMR spectroscopy because, unlike suspensions of single cells, they can be perfused without being carried along with the perfusate, thus eliminating the need for filters or gels. We have successfully maintained human breast cancer cells (MCF-7) and Chinese hamster cells (V 79) in a physiological steady state as spheroids for more than 80 hours in a 10 mm NMR tube using a simple and inexpensive perfusion setup which requires no modification of NMR instrumentation. Although we were primarily interested in obtaining 31P NMR spectra, cell mass was sufficiently high that natural abundance 13C NMR spectra were also readily obtained.

Lin, Peck-Sun; Blumenstein, Michael; Mikkelsen, Ross B.; Schmidt-Ullrich, Rupert; Bachovchin, William W.

36

Exposing the Moving Parts of Proteins with NMR Spectroscopy  

PubMed Central

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool for investigating the dynamics of biomolecules since it provides a description of motion that is comprehensive, site-specific, and relatively non-invasive. In particular, the study of protein dynamics has benefited from sustained methodological advances in NMR that have expanded the scope and time scales of accessible motion. Yet, many of these advances may not be well known to the more general physical chemistry community. Accordingly, this Perspective provides a glimpse of some of the more powerful methods in liquid state NMR that are helping reshape our understanding of functional motions of proteins. PMID:22545175

Peng, J.W.

2012-01-01

37

Nanoscale NMR spectroscopy and imaging of multiple nuclear species.  

PubMed

Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1?T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ?100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species ((1)H, (19)F, (31)P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (?20?mT) using two complementary sensor modalities. PMID:25559712

DeVience, Stephen J; Pham, Linh M; Lovchinsky, Igor; Sushkov, Alexander O; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L

2015-02-01

38

CHARACTERIZATION OF METABOLITES IN SMALL FISH BIOFLUIDS AND TISSUES BY NMR SPECTROSCOPY  

EPA Science Inventory

Nuclear magnetic resonance (NMR) spectroscopy has been utilized for assessing ecotoxicity in small fish models by means of metabolomics. Two fundamental challenges of NMR-based metabolomics are the detection limit and characterization of metabolites (or NMR resonance assignments...

39

Two-dimensional NMR spectroscopy. Applications for chemists and biochemists  

SciTech Connect

Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear.

Croasmun, W.R.; Carlson, R.M.K.

1987-01-01

40

NMR spectroscopy of xenon sorbed in pentasil zeolites: Silicalites  

SciTech Connect

{sup 129}Xe NMR spectroscopy of xenon sorbed in silicalite samples shows a complex line shape. The authors conclude that there are at least two regions in these samples, one of which is a macroscopic region free of occlusions and the other is a region (or regions) containing occlusions. The authors suggest that these occlusions are residual template molecules from the preparation of the material. Analysis of commercial preparations of silicalite and one prepared in this laboratory indicates that xenon NMR spectroscopy is a simple, straightforward means of examining residual template or other macroscopic occlusions in similar microporous materials.

Tsiao, Chihji; Dybowski, C. (Univ. of Delaware, Newark (USA)); Corbin, D.R. (E.I. du Pont de Nemours and Co., Inc., Wilmington, DE (USA)); Durante, V.; Walker, D. (Sun Refining and Marketing Co., Marcus Hook, PA (USA))

1990-05-17

41

Protein folding on the ribosome studied using NMR spectroscopy  

PubMed Central

NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

2013-01-01

42

Nanoscale NMR Spectroscopy and Imaging of Multiple Nuclear Species  

E-print Network

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are well-established techniques that provide valuable information in a diverse set of disciplines but are currently limited to macroscopic sample volumes. Here we demonstrate nanoscale NMR spectroscopy and imaging under ambient conditions of samples containing multiple nuclear species, using nitrogen-vacancy (NV) colour centres in diamond as sensors. With single, shallow NV centres in a diamond chip and samples placed on the diamond surface, we perform NMR spectroscopy and one-dimensional MRI on few-nanometre-sized samples containing $^1$H and $^{19}$F nuclei. Alternatively, we employ a high-density NV layer near the surface of a diamond chip to demonstrate wide-field optical NMR spectroscopy of nanoscale samples containing $^1$H, $^{19}$F, and $^{31}$P nuclei, as well as multi-species two-dimensional optical MRI with sub-micron resolution. For all diamond samples exposed to air, we identify a ubiquitous $^1$H NMR signal, consistent with a ...

DeVience, Stephen J; Lovchinsky, Igor; Sushkov, Alexander O; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L

2014-01-01

43

Two-dimensional NMR spectroscopy with temperature-sweep.  

PubMed

Two-dimensional nuclear magnetic resonance (NMR) spectroscopy is useful for studying temperature-dependent effects on molecular structure. However, experimental time is usually long, because sampling is repeated at several temperatures. A novel solution to the problem is proposed, in which signal sampling is performed in parallel to the linear temperature-sweep. PMID:24863674

Bermel, Wolfgang; Dass, Rupashree; Neidig, Klaus-Peter; Kazimierczuk, Krzysztof

2014-08-01

44

MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA  

EPA Science Inventory

Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...

45

Nanoscale NMR Spectroscopy and Imaging of Multiple Nuclear Stephen J. DeVience,1,  

E-print Network

Nanoscale NMR Spectroscopy and Imaging of Multiple Nuclear Species Stephen J. DeVience,1, Linh M nanoscale NMR spectroscopy and imaging under ambient conditions of samples containing multiple nuclear (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple

Walsworth, Ronald L.

46

NMR analysis of carbohydrate-binding interactions in solution: an approach using analysis of saturation transfer difference NMR spectroscopy.  

PubMed

One of the most commonly used ligand-based NMR methods for detecting ligand binding is saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. The STD NMR method is an invaluable technique for assessing carbohydrate-lectin interactions in solution, because STD NMR can be used to detect weak ligand binding (Kd ca. 10(-3)-10(-8) M). STD NMR spectra identify the binding epitope of a carbohydrate ligand when bound to lectin. Further, the STD NMR method uses 1H-detected NMR spectra of only the carbohydrate, and so only small quantities of non-labeled lectin are required. In this chapter, I describe a protocol for the STD NMR method, including the experimental procedures used to acquire, process, and analyze STD NMR data, using STD NMR studies for methyl-?-D-galactopyranoside (?-Me-Gal) binding to the C-terminal domain of an R-type lectin from earthworm (EW29Ch) as an example. PMID:25117260

Hemmi, Hikaru

2014-01-01

47

Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy  

NASA Astrophysics Data System (ADS)

Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

Giraudeau, Patrick; Frydman, Lucio

2014-06-01

48

[In vivo NMR spectroscopy of the liver].  

PubMed

The application of in vivo MR spectroscopy to the study of the liver is currently an expanding field of research. Owing to technical difficulties, the results obtained thus far were mainly those of animal observations. Several nuclei have been considered: hydrogen, phosphorus, carbon or fluorine. This non-traumatic method allows following and quantifying the various metabolic pathways, especially during hepatic diseases. The major metabolic pathways, i.e. neoglycogenesis, glycogenolysis, Krebs' cycle, etc., are studied, as well as their alterations during diseases such as ischemia, diabetes or alcoholism. The development of this promising technique requires the cooperation of various clinical and fundamental disciplines. PMID:2677330

Jehenson, P; Cuenod, C A; Syrota, A

1989-01-01

49

Characterization of amorphous material in shocked quartz by NMR spectroscopy  

SciTech Connect

Nuclear magnetic resonance (NMR) analysis of the recovered products from a series of controlled explosive shock-loading experiments on quartz powders was performed to investigate shock-induced amorphization processes. Silicon-29 NMR spectroscopy is an excellent probe of the local bonding environment of silicon in minerals and is capable of detecting and characterizing amorphous and disordered components. NMR spectra obtained for the recovered material exhibit a narrow resonance associated with the shocked crystalline material, and a broad component consistent with an amorphous phase despite the absence of evidence for glass from optical microscopy. The NMR measurements were performed over a range of recycle times from 1 to 3[times]10[sup 5] s. The results demonstrate that the magnetization in both the crystalline and amorphous material follows power-law behavior as a function of recycle time. The amorphous component dominates the spectra for short NMR recycle times due to its shorter relaxation time relative to the crystalline material. Fractal analysis of the power-law relations suggests a fractal dimension of 2 for the amorphous phase and 3 for the crystalline phase. [copyright] American Institute of Physics

Assink, R.A.; Boslough, M.B.; Cygan, R.T. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States))

1994-07-10

50

Characterization of amorphous material in shocked quartz by NMR spectroscopy  

SciTech Connect

Nuclear magnetic resonance (NMR) analysis of the recovered products from a series of controlled explosive shock-loading experiments on quartz powders was performed to investigate shock-induced amorphization processes. Silicon-29 NMR spectroscopy is an excellent probe of the local bonding environment of silicon in minerals and is capable of detecting and characterizing amorphous and disordered components. NMR spectra obtained for the recovered material exhibit a narrow resonance associated with the shocked crystalline material, and a broad component consistent with an amorphous phase despite the absence of evidence for glass from optical microscopy. The NMR measurements were performed over a range of recycle times from 1 to 3 {times} 10{sup 5} S. Results demonstrate that the magnetization in both the crystalline and amorphous material following power-law behavior as a function of recycle time. The amorphous component dominates the spectra for short NMR recycle times due to its shorter relaxation time relative to the crystalline material. Fractal analysis of the power-law relations suggests a fractal dimension of 2 for the amorphous phase and 3 for the crystalline phase.

Assink, R.A.; Boslough, M.B.; Cygan, R.T.

1993-08-01

51

NMR clinical imaging and spectroscopy: Its impact on nuclear medicine  

SciTech Connect

This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

Not Available

1990-02-02

52

NMR clinical imaging and spectroscopy: Its impact on nuclear medicine  

SciTech Connect

This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

Not Available

1990-02-02

53

Magnesium silicate dissolution investigated by S1-29 MAS, H-1 Si-29 CPMAS, Mg-25 QCPMG, and H-1 Mg-25 CP QCPMG NMR  

SciTech Connect

Olivine-(Mg,Fe){sub 2}SiO{sub 4}-has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of the divalent cation with respect to silicon during weathering under acidic conditions, which has been correlated to the formation of a silicon-rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. The pure magnesium end member of the olivine series (forsterite-Mg2SiO4) was chosen for detailed investigations in this study because paramagnetic iron hinders NMR investigations by providing an extra mode of relaxation for neighboring nuclei, causing lineshapes to become significantly broadened and unobservable in the NMR spectrum. For reacting forsterite, spectroscopic interrogations using nuclear magnetic resonance (NMR) can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced NMR techniques ({sup 29}Si MAS, {sup 1}H-{sup 29}Si CP MAS, {sup 25}Mg QCPMG, and {sup 1}H-{sup 25}Mg CP QCPMG NMR) to probe leached layer formation and secondary phase precipitation during the dissolution of forsterite at 150 C.

Davis, M C [Oak Ridge National Laboratory (ORNL); Brouwer, Piet W [ORNL; Wesolowski, David J [ORNL; Anovitz, Lawrence {Larry} M [ORNL

2009-07-01

54

Advancements in waste water characterization through NMR spectroscopy: review.  

PubMed

There are numerous organic pollutants that lead to several types of ecosystem damage and threaten human health. Wastewater treatment plants are responsible for the removal of natural and anthropogenic pollutants from the sewage, and because of this function, they play an important role in the protection of human health and the environment. Nuclear magnetic resonance (NMR) has proven to be a valuable analytical tool as a result of its versatility in characterizing both overall chemical composition as well as individual species in a wide range of mixtures. In addition, NMR can provide physical information (rigidity, dynamics, etc.) as well as permit in depth quantification. Hyphenation with other techniques such as liquid chromatography, solid phase extraction and mass spectrometry creates unprecedented capabilities for the identification of novel and unknown chemical species. Thus, NMR is widely used in the study of different components of wastewater, such as complex organic matter (fulvic and humic acids), sludge and wastewater. This review article summarizes the NMR spectroscopy methods applied in studies of organic pollutants from wastewater to provide an exhaustive review of the literature as well as a guide for readers interested in this topic. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25280056

Alves Filho, Elenilson G; Alexandre E Silva, Lorena M; Ferreira, Antonio G

2014-10-01

55

Understanding membrane protein interaction and regulation using solid state NMR spectroscopy  

E-print Network

Understanding membrane protein interaction and regulation using solid state NMR spectroscopy-resolution solid state NMR spectroscopy have opened up this technique as a complement to X understanding their sub spectroscopy and their application in understanding regulation of cardiac and skeletal muscle relaxation

Shyamasundar, R.K.

56

Accelerated NMR spectroscopy with low-rank reconstruction.  

PubMed

Accelerated multi-dimensional NMR spectroscopy is a prerequisite for high-throughput applications, studying short-lived molecular systems and monitoring chemical reactions in real time. Non-uniform sampling is a common approach to reduce the measurement time. Here, a new method for high-quality spectra reconstruction from non-uniformly sampled data is introduced, which is based on recent developments in the field of signal processing theory and uses the so far unexploited general property of the NMR signal, its low rank. Using experimental and simulated data, we demonstrate that the low-rank reconstruction is a viable alternative to the current state-of-the-art technique compressed sensing. In particular, the low-rank approach is good in preserving of low-intensity broad peaks, and thus increases the effective sensitivity in the reconstructed spectra. PMID:25389060

Qu, Xiaobo; Mayzel, Maxim; Cai, Jian-Feng; Chen, Zhong; Orekhov, Vladislav

2015-01-12

57

13C NMR spectroscopy applications to brain energy metabolism  

PubMed Central

13C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of 13C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the 13C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of 13C NMR data. Finally, new perspectives and applications offered by 13C hyperpolarization are described. PMID:24367329

Rodrigues, Tiago B.; Valette, Julien; Bouzier-Sore, Anne-Karine

2013-01-01

58

Probing coiled-coil assembly by paramagnetic NMR spectroscopy.  

PubMed

Here a new method to determine the oligomeric state and orientation of coiled-coil peptide motifs is described. Peptides K and E, which are designed to form a parallel heterodimeric complex in aqueous solution, were labeled with the aromatic amino acids tryptophan and tyrosine on the C-terminus respectively as 'fingerprint' residues. One of the peptides was also labeled with the paramagnetic probe MTSL. One dimensional proton NMR spectroscopy was used to study the peptide quaternary structure by monitoring the signal suppression of the aromatic labels due to proximity of the nitroxyl radical. 1D-NMR confirmed that the peptides K and E form a heterodimeric coiled coil with a parallel orientation. In addition, fluorescence emission quenching of the aromatic labels due to electron exchange with a nitroxyl radical confirmed the parallel coiled coil orientation. Thus, paramagnetic nitroxide and aromatic fluorophore labeling of peptides yields valuable information regarding the quaternary structure from 1D-NMR and steady-state fluorescence measurements. This convenient method is useful not only to investigate coiled coil assembly, but can also be applied to any defined supramolecular assembly. PMID:25428174

Zheng, TingTing; Boyle, Aimee; Robson Marsden, Hana; Valdink, Dayenne; Martelli, Giuliana; Raap, Jan; Kros, Alexander

2015-01-28

59

Structure of a Conserved Retroviral RNA Packaging Element by NMR Spectroscopy and Cryo-Electron Tomography  

PubMed Central

The 5?-untranslated regions (5?-UTRs) of all gammaretroviruses contain a conserved “double hairpin motif” (?CD) that is required for genome packaging. Both hairpins (SL-C and SL-D) contain GACG tetraloops that, in isolated RNAs, are capable of forming “kissing” interactions stabilized by two intermolecular G-C base pairs. We have determined the three-dimensional structure of the double hairpin from the Moloney Murine Leukemia Virus (MoMuLV) ([?CD]2, 132-nucleotides, 42.8 kDaltons) using a 2H-edited NMR spectroscopy-based approach. This approach enabled the detection of 1H-1H dipolar interactions that were not observed in previous studies of isolated SL-C and SL-D hairpin RNAs using traditional 1H-1H correlated and 1H-13C-edited NMR methods. The hairpins participate in intermolecular cross-kissing interactions (SL-C to SL-D’ and SLC’ to SL-D), and stack in an end-to-end manner (SL-C to SL-D and SL-C’ to SL-D’) that gives rise to an elongated overall shape (ca. 95 Å by 45 Å by 25 Å). The global structure was confirmed by cryo-electron tomography (cryo-ET), making [?CD]2 simultaneously the smallest RNA to be structurally characterized to date by cryo-ET and among the largest to be determined by NMR. Our findings suggest that, in addition to promoting dimerization, [?CD]2 functions as a scaffold that helps initiate virus assembly by exposing a cluster of conserved UCUG elements for binding to the cognate nucleocapsid domains of assembling viral Gag proteins. PMID:20933521

Miyazaki, Yasuyuki; Irobalieva, Rossitza N.; Tolbert, Blanton; Smalls-Mantey, Adjoa; Iyalla, Kilali; Loeliger, Kelsey; D’Souza, Victoria; Khant, Htet; Schmid, Michael F.; Garcia, Eric; Telesnitsky, Alice; Chiu, Wah; Summers, Michael F.

2010-01-01

60

Structure of a conserved retroviral RNA packaging element by NMR spectroscopy and cryo-electron tomography.  

PubMed

The 5'-untranslated regions of all gammaretroviruses contain a conserved "double-hairpin motif" (?(CD)) that is required for genome packaging. Both hairpins (SL-C and SL-D) contain GACG tetraloops that, in isolated RNAs, are capable of forming "kissing" interactions stabilized by two intermolecular G-C base pairs. We have determined the three-dimensional structure of the double hairpin from the Moloney murine leukemia virus ([?(CD)](2), 132 nt, 42.8 kDa) using a (2)H-edited NMR-spectroscopy-based approach. This approach enabled the detection of (1)H-(1)H dipolar interactions that were not observed in previous studies of isolated SL-C and SL-D hairpin RNAs using traditional (1)H-(1)H correlated and (1)H-(13)C-edited NMR methods. The hairpins participate in intermolecular cross-kissing interactions (SL-C to SL-D' and SLC' to SL-D) and stack in an end-to-end manner (SL-C to SL-D and SL-C' to SL-D') that gives rise to an elongated overall shape (ca 95 Å×45 Å×25 Å). The global structure was confirmed by cryo-electron tomography (cryo-ET), making [?(CD)](2) simultaneously the smallest RNA to be structurally characterized to date by cryo-ET and among the largest to be determined by NMR. Our findings suggest that, in addition to promoting dimerization, [?(CD)](2) functions as a scaffold that helps initiate virus assembly by exposing a cluster of conserved UCUG elements for binding to the cognate nucleocapsid domains of assembling viral Gag proteins. PMID:20933521

Miyazaki, Yasuyuki; Irobalieva, Rossitza N; Tolbert, Blanton S; Smalls-Mantey, Adjoa; Iyalla, Kilali; Loeliger, Kelsey; D'Souza, Victoria; Khant, Htet; Schmid, Michael F; Garcia, Eric L; Telesnitsky, Alice; Chiu, Wah; Summers, Michael F

2010-12-17

61

Communication Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interactions  

Microsoft Academic Search

A new protocol for acquiring multidimensional NMR spectra within a single scan is introduced and illustrated. The approach relies on applying a pair of frequency-chirped excitation and storage pulses in combination with echoing magnetic field gradients, in order to impart the kind of linear spatial encoding of the NMR interactions that is required by ultrafast 2D NMR spectroscopy. It is

Yoav Shrot; Boaz Shapira; Lucio Frydman

62

Report on neptunium speciation by NMR and optical spectroscopies  

SciTech Connect

Hydrolysis and carbonate complexation reactions were examined for NpO{sub 2}{sup 2+} and NpO{sub 2}{sup +} ions by a variety of techniques including potentiometric titration, UV-Vis-NIR and NMR spectroscopy. The equilibrium constant for the reaction 3NpO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} + 3H{sup +} {rightleftharpoons} (NpO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} + 3HCO{sub 3}{sup {minus}} was determined to be logK = 19.7 ({plus_minus} 0.8) (I = 2.5 m). {sup 17}O NMR spectroscopy of NpO{sub 2}{sup n+} ions (n = 1,2) reveals a readily observable {sup 17}O resonance for n = 2, but not for n = 1. The first hydrolysis constant for NpO{sub 2}{sup +} was studied as a function of temperature, and the functional form for the temperature-dependent equilibrium constant for the reaction written as NpO{sub 2}{sup +} + H{sub 2}O {rightleftharpoons} NpO{sub 2}OH + H{sup +} was found to be logK = 2.28 {minus} 3780/T, where T is in {degree}K. Finally, the temperature dependence of neptunium(V) carbonate complexation constants was studied. For the first carbonate complexation constant, the appropriate functional form was found to be log{beta}{sub 01} = 1.47 + 786/T.

Tait, C.D.; Palmer, P.D.; Ekberg, S.A.; Clark, D.L.

1995-11-01

63

Spin-Noise-Detected Two-Dimensional Fourier-Transform NMR Spectroscopy  

PubMed Central

We introduce two-dimensional NMR spectroscopy detected by recording and processing the noise originating from nuclei that have not been subjected to any radio frequency excitation. The method relies on cross-correlation of two noise blocks that bracket the evolution and mixing periods. While the sensitivity of the experiment is low in conventional NMR setups, spin-noise-detected NMR spectroscopy has great potential for use with extremely small numbers of spins, thereby opening a way to nanoscale multidimensional NMR spectroscopy. PMID:24294412

2013-01-01

64

'Shim pulses' for NMR spectroscopy in inhomogeneous magneticfields  

SciTech Connect

NMR spectroscopy conveys information about chemical structure through ppm-scale shifts of the resonance frequency depending on the chemical environment. In order to observe these small shifts, magnets with highly homogeneous magnetic field B{sub 0} are used. The high cost and large size of these magnets are a consequence of the requirement for high homogeneity. In this contribution we introduce a new method for recording high-resolution NMR spectra from samples in inhomogeneous B{sub 0}, opening up the possibility of exploiting magnets of lower homogeneity and cost. Instead of using the traditional B{sub 0} ''shim coils'', adiabatic radiofrequency (RF) pulse sequences and modulated B{sub 0} gradients generated by coils in the probe are used to produce ''shim pulses''. A great deal of work has been devoted to finding methods for retrieving chemical shift information even when B{sub 0} is inhomogeneous. One class of methods relies on zero- or multiple quantum coherences which evolve independently of B{sub 0}. These methods are inherently two-dimensional and the high-resolution information is obtained indirectly. In order to minimize experimental time it is desirable to acquire a high-resolution spectrum directly just as for traditional NMR in homogeneous fields. A further advantage with direct acquisition is that modification of already existing multidimensional NMR techniques is facilitated. A fundamentally different approach utilizes inhomogeneity of the RF magnetic field to periodically refocus the phase dispersion from the inhomogeneous B{sub 0}. With this technique a high-resolution spectrum can indeed be acquired in a single shot. The main drawback is the requirement for spatial matching between the RF and B{sub 0} inhomogeneities. Based on this latter technique we propose the use of ''shim pulses'', i.e. modulated, spatially constant, B{sub 0} gradient pulses together with spatially homogeneous adiabatic frequency sweeps to induce non-linear phase shifts in three dimensions. An intuitive understanding of the approach can be obtained from the following: An adiabatic full passage applied to transverse magnetization effectively rotates the magnetization in the transverse plane with an amount that depends on the frequency offset. In homogeneous B{sub 0} this gives rise to a ''phase roll'' across the NMR spectrum. If the adiabatic full passage is applied in the presence of a constant B{sub 0} gradient, a phase shift approximately linear in space will be the result. A second adiabatic passage reverses this phase shift and the adiabatic double passage constitutes effectively a 360{sup o} pulse. However, if the amplitude of the B{sub 0} gradient is changing during the adiabatic passages, phase shifts, which are non-linear in space, can be achieved. With a proper choice of the RF and gradient modulation functions, the phase dispersion from the inhomogeneous B{sub 0} can be canceled. Application of a shim pulse between each detected point in the time-domain NMR signal yields an NMR spectrum free from the broadening caused by the B{sub 0} inhomogeneity.

Topgaard, Daniel; Martin, Rachel W.; Sakellariou, Dimitris; Meriles, Carlos; Pines, Alexander

2004-05-19

65

Protein Motions and Folding Investigated by NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

NMR spin relaxation spectroscopy is a powerful experimental approach for globally characterizing conformational dynamics of proteins in solution. Laboratory frame relaxation measurements are sensitive to overall rotational diffusion and internal motions on picosecond-nanosecond time scales, while rotating frame relaxation measurements are sensitive to chemical exchange processes on microsecond-millisecond time scales. The former approach is illustrated by ^15N laboratory-frame relaxation experiments as a function of temperature for the helical subdomain HP36 of the F-actin-binding headpiece domain of chicken villin. The data are analyzed using the model-free formalism to characterize order parameters and effective correlation times for intramolecular motions of individual ^15N sites. The latter approach is illustrated by ^13C Carr-Purcell-Meiboom-Gill relaxation measurements for the de novo designed ?_2D protein and by ^15N rotating-frame relaxation measurements for the peripheral subunit-binding domain (PSBD) from the dihydrolopoamide acetyltransferase component of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus. These experiments are used to determine the folding and unfolding kinetic rate constants for the two proteins. The results for HP36, ?_2D, and PSBD illustrate the capability of current NMR methods for characterizing dynamic processes on multiple time scales in proteins.

Palmer, Arthur

2002-03-01

66

Recovery of underwater resonances by magnetization transferred NMR spectroscopy (RECUR-NMR).  

PubMed

A method for detecting small molecule NMR resonances under a water peak in biological samples is presented. After high-efficiency solvent suppression using double WATERGATE, either a TOCSY- or ROESY-based coherence transfer sequence is applied to reestablish the resonances close to, or under, water through magnetization transfer using scalar or dipolar coupling, respectively. The use of the TOCSY and ROESY methods ensures an in-phase magnetization transfer, which makes the new approach readily extended for the measurement of transverse relaxation times, internuclear ROEs, and ROE buildup rates. An extension of the new approach for J-resolved spectroscopy is also presented and tested using a sample of human blood plasma. PMID:11700090

Liu, M; Tang, H; Nicholson, J K; Lindon, J C

2001-11-01

67

Recovery of Underwater Resonances by Magnetization Transferred NMR Spectroscopy (RECUR-NMR)  

NASA Astrophysics Data System (ADS)

A method for detecting small molecule NMR resonances under a water peak in biological samples is presented. After high-efficiency solvent suppression using double WATERGATE, either a TOCSY- or ROESY-based coherence transfer sequence is applied to reestablish the resonances close to, or under, water through magnetization transfer using scalar or dipolar coupling, respectively. The use of the TOCSY and ROESY methods ensures an in-phase magnetization transfer, which makes the new approach readily extended for the measurement of transverse relaxation times, internuclear ROEs, and ROE buildup rates. An extension of the new approach for J-resolved spectroscopy is also presented and tested using a sample of human blood plasma.

Liu, Maili; Tang, Huiru; Nicholson, Jeremy K.; Lindon, John C.

2001-11-01

68

Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

Musio, Roberta; Sciacovelli, Oronzo

2001-12-01

69

Analysis of cement/waste mixtures with solid-state NMR spectroscopy  

SciTech Connect

We have used solid-state {sup 2}H and {sup 13}C NMR spectroscopy to study the interaction of phenol with portland cement as a function of cure, loading, and hydration. The {sup 2}H NMR of deuterated phenol is used to follow the microscopic dynamics of a phenoxide ion: typically half of the phenoxide ions are freely mobile and half undergo restricted motion, which indicates bonding to the cement matrix. The {sup 13}C NMR, both CP/MAS sideband analysis and static hole-burning NMR, is consistent with this analysis. A new low-temperature, 18 Tesla field-swept NMR has been used to obtain {sup 27}Al NMR resonances that are otherwise difficult to obtain with conventional NMR methods, unfortunately, the resonance is rather featureless at 4.2 K, thus indicating a critical need for VT field-swept NMR.

Cartledge, F.K.; Butler, L.G. [Louisiana State Univ., Baton Rouge, LA (United States)

1995-12-31

70

Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins  

PubMed Central

In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578

Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi

2013-01-01

71

Magnesium silicate dissolution investigated by Si-29 MAS, H-1-Si-29 CPMAS, Mg-25 QCPMG NMR.  

SciTech Connect

Olivine-(Mg,Fe){sub 2}SiO{sub 4}-has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of the divalent cation with respect to silicon during weathering under acidic conditions, which has been correlated to the formation of a silicon-rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. The pure magnesium end member of the olivine series (forsterite-Mg{sub 2}SiO{sub 4}) was chosen for detailed investigations in this study because paramagnetic iron hinders NMR investigations by providing an extra mode of relaxation for neighboring nuclei, causing lineshapes to become significantly broadened and unobservable in the NMR spectrum. For reacting forsterite, spectroscopic interrogations using nuclear magnetic resonance (NMR) can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced NMR techniques ({sup 29}Si MAS, {sup 1}H-{sup 29}Si CP MAS, {sup 25}Mg QCPMG, and {sup 1}H-{sup 25}Mg CP QCPMG NMR) to probe leached layer formation and secondary phase precipitation during the dissolution of forsterite at 150 C.

Davis, M C [Oak Ridge National Laboratory (ORNL); Wesolowski, David J [ORNL

2009-09-01

72

(1)H NMR spectroscopy for profiling complex carbohydrate mixtures in non-fractionated beer.  

PubMed

A plethora of biological and biotechnological processes involve the enzymatic remodelling of carbohydrates in complex mixtures whose compositions affect both the processes and products. In the current study, we employed high-resolution (1)H NMR spectroscopy for the analysis of cereal-derived carbohydrate mixtures as exemplified on six beer samples of different styles. Structural assignments of more than 50 carbohydrate moieties were obtained using (1)H1-(1)H2 groups as structural reporters. Spectroscopically resolved carbohydrates include more than ''20 different'' small carbohydrates with more than 38 isomeric forms in addition to cereal polysaccharide fragments with suspected organoleptic and prebiotic function. Structural motifs at the cleavage sites of starch, ?-glucan and arabinoxylan fragments were identified, showing different extent and specificity of enzymatic polysaccharide cleavage during the production of different beer samples. Diffusion ordered spectroscopy supplied independent size information for the characterisation and identification of polysaccharide fragments, indicating the presence especially of high molecular weight arabinoxylan fragments in the final beer. PMID:24360420

Petersen, Bent O; Nilsson, Mathias; Bøjstrup, Marie; Hindsgaul, Ole; Meier, Sebastian

2014-05-01

73

Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)  

Technology Transfer Automated Retrieval System (TEKTRAN)

Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

74

Improving the resolution in proton-detected through-space heteronuclear multiple quantum correlation NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Connectivities and proximities between protons and low-gamma nuclei can be probed in solid-state NMR spectroscopy using two-dimensional (2D) proton-detected heteronuclear correlation, through Heteronuclear Multiple Quantum Correlation (HMQC) pulse sequence. The indirect detection via protons dramatically enhances the sensitivity. However, the spectra are often broadened along the indirect F1 dimension by the decay of heteronuclear multiple-quantum coherences under the strong 1H-1H dipolar couplings. This work presents a systematic comparison of the performances of various decoupling schemes during the indirect t1 evolution period of dipolar-mediated HMQC (D-HMQC) experiment. We demonstrate that 1H-1H dipolar decoupling sequences during t1, such as symmetry-based schemes, phase-modulated Lee-Goldburg (PMLG) and Decoupling Using Mind-Boggling Optimization (DUMBO), provide better resolution than continuous wave 1H irradiation. We also report that high resolution requires the preservation of 1H isotropic chemical shifts during the decoupling sequences. When observing indirectly broad spectra presenting numerous spinning sidebands, the D-HMQC sequence must be fully rotor-synchronized owing to the rotor-synchronized indirect sampling and dipolar recoupling sequence employed. In this case, we propose a solution to reduce artefact sidebands caused by the modulation of window delays before and after the decoupling application during the t1 period. Moreover, we show that 1H-1H dipolar decoupling sequence using Smooth Amplitude Modulation (SAM) minimizes the t1-noise. The performances of the various decoupling schemes are assessed via numerical simulations and compared to 2D 1H-{13C} D-HMQC experiments on [U-13C]-L-histidine?HCl?H2O at various magnetic fields and Magic Angle spinning (MAS) frequencies. Great resolution and sensitivity enhancements resulting from decoupling during t1 period enable the detection of heteronuclear correlation between aliphatic protons and ammonium 14N sites in L-histidine?HCl?H2O.

Shen, Ming; Trébosc, J.; Lafon, O.; Pourpoint, F.; Hu, Bingwen; Chen, Qun; Amoureux, J.-P.

2014-08-01

75

Development of a micro flow-through cell for high field NMR spectroscopy.  

SciTech Connect

A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

Alam, Todd Michael; McIntyre, Sarah K.

2011-05-01

76

Two-Dimensional NMR Spectroscopy Elimination of Zero-Quantum Interference in  

E-print Network

the sample is large enough, the net result will be cancelation of the zero-quantum coherence. A simpleTwo-Dimensional NMR Spectroscopy Elimination of Zero-Quantum Interference in Two-Dimensional NMR and homonuclear zero-quantum coherence, which is invariably present. The zero-quantum coherence gives rise to anti

Keeler, James

77

J. Am. Chem. SOC.1992, 114, 4223-4230 Synthesis and NMR Spectroscopy of Metallocenium Ions.  

E-print Network

or anti- ferromagnetic. The NMR data determine the spin distribution within a substituted Cp ligand whichJ. Am. Chem. SOC.1992, 114, 4223-4230 Synthesis and NMR Spectroscopy of Metallocenium Ions. Support electron spin density in the Cp A orbitals of ferrocenium ions which is crucialfor the Mc

Bluemel, Janet

78

Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)  

ERIC Educational Resources Information Center

Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…

Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.

2011-01-01

79

Functional group analysis in coal by sup 31 P NMR spectroscopy  

SciTech Connect

The purpose of this research is to determine the labile-hydrogen functional group composition of coal and coal-derived materials by the nmr spectroscopy of their derivatives made with reagents containing the nmr-active nuclei {sup 31}P, {sup 119}Sn, or {sup 205}Tl. 7 refs.

Verkade, J.G.

1989-05-01

80

Full Length Vpu from HIV-1: Combining Molecular Dynamics Simulations with NMR Spectroscopy  

E-print Network

Full Length Vpu from HIV-1: Combining Molecular Dynamics Simulations with NMR Spectroscopy http: Vpu; HIV-1; Membrane protein; Molecular dynamics simulations; NMR spec- troscopy. Introduction'model was assessed using molecular dynamics (MD) simulations, in the presence of a hydrated lipid bilayer

Fischer, Wolfgang

81

Detection and characterization of serine and threonine hydroxyl protons in Bacillus circulans xylanase by NMR spectroscopy  

E-print Network

circulans xylanase by NMR spectroscopy Jacob A. Brockerman · Mark Okon · Lawrence P. McIntosh Received: 17 auxtrophic Escherichia coli strains, we produced Bacillus circulans xylanase (BcX) labeled with 13 C/15 N

McIntosh, Lawrence P.

82

A comparison of gas–liquid chromatography, NMR spectroscopy and Raman spectroscopy for determination of the substituent content of general non-ionic cellulose ethers  

Microsoft Academic Search

This paper describes and compares three techniques that can be used to characterize the substituent content of hydroxypropylcellulose (HPC and L-HPC) and hydroxypropyl methylcellulose (HPMC): gas–liquid chromatography (GLC) with a BP1 column and FI detection, 13C-NMR spectroscopy of hydrolysed samples, and Raman spectroscopy. GLC and 13C-NMR spectroscopy both allow independent quantification of hydroxypropoxyl and methoxyl contents. 13C-NMR spectroscopy, though requiring

C. Alvarez-Lorenzo; R. A. Lorenzo-Ferreira; J. L. Gómez-Amoza; R. Mart??nez-Pacheco; C. Souto; A. Concheiro

1999-01-01

83

Applications of NMR-based PRE and EPR-based DEER Spectroscopy to Homodimer Chain Exchange Characterization and Structure Determination  

PubMed Central

The success of homodimer structure determination by conventional solution NMR spectroscopy relies greatly on interchain distance restraints (less than 6 Å) derived from nuclear Overhauser effects (NOEs) obtained from 13C-edited, 12C-filtered NOESY experiments. However, these experiments may fail when the mixed 13C-/12C-homodimer is never significantly populated due to slow homodimer chain exchange. Thus, knowledge of the homodimer chain exchange kinetics can be put to practical use in preparing samples using the traditional NMR method. Here, we described detailed procedures for using paramagnetic resonance enhancements (PREs) and EPR spectroscopy to measure homodimer chain exchange kinetics. In addition, PRE and EPR methods can be combined to provide mid-range (< 30 Å) and long-range (17- 80 Å) interchain distance restraints for homodimer structure determination as a supplement to short-range intrachain and interchain distance restraints (less than 6 Å) typically obtained from 1H-1H NOESY experiments. We present a summary of how to measure these distances using NMR-based PREs and EPR-based double electron electron resonance (DEER) measurements, and how to include them in homodimer structure calculations. PMID:24203336

Yang, Yunhuang; Ramelot, Theresa A.; Ni, Shuisong; McCarrick, Robert M.; Kennedy, Michael A.

2014-01-01

84

Coherence selection in double CP MAS NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Applications of double cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy, via 1H/ 15N and then 15N/ 13C coherence transfers, for 13C coherence selection are demonstrated on a 15N/ 13C-labeled N-acetyl-glucosamine (GlcNAc) compound. The 15N/ 13C coherence transfer is very sensitive to the settings of the experimental parameters. To resolve explicitly these parameter dependences, we have systematically monitored the 13C{ 15N/ 1H} signal as a function of the rf field strength and the MAS frequency. The data reveal that the zero-quantum coherence transfer, with which the 13C effective rf field is larger than that of the 15N by the spinning frequency, would give better signal sensitivity. We demonstrate in one- and two-dimensional double CP experiments that spectral editing can be achieved by tailoring the experimental parameters, such as the rf field strengths and/or the MAS frequency.

Yang, Jen-Hsien; Chou, Fang-Chieh; Tzou, Der-Lii M.

2008-11-01

85

Investigating gabapentin polymorphism using solid-state NMR spectroscopy.  

PubMed

Solid-state NMR spectroscopy (SSNMR), coupled with powder X-ray diffraction (PXRD), was used to identify the physical forms of gabapentin in samples prepared by recrystallization, spray drying, dehydration, and milling. Four different crystalline forms of gabapentin were observed: form I, a monohydrate, form II, the most stable at ambient conditions, form III, produced by either recrystallization or milling, and an isomorphous desolvate produced from desolvating the monohydrate. As-received gabapentin (form II) was ball-milled for 45 min in both the presence and absence of hydroxypropylcellulose (HPC). The samples were then stored for 2 days at 50°C under 0% relative humidity and analyzed by 13C SSNMR and PXRD. High-performance liquid chromatography was run on the samples to determine the amount of degradation product formed before and after storage. The 1HT1 values measured for the sample varied from 130 s for the as-received unstressed material without HPC to 11 s for the material that had been ball-milled in the presence of HPC. Samples with longer 1HT1 values were substantially more stable than samples that had shorter T1 values. Samples milled with HPC had detectable form III crystals as well. These results suggest that SSNMR can be used to predict gabapentin stability in formulated products. PMID:23180225

Dempah, Kassibla E; Barich, Dewey H; Kaushal, Aditya M; Zong, Zhixin; Desai, Salil D; Suryanarayanan, Raj; Kirsch, Lee; Munson, Eric J

2013-03-01

86

Proton-detected solid-state NMR spectroscopy at aliphatic sites: application to crystalline systems.  

PubMed

When applied to biomolecules, solid-state NMR suffers from low sensitivity and resolution. The major obstacle to applying proton detection in the solid state is the proton dipolar network, and deuteration can help avoid this problem. In the past, researchers had primarily focused on the investigation of exchangeable protons in these systems. In this Account, we review NMR spectroscopic strategies that allow researchers to observe aliphatic non-exchangeable proton resonances in proteins with high sensitivity and resolution. Our labeling scheme is based on u-[(2)H,(13)C]-glucose and 5-25% H2O (95-75% D2O) in the M9 bacterial growth medium, known as RAP (reduced adjoining protonation). We highlight spectroscopic approaches for obtaining resonance assignments, a prerequisite for any study of structure and dynamics of a protein by NMR spectroscopy. Because of the dilution of the proton spin system in the solid state, solution-state NMR (1)HCC(1)H type strategies cannot easily be transferred to these experiments. Instead, we needed to pursue ((1)H)CC(1)H, CC(1)H, (1)HCC or ((2)H)CC(1)H type experiments. In protonated samples, we obtained distance restraints for structure calculations from samples grown in bacteria in media containing [1,3]-(13)C-glycerol, [2]-(13)C-glycerol, or selectively enriched glucose to dilute the (13)C spin system. In RAP-labeled samples, we obtained a similar dilution effect by randomly introducing protons into an otherwise deuterated matrix. This isotopic labeling scheme allows us to measure the long-range contacts among aliphatic protons, which can then serve as restraints for the three-dimensional structure calculation of a protein. Due to the high gyromagnetic ratio of protons, longer range contacts are more easily accessible for these nuclei than for carbon nuclei in homologous experiments. Finally, the RAP labeling scheme allows access to dynamic parameters, such as longitudinal relaxation times T1, and order parameters S(2) for backbone and side chain carbon resonances. We expect that these measurements will open up new opportunities to obtain a more detailed description of protein backbone and side chain dynamics. PMID:23745638

Asami, Sam; Reif, Bernd

2013-09-17

87

Phosphorus speciation in a eutrophic lake by ³¹P NMR spectroscopy.  

PubMed

For eutrophic lakes, patterns of phosphorus (P) measured by standard methods are well documented but provide little information about the components comprising standard operational definitions. Dissolved P (DP) and particulate P (PP) represents important but rarely characterized nutrient pools. Samples from Lake Mendota, Wisconsin, USA were characterized using 31-phosphorus nuclear magnetic resonance spectroscopy ((31)P NMR) during the open water season of 2011 in this unmatched temporal study of aquatic P dynamics. A suite of organic and inorganic P forms was detected in both dissolved and particulate fractions: orthophosphate, orthophosphate monoesters, orthophosphate diesters, pyrophosphate, polyphosphate, and phosphonates. Through time, phytoplankton biomass, temperature, dissolved oxygen, and water clarity were correlated with changes in the relative proportion of P fractions. Particulate P can be used as a proxy for phytoplankton-bound P, and in this study, a high proportion of polyphosphate within particulate samples suggested P should not be a limiting factor for the dominant primary producers, cyanobacteria. Hypolimnetic particulate P samples were more variable in composition than surface samples, potentially due to varying production and transport of sinking particles. Surface dissolved samples contained less P than particulate samples, and were typically dominated by orthophosphate, but also contained monoester, diester, polyphosphate, pyrophosphate, and phosphonate. Hydrologic inflows to the lake contained more orthophosphate and orthophosphate monoesters than in-lake samples, indicating transformation of P from inflowing waters. This time series explores trends of a highly regulated nutrient in the context of other water quality metrics (chlorophyll, mixing regime, and clarity), and gives insight on the variability of the structure and occurrence of P-containing compounds in light of the phosphorus-limited paradigm. PMID:24956605

Read, Emily K; Ivancic, Monika; Hanson, Paul; Cade-Menun, Barbara J; McMahon, Katherine D

2014-10-01

88

Functional groups identified by solid state 13C NMR spectroscopy  

Technology Transfer Automated Retrieval System (TEKTRAN)

Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

89

NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy  

PubMed Central

Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336??m that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34?nm-thick CaF2 thin film. PMID:24217000

Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

2013-01-01

90

Introducing Hyperpolarized Xenon131 Directly Detected by NMR Spectroscopy  

Microsoft Academic Search

Previously, high-field NMR and MRI applications of hyperpolarized (hp) noble gasses focused on the isotopes helium-3 (spin I = 1\\/2), xenon-129 (spin I = 1\\/2) [1], and more recently krypton-83 (spin I = 9\\/2) [2]. In this contribution, hp xenon-131 (spin I = 3\\/2) was generated by spin-exchange optical pumping and separated from the rubidium vapor for high field NMR

Karl Stupic; Zackary Cleveland; Galina Pavlovskaya; Thomas Meersmann

2007-01-01

91

Rapid characterization of molecular diffusion by NMR spectroscopy.  

PubMed

An NMR-based approach for rapid characterization of translational diffusion of molecules has been developed. Unlike the conventional method of acquiring a series of 2D (13)C and (1)H spectra, the proposed approach involves a single 2D NMR spectrum, which can be acquired in minutes. Using this method, it was possible to detect the presence of intermediate oligomeric species of diphenylalanine in solution during the process of its self-assembly to form nanotubular structures. PMID:25331210

Pudakalakatti, Shivanand M; Chandra, Kousik; Thirupathi, Ravula; Atreya, Hanudatta S

2014-11-24

92

Conformational flexibility of the pentasaccharide LNF-2 deduced from NMR spectroscopy and molecular dynamics simulations.  

PubMed

Human milk oligosaccharides (HMOs) are important as prebiotics since they stimulate the growth of beneficial bacteria in the intestine and act as receptor analogues that can inhibit the binding of pathogens. The conformation and dynamics of the HMO Lacto-N-fucopentaose 2 (LNF-2), ?-L-Fucp-(1 ? 4)[?-D-Galp-(1 ? 3)]-?-D-GlcpNAc-(1 ? 3)-?-D-Galp-(1 ? 4)-D-Glcp, having a Lewis A epitope, has been investigated employing NMR spectroscopy and molecular dynamics (MD) computer simulations. 1D (1)H,(1)H-NOESY experiments were used to obtain proton-proton cross-relaxation rates from which effective distances were deduced and 2D J-HMBC and 1D long-range experiments were utilized to measure trans-glycosidic (3)J(CH) coupling constants. The MD simulations using the PARM22/SU01 force field for carbohydrates were carried out for 600 ns with explicit water as solvent which resulted in excellent sampling for flexible glycosidic torsion angles. In addition, in vacuo MD simulations were performed using an MM3-2000 force field, but the agreement was less satisfactory based on an analysis of heteronuclear trans-glycosidic coupling constants. LNF-2 has a conformationally well-defined region consisting of the terminal branched part of the pentasaccharide, i.e., the Lewis A epitope, and a flexible ?-D-GlcpNAc-(1 ? 3)-?-D-Galp-linkage towards the lactose unit, which is situated at the reducing end. For this ?-(1 ? 3)-linkage a negative ? torsion angle is favored, when experimental NMR data is combined with the MD simulation in the analysis. In addition, flexibility on a similar time scale, i.e., on the order of the global overall molecular reorientation, may also be present for the ? torsion angle of the ?-D-Galp-(1 ? 4)-D-Glcp-linkage as suggested by the simulation. It was further observed from a temperature variation study that some (1)H NMR chemical shifts of LNF-2 were highly sensitive and this study indicates that ??/?T may be an additional tool for revealing conformational dynamics of oligosaccharides. PMID:22572908

Säwén, Elin; Hinterholzinger, Florian; Landersjö, Clas; Widmalm, Göran

2012-06-21

93

Metabolic profiling of potential probiotic or synbiotic cheeses by nuclear magnetic resonance (NMR) spectroscopy.  

PubMed

To assess ripening of potential probiotic cheeses (containing either Lactobacillus casei -01 or Bifidobacterium lactis B94) or synbiotic cheeses with fructooligosaccharides (FOS) or a 50:50 mix of FOS/inulin, metabolic profiles have been obtained via classical biochemical analyses and by NMR spectroscopy. The addition of prebiotics to the cheeses resulted in lower proteolysis indices, especially in those synbiotic cheeses inoculated with B. lactis B94. Among synbiotic cheeses the combination of FOS and inulin resulted in an increase in lipolytic activity. The metabolic profiles of the cheeses analyzed by NMR spectroscopy, combined with multivariate statistics, allowed profiles to be distinguished by maturation time, added probiotic bacteria, or, in the case of B. lactis B94 cheese, added prebiotic. The NMR results are in agreement with the biochemical analyses and demonstrate the potential of NMR for the study of metabolic processes in probiotic/synbiotic food matrices. PMID:21443163

Rodrigues, Dina; Santos, Claudio H; Rocha-Santos, Teresa A P; Gomes, Ana M; Goodfellow, Brian J; Freitas, Ana C

2011-05-11

94

Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy.  

PubMed

Four betacyanin pigments were analysed by LC NMR and subjected to extensive NMR characterisation after isolation. Previously, low pH values were applied for NMR investigations of betalains resulting in rapid degradation of the purified substances thus preventing extensive NMR studies. Consequently, up to now only one single (13)C NMR spectrum of a betalain pigment, namely that of neobetanin (=14,15-dehydrobetanin), was available. Because of its sufficient stability under highly acidic conditions otherwise detrimental for betacyanins, this pigment remained an exemption. Since betalains are most stable in the pH range of 5-7, a new solvent system has been developed allowing improved data acquisition through improved pigment stability at near neutral pH. Thus, not only (1)H, but for the first time also partial (13)C data of betanin, isobetanin, phyllocactin and hylocerenin isolated from red-purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose, Cactaceae] could be indirectly obtained by gHSQC- and gHMQC-NMR experiments. PMID:14759534

Stintzing, Florian C; Conrad, Jürgen; Klaiber, Iris; Beifuss, Uwe; Carle, Reinhold

2004-02-01

95

Synthesis and characterization of polyphosphazene copolymers using phosphorus-31 NMR spectroscopy  

SciTech Connect

It was observed that competitive nucleophilic addition processes may be observed by {sup 31}P NMR spectroscopy. Methoxyethoxyethanol (MEE) and p-methoxyphenol readily substitute for chlorineonto phosphorus and the relative rates are generally comparable to each other. Sterically, the phenol presents is slightly larger than MEE but this does not appear to effect substitution judging by the observed PN(OAr){sub 2} NMR signal. These processes are still being studied.

Stewart, F.F.; Peterson, E.S.; Stone, M.L. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Singler, R.E. [Military Academy, West Point, NY (United States). Dept. of Chemistry

1997-01-01

96

Characterisation of sodium cations in dehydrated zeolite NaX by 23Na NMR spectroscopy  

Microsoft Academic Search

23Na MAS, 2D nutation MAS, and DOR NMR spectroscopy has been applied to characterise the location of sodium cations in dehydrated zeolite NaX (Si\\/Al = 1.23). The 23Na MAS NMR spectra recorded at three different magnetic field strengths were decomposed by computer simulation into five lines, which were attributed to five crystallographically distinct cation sites known from X-ray diffraction studies.

M. Feuerstein; M. Hunger; G. Engelhardt; J. P. Amoureux

1996-01-01

97

Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy  

Microsoft Academic Search

The metabolomic analysis of Brassica rapa leaves treated with methyl jasmonate was performed using 2-dimensional J-resolved NMR spectroscopy combined with multivariate data analysis. The principal component analysis of the J-resolved NMR spectra showed discrimination between control and methyl jasmonate treated plants by principal components 1 and 2. While the level of glucose, sucrose and amino acids showed a decrease after

Yun-Sa Liang; Young Hae Choi; Hye Kyong Kim; Huub J. M. Linthorst; Robert Verpoorte

2006-01-01

98

Egg yolk identification and aging in mixed paint binding media by NMR spectroscopy.  

PubMed

NMR spectroscopy is a powerful analytical tool for the identification and quantitative analysis of organic materials in a cultural heritage context. In this report, we present an analytical NMR protocol for the identification and semiquantification of egg yolk binders and mixed binding media that also contain a drying oil, namely linseed oil. The samples studied have been artificially and/or naturally aged in order to simulate the composition of organic materials in paintings. Analysis of the 1D and 2D NMR spectra showed that egg yolk can be identified even in binding media of considerable age via signals originating from cholesterol and/or cholesterol oxidation products present in the aged binding medium. Based on cholesterol-related and other lipid signals in the NMR spectra of egg yolk binders, a molecular marker (R/F) that suggests the presence of egg yolk in paint binders is proposed. Via this marker, the presence of egg yolk in the organic material obtained from an early 18th century Greek icon is confirmed, and this is further verified by 2D NMR spectroscopy. It is demonstrated that NMR molecular markers developed to estimate the hydrolysis/oxidation state of oil paintings are also suitable for the analysis of egg yolk and mixed medium (egg yolk-linseed oil) binders, indicating the generality of the NMR methodological approach in the analysis of organic materials in a cultural heritage context. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25280129

Sfakianaki, Sofia; Kouloumpi, Eleni; Anglos, Demetrios; Spyros, Apostolos

2015-01-01

99

Insights into the metabolic response to traumatic brain injury as revealed by 13C NMR spectroscopy  

PubMed Central

The present review highlights critical issues related to cerebral metabolism following traumatic brain injury (TBI) and the use of 13C labeled substrates and nuclear magnetic resonance (NMR) spectroscopy to study these changes. First we address some pathophysiologic factors contributing to metabolic dysfunction following TBI. We then examine how 13C NMR spectroscopy strategies have been used to investigate energy metabolism, neurotransmission, the intracellular redox state, and neuroglial compartmentation following injury. 13C NMR spectroscopy studies of brain extracts from animal models of TBI have revealed enhanced glycolytic production of lactate, evidence of pentose phosphate pathway (PPP) activation, and alterations in neuronal and astrocyte oxidative metabolism that are dependent on injury severity. Differential incorporation of label into glutamate and glutamine from 13C labeled glucose or acetate also suggest TBI-induced adaptations to the glutamate-glutamine cycle. PMID:24109452

Bartnik-Olson, Brenda L.; Harris, Neil G.; Shijo, Katsunori; Sutton, Richard L.

2013-01-01

100

Biodegradation 9: 391, 1998. Nuclear Magnetic Resonance (NMR) Spectroscopy and Magnetic Resonance Imaging (MRI) are techniques of  

E-print Network

Biodegradation 9: 391, 1998. 391 Editorial Nuclear Magnetic Resonance (NMR) Spectroscopy applications. This special issue of Biodegradation is directed at presenting examples of applications of NMR with an introductionary paper about NMR and MRI in environmental science and engineering by Lens and Hemminga. With regard

Hemminga, Marcus A.

101

Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.  

SciTech Connect

NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

Krishnan, V V

2005-04-26

102

Discrimination of allied species within the genus Turbinaria (Fucales, Phaeophyceae) using HRMAS NMR spectroscopy.  

PubMed

A novel chemotaxonomical method based on 1D (1)H HRMAS NMR spectroscopy is being tested for taxonomical purposes. This powerful technique allowed us to discriminate between specimens belonging to two sister species of Turbinaria, which are difficult to tell apart using only morphological characters. Based on spectra analysis, the results allowed us to successfully group the specimens according to their species. Thus, the efficiency of HRMAS NMR spectroscopy for the discrimination of algal species and for the pre-screening of potential chemomarkers is demonstrated. PMID:18371754

Le Lann, K; Kervarec, N; Payri, C E; Deslandes, E; Stiger-Pouvreau, V

2008-01-15

103

Characterization of the essential oil of Agastache rugosa by NMR spectroscopy  

NASA Astrophysics Data System (ADS)

The composition of essential oil from Agastache rugosa (Fish. et Mey) O.Kuntze was studied by 1H and 13C NMR spectroscopy. Essential oil was isolated from the aerial part of plants growing in the Central Botanical Garden of the NAS of Belarus during flowering and fruiting. The oil chemical composition was found to depend little on the sampling time. It was shown that NMR spectroscopy could be successfully used to both monitor the content of the hepatotoxic substance (pulegone) and characterize the quality and authenticity of essential oils.

Skakovskii, E. D.; Kiselev, W. P.; Tychinskaya, L. Yu.; Schutova, A. G.; Gonsharova, L. W.; Spiridowish, E. W.; Bovdey, N. A.; Kiselev, P. A.; Gaidukevich, O. A.

2010-07-01

104

[Detection of peranesthetic malignant hyperthermia by muscle contracture tests and NMR spectroscopy].  

PubMed

To diagnose malignant hyperthermia susceptibility (MHS), caffeine and halothane contracture tests were performed on six patients. One of them, who presented a peroperative crisis, was recognized as MHS; the five others were negative (MHN). By means of 31P-NMR spectroscopy, the muscular energetic metabolism of these patients was studied during and after moderate exercise in normal and moderate ischaemic conditions. Metabolic abnormalities appeared in the MHS patient. It must be concluded therefore that malignant hyperthermia is a latent myopathy. 31P-NMR spectroscopy appeared to be a useful non-invasive tool for screening for this affliction. PMID:3826791

Kozak-Reiss, G; Gascard, J P; Redouane-Bénichou, K

1986-01-01

105

Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises  

ERIC Educational Resources Information Center

This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

2012-01-01

106

NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer  

NASA Technical Reports Server (NTRS)

Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

1993-01-01

107

Measurement of pH by NMR Spectroscopy in Concentrated Aqueous Fluoride Buffers  

PubMed Central

An NMR spectroscopic technique has been developed to give rapid, accurate pH measurements on tenth-milliliter samples of concentrated acidic aqueous solutions buffered by fluoride ion in the pH 1.5 – 4.5 range. The fluoride 19F chemical shift has been calibrated as a function of pH at 0.1 and 1.0 M concentration by reference to an internal 3-fluoropyridine standard. Subsequent measurements of fluoride buffer pH required no additives and only two NMR spectra in the presence of an external reference standard. PMID:21278857

Gerken, James B.

2010-01-01

108

From Molecular Structure to Global Processes : NMR Spectroscopy in Analytical/Environmental Chemistry  

NASA Astrophysics Data System (ADS)

NMR Spectroscopy is arguably the most powerful tool to elucidate structure and probe molecular interactions. A range of NMR approaches will be introduced with emphasis on addressing and understanding structure and reactivity of soil organic matter at the molecular level. The presentation will be split into three main sections. The first section will look at evidence from advanced NMR based approaches that when considered synergistically describes the major structural components in soil organic matter. Multidimensional NMR spectroscopy (1-3D NMR), automated pattern matching, spectral simulations, diffusion NMR and hybrid-diffusion NMR will be introduced in context of molecular structure. Finally the structural components in soil will be contrasted to those found in aquatic dissolved organic matter. Secondly molecular interactions of natural organic matter will be considered. Advanced structural studies have provided detailed spectral assignments which in turn permit the reactivity of various soil components to be elucidated. Aggregation and self-association of soil and dissolved organic matter will be discussed along with the structural components likely responsible for aggregation/colloid formation. Interactions of soil organic matter with anthropogenic chemicals will also be considered and NMR techniques based on "Saturation Transfer Difference" introduced. These techniques are extremely powerful and can be used to both; describe mechanistically how anthropogenic chemicals sorb to whole soils and identify the structural components (lignin, protein, cellulose, etc..) that are responsible for the binding/sorption in soil. In the last section, the "big questions" and challenges facing the field will be considered along with some novel experimental NMR based approaches that should, in future, assist in providing answers to these questions.

Simpson, A.

2009-04-01

109

High-Resolution NMR Spectroscopy: An Alternative Fast Tool for Qualitative and Quantitative Analysis of Diacylglycerol (DAG) Oil  

Microsoft Academic Search

Multinuclear (1H, 13C, 31P) and multidimensional NMR spectroscopy was employed for the analysis of diacylglycerol (DAG) oil and the quantification\\u000a of its acylglycerols and acyl chains composition. A number of gradient selected two dimensional NMR techniques (TOCSY, HSQC-DEPT,\\u000a HSQC-TOCSY, and HMBC) facilitated the assignment of the complex one dimensional 1H- and 13C-NMR spectra. In several cases, the aforementioned 2D-NMR techniques

Emmanuel Hatzakis; Alexia Agiomyrgianaki; Sarantos Kostidis; Photis Dais

110

Protein folding and unfolding studied at atomic resolution by fast two-dimensional NMR spectroscopy  

PubMed Central

Atom-resolved real-time studies of kinetic processes in proteins have been hampered in the past by the lack of experimental techniques that yield sufficient temporal and atomic resolution. Here we present band-selective optimized flip-angle short transient (SOFAST) real-time 2D NMR spectroscopy, a method that allows simultaneous observation of reaction kinetics for a large number of nuclear sites along the polypeptide chain of a protein with an unprecedented time resolution of a few seconds. SOFAST real-time 2D NMR spectroscopy combines fast NMR data acquisition techniques with rapid sample mixing inside the NMR magnet to initiate the kinetic event. We demonstrate the use of SOFAST real-time 2D NMR to monitor the conformational transition of ?-lactalbumin from a molten globular to the native state for a large number of amide sites along the polypeptide chain. The kinetic behavior observed for the disappearance of the molten globule and the appearance of the native state is monoexponential and uniform along the polypeptide chain. This observation confirms previous findings that a single transition state ensemble controls folding of ?-lactalbumin from the molten globule to the native state. In a second application, the spontaneous unfolding of native ubiquitin under nondenaturing conditions is characterized by amide hydrogen exchange rate constants measured at high pH by using SOFAST real-time 2D NMR. Our data reveal that ubiquitin unfolds in a gradual manner with distinct unfolding regimes. PMID:17592113

Schanda, Paul; Forge, Vincent; Brutscher, Bernhard

2007-01-01

111

Probing oxidative degradation in polymers using {sup 17}O NMR spectroscopy  

SciTech Connect

Understanding the mechanism of oxidative degradation remains an important goal in being able to predict the aging process in polymer materials. Nuclear magnetic resonance (NMR) spectroscopy has previously been utilized to investigate polymer degradation, including both proton ({sup 1}H) and carbon ({sup 13}C) studies. These previous NMR studies, as well as other spectroscopic investigations, are complicated by the almost overwhelming signal arising from the native undegraded polymer. This makes the identification and quantification of degradation species at small concentrations difficult. In this note we discuss recent investigation into the use of oxygen ({sup 17}O) NMR spectroscopy to probe the oxidative degradation process in polymers at a molecular level. Due to the low natural abundance (0.037%) and a nuclear spin of I=5/2 possessing an appreciable quadrupolar moment, the use of {sup 17}O NMR in polymer investigations has been limited. By utilizing synthetically enriched oxygen gas during the accelerated aging process, both the difficulties of low natural abundance and background interference signals are eliminated. For enriched samples {sup 17}O NMR spectra now provide a unique probe since all of the observed NMR resonances are the direct result of oxidative degradation.

Alam, T.M.; Click, C.A.; Assink, R.A.

1997-09-01

112

Simultaneous (19)F-(1)H medium resolution NMR spectroscopy for online reaction monitoring.  

PubMed

Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16? fluorinated ethylene propylene (FEP) tube with an ID of 0.04? (1.02mm) was used as a flow cell in combination with a 5mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a (1)H Larmor frequency of 43.32MHz and 40.68MHz for (19)F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating (19)F and (1)H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16? FEP tube set-up with an ID of 1.02mm was characterised regarding the limit of detection (LOQ ((1)H)=0.335molL(-1) and LOQ ((19)F)=0.130molL(-1) for trifluoroethanol in D2O (single scan)) and maximum quantitative flow rates up to 0.3mLmin(-1). Thus, a series of single scan (19)F and (1)H NMR spectra acquired with this simple set-up already presents a valuable basis for quantitative reaction monitoring. PMID:25462947

Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

2014-10-18

113

Nuclear Spin-Echo Fourier-Transform Mapping Spectroscopy for Broad NMR Lines in Solids  

NASA Astrophysics Data System (ADS)

A basic theoretical description of nuclear spin-echo Fourier-transform mapping spectroscopy (NSEFTMS) for broad NMR lines was derived from the well-established time-domain spin-echo theory. It has been shown that when the mapping step is less than the radiation field strength under typical conditions of spin-echo experiments, the NSEFTMS mimics precisely the original NMR spectrum. Most important, the NSEFTMS present a more efficient alternative in practice to the conventional point-by-point scanning technique that is, in general, time consuming in studying broad NMR lines in solids, especially when there exist some sharp features. A preliminary 31P NMR study of an iron (II) diphosphate (Fe 2P 2O 7) sample, which is one kind of precursor for the heterogeneous catalytic ferri-phosphate system (FePO), has been taken as an example of the application of the theory.

Tong, Y. Y.

114

Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples  

NASA Astrophysics Data System (ADS)

High-Resolution Magic-Angle Spinning (HR-MAS) NMR spectroscopy has become an extremely versatile analytical tool to study heterogeneous systems endowed with liquid-like dynamics. Spinning frequencies of several kHz are however required to obtain NMR spectra, devoid of spinning sidebands, with a resolution approaching that of purely isotropic liquid samples. An important limitation of the method is the large centrifugal forces that can damage the structure of the sample. In this communication, we show that optimizing the sample preparation, particularly avoiding air bubbles, and the geometry of the sample chamber of the HR-MAS rotor leads to high-quality low-sideband NMR spectra even at very moderate spinning frequencies, thus allowing the use of well-established solution-state NMR procedures for the characterization of small and highly dynamic molecules in the most fragile samples, such as live cells and intact tissues.

Renault, Marie; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

2013-11-01

115

Characterizing Covalently Sidewall-Functionalized SWCNTs by using 1H NMR Spectroscopy  

PubMed Central

Unambiguous evidence for covalent sidewall functionalization of single-walled carbon nanotubes (SWCNTs) has been a difficult task, especially for nanomaterials in which slight differences in functionality structure produce significant changes in molecular characteristics. Nuclear magnetic resonance (NMR) spectroscopy provides clear information about the structural skeleton of molecules attached to SWCNTs. In order to establish the generality of proton NMR as an analytical technique for characterizing covalently functionalized SWCNTs, we have obtained and analyzed proton NMR data of SWCNT-substituted benzenes across a variety of para substituents. Trends obtained for differences in proton NMR chemical shifts and the impact of o-, p-, and m-directing effects of electrophilic aromatic substituents on phenyl groups covalently bonded to SWCNTs are discussed. PMID:24009779

Nelson, Donna J.; Kumar, Ravi

2013-01-01

116

Photo-CIDNP NMR spectroscopy of amino acids and proteins.  

PubMed

Photo-chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance (NMR) phenomenon which, among other things, is exploited to extract information on biomolecular structure via probing solvent-accessibilities of tryptophan (Trp), tyrosine (Tyr), and histidine (His) amino acid side chains both in polypeptides and proteins in solution. The effect, normally triggered by a (laser) light-induced photochemical reaction in situ, yields both positive and/or negative signal enhancements in the resulting NMR spectra which reflect the solvent exposure of these residues both in equilibrium and during structural transformations in "real time". As such, the method can offer - qualitatively and, to a certain extent, quantitatively - residue-specific structural and kinetic information on both the native and, in particular, the non-native states of proteins which, often, is not readily available from more routine NMR techniques. In this review, basic experimental procedures of the photo-CIDNP technique as applied to amino acids and proteins are discussed, recent improvements to the method highlighted, and future perspectives presented. First, the basic principles of the phenomenon based on the theory of the radical pair mechanism (RPM) are outlined. Second, a description of standard photo-CIDNP applications is given and it is shown how the effect can be exploited to extract residue-specific structural information on the conformational space sampled by unfolded or partially folded proteins on their "path" to the natively folded form. Last, recent methodological advances in the field are highlighted, modern applications of photo-CIDNP in the context of biological NMR evaluated, and an outlook into future perspectives of the method is given. PMID:23670104

Kuhn, Lars T

2013-01-01

117

Sensitivity enhancement of double quantum NMR spectroscopy by modified CPMG  

NASA Astrophysics Data System (ADS)

A modified Carr-Purcell-Meiboom-Gill (CPMG) sequence for sensitivity enhancement of dipolar coupled homonuclear spin pairs in static solid-state NMR is presented. The modified CPMG block uses the Hahn-solid-Hahn echo as basic element of the CPMG echo train to refocus the homonuclear dipolar coupling and chemical shift anisotropy. The new CPMG sequence is dubbed as Hahn-solid-Hahn Carr-Purcell-Meiboom-Gill (HSHCPMG). We demonstrate a gain in signal to noise ratio of approximately 4.2 using HSHCPMG sequence in double quantum filtered CP experiment for 5%-13C2-15N-glycine. The resulting gain in sensitivity in the spikelet spectrum does not compromise the anisotropic information that is available from static NMR lineshapes. As an example, relative orientation angles of chemical shift anisotropy tensors for the alpha and carbonyl carbons in glycine are determined from the 2D DOQSY experiment recorded with the HSHCPMG block in the acquisition dimension. The resultant relative orientation angles of the two CSA tensors are compared to those obtained from 2D DOQSY experiment acquired without sensitivity enhancement as well as to the data as available from single crystal NMR experiments.

Gowda, Chandrakala M.; Agarwal, Vipin; Kentgens, Arno P. M.

2012-10-01

118

Automated sample preparation station for studying self-diffusion in porous solids with NMR spectroscopy  

SciTech Connect

In studies of gas diffusion in porous solids with nuclear magnetic resonance (NMR) spectroscopy the sample preparation procedure becomes very important. An apparatus is presented here that pretreats the sample ex situ and accurately sets the desired pressure and temperature within the NMR tube prior to its introduction in the spectrometer. The gas manifold that supplies the NMR tube is also connected to a microbalance containing another portion of the same sample, which is kept at the same temperature as the sample in the NMR tube. This arrangement permits the simultaneous measurement of the adsorption loading on the sample, which is required for the interpretation of the NMR diffusion experiments. Furthermore, to ensure a good seal of the NMR tube, a hybrid valve design composed of titanium, a Teflon registered seat, and Kalrez registered O-rings is utilized. A computer controlled algorithm ensures the accuracy and reproducibility of all the procedures, enabling the NMR diffusion experiments to be performed at well controlled conditions of pressure, temperature, and amount of gas adsorbed on the porous sample.

Hedin, Niklas; DeMartin, Gregory J.; Reyes, Sebastian C. [Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801 (United States)

2006-03-15

119

Slow motion of confined molecules: NMR and broadband dielectric spectroscopy investigations.  

PubMed

Nuclear magnetic resonance (NMR) and broadband dielectric spectroscopy are used to investigate the dynamics of small glass-forming molecules confined to restricted geometries. Ethylene glycol molecules are embedded in the supercages of NaX zeolites. The combined application of NMR and broadband dielectric spectroscopy advances the understanding of the slowing down of the motion near the glass transition temperature of these confined molecules. In combination with nuclear spin relaxation and nuclear magnetic resonance spectroscopy, dielectric relaxation studies on glass forming molecules allow conclusions on the character of the motion. High resolution 1H magic angle spinning (MAS) NMR measurements not only enable a characterisation of the state of the adsorbed molecules via a chemical shift analysis. By means of an analysis of MAS spinning sidebands we may also estimate a correlation time the meaning of which will be discussed in comparison to the results of longitudinal proton spin relaxation measurements. In addition to broadband dielectric spectroscopy slow molecular motions of partially deuterated ethylene glycol adsorbed in NaX are studied by means of 2H NMR line-shape analysis. PMID:18464423

Erdem, Ozlen F; Pampel, André; Michel, Dieter

2008-02-01

120

Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory  

ERIC Educational Resources Information Center

This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

2012-01-01

121

USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY TO INVESTIGATE PMDI REACTIONS WITH WOOD  

Technology Transfer Automated Retrieval System (TEKTRAN)

Solution-state NMR spectroscopy provides a powerful tool for understanding the formation of chemical bonds between wood components and adhesives. Finely ground cell wall (CW) material fully dissolves in a solvent system containing dimethylsulfoxide (DMSO-d6) and N-methyl¬imidazole (NMI-d6), keeping ...

122

Characterization of cyclodextrin complexes of camostat mesylate by ESI mass spectrometry and NMR spectroscopy  

Microsoft Academic Search

Supramolecular interactions between camostat mesylate, a serine protease inhibitor (1), with ?-, ?-, and ?-cyclodextrin (CD) in water were investigated using electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. ESI mass spectral analysis revealed that the 1:1 stoichiometry in all the complexes was formed. The binding constants (Kst) calculated by linear equations constructed from the ESI mass

Soonho Kwon; Woonhyoung Lee; Hye-Jin Shin; Sung-il Yoon; Yun-tae Kim; Young-Jin Kim; Kyungruyl Lee; Sanghoo Lee

2009-01-01

123

Sensitivity Enhancement in 1D Heteronuclear NMR Spectroscopy via Single-Scan Inverse  

E-print Network

Sensitivity Enhancement in 1D Heteronuclear NMR Spectroscopy via Single-Scan Inverse Experiments of the present article to discuss the possi- bility of retaining some of the indirect-detection sensitivity ad, however, make the sensitivity of this kind of spec- troscopy inherently lower than that of comparable 1 H

Frydman, Lucio

124

NATURAL ABUNDANCE 13C NMR SPECTROSCOPY OF DOUBLE-STRANDED DNA  

EPA Science Inventory

Although 13C NMR spectroscopy has already proved extremely useful in studies of biopolymers, including t-RNA's, and single-stranded polynucleotides, no successful study of native double-stranded DNA has been reported. This failure is mainly due to extremely unfavorable 13C spin r...

125

Investigation of Zeolite Nucleation and Growth Using NMR Spectroscopy  

E-print Network

spectroscopy xii ETPA ethyltripropylammonium FCC fluid catalytic cracking FID free induction decay FFT fast Fourier transform HRTEM high-resolution transmission electron microscopy ILT inverse Laplace transform LTA Linde type A MFI Mobil five MTPA...

Rivas Cardona, Alejandra

2012-02-14

126

Oxygen-17 cross-polarization nmr spectroscopy of inorganic solids  

NASA Astrophysics Data System (ADS)

We have obtained 17O nuclear magnetic resonance spectra of a variety of 17O-labeled solids (Mg(OH) 2, Ca(OH) 2, boehmite (AlO(OH)), talc (Mg 3Si 4O 10(OH) 2), (C 6H 5) 3SiOH, and amorphous SiO 2) using high-field static and "magic-angle" sample spinning techniques, together with 1H cross polarization and dipolar decoupling. Our results show that large cross-polarization enhancements can be obtained and that reliable second-order quadrupolar powder lineshapes can be observed under cross-polarization conditions. We have also investigated the dynamics of cross polarization for several samples, including measurements of cross-relaxation rates and 1H and 17O rotating-frame spin-lattice relaxation times. We show that rapid 17O rotating-frame spin-lattice relaxation reduces the cross-polarization enhancement in some cases and that differences in cross-relaxation rates can be used to "edit" spectra by selectively enhancing protonated oxygen resonances (in general, hydroxide versus oxide ions, in inorganic solids). When applied to high surface area metal oxides such as amorphous silica, this selectivity enables the observation of resonances from surface hydroxyl groups that are difficult to detect by conventional 17O NMR. Overall, the cross-polarization approach appears to have considerable utility for aiding in the interpretation of 17O NMR spectra of complex inorganic solids.

Walter, Thomas H.; Turner, Gary L.; Oldfield, Eric

127

Solvation and crystal effects in bilirubin studied by NMR spectroscopy and density functional theory.  

PubMed

The open-chain tetrapyrrole compound bilirubin was investigated in chloroform and dimethyl sulfoxide solutions by liquid-state NMR and as solid by (1)H, (13)C, and (15)N magic-angle spinning (MAS) solid-state NMR spectroscopy. Density functional theory (DFT) calculations were performed to interpret the data, using the B3LYP exchange-correlation functional to optimize geometries and to compute NMR chemical shieldings by the gauge-including atomic orbital method. The dependence of geometries and chemical shieldings on the size of the basis sets was investigated for the reference molecules tetramethylsilane, NH(3), and H(2)O, and for bilirubin as a monomer and in clusters consisting of up to six molecules. In order to assess the intrinsic errors of the B3LYP approximation in calculating NMR shieldings, complete basis set estimates were obtained for the nuclear shielding values of the reference molecules. The experimental liquid-state NMR data of bilirubin are well reproduced by a monomeric bilirubin molecule using the 6-311+G(2d,p) basis set for geometry optimization and for calculating chemical shieldings. To simulate the bilirubin crystal, a hexameric model was required. It was constructed from geometry-optimized monomers using information from the X-ray structure of bilirubin to fix the monomeric entities in space and refined by partial optimization. Combining experimental (1)H-(13)C and (1)H-(15)N NMR correlation spectroscopy and density functional theory, almost complete sets of (1)H, (13)C, and (15)N chemical shift assignments were obtained for both liquid and solid states. It is shown that monomeric bilirubin in chloroform solution is formed by 3-vinyl anti conformers, while bilirubin crystals are formed by 3-vinyl syn conformers. This conformational change leads to characteristic differences between the liquid- and solid-state NMR resonances. PMID:21846145

Rohmer, Thierry; Matysik, Jörg; Mark, Franz

2011-10-27

128

Membrane structure and dynamics as viewed by solid-state NMR spectroscopy.  

PubMed

The purpose of the present study is the investigation of the structure and dynamics of biological membranes using solid-state nuclear magnetic resonance (NMR) spectroscopy. Two approaches are used in our laboratory. The first involves the measurement of high-resolution 13C and 1H spectra obtained by the magic angle spinning (MAS) technique while the second approach involves the measurement of 31P and 2H powder spectra in static samples. This paper will present some recent results obtained by high-resolution solid-state 1H NMR on the conformation of gramicidin A incorporated in a phosphatidylcholine bilayers. More specifically, we were able to observe changes in the gramicidin spectra as a function of the cosolubilization solvent initially used to prepare the samples. The interaction between lipid bilayers and an anticancer drug derived from chloroethylurea was also investigated using proton NMR spectroscopy. Finally, we have studied the interaction between cardiotoxin, a toxic protein extracted from snake venom, and negatively charged lipid bilayers using 31P solid-state NMR spectroscopy. PMID:9468622

Auger, M

1997-10-01

129

Examination of amber and related materials by NMR spectroscopy.  

PubMed

Examination of the solid-state (13) C and solution (1) H NMR spectra of fossilized resins (ambers) has generated five groupings of materials based on spectral characteristics. The worldwide Group A is associated with the botanical family of the Araucariaceae. The worldwide Group B is associated with the Dipterocarpaceae. Baltic amber or succinite (Group C) is related to Group A but with a disputed conifer source. Amber from Latin America, the Caribbean, and Africa is associated with the Fabaceae, the genus Hymenaea in particular. The minor Group E contains the rare fossil polystyrene. The spectra of jet indicate that it is a coal-like material with a rank between lignite and sub-bituminous coal. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25176402

Lambert, Joseph B; Santiago-Blay, Jorge A; Wu, Yuyang; Levy, Allison J

2015-01-01

130

Improved WATERGATE Pulse Sequences for Solvent Suppression in NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

Modifications to the WATERGATE method for removing the solvent resonance from 1H NMR spectra are presented. In the conventional WATERGATE, a pulse train with three pairs of symmetric pulses in the form 3?-?-9?-?-19?-?-19?-?-9?-?-3? (designated here W3), where 26? = 180°, is used, while the improved versions use four and five pairs of symmetric pulses (designated here W4 and W5), respectively. The modified methods provide narrower noninversion regions and hence enhance the sensitivities of the peaks close to the water resonance. The inversion and suppression profiles of the pulse trains W3, W4, and W5 are compared theoretically and experimentally and good agreement is obtained.

Liu, Maili; Mao, Xi-an; Ye, Chaohui; Huang, He; Nicholson, Jeremy K.; Lindon, John C.

1998-05-01

131

Insights into Atomic-level Interaction between Mefenamic Acid and Eudragit® EPO in a Supersaturated Solution by High-Resolution Magic-Angle Spinning NMR Spectroscopy  

PubMed Central

The intermolecular interaction between mefenamic acid (MFA), a poorly water-soluble non-steroidal anti-inflammatory drug, and Eudragit® EPO (EPO), a water-soluble polymer, is investigated in their supersaturated solution using high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy. The stable supersaturated solution with a high MFA concentration of 3.0 mg/mL is prepared by dispersing the amorphous solid dispersion into a d-acetate buffer at pH 5.5 and 37 °C. By virtue of MAS at 2.7 kHz, the extremely broad and unresolved 1H resonances of MFA in one-dimensional 1H NMR spectrum of the supersaturated solution are well resolved, thus enabling the complete assignment of MFA 1H resonances in the aqueous solution. Two-dimensional (2D) 1H/1H nuclear Overhauser effect spectroscopy (NOESY) and radio frequency-driven recoupling (RFDR) under MAS conditions reveal the interaction of MFA with EPO in the supersaturated solution at an atomic level. The strong cross-correlations observed in the 2D 1H/1H NMR spectra indicate a hydrophobic interaction between the aromatic group of MFA and the backbone of EPO. Furthermore, the aminoalkyl group in the side chain of EPO forms a hydrophilic interaction, which can be either electrostatic or hydrogen bonding, with the carboxyl group of MFA. We believe these hydrophobic and hydrophilic interactions between MFA and EPO molecules play a key role in the formation of this extremely stable supersaturated solution. In addition, 2D 1H/1H RFDR demonstrates that the molecular MFA-EPO interaction is quite flexible and dynamic. PMID:24283196

Higashi, Kenjirou; Yamamoto, Kazutoshi; Pandey, Manoj Kumar; Mroue, Kamal H.; Moribe, Kunikazu; Yamamoto, Keiji; Ramamoorthy, Ayyalusamy

2014-01-01

132

Insights into atomic-level interaction between mefenamic acid and eudragit EPO in a supersaturated solution by high-resolution magic-angle spinning NMR spectroscopy.  

PubMed

The intermolecular interaction between mefenamic acid (MFA), a poorly water-soluble nonsteroidal anti-inflammatory drug, and Eudragit EPO (EPO), a water-soluble polymer, is investigated in their supersaturated solution using high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy. The stable supersaturated solution with a high MFA concentration of 3.0 mg/mL is prepared by dispersing the amorphous solid dispersion into a d-acetate buffer at pH 5.5 and 37 °C. By virtue of MAS at 2.7 kHz, the extremely broad and unresolved (1)H resonances of MFA in one-dimensional (1)H NMR spectrum of the supersaturated solution are well-resolved, thus enabling the complete assignment of MFA (1)H resonances in the aqueous solution. Two-dimensional (2D) (1)H/(1)H nuclear Overhauser effect spectroscopy (NOESY) and radio frequency-driven recoupling (RFDR) under MAS conditions reveal the interaction of MFA with EPO in the supersaturated solution at an atomic level. The strong cross-correlations observed in the 2D (1)H/(1)H NMR spectra indicate a hydrophobic interaction between the aromatic group of MFA and the backbone of EPO. Furthermore, the aminoalkyl group in the side chain of EPO forms a hydrophilic interaction, which can be either electrostatic or hydrogen bonding, with the carboxyl group of MFA. We believe these hydrophobic and hydrophilic interactions between MFA and EPO molecules play a key role in the formation of this extremely stable supersaturated solution. In addition, 2D (1)H/(1)H RFDR demonstrates that the molecular MFA-EPO interaction is quite flexible and dynamic. PMID:24283196

Higashi, Kenjirou; Yamamoto, Kazutoshi; Pandey, Manoj Kumar; Mroue, Kamal H; Moribe, Kunikazu; Yamamoto, Keiji; Ramamoorthy, Ayyalusamy

2014-01-01

133

{sup 1}H NMR spectroscopy: Approaches for carbonaceous solids  

SciTech Connect

This chapter provides an introduction and overview of the {sup 1}H CRAMPS (combined rotation and multiple-pulse spectroscopy) technique as applied to carbonaceous solids, primarily coal. The basic nature and characteristics of the CRAMPS experiment are explained. Its applications to coal, oil shale, kerogen, humic acid, and fulvic acid are described. Some of the technical characteristics and requirements of the {sup 1}H CRAMPS experiment are outlined. Directions for future {sup 1}H CRAMPS applications to carbonaceous solids are discussed.

Maciel, G.E.; Bronnimann, C.E.; Ridenour, C.F. [Colorado State Univ., Fort Collins, CO (United States)

1993-12-31

134

Bis(pentamethylcyclopentadienyl)ytterbium: An investigation of weak interactions in solution using multinuclear NMR spectroscopy  

SciTech Connect

NMR spectroscopy is ideal for studying weak interactions (formation enthalpy {le}20 kcal/mol) in solution. The metallocene bis(pentamethylcyclopentadienyl)ytterbium, Cp*{sub 2}Yb, is ideal for this purpose. cis-P{sub 2}PtH{sub 2}complexes (P = phosphine) were used to produce slow-exchange Cp*{sub 2}YbL adducts for NMR study. Reversible formation of (P{sub 2}PtH){sub 2} complexes from cis-P{sub 2}PtH{sub 2} complexes were also studied, followed by interactions of Cp*{sub 2}Yb with phosphines, R{sub 3}PX complexes. A NMR study was done on the interactions of Cp*{sub 2}Yb with H{sub 2}, CH{sub 4}, Xe, CO, silanes, stannanes, C{sub 6}H{sub 6}, and toluene.

Schwartz, D.J.

1995-07-01

135

Characterization of covalent protein conjugates using solid-state sup 13 C NMR spectroscopy  

SciTech Connect

Cross-polarization magic-angle spinning (CPMAS) {sup 13}C NMR spectroscopy has been used to characterize covalent conjugates of alachlor, an {alpha}-chloroacetamide hapten, with glutathione (GSH) and bovine serum albumin (BSA). The solid-state NMR method demonstrates definitively the covalent nature of these conjugates and can also be used to characterize the sites of hapten attachment to proteins. Three different sites of alachlor binding are observed in the BSA system. Accurate quantitation of the amount of hapten covalently bound to GSH and BSA is reported. The solid-state {sup 13}C NMR technique can easily be generalized to study other small molecule/protein conjugates and can be used to assist the development and refinement of synthetic methods needed for the successful formation of such protein alkylation products.

Garbow, J.R.; Fujiwara, Hideji; Sharp, C.R.; Logusch, E.W. (Monsanto Co., St. Louis, MO (United States))

1991-07-23

136

Study by (23)Na-NMR, (1)H-NMR, and ultraviolet spectroscopy of the thermal stability of an 11-basepair oligonucleotide.  

PubMed Central

23Na-NMR, (1)H-NMR, and ultraviolet (UV) spectroscopy have been used to study the thermal stability of the double helix structure of an 11-basepair oligonucleotide. The denaturation curves obtained by (23)Na-NMR and UV are analyzed using a two-state model. The melting temperature and DeltaH(0) obtained are identical within experimental error, suggesting that modifications in the ionic atmosphere, probed by (23)Na-NMR, and the modifications in the basepair stacking, probed by UV, occur at the same temperature. Additional dynamical information on the denaturation process has been obtained by (1)H-NMR: slow exchange is observed between the thymine methyl resonances, and the disappearance of imino protons shows that a single basepair opening does not contribute significantly to proton exchange. PMID:10653819

Cahen, P; Luhmer, M; Fontaine, C; Morat, C; Reisse, J; Bartik, K

2000-01-01

137

In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.  

PubMed

Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified. PMID:24041242

Blanc, Frédéric; Leskes, Michal; Grey, Clare P

2013-09-17

138

Determination of 15N chemical shift anisotropy from a membrane bound protein by NMR spectroscopy  

PubMed Central

Chemical shift anisotropy (CSA) tensors are essential in the structural and dynamic studies of proteins using NMR spectroscopy. Results from relaxation studies in biomolecular solution and solid-state NMR experiments on aligned samples are routinely interpreted using well-characterized CSA tensors determined from model compounds. Since CSA tensors, particularly the 15N CSA, highly depend on a number of parameters including secondary structure, electrostatic interaction and the amino acid sequence, there is a need for accurately determined CSA tensors from proteins. In this study we report the backbone amide-15N CSA tensors for a 16.7-kDa membrane-bound and paramagnetic-heme containing protein, rabbit cytochrome b5 (cytb5), determined using the 15N CSA/15N-1H dipolar transverse cross-correlation rates. The mean values of 15N CSA determined for residues in helical, sheet and turn regions are ?187.9, ?166.0, and ?161.1 ppm, respectively, with an overall average value of ?171.7 ppm. While the average CSA value determined from this study is in good agreement with previous solution NMR experiments on small globular proteins, the CSA value determined for residues in helical conformation is slightly larger which may be attributed to the paramagnetic effect from Fe(III) of the heme unit in cytb5. However, like in previous solution NMR studies, the CSA values reported in this study are larger than the values measured from solid-state NMR experiments. We believe that the CSA parameters reported in this study will be useful in determining the structure, dynamics and orientation of proteins, including membrane proteins, using NMR spectroscopy. PMID:22620865

Pandey, Manoj Kumar; Vivekanandan, Subramanian; Ahuja, Shivani; Pichumani, Kumar; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

2012-01-01

139

Broadband "Infinite-Speed" Magic-Angle Spinning NMR Spectroscopy  

SciTech Connect

High-resolution magic-angle spinning NMR of high-Z spin- 1/2 nuclei such as {sup 125}Te, {sup 207}Pb, {sup 119}Sn, {sup 113}Cd, and {sup 195}Pt is often hampered by large (>1000 ppm) chemical-shift anisotropies, which result in strong spinning sidebands that can obscure the centerbands of interest. In various tellurides with applications as thermoelectrics and as phase-change materials for data storage, even 22-kHz magic-angle spinning cannot resolve the center- and sidebands broadened by chemical-shift dispersion, which precludes peak identification or quantification. For sideband suppression over the necessary wide spectral range (up to 200 kHz), radio frequency pulse sequences with few, short pulses are required. We have identified Gan's two-dimensional magic-angle-turning (MAT) experiment with five 90{sup o} pulses as a promising broadband technique for obtaining spectra without sidebands. We have adapted it to broad spectra and fast magic-angle spinning by accounting for long pulses (comparable to the dwell time in t{sub 1}) and short rotation periods. Spectral distortions are small and residual sidebands negligible even for spectra with signals covering a range of 1.5 {gamma}B{sub 1}, due to a favorable disposition of the narrow ranges containing the signals of interest in the spectral plane. The method is demonstrated on various technologically interesting tellurides with spectra spanning up to 170 kHz, at 22 kHz MAS.

Hu, Yan-Yan; Levin, E.M; Schmidt-Rohr, Klaus

2009-06-02

140

Hadamard-encoded high-resolution NMR spectroscopy via intermolecular single-quantum coherences  

NASA Astrophysics Data System (ADS)

NMR spectroscopy plays an important role in metabolite studies because it can provide atomic level information critical for understanding biological systems. Nevertheless, NMR investigations on biological tissues are hampered by the magnetic field inhomogeneities originating from variations in macroscopic magnetic susceptibility, which lead to broad spectral lines and subsequently obscure metabolite signals. A new pulse sequence based on intermolecular single-quantum coherences was proposed to obtain one-dimensional high-resolution NMR spectra in inhomogeneous magnetic fields via Hadamard encoding. The new method can provide resolution-improved spectra directly through one-dimensional acquisition within a relatively short acquisition time. Theoretical derivation was performed and the conclusion was tested by solution samples in purposely de-shimmed magnetic fields and pig brain tissue sample. The experimental results show that this sequence can yield useful structural information, even when the field inhomogeneity is sufficiently severe to erase almost all spectral information with conventional one-dimensional single-quantum coherence techniques. Moreover, good solvent suppression efficiency can be achieved by this sequence. This sequence may provide a promising way for high-resolution NMR spectroscopy of biological tissue.

Ke, Hanping; Cai, Honghao; Cai, Shuhui; Chen, Hao; Lin, Yanqin; Chen, Zhong

2014-11-01

141

Recent developments in solid-state NMR spectroscopy of crystalline microporous materials.  

PubMed

Microporous materials, having pores and channels on the same size scale as small to medium molecules, have found many important applications in current technologies, including catalysis, gas separation and drug storage and delivery. Many of their properties and functions are related to their detailed local structure, such as the type and distribution of active sites within the pores, and the specific structures of these active sites. Solid-state NMR spectroscopy has a strong track record of providing the requisite detailed atomic-level insight into the structures of microporous materials, in addition to being able to probe dynamic processes occurring on timescales spanning many orders of magnitude (i.e., from s to ps). In this Perspective, we provide a brief review of some of the basic experimental approaches used in solid-state NMR spectroscopy of microporous materials, and then discuss some more recent advances in this field, particularly those applied to the study of crystalline materials such as zeolites and metal-organic frameworks. These advances include improved software for aiding spectral interpretation, the development of the NMR-crystallography approach to structure determination, new routes for the synthesis of isotopically-labelled materials, methods for the characterisation of host-guest interactions, and methodologies suitable for observing NMR spectra of paramagnetic microporous materials. Finally, we discuss possible future directions, which we believe will have the greatest impact on the field over the coming years. PMID:24675798

Ashbrook, Sharon E; Dawson, Daniel M; Seymour, Valerie R

2014-05-14

142

MAGNETIC RESONANCE IN CHEMlSTRY, VOL. 31, 2-6 (1993) NMR Spectroscopy of Paramagnetic Complexes  

E-print Network

splitting of Cp deuterons of 1and 5 which could not be observed earlier in the 'H NMR spectra. The originMAGNETIC RESONANCE IN CHEMlSTRY, VOL. 31, 2-6 (1993) NMR Spectroscopy of Paramagnetic Complexes, Germany The methylated metallocenes (MeCp),M with M = V, Cr, Mn, Co, Ni (1-5) were investigated by 'H

Bluemel, Janet

143

INVESTIGATION INTO HOW WOOD CELL WALLS INTERACT WITH SYNTHETIC ADHESIVES USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY  

Technology Transfer Automated Retrieval System (TEKTRAN)

With the continued growth of the wood adhesive industry and the need to create durable and environmentally friendly adhesive systems, it is still unclear whether covalent bonds contribute to wood adhesive bond strength. In order to investigate this question, solid-state NMR spectroscopy (NMR) has be...

144

In vivo and in vitro 31P-NMR spectroscopy of rat liver treated with halocarbons.  

PubMed

Both in vivo and in vitro 31P-NMR spectroscopy were used to demonstrate metabolic changes in rat liver as a function of time after exposure to either carbon tetrachloride (CCl4) or bromotrichloromethane (BrCCl3). The inorganic phosphate resonance, measured in vivo, moves upfield, which is associated with a decrease in cytosolic pH over a 12 or 20 h period (for BrCCl3 or CCl4, respectively). Intoxication by CCl4 or BrCCl3 causes an intracellular acidosis to pH 7.05 or 6.82 (+/- 0.05), respectively. Also, it has been found that halocarbon exposure increases the amounts of phosphomonoesters (PME) detected. High resolution in vitro 31P-NMR spectroscopy studies of perchloric acid extracts of CCl4-treated rat livers indicated a significant increase in the height of the phosphocholine resonance in the PME region 4-5 h after CCl4 exposure. PMID:2804127

Towner, R A; Brauer, M; Janzen, E G; Ling, M F

1989-10-13

145

Structural characterization of selenosubtilisin by sup 77 Se-NMR spectroscopy  

SciTech Connect

Selenosubtilisin is an artificial enzyme containing an active site selenocysteine residue. In this environment the selenium atom is a valuable probe of structure-function relationships and also confers novel redox and hydrolytic properties to the original protease template. The authors have used {sup 77}Se NMR spectroscopy to characterize different oxidation states of {sup 77}Se isotopically enriched selenosubtilisin. The oxidized form of the enzyme exhibits a {sup 77}Se resonance at 1,189 ppm. This is in good agreement with the {sup 77}Se chemical shifts for model seleninic acids, confirming that the prosthetic group is in the seleninic acid oxidation state. On treatment of the oxidized enzyme with three equivalents of 3-carboxy-4-nitrobenzenethiol at pH 5.0, they observe the enzyme bound selenenyl sulfide at 388.5 ppm. This work demonstrates the utility of {sup 77}Se NMR spectroscopy for examining structure-function relationships of selenium containing proteins.

House, K.L.; Dunlap, R.B.; Odom, J.D.; Wu, Z.P.; Hilvert. D. (Univ. of South Carolina, Columbia (United States) Research Inst. of Scripps Clinic, La Jolla, CA (United States))

1991-03-15

146

[superscript 2]H-DNP-enhanced [superscript 2]H-[superscript 13]C solid-state NMR correlation spectroscopy  

E-print Network

Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution [superscript 2]H–[superscript 13]C correlation spectra and the method is therefore of great interest ...

Maly, Thorsten

147

Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy  

PubMed Central

A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium–oxygen battery. PMID:24489976

2013-01-01

148

Structural Studies of Biomaterials Using Double-Quantum Solid-State NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

Proteins directly control the nucleation and growth of biominerals, but the details of molecular recognition at the protein-biomineral interface remain poorly understood. The elucidation of recognition mechanisms at this interface may provide design principles for advanced materials development in medical and ceramic composites technologies. Here, we describe both the theory and practice of double-quantum solid-state NMR (ssNMR) structure-determination techniques, as they are used to determine the secondary structures of surface-adsorbed peptides and proteins. In particular, we have used ssNMR dipolar techniques to provide the first high-resolution structural and dynamic characterization of a hydrated biomineralization protein, salivary statherin, adsorbed to its biologically relevant hydroxyapatite (HAP) surface. Here, we also review NMR data on peptides designed to adsorb from aqueous solutions onto highly porous hydrophobic surfaces with specific helical secondary structures. The adsorption or covalent attachment of biological macromolecules onto polymer materials to improve their biocompatibility has been pursued using a variety of approaches, but key to understanding their efficacy is the verification of the structure and dynamics of the immobilized biomolecules using double-quantum ssNMR spectroscopy.

Drobny, G. P.; Long, J. R.; Karlsson, T.; Shaw, W.; Popham, J.; Oyler, N.; Bower, P.; Stringer, J.; Gregory, D.; Mehta, M.; Stayton, P. S.

2003-10-01

149

Analysis and aging of unsaturated polyester resins in contemporary art installations by NMR spectroscopy.  

PubMed

Two original art installations constructed from unsaturated polyester resins (UPR) and four different reference UPR products (before and after UVB aging) were analyzed by high-resolution 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. Breaking strain studies were also conducted for the four UPR model products before and after different aging procedures (moisture, UVB exposure, melt/freeze). NMR analysis of the chemical composition of the UPR resin extracts showed they contain several low MW organic compounds and oligomers rich in polar -OH groups that play a significant role in the degradation behavior of the composite UPR materials. Statistical analysis of the NMR compositional data showed that styrene and benzaldehyde contents can be used to differentiate between fresh and aged UPR samples. The phthalate and propylene glycol unit speciation (esterified, primary or secondary -OH) of the extracts provided evidence that UPR resin C was used in the construction of the two art installations, and direct comparison of (1)H and (13)C NMR spectra verified this compositional similarity. UPR resin C was shown by both NMR and breaking strain studies to be the reference UPR most susceptible to degradation by different aging procedures, a characteristic attributed to the lower styrene content of resin C. PMID:20922516

Stamatakis, Georgios; Knuutinen, Ulla; Laitinen, Kai; Spyros, Apostolos

2010-12-01

150

In-Vivo NMR Spectroscopy of the Brain at High Fields  

Microsoft Academic Search

Increased magnetic fields in principle provide increased sensitivity and specificity. In vivo, however, the increase in magnetic\\u000a field alone does not automatically result in obvious improvements. Among the factors that are set to impede the improvements\\u000a in sensitivity for in-vivo NMR spectroscopy are the increased challenges in eliminating the macroscopic inhomogeneities caused\\u000a by mainly the air- tissue interface and increased

Rolf Gruetter; Pierre-Gilles Henry; Hongxia Lei; Silvia Mangia; Gülin Öz; Melissa Terpstra; Ivan Tkac

151

High Temperature Superconducting Radio Frequency Coils for NMR Spectroscopy and Magnetic Resonance Imaging  

Microsoft Academic Search

High-temperature superconductivity has a significant opportunity to improve\\u000athe performance of nuclear magnetic resonance (NMR) spectroscopy and magnetic\\u000aresonance imaging (MRI) systems. The low rf losses and low operating\\u000atemperatures of superconducting coils allow them to improve the signal-to-noise\\u000aratio in applications where the system noise dominates that of the sample under\\u000astudy. These improvements translate into new capabilities and

Steven M. Anlage

2000-01-01

152

NMR-spectroscopy study of compounds in sodium-aluminum phosphate glass-forming systems  

Microsoft Academic Search

The objective of this investigation was to explore a number of model systems used in the radioactive waste vitrification process. Using the method of NMR spectroscopy, the systems investigated consisted of water solutions of orthophosphoric acid, sodium\\/aluminium nitrates, as well as products of solid-state synthesis which form in the NaâO-AlâOâ-PâOâ system. The data indicated that the difference between the liquid

A. A. Vashman; I. S. Pronin; A. S. Polyakov

1994-01-01

153

Conformational studies of a novel cationic glycolipid, glyceroplasmalopsychosine, from bovine brain by NMR spectroscopy  

Microsoft Academic Search

A novel glycosphingolipid containing a long chain aldehyde conjugated to galactose and glycerol, Gro1(3)-O-CH((CH2)nCH3)-O-6Gal?-sphingosine (glyceroplasmalopsychosine) has been studied by NMR spectroscopy (Hikita et al. J. Biol. Chem.2001, 276, 23084–23091). We further report here on the conformation showing the galactose and the glycerol at the end of two parallel hydrophobic chains, i.e. the sphingosine and the fatty aldehyde. This is proposed

Naoko Iida-Tanaka; Toshiyuki Hikita; Sen-itiroh Hakomori; Ineo Ishizuka

2002-01-01

154

Measuring 13 C ? chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy  

Microsoft Academic Search

A labeling scheme is introduced that facilitates the measurement of accurate 13C? chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use\\u000a of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels\\u000a of 13C

Patrik Lundström; Hong Lin; Lewis E. Kay

2009-01-01

155

Solid state 13C-NMR spectroscopy and XRD studies of commercial and pyrolytic carbon blacks  

Microsoft Academic Search

The bulk chemistry of commercial carbon blacks and carbon blacks obtained by vacuum pyrolysis (CBP) of used tires was investigated by 13C-NMR spectroscopy with and without magic angle spinning of the sample. Two different kinds of carbon atoms can be distinguished: Graphite like carbon atoms in poly-condensed aromatic rings and carbon atoms in a less ordered environment. Commercial carbon blacks

Hans Darmstadt; Christian Roy; Serge Kaliaguine; Guoying Xu; Michèle Auger; Alain Tuel; Veda Ramaswamy

2000-01-01

156

Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study  

Microsoft Academic Search

Summary   Recent muscle biopsy studies have shown a relation between intramuscular lipid content and insulin resistance. The aim of\\u000a this study was to test this relation in humans by using a novel proton nuclear magnetic resonance (1H NMR) spectroscopy technique, which enables non-invasive and rapid ( ? 45 min) determination of intramyocellular lipid (IMCL)\\u000a content. Normal weight non-diabetic adults (n

M. Krssak; K. Falk Petersen; A. Dresner; L. DiPietro; S. M. Vogel; D. L. Rothman; G. I. Shulman; M. Roden

1999-01-01

157

Elucidation of cross relaxation in liquids by two-dimensional N.M.R. spectroscopy  

Microsoft Academic Search

Two-dimensional N.M.R. spectroscopy is applied to the elucidation of cross relaxation pathways in liquids. The theory underlying two dimensional studies of cross relaxation and of transient nuclear Overhauser effects is developed. The influence of the correlation time of the molecular random process is investigated. It is found that in the limit of short correlation times (extreme narrowing limit) weak negative

S. Macura; R. R. Ernst

1980-01-01

158

Determination of degree of deacetylation of chitosan by 1 H NMR spectroscopy  

Microsoft Academic Search

This paper describes a novel method to determine the degree of deacetylation of chitosan by 1H NMR spectroscopy. Measurements were carried out at 70°C by using 2 wt% CD3COOD\\/D2O and 2 wt% DC1\\/D2O as solvents for chitosan. In the case of DC1\\/D2O system, effect on hydrolysis of chitosan should be taken into consideration, and the pulse repetition delay required for

Asako Hirai; Hisashi Odani; Akio Nakajima

1991-01-01

159

TSNo s02-hunger124547-O On the Use of 31-P NMR Spectroscopy to Determine Chemical Forms of Phosphorus in Soils.  

E-print Network

sorbed under different reaction conditions are examined using CP-MAS 31P-NMR as a molecular spectroscopicTSNo s02-hunger124547-O Title On the Use of 31-P NMR Spectroscopy to Determine Chemical Forms 31P-NMR SPECTROSCOPY ASA-CSSA-SSSA Annual Meetings - October 21 - 25, 2001 - Charlotte, NC #12;

Sparks, Donald L.

160

High resolution magic angle spinning (HR-MAS) NMR spectroscopy of human osteoarthritic cartilage  

PubMed Central

Osteoarthritis (OA) is a degenerative disease of the joint and results in changes in the biochemical composition of cartilage. Studies have been undertaken in the past that have used high resolution NMR spectroscopy to study the biochemical composition of porcine, canine and bovine cartilage. In this study high resolution magical angle spinning (HRMAS) NMR spectroscopy at 11.7 T has been used to characterize metabolites and detect differences in the spectral signature of human knee articular cartilage from non-OA healthy cadaver knees and samples acquired from severe OA patients at the time of total knee replacement surgery. A statistically significant difference in the alanine (1.47 ppm), N-acetyl (2.04 ppm), choline (3.25 ppm) and glycine (3.55 ppm) metabolite levels is observed between healthy and OA specimens. The results of the study indicate that a decrease in the intensity of N-acetyl resonance occurs in later stages of OA. A positive correlation of the N-acetyl levels as measured by 1H HR-MAS NMR spectroscopy with the total proteoglycan content in the same cartilage specimens as measured by the GAG assay was observed. This indicates that N-acetyl can serve as an important bio-marker of OA disease progression. A decrease in the alanine concentration in OA may be attributed to the degradation of the collagen framework with disease progression and eventual loss of the degradation products that are transported from cartilage into the synovial cavity. PMID:21850648

Shet, Keerthi; Siddiqui, Sarmad M.; Yoshihara, Hikari; Kurhanewicz, John; Ries, Michael; Li, Xiaojuan

2011-01-01

161

Application of /sup 1/H and /sup 13/C NMR spectroscopy in structural investigations of Vinca indole alkaloids  

SciTech Connect

This paper considers the laws connecting the parameters of the H 1 and C 13 NMR spectra with the structure of the substances and the use of these laws for solving structural and stereochemical problems of the Vinca indole alkaloids and other compounds of closely related structure. For each type of alkaloid, characteristic features of the PMR and C 13 NMR spectra are given that permit the structures of similar bases to be established and their stereochemical identification to be performed.

Yagudaev, M.R.

1986-07-01

162

Symmetry-based recoupling in double-rotation NMR spectroscopy  

NASA Astrophysics Data System (ADS)

In this contribution, we extend the theory of symmetry-based pulse sequences of types CNn? and RNn? in magic-angle-spinning nuclear resonance spectroscopy [M. H. Levitt, in Encyclopedia of Nuclear Magnetic Resonance, edited by D. M. Grant and R. K. Harris (Wiley, Chichester, 2002), Vol. 9]. to the case of rotating the sample simultaneously around two different angles with respect to the external magnetic field (double-rotation). We consider the case of spin-1/2 nuclei in general and the case of half-integer quadrupolar nuclei that are subjected to weak radio frequency pulses operating selectively on the central-transition polarizations. The transformation properties of the homonuclear dipolar interactions and J-couplings under central-transition-selective spin rotations are presented. We show that the pulse sequence R221R22-1 originally developed for homonuclear dipolar recoupling of half-integer quadrupolar nuclei under magic-angle-spinning conditions [M. Edén, D. Zhou, and J. Yu, Chem. Phys. Lett. 431, 397 (2006)] may be used for the same purpose in the case of double rotation, if the radio frequency pulses are synchronized with the outer rotation of the sample. We apply this sequence, sandwiched by central-transition selective 90° pulses, to excite double-quantum coherences in homonuclear spin systems consisting of N23a and A27l nuclei.

Brinkmann, Andreas; Kentgens, Arno P. M.; Anupõld, Tiit; Samoson, Ago

2008-11-01

163

Interaction of epicatechin gallate with phospholipid membranes as revealed by solid-state NMR spectroscopy.  

PubMed

Epicatechin gallate (ECg), a green tea polyphenol, has various physiological effects. Our previous nuclear Overhauser effect spectroscopy (NOESY) study using solution NMR spectroscopy demonstrated that ECg strongly interacts with the surface of phospholipid bilayers. However, the dynamic behavior of ECg in the phospholipid bilayers has not been clarified, especially the dynamics and molecular arrangement of the galloyl moiety, which supposedly has an important interactive role. In this study, we synthesized [13C]-ECg, in which the carbonyl carbon of the galloyl moiety was labeled by 13C isotope, and analyzed it by solid-state NMR spectroscopy. Solid-state 31P NMR analysis indicated that ECg changes the gel-to-liquid-crystalline phase transition temperature of DMPC bilayers as well as the dynamics and mobility of the phospholipids. In the solid-state 13C NMR analysis under static conditions, the carbonyl carbon signal of the [13C]-ECg exhibited an axially symmetric powder pattern. This indicates that the ECg molecules rotate about an axis tilting at a constant angle to the bilayer normal. The accurate intermolecular-interatomic distance between the labeled carbonyl carbon of [13C]-ECg and the phosphorus of the phospholipid was determined to be 5.3±0.1 Å by 13C-(31)P rotational echo double resonance (REDOR) measurements. These results suggest that the galloyl moiety contributes to increasing the hydrophobicity of catechin molecules, and consequently to high affinity of galloyl-type catechins for phospholipid membranes, as well as to stabilization of catechin molecules in the phospholipid membranes by cation-? interaction between the galloyl ring and quaternary amine of the phospholipid head-group. PMID:21352801

Uekusa, Yoshinori; Kamihira-Ishijima, Miya; Sugimoto, Osamu; Ishii, Takeshi; Kumazawa, Shigenori; Nakamura, Kozo; Tanji, Ken-ichi; Naito, Akira; Nakayama, Tsutomu

2011-06-01

164

Sensitivity of 2H NMR spectroscopy to motional models: proteins and highly viscous liquids as examples.  

PubMed

In order to study to what extent mechanisms of molecular motion can be unambiguously revealed by (2)H NMR spectroscopy, (2)H spectra for proteins (chicken villin protein headpiece HP36, selectively methyl-deuterated at leucine-69, C(?) D(3)) and binary systems of high viscosity (benzene-d(6) in tricresyl phosphate) have been carefully analyzed as illustrative examples (the spectra are taken from the literature). In the first case, a model of restricted diffusion mediated by jumps between rotameric orientations has been tested against jump- and free diffusion models which describe rotational motion combined with jump dynamics. It has been found that the set of (2)H spectra of methyl-deuterated at leucine-69 chicken villin protein headpiece HP36 can be consistently explained by different motional models as well as by a gaussian distribution of correlation times assuming isotropic rotation (simple brownian diffusion model). The last finding shows that when the possible distribution of correlation times is not very broad one might not be able to distinguish between heterogeneous and homogenous (but more complex) dynamics by analyzing (2)H lineshapes. For benzene-d(6) in tricresyl phosphate, the dynamics is heterogeneous and it has been demonstrated that a gaussian distribution of correlation times reproduces well the experimental lineshapes, while for a Cole-Davidson distribution the agreement is somewhat worse. For inquires into the sensitivity of quadrupolar NMR spectral analysis (by "quadrupolar NMR spectroscopy we understand NMR spectroscopy of nuclei possessing quadrupole moment), the recently presented theoretical approach [Kruk et al., J. Chem. Phys. 135, 224511 (2011)] has been used as it allows simulating quadrupolar spectra for arbitrary motional conditions by employing the stochastic Liouville equation. PMID:22755589

Kruk, D; Mielczarek, A; Korpala, A; Kozlowski, A; Earle, K A; Moscicki, J

2012-06-28

165

Sensitivity of 2H NMR spectroscopy to motional models: Proteins and highly viscous liquids as examples  

NASA Astrophysics Data System (ADS)

In order to study to what extent mechanisms of molecular motion can be unambiguously revealed by 2H NMR spectroscopy, 2H spectra for proteins (chicken villin protein headpiece HP36, selectively methyl-deuterated at leucine-69, C? D3) and binary systems of high viscosity (benzene-d6 in tricresyl phosphate) have been carefully analyzed as illustrative examples (the spectra are taken from the literature). In the first case, a model of restricted diffusion mediated by jumps between rotameric orientations has been tested against jump- and free diffusion models which describe rotational motion combined with jump dynamics. It has been found that the set of 2H spectra of methyl-deuterated at leucine-69 chicken villin protein headpiece HP36 can be consistently explained by different motional models as well as by a Gaussian distribution of correlation times assuming isotropic rotation (simple Brownian diffusion model). The last finding shows that when the possible distribution of correlation times is not very broad one might not be able to distinguish between heterogeneous and homogenous (but more complex) dynamics by analyzing 2H lineshapes. For benzene-d6 in tricresyl phosphate, the dynamics is heterogeneous and it has been demonstrated that a Gaussian distribution of correlation times reproduces well the experimental lineshapes, while for a Cole-Davidson distribution the agreement is somewhat worse. For inquires into the sensitivity of quadrupolar NMR spectral analysis (by "quadrupolar NMR spectroscopy we understand NMR spectroscopy of nuclei possessing quadrupole moment), the recently presented theoretical approach [Kruk et al., J. Chem. Phys. 135, 224511 (2011)], 10.1063/1.3664783 has been used as it allows simulating quadrupolar spectra for arbitrary motional conditions by employing the stochastic Liouville equation.

Kruk, D.; Mielczarek, A.; Korpala, A.; Kozlowski, A.; Earle, K. A.; Moscicki, J.

2012-06-01

166

Lithium ion diffusion in Li ?-alumina single crystals measured by pulsed field gradient NMR spectroscopy  

NASA Astrophysics Data System (ADS)

The lithium ion diffusion coefficient of a 93% Li ?-alumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 × 10-11 m2/s in the direction perpendicular to the c axis at room temperature. The Li ion diffusion coefficient along the c axis direction was found to be very small (6.4 × 10-13 m2/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the ?-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297-333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li ?-alumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li ?-alumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li ?-alumina system.

Chowdhury, Mohammed Tareque; Takekawa, Reiji; Iwai, Yoshiki; Kuwata, Naoaki; Kawamura, Junichi

2014-03-01

167

Lithium ion diffusion in Li ?-alumina single crystals measured by pulsed field gradient NMR spectroscopy  

SciTech Connect

The lithium ion diffusion coefficient of a 93% Li ?-alumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 × 10{sup ?11} m{sup 2}/s in the direction perpendicular to the c axis at room temperature. The Li ion diffusion coefficient along the c axis direction was found to be very small (6.4 × 10{sup ?13} m{sup 2}/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the ?-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297–333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li ?-alumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li ?-alumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li ?–alumina system.

Chowdhury, Mohammed Tareque, E-mail: mtareque@mail.tagen.tohoku.ac.jp; Takekawa, Reiji; Iwai, Yoshiki; Kuwata, Naoaki; Kawamura, Junichi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai 980-8577 (Japan)] [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku Sendai 980-8577 (Japan)

2014-03-28

168

Temperature-resistant bicelles for structural studies by solid-state NMR spectroscopy.  

PubMed

Three-dimensional structure determination of membrane proteins is important to fully understand their biological functions. However, obtaining a high-resolution structure has been a major challenge mainly due to the difficulties in retaining the native folding and function of membrane proteins outside of the cellular membrane environment. These challenges are acute if the protein contains a large soluble domain, as it needs bulk water unlike the transmembrane domains of an integral membrane protein. For structural studies on such proteins either by nuclear magnetic resonance (NMR) spectroscopy or X-ray crystallography, bicelles have been demonstrated to be superior to conventional micelles, yet their temperature restrictions attributed to their thermal instabilities are a major disadvantage. Here, we report an approach to overcome this drawback through searching for an optimum combination of bicellar compositions. We demonstrate that bicelles composed of 1,2-didecanoyl-sn-glycero-3-phosphocholine (DDPC) and 1,2-diheptanoyl-sn-glycero-3-phosphocholin (DHepPC), without utilizing additional stabilizing chemicals, are quite stable and are resistant to temperature variations. These temperature-resistant bicelles have a robust bicellar phase and magnetic alignment over a broad range of temperatures, between -15 and 80 °C, retain the native structure of a membrane protein, and increase the sensitivity of solid-state NMR experiments performed at low temperatures. Advantages of two-dimensional separated-local field (SLF) solid-state NMR experiments at a low temperature are demonstrated on magnetically aligned bicelles containing an electron carrier membrane protein, cytochrome b5. Morphological information on different DDPC-based bicellar compositions, varying q ratio/size, and hydration levels obtained from (31)P NMR experiments in this study is also beneficial for a variety of biophysical and spectroscopic techniques, including solution NMR and magic-angle-spinning (MAS) NMR for a wide range of temperatures. PMID:25565453

Yamamoto, Kazutoshi; Pearcy, Paige; Lee, Dong-Kuk; Yu, Changsu; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

2015-02-01

169

Distinguishing Phosphate Structural Defects From Inclusions in Calcite and Aragonite by NMR Spectroscopy (Invited)  

NASA Astrophysics Data System (ADS)

Variations in the concentration of minor and trace elements are being studied extensively for potential use as proxies to infer environmental conditions at the time of mineral deposition. Such proxies rely fundamentally on a relationship between the activities in the solution and in the solid that would seem to be simple only in the case that the species substitutes into the mineral structure. Other incorporation mechanisms are possible, including inclusions (both mineral and fluid) and occlusion of surface adsorbate complexes, that might be sensitive to other factors, such as crystallization kinetics, and difficult to distinguish analytically. For example, it is known from mineral adsorption studies that surface precipitates can be nanoscopic, and might not be apparent at resolutions typical of microchemical analysis. Techniques by which a structural relationship between the substituting element and the host mineral structure are needed to provide a sound basis for geochemical proxies. NMR spectroscopy offers methods for probing such spatial relationship. We are using solid-state NMR spectroscopy to investigate phosphate incorporation in calcium carbonate minerals, including calcite speleothems and coral skeletal aragonite, at concentrations of the order 100 ?g P g -1. In 31P NMR spectra of most samples, narrow peaks arising from crystalline inclusions can be resolved, including apatite in coral aragonite and an unidentified phase in calcite. All samples studied yield also a broad 31P signal, centered near chemical shifts of +3 to +4 ppm, that could be assigned to phosphate defects in the host mineral and from which the fraction of P occurring in the carbonate mineral structure can be determined. To test this assignment we applied rotational-echo double-resonance (REDOR) NMR techniques that probe the molecular-scale proximity of carbonate groups to the phosphate responsible for the broad 31P peak. This method measures dipole-dipole coupling between 31P of phosphate and carbonate carbon, which varies with the inverse-cube of the internuclear distance. 31P{13C} REDOR NMR results for synthetic phosphate/(13C)-aragonite coprecipitates show that the broad peak is closely associated with carbonate, exhibiting a 31P-13C dipolar coupling qualitatively consistent with phosphate occupying an anion structural site (i.e., 6 C at 0.32 nm). 31P-detected 1H NMR spectra, which contain signal only from H located near P, show that structural water molecules help accommodate phosphate in the structure. Similar methods can be applied to other elements of potential paleo-proxy interest having NMR-active isotopes, including B, Mg, and Cd.

Phillips, B. L.; Mason, H. E.

2010-12-01

170

Quantitative identification of metastable magnesium carbonate minerals by solid-state (13)c NMR spectroscopy.  

PubMed

In the conversion of CO2 to mineral carbonates for the permanent geosequestration of CO2, there are multiple magnesium carbonate phases that are potential reaction products. Solid-state (13)C NMR is demonstrated as an effective tool for distinguishing magnesium carbonate phases and quantitatively characterizing magnesium carbonate mixtures. Several of these mineral phases include magnesite, hydromagnesite, dypingite, and nesquehonite, which differ in composition by the number of waters of hydration or the number of crystallographic hydroxyl groups. These carbonates often form in mixtures with nearly overlapping (13)C NMR resonances which makes their identification and analysis difficult. In this study, these phases have been investigated with solid-state (13)C NMR spectroscopy, including both static and magic-angle spinning (MAS) experiments. Static spectra yield chemical shift anisotropy (CSA) lineshapes that are indicative of the site-symmetry variations of the carbon environments. MAS spectra yield isotropic chemical shifts for each crystallographically inequivalent carbon and spin-lattice relaxation times, T1, yield characteristic information that assist in species discrimination. These detailed parameters, and the combination of static and MAS analyses, can aid investigations of mixed carbonates by (13)C NMR. PMID:25437754

Moore, Jeremy K; Surface, J Andrew; Brenner, Allison; Skemer, Philip; Conradi, Mark S; Hayes, Sophia E

2015-01-01

171

Mapping Inhibitor Binding Modes on an Active Cysteine Protease via NMR Spectroscopy  

PubMed Central

Cruzain is a member of the papain/cathepsin-L family of cysteine proteases, and the major cysteine protease of the protozoan Trypanosoma cruzi, the causative agent of Chagas’ disease. We report an auto-induction methodology that provides soluble-cruzain at high yields (> 30 mg per liter in minimal media). These increased yields provide sufficient quantities of active enzyme for use in NMR-based ligand mapping. Using CD and NMR spectroscopy, we also examined the solution-state structural dynamics of the enzyme in complex with a covalently bound vinyl sulfone inhibitor (K777). We report the backbone amide and side chain carbon chemical shift assignments of cruzain in complex with K777. These resonance assignments were used to identify and map residues located in the substrate binding pocket, including the catalytic Cys25 and His162. Selective 15N-Cys, 15N-His, and 13C-Met labeling was performed to quickly assess cruzain-ligand interactions for a set of eight low molecular weight compounds exhibiting micromolar binding or inhibition. Chemical shift perturbation mapping verifies that six of the eight compounds bind to cruzain at the active site. Three different binding modes were delineated for the compounds, namely covalent, non-covalent, and non-interacting. These results provide examples of how NMR spectroscopy can be used to screen compounds for fast evaluation of enzyme-inhibitor interactions in order to facilitate lead compound identification and subsequent structural studies. PMID:23181936

Lee, Gregory M.; Balouch, Eaman; Goetz, David H.; Lazic, Ana; McKerrow, James H.; Craik, Charles S.

2013-01-01

172

Qualitative and Quantitative Control of Carbonated Cola Beverages Using 1H NMR Spectroscopy  

PubMed Central

1H Nuclear magnetic resonance (NMR) spectroscopy (400 MHz) was used in the context of food surveillance to develop a reliable analytical tool to differentiate brands of cola beverages and to quantify selected constituents of the soft drinks. The preparation of the samples required only degassing and addition of 0.1% of TSP in D2O for locking and referencing followed by adjustment of pH to 4.5. The NMR spectra obtained can be considered as “fingerprints” and were analyzed by principal component analysis (PCA). Clusters from colas of the same brand were observed, and significant differences between premium and discount brands were found. The quantification of caffeine, acesulfame-K, aspartame, cyclamate, benzoate, hydroxymethylfurfural (HMF), sulfite ammonia caramel (E 150D), and vanillin was simultaneously possible using external calibration curves and applying TSP as internal standard. Limits of detection for caffeine, aspartame, acesulfame-K, and benzoate were 1.7, 3.5, 0.8, and 1.0 mg/L, respectively. Hence, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of soft drinks and quantification of selected constituents. PMID:22356160

2012-01-01

173

Study of amino acid coordination to chromium(III) by deuterium NMR spectroscopy  

SciTech Connect

Interest in monodentate amino acid coordination to chromium(III) results in the synthesis and characterization of the Cr(III)-nicotinic acid complexes and the /sup +/-carboxylato-..mu..-hydroxo Cr(III) complexes. A relatively stable Cr(III) complex containing carboxyl-bound nicotinic acid, trans-(Cr(1,3-pn)/sub 2/(nic-O)/sub 2/) Cl (where 1,3-pn = 1,3-propanediamine, and nic-O = nicotinate with a deuterium label on the 2-carbon), was synthesized and then characterized by deuterium NMR spectroscopy. An additional complex containing nicotinic acid, (Cr(en)/sub 2/(OH)(Hnic-O,O)Cr(en)/sub 2/)(ZnCl/sub 4/)/sub 2/Cl (where en = ethylenediamine, and Hnic-O,O = nicotinate with the carboxyl group bridging between the Cr(III) centers and the pyridyl nitrogen protonated), was also synthesized and characterized by /sup 2/H NMR. A series of bis(en)Cr(III)-amino acid complexes were characterized by /sup 2/H NMR spectroscopy. Bis(1,3-pn)Cr(III) and (3,2,3-tet)Cr(III) complexes (where 3,2,3-tet = 1,5,8,12-tetraazadodecane) containing alanine and glycine were also prepared. An additional complex, ..cap alpha..-cis-(Cr(edda)(gly)), was synthesized and its crystal structure determined.

Green, C.A.

1986-01-01

174

Introducing krypton NMR spectroscopy as a probe of void space in solids.  

PubMed

A wealth of information about porous materials and their void spaces has been obtained from the chemical shift data in (129)Xe NMR spectroscopy during the past decades. In this contribution, the only NMR active, stable krypton isotope (83)Kr (spin I = (9)/(2)) is explored as a novel probe for porous materials. It is demonstrated that (83)Kr NMR spectroscopy of nanoporous or microporous materials is feasible and straightforward despite the low gyromagnetic ratio and low abundance of the (83)Kr isotope. The (83)Kr line width in most of the studied cases is quadrupolar dominated and field-strength independent. A significant exception was found in calcium-exchanged zeolites where the field dependence of the line width indicates a distribution of isotropic chemical shifts that may be caused by long-range disorder in the zeolite structure. The (83)Kr chemical shifts observed in the investigated materials display a somewhat different behavior than that of their (129)Xe counterparts and should provide a great resource for the verification or refinement of current (129)Xe chemical shift theory. In contrast to xenon, krypton with its smaller atomic radius has been demonstrated to easily penetrate the porous framework of NaA. Chemical shifts and line widths of (83)Kr are moderately dependent on small fluctuations in the krypton loading but differ strongly between some of the studied samples. PMID:15701030

Horton-Garcia, Charlene F; Pavlovskaya, Galina E; Meersmann, Thomas

2005-02-16

175

NMR Spectroscopy of Human Eye Tissues: A New Insight into Ocular Biochemistry  

PubMed Central

Background. The human eye is a complex organ whose anatomy and functions has been described very well to date. Unfortunately, the knowledge of the biochemistry and metabolic properties of eye tissues varies. Our objective was to reveal the biochemical differences between main tissue components of human eyes. Methods. Corneas, irises, ciliary bodies, lenses, and retinas were obtained from cadaver globes 0-1/2 hours postmortem of 6 male donors (age: 44–61 years). The metabolic profile of tissues was investigated with HR MAS 1H NMR spectroscopy. Results. A total of 29 metabolites were assigned in the NMR spectra of the eye tissues. Significant differences between tissues were revealed in contents of the most distant eye-tissues, while irises and ciliary bodies showed minimal biochemical differences. ATP, acetate, choline, glutamate, lactate, myoinositol, and taurine were identified as the primary biochemical compounds responsible for differentiation of the eye tissues. Conclusions. In this study we showed for the first time the results of the analysis of the main human eye tissues with NMR spectroscopy. The biochemical contents of the selected tissues seemed to correspond to their primary anatomical and functional attributes, the way of the delivery of the nutrients, and the location of the tissues in the eye. PMID:25525621

Kryczka, Tomasz; Wyl?ga?a, Edward; Dobrowolski, Dariusz; Midelfart, Anna

2014-01-01

176

?-NMR  

NASA Astrophysics Data System (ADS)

The ?-NMR facility at ISAC is constructed specifically for experiments in condensed matter physics with radioactive ion beams. Using co-linear optical pumping, a 8Li + ion beam having a large nuclear spin polarisation and low energy (nominally 30 keV) can be generated. When implanted into materials these ions penetrate to shallow depths comparable to length scales of interest in the physics of surfaces and interfaces between materials. Such low-energy ions can be decelerated with simple electrostatic optics to enable depth-resolved studies of near-surface phenomena over the range of about 2-200 nm. Since the ?-NMR signal is extracted from the asymmetry intrinsic to beta-decay and therefore monitors the polarisation of the radioactive probe nuclear magnetic moments, this technique is fundamentally a probe of local magnetism. More generally though, any phenomena which affects the polarisation of the implanted spins by, for example, a change in resonance frequency, line width or relaxation rate can be studied. The ?-NMR program at ISAC currently supports a number of experiments in magnetism and superconductivity as well as novel ultra-thin heterostructures exhibiting properties that cannot occur in bulk materials. The general purpose zero/low field and high field spectrometers are configured to perform CW and pulsed RF nuclear magnetic resonance and spin relaxation experiments over a range of temperatures (3-300 K) and magnetic fields (0-9 T).

Morris, Gerald D.

2014-01-01

177

An instrument control and data analysis program for NMR imaging and spectroscopy  

SciTech Connect

We describe a software environment created to support real-time instrument control and signal acquisition as well as array-processor based signal and image processing in up to five dimensions. The environment is configured for NMR imaging and in vivo spectroscopy. It is designed to provide flexible tools for implementing novel NMR experiments in the research laboratory. Data acquisition and processing operations are programmed in macros which are loaded in assembled from to minimize instruction overhead. Data arrays are dynamically allocated for efficient use of memory and can be mapped directly into disk files. The command set includes primitives for real-time control of data acquisition, scalar arithmetic, string manipulation, branching, a file system and vector operations carried out by an array processor. 6 figs.

Roos, M.S.; Mushlin, R.A.; Veklerov, E.; Port, J.D.; Ladd, C.; Harrison, C.G.

1988-01-01

178

N-15 NMR Spectroscopy as a Method for Comparing the Rates of Imidization of Several Diamines  

NASA Technical Reports Server (NTRS)

The relative rates of the conversion of amide-acid to imide was measured for a series or aromatic diamines that have been identified as potential replacements for 4,4'-methylene dianiline (MDA) in high-temperature polyimides and polymer composites. These rates were compared with the N-15 NMR resonances of the unreacted amines. The initial rates of imidization track with the difference in chemical shift between the amine nitrogens in MDA and those in the subject diamines. This comparison demonstrated that N-15 NMR spectroscopy is appropriate for the rapid screening of candidate diamines to determine their reactivity relative to MDA, and can serve to provide guidance to the process of creating the time-temperature profiles used in processing these materials into polymer matrix composites.

Johnson, J. Christopher; Kuczmarski, Maria A.

2006-01-01

179

A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.  

PubMed

Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation. PMID:18926746

Halse, Meghan E; Callaghan, Paul T

2008-12-01

180

Low Temperature 65Cu NMR Spectroscopy of the Cu+ Site in Azurin  

PubMed Central

65Cu central-transition NMR spectroscopy of the blue copper protein azurin in the reduced Cu(I) state, conducted at 18.8 Tesla and 10 K, gave a strongly second order quadrupole perturbed spectrum, which yielded a 65Cu quadrupole coupling constant of ±71.2 ± 1 MHz, corresponding to an electric field gradient of ±1.49 atomic units at the copper site, and an asymmetry parameter of approximately 0.2. Quantum chemical calculations employing second order Møller-Plesset perturbation theory and large basis sets successfully reproduced these experimental results. Sensitivity and relaxation times were quite favorable, suggesting that NMR may be a useful probe of the electronic state of copper sites in proteins. PMID:19746904

Lipton, Andrew S.; Heck, Robert W.; de Jong, Wibe A.; Gao, Amy R.; Wu, Xiongjian; Roehrich, Adrienne; Harbison, Gerard S.; Ellis, Paul D.

2009-01-01

181

Two-dimensional NMR spectroscopy of (13)C methanol at less than 5 ?T.  

PubMed

Two-dimensional (2D) spectroscopy is one of the most significant applications of nuclear magnetic resonance (NMR). Here, we demonstrate that the 2D NMR can be performed even at a low magnetic field of less than 5?T, which is ten times less than the Earth's magnetic field. The pulses used in the experiment were composed of circularly polarized fields for coherent as well as wideband excitations. Since the excitation band covers the entire spectral range, the simplest two-pulse sequence delivered the full 2D spectrum. At 5?T, methanol with (13)C enriched up to 99% belongs to a strongly coupled regime, and thus its 2D spectrum exhibits complicated spectral correlations, which can be exploited as a fingerprint in chemical analysis. In addition, we show that, with compressive sensing, the acquisition of the 2D spectrum can be accelerated to take only 45% of the overall duration. PMID:25063950

Shim, Jeong Hyun; Lee, Seong-Joo; Hwang, Seong-min; Yu, Kwon-Kyu; Kim, Kiwoong

2014-09-01

182

Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei.  

PubMed

Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei (i.e., those with a spin quantum number I > 1/2) has always been viewed as "difficult" owing to the presence of an anisotropic broadening arising from the interaction of the nuclear electric quadrupole moment with the electric field gradient. This quadrupolar interaction can be considerable, resulting in broadening of the spectral resonances often over many MHz. Furthermore, magic-angle spinning (MAS), a conventional approach for increasing the resolution in solid-state NMR, is often unable to remove the broadening completely and high-resolution spectra are generally not obtained. Despite the vast amount of information contained in the anisotropic linewidths and lineshapes, the resolution and sensitivity challenges have, until recently, somewhat limited the application of solid-state NMR for quadrupolar nuclei. In general, structural information, such as that obtained through recoupling techniques or from two-dimensional correlation spectroscopy, is much more difficult to extract easily and accurately. However, recent advances in magnet design, probe hardware and pulse sequence development have significantly improved the ease with which quadrupolar spins can be studied and high-resolution spectra can be obtained, and recent applications are beginning to exploit the wealth of information available. In this discussion, we highlight just a few of the recent developments in this area, including new state-of-the art correlation experiments, the expanding study of nuclei with low gyromagnetic ratio, gamma, the increasing application of first-principles calculations in the solid state, and methods which exploit the quadrupolar broadening to provide information on dynamics. Whilst not a complete review, it is hoped that this brief overview of some of the more exciting recent developments can provide insight into the challenges, and the rewards, involved in the NMR study of quadrupolar nuclei. PMID:19652823

Ashbrook, Sharon E

2009-08-28

183

Characterization of an organometallic xenon complex using NMR and IR spectroscopy  

PubMed Central

Photolysis of Re(iPrCp)(CO)2(PF3) in liquid or supercritical Xe yields two new compounds [Re(iPrCp)(CO)2Xe and Re(iPrCp)(CO)(PF3)Xe]. Re(iPrCp)(CO)(PF3)Xe has been characterized by NMR and IR spectroscopies. The compound is an organometallic Xe complex that has been characterized by using NMR spectroscopy and is shown to be longer-lived than other organometallic Xe complexes by IR spectroscopy. 19F, 31P, and 129Xe chemical shifts have been determined. The 129Xe chemical shift of Re(iPrCp)(CO)(PF3)Xe, ? –6,179, is a Xe shift that is significantly shielded, on the order of 1,000 ppm, with respect to free Xe. The coupling constants between coordinated 129Xe and both the 19F and 31P nuclei present have been extracted, confirming the identity of the compound. Observed line widths give a lower limit to the lifetime of the coordinated Xe of 27 ms at 163 K. PMID:15677722

Ball, Graham E.; Darwish, Tamim A.; Geftakis, Spili; George, Michael W.; Lawes, Douglas J.; Portius, Peter; Rourke, Jonathan P.

2005-01-01

184

Moving NMR  

NASA Astrophysics Data System (ADS)

Initiated by the use of NMR for well logging, portable NMR instruments are being developed for a variety of novel applications in materials testing and process analysis and control. Open sensors enable non-destructive testing of large objects, and small, cup-size magnets become available for high throughput analysis by NMR relaxation and spectroscopy. Some recent developments of mobile NMR are reviewed which delineate the direction into which portable NMR is moving.

Blümich, Bernhard; Casanova, Federico; Danieli, Ernesto; Gong, Qingxia; Greferath, Marcus; Haber, Agnes; Kolz, Jürgen; Perlo, Juan

2008-12-01

185

Probabilistic Interaction Network of Evidence Algorithm and its Application to Complete Labeling of Peak Lists from Protein NMR Spectroscopy  

PubMed Central

The process of assigning a finite set of tags or labels to a collection of observations, subject to side conditions, is notable for its computational complexity. This labeling paradigm is of theoretical and practical relevance to a wide range of biological applications, including the analysis of data from DNA microarrays, metabolomics experiments, and biomolecular nuclear magnetic resonance (NMR) spectroscopy. We present a novel algorithm, called Probabilistic Interaction Network of Evidence (PINE), that achieves robust, unsupervised probabilistic labeling of data. The computational core of PINE uses estimates of evidence derived from empirical distributions of previously observed data, along with consistency measures, to drive a fictitious system M with Hamiltonian H to a quasi-stationary state that produces probabilistic label assignments for relevant subsets of the data. We demonstrate the successful application of PINE to a key task in protein NMR spectroscopy: that of converting peak lists extracted from various NMR experiments into assignments associated with probabilities for their correctness. This application, called PINE-NMR, is available from a freely accessible computer server (http://pine.nmrfam.wisc.edu). The PINE-NMR server accepts as input the sequence of the protein plus user-specified combinations of data corresponding to an extensive list of NMR experiments; it provides as output a probabilistic assignment of NMR signals (chemical shifts) to sequence-specific backbone and aliphatic side chain atoms plus a probabilistic determination of the protein secondary structure. PINE-NMR can accommodate prior information about assignments or stable isotope labeling schemes. As part of the analysis, PINE-NMR identifies, verifies, and rectifies problems related to chemical shift referencing or erroneous input data. PINE-NMR achieves robust and consistent results that have been shown to be effective in subsequent steps of NMR structure determination. PMID:19282963

Bahrami, Arash; Assadi, Amir H.; Markley, John L.; Eghbalnia, Hamid R.

2009-01-01

186

Metabolic effects of dental resin components in vitro detected by NMR spectroscopy.  

PubMed

Earlier studies have shown that the comonomer triethyleneglycol-dimethacrylate (TEGDMA) and the photostabilizer 2-hydroxy-4-methoxybenzophenone (HMBP) are cytotoxic and inhibit cell growth. It was the aim of this study to elucidate the underlying metabolic effects of TEGDMA and HMBP on immortal contact-inhibited Swiss albino mouse embryo cells (3T3 fibroblasts) by nuclear magnetic resonance (NMR) spectroscopy. Cell extracts and culture media were analyzed by NMR spectroscopy for metabolic changes after incubation for 24 hours with ED20-concentrations of TEGDMA and HMBP. TEGDMA could be detected in all fractions (cytosol, lipid fractions, and culture media) of 3T3 cells, while HMBP was found only in the lipid fraction accumulated at a maximum rate (51 nmol/mg DNA) compared with TEGDMA (27 nmol/mg DNA). TEGDMA increased the concentration of phosphomonoesters to 180+/-36% and decreased the phosphodiesters to 65+/-5% of controls (control = 100%). Thus, the turnover of phospholipids was enhanced, whereas content and composition of phospholipids of membranes did not alter markedly. Additionally, TEGDMA changed the metabolic state of cells, indicated by slight decreases of nucleoside triphosphates and an increase in the ratio of nucleoside diphosphates to nucleoside triphosphates, while HMBP had no effect. The most remarkable effect of TEGDMA was a nearly complete decline of the intracellular glutathione levels. Analysis of our data shows that NMR spectroscopy of cell-material interactions may reveal metabolic effects of organic test substances which are not detectable by standard in vitro assays. The comonomer TEGDMA affected the metabolism of the cells on different levels, while HMBP accumulated in the lipid fraction and induced significantly fewer effects on cell metabolism. PMID:11379887

Engelmann, J; Leyhausen, G; Leibfritz, D; Geurtsen, W

2001-03-01

187

Structural studies of an arabinan from the stems of Ephedra sinica by methylation analysis and 1D and 2D NMR spectroscopy.  

PubMed

Plant arabinan has important biological activity. In this study, a water-soluble arabinan (Mw?6.15kDa) isolated from the stems of Ephedra sinica was found to consist of (1?5)-Araƒ, (1?3,5)-Araƒ, T-Araƒ, (1?3)-Araƒ and (1?2,5)-Araƒ residues at proportions of 10:2:3:2:1. A tentative structure was proposed by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy ((1)H NMR, (13)C NMR, DEPT-135, (1)H-(1)H COSY, HSQC, HMBC and ROESY) and literature. The structure proposed includes a branched (1?5)-?-Araf backbone where branching occurs at the O-2 and O-3 positions of the residues with 7.7% and 15.4% of the 1,5-linked ?-Araf substituted at the O-2 and O-3 positions. The presence of a branched structure was further observed by atomic force microscopy. This polymer was characterized as having a much longer linear (1?5)-?-Araf backbone as a repeating unit. In particular, the presence of ?-Araf?3)-?-Araf-(1?3)-?-Araf-(1? attached at the O-2 is a new finding. This study may facilitate a deeper understanding of structure-activity relationships of biological polysaccharides from the stems of E. sinica. PMID:25659720

Xia, Yong-Gang; Liang, Jun; Yang, Bing-You; Wang, Qiu-Hong; Kuang, Hai-Xue

2015-05-01

188

Ultrafast Z-Spectroscopy for 129Xe NMR-Based Sensors  

PubMed Central

When working with hyperpolarized species, it is often difficult to maintain a stable level of magnetization over consecutive experiments, which renders their detection at the trace level cumbersome, even when combined with chemical exchange saturation transfer (CEST). We report herein the use of ultra-fast Z-spectroscopy as a powerful means to detect low concentrations of 129Xe NMR-based sensors and to measure the in-out xenon exchange. Modifications of the original sequence enable a multiplexed detection of several sensors, as well as the extraction of the exchange buildup rate constant in a single-shot fashion. PMID:24563724

Boutin, Céline; Léonce, Estelle; Brotin, Thierry; Jerschow, Alexej; Berthault, Patrick

2014-01-01

189

Analysis of epoxy resin formulations by /sup 13/C NMR spectroscopy  

SciTech Connect

The chloroform soluble components of several epoxy resin formulations were analyzed by /sup 13/C NMR spectroscopy. The technique permits the components of an epoxy resin formulation to be identified on a routine basis with a high degree of confidence. Narmco's 5208 contained MY-720 and EpiRez SU-7 or SU-8. Two versions of Ferro's CE-9000 contained ERL-0510 and EpiRez SU-7 or SU-8. Although the method is semiquantitative, it was able to distinguish between the two versions of Ferro's CE-9000 in which the concentration of ERL-0510 differs by approximately a factor of two.

Assink, R.A.; Gurule, F.T.

1981-02-01

190

Site selectivity of calcium ions in dehydrated zeolite A: Xenon-129 NMR spectroscopy  

SciTech Connect

Na{sub x}Ca{sub y}-A zeolite samples with various calcium loadings are examined with NMR spectroscopy of sorbed xenon gas. The chemical shift extrapolated to zero pressure changes with the amount of calcium per unit cell. The results indicate that the first four or five Ca{sup 2+} ions reside in the {alpha}-cage (probably at site II) and the remaining exchanged Ca{sup 2+} resides outside the {alpha}-cage, which is in agreement with X-ray and neutron scattering data and theoretical calculations.

Tsiao, Chihji; Dybowski, C.R. (Univ. of Delaware, Newark (USA)); Corbin, D.R. (E.I. du Pont de Nemours Co., Wilmington, DE (USA))

1990-01-25

191

1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems  

NASA Astrophysics Data System (ADS)

Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (?), such as protons, to the less abundant 13C nuclei with low ? values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched. The Hartmann-Hahn condition can be expressed as ?HB1H = ?CB1C, where ?H and ?C are the gyromagnetic ratios of protons and carbons, whereas B1H and B1C are the 1H and 13C radio-frequency (r.f.) fields applied to the nuclei. The Hartmann-Hahn condition is affected by the H-C dipolar interaction strength (Stejskal & Memory, 1994). All the factors affecting dipolar interactions may mismatch the Hartmann-Hahn condition and prevent a quantitative representation of the NOM chemical composition (Conte et al., 2004). It has been reported that under low speed MAS conditions, broad matching profiles are centered around the Hartmann-Hahn condition....... With increasing spinning speed the Hartmann-Hahn matching profiles break down in a series of narrow matching bands separated by the rotor frequency (Stejskal & Memory, 1994). In order to account for the instability of the Hartmann-Hahn condition at higher rotor spin rates (>10 kHz), variable amplitude cross-polarization techniques (RAMP-CP) have been developed (Metz et al., 1996). So far, to our knowledge, the prevailing way used to obtain quantitative 13C-CPMAS NMR results was to optimize the 1H and 13C spin lock r.f. fields on simple standard systems such as glycine and to use those r.f. field values to run experiments on unknown organic samples. The aim of the present study was to experimentally evidence that the stability of the Hartmann-Hahn condition was different for different samples with a known structure. Moreover, Hartmann-Hahn profiles of four different humic acids (HAs) were also provided in order to show that the 1H/13C r.f. spin lock field strength must also be tested on the HAs prior to a quantitative evaluation of their 13C-CPMAS NMR spectra. Baldock, J.A., Oades, J.M., Nelson, P.N., Skene, T.M., Golchin, A. & Clarke, P., 1997. Assessing the extent of decomposition of natural organic materials using solid-state C-13 NMR spectroscopy. Australian Journal of Soil Research, 35, 1061-1083. Conte, P., Piccolo, A., van Lagen, B., Buurman, P. & de Jager, P.A., 1997. Quantitative Aspects of So

Berns, Anne E.; Conte, Pellegrino

2010-05-01

192

Determination of the degree of acetylation of chitin materials by 13C CP\\/MAS NMR spectroscopy  

Microsoft Academic Search

13C CP\\/MAS NMR spectroscopy has been shown to be a powerful tool to quantify the degree of acetylation of chitin and chitosan. In order to optimise the parameters which afford quantitative 13C cross-polarisation magic-angle spinning NMR spectra, a detailed relaxation study has been carried out on selected chitin and deacetylated chitin samples. A relaxation delay of 5 s and a

M. L. Duarte; M. C. Ferreira; M. R. Marvão; João Rocha

2001-01-01

193

Assignment of non-crystalline forms in cellulose I by CP\\/MAS 13C NMR spectroscopy  

Microsoft Academic Search

Non-crystalline forms of cellulose in birch pulp, cotton linters and Cladophora sp were studied by CP\\/MAS 13C NMR spectroscopy. New assignments were made for the NMR-signals in the lower shift part of the C-4 region (80–86ppm). These signals were assigned to cellulose at accessible fibril surfaces, cellulose at inaccessible fibril surfaces and hemicellulose. Also, further evidence was found for para-crystalline

Kristina Wickholm; Per Tomas Larsson; Tommy Iversen

1998-01-01

194

Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy  

ERIC Educational Resources Information Center

2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

Ruhayel, Rasha A.; Berners-Price, Susan J.

2010-01-01

195

Covariance Spectroscopy in High-Resolution Multi-dimensional Solid-state NMR  

PubMed Central

Covariance spectroscopy (COV), a statistical method that provides increased sensitivity, can be applied to two-dimensional high-resolution solid-state NMR experiments, such as homonuclear spin-exchange spectroscopy. We proposed the alternative States sampling scheme to the experimental time by 50%. By combining COV with other processing methods for non-uniform sampling (NUS), many different three-dimensional experiments can be performed with substantial increases in overall sensitivity. As an example, we show a three-dimensional homonuclear spin-exchange / separated-local-field (SLF) spectrum that enables the assignment of resonances and the measurement of structural restraints from a single experiment performed in a limited amount of time. PMID:24380813

Lin, Eugene C.; Opella, Stanley J.

2014-01-01

196

Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy.  

PubMed

Interactions of glyphosate (N-phosphonomethylglycine) herbicide (GLY) with soluble fulvic acids (FAs) and humic acids (HAs) at pH 5.2 and 7 were studied by (1)H and (31)P NMR spectroscopy. Increasing concentrations of soluble humic matter determined broadening and chemical shift drifts of proton and phosphorus GLY signals, thereby indicating the occurrence of weak interactions between GLY and humic superstructures. Binding was larger for FAs and pH 5.2 than for HAs and pH 7, thus suggesting formation of hydrogen bonds between GLY carboxyl and phosphonate groups and protonated oxygen functions in humic matter. Changes in relaxation and correlation times of (1)H and (31)P signals and saturation transfer difference NMR experiments confirmed the noncovalent nature of GLY-humic interactions. Diffusion-ordered NMR spectra allowed calculation of the glyphosate fraction bound to humic superstructures and association constants (K(a)) and Gibbs free energies of transfer for GLY-humic complex formation at both pH values. These values showed that noncovalent interactions occurred most effectively with FAs and at pH 5.2. Our findings indicated that glyphosate may spontaneously and significantly bind to soluble humic matter by noncovalent interactions at slightly acidic pH and, thus, potentially pollute natural water bodies by moving through soil profiles in complexes with dissolved humus. PMID:22591574

Mazzei, Pierluigi; Piccolo, Alessandro

2012-06-01

197

60 MHz (1)H NMR spectroscopy for the analysis of edible oils.  

PubMed

We report the first results from a new 60 MHz (1)H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ?13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsar's performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ?1130 cm(-1), attributable to a double-bond vibration. PMID:24850979

Parker, T; Limer, E; Watson, A D; Defernez, M; Williamson, D; Kemsley, E Kate

2014-05-01

198

Biological effects and physical safety aspects of NMR imaging and in vivo spectroscopy  

SciTech Connect

An assessment is made of the biological effects and physical hazards of static and time-varying fields associated with the NMR devices that are being used for clinical imaging and in vivo spectroscopy. A summary is given of the current state of knowledge concerning the mechanisms of interaction and the bioeffects of these fields. Additional topics that are discussed include: (1) physical effects on pacemakers and metallic implants such as aneurysm clips, (2) human health studies related to the effects of exposure to nonionizing electromagnetic radiation, and (3) extant guidelines for limiting exposure of patients and medical personnel to the fields produced by NMR devices. On the basis of information available at the present time, it is concluded that the fields associated with the current generation of NMR devices do not pose a significant health risk in themselves. However, rigorous guidelines must be followed to avoid the physical interaction of these fields with metallic implants and medical electronic devices. 476 refs., 5 figs., 2 tabs.

Tenforde, T.S.; Budinger, T.F.

1985-08-01

199

Analysis of trivalent cation complexation to functionalized mesoporous silica using solid-state NMR spectroscopy.  

PubMed

Functionalized mesoporous silica has applications in separations science, catalysis, and sensors. In this work, we studied the fundamental interactions of trivalent cations with functionalized mesoporous silica. We contacted trivalent cations of varying ionic radii with N-[5-(trimethoxysilyl)-2-aza-1-oxopentyl]caprolactam functionalized mesoporous silica with the aim of probing the binding mechanism of the metal to the surface of the solid. We studied the functionalized silica using solid-state nuclear magnetic resonance (NMR) spectroscopy before and after contact with the metals of interest. We collected NMR spectra of the various metals, as well as of (29)Si and (13)C to probe the silica substrate and the ligand properties, respectively. The NMR spectra indicate that the metals bind to the functionalized silica via two mechanisms. Aluminum sorbed to both the silica and the ligand, but with different coordination for each. Scandium also sorbed to both the silica and the ligand, and unlike the aluminum, had the same coordination number. Additionally, the functionalized silica was susceptible to acid hydrolysis and two primary mechanisms of degradation were observed: detachment from the silica surface and opening of the seven-membered ring in the ligand. Opening of the seven-membered ring may be beneficial in that it decreases steric hindrance of the molecule for binding. PMID:25265419

Shusterman, Jennifer; Mason, Harris; Bruchet, Anthony; Zavarin, Mavrik; Kersting, Annie B; Nitsche, Heino

2014-11-28

200

Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy  

SciTech Connect

The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

Alam, Todd M.; Celina, Mathew; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.; Wheeler David R.

1999-07-20

201

Functional group analysis in coal and on coal surfaces by NMR spectroscopy  

SciTech Connect

An accurate knowledge of the oxygen-bearing labile hydrogen functional groups (e.g., carboxylic acids, phenols and alcohols) in coal is required for today's increasingly sophisticated coal cleaning and beneficiation processes. Phospholanes (compounds having the general structure -POCH{sub 2}CH{sub 2}O (1)) are being investigated as reagents for the tagging of liable hydrogen functional groups in coal materials with the NMR-active {sup 31}P nucleus. Of twelve such reagents investigated so far, 2 (2-chloro-1,3-dioxaphospholane, ClPOCH{sub 2}CH{sub 2}O) and 8 (2-chloro-1,3-dithiaphospholane, ClPSCH{sub 2}CH{sub 2}S) have been found to be useful in identifying and quantitating, by {sup 31}P NMR spectroscopy, labile hydrogen functional groups in an Illinois No. 6 coal condensate. Reagent 2 has also been used to quantitate moisture in pyridine extracts of Argonne Premium Coal Samples. Preliminary {sup 119}Sn NMR spectroscopic results on model compounds with the new reagent CF{sub 3}C(O)NHSnMe{sub 3} (N-trimethylstannyltrifluoroacetamide, 14) suggest that labile hydrogen functional groups in coal materials may be more precisely identified with 14 than with phospholanes. 14 refs., 2 figs., 2 tabs.

Verkade, J.G.

1990-01-01

202

Structures of ionic liquid-water mixtures investigated by IR and NMR spectroscopy.  

PubMed

Imidazolium-based ionic liquids having different anions 1-butyl-3-methylimidazolium ([BMIM]X: X = Cl(-), Br(-), I(-), and BF4(-)) and their aqueous mixtures were investigated by IR absorption and proton NMR spectroscopy. The IR spectra of these ionic liquids in the CHx stretching region differed substantially, especially for C-H bonds in the imidazolium ring, and the NMR chemical shifts of protons in the imidazolium ring also varied markedly for ILs having different anions. Upon the introduction of water to screen the electrostatic forces and separate the ions, both IR and NMR spectra of [BMIM]X (X = Cl(-), Br(-), I(-)) showed significant changes, while those of [BMIM]BF4 did not change appreciably. H-D isotopic exchange rates of C(2)-H in [BMIM]X-D2O mixtures exhibited an order: C(2)-HCl > C(2)-HBr > C(2)-HI, while the C(2)-H of [BMIM]BF4 was not deuterated at all. These experimental findings, supported by DFT calculations, lead to the microscopic bulk configurations in which the anions and the protons of the cations in the halide ionic liquids have specific, hydrogen-bond type of interaction, while the BF4(-) anion does not participate in the specific interaction, but interacts less specifically by positioning itself more above the ring plane of the imidazolium cation. This structural change dictated by the anion type will work as a key element to build the structure-property relationship of ionic liquids. PMID:24728507

Cha, Seoncheol; Ao, Mingqi; Sung, Woongmo; Moon, Bongjin; Ahlström, Bodil; Johansson, Patrik; Ouchi, Yukio; Kim, Doseok

2014-05-28

203

Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy  

USGS Publications Warehouse

13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

Thorn, K.A.; Steelink, C.; Wershaw, R.L.

1987-01-01

204

High-resolution solid-state NMR spectroscopy as a tool for investigation of enantioselective inclusion complexation.  

PubMed

In this paper, we showed the application of solid state-NMR (SS NMR) spectroscopy in structural studies of chiral compounds employing sample of (E)-1-diphenylphosphinoylpent-3-en-2-ol 1 as a model compound. Racemate of 1 was fully characterized by NMR techniques (both in liquid and solid phase) and X-ray crystallography. Theoretical calculations employing the GIAO approach were used to explain the influence of hydrogen bonding on 31P NMR shielding parameter in racemate. Enantioselective inclusion complexation (EIC) method with TADDOL as host molecule was applied to separate of enantiomers. The formation of host-guest complex and decomplexation procedure was monitored by means of the SS NMR. The liquid-state NMR, due to similarity of 13C and 31P spectral parameters was not able to distinguish racemate from enantiomer. In the solid phase, owing to distinction of hydrogen bonding and molecular packing in the crystal lattice, racemate and enantiomers were easy recognized by NMR spectroscopy. PMID:17537616

Gajda, J; Jeziorna, A; Ciesielski, W; Potrzebowski, W M; Prezdo, W W; Potrzebowski, M J

2007-05-01

205

Investigation of Molecular Motions by Lee-Goldburg Cross-Polarization NMR Spectroscopy Mei Hong,*, Xiaolan Yao, Karen Jakes, and Daniel Huster,  

E-print Network

demonstrate the use of Lee-Goldburg cross-polarization (LG-CP) NMR under fast magic-angle spinning (MASInvestigation of Molecular Motions by Lee-Goldburg Cross-Polarization NMR Spectroscopy Mei Hong geometry information was previously available only from 2 H NMR, which, however, has limited site

Hong, Mei

206

Characterization of noninnocent metal complexes using solid-state NMR spectroscopy: o-dioxolene vanadium complexes.  

PubMed

(51)V solid-state NMR (SSNMR) studies of a series of noninnocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that (51)V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic (51)V NMR chemical shifts cover a wide range from -200 to 400 ppm in solution and from -219 to 530 ppm in the solid state. A linear correlation of (51)V NMR isotropic solution and solid-state chemical shifts of complexes containing noninnocent ligands is observed. These experimental results provide the information needed for the application of (51)V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems and, in particular, those containing noninnocent ligands and that have chemical shifts outside the populated range of -300 to -700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from (51)V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (density functional theory) calculations of NMR parameters for [VO(hshed)(Cat)] yield a (51)V chemical shift anisotropy tensor in reasonable agreement with the experimental results, but surprisingly the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron-donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron-withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because (51)V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox-active complexes that exhibit coordination chemistry similar to that of the vanadium catechol complexes. PMID:21842875

Chatterjee, Pabitra B; Goncharov-Zapata, Olga; Quinn, Laurence L; Hou, Guangjin; Hamaed, Hiyam; Schurko, Robert W; Polenova, Tatyana; Crans, Debbie C

2011-10-17

207

High Resolution NMR Spectroscopy of Nanocrystalline Proteins at Ultra-High Magnetic Field  

PubMed Central

Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of 500, 750, and 900 MHz). For two protein systems—GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein—line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine C?1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies. PMID:19953303

Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

2010-01-01

208

Insoluble protein characterization by circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR).  

PubMed

Besides misfolded proteins, which still retain the capacity to fold into uniquely defined structures but are misled to "off-pathway" aggregation, there exists a group of proteins which are unrefoldable and insoluble in buffers. Previously no general method was available to solubilize them and consequently their solution conformations could not be characterized. Recently, we discovered that these insoluble proteins could in fact be solubilized in pure water. Circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) characterization led to their classification into three groups, all of which lack the tight tertiary packing and consequently anticipated to unavoidably aggregate in vivo with ~150 mM ions, thus designated as "intrinsically insoluble proteins (IIPs)." It appears that eukaryotic genomes contain many "IIP," which also have a potential to interact with membranes to trigger neurodegenerative diseases. In this chapter, we provide a detailed procedure to express and purify these proteins, followed by CD and NMR spectroscopy characterization of their conformation and interaction with dodecylphosphocholine (DPC). PMID:25447876

Goyal, Shaveta; Qin, Haina; Lim, Liangzhong; Song, Jianxing

2015-01-01

209

Proton-bound dimers of 1-methylcytosine and its derivatives: vibrational and NMR spectroscopy.  

PubMed

Vibrational spectroscopy and NMR demonstrate that the proton-bound dimer of 1-methylcytosine, 1, has an unsymmetrical structure at room temperature. In the gas phase, investigation of isolated homodimer 1 reveals five fundamental NH vibrations by IR Multiple Photon Dissociation (IRMPD) action spectroscopy. The NH···N stretching vibration between the two ring nitrogens exhibits a frequency of 1570 cm(-1), as confirmed by examination of the proton-bound homodimers of 5-fluoro-1-methycytosine, 2, and of 1,5-dimethylcytosine, 3, which display absorptions in the same region that disappear upon deuterium substitution. (13)C, and (15)N NMR of the solid iodide salt of 1 confirm the nonequivalence of the two rings in the anhydrous proton-bound homodimer at room temperature. IRMPD spectra of the three possible heterodimers also show NH···N stretches in the same domain, and at least one of the heterodimers, the proton-bound dimer of 1,5-dimethylcytosine with 1-methylcytosine, exhibits two bands suggestive of the presence of two tautomers close in energy. PMID:24096726

Ung, Hou U; Moehlig, Aaron R; Kudla, Ryan A; Mueller, Leonard J; Oomens, Jos; Berden, Giel; Morton, Thomas Hellman

2013-11-21

210

Characterisation of sodium cations in dehydrated zeolite NaX by 23Na NMR spectroscopy.  

PubMed

23Na MAS, 2D nutation MAS, and DOR NMR spectroscopy has been applied to characterise the location of sodium cations in dehydrated zeolite NaX (Si/Al = 1.23). The 23Na MAS NMR spectra recorded at three different magnetic field strengths were decomposed by computer simulation into five lines, which were attributed to five crystallographically distinct cation sites known from X-ray diffraction studies. The assignments of the lines follow from electric field gradient calculations at the 23Na nuclei applying a simple point charge model based on crystal structure data. A weak Gaussian line at low field (delta iso = -6 ppm) is assigned to sodium cations at site I, two broad quadrupole patterns at the high-field side of the spectra are attributed to site I' (delta iso = -19 ppm, QCC = 5.2 MHz, eta = 0) and site II cations (delta iso = -15 ppm, QCC = 4.6 MHz, eta = 0), and two quadrupolar lines dominating the central region of the spectra originate from Na+ at two different III' sites (delta iso = -13 and -29 ppm, QCC = 2.6 and 1.6 MHz, eta = 0.7 and 0.9, respectively). Na+ ions located on a second I' site could be identified from the DOR NMR spectra. The line assignment is further corroborated by the reasonable agreement of the site occupancies estimated from the line intensities with those determined by X-ray diffraction. In addition, sodium site populations of five dehydrated zeolites NaX and NaY with Si/Al ratios between 1.09 and 4.0 were derived from the 23Na MAS NMR spectra. PMID:8986022

Feuerstein, M; Hunger, M; Engelhardt, G; Amoureux, J P

1996-11-01

211

Structural investigation of aluminium doped ZnO nanoparticles by solid-state NMR spectroscopy.  

PubMed

The electrical conductivity of aluminium doped zinc oxide (AZO, ZnO:Al) materials depends on doping induced defects and grain structure. This study aims at relating macroscopic electrical conductivity of AZO nanoparticles with their atomic structure, which is non-trivial because the derived materials are heavily disordered and heterogeneous in nature. For this purpose we synthesized AZO nanoparticles with different doping levels and narrow size distribution by a microwave assisted polyol method followed by drying and a reductive treatment with forming gas. From these particles electrically conductive, optically transparent films were obtained by spin-coating. Characterization involved energy-dispersive X-ray analysis, wet chemical analysis, X-ray diffraction, electron microscopy and dynamic light scattering, which provided a basis for a detailed structural solid-state NMR study. A multinuclear ((27)Al, (13)C, (1)H) spectroscopic investigation required a number of 1D MAS NMR and 2D MAS NMR techniques (T(1)-measurements, (27)Al-MQMAS, (27)Al-(1)H 2D-PRESTO-III heteronuclear correlation spectroscopy), which were corroborated by quantum chemical calculations with an embedded cluster method (EEIM) at the DFT level. From the combined data we conclude that only a small part of the provided Al is incorporated into the ZnO structure by substitution of Zn. The related (27)Al NMR signal undergoes a Knight shift when the material is subjected to a reductive treatment with forming gas. At higher (formal) doping levels Al forms insulating (Al, H and C containing) side-phases, which cover the surface of the ZnO:Al particles and increase the sheet resistivity of spin-coated material. Moreover, calculated (27)Al quadrupole coupling constants serve as a spectroscopic fingerprint by which previously suggested point-defects can be identified and in their great majority be ruled out. PMID:22801707

Avadhut, Yamini S; Weber, Johannes; Hammarberg, Elin; Feldmann, Claus; Schmedt auf der Günne, Jörn

2012-09-01

212

Study of radiation induced changes of phosphorus metabolism in mice by 31P NMR spectroscopy  

PubMed Central

Background The aim of this study was to examine whether 31P NMR can efficiently detect X-ray radiation induced changes of energy metabolism in mice. Exposure to ionizing radiation causes changes in energy supply that are associated with the tissue damage because of oxidative stress and uncoupled oxidative phosphorylation. This has as a consequence decreased phosphocreatine to adenosine triphosphate ratio (Pcr/ATP) as well as increased creatine kinase (CK) and liver enzymes (transaminases AST and ALT) levels in serum. Materials and methods In this study, experimental mice that received 7 Gy of X-ray radiation and a control group were studied by 31P NMR spectroscopy and biochemically by measuring CK and liver enzyme levels in plasma. Mice (irradiated and control) were measured at regular time intervals for the next three weeks after the exposure to radiation. Results A significant change in the Pcr/ATP ratio, determined from corresponding peaks of 31P NMR spectra, was observed in the 7 Gy group 2 days or more after the irradiation, while no significant change in the Pcr/ATP ratio, was observed in the control group. This result was supported by parallel measurements of CK levels that were highly increased immediately after the irradiation which correlates with the observed decrease of the Pcr/ATP ratio and with it associated drop of muscle energy supply. Conclusions The 31P NMR measurements of the Pcr/ATP ratio can in principle serve as an instantaneous and noninvasive index for assessment of the received dose of irradiation. PMID:22933912

Sersa, Igor; Kranjc, Simona; Sersa, Gregor; Nemec-Svete, Alenka; Lozar, Bojan; Sepe, Ana; Vidmar, Jernej; Sentjurc, Marjeta

2010-01-01

213

High-resolution two-dimensional J-resolved NMR spectroscopy for biological systems.  

PubMed

NMR spectroscopy is a principal tool in metabolomic studies and can, in theory, yield atom-level information critical for understanding biological systems. Nevertheless, NMR investigations on biological tissues generally have to contend with field inhomogeneities originating from variations in macroscopic magnetic susceptibility; these field inhomogeneities broaden spectral lines and thereby obscure metabolite signals. The congestion in one-dimensional NMR spectra of biological tissues often leads to ambiguities in metabolite identification and quantification. We propose an NMR approach based on intermolecular double-quantum coherences to recover high-resolution two-dimensional (2D) J-resolved spectra from inhomogeneous magnetic fields, such as those created by susceptibility variations in intact biological tissues. The proposed method makes it possible to acquire high-resolution 2D J-resolved spectra on intact biological samples without recourse to time-consuming shimming procedures or the use of specialized hardware, such as magic-angle-spinning probes. Separation of chemical shifts and J couplings along two distinct dimensions is achieved, which reduces spectral crowding and increases metabolite specificity. Moreover, the apparent J coupling constants observed are magnified by a factor of 3, facilitating the accurate measurement of small J couplings, which is useful in metabolic analyses. Dramatically improved spectral resolution is demonstrated in our applications of the technique on pig brain tissues. The resulting spectra contain a wealth of chemical shift and J-coupling information that is invaluable for metabolite analyses. A spatially localized experiment applied on an intact fish (Crossocheilus siamensis) reveals the promise of the proposed method in in vivo metabolite studies. Moreover, the proposed method makes few demands on spectrometer hardware and therefore constitutes a convenient and effective manner for metabonomics study of biological systems. PMID:24806938

Huang, Yuqing; Cai, Shuhui; Zhang, Zhiyong; Chen, Zhong

2014-05-01

214

Flexible Stoichiometry and Asymmetry of the PIDDosome Core Complex by Heteronuclear NMR Spectroscopy and Mass Spectrometry.  

PubMed

Homotypic death domain (DD)-DD interactions are important in the assembly of oligomeric signaling complexes such as the PIDDosome that acts as a platform for activation of caspase-2-dependent apoptotic signaling. The structure of the PIDDosome core complex exhibits an asymmetric three-layered arrangement containing five PIDD-DDs in one layer, five RAIDD-DDs in a second layer and an additional two RAIDD-DDs. We addressed complex formation between PIDD-DD and RAIDD-DD in solution using heteronuclear nuclear magnetic resonance (NMR) spectroscopy, nanoflow electrospray ionization mass spectrometry and size-exclusion chromatography with multi-angle light scattering. The DDs assemble into complexes displaying molecular masses in the range 130-158kDa and RAIDD-DD:PIDD-DD stoichiometries of 5:5, 6:5 and 7:5. These data suggest that the crystal structure is representative of only the heaviest species in solution and that two RAIDD-DDs are loosely attached to the 5:5 core. Two-dimensional (1)H,(15)N-NMR experiments exhibited signal loss upon complexation consistent with the formation of high-molecular-weight species. (13)C-Methyl-transverse relaxation optimized spectroscopy measurements of the PIDDosome core exhibit signs of differential line broadening, cross-peak splitting and chemical shift heterogeneity that reflect the presence of non-equivalent sites at interfaces within an asymmetric complex. Experiments using a mutant RAIDD-DD that forms a monodisperse 5:5 complex with PIDD-DD show that the spectroscopic signature derives from the quasi- but non-exact equivalent environments of each DD. Since this characteristic was previously demonstrated for the complex between the DDs of CD95 and FADD, the NMR data for this system are consistent with the formation of a structure homologous to the PIDDosome core. PMID:25528640

Nematollahi, Lily A; Garza-Garcia, Acely; Bechara, Chérine; Esposito, Diego; Morgner, Nina; Robinson, Carol V; Driscoll, Paul C

2015-02-27

215

Comparison of I-123 IMP uptake and NMR spectroscopy in the brain following experimental carotid occlusion  

SciTech Connect

Both I-123 IMP scintigraphy and NMR have been suggested as sensitive detectors of changes shortly after acute cerebral infarction. The authors compared the uptake of N-isopropul I-123 p-iodoamphetamine (IMP) and NMR spectroscopy of the brain after internal carotid artery ligation. Thirteen gerbils were lightly anesthetized with ether. After neck dissection, an internal carotid artery was occluded. After 2.8 hours, 100 ..mu..Ci I-123 IMP was injected intravenously into the 13 experimental animals plus 3 controls. Seven gerbils remained asymptomatic while 6 developed hemiparesis. At 3 hours after ligation, the animals were killed. The brains were bisected and T/sub 1/ and T/sub 2/ relaxation times were determined for the right and left hemispheres by NMR spectroscopy immediately after dissection. I-123 IMP uptake was then determined in the samples. Interhemispheric differences in uptake for I-123 IMP uptake was 2.2% +- 0.5% in the control, 33.5% +- 9.6% in the asymptomatic and 54.6% +- 9.7% in the symptomatic animals. Significant differences were seen with I-123 IMP in 6/7 asymptomatic and 6/6 symptomatic animals. Significant differences in T/sub 1/ and T/sub 2/ were seen in 2/7 of the asymptomatic and 5/6 of the symptomatic animals. The authors conclude that I-123 is more sensitive than T/sub 1/ or T/sub 2/ for the detection of cerebral perfusion abnormalities while T/sub 1/ and T/sub 2/ more accurately separate symptomatic from asymptomatic animals.

Holman, B.L.; Jolesz, F.; Polak, J.F.; Kronauge, J.; Adams, D.F.

1984-01-01

216

Dissolution DNP-NMR spectroscopy using galvinoxyl as a polarizing agent.  

PubMed

The goal of this work was to test feasibility of using galvinoxyl (2,6-di-tert-butyl-?-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy) as a polarizing agent for dissolution dynamic nuclear polarization (DNP) NMR spectroscopy. We have found that galvinoxyl is reasonably soluble in ethyl acetate, chloroform, or acetone and the solutions formed good glasses when mixed together or with other solvents such as dimethyl sulfoxide. W-band electron spin resonance (ESR) measurements revealed that galvinoxyl has an ESR linewidth D intermediate between that of carbon-centered free radical trityl OX063 and the nitroxide-based 4-oxo-TEMPO, thus the DNP with galvinoxyl for nuclei with low gyromagnetic ratio ? such as (13)C and (15)N is expected to proceed predominantly via the thermal mixing process. The optimum radical concentration that would afford the highest (13)C nuclear polarization (approximately 6% for [1-(13)C]ethyl acetate) at 3.35 T and 1.4 K was found to be around 40 mM. After dissolution, large liquid-state NMR enhancements were achieved for a number of (13)C and (15)N compounds with long spin-lattice relaxation time T(1). In addition, the hydrophobic galvinoxyl free radical can be easily filtered out from the dissolution liquid when water is used as the solvent. These results indicate that galvinoxyl can be considered as an easily available free radical polarizing agent for routine dissolution DNP-NMR spectroscopy. PMID:23246650

Lumata, Lloyd L; Merritt, Matthew E; Malloy, Craig R; Sherry, A Dean; van Tol, Johan; Song, Likai; Kovacs, Zoltan

2013-02-01

217

1H and 13C NMR data to aid the identification and quantification of residual solvents by NMR spectroscopy.  

PubMed

We present reference data and a javascript web page which allow the rapid identification and quantification of residual solvents by NMR. The data encompass all of the ICH-prescribed solvents and were obtained for a number of NMR solvents. We also present an example of its application. PMID:15809983

Jones, Ian C; Sharman, Gary J; Pidgeon, Julia

2005-06-01

218

Monitoring bound HA1(H1N1) and HA1(H5N1) on freely suspended graphene over plasmonic platforms with infrared spectroscopy  

NASA Astrophysics Data System (ADS)

Infrared (IR) spectroscopy provides fingerprinting of the energy and orientation of molecular bonds. The IR signals are generally weak and require amplification. Here we present a new plasmonic platform, made of freely suspended graphene, which was coating periodic metal structures. Only monolayer thick films were needed for a fast signal recording. We demonstrated unique IR absorption signals of bound proteins: these were the hemagglutinin area (HA1) of swine influenza (H1N1) and the avian influenza (H5N1) viruses bound to their respective tri-saccharides ligand receptors. The simplicity and sensitivity of such approach may find applications in fast monitoring of binding events.

Banerjee, Amrita; Chakraborty, Sumit; Altan-Bonnet, Nihal; Grebel, Haim

2013-09-01

219

Metabolic characterization of Palatinate German white wines according to sensory attributes, varieties, and vintages using NMR spectroscopy and multivariate data analyses  

Microsoft Academic Search

1H NMR (nuclear magnetic resonance spectroscopy) has been used for metabolomic analysis of ‘Riesling’ and ‘Mueller-Thurgau’\\u000a white wines from the German Palatinate region. Diverse two-dimensional NMR techniques have been applied for the identification\\u000a of metabolites, including phenolics. It is shown that sensory analysis correlates with NMR-based metabolic profiles of wine.\\u000a 1H NMR data in combination with multivariate data analysis methods,

Kashif Ali; Federica Maltese; Reinhard Toepfer; Young Hae Choi; Robert Verpoorte

2011-01-01

220

1,3-Alternate calix[4]arene nitronyl nitroxide tetraradical and diradical: synthesis, X-ray crystallography, paramagnetic NMR spectroscopy, EPR spectroscopy, and magnetic studies  

SciTech Connect

Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two nitronyl nitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, and magnetic studies. Such calix[4]arene tetraradicals and diradicals provide scaffolds for through-bond and through-space intramolecular exchange couplings.

Rajca, Andrzej; Pink, Maren; Mukherjee, Sumit; Rajca, Suchada; Das, Kausik (UNL); (Indiana)

2008-04-02

221

Rapid geographical differentiation of the European spread brown macroalga Sargassum muticum using HRMAS NMR and Fourier-Transform Infrared spectroscopy.  

PubMed

Two recent techniques based on chemical footprinting analysis, HRMAS NMR and FTIR spectroscopy, were tested on a brown macroalgal model. These powerful and easily-to-use techniques allowed us to discriminate Sargassum muticum specimens collected in five different countries along Atlantic coasts, from Portugal to Norway. HRMAS NMR and FTIR permitted the obtaining of an overview of metabolites produced by the alga. Based on spectra analysis, results allowed us to successfully group the samples according to their geographical origin. HRMAS NMR and FTIR spectroscopy respectively point out the relation between the geographical localization and the chemical composition and demonstrated macromolecules variations regarding to environmental stress. Then, our results are discussed in regard of the powerful of these techniques together with the variability of the main molecules produced by Sargassum muticum along the Atlantic coasts. PMID:25476330

Tanniou, Anaëlle; Vandanjon, Laurent; Gonçalves, Olivier; Kervarec, Nelly; Stiger-Pouvreau, Valérie

2015-01-15

222

Europium III binding and the reorientation of magnetically aligned bicelles: insights from deuterium NMR spectroscopy.  

PubMed Central

Solid-state deuterium ((2)H) NMR spectroscopy was used to study the reorientation of magnetically ordered bicelles in the presence of the paramagnetic lanthanide Eu(3+). Bicelles were composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) plus 1,2-dihexanoyl-sn-glycero-3-phosphocholine plus either the anionic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol, or the cationic lipid 1,2-dimyristoyl-3-trimethyl ammonium propane. Alignment of the bicelles in the magnetic field produced (2)H NMR spectra consisting of a pair of quadrupole doublets, one from the alpha-deuterons and one from the beta-deuterons of DMPC-alpha,beta-d(4). Eu(3+) addition induced the appearance of a second set of quadrupole doublets, having approximately twice the quadrupolar splittings of the originals, and growing progressively in intensity with increasing Eu(3+), at the expense of the intensity of the originals. The new resonances were attributed to bicelles having a parallel alignment with respect to the magnetic field, as opposed to the perpendicular alignment preferred in the absence of Eu(3+). Therefore, the equilibrium degree and kinetics of reorientation could be evaluated from the (2)H NMR spectra. For more cationic initial surface charges, higher amounts of added Eu(3+) were required to induce a given degree of reorientation. However, the equilibrium degree of bicellar reorientation was found to depend solely on the amount of bound Eu(3+), regardless of the bicelle composition. The kinetics of reorientation were a function of lipid concentration. At high lipid concentration, a single fast rate of reorientation (minutes) described the approach to the equilibrium degree of orientation. At lower lipid concentrations, two rates processes were discernible: one fast (minutes) and one slow (hours). The data indicate, therefore, that bicelle reorientation is a phase transition made critical by bicelle-bicelle interactions. PMID:11423411

Crowell, K J; Macdonald, P M

2001-01-01

223

Organic solute changes with acidification in Lake Skjervatjern as shown by 1H-NMR spectroscopy  

USGS Publications Warehouse

1H-NMR spectroscopy has been found to be a useful tool to establish possible real differences and trends between all natural organic solute fractions (fulvic acids, humic acids, and XAD-4 acids) after acid-rain additions to the Lake Skjervatjern watershed. The proton NMR technique used in this study determined the spectral distribution of nonexchangeable protons among four peaks (aliphatic protons; aliphatic protons on carbon ?? or attached to electronegative groups; protons on carbons attached to O or N heteroatoms; and aromatic protons). Differences of 10% or more in the respective peak areas were considered to represent a real difference. After one year of acidification, fulvic acids decreased 13% (relative) in Peak 3 protons on carbon attached to N and O heteratoms and exhibited a decrease in aromatic protons between 27% and 31%. Humic acids also exhibited an 11% relative decrease in aromatic protons as a result of acidification. After one year of acidification, real changes were shown in three of the four proton assignments in XAD-4 acids. Peak 1 aliphatic protons increased by 14% (relative), Peak 3 protons on carbons attached to O and N heteroatoms decreased by 13% (relative), and aromatic protons (Peak 4) decreased by 35% (relative). Upon acidification, there was a trend in all solutes for aromatic protons to decrease and aliphatic protons to increase. The natural variation in organic solutes as shown in the Control Side B of the lake from 1990 to 1991 is perhaps a small limitation to the same data interpretations of acid rain changes at the Lake Skjervatjern site, but the proton NMR technique shows great promise as an independent scientific tool to detect and support other chemical techniques in establishing organic solute changes with different treatments (i.e., additions of acid rain).

Malcolm, R.L.; Hayes, T.

1994-01-01

224

QUANTIFICATION OF MYOINOSITOL HEXAKISPHOSPHATE IN ALKALINE SOIL EXTRACTS BY SOLUTION 31P NMR SPECTROSCOPY AND SPECTRAL DECONVOLUTION  

Microsoft Academic Search

Inositol phosphates are the dominant class of organic phosphorus (P) compounds in most soils, but they are poorly understood because they are not easily identified in soil extracts. This study reports a relatively simple technique using solution 31 P NMR spectroscopy and spectral de- convolution for the quantification of myo-inositol hexakisphosphate (phytic acid), the most abundant soil inositol phosphate, in

Benjamin L. Turner; Nathalie Mahieu; Leo M. Condron

225

NMR Spectroscopy and Free Volume Analysis of the Effects of Copolymer Composition on the Swelling Kinetics and  

E-print Network

Polym Sci B: Polym Phys 37: 1953­1968, 1999 Keywords: relaxation; swelling; penetrant diffusion; nonNMR Spectroscopy and Free Volume Analysis of the Effects of Copolymer Composition on the Swelling 1999 ABSTRACT: Novel ionizable polymer networks were prepared from oligo(ethylene gly- col) (OEG

Peppas, Nicholas A.

226

Response to the Letter to the Editor regarding "Determination of the fatty acid profile by 1H-NMR spectroscopy."  

Technology Transfer Automated Retrieval System (TEKTRAN)

In expansion of previous work (G. Knothe, J.A. Kenar, Determination of the fatty acid profile by 1H-NMR spectroscopy, Eur. J. Lipid Sci. Technol. 2004, 106, 88-96), an additional approach is discussed for quantitating saturated fatty acids in the fatty acid profiles of common vegetable oils by 1H-NM...

227

NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils: An Instrumental Analysis Laboratory  

ERIC Educational Resources Information Center

This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy for analysis of several edible fats and oils that are structurally similar but differ in physical properties and health implications. Five different fats and oils are analyzed for average chain length,…

Crowther, Molly W.

2008-01-01

228

Morphology changes during radiation-thermal degradation of polyethylene and an EPDM copolymer by 13C NMR spectroscopy  

Microsoft Academic Search

The ? radiation induced degradation of an EPDM copolymer was compared to that of a 13C enriched polyethylene at exposure temperatures of 22 and 80°C. Morphological changes were measured by MAS 13C NMR spectroscopy and DSC. By first examining the high quality and less complex spectra of 13C enriched polyethylene, a protocol for the interpretation and deconvolution of the more

Roger A. Assink; Mathew Celina; Kenneth T. Gillen; Roger L. Clough; Todd M. Alam

2001-01-01

229

The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy  

Microsoft Academic Search

Linear peptide antibiotics have been isolated from amphibians, insects and humans and used as templates to design cheaper and more potent analogues for medical applications. Peptides such as cecropins or magainins are ?40 amino acids in length. Many of them have been prepared by solid-phase peptide synthesis with isotopic labels incorporated at selected sites. Structural analysis by solid-state NMR spectroscopy

Burkhard Bechinger

1999-01-01

230

Using ¹?N-ammonium to characterise and map potassium binding sites in proteins by NMR spectroscopy.  

PubMed

A variety of enzymes are activated by the binding of potassium ions. The potassium binding sites of these enzymes are very specific, but ammonium ions can often replace potassium ions in vitro because of their similar ionic radii. In these cases, ammonium can be used as a proxy for potassium to characterise potassium binding sites in enzymes: the (1) H,(15) N spin-pair of enzyme-bound (15) NH4 (+) can be probed by (15) N-edited heteronuclear NMR experiments. Here, we demonstrate the use of NMR spectroscopy to characterise binding of ammonium ions to two different enzymes: human histone deacetylase 8 (HDAC8), which is activated allosterically by potassium, and the bacterial Hsp70 homologue DnaK, for which potassium is an integral part of the active site. Ammonium activates both enzymes in a similar way to potassium, thus supporting this non-invasive approach. Furthermore, we present an approach to map the observed binding site onto the structure of HDAC8. Our method for mapping the binding site is general and does not require chemical shift assignment of the enzyme resonances. PMID:24520048

Werbeck, Nicolas D; Kirkpatrick, John; Reinstein, Jochen; Hansen, D Flemming

2014-03-01

231

Time-domain Bayesian detection and estimation of noisy damped sinusoidal signals applied to NMR spectroscopy  

NASA Astrophysics Data System (ADS)

The problem of model detection and parameter estimation for noisy signals arises in different areas of science and engineering including audio processing, seismology, electrical engineering, and NMR spectroscopy. We have adopted the Bayesian modeling framework to jointly detect and estimate signal resonances. This considers a model of the time-domain complex free induction decay (FID) signal as a sum of exponentially damped sinusoidal components. The number of model components and component parameters are considered unknown random variables to be estimated. A Reversible Jump Markov Chain Monte Carlo technique is used to draw samples from the joint posterior distribution on the subspaces of different dimensions. The proposed algorithm has been tested on synthetic data, the 1H NMR FID of a standard of L-glutamic acid and a blood plasma sample. The detection and estimation performance is compared with Akaike information criterion (AIC), minimum description length (MDL) and the matrix pencil method. The results show the Bayesian algorithm superior in performance especially in difficult cases of detecting low-amplitude and strongly overlapping resonances in noisy signals.

Rubtsov, Denis V.; Griffin, Julian L.

2007-10-01

232

Characterization of Glycosaminoglycans by 15N-NMR Spectroscopy and in vivo Isotopic Labeling  

PubMed Central

Characterization of glycosaminoglycans (GAGs), including chondroitin sulfate (CS), dermatan sulfate (DS) and heparan sulfate (HS), is important in developing an understanding of cellular function and in assuring quality of preparations destined for biomedical applications. While use of 1H and 13C NMR spectroscopy has become common in characterization of these materials, spectra are complex and difficult to interpret when a more heterogeneous GAG type or a mixture of several types is present. Herein a method based on 1H-15N two dimensional NMR experiments is described. The 15N- and 1H-chemical shifts of amide signals from 15N-containing acetylgalactosamines in CSs are shown to be quite sensitive to the sites of sulfation (4-, 6- or 4,6-), and easily distinguishable from those of DS. The amide signals from residual 15N-containing acetylglucosamines in HS are shown to be diagnostic of the presence of these GAG components as well. Most data were collected at natural abundance of 15N despite its low percentage. However enrichment of the 15N-content in GAGs using metabolic incorporation from 15N-glutamine added to cell culture media is also demonstrated, and used to distinguish metabolic states in different cell types. PMID:20423049

Pomin, Vitor H.; Sharp, Joshua S.; Li, Xuanyang; Wang, Lianchun; Prestegard, James H.

2010-01-01

233

In vivo sup 31 P-NMR spectroscopy of chronically stimulated canine skeletal muscle  

SciTech Connect

Chronic stimulation converts skeletal muscle of mixed fiber type to a uniform muscle made up of type I, fatigue-resistant fibers. Here, the bioenergetic correlates of fatigue resistance in conditioned canine latissimus dorsi are assessed with in vivo phosphorus-31 nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy. After chronic electrical stimulation, five dogs underwent {sup 31}P-NMR spectroscopic and isometric tension measurements on conditioned and contralateral control muscle during stimulation for 200, 300, 500, and 800 ms of an 1,100-ms duty cycle. With stimulation, phosphocreatine (PCr) fell proportional to the degree of stimulation in both conditioned and control muscle but fell significantly less in conditioned muscle at all the least intense stimulation period (200 ms). Isometric tension, expressed as a tension time index per gram muscle, was significantly greater in the conditioned muscle at the two longest stimulation periods. The overall small change in PCr and the lack of a plateau in tension observed in the conditioned muscle are similar to that seen in cardiac muscle during increased energy demand. This study indicates that the conditioned muscle's markedly enhanced resistance to fatigue is in part the result of its increased capacity for oxidative phosphorylation.

Clark, B.J. III; McCully, A.K.; Subramanian, H.V.; Hammond, R.L.; Salmons, S.; Chance, B.; Stephenson, L.W. (Children's Hospital of Philadelphia, Harrison (USA) Univ. of Pennsylvania School of Medicine, Philadelphia (USA) Univ. of Birmingham (England))

1988-02-01

234

Relaxation Dispersion NMR Spectroscopy as a Tool for Detailed Studies of Protein Folding  

PubMed Central

Characterization of the mechanisms by which proteins fold into their native conformations is important not only for protein structure prediction and design but also because protein misfolding intermediates may play critical roles in fibril formation that are commonplace in neurodegenerative disorders. In practice, the study of folding pathways is complicated by the fact that for the most part intermediates are low-populated and short-lived so that biophysical studies are difficult. Due to recent methodological advances, relaxation dispersion NMR spectroscopy has emerged as a particularly powerful tool to obtain high-resolution structural information about protein folding events on the millisecond timescale. Applications of the methodology to study the folding of SH3 domains have shown that folding proceeds via previously undetected on-pathway intermediates, sometimes stabilized by nonnative long-range interactions. The relaxation dispersion approach provides a detailed kinetic and thermodynamic description of the folding process as well as the promise of obtaining an atomic level structural description of intermediate states. We review the concerted application of a variety of recently developed NMR relaxation dispersion experiments to obtain a “high-resolution” picture of the folding pathway of the A39V/N53P/V55L Fyn SH3 domain. PMID:19289032

Neudecker, Philipp; Lundström, Patrik; Kay, Lewis E.

2009-01-01

235

Authentication of beef versus horse meat using 60MHz (1)H NMR spectroscopy.  

PubMed

This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60MHz (1)H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional "authentic" beef region (p=0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze-thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60MHz (1)H NMR represents a feasible high-throughput approach for screening raw meat. PMID:25577043

Jakes, W; Gerdova, A; Defernez, M; Watson, A D; McCallum, C; Limer, E; Colquhoun, I J; Williamson, D C; Kemsley, E K

2015-05-15

236

XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass  

NASA Technical Reports Server (NTRS)

The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

2006-01-01

237

Zinc Solid-State NMR Spectroscopy of Human Carbonic Anhydrase: Implications for the Enzymatic Mechanism.  

SciTech Connect

Many zinc enzymes utilize zinc bound water as a critical component of a catalytic reaction. The Zn2+ ion activates water through ionization, polarization, or simple displacement depending upon the mechanistic details. The fate of one proton from the bound water is determined primarily by the influence of directly bound Zn-ligands, as well as hydrogen bonding with a secondary coordination sphere of side chains and/or bound waters within the protein. We have employed low temperature solid-state 67Zn NMR spectroscopy to probe the nature of the bonding at Zn2+ in human carbonic anhydrase isozyme II (CAII). In particular we wanted to characterize the 67Zn NMR parameters of the metal with both water and hydroxide as the fourth ligand, but instead we show that hydroxide is bound to Zn2+ over the pH range of 5 to 8.5. These results suggest the accepted mechanism of action of CAII needs to be revised. These data serve to provide further understanding of the observed pH dependence of the activity of this well studied protein.

Lipton, Andrew S.; Heck, Robert W.; Ellis, Paul D.

2004-04-14

238

Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing  

USGS Publications Warehouse

Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

Kogel-Knabner, I.; Hatcher, P.G.

1989-01-01

239

The Interaction between tRNALys3 and the Primer Activation Signal Deciphered by NMR Spectroscopy  

PubMed Central

The initiation of reverse transcription of the human immunodeficiency virus type 1 (HIV-1) requires the opening of the three-dimensional structure of the primer tRNALys3 for its annealing to the viral RNA at the primer binding site (PBS). Despite the fact that the result of this rearrangement is thermodynamically more stable, there is a high-energy barrier that requires the chaperoning activity of the viral nucleocapsid protein. In addition to the nucleotide complementarity to the PBS, several regions of tRNALys3 have been described as interacting with the viral genomic RNA. Among these sequences, a sequence of the viral genome called PAS for “primer activation signal” was proposed to interact with the T-arm of tRNALys3, this interaction stimulating the initiation of reverse transcription. In this report, we investigate the formation of this additional interaction with NMR spectroscopy, using a simple system composed of the primer tRNALys3, the 18 nucleotides of the PBS, the PAS (8 nucleotides) encompassed or not in a hairpin structure, and the nucleocapsid protein. Our NMR study provides molecular evidence of the existence of this interaction and highlights the role of the nucleocapsid protein in promoting this additional RNA-RNA annealing. This study presents the first direct observation at a single base-pair resolution of the PAS/anti-PAS association, which has been proposed to be involved in the chronological regulation of the reverse transcription. PMID:23762248

Brachet, Franck; Tisne, Carine

2013-01-01

240

Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CD spectroscopies.  

PubMed

The structure of the model protein hen egg-white lysozyme dissolved in water and in five neat organic solvents (ethylene glycol, methanol, dimethylsulfoxide (DMSO), formamide, and dimethylformamide (DMF)) has been examined by means of 1H NMR and circular dichroism (CD) spectroscopies. The NMR spectra of lysozyme reveal the lack of a defined tertiary structure in all five organic solvents, although the examination of line widths suggests the possibility of some ordered structure in ethylene glycol and in methanol. The near-UV CD spectra of the protein suggest no tertiary structure in lysozyme dissolved in DMSO, formamide, and DMF, while a distinctive (albeit less pronounced than in water) tertiary structure is seen in ethylene glycol and a drastically changed one in methanol. A highly developed secondary structure was observed by far-UV CD in ethylene glycol and methanol; interestingly, the alpha-helix content of the protein in both was greater than in water, while the beta-structure content was lower. (Solvent absorbance in the far-UV region prevents conclusions about the secondary structure in DMSO, formamide and DMF.) PMID:10099601

Knubovets, T; Osterhout, J J; Klibanov, A M

1999-04-20

241

Quadruple-resonance magic-angle spinning NMR spectroscopy of deuterated solid proteins.  

PubMed

(1)H-detected magic-angle spinning NMR experiments facilitate structural biology of solid proteins, which requires using deuterated proteins. However, often amide protons cannot be back-exchanged sufficiently, because of a possible lack of solvent exposure. For such systems, using (2)H?excitation instead of (1)H?excitation can be beneficial because of the larger abundance and shorter longitudinal relaxation time, T1, of deuterium. A new structure determination approach, "quadruple-resonance NMR spectroscopy", is presented which relies on an efficient (2)H-excitation and (2)H-(13)C cross-polarization (CP) step, combined with (1)H?detection. We show that by using (2)H-excited experiments better sensitivity is possible on an SH3 sample recrystallized from 30?% H2O. For a membrane protein, the ABC transporter ArtMP in native lipid bilayers, different sets of signals can be observed from different initial polarization pathways, which can be evaluated further to extract structural properties. PMID:24474388

Akbey, Ümit; Nieuwkoop, Andrew J; Wegner, Sebastian; Voreck, Anja; Kunert, Britta; Bandara, Priyanga; Engelke, Frank; Nielsen, Niels Chr; Oschkinat, Hartmut

2014-02-24

242

Membrane insertion and orientation of polyalanine peptides: a (15)N solid-state NMR spectroscopy investigation.  

PubMed Central

Polyalanine-based peptides were prepared by solid-phase peptide synthesis, labeled with (15)N at selected sites, reconstituted into oriented phosphatidylcholine bilayers, and investigated by proton-decoupled (15)N solid-state NMR spectroscopy. The anisotropic (15)N chemical shift is a direct indicator of helix alignment with respect to the membrane normal. The in-plane to transmembrane equilibrium is the focus of this study. Time- and solvent-dependent transmembrane alignments of K(3)A(18)K(3) have been obtained, and these are stabilized when a few alanine residues are replaced with leucine. The results are discussed in the context of a model where polyalanines adopt a variety of configurations, which are interconnected by multiple equilibria. The data indicate hydrophobicity values of alanine close to zero when studied in the context of helical polypeptides (> or =24 residues) and phospholipid bilayers. PMID:11566795

Bechinger, B

2001-01-01

243

Characterization of vacuum residues by adsorption chromatography and /sup 1/H-NMR spectroscopy  

SciTech Connect

The chemical compositions of, and structural types in, vacuum residues from Daqing, Shengli, Renqiu and Linpan crude oil vacuum residues were investigated. The residues were separated into six fractions by use of normal pentane precipitation and liquid adsorption chromatography using alumina containing 5% water as adsorbent. The nitrogen and nickel distributions in every fraction were then observed. The removal of nickel, nitrogen and residual carbon with the liquid chromatography separation techniques are comparable with the solvent deasphalting pilot plant data. The structural parameters were calculated with modified Brown-Ladner's method on the basis of elementary analysis, molecular weight determination and /sup 1/H-NMR spectroscopy, the results obtained show that the six fractions are obviously different in their chemical compositions and structures.

Liu, C.; Que, G.; Chen, Y.; Liang, W.

1988-01-01

244

Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA'BB' spin system of taurine at 1.5 T is discussed.

Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter

2000-08-01

245

Broadband adiabatic inversion pulses for cross polarization in wideline solid-state NMR spectroscopy  

E-print Network

Broadband adiabatic inversion pulses for cross polarization in wideline solid-state NMR polarization Solid-state NMR Wideline NMR Stationary sample CPMG WURST­CPMG 119 Sn 207 Pb 195 Pt a b s t r a c t Efficient acquisition of ultra-wideline solid-state NMR powder patterns is a continuing challenge. In par

Frydman, Lucio

246

Determination of astaxanthin and astaxanthin esters in the microalgae Haematococcus pluvialis by LC-(APCI)MS and characterization of predominant carotenoid isomers by NMR spectroscopy.  

PubMed

The oily product ZANTHIN consists of natural astaxanthin, which is manufactured from the microalgae Haematococcus pluvialis by supercritical CO(2) extraction. An HPLC method was developed to separate all of the components of the complex astaxanthin extract using a C(30) column. The separation resulted in different isomers of astaxanthin accompanied by two other carotenoids. The main component consisted of astaxanthin singly esterified with several different fatty acids. C18:3, C18:2, C18:1 and C16:0 were identified as the most commonly occurring fatty acids. Doubly esterified astaxanthin was also found, although in lower concentrations compared to singly esterified astaxanthin. After performing a detailed fatty acid analysis by GC-MS, the peaks from the extract were assigned via HPLC-MS. A trans to cis transmutation of the all-trans compound was performed by thermal treatment in order to obtain an enrichment of cis isomers as the basis for unambiguous identification via NMR experiments. The all-trans as well as the 9- and 13-cis isomers of astaxanthin were characterized in detail by UV/Vis, (1)H, and (1)H,(1)H COSY NMR spectroscopy. PMID:19466394

Holtin, Karsten; Kuehnle, Maximilian; Rehbein, Jens; Schuler, Paul; Nicholson, Graeme; Albert, Klaus

2009-11-01

247

The application of solid-state NMR spectroscopy to study candesartan cilexetil (TCV-116) membrane interactions. Comparative study with the AT1R antagonist drug olmesartan.  

PubMed

??1 receptor (AT1R) antagonists exert their antihypertensive effects by preventing the vasoconstrictive hormone AngII to bind to the AT1 receptor. It has been proposed that these biological effects are mediated through a two-step mechanism reaction. In the first step, they are incorporated in the core of the lipid bilayers and in the second step they reach the active site of the receptor through lateral diffusion. In this model, drug/membrane interactions are key elements for the drugs achieving inhibition at the AT1 receptor. In this work, the interactions of the prodrug candesartan cilexetil (TCV-116) with lipid bilayers are studied at molecular detail. Solid-state (13)C-CP/MAS, 2D (1)H-(1)H NOESY NMR spectroscopy and in silico calculations are used. TCV-116 and olmesartan, another drug which acts as an AT1R antagonist are compared for their dynamic effects in lipid bilayers using solid-state (2)H-NMR. We find a similar localization of TCV-116 compared to other AT1 antagonists in the intermediate polar region. In addition, we can identify specific local interactions. These interactions may be associated in part with the discrete pharmacological profiles observed for different antagonists. PMID:24946142

Ntountaniotis, Dimitrios; Kellici, Tahsin; Tzakos, Andreas; Kolokotroni, Pinelopi; Tselios, Theodore; Becker-Baldus, Johanna; Glaubitz, Clemens; Lin, Sonyan; Makriyannis, Alexandros; Mavromoustakos, Thomas

2014-10-01

248

The Basics of NMR  

NSDL National Science Digital Library

This resource is an online textbook containing information about Nuclear Magnetic Resonance (NMR). Information inlcudes mathhematics of NMR, spin physics, Spectroscopy, pulse sequences, and NMR hardware. The "Practical Considerations" chapter emphasizes spectroscopic techniques.

Hornak, Joseph

2003-10-10

249

Multiple acquisition/multiple observation separated local field/chemical shift correlation solid-state magic angle spinning NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Multiple acquisition spectroscopy (MACSY) experiments that enable multiple free induction decays to be recorded during individual experiments are demonstrated. In particular, the experiments incorporate separated local field spectroscopy into homonuclear and heteronuclear correlation spectroscopy. The measured heteronuclear dipolar couplings are valuable in structure determination as well as in enhancing resolution by providing an additional frequency axis. In one example four different three-dimensional spectra are obtained in a single experiment, demonstrating that substantial potential saving in experimental time is available when multiple multi-dimensional spectra are required as part of solid-state NMR studies.

Das, Bibhuti B.; Opella, Stanley J.

2014-08-01

250

Probing site-specific 13C/15N-isotope enrichment of spider silk with liquid-state NMR spectroscopy.  

PubMed

Solid-state nuclear magnetic resonance (NMR) has been extensively used to elucidate spider silk protein structure and dynamics. In many of these studies, site-specific isotope enrichment is critical for designing particular NMR methods for silk structure determination. The commonly used isotope analysis techniques, isotope-ratio mass spectroscopy and liquid/gas chromatography-mass spectroscopy, are typically not capable of providing the site-specific isotope information for many systems because an appropriate sample derivatization method is not available. In contrast, NMR does not require any sample derivatization or separation prior to analysis. In this article, conventional liquid-state (1)H NMR was implemented to evaluate incorporation of (13)C/(15)N-labeled amino acids in hydrolyzed spider dragline silk. To determine site-specific (13)C and (15)N isotope enrichments, an analysis method was developed to fit the (1)H-(13)C and (1)H-(15)N J-splitting (J CH and J NH) (1)H NMR peak patterns of hydrolyzed silk fiber. This is demonstrated for Nephila clavipes spiders, where [U-(13)C3,(15)N]-Ala and [1-(13)C,(15)N]-Gly were dissolved in their water supplies. Overall, contents for Ala and Gly isotopomers are extracted for these silk samples. The current methodology can be applied to many fields where site-specific tracking of isotopes is of interest. PMID:23435452

Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

2013-05-01

251

State-of-the-Art Direct 13C and Indirect 1H-[13C] NMR Spectroscopy In Vivo  

PubMed Central

Carbon-13 NMR spectroscopy in combination with 13C-labeled substrate infusion is a powerful technique to measure a large number of metabolic fluxes non-invasively in vivo. It has been used to quantify glycogen synthesis rates, establish quantitative relationships between energy metabolism and neurotransmission and evaluate the importance of different substrates. All measurements can, in principle, be performed through direct 13C NMR detection or via indirect 1H-[13C] NMR detection of the protons attached to 13C nuclei. The choice for detection scheme and pulse sequence depends on the magnetic field strength, whereas substrate selection depends on the metabolic pathways that are studied. 13C NMR spectroscopy remains a challenging technique that requires several non-standard hardware modifications, infusion of 13C-labeled substrates and sophisticated processing and metabolic modeling. Here the various aspects of direct 13C and indirect 1H-[13C] NMR are reviewed with the aim of providing a practical guide. PMID:21919099

de Graaf, Robin A.; Rothman, Douglas L.; Behar, Kevin L.

2013-01-01

252

Application of progress curve analysis to in situ enzyme kinetics using 1H NMR spectroscopy.  

PubMed

The steady-state kinetics of enzymes in tissues, cells, and concentrated lysates can be characterized using high-resolution nuclear magnetic resonance spectroscopy; this is possible because almost invariably there are differences in the spectra of substrates and products of a reaction and these spectra are obtainable even from optically opaque samples. We used 1H spin-echo NMR spectroscopy to study the hydrolysis of alpha-L-glutamyl-L-alanine by cytosolic peptidases of lysed human erythrocytes. Nonlinear regression of the integrated Michaelis-Menten expression onto the progress-curve data yielded, directly, estimates of Vmax and Km for the hydrolase; a procedure for analyzing progress curves in this manner was adapted and compared with a commonly used procedure which employs the Newton-Raphson algorithm. We also performed a sensitivity analysis of the integrated Michaelis-Menten expression; this yielded equations that indicate under what conditions estimates of Km and Vmax are most sensitive to variations in experimental observables. Specifically, we showed that the most accurate estimates of the steady-state parameters from analysis of progress curves are obtained when the initial substrate concentration is much greater than Km. Furthermore, estimates of these parameters obtained by such an analysis are most sensitive to data obtained when the reaction is 60-80% complete, having started with the highest practicable initial substrate concentration. PMID:3013046

Vandenberg, J I; Kuchel, P W; King, G F

1986-05-15

253

Characterization of cyclodextrin complexes of camostat mesylate by ESI mass spectrometry and NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Supramolecular interactions between camostat mesylate, a serine protease inhibitor ( 1), with ?-, ?-, and ?-cyclodextrin (CD) in water were investigated using electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. ESI mass spectral analysis revealed that the 1:1 stoichiometry in all the complexes was formed. The binding constants ( Kst) calculated by linear equations constructed from the ESI mass spectra of all the complexes indicated that ?-CD was most favorable complexing agent for the binding with 1 among the CDs. Pronounced changes in the 1H chemical shift upon complex formation with ?-CD were observed for the protons of the two aromatic rings of 1, with much larger chemical shift changes observed for the protons of the guanidinyl group-linked aromatic ring of 1. These results suggest that the cavity of ?-CD rather than that of ?- or ?-CD is large enough to accommodate the guanidine group of 1. Spatial geometry of 1 within the cavity of ?-CD was further identified with two-dimensional rotating frame nuclear Overhauser effect spectroscopy (2D ROESY) experiment. The observed ROESY cross peaks indicated intermolecular dipolar interactions between the two aromatic ring protons of 1 and the protons within the cavity of ?-CD. Based on the 1:1 stoichiometry of the complex, ROESY cross peaks suggest that two types of 1:1 complexes of ?-CD with 1 exist simultaneously in solution with different geometries.

Kwon, Soonho; Lee, Woonhyoung; Shin, Hye-Jin; Yoon, Sung-il; Kim, Yun-tae; Kim, Young-Jin; Lee, Kyungruyl; Lee, Sanghoo

2009-12-01

254

Distinguishing Polymorphs of the Semiconducting Pigment Copper Phthalocyanine by Solid-state NMR and Raman Spectroscopy  

PubMed Central

Cu(II)(phthalocyanine) (CuPc) is broadly utilized as an archetypal molecular semiconductor and is the most widely used blue printing pigment. CuPc crystallizes in six different forms; the chemical and physical properties are substantially modulated by its molecular packing among these polymorphs. Despite the growing importance of this system, spectroscopic identification of different polymorphs for CuPc has posed difficulties. This study presents the first example of spectroscopic distinction of ?- and ?-forms of CuPc, the most widely used polymorphs, by solid-state NMR (SSNMR) and Raman spectroscopy. 13C high-resolution SSNMR spectra of ?- and ?-CuPc using very-fast magic angle spinning (VFMAS) at 20 kHz show that hyperfine shifts sensitively reflect polymorphs of CuPc. The experimental results were confirmed by ab initio chemical shift calculations. 13C and 1H SSNMR relaxation times of ?- and ?-CuPc under VFMAS also showed marked differences, presumably because of the difference in electronic spin correlation times in the two forms. Raman spectroscopy also provided another reliable method of differentiation between the two polymorphs. PMID:20225842

Shaibat, Medhat A.; Casabianca, Leah B.; Siberio-Pérez, Diana Y.; Matzger, Adam J; Ishii, Yoshitaka

2010-01-01

255

Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution  

NASA Astrophysics Data System (ADS)

Considerable technical improvements are reported for localized proton NMR spectroscopy using stimulated echoes. When compared to previous results, proton NMR spectra of the human brain are now obtainable (i) with in vivo water suppression factors of ?1000, (ii) with only minor T2 losses and negligible distortions due to J modulation at short echo times of 10-20 ms, and (iii) from volumes of interest as small as 1-8 ml within measuring times of 1-10 min. As a consequence, the detection of cerebral metabolites is greatly facilitated. This particularly applies to the assignment of those resonances (e.g., glutamate, taurine, inositols) that suffer from strong spin-spin coupling at the field strengths commonly in use for NMR in man. Studies of regional metabolite differences, tissue heterogeneity, and focal lesions in patients benefit from the increased spatial resolution and a concomitant reduction of partial volume effects. Localized proton NMR spectroscopy was performed on young healthy volunteers. Experiments were carried out on a 2.0 T whole-body MRI/MRS system using the standard headcoil for both imaging and spectroscopy.

Frahm, J.; Michaelis, T.; Merboldt, K. D.; Bruhn, H.; Gyngell, M. L.; Hänicke, W.

256

A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques.  

PubMed

A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at ? 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the <(13)C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS(2)), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C-S moiety of CS(2) at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C-O were clearly observed in the FTIR spectrum while the (1)H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The (13)C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50. PMID:22971583

Hamzah, Rosniza; Bakar, Mohamad Abu; Khairuddean, Melati; Mohammed, Issam Ahmed; Adnan, Rohana

2012-01-01

257

Exploring weak, transient protein-protein interactions in crowded in vivo environments by in-cell NMR spectroscopy  

PubMed Central

Biology relies on functional interplay of proteins in the crowded and heterogeneous environment inside cells, and functional protein interactions are often weak and transient. Thus, methods are needed that preserve these interactions and provide information about them. In-cell NMR spectroscopy is an attractive method to study a protein’s behavior in cells because it may provide residue-level structural and dynamic information. Yet several factors limit the feasibility of protein NMR spectroscopy in cells, and among them slow rotational diffusion has emerged as the most important. In this paper, we seek to elucidate the causes of the dramatically slow protein tumbling in cells and in so doing to gain insight into how the intracellular viscosity and weak, transient interactions modulate protein mobility. To address these questions, we characterized the rotational diffusion of three model globular proteins in E. coli cells using 2D heteronuclear NMR spectroscopy. These proteins have a similar molecular size and globular fold, but very different surface properties, and indeed, they show very different rotational diffusion in the E. coli intracellular environment. Our data are consistent with an intracellular viscosity approximately eight times that of water—too low to be a limiting factor to observing small globular proteins by in-cell NMR spectroscopy. Thus, we conclude that transient interactions with cytoplasmic components significantly and differentially affect the mobility of proteins and therefore their NMR detectability. Moreover, we suggest that an intricate interplay of total protein charge and hydrophobic interactions plays a key role in regulating these weak intermolecular interactions in cells. PMID:21942871

Wang, Qinghua; Zhuravleva, Anastasia; Gierasch, Lila M.

2011-01-01

258

Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy  

PubMed Central

Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide ?-strands into ?-sheets but also the ?-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The ?-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the side-chains buried within the interior of the fibrils. PMID:24304221

Debelouchina, Galia T.; Bayro, Marvin J.; Fitzpatrick, Anthony W.; Ladizhansky, Vladimir; Colvin, Michael T.; Caporini, Marc A.; Jaroniec, Christopher P.; Bajaj, Vikram S.; Rosay, Melanie; MacPhee, Cait E.; Vendruscolo, Michele; Maas, Werner E.; Dobson, Christopher M.; Griffin, Robert G.

2014-01-01

259

31P-NMR SPECTROSCOPY OF RAT LIVER DURING SIMPLE STORAGE OR CONTINUOUS HYPOTHERMIC PERFUSION1  

PubMed Central

SUMMARY The ATP content and intracellular pH (pHi)3 of isolated rat liver before, during, and after cold preservation in either UW-lactobionate (UW, n=10) or Euro-Collins (EC, n=8) solutions were monitored using phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy. The 31P-NMR spectra were obtained on a 4.7-Tesla system operating at 81 MHz. Fructose metabolism, liver enzyme release, O2 consumption, and rat survival after liver transplantation were also evaluated. During simple cold storage (SCS), the ATP level declined to undetectable levels with both preservation solutions while the pHi declined to approximately 7.0. In contrast, during continuous hypothermic perfusion (CHP), hepatic ATP levels remained measurable during the 24-hour EC preservation and actually increased significantly (p>0.01) during UW preservation. After reperfusion at 37°C with Krebs-lactate, the SCS livers treated with EC differed significantly from the UW livers in terms of their ATP and pHi as well as their response to a fructose challenge. In contrast, livers undergoing CHP demonstrated similar behaviors with both solutions. These results demonstrate an increase in the hepatic ATP content during CHP which occurs with UW but is not seen with EC. On the other hand, only livers that were simply stored with UW achieved significant survival after transplant, while CHP livers were affected by vascular damage as demonstrated by fatal thrombosis after transplant. These data suggest that ATP content is not the only determinant of good liver function although a system of hypothermic perfusion might further improve liver preservation efficacy should injury to vascular endothelium be avoided. PMID:1402332

Rossaro, Lorenzo; Murase, Noriko; Caldwell, Cary; Farghali, Hassan; Casavilla, Adrian; Starzl, Thomas E.; Ho, Chien; Van Thiel, David H.

2010-01-01

260

Higher order amyloid fibril structure by MAS NMR and DNP spectroscopy.  

PubMed

Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure, and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide ?-strands into ?-sheets but also the ?-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The ?-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the residues buried within the interior of the fibrils. PMID:24304221

Debelouchina, Galia T; Bayro, Marvin J; Fitzpatrick, Anthony W; Ladizhansky, Vladimir; Colvin, Michael T; Caporini, Marc A; Jaroniec, Christopher P; Bajaj, Vikram S; Rosay, Melanie; Macphee, Cait E; Vendruscolo, Michele; Maas, Werner E; Dobson, Christopher M; Griffin, Robert G

2013-12-26

261

Enhanced detection of aldehydes in Extra-Virgin Olive Oil by means of band selective NMR spectroscopy  

NASA Astrophysics Data System (ADS)

High resolution Nuclear Magnetic Resonance (NMR) spectroscopy is a very powerful tool for comprehensive food analyses and especially for Extra-Virgin Olive Oils (EVOOs). We use the NMR technique to study the spectral region of aldehydes (8-10 ppm) for EVOOs coming from the south part of Italy. We perform novel experiments by using mono and bidimensional band selective spin-echo pulse sequences and identify four structural classes of aldehydes in EVOOs. For the first time such species are identified in EVOOs without any chemical treatment; only dilution with CDCl3 is employed. This would allow the discrimination of different EVOOs for the aldehydes content increasing the potentiality of the NMR technique in the screening of metabolites for geographical characterization of EVOOs.

Dugo, Giacomo; Rotondo, Archimede; Mallamace, Domenico; Cicero, Nicola; Salvo, Andrea; Rotondo, Enrico; Corsaro, Carmelo

2015-02-01

262

Fast Li diffusion in crystalline LiBH4 due to reduced dimensionality: Frequency-dependent NMR spectroscopy  

NASA Astrophysics Data System (ADS)

The hexagonal and orthorhombic form of lithium borohydride, LiBH4 , are investigated by temperature and frequency-dependent nuclear magnetic resonance (NMR) spectroscopy. The local electronic structure and microscopic diffusion parameters are determined by recording both L6,7i NMR spectra and spin-lattice relaxation (SLR) rates. The rates of the high-temperature flank of the SLR-NMR peaks of hexagonal LiBH4 clearly depend on resonance frequency which unequivocally reveals a low-dimensional diffusion process. Due to the very limited number of suitable model substances this makes lithium borohydride an extremely attractive material to study the effect of reduced dimensionality on Li dynamics. Most likely, the spatial confinement of Li hopping is also responsible for the very high ionic conductivity found for the hexagonal polymorph, recently.

Epp, V.; Wilkening, M.

2010-07-01

263

Bond covalency in perovskite oxynitrides ATaO2N (A = Ca, Sr, Ba) studied by 14N NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Local geometry and bond ionicity around the nitride ions in simple perovskite oxynitrides ATaO2N (A = Ca, Sr, Ba) have been investigated by solid-state magic-angle spinning (MAS) NMR spectroscopy. From all three compounds, fairly sharp 14N NMR peaks were observed, suggestive of the symmetric coordination environment of nitride ions. The 14N chemical shifts of ATaO2N, ? = 269-272 ppm relative to NH4Cl (? = 0 ppm), are correlated to the bond ionicity, based on the N-Ta bond distances and Ta-N-Ta bond angles determined from the Rietveld refinement of neutron diffraction patterns. The 1H NMR measured for BaTaO2N presented a peak corresponding to H2O, implying that the polycrystalline surface of present oxynitride phases is covered by hydroxide terminals.

Kim, Young-Il; Paik, Younkee

2012-05-01

264

Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy.  

PubMed

Solid-state NMR spectroscopy has emerged as an excellent tool to study the structure and dynamics of membrane proteins under native-like conditions in lipid bilayers. One of the key considerations in experimental design is the uniaxial rotational diffusion of the protein that can affect the NMR spectral observables. In this regard, temperature plays a fundamental role in modulating the phase properties of the lipids, which directly influences the rotational diffusion rate of the protein in the bilayer. In fact, it is well established that below the main phase transition temperature of the lipid bilayer the protein's motion is significantly slowed while above this critical temperature the rate is increased. In this article, we carried out a systematic comparison of the signal intensity and spectral resolution as a function of temperature using magic-angle-spinning (MAS) solid-state NMR spectroscopy. These observables were directly correlated with the relative fluidity of the lipid bilayer as inferred from differential scanning calorimetry (DSC). We applied our hybrid biophysical approach to two polytopic membrane proteins from the small multidrug resistance family (EmrE and SugE) reconstituted into model membrane lipid bilayers (DMPC-14:0 and DPPC-16:0). From these experiments, we conclude that the rotational diffusion giving optimal spectral resolution occurs at a bilayer fluidity of ~5%, which corresponds to the percentage of lipids in the fluid or liquid-crystalline fraction. At the temperature corresponding to this critical value of fluidity, there is sufficient mobility to reduce inhomogeneous line broadening that occurs at lower temperatures. A greater extent of fluidity leads to faster uniaxial rotational diffusion and a sigmoidal-type reduction in the NMR signal intensity, which stems from intermediate-exchange dynamics where the motion has a similar frequency as the NMR observables (i.e., dipolar couplings and chemical shift anisotropy). These experiments provide insight into the optimal temperature range and corresponding bilayer fluidity to study membrane proteins by solid-state NMR spectroscopy. This article is part of a Special Issue entitled, NMR Spectroscopy for Atomistic Views of Biomembranes and Cell Surfaces. Guest Editors: Lynette Cegelski and David P. Weliky. PMID:24835018

Banigan, James R; Gayen, Anindita; Traaseth, Nathaniel J

2015-01-01

265

Elastic deformation and area per lipid of membranes: Atomistic view from solid-state deuterium NMR spectroscopy.  

PubMed

This article reviews the application of solid-state (2)H nuclear magnetic resonance (NMR) spectroscopy for investigating the deformation of lipid bilayers at the atomistic level. For liquid-crystalline membranes, the average structure is manifested by the segmental order parameters (SCD) of the lipids. Solid-state (2)H NMR yields observables directly related to the stress field of the lipid bilayer. The extent to which lipid bilayers are deformed by osmotic pressure is integral to how lipid-protein interactions affect membrane functions. Calculations of the average area per lipid and related structural properties are pertinent to bilayer remodeling and molecular dynamics (MD) simulations of membranes. To establish structural quantities, such as area per lipid and volumetric bilayer thickness, a mean-torque analysis of (2)H NMR order parameters is applied. Osmotic stress is introduced by adding polymer solutions or by gravimetric dehydration, which are thermodynamically equivalent. Solid-state NMR studies of lipids under osmotic stress probe membrane interactions involving collective bilayer undulations, order-director fluctuations, and lipid molecular protrusions. Removal of water yields a reduction of the mean area per lipid, with a corresponding increase in volumetric bilayer thickness, by up to 20% in the liquid-crystalline state. Hydrophobic mismatch can shift protein states involving mechanosensation, transport, and molecular recognition by G-protein-coupled receptors. Measurements of the order parameters versus osmotic pressure yield the elastic area compressibility modulus and the corresponding bilayer thickness at an atomistic level. Solid-state (2)H NMR thus reveals how membrane deformation can affect protein conformational changes within the stress field of the lipid bilayer. This article is part of a Special Issue entitled: NMR Spectroscopy for Atomistic Views of Biomembranes and Cell Surfaces. Guest Editors: Lynette Cegelski and David P. Weliky. PMID:24946141

Kinnun, Jacob J; Mallikarjunaiah, K J; Petrache, Horia I; Brown, Michael F

2015-01-01

266

The stoichiometry of synthetic alunite as a function of hydrothermal aging investigated by solid-state NMR spectroscopy, powder X-ray diffraction and infrared spectroscopy  

NASA Astrophysics Data System (ADS)

The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1-31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7-10 % impurities in the samples.

Grube, Elisabeth; Nielsen, Ulla Gro

2014-11-01

267

Use of nuclear magnetic resonance (NMR) spectroscopy for the analysis of chemical warfare agents and their degradation products in enviornmental samples  

SciTech Connect

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful analytical techniques for elucidating the molecular structure of organic compounds. In environmental samples, the identification and detection of chemical warfare related compounds is best accomplished using high field high resolution NMR. This paper describes the experimental procedures.

Szafraniec, L.L.; Beaudry, W.T. [Army Edgewood Research, Aberdeen Proving Ground, MD (United States)

1995-06-01

268

Cherry tomatoes metabolic profile determined by ¹H-High Resolution-NMR spectroscopy as influenced by growing season.  

PubMed

The content of the most valuable metabolites present in the lipophilic fraction of Protected Geographical Indication cherry tomatoes produced in Pachino (Italy) was observed for 2 cultivated varieties, i.e. cv. Naomi and cv. Shiren, over a period of 3 years in order to observe variations due to relevant climatic parameters, e.g. solar radiation and average temperature, characterising different seasons. (1)H-NMR spectroscopy was applied and spectral data were processed by means of Principal Component Analysis (PCA). We found that the metabolic profile was different for the two considered cultivated varieties and they were differently affected by climatic conditions. Major metabolites influenced by cropping period were ?-tocopherol and the unsaturated lipid fraction in Naomi cherry tomatoes, and chlorophylls and phospholipids in Shiren variety, respectively. These results furnished useful information on seasonal dynamics of such important nutritional metabolites contained in tomatoes, confirming also NMR spectroscopy as powerful tool to define a complete metabolic profiling. PMID:24874378

Masetti, Olimpia; Ciampa, Alessandra; Nisini, Luigi; Valentini, Massimiliano; Sequi, Paolo; Dell'Abate, Maria Teresa

2014-11-01

269

Investigation of Local Structures in Layered Niobates by Solid-state NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

Research on ion-exchangeable layered niobates has attracted great attention due to their unique structures and corresponding variations in properties and applications, such as ion conductors, solid acids, and water splitting catalysts. Families of layered niobates include double-layered or triple-layered Dion-Jacobson type perovskites (ALaNb2O7, A = Cs, Rb, K, H; AM2Nb3O10, A = Rb, K, H; M = Sr, Ca), layered niobates with both edge and corner sharing of NbO6 octahedra (KNb3O8, HNb3O6, Nb 6O17 and H4Nb6O17) and many others. Lately, more developments in the layered niobates through a variety of topochemical manipulations have been achieved. The topochemical reactions include ion exchange, exfoliation, substitution, and etc. As a result, many new materials have been successfully prepared, for example, solid solutions (ALa2NbTi2O10, ACaLaNb2TiO 10 and ACa2Nb3-xTaxO10, etc.), nanosheets (HNb3O8, H4Nb6O17, HLaNb2O7, HCa2Nb3O10, etc., to intercalate with organic molecules such as tetrabutylammonium hydroxide or n-butylamines), and nanoscrolls (from H2K2Nb 6O17). While these structural modifications often induce improvements in properties, the fundamental mechanisms of improvements in properties upon the modifications, especially local structural arrangements are poorly understood, which is often limited by structural characterizations. Particularly, the characterizations of the exfoliated nanosheets can be difficult by conventional X-ray diffraction (XRD) method due to disordered structures. Alternatively, solid-state nuclear magnetic resonance (NMR) spectroscopy is a useful tool to study local structures in solids. The structural information can be extracted by examining intrinsic interactions, such as quadrupolar, chemical shielding, and dipolar interactions, which are all associated with local environments surrounding a specific nucleus, 1H or 93Nb in layered niobates. The ultimate goal of this dissertation is to understand the relationships between local structures of layered niobates and their chemical or physical properties, and provide insights into further modifications and improvements. The primary objectives of this work are summarized below: I. Synthesis of series of layered niobates (ALaNb2O7 , A = Cs, Rb, K; KNb3O8; K4Nb 6O17; RbLa2NbTi2O10 and RbCaLaNb2TiO10) by microwave heating or cation exchange methods, their protonated forms by acid exchange (HLaNb2O 7, H3ONb3O8 and HNb3O 8, H4Nb8O17, HLa2NbTi 2O10 and HCaLaNb2TiO10), and three nanosheet niobates by exfoliation (HNb3O8, H4Nb 6O17 and HLaNb2O7 nanosheets). II. Structural characterizations of all niobates by powder XRD and solid-state NMR spectroscopy. Powder XRD is used to determine lattice constants and long-range structural ordering. Solid-state NMR is used to determine the electric field gradient parameters, chemical shift anisotropy parameters and dipolar coupling constants. Solid-state NMR techniques include 93Nb MQMAS, wide-line VOCS echo and WURST-echo; 1H{93Nb} CP, TRAPDOR, S-RESPDOR and iS-RESPDOR experiments. III. Understanding the trends of changes in NMR parameters with respect to cation exchange, exfoliation and compositional alteration, and correlation of the NMR parameters with local environments and possible structural rearrangements. IV. Identification of proton locations in the acid-exchanged niobates and surface acidity for the exfoliated nanosheets, based on 1H chemical shifts and dipolar coupling information from CP, S-RESPDOR and iS-RESPDOR experiments.

Liu, Ting

270

COVALENT BINDING OF REDUCED METABOLITES OF [15N3] TNT TO SOIL ORGANIC MATTER DURING A BIOREMEDIATION PROCESS ANALYZED BY 15N NMR SPECTROSCOPY. (R826646)  

EPA Science Inventory

Evidence is presented for the covalent binding of biologically reduced metabolites of 2,4,6-15N3-trinitrotoluene (TNT) to different soil fractions (humic acids, fulvic acids, and humin) using liquid 15N NMR spectroscopy. A silylation p...

271

In Vivo Phosphorus-31 Nuclear Magnetic Resonance (NMR) Spectroscopy Of Cardiac Metabolism: Initial Observations Of Hypoxia And Adrenergic Stimulation  

NASA Astrophysics Data System (ADS)

High resolution 31P nuclear magnetic resonance (NMR) spectroscopy has been applied to the direct, noninvasive examination of phosphorylated substrate metabolism in the myocardium of live rabbits. By the combination of field profiling gradients and a surface, or flat, NMR coil placed directly over the region of the thorax which contains the heart, spatially localized NMR measurements of metabolic function in live animals can be obtained. This technique, termed "topical magnetic resonance" or TMR, has been used to follow the effects of several physiological conditions on the tissue pH and levels of key, energy-rich phosphorylated compounds in the hearts of live, anesthetized rabbits. Changes in tissue content of adenosine triphosphate (ATP), creatine phosphate (CP), and inorganic phosphate (Pi) and the NMR line widths of these species have been observed in animals given appropriate doses of adriamycin for a five day period. These preliminary data demonstrate the potential of spectroscopic NMR techniques in the evaluation of disease states in organs and tissues within the body and the ability to monitor both toxic and therapeutic effects of drugs.

Nunnally, Ray L.

1982-12-01

272

Determination of the time course of an enzymatic reaction by 1H NMR spectroscopy: hydroxynitrile lyase catalysed transhydrocyanation  

NASA Astrophysics Data System (ADS)

The time course of the enzyme catalysed transhydrocyanation of benzaldehyde to give ( S)-mandelonitrile was investigated using a hydroxynitrile lyase from Hevea brasiliensis as catalyst and acetone cyanohydrin as cyanide donor. Employing special techniques it was possible to apply 1H NMR spectroscopy in aqueous medium to monitor the concentration changes of all substrates and products. By this technique strong evidence for inhibition of the enzyme at higher substrate concentrations was obtained.

Hickel, A.; Gradnig, G.; Griengl, H.; Schall, M.; Sterk, H.

1996-01-01

273

The heterogeneous nature of microbial products as shown by solid-state 13 C CP\\/MAS NMR spectroscopy  

Microsoft Academic Search

Homoionic Na-, Ca-, and Al-clays were prepared from the 13C-labelled (99.9% atom) glucose were incorporated into the artificial soils to study the effects of clay types, exchangeable cations and clay contents on the mineralization of glucose-carbon and glucose-derived organic materials. Chemical transformation of glucose-carbon upon incorporation into microbial products and metabolites, was followed using solid-state13C CP\\/MAS NMR spectroscopy.

A. Golchin; P. Clarke; J. M. Oades

1996-01-01

274

Crystallinity and structuring role of water in native and recrystallized starches by 13C CP-MAS NMR spectroscopy  

Microsoft Academic Search

Amorphous, native, and recrystallized starches were studied by 13C CP-MAS NMR spectroscopy with respect to their behavior with hydration. The study of space groups, associated to crystalline polymorphs (B2 and P61 for A and B forms, respectively), provided decomposition rules for the spectral part due to crystalline phases. Moreover, the subtraction of a standard amorphous spectrum apparently showed the existence

H Bizot; J Emery; J. Y Buzaré; A Buléon

1999-01-01

275

Studies on the interactions between glycosylated ? 3-peptides and the lectin Vicia villosa by saturation transfer difference NMR spectroscopy  

Microsoft Academic Search

Saturation transfer difference (STD) NMR spectroscopy was used to study the interaction of the lectin Vicia villosa (VVLB4) with ?-d-GalNAc glycosylated ?3-peptides. The data were compared to those obtained with the monosaccharides d-Gal, d-GalNAc, and d-Glc as well as with those obtained with the Tn antigen ?-glycopeptide (d-GalNAc-?-O-Ser\\/Thr), molecule naturally recognized by V. villosa. Evidence that the lectin also recognizes

Marta Kaszowska; Anna S. Norgren; Per I. Arvidson; Corine Sandström

2009-01-01

276

Comparison of Lactate and Glucose Metabolism in Cultured Neocortical Neurons and Astrocytes Using 13C-NMR Spectroscopy  

Microsoft Academic Search

In cerebral cortical neurons, synthesis of the tricarboxylic acid (TCA) cycle-derived amino acids, glutamate and aspartate as well as the neurotransmitter of these neurons, ?-aminobutyrate (GABA), was studied incubating the cells in media containing 0.5 mM [U-13C]glucose in the absence or presence of glutamine (0.5 mM). Lyophilized cell extracts were analyzed by 13C nuclear magnetic resonance (NMR) spectroscopy and HPLC.

H. S. Waagepetersen; I. J. Bakken; O. M. Larsson; U. Sonnewald; A. Schousboe

1998-01-01

277

Molecular Dynamics and NMR Spectroscopy Studies of E. coli Lipopolysaccharide Structure and Dynamics  

PubMed Central

Lipopolysaccharide (LPS), a component of Gram-negative bacterial outer membranes, comprises three regions: lipid A, core oligosaccharide, and O-antigen polysaccharide. Using the CHARMM36 lipid and carbohydrate force fields, we have constructed a model of an Escherichia coli R1 (core) O6 (antigen) LPS molecule. Several all-atom bilayers are built and simulated with lipid A only (LIPA) and varying lengths of 0 (LPS0), 5 (LPS5), and 10 (LPS10) O6 antigen repeating units; a single unit of O6 antigen contains five sugar residues. From 1H,1H-NOESY experiments, cross-relaxation rates are obtained from an O-antigen polysaccharide sample. Although some experimental deviations are due to spin-diffusion, the remaining effective proton-proton distances show generally very good agreement between NMR experiments and molecular dynamics simulations. The simulation results show that increasing the LPS molecular length has an impact on LPS structure and dynamics and also on LPS bilayer properties. Terminal residues in a LPS bilayer are more flexible and extended along the membrane normal. As the core and O-antigen are added, per-lipid area increases and lipid bilayer order decreases. In addition, results from mixed LPS0/5 and LPS0/10 bilayer simulations show that the LPS O-antigen conformations at a higher concentration of LPS5 and LPS10 are more orthogonal to the membrane and less flexible. The O-antigen concentration of mixed LPS bilayers does not have a significant effect on per-lipid area and hydrophobic thickness. Analysis of ion and water penetration shows that water molecules can penetrate inside the inner core region, and hydration is critical to maintain the integrity of the bilayer structure. PMID:24047996

Wu, Emilia L.; Engström, Olof; Jo, Sunhwan; Stuhlsatz, Danielle; Yeom, Min Sun; Klauda, Jeffery B.; Widmalm, Göran; Im, Wonpil

2013-01-01

278

Earle K. Plyler Prize for Molecular Spectroscopy Talk: Coherent Ultrafast Multidimensional Spectroscopy of Molecules; From NMR to X-rays  

Microsoft Academic Search

Multidimensional spectroscopic techniques which originated with NMR in the 1970s have been extended over the past 15 years to the optical regime. NMR spectroscopists have developed methods for the design of pulse sequences that resolve otherwise congested spectra, enhance selected spectral features and reveal desired dynamical events. The major experimental and computational advances required for extending these ideas to study

Shaul Mukamel

2011-01-01

279

Near constant loss regime in fast ionic conductors analyzed by impedance and NMR spectroscopies.  

PubMed

Universal dielectric response (UDR) and nearly constant loss (NCL) dispersive regimes have been investigated in fast ion conductors with perovskite and NASICON structure by using NMR and impedance spectroscopy (IS). In this study, the electrical behavior of La(0.5)Li(0.5)TiO3 (LLTO-05) perovskite and Li(1.2)Ti(1.8)Al(0.2)(PO4)3 (LTAP0-02) NASICON compounds was investigated. In both systems a three-dimensional network of conduction paths is present. In the Li-rich LLTO-05 sample, lithium and La are randomly distributed on A-sites of perovskites, but in LTAP0-02 Li and cation vacancies are preferentially disposed at M1 and M2 sites. In perovskite compounds, local motions produced inside unit cells are responsible for the large "near constant loss" regime detected at low temperatures, however, in the case of NASICON compounds, local motions not participating in long-range charge transport were not detected. In both analyzed systems long-range correlated motions are responsible for dc-conductivity values of ceramic grains near 10(-3) S cm(-1) at room temperature, indicating that low-temperature local motions, producing large NCL contribution, are not required to achieve the highest ionic conductivities. PMID:24944081

Bucheli, Wilmer; Arbi, Kamel; Sanz, Jesús; Nuzhnyy, Dmitry; Kamba, Stanislav; Várez, Alejandro; Jimenez, Ricardo

2014-08-01

280

Hetergeneous tumour response to photodynamic therapy assessed by in vivo localised 31P NMR spectroscopy.  

PubMed Central

Photodynamic therapy (PDT) is efficacious in the treatment of small malignant lesions when all cells in the tumour receive sufficient drug, oxygen and light to induce a photodynamic effect capable of complete cytotoxicity. In large tumours, only partial effectiveness is observed presumably because of insufficient light penetration into the tissue. The heterogeneity of the metabolic response in mammary tumours following PDT has been followed in vivo using localised phosphorus NMR spectroscopy. Alterations in nucleoside triphosphates (NTP), inorganic phosphate (Pi) and pH within localised regions of the tumour were monitored over 24-48 h following PDT irradiation of the tumour. Reduction of NTP and increases in Pi were observed at 4-6 h after PDT irradiation in all regions of treated tumours. The uppermost regions of the tumours (those nearest the skin surface and exposed to the greatest light fluence) displayed the greatest and most prolonged reduction of NTP and concomitant increase in Pi resulting in necrosis. The metabolite concentrations in tumour regions located towards the base of the tumour returned a near pre-treatment levels by 24-48 h after irradiation. The ability to follow heterogeneous metabolic responses in situ provides one means to assess the degree of metabolic inhibition which subsequently leads to tumour necrosis. Images Figure 4 PMID:1829953

Ceckler, T. L.; Gibson, S. L.; Kennedy, S. D.; Hill, R.; Bryant, R. G.

1991-01-01

281

Conformational studies of neurohypophyseal hormones analogues with glycoconjugates by NMR spectroscopy.  

PubMed

Two glycosylated peptides have been studied using NMR spectroscopy supported by molecular modeling. Peptide I is an oxytocin (OT) analogue in which glutamine 4 was replaced by serine with attached ?-d-mannose through the oxygen ? atom, whereas peptide II is a lysine-vasopressin (LVP) analogue with lysine 8 side chain modified by the attachment of glucuronic acid through an amide bond. Both peptides exhibit very weak uterotonic effect and are less susceptible to proteolytic degradation than the mother hormones. Additionally, peptide II reveals very weak pressor and antidiuretic activities. Our results have shown that the conformational preferences of glycosylated analogues are highly similar to those of their respective mother hormones. OT glycosylated analogue (I) exhibits a 3,4 ?-turn characteristic of OT-like peptides, and vasopressin-glycosylated analogue (II) exhibits??-turns typical of vasopressin-like peptides. Therefore, the lack of binding of the glycosylated analogues to the receptors can be attributed to a steric interference between the carbohydrate moieties and the receptors. We also consider this to be the reason of the very low activity of the analyzed glycopeptides. We expect that results from these studies will be helpful in designing new OT-like and vasopressin-like drugs. PMID:24644276

Lubecka, Emilia A; Sikorska, Emilia; Marcinkowska, Alina; Ciarkowski, Jerzy

2014-06-01

282

Analysis of Ascarosides from Caenorhabditis elegans Using Mass Spectrometry and NMR Spectroscopy  

PubMed Central

The nematode Caenorhabditis elegans secretes a family of water-soluble small molecules, known as the ascarosides, into its environment and uses these ascarosides in chemical communication. The ascarosides are derivatives of the 3,6-dideoxysugar ascarylose, modified with different fatty acid-derived side chains. C. elegans uses specific ascarosides, which are together known as the dauer pheromone, to trigger entry into the stress-resistant dauer larval stage. In addition, C. elegans uses specific ascarosides to control certain behaviors, including mating attraction, aggregation, and avoidance. Although in general the concentration of the ascarosides in the environment increases with population density, C. elegans can vary the types and amounts of ascarosides that it secretes depending on the culture conditions under which it has been grown and its developmental history. Here, we describe how to grow high-density worm cultures and the bacterial food for those cultures, as well as how to extract the culture medium to generate a crude pheromone extract. Then, we discuss how to analyze the types and amounts of ascarosides in that extract using mass spectrometry and NMR spectroscopy. PMID:24014355

Zhang, Xinxing; Noguez, Jaime H.; Zhou, Yue; Butcher, Rebecca A.

2014-01-01

283

Amino acid conservation and interactions in rhodopsin: probing receptor activation by NMR spectroscopy.  

PubMed

Rhodopsin is a classical two-state G protein-coupled receptor (GPCR). In the dark, its 11-cis retinal chromophore serves as an inverse agonist to lock the receptor in an inactive state. Retinal-protein and protein-protein interactions have evolved to reduce the basal activity of the receptor in order to achieve low dark noise in the visual system. In contrast, absorption of light triggers rapid isomerization of the retinal, which drives the conversion of the receptor to a fully active conformation. Several specific protein-protein interactions have evolved that maintain the lifetime of the active state in order to increase the sensitivity of this receptor for dim-light vision in vertebrates. In this article, we review the molecular interactions that stabilize rhodopsin in the dark-state and describe the use of solid-state NMR spectroscopy for probing the structural changes that occur upon light-activation. Amino acid conservation provides a guide for those interactions that are common in the class A GPCRs as well as those that are unique to the visual system. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks. PMID:24183693

Pope, Andreyah; Eilers, Markus; Reeves, Philip J; Smith, Steven O

2014-05-01

284

Metabolic footprinting study of white spruce somatic embryogenesis using NMR spectroscopy.  

PubMed

White spruce is an important commercial species for reforestation. The success in its propagation through somatic embryogenesis is well documented; however the physiological processes involved are poorly understood and remain unoptimized. The variable quality embryos generated in vitro from the same genotype suggest control at the protein and metabolite level. In order to probe metabolic changes, we have conducted a "metabolic footprinting" study, whereby culture media from growing cells was quantitatively analyzed to determine which metabolites were consumed and excreted. Such experiments are advantageous in that there is no need to quench cellular metabolism or extract intracellular metabolites through time-consuming protocols. In this paper we demonstrate the application of the footprinting assay to somatic embryo cells of white spruce (Picea glauca) using 1D (1)H NMR spectroscopy. We have surveyed embryogenesis metabolism in two types of media, maintenance (MN) and maturation (MT). MN medium does not result in shoot apical meristem (SAM) formation, while MT medium induces the necessary changes leading to fully developed somatic embryos. The two types of media were easily distinguished using metabolomics analysis, namely multivariate pattern recognition statistics (orthogonal partial least squares discriminatory analysis). From this analysis, we have identified numerous compounds involved with branched chain amino acid pathways such as valine and isoleucine. These results are explained on the basis of known metabolic pathways implicated in plant and animal developmental processes, and ultimately implicate altered CoA biosynthesis. PMID:19195904

Dowlatabadi, Reza; Weljie, Aalim M; Thorpe, Trevor A; Yeung, Edward C; Vogel, Hans J

2009-05-01

285

Diffusion in Model Networks as Studied by NMR and Fluorescence Correlation Spectroscopy  

PubMed Central

We have studied the diffusion of small solvent molecules (octane) and larger hydrophobic dye probes in octane-swollen poly(dimethyl siloxane) linear-chain solutions and end-linked model networks, using pulsed-gradient nuclear magnetic resonance (NMR) and fluorescence correlation spectroscopy (FCS), respectively, focusing on diffusion in the bulk polymer up to the equilibrium degree of swelling of the networks, that is, 4.8 at most. The combination of these results allows for new conclusions on the feasibility of different theories describing probe diffusion in concentrated polymer systems. While octane diffusion shows no cross-link dependence, the larger dyes are increasingly restricted by fixed chemical meshes. The simple Fujita free-volume theory proved most feasible to describe probe diffusion in linear long-chain solutions with realistic parameters, while better fits were obtained assuming a stretched exponential dependence on concentration. Importantly, we have analyzed the cross-link specific effect on probe diffusion independently of any specific model by comparing the best-fit interpolation of the solution data with the diffusion in the networks. The most reasonable description is obtained by assuming that the cross-link effect is additive in the effective friction coefficient of the probes. The concentration dependences as well as the data compared at the equilibrium degrees of swelling indicate that swelling heterogeneities and diffusant shape have a substantial influence on small-molecule diffusion in networks. PMID:19812716

2009-01-01

286

Membrane interactions of phylloseptin-1, -2, and -3 peptides by oriented solid-state NMR spectroscopy.  

PubMed

Phylloseptin-1, -2, and -3 are three members of the family of linear cationic antimicrobial peptides found in tree frogs. The highly homologous peptides encompass 19 amino acids, and only differ in the amino acid composition and charge at the six most carboxy-terminal residues. Here, we investigated how such subtle changes are reflected in their membrane interactions and how these can be correlated to their biological activities. To this end, the three peptides were labeled with stable isotopes, reconstituted into oriented phospholipid bilayers, and their detailed topology determined by a combined approach using (2)H and (15)N solid-state NMR spectroscopy. Although phylloseptin-2 and -3 adopt perfect in-plane alignments, the tilt angle of phylloseptin-1 deviates by 8° probably to assure a more water exposed localization of the lysine-17 side chain. Furthermore, different azimuthal angles are observed, positioning the amphipathic helices of all three peptides with the charged residues well exposed to the water phase. Interestingly, our studies also reveal that two orientation-dependent (2)H quadrupolar splittings from methyl-deuterated alanines and one (15)N amide chemical shift are sufficient to unambiguously determine the topology of phylloseptin-1, where quadrupolar splittings close to the maximum impose the most stringent angular restraints. As a result of these studies, a strategy is proposed where the topology of a peptide structure can be determined accurately from the labeling with (15)N and (2)H isotopes of only a few amino acid residues. PMID:25140425

Resende, Jarbas M; Verly, Rodrigo M; Aisenbrey, Christopher; Cesar, Amary; Bertani, Philippe; Piló-Veloso, Dorila; Bechinger, Burkhard

2014-08-19

287

A 13C CP\\/MAS NMR spectroscopy and AFM study of the structure of Glucagel™, a gelling ?-glucan from barley  

Microsoft Academic Search

The structure of Glucagel™, a mixed-linked (1?3), (1?4)-?-d-glucan extracted from barley, was examined using 13C CP\\/MAS NMR spectroscopy and atomic force microscopy (AFM). Results from 13C CP\\/MAS NMR spectroscopy showed that Glucagel™ contained regions with two distinct conformations. In some of the regions the ?-glucan chains associated to form a unique conformation, the A-conformation, while in the other regions the

Keith R. Morgan; Clive J. Roberts; Saul J. B. Tendler; Martyn C. Davies; Phil M. Williams

1999-01-01

288

Human in vivo cardiac phosphorus NMR spectroscopy at 3.0 Tesla  

NASA Astrophysics Data System (ADS)

One of the newest methods with great potential for use in clinical diagnosis of heart disease is human, cardiac, phosphorus NMR spectroscopy (cardiac p 31 MRS). Cardiac p31 MRS is able to provide quantitative, non-invasive, functional information about the myocardial energy metabolites such as pH, phosphocreatine (PCr), and adenosinetriphosphate (ATP). In addition to the use of cardiac p3l MRS for other types of cardiac problems, studies have shown that the ratio of PCr/ATP and pH are sensitive and specific markers of ischemia at the myocardial level. In human studies, typically performed at 1.5 Tesla, PCr/ATP has been relatively easy to measure but often requires long scan times to provide adequate signal-to-noise (SNR). In addition, pH which relies on identification of inorganic phosphate (Pi), has rarely been obtained. Significant improvement in the quality of cardiac p31 MRS was achieved through the use of the General Electric SIGNATM 3.0 Tesla whole body magnet, improved coil designs and optimized pulse sequences. Phantom and human studies performed on many types of imaging and spectroscopy sequences, identified breathhold gradient-echo imaging and oblique DRESS p31 spectroscopy as the best compromises between SNR, flexibility and quality localization. Both single-turn and quadrature 10-cm diameter, p31 radiofrequency coils, were tested with the quadrature coil providing greater SNR, but at a greater depth to avoid skeletal muscle contamination. Cardiac p31 MRS obtained in just 6 to 8 minutes, gated, showed both improved SNR and discernment of Pi allowing for pH measurement. A handgrip, in-magnet exerciser was designed, created and tested at 1.5 and 3.0 Tesla on volunteers and patients. In ischemic patients, this exercise was adequate to cause a repeated drop in PCr/ATP and pH with approximately eight minutes of isometric exercise at 30% maximum effort. As expected from literature, this exercise did not cause a drop in PCr/ATP for reference volunteers.

Bruner, Angela Properzio

289

Humic acids as proxies for assessing different Mediterranean forest soils signatures using solid-state CPMAS 13C NMR spectroscopy.  

PubMed

Humic acids (HAs) of four representative forest soils profiles from Central Spain (two with different vegetation - pine and oak - but same parent material - granitie, and two with same vegetation - holm oak - but different parent material - granite and limestone) were investigated by solid-state cross polarization with magic angle spinning (13)C nuclear magnetic resonance (NMR) spectroscopy. The objectives included the investigation of the impact of different forest properties on HA composition, assessing how the structural characteristics of the HA vary with soil depth, and evaluating the role of HA as surrogates for mapping the different forest soils signatures using structural data derived from (13)C NMR spectroscopy. On average, alkyl C is the dominant C constituent (38-48% of the total NMR peak area) in all HA samples, followed by aromatic (12-22%) and O-alkyl C (12-19%), and finally carboxyl C (7.0-10%). The NMR data also indicated that HA composition is likely to be differently affected by the soil physico-chemical properties and type of forest vegetation. The structural characteristics of the HA from soil under oak did not differ broadly downward in the profile, whereas soil HA under pine forest exhibits a somewhat higher recalcitrant nature as a consequence of a higher degree of decomposition. The soil HA from holm oak forests differed from the other two forest soils, exhibiting a progressive decomposition of the alkyl C structures with increasing depth, while the carbohydrate-like indicator (O-alkyl C) is apparently being protected from mineralization in the horizons below the ground level. Overall, these differences in soil HA NMR signatures are an important diagnostic tool for understanding the role of different soil environmental factors on the structural composition of HA from Mediterranean forest soils. PMID:23332874

Duarte, Regina M B O; Fernández-Getino, Ana P; Duarte, Armando C

2013-06-01

290

Nuclear Spin-Lattice Relaxation Times from Continuous Wave NMR Spectroscopy.  

ERIC Educational Resources Information Center

The experiment described, suitable for undergraduate physical chemistry laboratories, illustrates the general principles of relaxation and introduces the nmr concepts of saturation and spin-inversion. (BB)

Wooten, Jan B.; And Others

1979-01-01

291

Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets.  

PubMed

We describe here the implementation of the statistical total correlation spectroscopy (STOCSY) analysis method for aiding the identification of potential biomarker molecules in metabonomic studies based on NMR spectroscopic data. STOCSY takes advantage of the multicollinearity of the intensity variables in a set of spectra (in this case 1H NMR spectra) to generate a pseudo-two-dimensional NMR spectrum that displays the correlation among the intensities of the various peaks across the whole sample. This method is not limited to the usual connectivities that are deducible from more standard two-dimensional NMR spectroscopic methods, such as TOCSY. Moreover, two or more molecules involved in the same pathway can also present high intermolecular correlations because of biological covariance or can even be anticorrelated. This combination of STOCSY with supervised pattern recognition and particularly orthogonal projection on latent structure-discriminant analysis (O-PLS-DA) offers a new powerful framework for analysis of metabonomic data. In a first step O-PLS-DA extracts the part of NMR spectra related to discrimination. This information is then cross-combined with the STOCSY results to help identify the molecules responsible for the metabolic variation. To illustrate the applicability of the method, it has been applied to 1H NMR spectra of urine from a metabonomic study of a model of insulin resistance based on the administration of a carbohydrate diet to three different mice strains (C57BL/6Oxjr, BALB/cOxjr, and 129S6/SvEvOxjr) in which a series of metabolites of biological importance can be conclusively assigned and identified by use of the STOCSY approach. PMID:15732908

Cloarec, Olivier; Dumas, Marc-Emmanuel; Craig, Andrew; Barton, Richard H; Trygg, Johan; Hudson, Jane; Blancher, Christine; Gauguier, Dominique; Lindon, John C; Holmes, Elaine; Nicholson, Jeremy

2005-03-01

292

Exploring abiotic stress on asynchronous protein metabolism in single kernels of wheat studied by NMR spectroscopy and chemometrics.  

PubMed

Extreme climate events are being recognized as important factors in the effects on crop growth and yield. Increased climatic variability leads to more frequent extreme conditions which may result in crops being exposed to more than one extreme event within a growing season. The aim of this study was to examine the implications of different drought treatments on the protein fractions in grains of winter wheat using (1)H nuclear magnetic resonance spectroscopy followed by chemometric analysis. Triticum aestivum L. cv. Vinjett was studied in a semi-field experiment and subjected to drought episodes either at terminal spikelet, during grain-filling or at both stages. Principal component trajectories of the total protein content and the protein fractions of flour as well as the (1)H NMR spectra of single wheat kernels, wheat flour, and wheat methanol extracts were analysed to elucidate the metabolic development during grain-filling. The results from both the (1)H NMR spectra of methanol extracts and the (1)H HR-MAS NMR of single kernels showed that a single drought event during the generative stage had as strong an influence on protein metabolism as two consecutive events of drought. By contrast, a drought event at the vegetative growth stage had little effect on the parameters investigated. For the first time, (1)H HR-MAS NMR spectra of grains taken during grain-filling were analysed by an advanced multiway model. In addition to the results from the chemical protein analysis and the (1)H HR-MAS NMR spectra of single kernels indicating that protein metabolism is influenced by multiple drought events, the (1)H NMR spectra of the methanol extracts of flour from mature grains revealed that the amount of fumaric acid is particularly sensitive to water deficits. PMID:19213725

Winning, H; Viereck, N; Wollenweber, B; Larsen, F H; Jacobsen, S; Søndergaard, I; Engelsen, S B

2009-01-01

293

Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping.  

PubMed

Proton nuclear magnetic resonance (NMR)-based metabolic phenotyping of urine and blood plasma/serum samples provides important prognostic and diagnostic information and permits monitoring of disease progression in an objective manner. Much effort has been made in recent years to develop NMR instrumentation and technology to allow the acquisition of data in an effective, reproducible, and high-throughput approach that allows the study of general population samples from epidemiological collections for biomarkers of disease risk. The challenge remains to develop highly reproducible methods and standardized protocols that minimize technical or experimental bias, allowing realistic interlaboratory comparisons of subtle biomarker information. Here we present a detailed set of updated protocols that carefully consider major experimental conditions, including sample preparation, spectrometer parameters, NMR pulse sequences, throughput, reproducibility, quality control, and resolution. These results provide an experimental platform that facilitates NMR spectroscopy usage across different large cohorts of biofluid samples, enabling integration of global metabolic profiling that is a prerequisite for personalized healthcare. PMID:25180432

Dona, Anthony C; Jiménez, Beatriz; Schäfer, Hartmut; Humpfer, Eberhard; Spraul, Manfred; Lewis, Matthew R; Pearce, Jake T M; Holmes, Elaine; Lindon, John C; Nicholson, Jeremy K

2014-10-01

294

Analyzing the adsorption of blood plasma components by means of fullerene-containing silica gels and NMR spectroscopy in solids  

NASA Astrophysics Data System (ADS)

The results from studying the adsorption of blood plasma components (e.g., protein, triglycerides, cholesterol, and lipoproteins of low and high density) using silica gels modified with fullerene molecules (in the form of C60 or the hydroxylated form of C60(OH) x ) and subjected to hydration (or, alternatively, dehydration) are presented. The conditions for preparing adsorbents that allow us to control the adsorption capacity of silica gel and the selectivity of adsorption toward the components of blood plasma, are revealed. The nature and strength of the interactions of the introduced components (fullerene molecules and water) with functional groups on the silica surface are studied by means of solid state NMR spectroscopy (NMR-SS). Conclusions regarding the nature of the centers that control adsorption are drawn on the basis of NMR-SS spectra in combination with direct measurements of adsorption. The interaction of the oxygen of the hydroxyl group of silica gel with fullerene, leading to the formation of electron-donor complexes of C60-H, C60-OH, or C60-OSi type, is demonstrated by the observed changes in the NMR-SS spectra of silica gels in the presence of fullerene.

Melenevskaya, E. Yu.; Mokeev, M. V.; Nasonova, K. V.; Podosenova, N. G.; Sharonova, L. V.; Gribanov, A. V.

2012-10-01

295

Characterization and quantification of microstructures of a fluorinated terpolymer by both homonuclear and heteronuclear two-dimensional NMR spectroscopy.  

PubMed

Fluoropolymers are usually insoluble in organic solvents. Insolubility of fluoropolymers limits basic characterization such as microstructural investigations. In the family of fluoropolymers, terpolymer of tetrafluorethylene (TFE), hexafluoropropylene (HFP), and vinylidene fluoride (VDF), named THV is one of the newest members. There are nine grades of THV available. Among the nine grades, THV-221 G is an ideal model polymer for basic characterization purposes. THV-221 G is soluble in solvents such as acetone and ethyl acetate. In the current report, both homonuclear and heteronuclear 2D NMR experiments were employed in solution on THV-221 G. The homonuclear gradient correlation spectroscopy NMR measurement revealed that THV has two adjacent TFE units in addition to TFE-HFP sequence orders. The fraction of the microstructures is quantified by the analysis of 1D solution (19) F NMR spectrum. Further, the gradient heteronuclear single quantum coherence experiment helped with the clarification of chemical environments of the units TFE, HFP, and VDF. The 1D solution (13) C NMR spectrum was helpful in clarifying sequence assignments of VDF. It is concluded that THV is a random polymer with a limited fraction of TFE-TFE and TFE-HFP sequence orders in addition to head-to-tail polymerization of VDF unit. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25327292

Ok, Salim

2015-02-01

296

Solvation chemistry of water-soluble thiol-protected gold nanocluster Au102 from DOSY NMR spectroscopy and DFT calculations  

NASA Astrophysics Data System (ADS)

The hydrodynamic diameter of Aum(pMBA)n [(m, n) = (102, 44) and (144, 60)] clusters in aqueous media was determined via DOSY NMR spectroscopy. The apparent size of the same (n, m) cluster depends on the counter ion of the deprotonated pMBA- ligand as explained by the competing ion-pair strength and hydrogen bonding interactions studied in DFT calculations. The choice of the counter ion affects the surface chemistry and molecular structure at the organic/water interface, which is relevant for biological applications.The hydrodynamic diameter of Aum(pMBA)n [(m, n) = (102, 44) and (144, 60)] clusters in aqueous media was determined via DOSY NMR spectroscopy. The apparent size of the same (n, m) cluster depends on the counter ion of the deprotonated pMBA- ligand as explained by the competing ion-pair strength and hydrogen bonding interactions studied in DFT calculations. The choice of the counter ion affects the surface chemistry and molecular structure at the organic/water interface, which is relevant for biological applications. Electronic supplementary information (ESI) available: Synthesis scheme and details, analytical methods and details, UV-Vis spectra, NMR spectra (1H and 2D DOSY) and snapshots from MD simulations of a pMBA-/NH4+ ion pair in water. See DOI: 10.1039/c4nr01255k

Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Koivisto, Jaakko; Häkkinen, Hannu

2014-06-01

297

Observation of the keto tautomer of D-fructose in D(2)O using (1)H NMR spectroscopy.  

PubMed

D-Fructose was analysed by NMR spectroscopy and previously unidentified (1)H NMR resonances were assigned to the keto and ?-pyranose tautomers. The full assignment of shifts for the various fructose tautomers enabled the use of (1)H NMR spectroscopy in studies of the mutarotation (5-25°C) and tautomeric composition at equilibrium (5-50°C). The mutarotation of ?-pyranose to furanose tautomers in D(2)O at a concentration of 0.18 M was found to have an activation energy of 62.6 kJmol(-1). At tautomeric equilibrium (20°C in D(2)O) the distribution of the ?-pyranose, ?-furanose, ?-furanose, ?-pyranose and the keto tautomers was found to be 68.23%, 22.35%, 6.24%, 2.67% and 0.50%, respectively. This tautomeric composition was not significantly affected by varying concentrations between 0.089 and 0.36 M or acidification to pH 3. Upon equilibrating at 6 temperatures between 5 and 50°C there was a linear relationship between the change in concentration and temperature for all forms. PMID:22129837

Barclay, Thomas; Ginic-Markovic, Milena; Johnston, Martin R; Cooper, Peter; Petrovsky, Nikolai

2012-01-10

298

Observation of the keto tautomer of D-fructose in D2O using 1H NMR spectroscopy  

PubMed Central

D-Fructose was analysed by NMR spectroscopy and previously unidentified 1H NMR resonances were assigned to the keto and ?-pyranose tautomers. The full assignment of shifts for the various fructose tautomers enabled the use of 1H NMR spectroscopy in studies of the mutarotation (5 – 25 °C) and tautomeric composition at equilibrium (5 – 50 °C). The mutarotation of ?-pyranose to furanose tautomers in D2O at a concentration of 0.18 M was found to have an activation energy of 62.6 kJ.mol?1. At tautomeric equilibrium (20 °C in D2O) the distribution of the ?-pyranose, ?-furanose, ?-furanose, ?-pyranose and the keto tautomers was found to be 68.23%, 22.35%, 6.24%, 2.67% and 0.50%, respectively. This tautomeric composition was not significantly affected by varying concentration between 0.089 and 0.36 M or acidification to pH 3. Upon equilibrating at 6 temperatures between 5 and 50 °C there was a linear relationship between the change in concentration and temperature for all forms. PMID:22129837

Barclay, Thomas; Ginic-Markovic, Milena; Johnston, Martin R.; Cooper, Peter; Petrovsky, Nikolai

2011-01-01

299

NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins  

Microsoft Academic Search

Summary Hydroxyl groups of serine and threonine, and to some extent also tyrosine are usually located on or near the surface of proteins. NMR observations of the hydroxyl protons is therefore of interest to support investigations of the protein surface in solution, and knowledge of the hydroxyl NMR lines is indispensable as a reference for studies of protein hydration in

Edvards Liepinsh; Gottfried Otting; Kurt Wüthrich

1992-01-01

300

Natural Abundance 17O NMR Spectroscopy of Rat Brain In Vivo  

PubMed Central

Oxygen is an abundant element that is present in almost all biologically relevant molecules. NMR observation of oxygen has been relatively limited since the NMR-active isotope, oxygen-17, is only present at a 0.037% natural abundance. Furthermore, as a spin 5/2 nucleus oxygen-17 has a moderately strong quadrupole moment which leads to fairly broad resonances (T2* = 1 - 4 ms). However, the similarly short T1 relaxation constants allow substantial signal averaging, whereas the large chemical shift range (> 300 ppm) improves the spectral resolution of 17O NMR. Here it is shown that high-quality, natural abundance 17O NMR spectra can be obtained from rat brain in vivo at 11.74 T. The chemical shifts and line widths of more than 20 oxygen-containing metabolites are established and the sensitivity and potential for 17O-enriched NMR studies are estimated. PMID:18456525

de Graaf, Robin A.; Brown, Peter B.; Rothman, Douglas L.; Behar, Kevin L.

2008-01-01

301

Conformational Analysis of (+)-Germacrene A by Variable Temperature NMR and NOE Spectroscopy  

PubMed Central

(+)-Germacrene A, an important intermediate in sesquiterpene biosynthesis, was isolated in pure form from a genetically engineered yeast and was characterized by chromatographic properties (TLC, GC), MS, optical rotation, UV, IR, 1H NMR and 13C NMR data. Variable-temperature 500 MHz 1H NMR spectra in CDCl3 showed that this flexible cyclodecadiene ring exists as three NMR-distinguishable conformational isomers in a ratio of about 5:3:2 at or below ordinary probe temperature (25° C). The conformer structures were assigned by 1H NMR data comparisons, NOE experiments, and vicinal couplings as follows: 1a (52%, UU), 1b (29% UD), and 1c (19%, DU). PMID:20617157

Faraldos, Juan A.; Wu, Shuiqin; Chappell, Joe

2009-01-01

302

Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO 2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on 13C and 15N labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D) 13C HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional 1H- 15N HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell components, and provide a powerful tool with which to assess carbon sequestration and transformation in the environment.

Kelleher, Brian P.; Simpson, Myrna J.; Simpson, Andre J.

2006-08-01

303

Study of potassium O,O'-Dibutyldithiophosphate combining DFT, 31P CP/MAS NMR and infrared spectroscopy.  

PubMed

Dithiophosphates are used in many different industrial applications. To explain their functions and properties in these applications, a fundamental understanding on a molecular level is needed. Potassium O, O'-Dibutyldithiophosphate and its anion have been investigated by means of a combination of DFT and (31)P CP/MAS NMR and infrared spectroscopy. Several low-energy conformations were studied by DFT. Three different conformations with significantly different torsion angles of the O-C bond relative to the O-P-O plane were selected for further studies of infrared frequencies and (31)P NMR chemical-shift tensors. A good agreement between theoretical and experimental results was obtained, especially when the IR spectra or (31)P chemical shift tensor parameters of all three conformations were added, indicating that, because of the low energy difference between the conformations, the molecules are rapidly fluctuating between them. PMID:18942802

Hellström, Pär; Larsson, Anna-Carin; Fredriksson, Andreas; Holmgren, Allan; Oberg, Sven

2008-11-20

304

Si-29 NMR spectroscopy of naturally-shocked quartz from Meteor Crater, Arizona: Correlation to Kieffer's classification scheme  

NASA Technical Reports Server (NTRS)

We have applied solid state Si-29 nuclear magnetic resonance (NMR) spectroscopy to five naturally-shocked Coconino Sandstone samples from Meteor Crater, Arizona, with the goal of examining possible correlations between NMR spectral characteristics and shock level. This work follows our observation of a strong correlation between the width of a Si-29 resonance and peak shock pressure for experimentally shocked quartz powders. The peak width increase is due to the shock-induced formation of amorphous silica, which increases as a function of shock pressure over the range that we studied (7.5 to 22 GPa). The Coconino Sandstone spectra are in excellent agreement with the classification scheme of Kieffer in terms of presence and approximate abundances of quartz, coesite, stishovite, and glass. We also observe a new resonance in two moderately shocked samples that we have tentatively identified with silicon in tetrahedra with one hydroxyl group in a densified form of amorphous silica.

Boslough, M. B.; Cygan, R. T.; Kirkpatrick, R. J.

1993-01-01

305

Conformational effects due to stereochemistry and C3-substituents in xylopyranoside derivatives as studied by NMR spectroscopy.  

PubMed

Glycosaminoglycans contain a ?-D-xylopyranose residue at its reducing end, which links the polysaccharide to the protein in proteoglycans. 2-Naphthyl ?-D-xylopyranosides have shown inhibition of tumor growth and we herein investigate conformation and dynamics of compounds structurally and stereochemically modified at the C3 position as well as the influence of solvent. The 3-deoxygenated compound, the 3-C-methyl-substituted ?-D-xylopyranoside, ?-D-ribopyranoside, the 3-C-methyl-substituted ?-D-ribopyranoside as well as 2-naphthyl ?-D-xylopyranoside were analyzed by NMR spectroscopy. Conformational equilibria were dependent on the solvent of choice, either methanol-d4 or chloroform-d, with mainly (4)C1 and (1)C4 conformations present but also skew conformations to some extent. Intramolecular hydrogen bonding was concluded to be important for the 3-C-methyl-substituted ?-D-xylopyranosides in the non-polar solvent. Dynamic NMR (DNMR) spectroscopy was carried out for the 3-deoxygenated compound, which at 25 °C in methanol-d4 exists with equally populated states of the (4)C1 and the (1)C4 conformations, but at -100 °C only a few percent is present of the latter. Using (13)C NMR detection for DNMR, resonance lines were shown to broaden at -40 °C and to sharpen again below -90 °C, without the emergence of a second set of NMR resonances, a typical behavior for an unequally populated equilibrium. The enthalpy and entropy activation barriers were calculated and resulted in ?H(‡) = 47.3 kJ mol(-1) and ?S(‡) = 54 J mol(-1) K(-1). PMID:25183410

Rönnols, Jerk; Manner, Sophie; Ellervik, Ulf; Widmalm, Göran

2014-10-28

306

Inhibitor-induced Conformational Shifts and Ligand Exchange Dynamics for HIV-1 Protease Measured by Pulsed EPR and NMR Spectroscopy  

PubMed Central

Double electron-electron resonance (DEER) spectroscopy was utilized to investigate shifts in conformational sampling induced by nine FDA-approved protease inhibitors (PIs) and a non-hydrolyzable substrate mimic for human immunodeficiency virus type 1 protease (HIV-1 PR) subtype B, subtype C and CRF_01 A/E. The ligand-bound subtype C protease has broader DEER distance profiles but trends for inhibitor-induced conformational shifts are comparable to those previously reported for subtype B. Ritonavir, one of the strong-binding inhibitors for subtype B and C, induces less of the closed conformation in CRF_01 A/E. 1H-15N heteronuclear single quantum coherence (HSQC) spectra were acquired for each protease construct titrated with the same set of inhibitors. NMR 1H-15N HSQC titration data show that inhibitor residence time in the protein binding pocket, inferred from resonance exchange broadening, shifting or splitting correlates with the degree of ligand-induced flap closure measured by DEER spectroscopy. These parallel results show that the ligand-induced conformational shifts resulting from protein-ligand interactions characterized by DEER spectroscopy of HIV-1 PR obtained at cryogenic temperature are consistent with more physiological solution protein-ligand interactions observed via solution NMR. PMID:23167829

Huang, Xi; de Vera, Ian Mitchelle S.; Veloro, Angelo M.; Blackburn, Mandy E.; Kear, Jamie L.; Carter, Jeffery D.; Rocca, James R.; Simmerling, Carlos; Dunn, Ben M.; Fanucci, Gail E.

2013-01-01

307

Method for accurate measurements of nuclear-spin optical rotation for applications in correlated optical-NMR spectroscopy  

NASA Astrophysics Data System (ADS)

The nuclear-spin optical rotation (NSOR) effect recently attracted much attention due to potential applications in combined optical-NMR spectroscopy and imaging. Currently, the main problem with applications of NSOR is low SNR and accuracy of measurements. In this work we demonstrate a new method for data acquisition and analysis based on a low-power laser and an emphasis on software based processing. This method significantly reduces cost and is suitable for application in most NMR spectroscopy laboratories for exploration of the NSOR effect. Despite the use of low laser power, SNR can be substantially improved with fairly simple strategies including the use of short wavelength and a multi-pass optical cell with in-flow pre-polarization in a 7 T magnet. Under these conditions, we observed that NSOR signal can be detected in less than 1 min and discuss strategies for further improvement of signal. With higher SNR than previously reported, NSOR constants can be extracted with improved accuracy. On the example of water, we obtained measurements at a level of accuracy of 5%. We include a detailed theoretical analysis of the geometrical factors of the experiment, which is required for accurate quantification of NSOR. This discussion is particularly important for relatively short detection cells, which will be necessary to use in spectroscopy or imaging applications that impose geometrical constraints.

Savukov, I. M.; Chen, H.-Y.; Karaulanov, T.; Hilty, C.

2013-07-01

308

Probing the surface of platinum nanoparticles with 13CO by solid-state NMR and IR spectroscopies  

NASA Astrophysics Data System (ADS)

The synthesis and full characterization of platinum nanoparticles (Pt NPs) prepared by decomposition of the Pt(dba)2 complex in the presence of CO and H2 and stabilized either sterically by a polymer, polyvinylpyrrolidone or chemically by a ligand, diphenylphosphinobutane, are reported. In these studies, 13CO was used as a probe molecule to investigate the surface of the particles, using IR and solid-state NMR spectroscopies with magic angle spinning (MAS-NMR). Three nanosystems with different sizes are described: Pt/PVP/13CO (monomodal: 1.2 nm), Pt/dppb/13CO (bimodal: 1.2 nm and 2.0 nm) and Pt/dppb/H2 (monomodal: 2.0 nm) NPs. Spectroscopic data suggest a modification of the electronic state of the nanoparticles between 1.2 nm and 2.0 nm which can be related to the presence of Knight shift.The synthesis and full characterization of platinum nanoparticles (Pt NPs) prepared by decomposition of the Pt(dba)2 complex in the presence of CO and H2 and stabilized either sterically by a polymer, polyvinylpyrrolidone or chemically by a ligand, diphenylphosphinobutane, are reported. In these studies, 13CO was used as a probe molecule to investigate the surface of the particles, using IR and solid-state NMR spectroscopies with magic angle spinning (MAS-NMR). Three nanosystems with different sizes are described: Pt/PVP/13CO (monomodal: 1.2 nm), Pt/dppb/13CO (bimodal: 1.2 nm and 2.0 nm) and Pt/dppb/H2 (monomodal: 2.0 nm) NPs. Spectroscopic data suggest a modification of the electronic state of the nanoparticles between 1.2 nm and 2.0 nm which can be related to the presence of Knight shift. Electronic supplementary information (ESI) available: Synthesis of the Pt(dba)2 precursor, TEM images of Pt/PVP/H2 and Pt/dppb/13CO NPs, further results from WAXS studies, solution NMR spectra of Pt/dppb/13CO NPs and MAS-NMR spectra of Pt/dppb/13CO and Pt/dppb/H2 NPs at 260 K. See DOI: 10.1039c3nr03948j

Kinayyigit, Solen; Lara, Patricia; Lecante, Pierre; Philippot, Karine; Chaudret, Bruno

2013-12-01

309

Measurement of long-range interatomic distances by solid-state tritium-NMR spectroscopy.  

PubMed

For the structural determination of a ligand bound to an amorphous macromolecular system, solid-state NMR can be used to provide interatomic distances. It is shown here that selective labeling in discrete locations with tritium enables accurate measurement of long-range distances owing to the high gyromagnetic ratio of this nucleus, without structural modification of the molecule. This approach gives access to the largest NMR distance ever measured between two nuclei (14.4 A). (3)H MAS NMR appears to be a promising tool for structural applications in the biological and material sciences. PMID:20092274

Yuen, Alexander K L; Lafon, Olivier; Charpentier, Thibault; Roy, Myriam; Brunet, Francine; Berthault, Patrick; Sakellariou, Dimitrios; Robert, Bruno; Rimsky, Sylvie; Pillon, Florence; Cintrat, Jean-Christophe; Rousseau, Bernard

2010-02-17

310

Area per lipid and cholesterol interactions in membranes from separated local-field (13)C NMR spectroscopy.  

PubMed

Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state (13)C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved (13)C-(1)H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the (13)C-(1)H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state (13)C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive. PMID:25418296

Leftin, Avigdor; Molugu, Trivikram R; Job, Constantin; Beyer, Klaus; Brown, Michael F

2014-11-18

311

Solvation chemistry of water-soluble thiol-protected gold nanocluster Au??? from DOSY NMR spectroscopy and DFT calculations.  

PubMed

The hydrodynamic diameter of Aum(pMBA)n [(m, n) = (102, 44) and (144, 60)] clusters in aqueous media was determined via DOSY NMR spectroscopy. The apparent size of the same (n, m) cluster depends on the counter ion of the deprotonated pMBA(-) ligand as explained by the competing ion-pair strength and hydrogen bonding interactions studied in DFT calculations. The choice of the counter ion affects the surface chemistry and molecular structure at the organic/water interface, which is relevant for biological applications. PMID:24910110

Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Koivisto, Jaakko; Häkkinen, Hannu

2014-07-21

312

Structural and dynamical studies of molecular and network forming chalcogenide glasses and supercooled liquids with NMR and Raman spectroscopy  

NASA Astrophysics Data System (ADS)

The techniques of Nuclear Magnetic Resonance (NMR) and Raman spectroscopy have been employed to study structure and dynamics in Ge-Se, Ge/As-Te, and As-S binary and complex Ge-As-Te and P-As-S ternary chalcogenide glasses. Structural studies were conducted on Ge-Se glasses and on binary Ge/As-Te and ternary Ge-As-Te systems. The structure of the GexSe100-x glass series, with 5?x?33, is investigated with 77Se Magic Angle Spinning (MAS) NMR and then compared with three different proposed structural models. For the binary Ge-Te and As-Te and ternary Ge-As-Te glass systems the structure is studied using Raman spectroscopy and correlated with physical properties such as molar volume, viscosity, optical band gap and thermophysical properties. Studies on glass transition dynamics were conducted on systems with a range of structural features including an As4S3 inorganic molecular glass former, an As-P-S system where molecules are bonded to the As-S network, and network glasses in the Ge-Se system. Timescales of the rotational dynamics of As4S3 cage molecules in the molecular As-sulfide glass and supercooled liquid show remarkably large decoupling from the timescales of viscous flow and shear relaxation at temperatures below and near Tg (312K). Next, the dynamic behavior of a (As 2S3)90(P2S5)10 glass, which is proposed to consist of As2P2S8 molecular structures which are connected to an As-S network, is investigated with 31P NMR. The rotational dynamics of selenium chains in network forming GexSe100-x glasses and supercooled liquids with 5?x?23 are investigated with variable temperature 77Se NMR spectroscopy to determine the relationship between rigidity percolation and dynamic behavior. The timescale of the motion of the Se atoms is observed to be nearly identical for x?17 and ?2.36. However, for the x=20 and 23 compositions where ?2.4, above the rigidity percolation threshold, the timescale slows down abruptly. Finally, the Ge20Se 80 glass and supercooled liquid have been the focus of a variable temperature Raman spectroscopy study to investigate the vibrational mode softening behavior and the importance of vibrational entropy in glass transition.

Gjersing, Erica Lee

313

Studies on the interactions between glycosylated beta3-peptides and the lectin Vicia villosa by saturation transfer difference NMR spectroscopy.  

PubMed

Saturation transfer difference (STD) NMR spectroscopy was used to study the interaction of the lectin Vicia villosa (VVLB(4)) with alpha-D-GalNAc glycosylated beta(3)-peptides. The data were compared to those obtained with the monosaccharides D-Gal, D-GalNAc, and D-Glc as well as with those obtained with the Tn antigen alpha-glycopeptide (D-GalNAc-alpha-O-Ser/Thr), molecule naturally recognized by V. villosa. Evidence that the lectin also recognizes glycosylated beta(3)-peptides and has close contact with both the sugar and amino acid moieties was obtained. PMID:19863951

Kaszowska, Marta; Norgren, Anna S; Arvidson, Per I; Sandström, Corine

2009-12-14

314

Characterization of aging in organic materials on atomic-, meso- and macro-length scales by {sup 13}C NMR spectroscopy  

SciTech Connect

A fundamental understanding of aging in an organic material requires that one understand how aging affects the chemical structure of a material, and how these chemical changes are related to the material`s macroscopic properties. This level of understanding is usually achieved by examining the material on a variety of length scales ranging from atomic to meso-scale to macroscopic. The authors are developing and applying several {sup 13}C nuclear magnetic resonance (NMR) spectroscopy experiments to characterize the aging process of organic materials over a broad range of length scales. Examples of studies which range from atomic to macroscopic will be presented.

Assink, R.A.; Jamison, G.M.; Alam, T.M.; Gillen, K.T.

1997-10-01

315

Molecular recognition of rosmarinic acid from Salvia?sclareoides extracts by acetylcholinesterase: a new binding site detected by NMR spectroscopy.  

PubMed

Acetylcholinesterase (AChE) inhibition is one of the most currently available therapies for the management of Alzheimer's disease (AD) symptoms. In this context, NMR spectroscopy binding studies were accomplished to explain the inhibition of AChE activity by Salvia sclareoides extracts. HPLC-MS analyses of the acetone, butanol and water extracts eluted with methanol and acidified water showed that rosmarinic acid is present in all the studied samples and is a major constituent of butanol and water extracts. Moreover, luteolin 4'-O-glucoside, luteolin 3',7-di-O-glucoside and luteolin 7-O-(6''-O-acetylglucoside) were identified by MS(2) and MS(3) data acquired during the LC-MS(n) runs. Quantification of rosmarinic acid by HPLC with diode-array detection (DAD) showed that the butanol extract is the richest one in this component (134??g?mg(-1) extract). Saturation transfer difference (STD) NMR spectroscopy binding experiments of S. sclareoides crude extracts in the presence of AChE in buffer solution determined rosmarinic acid as the only explicit binder for AChE. Furthermore, the binding epitope and the AChE-bound conformation of rosmarinic acid were further elucidated by STD and transferred NOE effect (trNOESY) experiments. As a control, NMR spectroscopy binding experiments were also carried out with pure rosmarinic acid, thus confirming the specific interaction and inhibition of this compound against AChE. The binding site of AChE for rosmarinic acid was also investigated by STD-based competition binding experiments using Donepezil, a drug currently used to treat AD, as a reference. These competition experiments demonstrated that rosmarinic acid does not compete with Donepezil for the same binding site. A 3D model of the molecular complex has been proposed. Therefore, the combination of the NMR spectroscopy based data with molecular modelling has permitted us to detect a new binding site in AChE, which could be used for future drug development. PMID:23536497

Marcelo, Filipa; Dias, Catarina; Martins, Alice; Madeira, Paulo J; Jorge, Tiago; Florêncio, M Helena; Cañada, F Javier; Cabrita, Eurico J; Jiménez-Barbero, Jesús; Rauter, Amélia P

2013-05-17

316

Solid state 13C NMR and FT-IR spectroscopy of the cocoon silk of two common spiders  

NASA Astrophysics Data System (ADS)

The structure of the silk from cocoons of two common spiders, Araneus diadematus (family Araneidae) and Achaearanea tepidariorum (family Theridiidae) was investigated by means of 13C solid state NMR and FT-IR spectroscopies. The combined use of these two techniques allowed us to highlight differences in the two samples. The cocoon silk of Achaearanea tepidariorum is essentially constituted by helical and ?-sheet structures, whereas that of Araneus diadematus shows a more complex structure, containing also ?-strands and ?-turns. Moreover, the former silk is essentially crystalline while the latter contains more mobile domains. The structural differences of the two cocoon silks are ascribed to the different habitat of the two species.

Bramanti, Emilia; Catalano, Donata; Forte, Claudia; Giovanneschi, Mario; Masetti, Massimo; Veracini, Carlo Alberto

2005-11-01

317

Quantification of chlorogenic acid and hyperoside directly from crude blueberry (Vaccinium angustifolium) leaf extract by NMR spectroscopy analysis: single-laboratory validation.  

PubMed

A single-laboratory-validated NMR spectroscopy method was established for determining the quantity of chlorogenic acid and hyperoside from crude extract material of blueberry leaves of the species Vaccinium angustifolium var. laevifolium House. The calibration curve of chlorogenic acid showed a highly linear regression, R = 0.99998. NMR spectroscopy identification and quantification of the constituents directly from the mixture, within the error of HPLC-diode array detector analysis, were determined as 7.53 mM chlorogenic acid (64.0 mg chlorogenic acid/g powdered leaf) and 0.77 mM hyperoside (8.58 mg hyperoside/g powdered leaf). The LOD was calculated to be 0.01 mM and the LOQ 0.01 mM by the 9 min and 13 s NMR spectroscopy experiment utilized. The assay showed no significant interference from different field strengths, extraction mesh size, gravimetric scale precision, NMR spectroscopy tube type, pulse program, amount of starting dry material, or day-to-day operation. The robustness of NMR spectroscopy as a means of definitively monitoring chlorogenic acid and hyperoside content directly from crude extracts was demonstrated by Youden statistical analysis. PMID:23175973

Hicks, Joshua M; Muhammad, Asim; Ferrier, Jonathan; Saleem, Ammar; Cuerrier, Alain; Arnason, John T; Colson, Kimberly L

2012-01-01

318

Determination of the structural changes by Raman and 13C CP/MAS NMR spectroscopy on native corn starch with plasticizers  

NASA Astrophysics Data System (ADS)

The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and 13C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

Cozar, O.; Filip, C.; Cioica, N.; Coţa, C.; Tripon, C.; Nagy, E. M.

2013-11-01

319

Natural Abundance 43Ca NMR Spectroscopy of Tobermorite and Jennite: Model Compounds for C–S–H  

SciTech Connect

There are few effective methods for characterizing the molecular scale structural environments of Ca2? in hydrated cements, which has limited our ability to understand the structure of, for example, Ca–silicate hydrate (C–S–H). 43Ca nuclear magnetic resonance (NMR) spectroscopy has long been considered too insensitive to provide useful data in this regard, but 43Ca magic angle spinning (MAS) NMR spectra reported here for synthetic tobermorite and jennite with naturally abundant levels of 43Ca demonstrate that this is a viable approach.We show that spectra with useful signal/noise ratios can be obtained in a reasonable acquisition period (~2 days) using an H? field strength of 21.1 T, 5 mm rotors spinning at a frequency of 5 kHz, and a double frequency sweep preparatory pulse sequence. Tobermorite and jennite produce relatively broad resonances due to their complex structures and structural disorder, however, the chemical shift differences between six-coordinate 43Ca in jennite and seven-coordinate 43Ca in 11? tobermorite are large enough that the signals are entirely resolved at this field. These data suggest that signal from ideal tobermorite-like and jennite-like sites in cement C–S–H can most likely be distinguished by 43Ca NMR and that this method will be a powerful approach for studying cement-based ceramic materials in the coming decade.

Bowers, Geoffrey M.; Kirkpatrick, Robert J.

2009-02-13

320

Metabonomics study of urine from Sprague-Dawley rats exposed to Huang-yao-zi using (1)H NMR spectroscopy.  

PubMed

Urinary metabolic perturbations associated with liver toxicity induced by Huang-yao-zi (root of Dioscorea bulifera L.) were studied using nuclear magnetic resonance spectroscopy ((1)H NMR) to determine the correlations between metabonomic profiling and histopathologic/biochemical observations and to discover biomarkers for liver toxicity. Huang-yao-zi with a maximal tolerance dose (MTD) was given to male Sprague-Dawley rats for 72h followed by metabonomic analysis of urine samples collected at 24 and 72h. The results revealed that the levels of taurine, creatine, betaine, dimethylglycine (DMG), acetate, glycine were elevated, whereas, the levels of succinate, 2-oxoglutarate, citrate, hippurate and urea were reduced. Partial least square (PLS)-discrimination analysis (DA) of NMR spectra revealed two apparent clusters between control groups and treatment groups, indicating metabolic changes observed in urine samples in response to Huang-yao-zi treatment. In addition, mechanism associated with oxidative injury of hepatic mitochondria was investigated. These results indicated that (1)H NMR-based metabonomics analysis in urine samples may be useful for predicting hepatotoxicity induced by Huang-yao-zi. PMID:20061116

Liu, Yanru; Huang, Rongqing; Liu, Lijun; Peng, Jiangnan; Xiao, Bingkun; Yang, Jianyun; Miao, Zhenchun; Huang, Honglin

2010-05-01

321

Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.  

PubMed

The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two. PMID:24750769

Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

2012-06-20

322

Biosynthesis of drug metabolites and quantitation using NMR spectroscopy for use in pharmacologic and drug metabolism studies.  

PubMed

The contribution of drug metabolites to the pharmacologic and toxicologic activity of a drug can be important; however, for a variety of reasons metabolites can frequently be difficult to synthesize. To meet the need of having samples of drug metabolites for further study, we have developed biosynthetic methods coupled with quantitative NMR spectroscopy (qNMR) to generate solutions of metabolites of known structure and concentration. These quantitative samples can be used in a variety of ways when a synthetic sample is unavailable, including pharmacologic assays, standards for in vitro work to help establish clearance pathways, and/or as analytical standards for bioanalytical work to ascertain exposure, among others. We illustrate five examples of metabolite biosynthesis and qNMR. The types of metabolites include one glucuronide and four oxidative products. Concentrations of the isolated metabolite stock solutions ranged from 0.048 to 8.3 mM, with volumes from approximately 0.04 to 0.150 ml in hexadeutarated dimethylsulfoxide. These specific quantified isolates were used as standards in the drug discovery setting as substrates in pharmacology assays, for bioanalytical assays to establish exposure, and in variety of routine absorption, distribution, metabolism, and excretion assays, such as protein binding and determining blood-to-plasma ratios. The methods used to generate these materials are described in detail with the objective that these methods can be generally used for metabolite biosynthesis and isolation. PMID:25053618

Walker, Gregory S; Bauman, Jonathan N; Ryder, Tim F; Smith, Evan B; Spracklin, Douglas K; Obach, R Scott

2014-10-01

323

Noninvasive detection and monitoring of regional myocardial ischemia in situ using depth-resolved 31P NMR spectroscopy.  

PubMed Central

Phosphorus (31P) NMR spectra showing the relative concentrations of phosphocreatine, ATP, and Pi were recorded noninvasively from localized regions in the left ventricles of dog hearts in situ by using depth-resolved surface-coil spectroscopy at 1.5 T. Proton (1H) NMR surface-coil imaging was used to position 31P NMR coils and to determine the location of depth-resolved volumes immediately prior to 31P examination. Occlusion of the left anterior descending coronary artery produced regional ischemia detected as changes in the ratios of phosphocreatine, ATP, and Pi and by changes in the pH measured from the spectra. Spectral changes were not typically observed in regions adjacent to ischemic myocardium. Reperfusion produced some recovery, and ventricular fibrillation resulted in deterioration in high-energy metabolites. The location and size of ischemic tissue was measured by single-photon-emission computed tomography (SPECT) and gamma-ray counting or by staining excised hearts. The technique should permit the long-term noninvasive monitoring of the metabolic response of the heart to pathologic processes and allow assessment of interventions. Images PMID:3866249

Bottomley, P A; Herfkens, R J; Smith, L S; Brazzamano, S; Blinder, R; Hedlund, L W; Swain, J L; Redington, R W

1985-01-01

324

Metabolomic approach by 1H NMR spectroscopy of serum for the assessment of chronic liver failure in patients with cirrhosis.  

PubMed

Assessment of chronic liver failure (CLF) in cirrhotic patients is needed to make therapeutic decisions. A biological score is usually performed, using the Model for End-Stage Liver Disease (MELD), to evaluate CLF. Nevertheless, MELD does not take into account metabolic perturbations produced by liver-function impairment. In contrast, metabolomics can investigate many metabolic perturbations within biological systems. The purpose of this study was to assess whether metabolomic profiles of serum, obtained by proton NMR spectroscopy from cirrhotic patients, are affected by the severity of CLF. An orthogonal projection to latent-structure analysis was performed to compare MELD scores and NMR spectra of 124 patients with cirrhosis. The statistical model obtained showed a good explained variance (R(2)X = 0.87 and R(2)Y = 0.86) and a good predictability (Q(2)Y = 0.64). Metabolomic profiles showed significant differences regarding various metabolites depending of severity of CLF: levels of high-density lipoprotein and phosphocholine resonances were significantly higher in patients with mild CLF compared to severe CLF. Other metabolites such as lactate, pyruvate, glucose, amino acids, and creatinine were significantly higher in patients with severe CLF than mild CLF. Our conclusion is that metabolomic NMR analysis provides new insights into metabolic processes related to the severity of hepatic function impairment in cirrhosis. PMID:21568267

Amathieu, Roland; Nahon, Pierre; Triba, Mohamed; Bouchemal, Nadia; Trinchet, Jean-Claude; Beaugrand, Michel; Dhonneur, Gilles; Le Moyec, Laurence

2011-07-01

325

Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium Trimethylphosphine Complexes: A Mechanistic Investigation using High-Pressure NMR Spectroscopy  

SciTech Connect

The previously reported complex, cis-(PMe3)4RuCl(OAc) (1) acts as a catalyst for CO2 hydrogenation into formic acid in the presence of a base and an alcohol co-catalyst. NMR spectroscopy has revealed that 1 exists in solution in equilibrium with fac-(PMe3)3RuCl(h2-OAc) (2), [(PMe3)4Ru(h2-OAc)]Cl (3a), and free PMe3. Complex 2 has been isolated and characterized by elemental analysis, NMR spectroscopy, and X-ray crystallography. 2 has been tested as a CO2 hydrogenation catalyst, however, it performed poorly under the conditions of catalysis used for 1. Complex 3a can be prepared by adding certain alcohols, such as MeOH, EtOH, or o-C6H5OH, to a solution of 1 in CDCl3. The chloride ion of 3a has been exchanged for the non-coordinating anions BPh4 or B(ArF )4 (B(ArF)4 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) to produce [(PMe3)4Ru(h2-OAc)]BPh4 (3b) and [(PMe3)4Ru(h2-OAc)]B(ArF)4 (3c). Both of these complexes have been isolated and characterized by elemental analysis, NMR spectroscopy, and in the case of 3b, X-ray crystallography. Complexes 3b and 3c perform just as well as 1 for CO2 hydrogenation to formic acid in the presence of an alcohol co-catalyst; however, 3b,c perform equally well without the added alcohol. High-pressure NMR has been used to investigate the mechanism of CO2 hydrogenation via 3a,b in the presence of base. Two of the intermediates involved have been identified as cis-(PMe3)4RuH2 (5) and cis-(PMe3)4Ru(H)O2CH (6), and the role of the base includes not only trapping of the formic acid product, but also initiation of the catalysis by aiding the conversion of 3b,c to 5.

Getty, April D.; Tai, Chih-Cheng; Linehan, John C.; Jessop, Philip G.; Olmstead, Marilyn M.; Rheingold, Arnold

2009-08-26

326

Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase  

SciTech Connect

The active site of porphobilinogen (PBG){sup 1} deaminase from Escherichia coli has been found to contain an unusual dipyrromethane derived from four molecules of 5-aminolevulinic acid (ALA) covalently linked to Cys-242, one of the two cysteine residues conserved in E. coli and human deaminase. By use of a hemA{sup {minus}} strain of E. coli the enzyme was enriched from (5-{sup 13}C)ALA and examined by {sup 1}H-detected multiple quantum coherence spectroscopy, which revealed all of the salient features of a dipyrromethane composed of two PBG units linked heat to tail and terminating in a CH{sub 2}-S bond to a cysteine residue. Site-specific mutagenesis of Cys-99 and Cys-242, respectively, has shown that substitution of Ser for Cys-99 does not affect the enzymatic activity, whereas substitution of Ser for Cys-242 removes essentially all of the catalytic activity as measured by the conversion of the substrate PBG to uro'gen I. The NMR spectrum of the covalent complex of deaminase with the suicide inhibitor 2-bromo-(2,11-{sup 13}C{sub 2})PBG reveals that the aminomethyl terminus of the inhibitor reacts with the enzyme's cofactor at the {alpha}-free pyrrole. NMR spectroscopy of the ES{sub 2} complex confirmed a PBG-derived head-to-tail dipyrromethane attached to the {alpha}-free pyrrole position of the enzyme. A mechanistic rationale for deaminase is presented.

Scott, A.I.; Roessner, C.A.; Stolowich, N.J.; Karuso, P.; Williams, H.J.; Grant, S.K.; Gonzalez, M.D.; Hoshino, T. (Texas A M Univ., College Station (USA))

1988-10-18

327

Characterization of bio-oil from hydrothermal liquefaction of organic waste by NMR spectroscopy and FTICR mass spectrometry.  

PubMed

Solid wastes of organic origins are potential feedstocks for the production of liquid biofuels, which could be suitable alternatives to fossil fuels for the transport and heating sectors, as well as for industrial use. By hydrothermal liquefaction, the wet biomass is partially transformed into a water-immiscible, oil-like organic matter called bio-oil. In this study, an integrated NMR spectroscopy/mass spectrometry approach has been developed for the characterization of the hydrothermal liquefaction of bio-oil at the molecular level. (1)H and (13)C NMR spectroscopy were used for the identification of functional groups and gauging the aromatic carbon content in the mixture. GC-MS analysis revealed that the volatile fraction was rich in fatty acids, as well as in amides and esters. High-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) has been applied in a systematic way to fully categorize the bio-oil in terms of different classes of components, according to their molecular formulas. Most importantly, for the first time, by using this technique, and for the liquefaction bio-oil characterization in particular, FT-MS data have been used to develop a methodology for the determination of the aromatic versus aliphatic carbon and nitrogen content. It is well known that, because they resist hydrogenation and represent sources of polluting species, both aromatic molecules and nitrogen-containing species raise concerns for subsequent upgrading of bio-oil into a diesel-like fuel. PMID:23139164

Leonardis, Irene; Chiaberge, Stefano; Fiorani, Tiziana; Spera, Silvia; Battistel, Ezio; Bosetti, Aldo; Cesti, Pietro; Reale, Samantha; De Angelis, Francesco

2013-01-01

328

Evolution of the dynamic susceptibility in molecular glass formers: Results from light scattering, dielectric spectroscopy, and NMR  

NASA Astrophysics Data System (ADS)

Although broadly studied, molecular glass formers are not well investigated above their melting point. Correlation times down to 10-12 s are easily accessible when studying low-Tg systems by depolarized light scattering, employing a tandem-Fabry-Perot interferometer and a double monochromator. When combining these techniques with state-of-the-art photon correlation spectroscopy (PCS), broad band susceptibility spectra become accessible which can compete with those of dielectric spectroscopy (DS). Comparing the results with those from DS, optical Kerr effect, and NMR, we describe the evolution of the susceptibilities starting from the boiling point Tb down to Tg, i.e., from simple liquid to glassy dynamics. Special attention is given to the emergence of the excess wing contribution which is also probed by PCS and which signals a crossover of the spectral evolution. The process is attributed to a small-angle precursor process of the ?-relaxation, and the apparent probe dependent stretching of the ?-process is explained by a probe dependent contribution of the excess wing. Upon cooling, its emergence is linked to a strong decrease of the strength of the fast dynamics which is taken as reorientational analog of the anomaly of the Debye-Waller factor. Many glass formers show in addition a slow ?-process which manifests itself rather universally in NMR, in DS, however, with different amplitudes, but not at all in PCS experiments. Finally, a three-parameter function is discussed interpolating ??(T) from Tb to Tg by connecting high- and low-temperature dynamics.

Petzold, N.; Schmidtke, B.; Kahlau, R.; Bock, D.; Meier, R.; Micko, B.; Kruk, D.; Rössler, E. A.

2013-03-01

329

Vanadium(V) environments in bismuth vanadates: A structural investigation using Raman spectroscopy and solid state 51V NMR  

NASA Astrophysics Data System (ADS)

The Bi 2O 3?V 2O 5 system was examined using Raman spectroscopy and solid state 51V wideline, magic-angle spinning (MAS), and nutation NMR spectroscopy. The methods are shown to be complementary in the identification of the various phases and in the characterization of their vanadium site symmetries. Most of the compositions examined (1:1 ? Bi:V ? 60:1) are multiphasic. Depending on the Bi:V ratio, the following phases have been identified: BiVO 4, Bi 4V 2O 11, a triclinic type-II phase, a cubic type-I phase, ?-Bi 2O 3 doped with V(V) (sillenite), and ?-Bi 2O 3. Detailed spectroscopic characterization reveals that vanadium is tetrahedrally coordinated in all these compounds, and that the degree of symmetry increases with increasing Bi:V ratio. At the highest Bi:V ratios, the combined interpretation of the Raman and NMR data provides strong evidence for the presence of Bi 5+O 4 tetrahedra.

Hardcastle, Franklin D.; Wachs, Israel E.; Eckert, Hellmut; Jefferson, David A.

1991-02-01

330

Multicomponent analysis of radiolytic products in human body fluids using high field proton nuclear magnetic resonance (NMR) spectroscopy  

NASA Astrophysics Data System (ADS)

High field proton Hahn spin-echo nuclear magnetic resonance (NMR) spectroscopy has been employed to investigate radiolytic damage to biomolecules present in intact human body fluids. ?-Radiolysis of healthy or rheumatoid human serum (5.00 kGy) in the presence of atmospheric O 2 gave rise to reproducible elevations in the concentration of NMR-detectable acetate which are predominantly ascribable to the prior oxidation of lactate to pyruvate by hydroxyl radical (·OH) followed by oxidative decarboxylation of pyruvate by radiolytically-generated hydrogen peroxide (H 2O 2) and/or further ·OH radical. Increases in the serum levels of non-protein-bound, low-molecular-mass components such as citrate and glutamine were also observed subsequent to ?-radiolysis, an observation which may reflect their mobilisation from protein binding-sites by ·OH radical, superoxide anion and/or H 2O 2. Moreover, substantial radiolytically-mediated elevations in the concentration of serum formate were also detectable. In addition to the above modifications, ?-radiolysis of inflammatory knee-joint synovial fluid (SF) generated a low-molecular-mass oligosaccharide species derived from the radiolytic fragmentation of hyaluronate. The radiolytically-mediated production of acetate in SF samples was markedly greater than that observed in serum samples, a consequence of the much higher levels of ·OH radical-scavenging lactate present. Indeed, increases in SF acetate concentration were detectable at doses as low as 48 Gy. We conclude that high field proton NMR analysis provides much useful information regarding the relative radioprotectant abilities of endogenous components and the nature, status and levels of radiolytic products generated in intact biofluids. We also suggest that NMR-detectable radiolytic products with associated toxicological properties (e.g. formate) may play a role in contributing to the deleterious effects observed following exposure of living organisms to sources of ionising radiation.

Grootveld, Martin C.; Herz, Herman; Haywood, Rachel; Hawkes, Geoffrey E.; Naughton, Declan; Perera, Anusha; Knappitt, Jacky; Blake, David R.; Claxson, Andrew W. D.

1994-05-01

331

GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY  

Technology Transfer Automated Retrieval System (TEKTRAN)

Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

332

Metabolome Profiling by HRMAS NMR Spectroscopy of Pheochromocytomas and Paragangliomas Detects SDH Deficiency: Clinical and Pathophysiological Implications12  

PubMed Central

Succinate dehydrogenase gene (SDHx) mutations increase susceptibility to develop pheochromocytomas/paragangliomas (PHEOs/PGLs). In the present study, we evaluate the performance and clinical applications of 1H high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy–based global metabolomic profiling in a large series of PHEOs/PGLs of different genetic backgrounds. Eighty-seven PHEOs/PGLs (48 sporadic/23 SDHx/7 von Hippel-Lindau/5 REarranged during Transfection/3 neurofibromatosis type 1/1 hypoxia-inducible factor 2?), one SDHD variant of unknown significance, and two Carney triad (CTr)–related tumors were analyzed by HRMAS-NMR spectroscopy. Compared to sporadic, SDHx-related PHEOs/PGLs exhibit a specific metabolic signature characterized by increased levels of succinate (P < .0001), methionine (P = .002), glutamine (P = .002), and myoinositol (P < .0007) and decreased levels of glutamate (P < .0007), regardless of their location and catecholamine levels. Uniquely, ATP/ascorbate/glutathione was found to be associated with the secretory phenotype of PHEOs/PGLs, regardless of their genotype (P < .0007). The use of succinate as a single screening test retained excellent accuracy in distinguishing SDHx versus non–SDHx-related tumors (sensitivity/specificity: 100/100%). Moreover, the quantification of succinate could be considered a diagnostic alternative for assessing SDHx-related mutations of unknown pathogenicity. We were also able, for the first time, to uncover an SDH-like pattern in the two CTr-related PGLs. The present study demonstrates that HRMAS-NMR provides important information for SDHx-related PHEO/PGL characterization. Besides the high succinate–low glutamate hallmark, SDHx tumors also exhibit high values of methionine, a finding consistent with the hypermethylation pattern of these tumors. We also found important levels of glutamine, suggesting that glutamine metabolism might be involved in the pathogenesis of SDHx-related PHEOs/PGLs. PMID:25622899

Imperiale, Alessio; Moussallieh, François-Marie; Roche, Philippe; Battini, Stéphanie; Cicek, A. Ercument; Sebag, Frédéric; Brunaud, Laurent; Barlier, Anne; Elbayed, Karim; Loundou, Anderson; Bachellier, Philippe; Goichot, Bernard; Stratakis, Constantine A.; Pacak, Karel; Namer, Izzie-Jacques; Taïeb, David

2015-01-01

333

Metabolome Profiling by HRMAS NMR Spectroscopy of Pheochromocytomas and Paragangliomas Detects SDH Deficiency: Clinical and Pathophysiological Implications.  

PubMed

Succinate dehydrogenase gene (SDHx) mutations increase susceptibility to develop pheochromocytomas/paragangliomas (PHEOs/PGLs). In the present study, we evaluate the performance and clinical applications of (1)H high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy-based global metabolomic profiling in a large series of PHEOs/PGLs of different genetic backgrounds. Eighty-seven PHEOs/PGLs (48 sporadic/23 SDHx/7 von Hippel-Lindau/5 REarranged during Transfection/3 neurofibromatosis type 1/1 hypoxia-inducible factor 2?), one SDHD variant of unknown significance, and two Carney triad (CTr)-related tumors were analyzed by HRMAS-NMR spectroscopy. Compared to sporadic, SDHx-related PHEOs/PGLs exhibit a specific metabolic signature characterized by increased levels of succinate (P < .0001), methionine (P = .002), glutamine (P = .002), and myoinositol (P < .0007) and decreased levels of glutamate (P < .0007), regardless of their location and catecholamine levels. Uniquely, ATP/ascorbate/glutathione was found to be associated with the secretory phenotype of PHEOs/PGLs, regardless of their genotype (P < .0007). The use of succinate as a single screening test retained excellent accuracy in distinguishing SDHx versus non-SDHx-related tumors (sensitivity/specificity: 100/100%). Moreover, the quantification of succinate could be considered a diagnostic alternative for assessing SDHx-related mutations of unknown pathogenicity. We were also able, for the first time, to uncover an SDH-like pattern in the two CTr-related PGLs. The present study demonstrates that HRMAS-NMR provides important information for SDHx-related PHEO/PGL characterization. Besides the high succinate-low glutamate hallmark, SDHx tumors also exhibit high values of methionine, a finding consistent with the hypermethylation pattern of these tumors. We also found important levels of glutamine, suggesting that glutamine metabolism might be involved in the pathogenesis of SDHx-related PHEOs/PGLs. PMID:25622899

Imperiale, Alessio; Moussallieh, François-Marie; Roche, Philippe; Battini, Stéphanie; Cicek, A Ercument; Sebag, Frédéric; Brunaud, Laurent; Barlier, Anne; Elbayed, Karim; Loundou, Anderson; Bachellier, Philippe; Goichot, Bernard; Stratakis, Constantine A; Pacak, Karel; Namer, Izzie-Jacques; Taïeb, David

2015-01-01

334

Permanent Magnet with Very Low Field Gradient (0.1G/mm) for NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

Nuclear Magnetic Resonance (NMR) is a powerful analytical tool for obtaining chemical, physical and structural information. To produce the uniform fields required, NMR experiments typically employ large, expensive electromagnets and shimming coils. We have developed a small permanent magnet with an iron yoke that produces a field of ˜10 kG with gradient < 0.1G/mm across a 6 mm region for a total field homogeneity of 10 ppm. The system consists of two parallel cylindrical NdFe permanent magnets, 50mm in diameter and 25mm thick, separated by 4mm. The magnets are surrounded by hollow low-carbon steel cylinders with steel caps on each end of the yoke. By adjusting the distance between the yoke caps and the magnet we cancel first-order field strength variations, as shown in simulations. This design is an important innovation for low cost, benchtop NMR systems. *Supported by the NCI MIT-Harvard CCNE.

Ilic, Ognjen; Issadore, David; Hunt, Tom; Westervelt, Robert

2007-03-01

335

High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids  

NASA Astrophysics Data System (ADS)

High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (<25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem' can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics.

Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua

2014-04-01

336

Expanding the limits of human blood metabolite quantitation using NMR spectroscopy.  

PubMed

A current challenge in metabolomics is the reliable quantitation of many metabolites. Limited resolution and sensitivity combined with the challenges associated with unknown metabolite identification have restricted both the number and the quantitative accuracy of blood metabolites. Focused on alleviating this bottleneck in NMR-based metabolomics, investigations of pooled human serum combining an array of 1D/2D NMR experiments at 800 MHz, database searches, and spiking with authentic compounds enabled the identification of 67 blood metabolites. Many of these (?1/3) are new compared with those reported previously as a part of the Human Serum Metabolome Database. In addition, considering both the high reproducibility and quantitative nature of NMR as well as the sensitivity of NMR chemical shifts to altered sample conditions, experimental protocols and comprehensive peak annotations are provided here as a guide for identification and quantitation of the new pool of blood metabolites for routine applications. Further, investigations focused on the evaluation of quantitation using organic solvents revealed a surprisingly poor performance for protein precipitation using acetonitrile. One-third of the detected metabolites were attenuated by 10-67% compared with methanol precipitation at the same solvent-to-serum ratio of 2:1 (v/v). Nearly 2/3 of the metabolites were further attenuated by up to 65% upon increasing the acetonitrile-to-serum ratio to 4:1 (v/v). These results, combined with the newly established identity for many unknown metabolites in the NMR spectrum, offer new avenues for human serum/plasma-based metabolomics. Further, the ability to quantitatively evaluate nearly 70 blood metabolites that represent numerous classes, including amino acids, organic acids, carbohydrates, and heterocyclic compounds, using a simple and highly reproducible analytical method such as NMR may potentially guide the evaluation of samples for analysis using mass spectrometry. PMID:25485990

Nagana Gowda, G A; Gowda, Yashas N; Raftery, Daniel

2015-01-01

337

Intermolecular Interactions between Eosin Y and Caffeine Using 1H-NMR Spectroscopy  

PubMed Central

DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using 1H-NMR, 1H-COSY, and 1H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

Okuom, Macduff O.; Wilson, Mark V.; Jackson, Abby; Holmes, Andrea E.

2014-01-01

338

Intermolecular Interactions between Eosin Y and Caffeine Using (1)H-NMR Spectroscopy.  

PubMed

DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using (1)H-NMR, (1)H-COSY, and (1)H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

Okuom, Macduff O; Wilson, Mark V; Jackson, Abby; Holmes, Andrea E

2013-12-31

339

NMR Spectroscopy and Structural Characterization of Dithiophosphinates Relevant to Minor Actinide Extraction Processes  

SciTech Connect

Synthetic routes to alkyl and aryl substituted dithiophosphinate salts that contain non-coordinating PPh{sub 4}{sup 1+} counter cations are reported. In general, these compounds can be prepared via a multi-step procedure that starts with reacting secondary phosphines, i.e. HPR{sub 2}, with two equivalents elemental S. This transformation proceeds in two steps - first oxidation of the phosphine and second insertion of S into the H-P bond - and has been used to synthesize a series of dithiophoshinic acids, which were fully characterized, namely HS{sub 2}P(p-CF{sub 3}C{sub 6}H{sub 4}){sub 2}, HS{sub 2}P(m-CF{sub 3}C{sub 6}H{sub 4}){sub 2}, HS{sub 2}P(o-MeC{sub 6}H{sub 4}){sub 2}, and HS{sub 2}P(o-MeOC{sub 6}H{sub 4}){sub 2}. Although the insertion step was found to be much slower than the oxidation reaction, the formation of (NH{sub 4})S{sub 2}PR{sub 2} from HPSR{sub 2} occurs almost instantaneous upon addition of NH{sub 4}OH. Subsequent cation exchange reactions proceed readily with PPh{sub 4}Cl in water, under air, and at ambient conditions to provide analytically pure samples of [PPh{sub 4}][S{sub 2}PR{sub 2}] (R = p-CF{sub 3}C{sub 6}H{sub 4}, m-CF{sub 3}C{sub 6}H{sub 4}, o-CF{sub 3}C{sub 6}H{sub 4}, o-MeC{sub 6}H{sub 4}, o-MeOC{sub 6}H{sub 4}, Ph, and Me, 1b-7b, respectively), which were characterized by elemental analysis, multinuclear NMR, and IR spectroscopy. In addition the S{sub 2}PMe{sub 2}{sup 1-}, S{sub 2}PPh{sub 2}{sup 1-}, and dithiophosphinates with ortho-substituted arene rings were characterized by X-ray crystallography. Structural analysis show that, as opposed to the acids which have short P=S double bonds and long P-SH single bonds, the metric parameters for the S atoms in S{sub 2}PR{sub 2}{sup 1-} are equivalent. In addition, the presence of large non-coordinating PPh{sub 4}{sup 1+} cations guard against intermolecular P-S {hor_ellipsis} X interactions and insure that the P-S bond is isolated. Overall, this synthetic procedure provides high-purity S{sub 2}PR{sub 2}{sup 1-} compounds necessary for subsequent spectroscopic and theoretical studies.

Scott R. Daly; Kevin S. Boland; John R. Klaehn; Stosh A. Kozimor; Molly M. MacInnes; Dean R. Peterman; Brian L. Scott

2012-02-01

340

Resin-bound chiral derivatizing agents for assignment of configuration by NMR spectroscopy.  

PubMed

A general methodology for assigning the configuration of chiral mono- and polyfunctional compounds by NMR is presented. The approach is based on the use of polystyrene-bound chiral derivatizing agents (CDA-resins) specifically designed to achieve the high-yield formation of the covalent linkages (amide or ester bonds) between the substrate and the chiral auxiliary within the NMR tube, without the need for other manipulations, on a microscale level and in a short time. The deuterated NMR solvents (CDCl3, CD3CN, CS2/CD2Cl2) are also the reaction solvents and separations, purifications or workups of any kind are not necessary prior to recording the spectra. The CDA-resins prepared included MPA, 9-AMA, BPG, MTPA, and 2-NTBA as auxiliary agents incorporated either as single enantiomers or as mixed combinations of the (R)- and the (S)-enantiomers at unequal and known ratios. The high versatility of these systems was successfully demonstrated in a variety of ways based on double and single derivatization, low temperature experiments, or the formation of metal complexes. The approach allowed the absolute configurations of chiral primary amines, primary and secondary alcohols, cyanohydrins, thiols, diols, triols, and amino alcohols to be determined. Extensive high-resolution magic angle spinning (HR-MAS) NMR experiments allowed the characterization of the new CDA-resins and enabled the study of their stability and regioselectivity. PMID:18582122

Porto, Silvia; Seco, José Manuel; Espinosa, Juan Félix; Quiñoá, Emilio; Riguera, Ricardo

2008-08-01

341

Multiphoton NMR spectroscopy on a spin system with I=1/2  

NASA Astrophysics Data System (ADS)

Multiple quantum effects in double frequency (df) pulsed NMR experiments on multilevel spin systems are studied. In these experiments, the spin systems are irradiated by two rf fields, applied simultaneously. A general theoretical description of these experiments is presented using the theory of Shirley for time dependent Hamiltonians. Multiphoton resonance conditions are given and time independent fictitious spin-1/2 Hamiltonians are derived using his perturbation theory treatment. With these Hamiltonians, the evolution of the spin systems during df irradiation is approximated. The example of df NMR experiments on an I=1/2 spin system is discussed. High order perturbation theory is developed to describe the time evolution of this spin system at a three photon resonance. Accurate computer calculations are performed to examine this time evolution. Df NMR experiments are performed on the single 31P(I=1/2) transition of phosphoric acid to check the theoretical results. The three photon resonance condition for these measurements is studied as a function of the rf irradiation intensities and of the resonance offsets of the two frequency components of df irradiation fields. Special NMR pulse cycles are used to study the dependence of the phase of the coherence created by df pulses on the initial rf phases of the two frequency components. Spin-echo type of experiments are developed to detect the spiral motion of the magnetization vector of the I=1/2 spin system at the three-photon resonance.

Zur, Y.; Levitt, M. H.; Vega, S.

1983-05-01

342

Self-Association of N-Methylacetamide Examined by Infrared and NMR Spectroscopies  

ERIC Educational Resources Information Center

These spectroscopic experiments investigate polarity and concentration effects on self-association behavior in N-methylacetamide. Inquiry can be limited to the concentration dependence of hydrogen bonding and estimation of dimerization constant (NMR studies) or to the effect of solvent polarity on extent of hydrogen bonding (IR studies). The…

Schenck, Heather L.; Hui, KaWai

2011-01-01

343

Rapid separation and quantitation of curcuminoids combining pseudo two dimensional liquid flash chromatography and NMR spectroscopy  

PubMed Central

Rapid separation, characterization and quantitation of curcuminoids are important owing to their numerous pharmacological properties including antimicrobial, antiviral, antifungal, anticancer, and anti-inflammatory activities. In the present study, pseudo two dimensional liquid flash chromatography was used for the separation of four curcuminoids (curcumin, demethoxy curcumin, bisdemethoxy curcumin and dihydro bisdemethoxy curcumin) for the first time. Silica and diol columns were used for separation of curcuminoids using gradient mobile phase. The separated peaks were monitored at 244, 360 nm to obtain four compounds. The purity of compounds were determined by rapid quantitative 1H NMR (qNMR) using 3-(trimethylsilyl) propionic-(2,2,3,3-d4) acid sodium salt (TSP-d4) (0.012%) in D2O. These results were compared with those obtained by HPLC method. The purity of isolated curcuminoids using pseudo 2D chromatography was found to be in the range of 92.4–95.45%. The structures of these compounds were characterized unambiguously using 13C (APT) NMR spectra. The developed pseudo 2D separation technique has the advantage of simplified automation with shorter run time compared to conventional separation techniques. The method that combines rapid pseudo 2D separation and simple quantitation using qNMR reported herein can be of wide utility for routine analysis of curcuminoids in complex mixtures. PMID:24013126

Jayaprakasha, G. K.; Gowda, G.A. Nagana; Marquez, Sixto; Patil, Bhimanagouda S.

2013-01-01

344

Fragment based drug discovery: practical implementation based on ¹?F NMR spectroscopy.  

PubMed

Fragment based drug discovery (FBDD) is a widely used tool for discovering novel therapeutics. NMR is a powerful means for implementing FBDD, and several approaches have been proposed utilizing (1)H-(15)N heteronuclear single quantum coherence (HSQC) as well as one-dimensional (1)H and (19)F NMR to screen compound mixtures against a target of interest. While proton-based NMR methods of fragment screening (FBS) have been well documented and are widely used, the use of (19)F detection in FBS has been only recently introduced (Vulpetti et al. J. Am. Chem. Soc.2009, 131 (36), 12949-12959) with the aim of targeting "fluorophilic" sites in proteins. Here, we demonstrate a more general use of (19)F NMR-based fragment screening in several areas: as a key tool for rapid and sensitive detection of fragment hits, as a method for the rapid development of structure-activity relationship (SAR) on the hit-to-lead path using in-house libraries and/or commercially available compounds, and as a quick and efficient means of assessing target druggability. PMID:22165820

Jordan, John B; Poppe, Leszek; Xia, Xiaoyang; Cheng, Alan C; Sun, Yax; Michelsen, Klaus; Eastwood, Heather; Schnier, Paul D; Nixey, Thomas; Zhong, Wenge

2012-01-26

345

Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples  

Microsoft Academic Search

Solid-state NMR experiments benefit from being performed at high fields, and this is essential in order to obtain spectra with the resolution and sensitivity required for applications to protein structure determination in aligned samples. Since the amount of rf power that can be applied is limited, especially for aqueous protein samples, the most important pulse sequences suffer from bandwidth limitations

Alexander A. Nevzorov

2007-01-01

346

Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples  

Microsoft Academic Search

Solid-state NMR experiments benefit from being performed at high fields, and this is essential in order to obtain spectra with the resolution and sensitivity required for applications to protein structure determination in aligned samples. Since the amount of rf power that can be applied is limited, especially for aqueous protein samples, the most important pulse sequences suffer from bandwidth limi-

Alexander A. Nevzorov

2006-01-01

347

In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism  

PubMed Central

Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance (NMR) methodologies to study changes at the electrode–electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations. PMID:24274637

2013-01-01

348

Conformational properties and orientational order of a de Vries liquid crystal investigated through NMR spectroscopy.  

PubMed

Solid-state and liquid-state NMR spectroscopic techniques are used to describe at molecular level the behaviour of a de Vries liquid crystal (namely the mesogen 9HL) at the SmA-SmC* transition, which is characterized by the absence of the layer shrinkage, typical of non-de Vries smectogens. Previous (2)H NMR studies on the same smectogen, performed at a different magnetic field (from 4.70 to 18.80 T), provided evidence of the occurrence of a tilt of one of the three phenyl rings, constituting the aromatic core of 9HL, at the SmA-SmC* phase transition. In this work, the study is extended to the whole rigid aromatic core of the 9HL. In particular, the variable temperature behavior of the mesogen studied by 1D (13)C NMR cross-polarization (CP) and 2D (1)H-(13)C PDLF (proton-encoded (13)C-detected, local field) NMR experiments made possible the characterization of the conformational and orientational properties in the two smectic phases. These results are compared with various proposed models invoked to describe the SmA-SmC* transition in de Vries smectogens at a molecular level. PMID:24482195

Domenici, Valentina; Lelli, Moreno; Cifelli, Mario; Hamplova, Vera; Marchetti, Alessandro; Veracini, Carlo Alberto

2014-05-19

349

Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples  

NASA Astrophysics Data System (ADS)

Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

2012-04-01

350

Determination of Structural Topology of a Membrane Protein in Lipid -Bilayers using Polarization Optimized Experiments (POE) for Static and MAS Solid State NMR Spectroscopy  

PubMed Central

The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments (POE), for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ? 0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional O-ssNMR and MAS-ssNMR. PMID:23963722

Mote, Kaustubh R.; Gopinath, T.; Veglia, Gianluigi

2013-01-01

351

A LEAN approach toward automated analysis and data processing of polymers using proton NMR spectroscopy.  

PubMed

To maximize utilization of expensive laboratory instruments and to make most effective use of skilled human resources, the entire chain of data processing, calculation, and reporting that is needed to transform raw NMR data into meaningful results was automated. The LEAN process improvement tools were used to identify non-value-added steps in the existing process. These steps were eliminated using an in-house developed software package, which allowed us to meet the key requirement of improving quality and reliability compared with the existing process while freeing up valuable human resources and increasing productivity. Reliability and quality were improved by the consistent data treatment as performed by the software and the uniform administration of results. Automating a single NMR spectrophotometer led to a reduction in operator time of 35%, doubling of the annual sample throughput from 1400 to 2800, and reducing the turn around time from 6 days to less than 2. PMID:21609682

de Brouwer, Hans; Stegeman, Gerrit

2011-02-01

352

Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions.  

PubMed

A novel approach to tailored selective excitation for the measurement of NMR spectra in non-deuterated aqueous solutions (WATERGATE, WATER suppression by GrAdient-Tailored Excitation) is described. The gradient echo sequence, which effectively combines one selective 180 degrees radiofrequency pulse and two field gradient pulses, achieves highly selective and effective water suppression. This technique is ideally suited for the rapid collection of multi-dimensional data since a single-scan acquisition produces a pure phase NMR spectrum with a perfectly flat baseline, at the highest possible sensitivity. Application to the fast measurement of 2D NOE data of a 2.2 mM solution of a double-stranded DNA fragment in 90% H2O at 5 degrees C is presented. PMID:1490109

Piotto, M; Saudek, V; Sklenár, V

1992-11-01

353

SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy  

NASA Astrophysics Data System (ADS)

A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

2000-12-01

354

Aggregation of aqueous lysozyme solutions followed by dynamic light scattering and 1H NMR spectroscopy  

Microsoft Academic Search

In the presented work, we followed our previous calorimetric investigation [J. Pozna?ski, M. Wszelaka-Rylik, W. Zielenkiewicz, Termochim. Acta 409 (2004) 25–32], analyzing the kinetics of NaCl-induced lysozyme aggregation. The aggregates' size distribution was monitored independently by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). Experiments were conducted for 2.1 mM lysozyme solution in acetate buffer, pH=4.25, in the NaCl

Jaros?aw Pozna?ski; J?drzej Szyma?ski; Teresa Basi?ska; Stanis?aw S?omkowski; Wojciech Zielenkiewicz

2005-01-01

355

SIMPSON: A general simulation program for solid-state NMR spectroscopy  

NASA Astrophysics Data System (ADS)

A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

2011-12-01

356

DETERMINATION OF BRANCHING RATIOS OF STARCH IN FLOURS BY 1H MAS NMR SPECTROSCOPY  

Technology Transfer Automated Retrieval System (TEKTRAN)

1H MAS NMR was employed to determine the ratio of alpha-(1-->4) to alpha-(1-->6) branching in the starch of rice flour. Samples investigated were exchanged (2X) in D2O with freeze drying, gelatinized with 90/10% DMSO/ D2O freeze dried again, finally moistened with D2O, and placed in a spherical 4 m...

357

Interactions between locust bean gum and cellulose characterized by 13C n.m.r. spectroscopy  

Microsoft Academic Search

Molecular interactions between locust bean gum (LBG) and cellulose crystallite surfaces appear to involve most mannosyl residues of the mannan backbone, not just the small proportion contained in long segments which lack galactosyl residues. This conclusion is based on: (1) relative strengths of13C n.m.r. signals at 102.2 ppm in the cross-polarization (CP) spectrum and 101.3 ppm in the single-pulse excitation

Roger H. Newman; Jacqueline A. Hemmingson

1998-01-01

358

Speeding up nuclear magnetic resonance spectroscopy by the use of SMAll Recovery Times - SMART NMR  

NASA Astrophysics Data System (ADS)

A drastic reduction of the time required for two-dimensional NMR experiments can be achieved by reducing or skipping the recovery delay between successive experiments. Novel SMAll Recovery Times (SMART) methods use orthogonal pulsed field gradients in three spatial directions to select the desired pathways and suppress interference effects. Two-dimensional spectra of dilute amino acids with concentrations as low as 2 mM can be recorded in about 0.1 s per increment in the indirect domain.

Vitorge, Bruno; Bodenhausen, Geoffrey; Pelupessy, Philippe

2010-11-01

359

Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions  

Microsoft Academic Search

Summary A novel approach to tailored selective excitation for the measurement of NMR spectra in non-deuterated aqueous solutions (WATERGATE, WATER suppression by GraAdient-Tailored Excitation) is described. The gradient echo sequence, which effectively combines one selective 180° radiofrequency pulse and two field gradient pulses, achieves highly selective and effective water suppression. This technique is ideally suited for the rapid collection of

Martial Piotto; Vladimir Saudek; Vladimir Sklená?

1992-01-01

360

A Study of Quantum Error Correction by Geometric Algebra and Liquid-State NMR Spectroscopy  

E-print Network

Quantum error correcting codes enable the information contained in a quantum state to be protected from decoherence due to external perturbations. Applied to NMR, quantum coding does not alter normal relaxation, but rather converts the state of a ``data'' spin into multiple quantum coherences involving additional ancilla spins. These multiple quantum coherences relax at differing rates, thus permitting the original state of the data to be approximately reconstructed by mixing them together in an appropriate fashion. This paper describes the operation of a simple, three-bit quantum code in the product operator formalism, and uses geometric algebra methods to obtain the error-corrected decay curve in the presence of arbitrary correlations in the external random fields. These predictions are confirmed in both the totally correlated and uncorrelated cases by liquid-state NMR experiments on 13C-labeled alanine, using gradient-diffusion methods to implement these idealized decoherence models. Quantum error correction in weakly polarized systems requires that the ancilla spins be prepared in a pseudo-pure state relative to the data spin, which entails a loss of signal that exceeds any potential gain through error correction. Nevertheless, this study shows that quantum coding can be used to validate theoretical decoherence mechanisms, and to provide detailed information on correlations in the underlying NMR relaxation dynamics.

Yehuda Sharf; David G. Cory; Shyamal S. Somaroo; Timothy F. Havel; Emanuel Knill; Raymond Laflamme

2000-04-07

361

Metabolomic Investigations of American Oysters Using 1H-NMR Spectroscopy  

PubMed Central

The Eastern oyster (Crassostrea virginica) is a useful, robust model marine organism for tissue metabolism studies. Its relatively few organs are easily delineated and there is sufficient understanding of their functions based on classical assays to support interpretation of advanced spectroscopic approaches. Here we apply high-resolution proton nuclear magnetic resonance (1H NMR)-based metabolomic analysis to C. virginica to investigate the differences in the metabolic profile of different organ groups, and magnetic resonance imaging (MRI) to non-invasively identify the well separated organs. Metabolites were identified in perchloric acid extracts of three portions of the oyster containing: (1) adductor muscle, (2) stomach and digestive gland, and (3) mantle and gills. Osmolytes dominated the metabolome in all three organ blocks with decreasing concentration as follows: betaine > taurine > proline > glycine > ß-alanine > hypotaurine. Mitochondrial metabolism appeared most pronounced in the adductor muscle with elevated levels of carnitine facilitating ß-oxidation, and ATP, and phosphoarginine synthesis, while glycogen was elevated in the mantle/gills and stomach/digestive gland. A biochemical schematic is presented that relates metabolites to biochemical pathways correlated with physiological organ functions. This study identifies metabolites and corresponding 1H NMR peak assignments for future NMR-based metabolomic studies in oysters. PMID:21116407

Tikunov, Andrey P.; Johnson, Christopher B.; Lee, Haakil; Stoskopf, Michael K.; Macdonald, Jeffrey M.

2010-01-01

362

Magneto-optical contrast in liquid-state optically detected NMR spectroscopy.  

PubMed

We use optical Faraday rotation (OFR) to probe nuclear spins in real time at high-magnetic field in a range of diamagnetic sample fluids. Comparison of OFR-detected NMR spectra reveals a correlation between the relative signal amplitude and the fluid Verdet constant, which we interpret as a manifestation of the variable detuning between the probe beam and the sample optical transitions. The analysis of chemical-shift-resolved, optically detected spectra allows us to set constraints on the relative amplitudes of hyperfine coupling constants, both for protons at chemically distinct sites and other lower-gyromagnetic-ratio nuclei including carbon, fluorine, and phosphorous. By considering a model binary mixture we observe a complex dependence of the optical response on the relative concentration, suggesting that the present approach is sensitive to the solvent-solute dynamics in ways complementary to those known in inductive NMR. Extension of these experiments may find application in solvent suppression protocols, sensitivity-enhanced NMR of metalloproteins in solution, the investigation of solvent-solute interactions, or the characterization of molecular orbitals in diamagnetic systems. PMID:22100736

Pagliero, Daniela; Meriles, Carlos A

2011-12-01

363

Conformational Analysis of Oxidized Peptide Fragments of the C-terminal Redox Center in Thioredoxin Reductases by NMR Spectroscopy  

PubMed Central

Vicinal disulfide rings (VDRs) occur when a disulfide bond forms between adjacent cysteine residues in a protein and results in a rare eight-membered ring structure. This eight-membered ring has been found to exist in four major conformations in solution, divided between cis and trans conformers. Some selenoenzymes use a special type of VDR in which selenium replaces sulfur, generating a vicinal selenosulfide ring (VSeSR). Here we provide evidence that this substitution reduces ring strain, resulting in a strong preference for the trans conformation relative to cis in a VSeSR (cis:trans – 9:91). This was determined by using the “?-gauche effect” which makes use of both 1H-NMR and two-dimensional (2D) NMR techniques for determining the amide bond conformeric ratio. The presence of selenium in a VSeSR also lowers the dihedral strain energy (DSE) of the selenosulfide bond relative to the disulfide bond of VDRs. While cis amide geometry decreases strain on the amide bond, it increases strain on the scissile disulfide bond of the VDR found in thioredoxin reductase from D. melanogaster (DmTR). We hypothesize that the cis conformation of the VDR is the catalytically competent conformer for thiol/disulfide exchange. This hypothesis was investigated by computing the DSE of VDR and VSeSR conformers, the structure of which was determined by 2D NMR spectroscopy and energy minimization. The computed values of the VDR from DmTR are 16.5 kJ/mol DSE and 14.3 kJ/mol for the C+ and T? conformers, respectively, supporting the hypothesis that the enzyme uses the C+ conformer for thiol/disulfide exchange. PMID:24599608

Ruggles, Erik L.; Deker, P. Bruce; Hondal, Robert J.

2014-01-01

364

Organic solute changes with acidification in Lake Skjervatjern as shown by [sup 1]H-NMR spectroscopy  

SciTech Connect

[sup 1]H-NMR spectroscopy has been found to be a useful tool to establish possible real differences and trends between all natural organic solute fractions (fulvic acids, humic acids, and XAD-4 acids) after acid-rain additions to the Lake Skjervatjern watershed. The proton NMR technique used in this study determined the spectral distribution of nonexchangeable protons among four peaks (aliphatic protons; aliphatic protons on carbon [alpha] or attached to electronegative groups; protons on carbons attached to O or N heteroatoms; and aromatic protons). Differences of 10% or more in the respective peak areas were considered to represent a real difference. After one year of acidification, fulvic acids decreased 13% (relative) in Peak 3 protons on carbon attached to N and O heteroatoms and exhibited a decrease in aromatic protons between 27% and 31%. Humic acids also exhibited an 11% relative decrease in aromatic protons as a result of acidification. After one year of acidification, real changes were shown in three of the four proton assignments in XAD-4 acids. Peak 1 aliphatic protons increased by 14% (relative), Peak 3 protons on carbons attached to O and N heteroatoms decreased by 13% (relative), and aromatic protons (Peak 4) decreased by 35% (relative). Upon acidification, there was a trend in all solutes for aromatic protons to decrease and aliphatic protons to increase. The natural variation in organic solutes as shown in the Control Side B of the lake from 1990 to 1991 is perhaps a small limitation to the same data interpretations of acid rain changes at the Lake Skjervatjern site, but the proton NMR technique shows great promise as an independent scientific tool to detect and support other chemical techniques in establishing organic solute changes with different treatments (i.e., additions of acid rain). 8 refs., 5 figs., 1 tab.

Malcolm, R.L. (Geological Survey, Denver, CO (United States)); Hayes, T. (Univ. of Birmingham (United Kingdom))

1994-01-01

365

The cadmium binding domains in the metallothionein isoform Cd(7)-MT10 from Mytilus galloprovincialis revealed by NMR spectroscopy.  

PubMed

The metal-thiolate connectivity of recombinant Cd(7)-MT10 metallothionein from the sea mussel Mytilus galloprovincialis has been investigated for the first time by means of multinuclear, multidimensional NMR spectroscopy. The internal backbone dynamics of the protein have been assessed by the analysis of (15)N T (1) and T (2) relaxation times and steady state {(1)H}-(15)N heteronuclear NOEs. The (113)Cd NMR spectrum of mussel MT10 shows unique features, with a remarkably wide dispersion (210 ppm) of (113)Cd NMR signals. The complete assignment of cysteine Halpha and Hbeta proton resonances and the analysis of 2D (113)Cd-(113)Cd COSY and (1)H-(113)Cd HMQC type spectra allowed us to identify a four metal-thiolate cluster (alpha-domain) and a three metal-thiolate cluster (beta-domain), located at the N-terminal and the C-terminal, respectively. With respect to vertebrate MTs, the mussel MT10 displays an inversion of the alpha and beta domains inside the chain, similar to what observed in the echinoderm MT-A. Moreover, unlike the MTs characterized so far, the alpha-domain of mussel Cd(7)-MT10 is of the form M(4)S(12) instead of M(4)S(11), and has a novel topology. The beta-domain has a metal-thiolate binding pattern similar to other vertebrate MTs, but it is conformationally more rigid. This feature is quite unusual for MTs, in which the beta-domain displays a more disordered conformation than the alpha-domain. It is concluded that in mussel Cd(7)-MT10, the spacing of cysteine residues and the plasticity of the protein backbone (due to the high number of glycine residues) increase the adaptability of the protein backbone towards enfolding around the metal-thiolate clusters, resulting in minimal alterations of the ideal tetrahedral geometry around the metal centres. PMID:18855021

Digilio, Giuseppe; Bracco, Chiara; Vergani, Laura; Botta, Mauro; Osella, Domenico; Viarengo, Aldo

2009-02-01

366

Cross-linking and 1H n.m.r. spectroscopy of the pyruvate dehydrogenase complex of Escherichia coli  

PubMed Central

The pyruvate dehydrogenase complex of Escherichia coli was treated with o-phenylene bismaleimide in the presence of the substrate pyruvate, producing almost complete cross-linking of the lipoate acetyltransferase polypeptide chains as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. This took place without effect on the catalytic activities of the other two component enzymes and with little evidence of cross-links being formed with other types of protein subunit. Limited proteolysis with trypsin indicated that the cross-links were largely confined to the lipoyl domains of the lipoate acetyltransferase component of the same enzyme particle. This intramolecular cross-linking had no effect on the very sharp resonances observed in the 1H n.m.r. spectrum of the enzyme complex, which derive from regions of highly mobile polypeptide chain in the lipoyl domains. Comparison of the spin–spin relaxation times, T2, with the measured linewidths supported the idea that the highly mobile region is best characterized as a random coil. Intensity measurements in spin-echo spectra showed that it comprises a significant proportion (probably not less than one-third) of a lipoyl domain and is thus much more than a small hinge region, but there was insufficient intensity in the resonances to account for the whole lipoyl domain. On the other hand, no evidence was found in the 1H n.m.r. spectrum for a substantial structured region around the lipoyl-lysine residues that was free to move on the end of this highly flexible connection. If such a structured region were bound to other parts of the enzyme complex for a major part of its time, its resonances might be broadened sufficiently to evade detection by 1H n.m.r. spectroscopy. ImagesFig. 2.Fig. 3. PMID:6753833

Packman, Leonard C.; Perham, Richard N.; Roberts, Gordon C. K.

1982-01-01

367

The effect of atorvastatin on serum lipids, lipoproteins and NMR spectroscopy defined lipoprotein subclasses in type 2 diabetic patients with ischaemic heart disease  

Microsoft Academic Search

The effect of statin therapy on subclasses of LDL, VLDL and HDL lipoproteins is unclear. We compared changes in serum lipids, apolipoproteins and nuclear magnetic resonance (NMR) spectroscopy measured lipoprotein subclass concentration and average particle size over a minimum 6 months treatment period of atorvastatin 10 mg vs. placebo in 122 men and women. All subjects had type 2 diabetes

S. S. Soedamah-Muthu; H. M. Colhoun; M. J. Thomason; D. J. Betteridge; P. N. Durrington; G. A. Hitman; J. H. Fuller; K. Julier; M. I. Mackness; H. A. W. Neil

2003-01-01

368

Application of Solid-State 13C NMR Spectroscopy and Dipolar Dephasing Technique to Determine the Extent of Condensation in Technical Lignins  

Microsoft Academic Search

Solid-state 13C NMR spectroscopy and dipolar dephasing technique was used to determine the extent of condensation in various technical lignins. The accuracy of dipolar dephasing method was first investigated with the aid of some lignin model compounds and two various methods to determine the degree of condensation were compared. On the basis of the model compound experiments both methods based

T. Liitiä; S. L. Maunu; J. Sipilä; B. Hortling

2002-01-01

369

Use of NMR Spectroscopy in the Synthesis and Characterization of Air-and Water-Stable Silicon Nanoparticles from Porous Silicon  

E-print Network

Use of NMR Spectroscopy in the Synthesis and Characterization of Air- and Water-Stable Silicon Nanoparticles from Porous Silicon R. S. Carter, S. J. Harley, P. P. Power, and M. P. Augustine* Department. ReVised Manuscript ReceiVed February 23, 2005 Air- and water-stable silicon nanocrystals were

Augustine, Mathew P.

370

High-Resolution Magic Angle Spinning 1H NMR Spectroscopy of Intact Liver and Kidney: Optimization of Sample Preparation Procedures and Biochemical Stability of Tissue during Spectral Acquisition  

Microsoft Academic Search

High-resolution magic angle spinning (MAS) 1H NMR spectroscopy has been used to investigate the biochemical composition of whole rat renal cortex and liver tissue samples. The effects of a number of sample preparation procedures and experimental variables have been investigated systematically in order to optimize spectral quality and maximize information recovery. These variables include the effects of changing the sample

N. J. Waters; S. Garrod; R. D. Farrant; J. N. Haselden; S. C. Connor; J. Connelly; J. C. Lindon; E. Holmes; J. K. Nicholson

2000-01-01

371

Probing self-assembled 1,3,5-benzenetrisamides in isotactic polypropylene by 13C DQ solid-state NMR spectroscopy.  

PubMed

Using (13)C double quantum solid-state NMR spectroscopy, we were able to observe nuclei of a supramolecular BTA based additive on the nanoscale in a matrix of i-PP at a concentration of only 0.09 wt%. These nuclei exhibit the analogous structural features as the crystalline phase of the neat additive. PMID:23175351

Schmidt, Marko; Wittmann, Johannes J; Kress, Roman; Schmidt, Hans-Werner; Senker, Jürgen

2013-01-11

372

Using 15N-Ammonium to Characterise and Map Potassium Binding Sites in Proteins by NMR Spectroscopy  

PubMed Central

A variety of enzymes are activated by the binding of potassium ions. The potassium binding sites of these enzymes are very specific, but ammonium ions can often replace potassium ions in vitro because of their similar ionic radii. In these cases, ammonium can be used as a proxy for potassium to characterise potassium binding sites in enzymes: the 1H,15N spin-pair of enzyme-bound 15NH4+ can be probed by 15N-edited heteronuclear NMR experiments. Here, we demonstrate the use of NMR spectroscopy to characterise binding of ammonium ions to two different enzymes: human histone deacetylase 8 (HDAC8), which is activated allosterically by potassium, and the bacterial Hsp70 homologue DnaK, for which potassium is an integral part of the active site. Ammonium activates both enzymes in a similar way to potassium, thus supporting this non-invasive approach. Furthermore, we present an approach to map the observed binding site onto the structure of HDAC8. Our method for mapping the binding site is general and does not require chemical shift assignment of the enzyme resonances. PMID:24520048

Werbeck, Nicolas D; Kirkpatrick, John; Reinstein, Jochen; Hansen, D Flemming

2014-01-01

373

Evolution of organic matter during composting of different organic wastes assessed by CPMAS {sup 13}C NMR spectroscopy  

SciTech Connect

In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS {sup 13}C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS {sup 13}C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowest increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition.

Caricasole, P. [Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529 (United States); Provenzano, M.R., E-mail: Provenza@agr.uniba.it [Dipartimento di Biologia e Chimica Agroforestale ed Ambientale, Universita di Bari, Via G. Amendola 165/a, 70126 Bari (Italy); Hatcher, P.G. [Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529 (United States); Senesi, N. [Dipartimento di Biologia e Chimica Agroforestale ed Ambientale, Universita di Bari, Via G. Amendola 165/a, 70126 Bari (Italy)

2011-03-15

374

Investigation of the action patterns of pectinmethylesterase isoforms through kinetic analyses and NMR spectroscopy. Implications In cell wall expansion.  

PubMed

Well characterized pectin samples were incubated with cell wall-bound and -solubilized pure isoforms of pectinmethylesterase from mung bean hypocotyls (Vigna radiata). Both enzyme activity and average product structure were determined at intervals along the deesterification pathway at pH 5.6 and 7.6. The latter analyses were performed by 13C NMR spectroscopy, and the degree of esterification was probed by both 13C NMR and potentiometric measurements. A dichotomy was observed in the behavior of the alpha and gamma isoforms when compared with that of the beta isoenzyme. Ideal blockwise deesterification mechanisms reproduced the experimental average structures (methylester distribution) throughout the course of the reaction. In the case of the alpha and gamma isoforms, a single chain mechanism associated with a free carboxyl group at the second nearest neighbor position could be postulated at pH 5.6, whereas some multiple attack character was required to reproduce the data at pH 7.6. Several mechanisms that differed from the preceding ones were compatible with the data for the beta isoform at the two pH values. Both the nature of the polysaccharides produced in these reactions and the role of pectinmethylesterase in the cell wall-stiffening process along the growth gradient are discussed. PMID:9837882

Catoire, L; Pierron, M; Morvan, C; du Penhoat, C H; Goldberg, R

1998-12-11

375

Combined reversed phase HPLC, mass spectrometry, and NMR spectroscopy for a fast separation and efficient identification of phosphatidylcholines.  

PubMed

In respect of the manifold involvement of lipids in biochemical processes, the analysis of intact and underivatized lipids of body fluids as well as cell and tissue extracts is still a challenging task, if detailed molecular information is required. Therefore, the advantage of combined use of high-pressure liquid chromatography (HPLC), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy will be shown analyzing three different types of extracts of the ubiquitous membrane component phosphatidylcholine. At first, different reversed phase modifications were tested on phosphatidylcholines (PC) with the same effective carbon number (ECN) for their applicability in lipid analysis. The results were taken to improve the separation of three natural PC extract types and a new reversed phase (RP)-HPLC method was developed. The individual species were characterized by one- and two-dimensional NMR and positive or negative ion mode quadrupole time of flight (q-TOF)-MS as well as MS/MS techniques. Furthermore, ion suppression effects during electrospray ionisation (ESI), difficulties, limits, and advantages of the individual analytical techniques are addressed. PMID:20871812

Willmann, Jan; Thiele, Herbert; Leibfritz, Dieter

2011-01-01

376

Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes  

PubMed Central

Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629

Arges, Christopher G.; Ramani, Vijay

2013-01-01

377

Solution structures of psoralen monoadducted and cross-linked DNA oligomers by NMR spectroscopy and restrained molecular dynamics  

SciTech Connect

We have used two-dimensional {sup 1}H NMR spectroscopy to determine the solution structures of the 4,5{prime}, 8-trimethylpsoralen (HMT) furanside monoadducted (MAf) and the photoisomeric HMT interstrand cross-linked (XL) DNA oligonucleotide d(t{prime}-GCGTACGC-3{prime}){sub 2}. The determination of the structure was based on total relaxation matrix analysis of the NOESY cross-peak intensities using the program MARDIGRAS. Improved procedures to consider the experimental {open_quotes}noise{close_quotes} in NOESY spectra during these calculations have been employed. The NOE-derived distance restraints were applied in restrained molecular dynamics calculations. Twenty final structures each were generated for both the MAf and XL from both A-form and B-form dsDNA starting structures. 80 refs., 7 figs., 6 tabs.

Spielmann, H.P.; Dwyer, T.J.; Hearst, J.E. [Lawrence Berkeley Laboratory, CA (United States)]|[Univ. of California, Berkeley, CA (United States)] [and others

1995-10-10

378

Evaluation of the effect of carvacrol on the Escherichia coli 555 metabolome by using 1H-NMR spectroscopy.  

PubMed

Cultures of Escherichia coli 555 were grown at four levels of carvacrol (0-2 mM) and the E. coli endo-metabolome was extracted and measured by (1)H NMR spectroscopy. The results show that glucose concentration is going up with concentration of carvacrol and so do formate until the highest concentration is reached, from which point it suddenly decreases. This is interpreted as if the bacteria are increasingly unable to further metabolize glucose and as if the bacteria increasingly shifts with higher levels of carvacrol toward sugar fermentation as carbon source, until the level of carvacrol reaches a level (2.00 mM), where the E. coli must give up. Additionally, the multivariate Principal Component Analysis suggests that the adaptation occurring at sub-lethal doses of carvacrol is different from that occurring at higher doses. PMID:23993627

Picone, Gianfranco; Laghi, Luca; Gardini, Fausto; Lanciotti, Rosalba; Siroli, Lorenzo; Capozzi, Francesco

2013-12-15

379

NMR Spectroscopy of the Hydrated Layer of Composite Particles Based on Nanosized Al2O3 and Vitreous Humor  

NASA Astrophysics Data System (ADS)

The hydrated layer of composite particles prepared using Al2O3 and cattle vitreous humor was investigated using NMR spectroscopy. It was found that water bound to Al2O3 nanoparticles was present in the form of clusters with different degrees of association and energies of interaction with the surface. Water bound to the surface of the Al2O3/vitreous humor composite became more uniform upon immobilization of vitreous humor components on the surface of the Al2O3. With this, the clusters of adsorbed water had characteristics that were close to those found in air and weakly polar CHCl3 media. Addition of polar CH3CN led to the formation of very small water clusters. PMR spectra of the surface of the Al2O3/vitreous humor composite in the presence of trifluoroacetic acid differentiated four types of hydrated structures that differed in the degree of water association.

Turov, V. V.; Gerashchenko, I. I.; Markina, A. I.

2013-11-01

380

Solid state (13)C NMR and FT-IR spectroscopy of the cocoon silk of two common spiders.  

PubMed

The structure of the silk from cocoons of two common spiders, Araneus diadematus (family Araneidae) and Achaearanea tepidariorum (family Theridiidae) was investigated by means of (13)C solid state NMR and FT-IR spectroscopies. The combined use of these two techniques allowed us to highlight differences in the two samples. The cocoon silk of Achaearanea tepidariorum is essentially constituted by helical and beta-sheet structures, whereas that of Araneus diadematus shows a more complex structure, containing also beta-strands and beta-turns. Moreover, the former silk is essentially crystalline while the latter contains more mobile domains. The structural differences of the two cocoon silks are ascribed to the different habitat of the two species. PMID:16257700

Bramanti, Emilia; Catalano, Donata; Forte, Claudia; Giovanneschi, Mario; Masetti, Massimo; Veracini, Carlo Alberto

2005-11-01

381

Evolution of the dynamic susceptibility in molecular glass formers: results from light scattering, dielectric spectroscopy, and NMR.  

PubMed

Although broadly studied, molecular glass formers are not well investigated above their melting point. Correlation times down to 10(-12)?s are easily accessible when studying low-T(g) systems by depolarized light scattering, employing a tandem-Fabry-Perot interferometer and a double monochromator. When combining these techniques with state-of-the-art photon correlation spectroscopy (PCS), broad band susceptibility spectra become accessible which can compete with those of dielectric spectroscopy (DS). Comparing the results with those from DS, optical Kerr effect, and NMR, we describe the evolution of the susceptibilities starting from the boiling point T(b) down to T(g), i.e., from simple liquid to glassy dynamics. Special attention is given to the emergence of the excess wing contribution which is also probed by PCS and which signals a crossover of the spectral evolution. The process is attributed to a small-angle precursor process of the ?-relaxation, and the apparent probe dependent stretching of the ?-process is explained by a probe dependent contribution of the excess wing. Upon cooling, its emergence is linked to a strong decrease of the strength of the fast dynamics which is taken as reorientational analog of the anomaly of the Debye-Waller factor. Many glass formers show in addition a slow ?-process which manifests itself rather universally in NMR, in DS, however, with different amplitudes, but not at all in PCS experiments. Finally, a three-parameter function is discussed interpolating ?(?)(T) from T(b) to T(g) by connecting high- and low-temperature dynamics. PMID:23556761

Petzold, N; Schmidtke, B; Kahlau, R; Bock, D; Meier, R; Micko, B; Kruk, D; Rössler, E A

2013-03-28

382

The interaction of ammonia and xenon with the imidazole glycerol phosphate synthase from Thermotoga maritima as detected by NMR spectroscopy.  

PubMed

The imidazole glycerol phosphate (ImGP) synthase from the hyperthermophilic bacterium Thermotoga maritima is a 1:1 complex of the glutaminase subunit HisH and the cyclase subunit HisF. It has been proposed that ammonia generated by HisH is transported through a channel to the active site of HisF, which generates intermediates of histidine (ImGP) and de novo biosynthesis of 5-aminoimidazole-4-carboxamideribotide. Solution NMR spectroscopy of ammonium chloride-titrated samples was used to study the interaction of NH(3) with amino acids inside this channel. Although numerous residues showed (15)N chemical shift changes, most of these changes were caused by nonspecific ionic strength effects. However, several interactions appeared to be specific. Remarkably, the amino acid residue Thr 78-which is located in the central channel-shows a large chemical shift change upon titration with ammonium chloride. This result and the reduced catalytic activity of the Thr78Met mutant indicate a special role of this residue in ammonia channeling. To detect and further characterize internal cavities in HisF, which might for example contribute to ammonia channeling, the interaction of HisF with the noble gas xenon was analyzed by solution NMR spectroscopy using (1)H-(15)N HSQC experiments. The results indicate that HisF contains three distinct internal cavities, which could be identified by xenon-induced chemical shift changes of the neighboring amino acid residues. Two of these cavities are located at the active site at opposite ends of the substrate N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) binding groove. The third cavity is located in the interior of the central ?-barrel of HisF and overlaps with the putative ammonia transport channel. PMID:20665694

Liebold, Christoph; List, Felix; Kalbitzer, Hans Robert; Sterner, Reinhard; Brunner, Eike

2010-09-01

383

Methods for Increasing Sensitivity and Throughput of Solid-State NMR Spectroscopy of Pharmaceutical Solids  

E-print Network

Solid-state nuclear magnetic resonance (SSNMR) spectroscopy has been demonstrated to be a powerful technique for investigating solid dosage formulations. SSNMR has the ability to determine physical form, molecular structure, ...

Schieber, Loren

2010-01-22

384

Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study.  

PubMed

We have investigated the interaction between a synthetic amphipathic 14-mer peptide and model membranes by solid-state NMR. The 14-mer peptide is composed of leucines and phenylalanines modified by the addition of crown ethers and forms a helical amphipathic structure in solution and bound to lipid membranes. To shed light on its membrane topology, 31P, 2H, 15N solid-state NMR experiments have been performed on the 14-mer peptide in interaction with mechanically oriented bilayers of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidylcholine (DPPC). The 31P, 2H, and 15N NMR results indicate that the 14-mer peptide remains at the surface of the DLPC, DMPC, and DPPC bilayers stacked between glass plates and perturbs the lipid orientation relative to the magnetic field direction. Its membrane topology is similar in DLPC and DMPC bilayers, whereas the peptide seems to be more deeply inserted in DPPC bilayers, as revealed by the greater orientational and motional disorder of the DPPC lipid headgroup and acyl chains. 15N{31P} rotational echo double resonance experiments have also been used to measure the intermolecular dipole-dipole interaction between the 14-mer peptide and the phospholipid headgroup of DMPC multilamellar vesicles, and the results indicate that the 14-mer peptide is in contact with the polar region of the DMPC lipids. On the basis of these studies, the mechanism of membrane perturbation of the 14-mer peptide is associated to the induction of a positive curvature strain induced by the peptide lying on the bilayer surface and seems to be independent of the bilayer hydrophobic thickness. PMID:17487978

Ouellet, Marise; Doucet, Jean-Daniel; Voyer, Normand; Auger, Michèle

2007-06-01

385

Direct Detection of (17) O in [Gd(DOTA)](-) by NMR Spectroscopy.  

PubMed

The (17) O?NMR spectrum of the non-coordinated carboxyl oxygen in the Gd(III) -DOTA (DOTA=tetraazacyclododecanetetraacetic acid) complex has been observed experimentally. Its line width is essentially unaffected by paramagnetic relaxation due to gadolinium, and is only affected by the quadrupole pathway. The results are supported by the relevant parameters (hyperfine and quadrupole coupling constants) calculated by relativistic DFT methods. This finding opens up new avenues for investigating the structure and reactivity of paramagnetic Gd(III) complexes used as contrast agents in magnetic resonance imaging. PMID:25470235

Fusaro, Luca; Casella, Girolamo; Bagno, Alessandro

2015-01-26

386

Characterizing RNA Dynamics at Atomic Resolution Using Solution-state NMR Spectroscopy  

PubMed Central

Many recently discovered non-coding RNAs do not fold into a single native conformation, but rather, sample many different conformations along their free energy landscape to carry out their biological function. Unprecedented insights into the RNA dynamic structure landscape are provided by solution-state NMR techniques that measure the structural, kinetic, and thermodynamic characteristics of motions spanning picosecond to second timescales at atomic resolution. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering. PMID:22036746

Bothe, Jameson R.; Nikolova, Evgenia N.; Eichhorn, Catherine D.; Chugh, Jeetender; Hansen, Alexandar L.; Al-Hashimi, Hashim M.

2012-01-01

387

High Resolution Solid State 13C NMR Spectroscopy of Sporopollenins from Different Plant Taxa  

PubMed Central

The extremely chemically resistant component of the cell wall of spores, pollens, and some microorganisms, sporopollenin, is generally accepted to be derived from carotenoids or carotenoid esters. However, we report here that 13C NMR analyses of sporopollenin from several sources shows that this widely held view is incorrect, with one possible exception. Sporopollenin is not a unique substance but rather a series of related biopolymers derived from largely saturated precursors such as fatty acids. The biopolymers contain widely varying amounts of oxygen in the form of ether, hydroxyl, carboxylic acid, ester, and ketone groups. PMID:16665854

Guilford, William J.; Schneider, Diane M.; Labovitz, Jeffrey; Opella, Stanley J.

1988-01-01

388

Determination of metabolite profiles in tropical wines by 1H NMR spectroscopy and chemometrics.  

PubMed

Traditionally, wines are produced in temperate climate zones, with one harvest per year. Tropical wines are a new concept of vitiviniculture that is being developed, principally in Brazil. The new Brazilian frontier is located in the northeast region (São Francisco River Valley) in Pernambuco State, close to the equator, between 8 and 9 degrees S. Compared with other Brazilian and worldwide vineyards, the grapes of this region possess peculiar characteristics. The aim of this work is a preliminary study of commercial São Francisco River Valley wines, analyzing their metabolite profiles by (1)H NMR and chemometric methods. PMID:19810052

da Silva Neto, Humberto G; da Silva, João B P; Pereira, Giuliano E; Hallwass, Fernando

2009-12-01

389

Two-dimensional NMR spectroscopy as a tool to link soil organic matter composition to ecosystem processes  

NASA Astrophysics Data System (ADS)

Environmental factors (e.g. temperature and moisture) and the size and composition of soil microbial populations are often considered the main drivers of soil organic matter (SOM) mineralization. Less consideration is given to the role of SOM as a substrate for microbial metabolism and the importance of the organo-chemical composition of SOM on decomposition. In addition, a fraction of the SOM is often considered as recalcitrant to mineralization leading to accumulation of SOM. However, recently the concept of intrinsic recalcitrance of SOM to mineralization has been questioned. The challenge in investigating the role of SOM composition on its mineralization to a large extent stems from the difficulties in obtaining high resolution characterization of a very complex matrix. 13C nuclear magnetic resonance (NMR) spectroscopy is a widely used tool to characterize SOM. However, SOM is a very complex mixture and in the resulting 13C NMR spectra, the identified functional groups may represent different molecular fragments that appear in the same spectral region leading to broad peaks. These overlaps defy attempts to identify molecular moieties, and this makes it impossible to derive information at a resolution needed for evaluating e.g. recalcitrance of SOM. Here we applied a method, developed in wood science for the pulp paper industry, to achieve a better characterization of SOM. We directly dissolved finely ground organic layers of boreal forest floors-litters, fibric and humic horizons of both coniferous and broadleaved stands-in dimethyl sulfoxide and analyzed the resulting solution with a two-dimensional (2D) 1H-13C NMR experiment. We will discuss methodological aspects related to the ability to identify and quantify individual molecular moieties in SOM. We will demonstrate how the spectra resolve signals of CH groups in a 2D plane determined by the 13C and 1H chemical shifts, thereby vastly increasing the resolving power and information content of NMR spectra. The obtained 2D spectra resolve overlaps observed in 1D 13C spectra, so that hundreds of distinct CH moieties can be observed and many individual molecular fragments can be identified. For instance, in the aromatic spectral region, signals originating from various lignin monomers and unsaturated compounds can be resolved. This yields a detailed chemical fingerprint of the SOM samples, and valuable insights on molecular structures. We observed differences in the respective aromatic region of the 2D spectra of the litter layers and the fibric and humic horizons, in relation with humification processes. We were also able to relate the cross-peak complexity and abundance patterns of identifiable molecular moieties to variability in the temperature response of organic matter degradation, as assessed by Q10. To conclude, solution-state 2D NMR spectroscopy is a highly promising new tool to characterize SOM composition at the molecular level, which opens completely new possibilities to link SOM molecular composition to ecosystem processes, and their responses to environmental changes.

Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

2014-05-01

390

Effect of Ancillary Ligand on Electronic Structure as Probed by 51V Solid-State NMR Spectroscopy for Vanadium-o-Dioxolene Complexes  

PubMed Central

A series of vanadium(V) complexes with o-dioxolene (catecholato) ligands and an ancillary ligand, (N-(salicylideneaminato)ethylenediamine) (hensal), were investigated using 51V solid-state magic angle spinning NMR spectroscopy (51V MAS NMR) to assess the local environment of the vanadium(V). The solid-state 51V NMR parameters of vanadium(V) complexes with a related potentially tetradentate ancillary ligand (N-salicylidene-N?-(2-hydroxyethyl)ethylenediamine) (h2shed) were previously shown to be associated with the size of the HOMO-LUMO gap in the complex, and as such provide insights on the interaction between metal ion and ligand (P. B. Chatterjee, et al., Inorg. Chem 50 (2011) 9794). Our results show that the modification of the ancillary ligand does not impact the observed trend between complexes ranging from catechols with electron rich to electron poor substituents. However, the ancillary ligand does impact the size of the HOMO-LUMO separation in the parent complex and thus the solid-state vanadium NMR chemical shift of the unsubstituted vanadium complex. For these complexes significant changes observed in the isotropic shifts and more modest changes detected in the CQ reflect the electronic changes in the complex as the catechol is varied. However, no obvious trend was observed in the chemical shift anisotropies (?? and ??) with the variation in the catechol. The electronic changes in the coordination environment of the vanadium can be described using solid-state 51V NMR spectroscopy. PMID:24353476

Goncharova-Zapata, Olga; Chatterjee, Pabitra B.; Hou, Guangjin; Quinn, Laurence L.; Li, Mingyue; Yehl, Jenna

2013-01-01

391

Insights on the Interactions of Synthetic Amphipathic Peptides with Model Membranes as Revealed by 31P and 2H Solid-State NMR and Infrared Spectroscopies  

PubMed Central

We studied the interaction between synthetic amphipathic peptides and model membranes by solid-state NMR and infrared spectroscopies. Peptides with 14 and 21 amino acids composed of leucines and phenylalanines modified by the addition of crown ethers were synthesized. The 14-mer and 21-mer peptides both possess a helical amphipathic structure. To shed light on their membrane interaction, 31P and 2H solid-state NMR experiments were performed on both peptides in interaction with dimyristoylphosphatidylcholine vesicles in the absence and presence of cholesterol, dimyristoylphosphatidylglycerol vesicles, and oriented bicelles. 31P NMR experiments on multilamellar vesicles reveal that the dynamics and/or orientation of the polar headgroups are weakly yet markedly affected by the presence of the peptides, whereas 31P NMR experiments on bicelles indicate no significant changes in the morphology and orientation of the bicelles. On the other hand, 2H NMR experiments on vesicles reveal that the acyl chain order is affected differently depending on the membrane lipidic composition and on the peptide hydrophobic length. Finally, infrared spectroscopy was used to study the interfacial region of the bilayer. Based on these studies, mechanisms of membrane perturbation are proposed for the 14-mer and 21-mer peptides in interaction with model membranes depending on the bilayer composition and peptide length. PMID:16533836

Ouellet, Marise; Bernard, Geneviève; Voyer, Normand; Auger, Michèle

2006-01-01

392

Probing the Geometry and Interconnectivity of Pores in Organic Aerogels Using Hyperpolarized 129Xe NMR Spectroscopy  

SciTech Connect

Aerogels represent a class of novel open-pore materials with high surface area and nanometer pore sizes. They exhibit extremely low mass densities, low thermal conductivity, good acoustic insulation, and low dielectric constants. These materials have potential applications in catalysis, advanced separation techniques, energy storage, environmental remediation, and as insulating materials. Organic aerogels are stiffer and stronger than silica aerogels and are better insulators with higher thermal resistance. Resorcinol-Formaldehyde (RF) aerogels are typically prepared through the base-catalyzed sol-gel polymerization of resorcinol with formaldehyde in aqueous solution to produce gels, which are then dried in supercritical CO2.1,2 The [resorcinol]/ [catalyst] (R/C) ratio of the starting sol-gel solution has been determined to be the dominant factor that affects the properties of RF aerogels. Since the unique microstructures of aerogels are responsible for their unusual properties, characterizing the detailed porous structures and correlating them with the processing parameters are vital to establish rational design principles for novel organic aerogels with tailored properties. In this communication we report the first use of hyperpolarized (HP) 129Xe NMR to probe the geometry and interconnectivity of pores in RF aerogels and to correlate these with synthetic conditions. Our work demonstrates that HP 129Xe NMR is so far the only method for accurately measuring the free volume-to-surface-area (Vg/S) ratios for soft mesoporous materials without using any geometric models.

Moudrakovski, Igor L.; Wang, Li Q.; Baumann, T.; Satcher, J. H.; Exarhos, Gregory J.; Ratcliffe, C. I.; Ripmeester, J. A.

2004-04-28

393

31P NMR spectroscopy of rat organs, in situ, using chronically implanted radiofrequency coils.  

PubMed Central

A technique for making 31P NMR spectroscopic measurements in rat kidney, heart, and liver in vivo is presented. Two-turn solenoid coils were surgically implanted around the organ sufficiently in advance of NMR experiments to allow recovery of the animal. These chronically implanted coils allowed acquisition of high-resolution spectra at 40.5 and 97.3 MHz. No resolution improvement occurred at the higher field. Spectra were stable for up to 24 hr, during which time a variety of experiments could be performed. By accumulating spectra at 10-min intervals, the effects of intraperitoneal fructose injections were monitored; in kidney and liver, a rapid increase in sugar phosphates at the expense of Pi and ATP resulted. Fructose had no effect on heart metabolite levels. Spectra from the heart in vivo were obtained at systole and diastole by gating the spectrometer to the aortic pressure wave; no differences in phosphate metabolites were detected. Finally, saturation transfer techniques were used to monitor the rate of ATP synthesis in the kidney. The unidirectional rate constant for the conversion of Pi to ATP was 0.12 +/- 0.03 sec-1. Images PMID:6584867

Koretsky, A P; Wang, S; Murphy-Boesch, J; Klein, M P; James, T L; Weiner, M W

1983-01-01

394

Chiral recognition of imperanene enantiomers by various cyclodextrins: a capillary electrophoresis and NMR spectroscopy study.  

PubMed

The enantiomers of imperanene, a novel polyphenolic compound of Imperata cylindrica (L.), were separated via cyclodextrin-modified capillary electrophoresis. The anionic form of the analyte at pH 9.0 was subject to complexation and enantioseparation CE studies with neutral and charged cyclodextrins. As chiral selectors 27 CDs were applied differing in cavity size, sidechain, degree of substitution (DS) and charge. Three hydroxypropylated and three sulfoalkylated CD preparations provided enantioseparation and the migration order was successfully interpreted in each case in terms of complex mobilities and stability constants. The best enantioresolution (R(S)  = 1.26) was achieved using sulfobutyl-ether-?-CD (DS ?4), but it could be enhanced by extensive investigations on dual selector systems. After optimization (CD concentrations and pH) R(S)  = 4.47 was achieved using a 12.5 mM sulfobutyl-ether-?-CD and 10 mM 6-monodeoxy-6-mono-(3-hydroxy)-propylamino-?-cyclodextrin dual system. The average stoichiometry of the complex was determined with Job's method using NMR-titration and resulted in a 1:1 complex for both (2-hydroxy)propyl-?- and sulfobutyl-ether-?-CD. Further NMR experiments suggest that the coniferyl moiety of imperanene is involved in the host-guest interaction. PMID:22648815

Sohajda, Tamás; Szakács, Zoltán; Szente, Lajos; Noszál, Béla; Béni, Szabolcs

2012-05-01

395

An Investigation of Molecular Templating in Amorphous Silicas by Cross-Polarization NMR Spectroscopy  

SciTech Connect

The precise pore sizes defined by crystalline zeolite lattices have led to intensive research on zeolite membranes. Unfortunately zeolites have proven to be extremely difficult to prepare in a defect-free thin film form needed for membrane flux and selectivity. We introduce tetrapropylammonium (TPA), a structure-directing agent for zeolite ZSM-5, into a silica sol and exploit the development of high solvation stresses to create templated amorphous silicas with pore apertures comparable in size to those of ZSM-5. Silicon and carbon NMR experiments were performed to evaluate the efficacy of our templating approach. The {sup 29}Si NMR spectrum of the silica matrix was observed by an intermolecular cross-polarization experiment involving the {sup 1}H nuclei of TPA and the {sup 29}Si nuclei in the silica matrix. The efficiency of the cross-polarization interaction was used to investigate the degree to which the matrix formed a tight cage surrounding the template molecule. Bulk xerogels, prepared by gelation and slow drying of the corresponding sols, exhibited only weak interactions between the two sets of nuclei. Thin film xerogels, where drying stresses are greater, exhibited significantly increased interactions. Intramolecular cross-polarization experiments between the {sup 1}H and {sup 13}C nuclei of the template molecule demonstrated that much of the increased efficiency was a result of reduced rotational mobility of the TPA molecule.

Assink, R.A.; Brinker, C.J.; Click, C.A.; Naik, S.J.

1999-07-12

396

An investigation of molecular templating in amorphous silicas by cross-polarization NMR spectroscopy  

SciTech Connect

The precise pore sizes defined by crystalline zeolite lattices have led to intensive research on zeolite membranes. Unfortunately, zeolites have been extremely difficult to prepare in a defect-free thin film form needed for membrane flux and selectivity. The authors introduced tetrapropylammonium (TPA), a structure-directing agent for zeolite ZSM-5, into a silica sol and exploit the development of high solvation stresses to create templated amorphous silicas with pore apertures similar in size to those of ZSM-5. Silicon and carbon NMR experiments were performed to evaluate the efficacy of the templating approach. The {sup 29}Si NMR spectrum of the silica matrix was observed by an intermolecular cross-polarization experiment involving the {sup 1}H nuclei of TPA and the {sup 29}Si nuclei in the silica matrix. The efficiency of the cross-polarization interaction was used to investigate the degree to which the matrix formed a tight cage surrounding the template molecule. Bulk xerogels, prepared by gelation and slow drying of the corresponding sols, exhibited only weak interactions between the two sets of nuclei. Thin film xerogels, where drying stresses are greater, exhibited significantly increased interactions. Intramolecular cross-polarization experiments between the {sup 1}H and {sup 13}C nuclei of the template molecule demonstrated that much of the increased efficiency was a result of reduced rotational mobility of the TPA molecule.

Click, C.A.; Assink, R.A.; Brinker, C.J.; Naik, S.J.

2000-01-20

397

Probing Quadrupolar Nuclei by Solid-State NMR Spectroscopy: Recent Advances  

SciTech Connect

Solid-state nuclear magnetic resonance (NMR) of quadrupolar nuclei has recently undergone remarkable development of capabilities for obtaining structural and dynamic information at the molecular level. This review summarizes the key achievements attained during the last couple of decades in solid-state NMR of both integer spin and half-integer spin quadrupolar nuclei. We provide a concise description of the first- and second-order quadrupolar interactions, and their effect on the static and magic angle spinning (MAS) spectra. Methods are explained for efficient excitation of single- and multiple-quantum coherences, and acquisition of spectra under low- and high-resolution conditions. Most of all, we present a coherent, comparative description of the high-resolution methods for half-integer quadrupolar nuclei, including double rotation (DOR), dynamic angle spinning (DAS), multiple-quantum magic angle spinning (MQMAS), and satellite transition magic angle spinning (STMAS). Also highlighted are methods for processing and analysis of the spectra. Finally, we review methods for probing the heteronuclear and homonuclear correlations between the quadrupolar nuclei and their quadrupolar or spin-1/2 neighbors.

Fernandez, Christian; Pruski, Marek

2011-06-08

398

The nature of fatty acid interaction with a polyelectrolyte-surfactant pair revealed by NMR spectroscopy.  

PubMed

The interaction mechanisms of an oppositely charged polyelectrolyte-surfactant pair and dodecanoic (lauric) acid (LA) were experimentally investigated using a combination of nuclear magnetic resonance (NMR) techniques. It is observed that LA significantly affects the interaction between the anionic surfactant sodium dodecylethersulfate (SDES) and the cationic polymer guar modified with grafted hydroxypropyl trimethylammonium chloride (Jaguar C13 BF). Typically, oppositely charged polymers and surfactants interact electrostatically at a certain surfactant concentration known as the critical aggregation concentration (CAC). Once the polymer is neutralized by the surfactant, an insoluble complex (precipitate) is observed (phase separation), and, at concentrations beyond the surfactant critical micellar concentration (CMC'), the system returns to a one phase entity. In a system in which a mixture of SDES-LA is added to the polymer, NMR data show that below the neutralization onset, some of the polymer interacts with SDES, while some of the polymer is adsorbed at the surface of LA solid aggregates present in the system. Furthermore, SDES is found to aggregate in a lamellar-like structure at the polymer side chain prior to the SDES CMC'. Above the SDES (CMC'), LA is solubilized and incorporated at the palisade region of SDES micelles. Analysis of (1)H resonances provided estimated concentrations of all species in the system phases at all stages of interaction. PMID:25109504

Martinez-Santiago, Jose; Totland, Christian; Ananthapadmanabhan, Kavssery P; Tsaur, Liang; Somasundaran, Ponisseril

2014-09-01

399

Enhanced neurochemical profile of the rat brain using in vivo (1)H NMR spectroscopy at 16.4 T.  

PubMed

Single voxel magnetic resonance spectroscopy with ultrashort echo time was implemented at 16.4 T to enhance the neurochemical profile of the rat brain in vivo. A TE of 1.7 msec was achieved by sequence optimization and by using short-duration asymmetric pulses. Macromolecular signal components were parameterized individually and included in the quantitative analysis, replacing the use of a metabolite-nulled spectrum. Because of the high spectral dispersion, several signals close to the water line could be detected, and adjacent peaks could be resolved. All 20 metabolites detected in this study were quantified with Cramér-Rao lower bounds below 20%, implying reliable quantification accuracy. The signal of acetate was detected for the first time in rat brain in vivo with Cramér-Rao lower bounds of 16% and a concentration of 0.52 ?mol/g. The absolute concentrations of most metabolites showed close agreement with values previously measured using in vivo (1)H NMR spectroscopy and in vitro biochemical assay. PMID:20928884

Hong, Sung-Tak; Balla, Dávid Zsolt; Shajan, G; Choi, Changho; U?urbil, Kâmil; Pohmann, Rolf

2011-01-01

400

Pleural effusion lipoproteins measured by NMR spectroscopy for diagnosis of exudative pleural effusions: a novel tool for pore-size estimation.  

PubMed

High-resolution proton nuclear magnetic resonance (NMR) spectrometry of biofluids has been increasingly used in laboratory diagnosis of various diseases. In this study, we extended the use of (1)H NMR spectroscopy for laboratory diagnosis of exudative pleural effusions using pleural fluids. We compared this new NMR-based test with Light's criteria, the current gold standard for laboratory diagnosis of exudative pleural effusions. We analyzed 67 samples of pleural effusions from patients with pulmonary malignancy (N = 32), pulmonary tuberculosis (N = 18), and congestive heart failure (N = 17). The metabolomes of pleural effusions were analyzed using (1)H NMR spectroscopy on a Bruker 600 MHz spectrometer. Through a metabolome-wide association approach with filtering of insignificant markers (p value <4 × 10(-6)) and multivariate analysis (principal component analysis and orthogonal partial least squares-discriminant analysis), lipoprotein was found to be the best biomarker that distinguished exudates from transudates. Using NMR-based lipoprotein profiling to classify exudative pleural effusions from transudates, the area-under-receiver operating characteristic (ROC) curve was 0.96 with sensitivity of 98%, specificity of 88%, and accuracy of 98%. In contrast, the current gold standard, Light's criteria, give a specificity of only 65% at the same sensitivity level of 98%. Using the principle of size exclusion, NMR-based lipoprotein profiling of pleural fluids has an unprecedented diagnostic performance superiority over the Light's criteria. The capillary leaks secondary to inflammation result in a larger pleural pore-size, which allows the large-sized lipoproteins to accumulate in exudative pleural effusions. In contrast, the pleural permeability is intact in transudates, which allow only small-sized lipoproteins to pass into the pleural effusions. The average capillary pore-size of the pleura can therefore be determined by using NMR-based lipoprotein profiling of pleural fluids. We believe this new test will change the current clinical practice for management of pleural effusions and will become a new standard for clinical practice. PMID:25072840

Lam, Ching-Wan; Law, Chun-Yiu

2014-09-01

401

Identification of lithium-sulfur battery discharge products through 6Li and 33S solid-state MAS and 7Li solution NMR spectroscopy  

NASA Astrophysics Data System (ADS)

6Li and 33S solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy was used to identify the discharge products in lithium-sulfur (Li-S) battery cathodes. Cathodes were stopped at different potentials throughout battery discharge and measured ex-situ to obtain chemical shifts and T2 relaxation rates of the products formed. The chemical shifts in the spectra of both 6Li and 33S NMR demonstrate that long-chain, soluble lithium polysulfide species formed at the beginning of discharge are indistinguishable from each other (similar chemical shifts), while short-chain, insoluble polysulfide species that form at the end of discharge (presumably Li2S2 and Li2S) have a different chemical shift, thus distinguishing them from the soluble long-chain products. T2 relaxation measurements of discharged cathodes were also performed which resulted in two groupings of T2 rates that follow a trend and support the previous conclusions that long-chain polysulfide species are converted to shorter chain species during discharge. Through the complementary techniques of 1-D 6Li and 33S solid-state MAS NMR spectroscopy, solution 7Li and 1H NMR spectroscopy, and T2 relaxation rate measurements, structural information about the discharge products of Li-S batteries is obtained.

Huff, Laura A.; Rapp, Jennifer L.; Baughman, Jessi A.; Rinaldi, Peter L.; Gewirth, Andrew A.

2015-01-01

402

[Determination of authenticity and thermal transformation of bee products by NMR spectroscopy].  

PubMed

NMR studies of carbohydrate composition of several varieties of honey and surface layer of Altai honey were carried out. Investigated samples were differing by their geobotanical nature, year of collection and thermal effect to which they were subjected. It is shown that compared with honey its surface layer is enriched with glucose while fructose is depleted. It is established that fructose diastereoisomers in honey are in equilibrium concentrations, so their distribution does not change at heating. The effect of temperature on the ratio of alpha-/beta-form glucose in honey was established. It has been shown that in the unheated honey the value of the ratio alpha-/beta-glucose was > 1, when honey was heating glucose anomerization occured and due to this the ratio value became < 1. Therefore, the ratio of glucose anomers in honey can be considered as an index of its thermal transformation and can be used as an additional technique at examining the honey quality. PMID:24006755

Ivanova, I K; Shits, E Iu; Koriakina, V V

2013-01-01

403

Proton micro-magic-angle-spinning NMR spectroscopy of nanoliter samples  

NASA Astrophysics Data System (ADS)

We present our recent progress in the development of micro-magic-angle-spinning solenoid-based probeheads for the application in high-resolution 1H solid-state NMR of nanoliter sample volumes. The use of fused-silica capillaries as sample holders results in spectra without any 1H background signal. It is possible to obtain 1H spectra of 40-80 nl samples in a few scans. We obtained high-resolution 1H spectra employing different homonuclear decoupling sequences on powdered samples of L-alanine, the tripeptide AGG, and a single crystal of L-tyrosine·HCl. In addition, we recorded high-resolution two-dimensional proton-detected 1H- 13C heteronuclear correlation spectra of [U- 13C 3, 15N]- L-alanine and AGG with natural abundant isotope distribution.

Brinkmann, Andreas; Vasa, Suresh Kumar; Janssen, Hans; Kentgens, Arno P. M.

2010-01-01

404

Staphylococcus aureus Peptidoglycan Stem Packing by Rotational-Echo Double Resonance NMR Spectroscopy  

PubMed Central

Staphylococcus aureus grown in the presence of an alanine-racemase inhibitor was labeled with D-[1-13C]alanine and L-[15N]alanine to characterize some details of the peptidoglycan tertiary structure. Rotational-echo double-resonance NMR of intact whole cells was used to measure internuclear distances between 13C and 15N of labeled amino acids incorporated in the peptidoglycan, and from those labels to 19F of a glycopeptide drug specifically bound to the peptidoglycan. The observed 13C-15N average distance of 4.1 to 4.4 Å between D- and L-alanines in nearest-neighbor peptide stems is consistent with a local, tightly packed, parallel-stem architecture for a repeating structural motif within the peptidoglycan of S. aureus. PMID:23617832

Kim, Sung Joon; Singh, Manmilan; Preobrazhenskaya, Maria; Schaefer, Jacob

2013-01-01

405

13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites  

NASA Technical Reports Server (NTRS)

13C NMR spectra have been obtained of the insoluble carbon residues resulting from HF-digestion of three carbonaceous chondrites, Orgueil (C1), Murchison (CM2), and Allende (CV3). Spectra obtained using the cross polarization magic-angle spinning technique show two major features attributable respectively to carbon in aliphatic/olefinic structures. The spectrum obtained from the Allende sample was weak, presumably as a consequence of its low hydrogen content. Single pulse excitation spectra, which do not depend on 1H-13C polarization transfer for signal enhancement were also obtained. These spectra, which may be more representative of the total carbon in the meteorite samples, indicate a greater content of carbon in aromatic/olefinic structures. These results suggest that extensive polycyclic aromatic sheets are important structural features of the insoluble carbon of all three meteorites. The Orgueil and Murchison materials contain additional hydrogenated aromatic/olefinic and aliphatic groups.

Cronin, J. R.; Pizzarello, S.; Frye, J. S.

1987-01-01

406

Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy  

PubMed Central

For centuries mankind has stored its knowledge on paper, a remarkable biomaterial made of natural cellulose fibers. However, spontaneous cellulose degradation phenomena weaken and discolorate paper over time. The detailed knowledge of products arising from cellulose degradation is essential in understanding deterioration pathways and in improving durability of cultural heritage. In this study, for the first time, products of cellulose degradation were individually detected in solid paper samples by means of an extremely powerful proton HR-MAS NMR set-up, in combination to a wise use of both ancient and, as reference, artificially aged paper samples. Carboxylic acids, in addition to more complex dicarboxylic and hydroxy-carboxylic acids, were found in all samples studied. Since these products can catalyze further degradation, their knowledge is fundamental to improve conservation strategies of historical documents. Furthermore, the identification of compounds used in ancient production techniques, also suggests for artifacts dating, authentication and provenance. PMID:24104201

Corsaro, Carmelo; Mallamace, Domenico; ?ojewska, Joanna; Mallamace, Francesco; Pietronero, Luciano; Missori, Mauro

2013-01-01

407

Molybdenum modified phosphate glasses studied by (31)P MAS NMR and Raman spectroscopy.  

PubMed

Glasses have been synthesized in the system P2O5SiO2K2OMgOCaO modified by addition of MoO3. Glasses were prepared by conventional fusion method from 40g batches. The influence of Mo-cations on the analysed glass structure was investigated by means of Raman and (31)P MAS-NMR techniques. It has been found that molybdate units can form Mo[MoO4/MoO6]OP and/or Mo[MoO4/MoO6]OSi bonds with non-bridging oxygens atoms of Q2 methaphosphate units, resulting in the transformation of chain methaphosphate structure into pyrophosphate and finally into orthophosphate structure. It has been also found that increasing amount of MoO3 in the structure of investigated glasses causes their gradual depolymerization and molybdenum ions in the analysed glass matrix act as modifying cations. PMID:25216461

Szumera, Magdalena

2015-02-25

408

Selectively Measuring ??Back-Donation in Gold(I) Complexes by NMR Spectroscopy.  

PubMed

Even though the Dewar-Chatt-Duncanson model has been successfully used by chemists since the 1950s, no experimental methodology is yet known to unambiguously estimate the constituents (donation and back-donation) of a metal-ligand interaction. It is demonstrated here that one of these components, the metal-to-ligand ??back-donation, can be effectively probed by NMR measurements aimed at determining the rotational barrier of a C?N bond (?Hr (?) ) of a nitrogen acyclic carbene ligand. A large series of gold(I) complexes have been synthesized and analyzed, and it was found that the above experimental observables show an accurate correlation with back-donation, as defined theoretically by the appropriate charge displacement originated upon bond formation. The proposed method is potentially of wide applicability for analyzing the ligand effect in metal catalysts and guiding their design. PMID:25504684

Ciancaleoni, Gianluca; Biasiolo, Luca; Bistoni, Giovanni; Macchioni, Alceo; Tarantelli, Francesco; Zuccaccia, Daniele; Belpassi, Leonardo

2015-02-01

409

Lanthanide-cyclodextrin complexes as probes for elucidating optical purity by NMR spectroscopy  

SciTech Connect

A multidentate ligand is bonded to cyclodextrins by the reaction of diethylenetriaminepentaacetic dianhydride with 6-mono- and 2-mono(ethylenediamine) derivatives of cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives enhances the enantiomeric resolution in the [sup 1]H NMR spectra of carbionoxamine maleate, doxylamine succinate, pheniramine maleate, propranolol hydrochloride, and tryptophan. The enhancement is more pronounced with the secondary derivative. The Dy(III)-induced shifts can be used to elucidate the geometry of cyclodextrin-substrate inclusion complexes. Lanthanide-induced shifts are reported for complexes of aspartame, tryptophan, propranolol, and 1-anilino-8-naphthalenesulfonate with cyclodextrins, and the relative magnitudes of the shifts agree with previously reported structures of the complexes. 37 refs., 9 figs., 5 tabs.

Wenzel, T.J.; Bogyo, M.S.; Lebeau, E.L. (Bates College, Lewiston, ME (United States))

1994-06-01

410

Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy  

NASA Astrophysics Data System (ADS)

For centuries mankind has stored its knowledge on paper, a remarkable biomaterial made of natural cellulose fibers. However, spontaneous cellulose degradation phenomena weaken and discolorate paper over time. The detailed knowledge of products arising from cellulose degradation is essential in understanding deterioration pathways and in improving durability of cultural heritage. In this study, for the first time, products of cellulose degradation were individually detected in solid paper samples by means of an extremely powerful proton HR-MAS NMR set-up, in combination to a wise use of both ancient and, as reference, artificially aged paper samples. Carboxylic acids, in addition to more complex dicarboxylic and hydroxy-carboxylic acids, were found in all samples studied. Since these products can catalyze further degradation, their knowledge is fundamental to improve conservation strategies of historical documents. Furthermore, the identification of compounds used in ancient production techniques, also suggests for artifacts dating, authentication and provenance.

Corsaro, Carmelo; Mallamace, Domenico; ?ojewska, Joanna; Mallamace, Francesco; Pietronero, Luciano; Missori, Mauro

2013-10-01

411

High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning  

SciTech Connect

High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

2005-01-27

412

Determination of neo- and d-chiro-Inositol Hexakisphosphate in Soils by Solution 31P NMR Spectroscopy  

PubMed Central

The inositol phosphates are an abundant but poorly understood group of organic phosphorus compounds found widely in the environment. Four stereoisomers of inositol hexakisphosphate (IP6) occur, although for three of these (scyllo, neo, and d-chiro) the origins, dynamics, and biological function remain unknown, due in large part to analytical limitations in their measurement in environmental samples. We synthesized authentic neo- and d-chiro-IP6 and used them to identify signals from these compounds in three soils from the Falkland Islands. Both compounds resisted hypobromite oxidation and gave quantifiable 31P NMR signals at ? = 6.67 ppm (equatorial phosphate groups of the 4-equatorial/2-axial conformer of neo-IP6) and ? = 6.48 ppm (equatorial phosphate groups of the 2-equatorial/4-axial conformer of d-chiro-IP6) in soil extracts. Inositol hexakisphosphate accounted for 46–54% of the soil organic phosphorus, of which the four stereoisomers constituted, on average, 55.9% (myo), 32.8% (scyllo), 6.1% (neo), and 5.2% (d-chiro). Reappraisal of the literature based on the new signal assignments revealed that neo- and d-chiro-IP6 occur widely in both terrestrial and aquatic ecosystems. These results confirm that the inositol phosphates can constitute a considerable fraction of the organic phosphorus in soils and reveal the prevalence of neo- and d-chiro-IP6 in the environment. The hypobromite oxidation and solution 31P NMR spectroscopy procedure allows the simultaneous quantification of all four IP6 stereoisomers in environmental samples and provides a platform for research into the origins and ecological significance of these enigmatic compounds. PMID:22489788

2012-01-01

413

Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents  

NASA Astrophysics Data System (ADS)

A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

2002-06-01

414

Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Bile acid binding proteins from different constructs retain structural integrity. Black-Right-Pointing-Pointer NMR {sup 15}N-T{sub 1} relaxation data of BABPs show differences if LVPR extension is present. Black-Right-Pointing-Pointer Deviations from a {sup 15}N-T{sub 1}/molecular-weight calibration curve indicate aggregation. -- Abstract: The use of a recombinant protein to investigate the function of the native molecule requires that the former be obtained with the same amino acid sequence as the template. However, in many cases few additional residues are artificially introduced for cloning or purification purposes, possibly resulting in altered physico-chemical properties that may escape routine characterization. For example, increased aggregation propensity without visible protein precipitation is hardly detected by most analytical techniques but its investigation may be of great importance for optimizing the yield of recombinant protein production in biotechnological and structural biology applications. In this work we show that bile acid binding proteins incorporating the common C-terminal LeuValProArg extension display different hydrodynamic properties from those of the corresponding molecules without such additional amino acids. The proteins were produced enriched in nitrogen-15 for analysis via heteronuclear NMR spectroscopy. Residue-specific spin relaxation rates were measured and related to rotational tumbling time and molecular size. While the native-like recombinant proteins show spin-relaxation rates in agreement with those expected for monomeric globular proteins of their mass, our data indicate the presence of larger adducts for samples of proteins with very short amino acid extensions. The used approach is proposed as a further screening method for the quality assessment of biotechnological protein products.

Zanzoni, Serena; D'Onofrio, Mariapina; Molinari, Henriette [Department of Biotechnology, University of Verona, 37134 Verona (Italy)] [Department of Biotechnology, University of Verona, 37134 Verona (Italy); Assfalg, Michael, E-mail: michael.assfalg@univr.it [Department of Biotechnology, University of Verona, 37134 Verona (Italy)] [Department of Biotechnology, University of Verona, 37134 Verona (Italy)

2012-10-26

415

High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Amyloid fibrils are self-assembled filamentous structures associated with protein deposition conditions including Alzheimer's disease and the transmissible spongiform encephalopathies. Despite the immense medical importance of amyloid fibrils, no atomic-resolution structures are available for these materials, because the intact fibrils are insoluble and do not form diffraction-quality 3D crystals. Here we report the high-resolution structure of a peptide fragment of the amyloidogenic protein transthyretin, TTR(105-115), in its fibrillar form, determined by magic angle spinning NMR spectroscopy. The structure resolves not only the backbone fold but also the precise conformation of the side chains. Nearly complete 13C and 15N resonance assignments for TTR(105-115) formed the basis for the extraction of a set of distance and dihedral angle restraints. A total of 76 self-consistent experimental measurements, including 41 restraints on 19 backbone dihedral angles and 35 13C-15N distances between 3 and 6 Å were obtained from 2D and 3D NMR spectra recorded on three fibril samples uniformly 13C, 15N-labeled in consecutive stretches of four amino acids and used to calculate an ensemble of peptide structures. Our results indicate that TTR(105-115) adopts an extended -strand conformation in the amyloid fibrils such that both the main- and side-chain torsion angles are close to their optimal values. Moreover, the structure of this peptide in the fibrillar form has a degree of long-range order that is generally associated only with crystalline materials. These findings provide an explanation of the unusual stability and characteristic properties of this form of polypeptide assembly.

Jaroniec, Christopher P.; Macphee, Cait E.; Bajaj, Vikram S.; McMahon, Michael T.; Dobson, Christopher M.; Griffin, Robert G.

2004-01-01

416

The solution conformations of ferrichrome and deferriferrichrome determined by 1H-NMR spectroscopy and computational modeling.  

PubMed

We have applied computational procedures that utilize nmr data to model the solution conformation of ferrichrome, a rigid microbial iron transport cyclohexapeptide of known x-ray crystallographic structure [D. van der Helm et al. (1980) J. Am. Chem. Soc. 102, 4224-4231]. The Al3+ and Ga3+ diamagnetic analogues, alumichrome and gallichrome, dissolved in d6-dimethylsulfoxide (d6-DMSO), were investigated via one- and two-dimensional 1H-nmr spectroscopy at 300, 600, and 620 MHz. Interproton distance constraints derived from proton Overhauser experiments were input to a distance geometry algorithm [T. F. Havel and K. Wüthrich (1984) Bull. Math. Biol. 46, 673-691] in order to generate a family of ferrichrome structures consistent with the experimental data. These models were subsequently optimized through restrained molecular dynamics/energy minimization [B. R. Brooks et al. (1983) J. Comp. Chem. 4, 187-217]. The resulting structures were characterized in terms of relative energies and conformational properties. Computations based on integration of the generalized Bloch equations for the complete molecule, which include the 14N-1H dipolar interaction, demonstrate that the x-ray coordinates reproduce the experimental nuclear Overhauser effect time courses very well, and indicate that there are no significant differences between the crystalline and solution conformations of ferrichrome. A similar study of the metal free peptide, deferriferrichrome, suggests that at least two conformers are present in d6-DMSO at 23 degrees C. Both are different from the ferrichrome structure and explain, through conformational averaging, the observed amide NH and CH alpha multiplet splittings. The occurrence of interconverting peptide backbone conformations yields an increased number of sequential NH-CH alpha and NH-NH Overhauser connectivities, which refl