Science.gov

Sample records for h1 nmr spectroscopy

  1. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R.); Wind, Robert A.)

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  2. Extended hopane derivatives in sediments - Identification by H-1 NMR

    NASA Technical Reports Server (NTRS)

    Taylor, J.; Wardroper, A. M. K.; Maxwell, J. R.

    1980-01-01

    Sedimentary C32 hopanoic acid, one of the most abundant in nature and of probable bacterial origin, has been isolated for the first time as a single component and characterized by H-1 NMR. The 17 alpha H, 21 beta H configuration of the C31 alkane has been similarly confirmed.

  3. Two-dimensional NMR spectroscopy

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.

  4. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  5. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic

  6. Structural proteomics by NMR spectroscopy.

    PubMed

    Shin, Joon; Lee, Woonghee; Lee, Weontae

    2008-08-01

    Structural proteomics is one of the powerful research areas in the postgenomic era, elucidating structure-function relationships of uncharacterized gene products based on the 3D protein structure. It proposes biochemical and cellular functions of unannotated proteins and thereby identifies potential drug design and protein engineering targets. Recently, a number of pioneering groups in structural proteomics research have achieved proof of structural proteomic theory by predicting the 3D structures of hypothetical proteins that successfully identified the biological functions of those proteins. The pioneering groups made use of a number of techniques, including NMR spectroscopy, which has been applied successfully to structural proteomics studies over the past 10 years. In addition, advances in hardware design, data acquisition methods, sample preparation and automation of data analysis have been developed and successfully applied to high-throughput structure determination techniques. These efforts ensure that NMR spectroscopy will become an important methodology for performing structural proteomics research on a genomic scale. NMR-based structural proteomics together with x-ray crystallography will provide a comprehensive structural database to predict the basic biological functions of hypothetical proteins identified by the genome projects. PMID:18761469

  7. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  8. H-1 NMR study of ternary ammonia-alkali metal-graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Fronko, R. M.; Resing, H. A.; Qian, X. W.; Solin, S. A.

    1987-01-01

    For the first-stage ternary ammonia-alkali metal-graphite intercalation compounds M(NH3)(x)C24(x of about 4, M = K, Rb, Cs), three sets of triplet H-1 NMR spectral lines have been observed at various temperatures and orientations due to the H-1 - H-1 and N-14 - H-1 dipolar interactions. The structures of these compounds have been inferred as mobile (liquid-like) intercalant layers of planar M(NH3)4 ions in between the carbon layers. For the intercalated ammonia molecules, the potential barrier is about 0.2 eV and the molecular geometry is very close to the free NH3 in gas phase.

  9. NMR Spectroscopy and Its Value: A Primer

    ERIC Educational Resources Information Center

    Veeraraghavan, Sudha

    2008-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

  10. Chiral discrimination in NMR spectroscopy.

    PubMed

    Buckingham, A David

    2015-11-01

    Nuclear magnetic resonance is the most important form of molecular spectroscopy in chemistry and biochemistry but it is normally blind to chirality. It was predicted in 2004 that precessing nuclear spins in chiral molecules in a liquid in a strong magnetic field induce a rotating electric polarization that is of opposite sign for enantiomers. This polarization arises from the distortion of the electronic structure by the nuclear magnetic moment in the presence of the strong magnetic field and is equivalent to the linear effect of an electric field on the nuclear shielding tensor. The polarization is strongly enhanced in dipolar molecules through the partial orientation of the permanent dipole through the antisymmetric part of the nuclear magnetic shielding tensor. Alternatively, an applied electric field will induce a chirally sensitive magnetization perpendicular to the field and to the nuclear spin. Progress towards the experimental realization of chiral discrimination by NMR is assessed. PMID:26537400

  11. Quantitative H-1 NMR Analysis of Chemical Stabilities in Anion-Exchange Membranes

    SciTech Connect

    Nunez, SA; Hickner, MA

    2013-01-01

    We compared the alkaline stability of three classes of anion exchange membranes that are leading candidates for applications in platinum-free fuel cells. A methodology is presented for the study of chemical stability of anion-exchange polymers in alkaline media that provides clear and quantitative H-1 NMR spectroscopic data of dissolved polymers containing benzyltrimethylammonium functionalities. Recent studies have investigated the stabilities of benzimidazolium- and alkylimidazolium-bearing polymers using periodic H-1 NMR sampling. These studies included varying alkaline concentrations, external heating sources, and excessive processing and contained no internal standard for absolute measurements. Key aspects of our time-resolved H-1 NMR method include in situ heating and sampling within the spectrometer, fixed Stoichiometric relationships between the benzyltrimethylammonium functionalities of each polymer and potassium deuteroxide (KOD), and the incorporation of an internal standard for the absolute measurement of the polymer degradation. In addition, our method permits the identification of the degradation products to find the underlying cause of chemical lability. Our results demonstrate that a styrene-based polymer containing benzyltrimethylammonium functional groups is remarkably stable when exposed to 20 equivalents per cation of KOD at 80 degrees C with a half-life (t(1/2)) of 231 h. Under these standard conditions, functionalized poly(phenylene oxide) and poly(arylene ether sulfone) copolymers, both bearing benzyltrimethylammonium functionalities were found to degrade with a half-lives of 57.8 and 2.7 h, respectively.

  12. Scalable NMR spectroscopy with semiconductor chips

    PubMed Central

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-01-01

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  13. Scalable NMR spectroscopy with semiconductor chips.

    PubMed

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-08-19

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm(2) silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  14. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  15. QUANTITATIVE 15N NMR SPECTROSCOPY

    EPA Science Inventory

    Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

  16. Effects and mechanisms of acetyl-L-cysteine in rats with chronic mountain sickness with H1-NMR metabolomics methods

    PubMed Central

    Maimaitiyiming, Dilinuer; Aikemu, Ainiwaer; Kamilijiang, Mayila; Salamu, Adila; Zhang, Xiangyang

    2014-01-01

    Background We established a rat model of chronic mountain sickness using acetyl-L-cysteine. Then we studied the effects and mechanisms of acetyl-L-cysteine (Da) in rats with chronic mountain sickness using nuclear magnetic resonance (H1-NMR) metabolomics methods. Material/Methods Using NMR spectroscopy combined with pattern recognition and orthogonal partial least squares discriminant analysis, we analyzed the impact of Da on blood metabolism in rats with chronic mountain sickness by determining different metabolites and changes in metabolic network in the blood of rats with mountain sickness after the intragastric administration of different doses of Da suspension. Results Increased levels of amino acids (valine, tyrosine, 1-methyl-histidine, leucine, phenylalanine, and methionine) were detected in the blood of rats in the chronic mountain sickness group, yet significantly decreased levels were detected in control rats. At the same time, β-glucose and α-glucose levels were markedly elevated in the blood of rats in the model group but decreased in the chronic mountain sickness group, which indicated a statistically significant difference compared with the chronic altitude sickness model group (P<0.05). Conclusions Da has a significant impact on the metabolism of rats with chronic mountain sickness. Da may act on the disturbed glucose metabolism and amino acid metabolism in rats triggered by chronic mountain sickness, resulting in the treatment and prevention of this disease. PMID:24816079

  17. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  18. Characterization of Hydrogenated Fullerenes by NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hedenström, Mattias; Wågberg, Thomas; Johnels, Dan

    NMR spectroscopy is so far the only analytical technique that has been used to get a detailed structural characterization of hydrogenated fullerenes. A substantial amount of information derived from different NMR experiments can thus be found in the literature for a number of fullerenes hydrogenated to various degrees. These studies have benefitted from the fact that chemical shifts of 1H and 13C and in some cases also 3He can be used to obtain structural information of these compounds. Such results, together with discussions about different NMR experiments and general considerations regarding sample preparations, are summarized in this chapter. The unique information, both structural and physicochemical, that can be derived from different NMR experiments ensures that this technique will continue to be of central importance in characterization of hydrogenated fullerenes.

  19. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  20. An introduction to biological NMR spectroscopy.

    PubMed

    Marion, Dominique

    2013-11-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  1. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  2. Investigating albendazole desmotropes by solid-state NMR spectroscopy.

    PubMed

    Chattah, Ana K; Zhang, Rongchun; Mroue, Kamal H; Pfund, Laura Y; Longhi, Marcela R; Ramamoorthy, Ayyalusamy; Garnero, Claudia

    2015-03-01

    Characterization of the molecular structure and physicochemical solid-state properties of the solid forms of pharmaceutical compounds is a key requirement for successful commercialization as potential active ingredients in drug products. These properties can ultimately have a critical effect on the solubility and bioavailability of the final drug product. Here, the desmotropy of Albendazole forms I and II was investigated at the atomic level. Ultrafast magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy, together with powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectroscopy, were performed on polycrystalline samples of the two solids in order to fully characterize and distinguish the two forms. High-resolution one-dimensional (1)H, (13)C, and (15)N together with two-dimensional (1)H/(1)H single quantum-single quantum, (1)H/(1)H single quantum-double quantum, and (1)H/(13)C chemical shift correlation solid-state NMR experiments under MAS conditions were extensively used to decipher the intramolecular and intermolecular hydrogen bonding interactions present in both solid forms. These experiments enabled the unequivocal identification of the tautomers of each desmotrope. Our results also revealed that both solid forms may be described as dimeric structures, with different intermolecular hydrogen bonds connecting the tautomers in each dimer. PMID:25584993

  3. Metabolism of human gliomas: Assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET

    SciTech Connect

    Alger, J.R.; Frank, J.A.; Bizzi, A.; Fulham, M.J.; DeSouza, B.X.; Duhaney, M.O.; Inscoe, S.W.; Black, J.L.; van Zijl, P.C.; Moonen, C.T. , Bethesda, MD )

    1990-12-01

    Localized hydrogen-1 magnetic resonance (MR) spectroscopy and fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) were employed to obtain metabolic information from intracranial gliomas. Advantages and difficulties associated with comparison of results from the two modalities were realized. Forty patients were studied with H-1 MR spectroscopy. MR signal intensities from lactate, N-acetylaspartate (NAA), choline, and creatine from a volume of interest containing the tumor and a contralateral volume were obtained and evaluated. NAA signal intensities were generally decreased in the tumor spectra, and choline signal intensities were elevated. H-1 MR spectroscopy was unsuccessful in eight patients, and FDG PET scans were not obtained in four of the patients with successful MR spectroscopic examinations. Lactate signal intensity was detected in 10 of the 28 patients who had successful H-1 MR spectroscopic and FDG PET studies. Lactate signal intensities were observed in lesions shown at FDG PET to be hypermetabolic, as well as in lesions found to be hypometabolic.

  4. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which spectral…

  5. Spatially resolved spectroscopy using tapered stripline NMR.

    PubMed

    Tijssen, Koen C H; Bart, Jacob; Tiggelaar, Roald M; Janssen, J W G Hans; Kentgens, Arno P M; van Bentum, P Jan M

    2016-02-01

    Magnetic field B0 gradients are essential in modern Nuclear Magnetic Resonance spectroscopy and imaging. Although RF/B1 gradients can be used to fulfill a similar role, this is not used in common practice because of practical limitations in the design of B1 gradient coils. Here we present a new method to create B1 gradients using stripline RF coils. The conductor-width of a stripline NMR chip and the strength of its radiofrequency field are correlated, so a stripline chip can be tapered to produce any arbitrary shaped B1 field gradient. Here we show the characterization of this tapered stripline configuration and demonstrate three applications: magnetic resonance imaging on samples with nL-μL volumes, reaction monitoring of fast chemical reactions (10(-2)-10(1)s) and the compensation of B0 field gradients to obtain high-resolution spectra in inhomogeneous magnetic fields. PMID:26796112

  6. Spatially resolved spectroscopy using tapered stripline NMR

    NASA Astrophysics Data System (ADS)

    Tijssen, Koen C. H.; Bart, Jacob; Tiggelaar, Roald M.; Janssen, J. W. G. (Hans); Kentgens, Arno P. M.; van Bentum, P. Jan M.

    2016-02-01

    Magnetic field B0 gradients are essential in modern Nuclear Magnetic Resonance spectroscopy and imaging. Although RF/B1 gradients can be used to fulfill a similar role, this is not used in common practice because of practical limitations in the design of B1 gradient coils. Here we present a new method to create B1 gradients using stripline RF coils. The conductor-width of a stripline NMR chip and the strength of its radiofrequency field are correlated, so a stripline chip can be tapered to produce any arbitrary shaped B1 field gradient. Here we show the characterization of this tapered stripline configuration and demonstrate three applications: magnetic resonance imaging on samples with nL-μL volumes, reaction monitoring of fast chemical reactions (10-2-101 s) and the compensation of B0 field gradients to obtain high-resolution spectra in inhomogeneous magnetic fields.

  7. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  8. Multiplet-separated heteronuclear two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Levitt, Malcolm H.; Sørensen, O. W.; Ernst, R. R.

    1983-02-01

    Techniques are described for the identification and separation of peaks of different multiplicity in heteronuclear two-dimensional NMR spectroscopy. The methods are applied to the two-dimensional 13C- 1H shift correlation spectrum of menthol.

  9. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  10. Applications of NMR spectroscopy to systems biochemistry.

    PubMed

    Fan, Teresa W-M; Lane, Andrew N

    2016-02-01

    The past decades of advancements in NMR have made it a very powerful tool for metabolic research. Despite its limitations in sensitivity relative to mass spectrometric techniques, NMR has a number of unparalleled advantages for metabolic studies, most notably the rigor and versatility in structure elucidation, isotope-filtered selection of molecules, and analysis of positional isotopomer distributions in complex mixtures afforded by multinuclear and multidimensional experiments. In addition, NMR has the capacity for spatially selective in vivo imaging and dynamical analysis of metabolism in tissues of living organisms. In conjunction with the use of stable isotope tracers, NMR is a method of choice for exploring the dynamics and compartmentation of metabolic pathways and networks, for which our current understanding is grossly insufficient. In this review, we describe how various direct and isotope-edited 1D and 2D NMR methods can be employed to profile metabolites and their isotopomer distributions by stable isotope-resolved metabolomic (SIRM) analysis. We also highlight the importance of sample preparation methods including rapid cryoquenching, efficient extraction, and chemoselective derivatization to facilitate robust and reproducible NMR-based metabolomic analysis. We further illustrate how NMR has been applied in vitro, ex vivo, or in vivo in various stable isotope tracer-based metabolic studies, to gain systematic and novel metabolic insights in different biological systems, including human subjects. The pathway and network knowledge generated from NMR- and MS-based tracing of isotopically enriched substrates will be invaluable for directing functional analysis of other 'omics data to achieve understanding of regulation of biochemical systems, as demonstrated in a case study. Future developments in NMR technologies and reagents to enhance both detection sensitivity and resolution should further empower NMR in systems biochemical research. PMID:26952191

  11. Studies of organic paint binders by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spyros, A.; Anglos, D.

    2006-06-01

    Nuclear magnetic resonance spectroscopy is applied to the study of aged binding media used in paintings, namely linseed oil, egg tempera and an acrylic medium. High resolution 1D and 2D NMR experiments establish the state of hydrolysis and oxidation of the linseed and egg tempera binders after five years of aging, by determining several markers sensitive to the hydrolytic and oxidative processes of the binder lipid fraction. The composition of the acrylic binder co-polymer is determined by 2D NMR spectroscopy, while the identification of a surfactant, poly(ethylene glycol), found in greater amounts in aged acrylic medium, is reported. The non-destructive nature of the proposed analytical NMR methodology, and minimization of the amount of binder material needed through the use of sophisticated cryoprobes and hyphenated LC-NMR techniques, make NMR attractive for the arts analyst, in view of its rapid nature and experimental simplicity.

  12. Magnesium silicate dissolution investigated by S1-29 MAS, H-1 Si-29 CPMAS, Mg-25 QCPMG, and H-1 Mg-25 CP QCPMG NMR

    SciTech Connect

    Davis, M C; Brouwer, Piet W; Wesolowski, David J; Anovitz, Lawrence {Larry} M

    2009-07-01

    Olivine-(Mg,Fe){sub 2}SiO{sub 4}-has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of the divalent cation with respect to silicon during weathering under acidic conditions, which has been correlated to the formation of a silicon-rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. The pure magnesium end member of the olivine series (forsterite-Mg2SiO4) was chosen for detailed investigations in this study because paramagnetic iron hinders NMR investigations by providing an extra mode of relaxation for neighboring nuclei, causing lineshapes to become significantly broadened and unobservable in the NMR spectrum. For reacting forsterite, spectroscopic interrogations using nuclear magnetic resonance (NMR) can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced NMR techniques ({sup 29}Si MAS, {sup 1}H-{sup 29}Si CP MAS, {sup 25}Mg QCPMG, and {sup 1}H-{sup 25}Mg CP QCPMG NMR) to probe leached layer formation and secondary phase precipitation during the dissolution of forsterite at 150 C.

  13. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and

  14. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  15. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Nishiyama, Yusuke; Kumar Pandey, Manoj; Gong, Bo; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2015-07-01

    While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110 kHz frequency. With such remarkable capabilities, 1H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional 1H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional 1H/1H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct 1H-1H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone.

  16. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    PubMed

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. PMID:27054702

  17. Characterization of molecular structure of DAST via NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Pang, Zi-Bo; Meng, Da-Lei; Xu, Yong-Kuan; Wu, Cong

    2016-02-01

    4-N, N-dimethylamino-4‧-N‧-methyl-stilbazolium tosylate (DAST) crystal has excellent properties of nonlinear optics and electro-optical effect, and it can be used in the fields of radiation and detection through wave bands from infrared to terahertz. Besides, DAST thin films have exhibited their excellent properties and have expanded application fields of DAST material. CD3OD was chosen as the solvent to conduct 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HSQC and 1H-13C HMBC characterization of DAST respectively. All peaks in 1H and 13C NMR spectra of DAST were assigned with assistance of 2D NMR correlation peaks.

  18. Membrane Protein Structure and Dynamics from NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Mei; Zhang, Yuan; Hu, Fanghao

    2012-05-01

    We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, interatomic distances, oligomeric structure, protein dynamics, ligand structure and dynamics, and protein orientation and depth of insertion in the lipid bilayer. Using solid-state NMR, researchers have studied potassium channels, proton channels, Ca2+ pumps, G protein-coupled receptors, bacterial outer membrane proteins, and viral fusion proteins to elucidate their mechanisms of action. Many of these membrane proteins have also been investigated in detergent micelles using solution NMR. Comparison of the solid-state and solution NMR structures provides important insights into the effects of the solubilizing environment on membrane protein structure and dynamics.

  19. Combining solid-state NMR spectroscopy with first-principles calculations - a guide to NMR crystallography.

    PubMed

    Ashbrook, Sharon E; McKay, David

    2016-06-01

    Recent advances in the application of first-principles calculations of NMR parameters to periodic systems have resulted in widespread interest in their use to support experimental measurement. Such calculations often play an important role in the emerging field of "NMR crystallography", where NMR spectroscopy is combined with techniques such as diffraction, to aid structure determination. Here, we discuss the current state-of-the-art for combining experiment and calculation in NMR spectroscopy, considering the basic theory behind the computational approaches and their practical application. We consider the issues associated with geometry optimisation and how the effects of temperature may be included in the calculation. The automated prediction of structural candidates and the treatment of disordered and dynamic solids are discussed. Finally, we consider the areas where further development is needed in this field and its potential future impact. PMID:27117884

  20. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    DOE PAGESBeta

    Perras, Frédéric A.

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities. Two-dimensional

  1. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    SciTech Connect

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  2. Room Temperature Chiral Discrimination in Paramagnetic NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Soncini, Alessandro; Calvello, Simone

    2016-04-01

    A recently proposed theory of chiral discrimination in NMR spectroscopy based on the detection of a molecular electric polarization P rotating in a plane perpendicular to the NMR magnetic field [A. D. Buckingham, J. Chem. Phys. 140, 011103 (2014)] is generalized here to paramagnetic systems. Our theory predicts new contributions to P , varying as the square of the inverse temperature. Ab initio calculations for ten Dy3 + complexes, at 293 K, show that, in strongly anisotropic paramagnetic molecules, P can be more than 1000 times larger than in diamagnetic molecules, making paramagnetic NMR chiral discrimination amenable to room temperature detection.

  3. Multinuclear NMR spectroscopy in the gas phase

    NASA Astrophysics Data System (ADS)

    Jackowski, K.

    2006-04-01

    Nuclear magnetic resonance (NMR) of some nuclei (e.g. 1H, 13C, 19F, 29Si or 31P, I=1/2) gives strong signals which allow analytical studies of gaseous compounds. The other magnetic nuclei have low natural abundance or/and contain an electric quadrupole moment and their NMR signals are rather weak. In our laboratory we have developed new experimental techniques, which permit us to monitor several micrograms of chemical compounds in gaseous matrices. Applying this approach we have observed magnetic shielding of various nuclei, including 17O and 33S at the natural abundance, in the gas phase as a function of density. Density-dependent spin-spin couplings were also found for many chemical compounds. It has been shown that NMR gas-phase studies can easily be extended on molecules, which exhibit strong intermolecular interactions and are liquids at room temperature. All the latter NMR experimental results obtained for gaseous matrices are reviewed in this paper.

  4. Nanoscale NMR spectroscopy and imaging of multiple nuclear species

    NASA Astrophysics Data System (ADS)

    Devience, Stephen J.; Pham, Linh M.; Lovchinsky, Igor; Sushkov, Alexander O.; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L.

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ˜100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species (1H, 19F, 31P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (˜20 mT) using two complementary sensor modalities.

  5. "In-plant" NMR: analysis of the intact plant Vesicularia dubyana by high resolution NMR spectroscopy.

    PubMed

    Kutyshenko, Viktor P; Beskaravayny, Peter; Uversky, Vladimir N

    2015-01-01

    We present here the concept of "in-plant" NMR and show that high-resolution NMR spectroscopy is suitable for the analysis of intact plants and can be used to follow the changes in the intraorganismal molecular composition over long time periods. The NMR-based analysis of the effect of different concentrations of heavy water on the aquatic plant Vesicularia dubyana revealed that due to the presence of specific adaptive mechanisms this plant can sustain the presence of up to 85% of D2O. However, it dies in 100% heavy water. PMID:25759953

  6. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear.

  7. CHARACTERIZATION OF METABOLITES IN SMALL FISH BIOFLUIDS AND TISSUES BY NMR SPECTROSCOPY

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized for assessing ecotoxicity in small fish models by means of metabolomics. Two fundamental challenges of NMR-based metabolomics are the detection limit and characterization of metabolites (or NMR resonance assignments...

  8. Protein folding on the ribosome studied using NMR spectroscopy

    PubMed Central

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  9. Drug solubilization mechanism of α-glucosyl stevia by NMR spectroscopy.

    PubMed

    Zhang, Junying; Higashi, Kenjirou; Ueda, Keisuke; Kadota, Kazunori; Tozuka, Yuichi; Limwikrant, Waree; Yamamoto, Keiji; Moribe, Kunikazu

    2014-04-25

    We investigated the drug solubilization mechanism of α-glucosyl stevia (Stevia-G) which was synthesized from stevia (rebaudioside-A) by transglycosylation. (1)H and (13)C NMR peaks of Stevia-G in water were assigned by two-dimensional (2D) NMR experiments including (1)H-(1)H correlation, (1)H-(13)C heteronuclear multiple bond correlation, and (1)H-(13)C heteronuclear multiple quantum coherence spectroscopies. The (1)H and (13)C peaks clearly showed the incorporation of two glucose units into rebaudioside-A to produce Stevia-G, supported by steviol glycoside and glucosyl residue assays. The concentration-dependent chemical shifts of Stevia-G protons correlated well with a mass-action law model, indicating the self-association of Stevia-G molecules in water. The critical micelle concentration (CMC) was 12.0 mg/mL at 37°C. The aggregation number was 2 below the CMC and 12 above the CMC. Dynamic light scattering and 2D (1)H-(1)H nuclear Overhauser effect spectroscopy (NOESY) NMR experiments demonstrated that Stevia-G self-associated into micelles of a few nanometers in size with a core-shell structure, containing a kaurane diterpenoid-based hydrophobic core and a glucose-based shell. 2D (1)H-(1)H NOESY NMR measurements also revealed that a poorly water-soluble drug, naringenin, was incorporated into the hydrophobic core of the Stevia-G micelle. The Stevia-G self-assembly behavior and micellar drug inclusion capacity can achieve significant enhancement in drug solubility. PMID:24508331

  10. High-resolution NMR spectroscopy under the fume hood.

    PubMed

    Kster, Simon K; Danieli, Ernesto; Blmich, Bernhard; Casanova, Federico

    2011-08-01

    This work reports the possibility to acquire high-resolution (1)H NMR spectra with a fist-sized NMR magnet directly installed under the fume hood. The small NMR sensor based on permanent magnets was used to monitor the trimerization of propionaldehyde catalyzed by indium trichloride in real time by continuously circulating the reaction mixture through the magnet bore in a closed loop with the help of a peristaltic pump. Thanks to the chemical selectivity of NMR spectroscopy the progress of the reaction can be monitored on-line by determining the concentrations of both reactant and product from the area under their respective lines in the NMR spectra as a function of time. This in situ measurement demonstrates that NMR probes can be used in chemistry laboratories, e.g. for reaction optimization, or installed at specific points of interest along industrial process lines. Therefore, it will open the door for the implementation of feedback control based on spectroscopic NMR data. PMID:21698335

  11. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  12. Dynamics-based selective 2D (1)H/(1)H chemical shift correlation spectroscopy under ultrafast MAS conditions.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of (1)H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of (1)H/(1)H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials. PMID:26026440

  13. Screening of Small Molecule Interactor Library by Using In-Cell NMR Spectroscopy (SMILI-NMR)

    PubMed Central

    Xie, Jingjing; Thapa, Rajiv; Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander

    2011-01-01

    We developed an in-cell NMR assay for screening small molecule interactor libraries (SMILI-NMR) for compounds capable of disrupting or enhancing specific interactions between two or more components of a biomolecular complex. The method relies on the formation of a well-defined biocomplex and utilizes in-cell NMR spectroscopy to identify the molecular surfaces involved in the interaction at atomic scale resolution. Changes in the interaction surface caused by a small molecule interfering with complex formation are used as a read-out of the assay. The in-cell nature of the experimental protocol insures that the small molecule is capable of penetrating the cell membrane and specifically engaging the target molecule(s). Utility of the method was demonstrated by screening a small dipeptide library against the FKBP–FRB protein complex involved in cell cycle arrest. The dipeptide identified by SMILI-NMR showed biological activity in a functional assay in yeast. PMID:19422228

  14. Proton-Detected Solid-State NMR Spectroscopy of Bone with Ultrafast Magic Angle Spinning

    PubMed Central

    Mroue, Kamal H.; Nishiyama, Yusuke; Kumar Pandey, Manoj; Gong, Bo; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2015-01-01

    While obtaining high-resolution structural details from bone is highly important to better understand its mechanical strength and the effects of aging and disease on bone ultrastructure, it has been a major challenge to do so with existing biophysical techniques. Though solid-state NMR spectroscopy has the potential to reveal the structural details of bone, it suffers from poor spectral resolution and sensitivity. Nonetheless, recent developments in magic angle spinning (MAS) NMR technology have made it possible to spin solid samples up to 110 kHz frequency. With such remarkable capabilities, 1H-detected NMR experiments that have traditionally been challenging on rigid solids can now be implemented. Here, we report the first application of multidimensional 1H-detected NMR measurements on bone under ultrafast MAS conditions to provide atomistic-level elucidation of the complex heterogeneous structure of bone. Our investigations demonstrate that two-dimensional 1H/1H chemical shift correlation spectra for bone are obtainable using fp-RFDR (finite-pulse radio-frequency-driven dipolar recoupling) pulse sequence under ultrafast MAS. Our results infer that water exhibits distinct 1H−1H dipolar coupling networks with the backbone and side-chain regions in collagen. These results show the promising potential of proton-detected ultrafast MAS NMR for monitoring structural and dynamic changes caused by mechanical loading and disease in bone. PMID:26153138

  15. Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Frydman, Lucio

    2014-06-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

  16. RNA structure determination by solid-state NMR spectroscopy

    PubMed Central

    Marchanka, Alexander; Simon, Bernd; Althoff-Ospelt, Gerhard; Carlomagno, Teresa

    2015-01-01

    Knowledge of the RNA three-dimensional structure, either in isolation or as part of RNP complexes, is fundamental to understand the mechanism of numerous cellular processes. Because of its flexibility, RNA represents a challenge for crystallization, while the large size of cellular complexes brings solution-state NMR to its limits. Here, we demonstrate an alternative approach on the basis of solid-state NMR spectroscopy. We develop a suite of experiments and RNA labeling schemes and demonstrate for the first time that ssNMR can yield a RNA structure at high-resolution. This methodology allows structural analysis of segmentally labelled RNA stretches in high-molecular weight cellular machinesindependent of their ability to crystallize and opens the way to mechanistic studies of currently difficult-to-access RNA-protein assemblies. PMID:25960310

  17. Protein dynamics and function from solution state NMR spectroscopy.

    PubMed

    Kovermann, Michael; Rogne, Per; Wolf-Watz, Magnus

    2016-01-01

    It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy. PMID:27088887

  18. Solid-state NMR spectroscopy of protein complexes.

    PubMed

    Sun, Shangjin; Han, Yun; Paramasivam, Sivakumar; Yan, Si; Siglin, Amanda E; Williams, John C; Byeon, In-Ja L; Ahn, Jinwoo; Gronenborn, Angela M; Polenova, Tatyana

    2012-01-01

    Protein-protein interactions are vital for many biological processes. These interactions often result in the formation of protein assemblies that are large in size, insoluble, and difficult to crystallize, and therefore are challenging to study by structure biology techniques, such as single crystal X-ray diffraction and solution NMR spectroscopy. Solid-state NMR (SSNMR) spectroscopy is emerging as a promising technique for studies of such protein assemblies because it is not limited by molecular size, solubility, or lack of long-range order. In the past several years, we have applied magic angle spinning SSNMR-based methods to study several protein complexes. In this chapter, we discuss the general SSNMR methodologies employed for structural and dynamics analyses of protein complexes with specific examples from our work on thioredoxin reassemblies, HIV-1 capsid protein assemblies, and microtubule-associated protein assemblies. We present protocols for sample preparation and characterization, pulse sequences, SSNMR spectra collection, and data analysis. PMID:22167681

  19. Single-sided sensor for high-resolution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Perlo, J.; Casanova, F.; Blümich, B.

    2006-06-01

    The unavoidable spatial inhomogeneity of the static magnetic field generated by open sensors has precluded their use for high-resolution NMR spectroscopy. In fact, this application was deemed impossible because these field variations are usually orders of magnitude larger than those created by the microscopic structure of the molecules to be detected. Recently, chemical shift resolved NMR spectra were observed for the first time outside a portable single-sided magnet by implementing a method that exploits inhomogeneities in the rf field designed to reproduce variations of the static magnetic field [J. Perlo, V. Demas, F. Casanova, C.A. Meriles, J. Reimer, A. Pines, B. Blümich, High-resolution spectroscopy with a portable single-sided sensor, Science 308 (2005) 1279]. In this communication, we describe in detail the magnet system built from permanent magnets as well as the rf coil geometry used to compensate the static field variations.

  20. Ultra-wideline solid-state NMR spectroscopy.

    PubMed

    Schurko, Robert W

    2013-09-17

    Although solid-state NMR (SSNMR) provides rich information about molecular structure and dynamics, the small spin population differences between pairs of spin states that give rise to NMR transitions make it an inherently insensitive spectroscopic technique in terms of signal acquisition. Scientists have continuously addressed this issue via improvements in NMR hardware and probes, increases in the strength of the magnetic field, and the development of innovative pulse sequences and acquisition methodologies. As a result, researchers can now study NMR-active nuclides previously thought to be unobservable or too unreceptive for routine examination via SSNMR. Several factors can make it extremely challenging to detect signal or acquire spectra using SSNMR: (i) low gyromagnetic ratios (i.e., low Larmor frequencies), (ii) low natural abundances or dilution of the nuclide of interest (e.g., metal nuclides in proteins or in organometallic catalysts supported on silica), (iii) inconvenient relaxation characteristics (e.g., very long longitudinal or very short transverse relaxation times), and/or (iv) extremely broad powder patterns arising from large anisotropic NMR interactions. Our research group has been particularly interested in efficient acquisition of broad NMR powder patterns for a variety of spin-1/2 and quadrupolar (spin > 1/2) nuclides. Traditionally, researchers have used the term "wideline" NMR to refer to experiments yielding broad (1)H and (2)H SSNMR spectra ranging from tens of kHz to ∼250 kHz in breadth. With modern FT NMR hardware, uniform excitation in these spectral ranges is relatively easy, allowing for the acquisition of high quality spectra. However, spectra that range in breadth from ca. 250 kHz to tens of MHz cannot be uniformly excited with conventional, high-power rectangular pulses. Rather, researchers must apply special methodologies to acquire such spectra, which have inherently low S/N because the signal intensity is spread across such large spectral breadths. We have suggested the term ultra-wideline NMR (UWNMR) spectroscopy to describe this set of methodologies. This Account describes recent developments in pulse sequences and strategies for the efficient acquisition of UWNMR spectra. After an introduction to anisotropically broadened NMR patterns, we give a brief history of methods used to acquire UWNMR spectra. We then discuss new acquisition methodologies, including the acquisition of CPMG echo trains and the application of pulses capable of broadband excitation and refocusing. Finally, we present several applications of UWNMR methods that use these broadband pulses. PMID:23745683

  1. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  2. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  3. NMR spectroscopy to follow reaction progress in ionic liquids.

    PubMed

    Butler, Bradley J; Thomas, Donald S; Hook, James M; Harper, Jason B

    2016-06-01

    In order to understand reaction outcomes in ionic liquids, it is crucial to be able to follow the progress of these reactions. This review highlights the advantages of NMR spectroscopy over other analytical techniques in following reaction progress in ionic liquids, particularly addressing the practical aspects of the methodology and highlighting the range of processes that can be readily followed. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25287592

  4. Fast and accurate quantitation of glucans in complex mixtures by optimized heteronuclear NMR spectroscopy.

    PubMed

    Bøjstrup, Marie; Petersen, Bent O; Beeren, Sophie R; Hindsgaul, Ole; Meier, Sebastian

    2013-09-17

    Nuclear magnetic resonance (NMR) spectroscopy is a widely used technique for mixture analysis, but it has shortcomings in resolving carbohydrate mixtures due to the narrow chemical shift range of glycans in general and fragments of homopolymers in particular. Here, we suggest a protocol toward fast spectroscopic glycan mixture analysis. We show that a plethora of oligosaccharides comprising only α-glucopyranosyl residues can be resolved into distinct quantifiable signals with NMR experiments that are substantially faster than chromatographic runs. Conceptually, the approach fully exploits the narrow line widths of glycans (ν1/2 < 3 Hz) in the (13)C spectral dimension while disregarding superfluous spectral information in compound identification and quantitation. The acetal (H1C1) groups suffice to spectroscopically resolve ∼20 different starch fragments in optimized (1)H-(13)C NMR with a narrow (13)C spectral width (3 ppm) that allows sampling the indirect (13)C dimension at high resolution within 15 min. Rapid quantitations by high-resolution NMR data are achieved for glycans at concentrations as low as 10 μg/mL. For validation, comparisons were made with quantitations obtained by more time-consuming chromatographic methods and yielded coefficients of determination (R(2)) above 0.99. PMID:23952648

  5. Magnesium silicate dissolution investigated by Si-29 MAS, H-1-Si-29 CPMAS, Mg-25 QCPMG NMR.

    SciTech Connect

    Davis, M C; Wesolowski, David J

    2009-09-01

    Olivine-(Mg,Fe){sub 2}SiO{sub 4}-has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of the divalent cation with respect to silicon during weathering under acidic conditions, which has been correlated to the formation of a silicon-rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. The pure magnesium end member of the olivine series (forsterite-Mg{sub 2}SiO{sub 4}) was chosen for detailed investigations in this study because paramagnetic iron hinders NMR investigations by providing an extra mode of relaxation for neighboring nuclei, causing lineshapes to become significantly broadened and unobservable in the NMR spectrum. For reacting forsterite, spectroscopic interrogations using nuclear magnetic resonance (NMR) can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced NMR techniques ({sup 29}Si MAS, {sup 1}H-{sup 29}Si CP MAS, {sup 25}Mg QCPMG, and {sup 1}H-{sup 25}Mg CP QCPMG NMR) to probe leached layer formation and secondary phase precipitation during the dissolution of forsterite at 150 C.

  6. Interaction between DNA and chromosomal proteins HMGB1 and H1 studied by IR/VCD spectroscopy

    NASA Astrophysics Data System (ADS)

    Polyanichko, Alexander; Chikhirzhina, Elena

    2013-07-01

    Binary complexes of calf thymus DNA with calf thymus non-histone chromosomal protein HMGB1 and linker histone H1 were studied using FTIR/VCD spectroscopy. The spectroscopic data showed that the interaction of the protein HMGB1 and histone H1 with DNA resulted in formation of two different types of the macromolecular complexes. Histone H1 retained its native structure even at high concentrations and induced DNA condensation upon binding at the protein to DNA ratio r (w/w) in the complex r ⩾ 0.3. HMGB1 demonstrated the ability to form soluble complexes at considerably higher protein to DNA ratios. The obtained data suggest that the HMGB1 also participated in the protein-protein interactions via its C-terminal domain.

  7. Advancements in waste water characterization through NMR spectroscopy: review.

    PubMed

    Alves Filho, Elenilson G; Alexandre e Silva, Lorena M; Ferreira, Antonio G

    2015-09-01

    There are numerous organic pollutants that lead to several types of ecosystem damage and threaten human health. Wastewater treatment plants are responsible for the removal of natural and anthropogenic pollutants from the sewage, and because of this function, they play an important role in the protection of human health and the environment. Nuclear magnetic resonance (NMR) has proven to be a valuable analytical tool as a result of its versatility in characterizing both overall chemical composition as well as individual species in a wide range of mixtures. In addition, NMR can provide physical information (rigidity, dynamics, etc.) as well as permit in depth quantification. Hyphenation with other techniques such as liquid chromatography, solid phase extraction and mass spectrometry creates unprecedented capabilities for the identification of novel and unknown chemical species. Thus, NMR is widely used in the study of different components of wastewater, such as complex organic matter (fulvic and humic acids), sludge and wastewater. This review article summarizes the NMR spectroscopy methods applied in studies of organic pollutants from wastewater to provide an exhaustive review of the literature as well as a guide for readers interested in this topic. PMID:25280056

  8. Perspectives on DNP-enhanced NMR spectroscopy in solutions.

    PubMed

    van Bentum, Jan; van Meerten, Bas; Sharma, Manvendra; Kentgens, Arno

    2016-03-01

    More than 60years after the seminal work of Albert Overhauser on dynamic nuclear polarization by dynamic cross relaxation of coupled electron-nuclear spin systems, the quest for sensitivity enhancement in NMR spectroscopy is as pressing as ever. In this contribution we will review the status and perspectives for dynamic nuclear polarization in the liquid state. An appealing approach seems to be the use of supercritical solvents that may allow an extension of the Overhauser mechanism towards common high magnetic fields. A complementary approach is the use of solid state DNP on frozen solutions, followed by a rapid dissolution or in-situ melting step and NMR detection with substantially enhanced polarization levels in the liquid state. We will review recent developments in the field and discuss perspectives for the near future. PMID:26920831

  9. Perspectives on DNP-enhanced NMR spectroscopy in solutions

    NASA Astrophysics Data System (ADS)

    van Bentum, Jan; van Meerten, Bas; Sharma, Manvendra; Kentgens, Arno

    2016-03-01

    More than 60 years after the seminal work of Albert Overhauser on dynamic nuclear polarization by dynamic cross relaxation of coupled electron-nuclear spin systems, the quest for sensitivity enhancement in NMR spectroscopy is as pressing as ever. In this contribution we will review the status and perspectives for dynamic nuclear polarization in the liquid state. An appealing approach seems to be the use of supercritical solvents that may allow an extension of the Overhauser mechanism towards common high magnetic fields. A complementary approach is the use of solid state DNP on frozen solutions, followed by a rapid dissolution or in-situ melting step and NMR detection with substantially enhanced polarization levels in the liquid state. We will review recent developments in the field and discuss perspectives for the near future.

  10. 19F NMR spectroscopy study of the metabolites of flucloxacillin in rat urine.

    PubMed

    Everett, J R; Jennings, K; Woodnutt, G

    1985-12-01

    19F NMR spectroscopy was used to monitor the metabolites of flucloxacillin in the urine of a rat dosed with its sodium salt. 19F NMR signals were detected and quantified from flucloxacillin and three metabolites. The 19F NMR method involves minimal sample preparation and is free from interference by endogenous urine components. High-field spin-echo 1H NMR spectroscopy and HPLC were used to confirm the results. PMID:2868093

  11. Advanced Structural Determination of Diterpene Esters Using Molecular Modeling and NMR Spectroscopy.

    PubMed

    Nothias-Scaglia, Louis-Félix; Gallard, Jean-François; Dumontet, Vincent; Roussi, Fanny; Costa, Jean; Iorga, Bogdan I; Paolini, Julien; Litaudon, Marc

    2015-10-23

    Three new jatrophane esters (1-3) were isolated from Euphorbia amygdaloides ssp. semiperfoliata, including an unprecedented macrocyclic jatrophane ester bearing a hemiketal substructure, named jatrohemiketal (3). The chemical structures of compounds 1-3 and their relative configurations were determined by spectroscopic analysis. The absolute configuration of compound 3 was determined unambiguously through an original strategy combining NMR spectroscopy and molecular modeling. Conformational search calculations were performed for the four possible diastereomers 3a-3d differing in their C-6 and C-9 stereocenters, and the lowest energy conformer was used as input structure for geometry optimization. The prediction of NMR parameters ((1)H and (13)C chemical shifts and (1)H-(1)H coupling constants) by density functional theory (DFT) calculations allowed identifying the most plausible diastereomer. Finally, the stereostructure of 3 was solved by comparison of the structural features obtained by molecular modeling for 3a-3d with NMR-derived data (the values of dihedral angles deduced from the vicinal proton-proton coupling constants ((3)JHH) and interproton distances determined by ROESY). The methodology described herein provides an efficient way to solve or confirm structural elucidation of new macrocyclic diterpene esters, in particular when no crystal structure is available. PMID:26431312

  12. Urinary metabolite quantification employing 2D NMR spectroscopy.

    PubMed

    Gronwald, Wolfram; Klein, Matthias S; Kaspar, Hannelore; Fagerer, Stephan R; Nürnberger, Nadine; Dettmer, Katja; Bertsch, Thomas; Oefner, Peter J

    2008-12-01

    Two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy is a fairly novel method for the quantification of metabolites in biological fluids and tissue extracts. We show in this contribution that, compared to 1D 1H spectra, superior quantification of human urinary metabolites is obtained from 2D 1H-13C heteronuclear single-quantum correlation (HSQC) spectra measured at natural abundance. This was accomplished by the generation of separate calibration curves for the different 2D HSQC signals of each metabolite. Lower limits of detection were in the low to mid micromolar range and were generally the lower the greater the number of methyl groups contained in an analyte. The quantitative 2D NMR data obtained for a selected set of 17 urinary metabolites were compared to those obtained independently by means of gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry of amino acids and hippurate as well as enzymatic and colorimetric measurements of creatinine. As a typical application, 2D-NMR was used for the investigation of urine from patients with inborn errors of metabolism. PMID:19551947

  13. Complex mixture analysis of organic compounds in green coffee bean extract by two-dimensional NMR spectroscopy.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2010-11-01

    A complex mixture analysis by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy was carried out for the first time for the identification and quantification of organic compounds in green coffee bean extract (GCBE). A combination of (1)H-(1)H DQF-COSY, (1)H-(13)C HSQC, and (1)H-(13)C CT-HMBC two-dimensional sequences was used, and 16 compounds were identified. In particular, three isomers of caffeoylquinic acid were identified in the complex mixture without any separation. In addition, GCBE components were quantified by the integration of carbon signals by use of a relaxation reagent and an inverse-gated decoupling method without a nuclear Overhauser effect. This NMR methodology provides detailed information about the kinds and amounts of GCBE components, and in our study, the chemical makeup of GCBE was clarified by the NMR results. PMID:20818806

  14. Report on neptunium speciation by NMR and optical spectroscopies

    SciTech Connect

    Tait, C.D.; Palmer, P.D.; Ekberg, S.A.; Clark, D.L.

    1995-11-01

    Hydrolysis and carbonate complexation reactions were examined for NpO{sub 2}{sup 2+} and NpO{sub 2}{sup +} ions by a variety of techniques including potentiometric titration, UV-Vis-NIR and NMR spectroscopy. The equilibrium constant for the reaction 3NpO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} + 3H{sup +} {rightleftharpoons} (NpO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} + 3HCO{sub 3}{sup {minus}} was determined to be logK = 19.7 ({plus_minus} 0.8) (I = 2.5 m). {sup 17}O NMR spectroscopy of NpO{sub 2}{sup n+} ions (n = 1,2) reveals a readily observable {sup 17}O resonance for n = 2, but not for n = 1. The first hydrolysis constant for NpO{sub 2}{sup +} was studied as a function of temperature, and the functional form for the temperature-dependent equilibrium constant for the reaction written as NpO{sub 2}{sup +} + H{sub 2}O {rightleftharpoons} NpO{sub 2}OH + H{sup +} was found to be logK = 2.28 {minus} 3780/T, where T is in {degree}K. Finally, the temperature dependence of neptunium(V) carbonate complexation constants was studied. For the first carbonate complexation constant, the appropriate functional form was found to be log{beta}{sub 01} = 1.47 + 786/T.

  15. Structure of a Conserved Retroviral RNA Packaging Element by NMR Spectroscopy and Cryo-Electron Tomography

    PubMed Central

    Miyazaki, Yasuyuki; Irobalieva, Rossitza N.; Tolbert, Blanton; Smalls-Mantey, Adjoa; Iyalla, Kilali; Loeliger, Kelsey; D’Souza, Victoria; Khant, Htet; Schmid, Michael F.; Garcia, Eric; Telesnitsky, Alice; Chiu, Wah; Summers, Michael F.

    2010-01-01

    The 5′-untranslated regions (5′-UTRs) of all gammaretroviruses contain a conserved “double hairpin motif” (ΨCD) that is required for genome packaging. Both hairpins (SL-C and SL-D) contain GACG tetraloops that, in isolated RNAs, are capable of forming “kissing” interactions stabilized by two intermolecular G-C base pairs. We have determined the three-dimensional structure of the double hairpin from the Moloney Murine Leukemia Virus (MoMuLV) ([ΨCD]2, 132-nucleotides, 42.8 kDaltons) using a 2H-edited NMR spectroscopy-based approach. This approach enabled the detection of 1H-1H dipolar interactions that were not observed in previous studies of isolated SL-C and SL-D hairpin RNAs using traditional 1H-1H correlated and 1H-13C-edited NMR methods. The hairpins participate in intermolecular cross-kissing interactions (SL-C to SL-D’ and SLC’ to SL-D), and stack in an end-to-end manner (SL-C to SL-D and SL-C’ to SL-D’) that gives rise to an elongated overall shape (ca. 95 Å by 45 Å by 25 Å). The global structure was confirmed by cryo-electron tomography (cryo-ET), making [ΨCD]2 simultaneously the smallest RNA to be structurally characterized to date by cryo-ET and among the largest to be determined by NMR. Our findings suggest that, in addition to promoting dimerization, [ΨCD]2 functions as a scaffold that helps initiate virus assembly by exposing a cluster of conserved UCUG elements for binding to the cognate nucleocapsid domains of assembling viral Gag proteins. PMID:20933521

  16. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    PubMed

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-01

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones. PMID:21692472

  17. Spatial structure of fibrinopeptide B in water solution with DPC micelles by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Blokhin, Dmitriy S.; Fayzullina, Adeliya R.; Filippov, Andrei V.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2015-12-01

    Fibrinopeptide B (GluFib) is one of the factors of thrombosis. Normal blood protein soluble, fibrinogen (fibrinopeptide A and fibrinopeptide B), is transformed into the insoluble, fibrin, which in the form of filaments adheres to the vessel wall at the site of injury, forming a grid. However, the spatial structure of this peptide has not been established till now. In this article, GluFib peptide is investigated together with dodecylphosphocholine (DPC) micelles which were used for mimicking the environment of peptide in blood vessels. The spatial structure was obtained by applying 1D and 2D 1H-1H NMR spectroscopy (TOCSY, NOESY). It was shown that the fibrinopeptide B does not have a secondary structure but we can distinguish the fragment Gly 9 - Arg 14 with a good convergence (the backbone RMSD for the Gly9 - Arg14 is 0.18 ± 0.08 Å).

  18. NMR analysis of carbohydrate-binding interactions in solution: an approach using analysis of saturation transfer difference NMR spectroscopy.

    PubMed

    Hemmi, Hikaru

    2014-01-01

    One of the most commonly used ligand-based NMR methods for detecting ligand binding is saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. The STD NMR method is an invaluable technique for assessing carbohydrate-lectin interactions in solution, because STD NMR can be used to detect weak ligand binding (Kd ca. 10(-3)-10(-8) M). STD NMR spectra identify the binding epitope of a carbohydrate ligand when bound to lectin. Further, the STD NMR method uses 1H-detected NMR spectra of only the carbohydrate, and so only small quantities of non-labeled lectin are required. In this chapter, I describe a protocol for the STD NMR method, including the experimental procedures used to acquire, process, and analyze STD NMR data, using STD NMR studies for methyl-β-D-galactopyranoside (β-Me-Gal) binding to the C-terminal domain of an R-type lectin from earthworm (EW29Ch) as an example. PMID:25117260

  19. Spin-Noise-Detected Two-Dimensional Fourier-Transform NMR Spectroscopy

    PubMed Central

    2013-01-01

    We introduce two-dimensional NMR spectroscopy detected by recording and processing the noise originating from nuclei that have not been subjected to any radio frequency excitation. The method relies on cross-correlation of two noise blocks that bracket the evolution and mixing periods. While the sensitivity of the experiment is low in conventional NMR setups, spin-noise-detected NMR spectroscopy has great potential for use with extremely small numbers of spins, thereby opening a way to nanoscale multidimensional NMR spectroscopy. PMID:24294412

  20. An Oil Spill in a Tube: An Accessible Approach for Teaching Environmental NMR Spectroscopy

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Mitchell, Perry J.; Masoom, Hussain; Mobarhan, Yalda Liaghati; Adamo, Antonio; Dicks, Andrew P.

    2015-01-01

    NMR spectroscopy has great potential as an instrumental method for environmental chemistry research and monitoring but may be underused in teaching laboratories because of its complexity and the level of expertise required in operating the instrument and interpreting data. This laboratory experiment introduces environmental NMR spectroscopy to

  1. An Oil Spill in a Tube: An Accessible Approach for Teaching Environmental NMR Spectroscopy

    ERIC Educational Resources Information Center

    Simpson, Andre´ J.; Mitchell, Perry J.; Masoom, Hussain; Mobarhan, Yalda Liaghati; Adamo, Antonio; Dicks, Andrew P.

    2015-01-01

    NMR spectroscopy has great potential as an instrumental method for environmental chemistry research and monitoring but may be underused in teaching laboratories because of its complexity and the level of expertise required in operating the instrument and interpreting data. This laboratory experiment introduces environmental NMR spectroscopy to…

  2. 'Shim pulses' for NMR spectroscopy in inhomogeneous magneticfields

    SciTech Connect

    Topgaard, Daniel; Martin, Rachel W.; Sakellariou, Dimitris; Meriles, Carlos; Pines, Alexander

    2004-05-19

    NMR spectroscopy conveys information about chemical structure through ppm-scale shifts of the resonance frequency depending on the chemical environment. In order to observe these small shifts, magnets with highly homogeneous magnetic field B{sub 0} are used. The high cost and large size of these magnets are a consequence of the requirement for high homogeneity. In this contribution we introduce a new method for recording high-resolution NMR spectra from samples in inhomogeneous B{sub 0}, opening up the possibility of exploiting magnets of lower homogeneity and cost. Instead of using the traditional B{sub 0} ''shim coils'', adiabatic radiofrequency (RF) pulse sequences and modulated B{sub 0} gradients generated by coils in the probe are used to produce ''shim pulses''. A great deal of work has been devoted to finding methods for retrieving chemical shift information even when B{sub 0} is inhomogeneous. One class of methods relies on zero- or multiple quantum coherences which evolve independently of B{sub 0}. These methods are inherently two-dimensional and the high-resolution information is obtained indirectly. In order to minimize experimental time it is desirable to acquire a high-resolution spectrum directly just as for traditional NMR in homogeneous fields. A further advantage with direct acquisition is that modification of already existing multidimensional NMR techniques is facilitated. A fundamentally different approach utilizes inhomogeneity of the RF magnetic field to periodically refocus the phase dispersion from the inhomogeneous B{sub 0}. With this technique a high-resolution spectrum can indeed be acquired in a single shot. The main drawback is the requirement for spatial matching between the RF and B{sub 0} inhomogeneities. Based on this latter technique we propose the use of ''shim pulses'', i.e. modulated, spatially constant, B{sub 0} gradient pulses together with spatially homogeneous adiabatic frequency sweeps to induce non-linear phase shifts in three dimensions. An intuitive understanding of the approach can be obtained from the following: An adiabatic full passage applied to transverse magnetization effectively rotates the magnetization in the transverse plane with an amount that depends on the frequency offset. In homogeneous B{sub 0} this gives rise to a ''phase roll'' across the NMR spectrum. If the adiabatic full passage is applied in the presence of a constant B{sub 0} gradient, a phase shift approximately linear in space will be the result. A second adiabatic passage reverses this phase shift and the adiabatic double passage constitutes effectively a 360{sup o} pulse. However, if the amplitude of the B{sub 0} gradient is changing during the adiabatic passages, phase shifts, which are non-linear in space, can be achieved. With a proper choice of the RF and gradient modulation functions, the phase dispersion from the inhomogeneous B{sub 0} can be canceled. Application of a shim pulse between each detected point in the time-domain NMR signal yields an NMR spectrum free from the broadening caused by the B{sub 0} inhomogeneity.

  3. Multiplicative or t1 Noise in NMR Spectroscopy

    SciTech Connect

    Granwehr, Josef

    2005-01-25

    The signal in an NMR experiment is highly sensitive to fluctuations of the environment of the sample. If, for example, the static magnetic field B{sub 0}, the amplitude and phase of radio frequency (rf) pulses, or the resonant frequency of the detection circuit are not perfectly stable and reproducible, the magnetic moment of the spins is altered and becomes a noisy quantity itself. This kind of noise not only depends on the presence of a signal, it is in fact proportional to it. Since all the spins at a particular location in a sample experience the same environment at any given time, this noise primarily affects the reproducibility of an experiment, which is mainly of importance in the indirect dimensions of a multidimensional experiment, when intense lines are suppressed with a phase cycle, or for difference spectroscopy techniques. Equivalently, experiments which are known to be problematic with regard to their reproducibility, like flow experiments or experiments with a mobile target, tend to be affected stronger by multiplicative noise. In this article it is demonstrated how multiplicative noise can be identified and characterized using very simple, repetitive experiments. An error estimation approach is developed to give an intuitive, yet quantitative understanding of its properties. The consequences for multidimensional NMR experiments are outlined, implications for data analysis are shown, and strategies for the optimization of experiments are summarized.

  4. Regularized Partial Least Squares with an Application to NMR Spectroscopy

    PubMed Central

    Allen, Genevera I.; Peterson, Christine; Vannucci, Marina; Maletić-Savatić, Mirjana

    2014-01-01

    High-dimensional data common in genomics, proteomics, and chemometrics often contains complicated correlation structures. Recently, partial least squares (PLS) and Sparse PLS methods have gained attention in these areas as dimension reduction techniques in the context of supervised data analysis. We introduce a framework for Regularized PLS by solving a relaxation of the SIMPLS optimization problem with penalties on the PLS loadings vectors. Our approach enjoys many advantages including flexibility, general penalties, easy interpretation of results, and fast computation in high-dimensional settings. We also outline extensions of our methods leading to novel methods for non-negative PLS and generalized PLS, an adoption of PLS for structured data. We demonstrate the utility of our methods through simulations and a case study on proton Nuclear Magnetic Resonance (NMR) spectroscopy data. PMID:24511361

  5. Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy.

    PubMed

    Maksymiuk, Christina S; Gayahtri, Chakicherla; Gil, Roberto R; Donahue, Neil M

    2009-09-28

    Because it is doubly unsaturated, gaseous limonene and ozone reactions exhibit considerable potential for not only a large quantity of secondary organic aerosol (SOA), but also a diverse and complicated product mixture influenced by reactant conditions. We explore the chemistry of limonene ozonolysis and provide evidence that under low-NOx conditions, the endocyclic double bond is oxidized in the gas phase, while under excess ozone conditions, the residual exocyclic double bond in condensed-phase products is heterogeneously oxidized by ozone. We use regular and multinuclear-multidimensional NMR spectroscopy, in particular 1D 1H-NMR, 1H,1H-COSY correlation spectroscopy, and 1H,13C-HSQC (heteronuclear single quantum coherence). For structural assignments we simulate 1H and 13C NMR spectra with ACDLabs online, relying representative products consistent with the postulated reaction mechanism. The 1-D 1H-NMR data allow us to quantify the extent to which the residual unsaturation is oxidized with rising ozone, confirming our hypothesis that the residual unsaturation is oxidized via heterogeneous uptake of ozone to fresh SOA particles. PMID:19727487

  6. 2D zirconium fluorides: Synthesis, structure and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ben Ali, A.; Body, M.; Leblanc, M.; Maisonneuve, V.

    2011-02-01

    Two new zirconium (IV) fluorides, [H 2dap]·(Zr 2F 10)·H 2O ( I) and [H meam] 2·(Zr 2F 10)·H 2O ( II), are synthesized and characterized by X-ray diffraction, thermal techniques and NMR spectroscopy. I is triclinic ( P1¯) with a = 6.805 (1) Å, b = 8.361(1) Å, and c = 11.853 (2) Å, α = 94.54(1)°, β = 105.44(1)°, γ = 108.75(1)°. II is monoclinic ( C2 /m) with a = 10.340(6) Å, b = 6.624(4) Å, c = 8.758(6) Å and β = 110.57(3)°. The structure determinations, performed from single crystal X-ray diffraction data, lead to the R/R w reliability factors 0.041/0.113 for I and 0.057/0.177 for II. The structures are built up from ZrF 7 and ZrF 8 units in I and only ZrF 8 units in II. The polyhedra share common edges in order to form two different ZrF 5 layers that are also found in [H 2C2H10N2]·(Zr 2F 10)·H 2O and (H 3O) 2·(Zr 2F 10)·H 2O. On heating at 145 °C, [H 2dap]·(Zr 2F 10)·H 2O decomposes to give the anhydrous form [H 2dap]·(Zr 2F 10) that undergoes two successive phase transformations at 220 °C and 290 °C. 19F NMR spectroscopy confirms the structural features of [H 2dap]·(Zr 2F 10)·H 2O ( I): two sets of three lines with a relative intensity 1:2:2 are attributed to five bridging fluorine atoms and to five nonbridging fluorine atoms. This spectroscopy demonstrates that a noticeable substitution of F - anions by hydroxyl OH - groups is excluded, together with the eventual substitution of H 2O by HF molecules.

  7. Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Musio, Roberta; Sciacovelli, Oronzo

    2001-12-01

    The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

  8. Ion counting in supercapacitor electrodes using NMR spectroscopy.

    PubMed

    Griffin, John M; Forse, Alexander C; Wang, Hao; Trease, Nicole M; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P

    2014-01-01

    (19)F NMR spectroscopy has been used to study the local environments of anions in supercapacitor electrodes and to quantify changes in the populations of adsorbed species during charging. In the absence of an applied potential, anionic species adsorbed within carbon micropores (in-pore) are distinguished from those in large mesopores and spaces between particles (ex-pore) by a characteristic nucleus-independent chemical shift (NICS). Adsorption experiments and two-dimensional exchange experiments confirm that anions are in dynamic equilibrium between the in- and ex-pore environments with an exchange rate in the order of tens of Hz. (19)F in situ NMR spectra recorded at different charge states reveal changes in the intensity and NICS of the in-pore resonances, which are interpreted in term of changes in the population and local environments of the adsorbed anions that arise due to the charge-storage process. A comparison of the results obtained for a range of electrolytes reveals that several factors influence the charging mechanism. For a tetraethylammonium tetrafluoroborate electrolyte, positive polarisation of the electrode is found to proceed by anion adsorption at a low concentration, whereas increased ion exchange plays a more important role for a high concentration electrolyte. In contrast, negative polarization of the electrode proceeds by cation adsorption for both concentrations. For a tetrabutylammonium tetrafluoroborate electrolyte, anion expulsion is observed in the negative charging regime; this is attributed to the reduced mobility and/or access of the larger cations inside the pores, which forces the expulsion of anions in order to build up ionic charge. Significant anion expulsion is also observed in the negative charging regime for alkali metal bis(trifluoromethane)sulfonimide electrolytes, suggesting that more subtle factors also affect the charging mechanism. PMID:25591456

  9. Mapping the landscape of RNA dynamics with NMR spectroscopy.

    PubMed

    Rinnenthal, Jörg; Buck, Janina; Ferner, Jan; Wacker, Anna; Fürtig, Boris; Schwalbe, Harald

    2011-12-20

    Among the three major classes of biomacromolecules (DNA, RNA, and proteins) RNA's pronounced dynamics are the most explicitly linked to its wide variety of functions, which include catalysis and the regulation of transcription, translation, and splicing. These functions are mediated by a range of RNA biomachinery, including such varied examples as macromolecular noncoding RNAs, microRNAs, small interfering RNAs, riboswitch RNAs, and RNA thermometers. In each case, the functional dynamics of an interconversion is characterized by an associated rate constant. In this Account, we provide an introduction to NMR spectroscopic characterization of the landscape of RNA dynamics. We introduce strategies for measuring NMR parameters at various time scales as well as the underlying models for describing the corresponding rate constants. RNA exhibits significant dynamic motion, which can be modulated by (i) intermolecular interactions, including specific and nonspecific binding of ions (such as Mg(2+) and tertiary amines), (ii) metabolites in riboswitches or RNA aptamers, and (iii) macromolecular interactions within ribonucleic protein particles, including the ribosome and the spliceosome. Our understanding of the nature of these dynamic changes in RNA targets is now being incorporated into RNA-specific approaches in the design of RNA inhibitors. Interactions of RNA with proteins, other RNAs, or small molecules often occur through binding mechanisms that follow an induced fit mechanism or a conformational selection mechanism, in which one of several populated RNA conformations is selected through ligand binding. The extent of functional dynamics, including the kinetic formation of a specific RNA tertiary fold, is dependent on the messenger RNA (mRNA) chain length. Thus, during de novo synthesis of mRNA, both in prokaryotes and eukaryotes, nascent mRNA of various lengths will adopt different secondary and tertiary structures. The speed of transcription has a critical influence on the functional dynamics of the RNA being synthesized. In addition to modulating the local dynamics of a conformational RNA ensemble, a given RNA sequence may adopt more than one global, three-dimensional structure. RNA modification is one way to select among these alternative structures, which are often characterized by nearly equal stability, but with high energy barriers for conformational interconversion. The refolding of different secondary and tertiary structures has been found to be a major regulatory mechanism for transcription and translation. These conformational transitions can be characterized with NMR spectroscopy, for any given RNA sequence, in response to external stimuli. PMID:21894962

  10. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  11. Solid phase extraction chromatography and NMR spectroscopy (SPEC-NMR) for the rapid identification of drug metabolites in urine.

    PubMed

    Wilson, I D; Nicholson, J K

    1988-01-01

    The use of solid phase extraction onto disposable columns containing a C18 bonded silica gel provides a rapid and simple procedure for the removal of interfering endogenous components from urine samples containing drug metabolites prior to detection and identification by (1)H NMR spectroscopy. In addition, these columns can be used to retain and concentrate the compounds of interest, thus improving the effective sensitivity of the NMR detection method. Using simple step gradients chromatographic separations can be performed, and metabolites may be rapidly fractionated. This approach (solid phase extraction chromatography with NMR or SPEC-NMR) utilises the multiparametric metabolite detection facility of a Fourier transform NMR spectrometer to monitor a chromatographic separation, as such it has some of the beneficial properties of a directly linked liquid chromatography-NMR system without any of the disadvantages. Applications of the SPEC-NMR method in the investigation of drug metabolism are illustrated here by reference to excretion studies on the drugs ibuprofen, paracetamol, aspirin, oxpentifylline and naproxen. PMID:16867428

  12. Improving the resolution in proton-detected through-space heteronuclear multiple quantum correlation NMR spectroscopy.

    PubMed

    Shen, Ming; Trbosc, J; Lafon, O; Pourpoint, F; Hu, Bingwen; Chen, Qun; Amoureux, J-P

    2014-08-01

    Connectivities and proximities between protons and low-gamma nuclei can be probed in solid-state NMR spectroscopy using two-dimensional (2D) proton-detected heteronuclear correlation, through Heteronuclear Multiple Quantum Correlation (HMQC) pulse sequence. The indirect detection via protons dramatically enhances the sensitivity. However, the spectra are often broadened along the indirect F1 dimension by the decay of heteronuclear multiple-quantum coherences under the strong (1)H-(1)H dipolar couplings. This work presents a systematic comparison of the performances of various decoupling schemes during the indirect t1 evolution period of dipolar-mediated HMQC (D-HMQC) experiment. We demonstrate that (1)H-(1)H dipolar decoupling sequences during t1, such as symmetry-based schemes, phase-modulated Lee-Goldburg (PMLG) and Decoupling Using Mind-Boggling Optimization (DUMBO), provide better resolution than continuous wave (1)H irradiation. We also report that high resolution requires the preservation of (1)H isotropic chemical shifts during the decoupling sequences. When observing indirectly broad spectra presenting numerous spinning sidebands, the D-HMQC sequence must be fully rotor-synchronized owing to the rotor-synchronized indirect sampling and dipolar recoupling sequence employed. In this case, we propose a solution to reduce artefact sidebands caused by the modulation of window delays before and after the decoupling application during the t1 period. Moreover, we show that (1)H-(1)H dipolar decoupling sequence using Smooth Amplitude Modulation (SAM) minimizes the t1-noise. The performances of the various decoupling schemes are assessed via numerical simulations and compared to 2D (1)H-{(13)C} D-HMQC experiments on [U-(13)C]-L-histidine?HCl?H2O at various magnetic fields and Magic Angle spinning (MAS) frequencies. Great resolution and sensitivity enhancements resulting from decoupling during t1 period enable the detection of heteronuclear correlation between aliphatic protons and ammonium (14)N sites in L-histidine?HCl?H2O. PMID:24929867

  13. (1)H NMR spectroscopy for profiling complex carbohydrate mixtures in non-fractionated beer.

    PubMed

    Petersen, Bent O; Nilsson, Mathias; Bøjstrup, Marie; Hindsgaul, Ole; Meier, Sebastian

    2014-05-01

    A plethora of biological and biotechnological processes involve the enzymatic remodelling of carbohydrates in complex mixtures whose compositions affect both the processes and products. In the current study, we employed high-resolution (1)H NMR spectroscopy for the analysis of cereal-derived carbohydrate mixtures as exemplified on six beer samples of different styles. Structural assignments of more than 50 carbohydrate moieties were obtained using (1)H1-(1)H2 groups as structural reporters. Spectroscopically resolved carbohydrates include more than ''20 different'' small carbohydrates with more than 38 isomeric forms in addition to cereal polysaccharide fragments with suspected organoleptic and prebiotic function. Structural motifs at the cleavage sites of starch, β-glucan and arabinoxylan fragments were identified, showing different extent and specificity of enzymatic polysaccharide cleavage during the production of different beer samples. Diffusion ordered spectroscopy supplied independent size information for the characterisation and identification of polysaccharide fragments, indicating the presence especially of high molecular weight arabinoxylan fragments in the final beer. PMID:24360420

  14. Coherence selection in double CP MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Jen-Hsien; Chou, Fang-Chieh; Tzou, Der-Lii M.

    2008-11-01

    Applications of double cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy, via 1H/ 15N and then 15N/ 13C coherence transfers, for 13C coherence selection are demonstrated on a 15N/ 13C-labeled N-acetyl-glucosamine (GlcNAc) compound. The 15N/ 13C coherence transfer is very sensitive to the settings of the experimental parameters. To resolve explicitly these parameter dependences, we have systematically monitored the 13C{ 15N/ 1H} signal as a function of the rf field strength and the MAS frequency. The data reveal that the zero-quantum coherence transfer, with which the 13C effective rf field is larger than that of the 15N by the spinning frequency, would give better signal sensitivity. We demonstrate in one- and two-dimensional double CP experiments that spectral editing can be achieved by tailoring the experimental parameters, such as the rf field strengths and/or the MAS frequency.

  15. Development of a micro flow-through cell for high field NMR spectroscopy.

    SciTech Connect

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  16. Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)

    ERIC Educational Resources Information Center

    Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.

    2011-01-01

    Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and

  17. Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)

    ERIC Educational Resources Information Center

    Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.

    2011-01-01

    Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…

  18. Stereochemistry Determination by Powder X-ray Diffraction Analysis and NMR Spectroscopy Residual Dipolar Couplings

    SciTech Connect

    Garcia, M.; Pagola, S; Navarro-Vasquez, A; Phillips, D; Gayathri, C; Krakauer, H; Stephens, P; Nicotra, V; Gil, R

    2009-01-01

    A matter of technique: For a new steroidal lactol, jaborosalactol 24 (1), isolated from Jaborosa parviflora, NMR spectroscopy residual dipolar couplings and powder X-ray diffraction analysis independently gave the same stereochemistry at C23-C26. Conventional NMR spectroscopic techniques, such as NOE and {sup 3}J coupling-constant analysis failed to unambiguously determine this stereochemistry.

  19. Mobility and Diffusion-Ordered Two-Dimensional NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Morris, Kevin Freeman

    Mobility and diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy experiments have been developed for the analysis of mixtures. In the mobility -ordered experiments, the full range of positive and negative electrophoretic mobilities is displayed in one dimension and chemical shifts are displayed in the other. A concentric cylindrical tube electrophoresis chamber was designed to reduce the effective pathlength for current and to provide unidirectional flow for ions of interest. Techniques based upon the reverse precession method were also implemented to recover the signs of the mobilities and improved resolution in the mobility dimension was obtained by replacing Fourier transformation of truncated data sets with a linear prediction analysis. In the diffusion-ordered two-dimensional NMR experiments, the conventional chemical shift spectrum is resolved in one dimension and spectra of diffusion rates or molecular radii are resolved in the other. Diffusion dependent pulsed field gradient NMR data sets were inverted by means of the computer programs SPLMOD or DISCRETE, when discrete diffusion coefficients were present, and CONTIN when continuous distributions were present. Since the inversion is ill -conditioned, it was necessary to introduce additional information to limit the range of the solutions. In addition to prior knowledge of the decay kernels and non-negativity of amplitudes and damping constants, a set of rejection criteria was constructed for the discrete analysis case that took into account physical limits on diffusion coefficients, experimentally accessible values, and variations in effective decay kernels resulting from instrumental non-linearities. Examples of analyses of simulated data and experimental data for mixtures are presented as well as two-dimensional spectra generated by CONTIN for polydisperse polymer samples. Also, resolution in the diffusion dimension was increased by performing experiments on hydrophobic molecules in the presence of surfactant micelles. Finally, the diffusion-ordered experiment was used to study the polymer induced breakdown of micelles consisting of cetyltrimethylammonium bromide and sodium salicylate. Addition of the polymer poly(vinyl methyl ether) resulted in an increase in the micelle diffusion coefficient and at high polymer concentrations and elevated temperatures the polymer and micelle were observed to diffuse at the same rate.

  20. Monitoring organic reactions by UF-NMR spectroscopy.

    PubMed

    Herrera, Antonio; Fernández-Valle, Encarnación; Martínez-Álvarez, Roberto; Molero-Vílchez, Dolores; Pardo-Botero, Zulay D; Sáez-Barajas, Elena

    2015-11-01

    Standard 2D NMR experiments suffer from the many t1 increments needed for spectra with sufficient digital resolution in the indirect dimension. Despite the different methodological approaches to overcome this problem, these increments have prevented studies of fast reactions. The development of ultrafast NMR (UF-NMR) has decisively speeded up the time scale of standard NMR to allow the study of organic reactions as they happen in real time to reveal mechanistic details. This mini-review summarizes the results achieved in monitoring organic reactions through this exciting technique. PMID:25998506

  1. Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research.

    PubMed

    Wang, Guifang; Zhang, Ze-Ting; Jiang, Bin; Zhang, Xu; Li, Conggang; Liu, Maili

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography are the two main methods for protein three-dimensional structure determination at atomic resolution. According to the protein structures deposited in the Protein Data Bank, X-ray crystallography has become the dominant method for structure determination, particularly for large proteins and complexes. However, with the developments of isotope labeling, increase of magnetic field strength, common use of a cryogenic probe, and ingenious pulse sequence design, the applications of NMR spectroscopy have expanded in biological research, especially in characterizing protein dynamics, sparsely populated transient structures, weak protein interactions, and proteins in living cells at atomic resolution, which is difficult if not impossible by other biophysical methods. Although great advances have been made in protein NMR spectroscopy, its applications in protein therapeutics, which represents the fastest growing segment of the pharmaceutical industry, are still limited. Here we review the recent advances in the use of NMR spectroscopy in studies of large proteins or complexes, posttranslation modifications, weak interactions, and aggregation, and in-cell NMR spectroscopy. The potential applications of NMR spectroscopy in protein therapeutic assays are discussed. PMID:24309626

  2. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  3. Characterization of protein hydration by solution NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wand, Joshua

    A comprehensive understanding of the interactions between protein molecules and hydration water remains elusive. Solution nuclear magnetic resonance (NMR) spectroscopy has been proposed as a means to characterize these interactions but is plagued with artifacts when employed in bulk aqueous solution. Encapsulation of proteins in reverse micelles prepared in short chain alkane solvents can overcome these technical limitations. Application of this approach has revealed that the interaction of water with the surface of protein molecules is quite heterogeneous with some regions of the protein having long-lived interactions while other regions show relatively transient hydration. Results from several proteins will be presented including ubiquitin, staphylococcal nuclease, interleukin 1beta, hen egg white lysozyme (HEWL) and T4 lysozyme. Ubiquitin and interleukin 1beta are signaling proteins and interact with other proteins through formation of dry protein-protein interfaces. Interestingly, the protein surfaces of the free proteins show relatively slowed (restricted) motion at the surface, which is indicative of low residual entropy. Other regions of the protein surface have relatively high mobility water. These results are consistent with the idea that proteins have evolved to maximize the hydrophobic effect in optimization of binding with protein partners. As predicted by simulation and theory, we find that hydration of internal hydrophobic cavities of interleukin 1beta and T4 lysozyme is highly disfavored. In contrast, the hydrophilic polar cavity of HEWL is occupied by water. Initial structural correlations suggest that hydration of alpha helical structure is characterized by relatively mobile water while those of beta strands and loops are more ordered and slowed. These and other results from this set of proteins reveals that the dynamical and structural character of hydration of proteins is heterogeneous and complex. Supported by the National Science Foundation.

  4. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research.

    PubMed

    Emwas, Abdul-Hamid M

    2015-01-01

    Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have evolved as the most common techniques in metabolomics studies, and each brings its own advantages and limitations. Unlike MS spectrometry, NMR spectroscopy is quantitative and does not require extra steps for sample preparation, such as separation or derivatization. Although the sensitivity of NMR spectroscopy has increased enormously and improvements continue to emerge steadily, this remains a weak point for NMR compared with MS. MS-based metabolomics provides an excellent approach that can offer a combined sensitivity and selectivity platform for metabolomics research. Moreover, different MS approaches such as different ionization techniques and mass analyzer technology can be used in order to increase the number of metabolites that can be detected. In this chapter, the advantages, limitations, strengths, and weaknesses of NMR and MS as tools applicable to metabolomics research are highlighted. PMID:25677154

  5. Applications of quantitative 1H- and 13C-NMR spectroscopy in drug analysis.

    PubMed

    Pieters, L A; Vlietinck, A J

    1989-01-01

    The usefulness of 1H and 13C Fourier transform (FT) nuclear magnetic resonance spectroscopy (1H- and 13C-NMR) as quantitative methods stems from the potential direct relationship between the area under an NMR peak and the number of the particular type of nuclei that give rise to the signal, though it is necessary, especially for quantitative 13C-NMR, to take some precautions. The experimental limitations that have to be overcome in order to obtain quantitative 13C-NMR spectra are associated with the relaxation time, the nuclear Overhauser effect (NOE), and the NMR instrument itself (filter characteristics, power level of the exciting pulse, dynamic range, digital resolution). Practical problems aside, 13C-NMR has a greater potential than 1H-NMR for the study of organic systems. The sensitivity of 13C chemical shifts to small differences in molecular environment, coupled with a large chemical shift range, gives a "chromatographic" separation of resonances of interest, and has made 13C-NMR an attractive method for analysing complex mixtures. Some applications of quantitative 1H- and 13C-NMR spectroscopy in drug analysis are discussed. PMID:2490526

  6. Ultrafast high-resolution magic-angle-spinning NMR spectroscopy.

    PubMed

    André, Marion; Piotto, Martial; Caldarelli, Stefano; Dumez, Jean-Nicolas

    2015-06-21

    We demonstrate the acquisition of ultrafast 2D NMR spectra of semi-solid samples, with a high-resolution magic-angle-spinning setup. Using a recent double-quantum NMR pulse sequence in optimised synchronisation conditions, high-quality 2D spectra can be recorded for a sample under magic-angle spinning. An illustration is given with a semi-solid sample of banana pulp. PMID:25946235

  7. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-01

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), 1H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong 1H-1H homonuclear dipolar couplings and narrow 1H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) 1H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about 1H-1H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical information for a variety of solid systems that possess high proton density.

  8. ADAPT-NMR Enhancer: complete package for reduced dimensionality in protein NMR spectroscopy

    PubMed Central

    Lee, Woonghee; Bahrami, Arash; Markley, John L.

    2013-01-01

    Summary: ADAPT-nuclear magnetic resonance (ADAPT-NMR) offers an automated approach to the concurrent acquisition and processing of protein NMR data with the goal of complete backbone and side chain assignments. What the approach lacks is a useful graphical interface for reviewing results and for searching for missing peaks that may have prevented assignments or led to incorrect assignments. Because most of the data ADAPT-NMR collects are 2D tilted planes used to find peaks in 3D spectra, it would be helpful to have a tool that reconstructs the 3D spectra. The software package reported here, ADAPT-NMR Enhancer, supports the visualization of both 2D tilted planes and reconstructed 3D peaks on each tilted plane. ADAPT-NMR Enhancer can be used interactively with ADAPT-NMR to automatically assign selected peaks, or it can be used to produce PINE-SPARKY-like graphical dialogs that support atom-by-atom and peak-by-peak assignment strategies. Results can be exported in various formats, including XEASY proton file (.prot), PINE pre-assignment file (.str), PINE probabilistic output file, SPARKY peak list file (.list) and TALOS+ input file (.tab). As an example, we show how ADAPT-NMR Enhancer was used to extend the automated data collection and assignment results for the protein Aedes aegypti sterol carrier protein 2. Availability: The program, in the form of binary code along with tutorials and reference manuals, is available at http://pine.nmrfam.wisc.edu/adapt-nmr-enhancer. Contact: whlee@nmrfam.wisc.edu or markley@nmrfam.wisc.edu PMID:23220573

  9. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues.

    PubMed

    Beckonert, Olaf; Coen, Muireann; Keun, Hector C; Wang, Yulan; Ebbels, Timothy M D; Holmes, Elaine; Lindon, John C; Nicholson, Jeremy K

    2010-06-01

    Metabolic profiling, metabolomic and metabonomic studies require robust study protocols for any large-scale comparisons and evaluations. Detailed methods for solution-state NMR spectroscopy have been summarized in an earlier protocol. This protocol details the analysis of intact tissue samples by means of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy and we provide a detailed description of sample collection, preparation and analysis. Described here are (1)H NMR spectroscopic techniques such as the standard one-dimensional, relaxation-edited, diffusion-edited and two-dimensional J-resolved pulse experiments, as well as one-dimensional (31)P NMR spectroscopy. These are used to monitor different groups of metabolites, e.g., sugars, amino acids and osmolytes as well as larger molecules such as lipids, non-invasively. Through the use of NMR-based diffusion coefficient and relaxation times measurements, information on molecular compartmentation and mobility can be gleaned. The NMR methods are often combined with statistical analysis for further metabonomics analysis and biomarker identification. The standard acquisition time per sample is 8-10 min for a simple one-dimensional (1)H NMR spectrum, giving access to metabolite information while retaining tissue integrity and hence allowing direct comparison with histopathology and MRI/MRS findings or the evaluation together with biofluid metabolic-profiling data. PMID:20539278

  10. Quantitative Determination of Carthamin in Carthamus Red by 1H-NMR Spectroscopy.

    PubMed

    Yoshida, Takamitsu; Terasaka, Kazuyoshi; Kato, Setsuko; Bai, Fan; Sugimoto, Naoki; Akiyama, Hiroshi; Yamazaki, Takeshi; Mizukami, Hajime

    2013-01-01

    Carthamus Red is a food colorant prepared from the petals of Carthamus tinctorius (Asteraceae) whose major pigment is carthamin. Since an authentic carthamin standard is difficult to obtain commercially for the preparation of calibration curves in HPLC assays, we applied (1)H-NMR spectroscopy to the quantitative determination of carthamin in commercial preparations of Carthamus Red. Carthamus Red was repeatedly extracted in methanol and the extract was dissolved in pyridine-d(5) containing hexamethyldisilane (HMD) prior to (1)H-NMR spectroscopic analysis. The carthamin contents were calculated from the ratios of singlet signal intensities at approximately σ: 9.3 derived from H-16 of carthamin to those of the HMD signal at σ: 0. The integral ratios exhibited good repeatability among NMR spectroscopic analyses. Both the intra-day and inter-day assay variations had coefficients of variation of <5%. Based on the coefficient of absorption, the carthamin contents of commercial preparations determined by (1)H-NMR spectroscopy correlated well with those determined by colorimetry, although the latter were always approximately 1.3-fold higher than the former, irrespective of the Carthamus Red preparations. In conclusion, the quantitative (1)H-NMR spectroscopy used in the present study is simple and rapid, requiring no carthamin standard for calibration. After HMD concentration has been corrected using certified reference materials, the carthamin contents determined by (1)H-NMR spectroscopy are System of Units (SI)-traceable. PMID:24436958

  11. GFT projection NMR spectroscopy for proteins in the solid state

    PubMed Central

    Franks, W. Trent; Atreya, Hanudatta S.; Szyperski, Thomas

    2011-01-01

    Recording of four-dimensional (4D) spectra for proteins in the solid state has opened new avenues to obtain virtually complete resonance assignments and three-dimensional (3D) structures of proteins. As in solution state NMR, the sampling of three indirect dimensions leads per se to long minimal measurement time. Furthermore, artifact suppression in solid state NMR relies primarily on radio-frequency pulse phase cycling. For an n-step phase cycle, the minimal measurement times of both 3D and 4D spectra are increased n times. To tackle the associated ‘sampling problem’ and to avoid sampling limited data acquisition, solid state G-Matrix Fourier Transform (SS GFT) projection NMR is introduced to rapidly acquire 3D and 4D spectral information. Specifically, (4,3)D (HA)CANCOCX and (3,2)D (HACA)NCOCX were implemented and recorded for the 6 kDa protein GB1 within about 10% of the time required for acquiring the conventional congeners with the same maximal evolution times and spectral widths in the indirect dimensions. Spectral analysis was complemented by comparative analysis of expected spectral congestion in conventional and GFT NMR experiments, demonstrating that high spectral resolution of the GFT NMR experiments enables one to efficiently obtain nearly complete resonance assignments even for large proteins. PMID:21052779

  12. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    SciTech Connect

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  13. Forensic examination of electrical tapes using high resolution magic angle spinning ¹H NMR spectroscopy.

    PubMed

    Schoenberger, Torsten; Simmross, Ulrich; Poppe, Christian

    2016-01-01

    The application of high resolution magic angle spinning (HR-MAS) (1)H NMR spectroscopy is ideally suited for the differentiation of plastics. In addition to the actual material composition, the different types of polymer architectures and tacticity provide characteristic signals in the fingerprint of the (1)H NMR spectra. The method facilitates forensic comparison, as even small amounts of insoluble but swellable plastic particles are utilized. The performance of HR-MAS NMR can be verified against other methods that were recently addressed in various articles about forensic tape comparison. In this study samples of the 90 electrical tapes already referenced by the FBI laboratory were used. The discrimination power of HR-MAS is demonstrated by the fact that more tape groups can be distinguished by NMR spectroscopy than by using the combined evaluation of several commonly used analytical techniques. An additional advantage of this robust and quick method is the very simple sample preparation. PMID:26558760

  14. Metabolic profiling of potential probiotic or synbiotic cheeses by nuclear magnetic resonance (NMR) spectroscopy.

    PubMed

    Rodrigues, Dina; Santos, Claudio H; Rocha-Santos, Teresa A P; Gomes, Ana M; Goodfellow, Brian J; Freitas, Ana C

    2011-05-11

    To assess ripening of potential probiotic cheeses (containing either Lactobacillus casei -01 or Bifidobacterium lactis B94) or synbiotic cheeses with fructooligosaccharides (FOS) or a 50:50 mix of FOS/inulin, metabolic profiles have been obtained via classical biochemical analyses and by NMR spectroscopy. The addition of prebiotics to the cheeses resulted in lower proteolysis indices, especially in those synbiotic cheeses inoculated with B. lactis B94. Among synbiotic cheeses the combination of FOS and inulin resulted in an increase in lipolytic activity. The metabolic profiles of the cheeses analyzed by NMR spectroscopy, combined with multivariate statistics, allowed profiles to be distinguished by maturation time, added probiotic bacteria, or, in the case of B. lactis B94 cheese, added prebiotic. The NMR results are in agreement with the biochemical analyses and demonstrate the potential of NMR for the study of metabolic processes in probiotic/synbiotic food matrices. PMID:21443163

  15. Localized double-quantum-filtered 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Hetherington, H. P.; Meyerhoff, D. J.; Twieg, D. B.

    The image-guided in vivo spectroscopic (ISIS) pulse sequence has been combined with a double-quantum-filter scheme in order to obtain localized and water-suppressed 1H NMR spectra of J-coupled metabolites. The coherence-transfer efficiency associated with the DQ filter for AX and A 3X spin systems is described. Phantom results of carnosine, alanine, and ethanol in aqueous solution are presented. For comparison, the 1H NMR spectrum of alanine in aqueous solution with the binomial (1331, 2662) spin-echo sequence is also shown.

  16. NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

    1993-01-01

    Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

  17. Structural elucidation of the capsular polysaccharide from Streptococcus pneumoniae serotype 47A by NMR spectroscopy.

    PubMed

    Petersen, Bent O; Hindsgaul, Ole; Paulsen, Berit Smestad; Redondo, Antonio R; Skovsted, Ian C

    2014-03-11

    The structure of the serotype 47A (Danish nomenclature system) capsular polysaccharide from Streptococcus pneumoniae was elucidated by NMR spectroscopy. The following structure of the repeating heptasaccharide was deduced: [structure: see text]. The serotype 47A capsular polysaccharide is one of 91 structurally and serologically distinct capsular polysaccharides that have been recognized in S. pneumoniae, a significant human pathogenic bacterium and model system in medical microbiology. Structure and NMR spectra are compared to previously solved capsular polysaccharide structures of other serotypes. PMID:24486982

  18. Synthesis and characterization of polyphosphazene copolymers using phosphorus-31 NMR spectroscopy

    SciTech Connect

    Stewart, F.F.; Peterson, E.S.; Stone, M.L.; Singler, R.E.

    1997-01-01

    It was observed that competitive nucleophilic addition processes may be observed by {sup 31}P NMR spectroscopy. Methoxyethoxyethanol (MEE) and p-methoxyphenol readily substitute for chlorineonto phosphorus and the relative rates are generally comparable to each other. Sterically, the phenol presents is slightly larger than MEE but this does not appear to effect substitution judging by the observed PN(OAr){sub 2} NMR signal. These processes are still being studied.

  19. Magic-angle-spinning NMR spectroscopy applied to small molecules and peptides in lipid bilayers.

    PubMed

    Ader, C; Schneider, R; Seidel, K; Etzkorn, M; Baldus, M

    2007-11-01

    ssNMR (solid-state NMR) spectroscopy provides increasing possibilities to study the structural and dynamic aspects of biological membranes. Here, we review recent ssNMR experiments that are based on MAS (magic angle spinning) and that provide insight into the structure and dynamics of membrane systems at the atomic level. Such methods can be used to study membrane architecture, domain formation or molecular complexation in a way that is highly complementary to other biophysical methods such as imaging or calorimetry. PMID:17956261

  20. NMR spectroscopy and perfusion of mammalian cells using surface microprobes.

    PubMed

    Ehrmann, Klaus; Pataky, Kristopher; Stettler, Matthieu; Wurm, Florian Maria; Brugger, Jürgen; Besse, Pierre-André; Popovic, Radivoje

    2007-03-01

    NMR spectra of mammalian cells are taken using surface microprobes that are based on microfabricated planar coils. The surface microprobe resembles a miniaturized Petri dish commonly used in biological research. The diameter of the planar coils is 1 mm. Chinese Hamster Ovaries are immobilized in a uniform layer on the microprobe surface or patterned by an ink-jet printer in the centre of the microcoil, where the rf-field of the planar microcoil is most uniform. The acquired NMR spectra show the prevalent metabolites found in mammalian cells. The volumes of the detected samples range from 25 nL to 1 nL (or 50,000 to 1800 cells). With an extended set-up that provides fluid inlets and outlets to the microprobe, the cells can be perfused within the NMR-magnet while constantly taking NMR spectra. Perfusion of the cells opens the way to increased cell viability for long acquisitions or to analysis of the cells' response to environmental change. PMID:17330170

  1. Structural determination of larger proteins using stable isotope labeling and NMR spectroscopy

    SciTech Connect

    Unkefer, C.; Hernandez, G.; Springer, P.; Trewhella, J.; Blumenthal, D.; Lidstrom, M.

    1996-04-01

    The project sought to employ stable isotope labeling and NMR spectroscopy to study protein structures and provide insight into important biochemical problems. A methylotrophic bacterial expression system has been developed for uniform deuterium and carbon-13 labeling of proteins for structural studies. These organisms grow using methanol as the sole source of carbon and energy. Because isotopically labeled methanol is relatively inexpensive, the methylotrophs are ideal for expressing proteins labeled uniformly with deuterium and/or carbon-13. This expression system has been employed to prepare deuterated troponin C. NMR spectroscopy measurements have been made on the inhibitory peptide from troponin I (residues 96--115), both as the free peptide and the peptide complexed with deuterated troponin C. Proton-NMR spectroscopy resonance-signal assignments have been made for the free peptide.

  2. Measurement of pH by NMR Spectroscopy in Concentrated Aqueous Fluoride Buffers

    PubMed Central

    Gerken, James B.

    2010-01-01

    An NMR spectroscopic technique has been developed to give rapid, accurate pH measurements on tenth-milliliter samples of concentrated acidic aqueous solutions buffered by fluoride ion in the pH 1.5 – 4.5 range. The fluoride 19F chemical shift has been calibrated as a function of pH at 0.1 and 1.0 M concentration by reference to an internal 3-fluoropyridine standard. Subsequent measurements of fluoride buffer pH required no additives and only two NMR spectra in the presence of an external reference standard. PMID:21278857

  3. Evaluation of nonpolar metabolites in plant extracts by 13C NMR spectroscopy.

    PubMed

    Palomino-Schätzlein, Martina; Escrig, Pablo V; Boira, Herminio; Primo, Jaime; Pineda-Lucena, Antonio; Cabedo, Nuria

    2011-11-01

    (13)C nuclear magnetic resonance (NMR) spectroscopy was explored as a simple and efficient technique for the quantitative analysis of nonpolar metabolites in plants. The method was first optimized with a mixture of known metabolites and then applied to the nonpolar leaf extracts of plants harvested in the Valencian community (eastern Spain) belonging to three different genera: Euphorbia (Euphorbiaceae), Araujia (Apocynaceae), and Morus (Moraceae). Furthermore, an exhaustive analysis of Euphorbia characias leaf and stem extracts from different geographic locations allowed that quantitative (13)C NMR spectroscopy is a suitable tool for metabolic profiling purpose. PMID:21955286

  4. DSP-based on-line NMR spectroscopy using an anti-Hebbian learning algorithm

    SciTech Connect

    Razazian, K.; Dieckman, S.L.; Raptis, A.C.; Bobis, J.P. |

    1995-07-01

    This paper describes a nuclear magnetic resonance (NMR) system that uses an adaptive algorithm to carry out real-time NMR spectroscopy. The system employs a digital signal processor (DSP) chip to regulate the transmitted and received signal together with spectral analysis of the received signal to determine free induction decay (FID). To implement such a signal-processing routine for detection of the desired signal, an adaptive line enhancer filter that uses an anti-Hebbian learning algorithm is applied to the FID spectra. The results indicate that the adaptive filter can be a reliable technique for on-line spectroscopy study.

  5. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  6. Development of a biodegradable sensor platform from gold coated zein nanophotonic films to detect peanut allergen, Ara h1, using surface enhanced raman spectroscopy.

    PubMed

    Gezer, P Gizem; Liu, G Logan; Kokini, Jozef L

    2016-04-01

    Peanuts are among the most common food allergies, which may result in life-threatening reactions in certain people. For this reason, it is very important to monitor the presence of peanuts in the food system. Biosensors are an emerging way of detecting allergen proteins. In this research, we present a surface enhanced Raman spectroscopy (SERS) technique to detect the main allergen protein, Ara h1. The sensors were biodegradable and made out of a corn protein, zein. Nanophotonic structures on zein films consisted of gold coated pyramid structures. It was found that both detection and quantification was possible by using a statistical clustering technique principal component analysis (PCA). An optimization in data processing yielded the result that baseline correction and shorter data collection times were needed in order to successfully cluster data. The limit of detection was found to be 0.14mg/ml. Furthermore, specificity of the sensor was provided by functionalizing the surface with monoclonal antibodies of Ara h1. Antibody functionalization, and Ara h1 capturing was tested and identified by also utilizing PCA analysis. As a proof-of-concept, this study showed that a biodegradable platform can be used in detection of a peanut allergen protein, Ara h1, using surface enhanced Raman spectroscopy. PMID:26838403

  7. Natural attenuation of oil spills in Patagonian soils. Characterization by 1H NMR spectroscopy.

    PubMed

    Ríos, S M; Nudelman, N S

    2008-01-01

    The natural attenuation of oil spill contaminated soils, with different exposure times, in Patagonian environment was evaluated by the use of several parameters to quantify the degree of changes in the composition. Column (CC) and gas chromatography (GC); UV-visible and 1H NMR techniques were used to determine compositional and structural indexes. The results show that the nC18/Phytane GC index, that was 1.5 for crude oil, decreased with exposure time to values between 0.97-0.17 in the residues. The percentages for the four aliphatic (H1-H4) and the aromatic (H(A)), proton types, determined by 1H NMR, were: 12.9-34.4 (H1), 43.3-60.2 (H2), 4.24-24.2 (H), 1.33-17.9 (H4), and 0.44-4.81 (HA), in crude oil and residues, respectively. Furthermore, the characterization of significant 1H NMR signals indicated the presence of carboxylic acid hydrogens in the polar fraction of the crude oil and of residues of two years age. The Principal Components Analysis (PCA) of the parameters determined by CC, GC and NMR showed that the first three principal components (1st, 2nd, and 3 rd PC), accounted for more than 84% of variance. The 1st PC is largely influenced by H, H,, H, H, and the nC,,/Phytane GC parameter, in the order given. The evaluation of the different parameters by PCA suggests that 1H NMR is more useful than GC to evaluate the degree of the chemical transformations of oil spills in soils PMID:18610542

  8. Valence state alternation of copper species doped in HY zeolite as revealed by paramagnetic relaxation enhancement NMR spectroscopy.

    PubMed

    Zhou, Lei; Li, Shenhui; Li, Jing; Wang, Qiang; Deng, Feng

    2016-01-01

    Paramagnetic relaxation enhancement (PRE) solid-state NMR (ssNMR) was used to monitor the valence state alternation of copper species doped in HY zeolite during catalytic reaction processes. The combination of PRE ssNMR and in-situ NMR spectroscopy facilitates the detection of copper species as well as the monitoring of evolution from reactants, intermediates to products in heterogeneously catalyzed processes, which is of great importance for elucidating the detailed catalytic reaction mechanism. PMID:26970200

  9. Probing oxidative degradation in polymers using {sup 17}O NMR spectroscopy

    SciTech Connect

    Alam, T.M.; Click, C.A.; Assink, R.A.

    1997-09-01

    Understanding the mechanism of oxidative degradation remains an important goal in being able to predict the aging process in polymer materials. Nuclear magnetic resonance (NMR) spectroscopy has previously been utilized to investigate polymer degradation, including both proton ({sup 1}H) and carbon ({sup 13}C) studies. These previous NMR studies, as well as other spectroscopic investigations, are complicated by the almost overwhelming signal arising from the native undegraded polymer. This makes the identification and quantification of degradation species at small concentrations difficult. In this note we discuss recent investigation into the use of oxygen ({sup 17}O) NMR spectroscopy to probe the oxidative degradation process in polymers at a molecular level. Due to the low natural abundance (0.037%) and a nuclear spin of I=5/2 possessing an appreciable quadrupolar moment, the use of {sup 17}O NMR in polymer investigations has been limited. By utilizing synthetically enriched oxygen gas during the accelerated aging process, both the difficulties of low natural abundance and background interference signals are eliminated. For enriched samples {sup 17}O NMR spectra now provide a unique probe since all of the observed NMR resonances are the direct result of oxidative degradation.

  10. Simultaneous (19)F-(1)H medium resolution NMR spectroscopy for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-10-18

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02mm) was used as a flow cell in combination with a 5mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a (1)H Larmor frequency of 43.32MHz and 40.68MHz for (19)F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating (19)F and (1)H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02mm was characterised regarding the limit of detection (LOQ ((1)H)=0.335molL(-1) and LOQ ((19)F)=0.130molL(-1) for trifluoroethanol in D2O (single scan)) and maximum quantitative flow rates up to 0.3mLmin(-1). Thus, a series of single scan (19)F and (1)H NMR spectra acquired with this simple set-up already presents a valuable basis for quantitative reaction monitoring. PMID:25462947

  11. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in D2O (single scan)) and maximum quantitative flow rates up to 0.3 mL min-1. Thus, a series of single scan 19F and 1H NMR spectra acquired with this simple set-up already presents a valuable basis for quantitative reaction monitoring.

  12. Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples

    NASA Astrophysics Data System (ADS)

    Renault, Marie; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

    2013-11-01

    High-Resolution Magic-Angle Spinning (HR-MAS) NMR spectroscopy has become an extremely versatile analytical tool to study heterogeneous systems endowed with liquid-like dynamics. Spinning frequencies of several kHz are however required to obtain NMR spectra, devoid of spinning sidebands, with a resolution approaching that of purely isotropic liquid samples. An important limitation of the method is the large centrifugal forces that can damage the structure of the sample. In this communication, we show that optimizing the sample preparation, particularly avoiding air bubbles, and the geometry of the sample chamber of the HR-MAS rotor leads to high-quality low-sideband NMR spectra even at very moderate spinning frequencies, thus allowing the use of well-established solution-state NMR procedures for the characterization of small and highly dynamic molecules in the most fragile samples, such as live cells and intact tissues.

  13. Ultrasensitive anion detection by NMR spectroscopy: a supramolecular strategy based on modulation of chemical exchange rate.

    PubMed

    Perruchoud, Loïse H; Hadzovic, Alen; Zhang, Xiao-An

    2015-06-01

    NMR spectroscopy is a powerful tool for monitoring molecular interactions and is widely used to characterize supramolecular systems at the atomic level. NMR is limited for sensing purposes, however, due to low sensitivity. Dynamic processes such as conformational changes or binding events can induce drastic effects on NMR spectra in response to variations in chemical exchange (CE) rate, which can lead to new strategies in the design of supramolecular sensors through the control and monitoring of CE rate. Here, we present an indirect NMR anion sensing technique in which increased CE rate, due to anion-induced conformational flexibility of a relatively rigid structure of a novel sensor, allows ultrasensitive anion detection as low as 120 nM. PMID:25931372

  14. Structure determination of helical filaments by solid-state NMR spectroscopy.

    PubMed

    He, Lichun; Bardiaux, Benjamin; Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane

    2016-01-19

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVS(CARD) filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  15. Characterization of proteins by in-cell NMR spectroscopy in cultured mammalian cells.

    PubMed

    Barbieri, Letizia; Luchinat, Enrico; Banci, Lucia

    2016-06-01

    In-cell NMR spectroscopy is a unique tool for characterizing biological macromolecules in their physiological environment at atomic resolution. Recent progress in NMR instruments and sample preparation methods allows functional processes, such as metal uptake, disulfide-bond formation and protein folding, to be analyzed by NMR in living, cultured human cells. This protocol describes the necessary steps to overexpress one or more proteins of interest inside human embryonic kidney 293T (HEK293T) cells, and it explains how to set up in-cell NMR experiments. The cDNA is transiently transfected as a complex with a cationic polymer (DNA:PEI (polyethylenimine)), and protein expression is carried on for 2-3 d, after which the NMR sample is prepared. (1)H and (1)H-(15)N correlation NMR experiments (for example, using band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence (SOFAST-HMQC)) can be carried out in <2 h, ensuring cell viability. Uniform (15)N labeling and amino-acid-specific (e.g., cysteine, methionine) labeling schemes are possible. The entire procedure takes 4 d from cell culture seeding to NMR data collection. PMID:27196722

  16. Automated sample preparation station for studying self-diffusion in porous solids with NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hedin, Niklas; DeMartin, Gregory J.; Reyes, Sebastián C.

    2006-03-01

    In studies of gas diffusion in porous solids with nuclear magnetic resonance (NMR) spectroscopy the sample preparation procedure becomes very important. An apparatus is presented here that pretreats the sample ex situ and accurately sets the desired pressure and temperature within the NMR tube prior to its introduction in the spectrometer. The gas manifold that supplies the NMR tube is also connected to a microbalance containing another portion of the same sample, which is kept at the same temperature as the sample in the NMR tube. This arrangement permits the simultaneous measurement of the adsorption loading on the sample, which is required for the interpretation of the NMR diffusion experiments. Furthermore, to ensure a good seal of the NMR tube, a hybrid valve design composed of titanium, a Teflon® seat, and Kalrez® O-rings is utilized. A computer controlled algorithm ensures the accuracy and reproducibility of all the procedures, enabling the NMR diffusion experiments to be performed at well controlled conditions of pressure, temperature, and amount of gas adsorbed on the porous sample.

  17. Theory of mirrored time domain sampling for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam; Wu, Yibing; He, Yunfen; Szyperski, Thomas

    2011-12-01

    A generalized theory is presented for novel mirrored hypercomplex time domain sampling (MHS) of NMR spectra. It is the salient new feature of MHS that two interferograms are acquired with different directionality of time evolution, that is, one is sampled forward from time t = 0 to the maximal evolution time tmax, while the second is sampled backward from t = 0 to - tmax. The sampling can be accomplished in a (semi) constant time or non constant-time manner. Subsequently, the two interferograms are linearly combined to yield a complex time domain signal. The manifold of MHS schemes considered here is defined by arbitrary settings of sampling phases ('primary phase shifts') and amplitudes of the two interferograms. It is shown that, for any two given primary phase shifts, the addition theorems of trigonometric functions yield the unique linear combination required to form the complex signal. In the framework of clean absorption mode (CAM) acquisition of NMR spectra being devoid of residual dispersive signal components, 'secondary phase shifts' represent time domain phase errors which are to be eliminated. In contrast, such secondary phase shifts may be introduced by experimental design in order to encode additional NMR parameters, a new class of NMR experiments proposed here. For generalization, it is further considered that secondary phase shifts may depend on primary phase shifts and/or sampling directionality. In order to compare with MHS theory, a correspondingly generalized theory is derived for widely used hypercomplex ('States') sampling (HS). With generalized theory it is shown, first, that previously introduced 'canonical' schemes, characterized by primary phases being multiples of π/4, afford maximal intensity of the desired absorptive signals in the absence of secondary phase shifts, and second, how primary phases can be adjusted to maximize the signal intensity provided that the secondary phase shifts are known. Third, it is demonstrated that theory enables one to accurately measure secondary phase shifts and amplitude imbalances. Application to constant time 2D [ 13C, 1H]-HSQC spectra recorded for a protein sample with canonical MHS/HS schemes showed that accurate CAM data acquisition can be readily implemented on modern spectrometers for experiments based on through-bond polarization transfer. Fourth, when moderate variations of secondary phase shifts with primary phase shift and/or sampling directionality are encountered, generalized theory allowed comparison of the robustness of different MHS/HS schemes for CAM data acquisition, and thus to identify the scheme best suited to suppress dispersive peak components and quadrature image peaks. Moreover, it is shown that for spectra acquired with several indirect evolution periods, the best suited scheme can be identified independently for each of the periods.

  18. Theory of mirrored time domain sampling for NMR spectroscopy.

    PubMed

    Ghosh, Arindam; Wu, Yibing; He, Yunfen; Szyperski, Thomas

    2011-12-01

    A generalized theory is presented for novel mirrored hypercomplex time domain sampling (MHS) of NMR spectra. It is the salient new feature of MHS that two interferograms are acquired with different directionality of time evolution, that is, one is sampled forward from time t=0 to the maximal evolution time tmax, while the second is sampled backward from t=0 to -tmax. The sampling can be accomplished in a (semi) constant time or non constant-time manner. Subsequently, the two interferograms are linearly combined to yield a complex time domain signal. The manifold of MHS schemes considered here is defined by arbitrary settings of sampling phases ('primary phase shifts') and amplitudes of the two interferograms. It is shown that, for any two given primary phase shifts, the addition theorems of trigonometric functions yield the unique linear combination required to form the complex signal. In the framework of clean absorption mode (CAM) acquisition of NMR spectra being devoid of residual dispersive signal components, 'secondary phase shifts' represent time domain phase errors which are to be eliminated. In contrast, such secondary phase shifts may be introduced by experimental design in order to encode additional NMR parameters, a new class of NMR experiments proposed here. For generalization, it is further considered that secondary phase shifts may depend on primary phase shifts and/or sampling directionality. In order to compare with MHS theory, a correspondingly generalized theory is derived for widely used hypercomplex ('States') sampling (HS). With generalized theory it is shown, first, that previously introduced 'canonical' schemes, characterized by primary phases being multiples of π/4, afford maximal intensity of the desired absorptive signals in the absence of secondary phase shifts, and second, how primary phases can be adjusted to maximize the signal intensity provided that the secondary phase shifts are known. Third, it is demonstrated that theory enables one to accurately measure secondary phase shifts and amplitude imbalances. Application to constant time 2D [13C, 1H]-HSQC spectra recorded for a protein sample with canonical MHS/HS schemes showed that accurate CAM data acquisition can be readily implemented on modern spectrometers for experiments based on through-bond polarization transfer. Fourth, when moderate variations of secondary phase shifts with primary phase shift and/or sampling directionality are encountered, generalized theory allowed comparison of the robustness of different MHS/HS schemes for CAM data acquisition, and thus to identify the scheme best suited to suppress dispersive peak components and quadrature image peaks. Moreover, it is shown that for spectra acquired with several indirect evolution periods, the best suited scheme can be identified independently for each of the periods. PMID:21974999

  19. NMR difference spectroscopy with a dual saddle-coil difference probe.

    PubMed

    Macnaughtan, Megan A; Smith, Aaron P; Goldsbrough, Peter B; Santini, Robert E; Raftery, Daniel

    2004-03-01

    A new difference probe for nuclear magnetic resonance (NMR) spectroscopy is presented. The difference probe uses two saddle-shaped coils to excite and detect two samples simultaneously. The samples are held in a specially modified 3-mm NMR tube with an Ultem plastic disk to separate the samples. The probe's resonant circuit contains two crossed diodes that passively switch the relative phase of each coil during the NMR experiment. The result is a difference spectrum from the two samples. The degree of cancellation of common signals was determined to be approximately 90%, and the application of the probe to relaxation-edited difference spectroscopy for identifying protein-ligand interactions was demonstrated using glutathione and glutathione S-transferase binding protein. PMID:15214412

  20. Chiral Recognition Studies of α-(Nonafluoro-tert-butoxy)carboxylic Acids by NMR Spectroscopy.

    PubMed

    Nemes, Anikó; Csóka, Tamás; Béni, Szabolcs; Farkas, Viktor; Rábai, József; Szabó, Dénes

    2015-06-19

    Three chiral α-(nonafluoro-tert-butoxy)carboxylic acids (R)-1, (RS)-2, (R)-3 were synthesized to examine their application as chiral solvating agents with amines. As a model compound, first (S)- and/or (RS)-α-phenylethylamine was used, and their diastereomeric salts were investigated by (1)H and (19)F NMR and ECD spectroscopy. The NMR spectroscopic studies were carried out at room temperature using the slightly polar CDCl3 and apolar C6D6 as solvents in 5 mM and 54 mM concentrations. The difference of the chemical shifts (Δδ) in the diastereomeric complexes is comparable with other, well-known chiral derivatizing and solvating agents (e.g., Mosher's acid, Pirkle's alcohol). Diastereomeric salts of racemic acids (RS)-1 and (RS)-2 with biologically active amines (1R,2S)-ephedrine and (S)-dapoxetine were also investigated by (19)F NMR spectroscopy. PMID:26024423

  1. Probing acid-amide intermolecular hydrogen bonding by NMR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sachin Rama; Suryaprakash, N.

    2012-05-01

    Benzene carboxylic acids and benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by 1H, 13C and 15N NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations.

  2. NATURAL ABUNDANCE 13C NMR SPECTROSCOPY OF DOUBLE-STRANDED DNA

    EPA Science Inventory

    Although 13C NMR spectroscopy has already proved extremely useful in studies of biopolymers, including t-RNA's, and single-stranded polynucleotides, no successful study of native double-stranded DNA has been reported. This failure is mainly due to extremely unfavorable 13C spin r...

  3. USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY TO INVESTIGATE PMDI REACTIONS WITH WOOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solution-state NMR spectroscopy provides a powerful tool for understanding the formation of chemical bonds between wood components and adhesives. Finely ground cell wall (CW) material fully dissolves in a solvent system containing dimethylsulfoxide (DMSO-d6) and N-methyl¬imidazole (NMI-d6), keeping ...

  4. Introducing High School Students to NMR Spectroscopy through Percent Composition Determination Using Low-Field Spectrometers

    ERIC Educational Resources Information Center

    Bonjour, Jessica L.; Pitzer, Joy M.; Frost, John A.

    2015-01-01

    Mole to gram conversions, density, and percent composition are fundamental concepts in first year chemistry at the high school or undergraduate level; however, students often find it difficult to engage with these concepts. We present a simple laboratory experiment utilizing portable nuclear magnetic resonance spectroscopy (NMR) to determine the

  5. NMR Spectroscopy of Aqueous Extracts of Fenugreek ( Trigonella foenum- graecum L.)

    NASA Astrophysics Data System (ADS)

    Skakovskii, E. D.; Tychinskaya, L. Yu.; Matveichuk, S. V.; Karankevich, E. G.; Agabalaeva, E. D.; Reshetnikov, V. N.

    2014-09-01

    The amino-acid and monosaccharide compositions of aqueous extracts of fenugreek herb were determined using PMR and 13C NMR spectroscopy. The content of identified extract constituents was >70 mol%, of which the dominant amino acid was 4-hydroxyisoleucine (26.5 mol%); the major carbohydrate, glucose (10.1 mol%).

  6. Introducing High School Students to NMR Spectroscopy through Percent Composition Determination Using Low-Field Spectrometers

    ERIC Educational Resources Information Center

    Bonjour, Jessica L.; Pitzer, Joy M.; Frost, John A.

    2015-01-01

    Mole to gram conversions, density, and percent composition are fundamental concepts in first year chemistry at the high school or undergraduate level; however, students often find it difficult to engage with these concepts. We present a simple laboratory experiment utilizing portable nuclear magnetic resonance spectroscopy (NMR) to determine the…

  7. NMR imaging and spectroscopy of the mammalian central nervous system after heavy ion radiation

    SciTech Connect

    Richards, T.

    1984-09-01

    NMR imaging, NMR spectroscopic, and histopathologic techniques were used to study the proton relaxation time and related biochemical changes in the central nervous system after helium beam in vivo irradiation of the rodent brain. The spectroscopic observations reported in this dissertation were made possible by development of methods for measuring the NMR parameters of the rodent brain in vivo and in vitro. The methods include (1) depth selective spectroscopy using an optimization of rf pulse energy based on a priori knowledge of N-acetyl aspartate and lipid spectra of the normal brain, (2) phase-encoded proton spectroscopy of the living rodent using a surface coil, and (3) dual aqueous and organic tissue extraction technique for spectroscopy. Radiation induced increases were observed in lipid and p-choline peaks of the proton spectrum, in vivo. Proton NMR spectroscopy measurements on brain extracts (aqueous and organic solvents) were made to observe chemical changes that could not be seen in vivo. Radiation-induced changes were observed in lactate, GABA, glutamate, and p-choline peak areas of the aqueous fraction spectra. In the organic fraction, decreases were observed in peak area ratios of the terminal-methyl peaks, the N-methyl groups of choline, and at a peak at 2.84 ppM (phosphatidyl ethanolamine and phosphatidyl serine resonances) relative to TMS. With histology and Evans blue injections, blood-brain barrier alternations were seen as early as 4 days after irradiation. 83 references, 53 figures.

  8. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution

  9. Characterization of animal manure using advanced solid-state C-13 NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of chemical structure of animal manure is necessary for its effective utilization. However, characterization of animal manure is challenging since it is a complex mixture and partially soluble. Solid-state C-13 NMR (nuclear magnetic resonance) spectroscopy is regarded as the best tool to i...

  10. Characterization of various fast pyrolysis bio-oils by NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NMR spectroscopy, including 1H, 13 C and DEPT spectra were used to characterize fast pyrolysis oil from numerous energy crops and other agricultural feedstocks. The bio-oils studied were produced from swithchgrass, alfalfa stems, corn stover, guayule (whole plant and latex extracted bagasse) and ch...

  11. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  12. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  13. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible

  14. Water behavior in bacterial spores by deuterium NMR spectroscopy.

    PubMed

    Friedline, Anthony W; Zachariah, Malcolm M; Johnson, Karen; Thomas, Kieth J; Middaugh, Amy N; Garimella, Ravindranath; Powell, Douglas R; Vaishampayan, Parag A; Rice, Charles V

    2014-07-31

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium-hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water. PMID:24950158

  15. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy.

    PubMed

    Andronesi, Ovidiu C; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M; Tzika, A Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H-1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9(15)1 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis. PMID:18556227

  16. Examination of amber and related materials by NMR spectroscopy.

    PubMed

    Lambert, Joseph B; Santiago-Blay, Jorge A; Wu, Yuyang; Levy, Allison J

    2015-01-01

    Examination of the solid-state (13)C and solution (1)H NMR spectra of fossilized resins (ambers) has generated five groupings of materials based on spectral characteristics. The worldwide Group A is associated with the botanical family of the Araucariaceae. The worldwide Group B is associated with the Dipterocarpaceae. Baltic amber or succinite (Group C) is related to Group A but with a disputed conifer source. Amber from Latin America, the Caribbean, and Africa is associated with the Fabaceae, the genus Hymenaea in particular. The minor Group E contains the rare fossil polystyrene. The spectra of jet indicate that it is a coal-like material with a rank between lignite and sub-bituminous coal. PMID:25176402

  17. Nonmicellar systems for solution NMR spectroscopy of membrane proteins.

    PubMed

    Raschle, Thomas; Hiller, Sebastian; Etzkorn, Manuel; Wagner, Gerhard

    2010-08-01

    Integral membrane proteins play essential roles in many biological processes, such as energy transduction, transport of molecules, and signaling. The correct function of membrane proteins is likely to depend strongly on the chemical and physical properties of the membrane. However, membrane proteins are not accessible to many biophysical methods in their native cellular membrane. A major limitation for their functional and structural characterization is thus the requirement for an artificial environment that mimics the native membrane to preserve the integrity and stability of the membrane protein. Most commonly employed are detergent micelles, which can however be detrimental to membrane protein activity and stability. Here, we review recent developments for alternative, nonmicellar solubilization techniques, with a particular focus on their application to solution NMR studies. We discuss the use of amphipols and lipid bilayer systems, such as bicelles and nanolipoprotein particles (NLPs). The latter show great promise for structural studies in near native membranes. PMID:20570504

  18. Urinary metabolic fingerprint of acute intermittent porphyria analyzed by (1)H NMR spectroscopy.

    PubMed

    Carichon, Mickael; Pallet, Nicolas; Schmitt, Caroline; Lefebvre, Thibaud; Gouya, Laurent; Talbi, Neila; Deybach, Jean Charles; Beaune, Philippe; Vasos, Paul; Puy, Hervé; Bertho, Gildas

    2014-02-18

    (1)H NMR is a nonbiased technique for the quantification of small molecules that could result in the identification and characterization of potential biomarkers with prognostic value and contribute to better understand pathophysiology of diseases. In this study, we used (1)H NMR spectroscopy to analyze the urinary metabolome of patients with acute intermittent porphyria (AIP), an inherited metabolic disorder of heme biosynthesis in which an accumulation of the heme precursors 5-aminolaevulinic acid (ALA) and porphobilinogen (PBG) promotes sudden neurovisceral attacks, which can be life-threatening. Our objectives were (1) to demonstrate the usefulness of (1)H NMR to identify and quantify ALA and PBG in urines from AIP patients and (2) to identify metabolites that would predict the response to AIP crisis treatment and reflect differential metabolic reprogramming. Our results indicate that (1)H NMR can help to diagnose AIP attacks based on the identification of ALA and PBG. We also show that glycin concentration increases in urines from patients with frequent recurrences at the end of the treatment, after an initial decrease, whereas PBG concentration remains low. Although the reasons for this altered are elusive, these findings indicate that a glycin metabolic reprogramming occurs in AIPr patients and is associated with recurrence. Our results validate the proof of concept of the usefulness of (1)H NMR spectroscopy in clinical chemistry for the diagnosis of acute attack of AIP and identify urinary glycin as a potential marker of recurrence of AIP acute attacks. PMID:24437734

  19. Quantification of organic and amino acids in beer by 1H NMR spectroscopy.

    PubMed

    Nord, Lars I; Vaag, Pia; Duus, Jens Ø

    2004-08-15

    The quantification of organic and amino acids in beer using 1H NMR spectroscopy is demonstrated. Quantification was made both by integration of signals in the spectra together with use of calibration references and by use of partial least-squares (PLS) regression. Results from the NMR quantifications were compared with those obtained from determinations by amino acid analysis on HPLC and organic acid analysis by capillary electrophoresis. The described NMR-based methods could satisfactorily be used for quantification of several of the investigated metabolites in beer down to approximately 10 mg/L and for most with a good to high accuracy compared to results obtained by HPLC and capillary electrophoresis (R2 0.90-0.99). This was achieved with a simple sample preparation and one-dimensional 1H NMR spectra obtained in a few minutes. The use of PLS clearly improves the accuracy of the quantifications, based on comparison to results obtained by HPLC and capillary electrophoresis, and furthermore permits the determination of components with partially overlapped signals in the spectrum. NMR spectroscopy in combination with PLS will be a useful tool for the quantification of metabolites, not only in beer but also in other beverages and biofluids. PMID:15307790

  20. Hadamard NMR spectroscopy for two-dimensional quantum information processing and parallel search algorithms.

    PubMed

    Gopinath, T; Kumar, Anil

    2006-12-01

    Hadamard spectroscopy has earlier been used to speed-up multi-dimensional NMR experiments. In this work, we speed-up the two-dimensional quantum computing scheme, by using Hadamard spectroscopy in the indirect dimension, resulting in a scheme which is faster and requires the Fourier transformation only in the direct dimension. Two and three qubit quantum gates are implemented with an extra observer qubit. We also use one-dimensional Hadamard spectroscopy for binary information storage by spatial encoding and implementation of a parallel search algorithm. PMID:17011221

  1. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E. S.; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-05-01

    Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method’s potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet’s homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy’s capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences’ performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials.

  2. Kinetic studies of preactivated derivatives of cyclophosphamide by /sup 31/P NMR spectroscopy

    SciTech Connect

    Boyd, V.L.

    1986-01-01

    Selected derivatives of cyclophosphamide (CP) metabolites were synthesized and the solution chemistry of each was studied by /sup 31/P nuclear magnetic resonance (NMR) spectroscopy under a standard set of reaction conditions at physiological pH (7.4) and temperature (37/sup 0/C). Complementary /sup 2/H and /sup 13/C NMR spectral data was obtained using isotopically (/sup 2/G and /sup 13/C) enriched CP metabolites. The CP derivatives were synthesized by the ozonolysis of substituted 3-butenyl phosphorodiamidates, and were isolated as analogues of either cis and trans 4-hydroperoxy-CP or aldophosphamide (AP). The relative ratios of the tautomeric species, 4-hydroxy-CP and AP, and their half-lives (T/sub 1/2/) were measured by /sup 31/P NMR spectroscopy. The influence of CP metabolites on perfused U-937 cells, a CP-sensitive human lymphoma, was observed by high resolution /sup 31/P NMR spectroscopy. In this manner, it was possible to measure, for the first time, a rate constant for the intracellular disappearance of phosphoramide mustard, the ultimate alkylating metabolite of CP.

  3. Membrane structure and dynamics as viewed by solid-state NMR spectroscopy.

    PubMed

    Auger, M

    1997-10-01

    The purpose of the present study is the investigation of the structure and dynamics of biological membranes using solid-state nuclear magnetic resonance (NMR) spectroscopy. Two approaches are used in our laboratory. The first involves the measurement of high-resolution 13C and 1H spectra obtained by the magic angle spinning (MAS) technique while the second approach involves the measurement of 31P and 2H powder spectra in static samples. This paper will present some recent results obtained by high-resolution solid-state 1H NMR on the conformation of gramicidin A incorporated in a phosphatidylcholine bilayers. More specifically, we were able to observe changes in the gramicidin spectra as a function of the cosolubilization solvent initially used to prepare the samples. The interaction between lipid bilayers and an anticancer drug derived from chloroethylurea was also investigated using proton NMR spectroscopy. Finally, we have studied the interaction between cardiotoxin, a toxic protein extracted from snake venom, and negatively charged lipid bilayers using 31P solid-state NMR spectroscopy. PMID:9468622

  4. Analyzing temperature-induced transitions in disordered proteins by NMR spectroscopy and secondary chemical shift analyses.

    PubMed

    Kjaergaard, Magnus; Poulsen, Flemming M; Kragelund, Birthe B

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins using chemical shifts. PMID:22821529

  5. Fermentanomics: monitoring mammalian cell cultures with NMR spectroscopy.

    PubMed

    Bradley, Scott A; Ouyang, Anli; Purdie, Jennifer; Smitka, Tim A; Wang, Tongtong; Kaerner, Andreas

    2010-07-21

    As the number of therapeutic proteins produced by mammalian cell cultures in the pharmaceutical industry continues to increase, the need to improve productivity and ensure consistent product quality during process development activities becomes more significant. Rational medium design is known to improve cell culture performance, but an understanding of nutrient consumption and metabolite accumulation within the medium is required. To this end, we have developed a technique for using 1D (1)H NMR to quantitate nonprotein feed components and metabolites in mammalian cell cultures. We refer to the methodology as "Fermentanomics" to differentiate it from standard metabolomics. The method was found to generate spectra with excellent water suppression, signal-to-noise, and resolution. More importantly, nutrient consumption and metabolite accumulation was readily observed. In total, 50 media components have been identified and quantitated. The application of Fermentanomics to the optimization of a proprietary CHO basal medium yielded valuable insight regarding the nutrient levels needed to maintain productivity. While the focus here is on the extracellular milieu of CHO cell cultures, this methodology is generally applicable to quantitating intracellular concentrations and can be extended to other mammalian cell lines, as well as platforms such as yeasts, fungi, and Escherichia coli. PMID:20578691

  6. Broadband "Infinite-Speed" Magic-Angle Spinning NMR Spectroscopy

    SciTech Connect

    Hu, Yan-Yan; Levin, E.M; Schmidt-Rohr, Klaus

    2009-06-02

    High-resolution magic-angle spinning NMR of high-Z spin- 1/2 nuclei such as {sup 125}Te, {sup 207}Pb, {sup 119}Sn, {sup 113}Cd, and {sup 195}Pt is often hampered by large (>1000 ppm) chemical-shift anisotropies, which result in strong spinning sidebands that can obscure the centerbands of interest. In various tellurides with applications as thermoelectrics and as phase-change materials for data storage, even 22-kHz magic-angle spinning cannot resolve the center- and sidebands broadened by chemical-shift dispersion, which precludes peak identification or quantification. For sideband suppression over the necessary wide spectral range (up to 200 kHz), radio frequency pulse sequences with few, short pulses are required. We have identified Gan's two-dimensional magic-angle-turning (MAT) experiment with five 90{sup o} pulses as a promising broadband technique for obtaining spectra without sidebands. We have adapted it to broad spectra and fast magic-angle spinning by accounting for long pulses (comparable to the dwell time in t{sub 1}) and short rotation periods. Spectral distortions are small and residual sidebands negligible even for spectra with signals covering a range of 1.5 {gamma}B{sub 1}, due to a favorable disposition of the narrow ranges containing the signals of interest in the spectral plane. The method is demonstrated on various technologically interesting tellurides with spectra spanning up to 170 kHz, at 22 kHz MAS.

  7. Deuterium NMR spectroscopy of biosynthetically deuterated mammalian tissues

    SciTech Connect

    Curatolo, W.; Jungalwala, F.B.; Sears, B.; Tuck, L.; Neuringer, L.J.

    1985-07-30

    The choline-containing phospholipids of mammalian membranes have been biosynthetically deuterated by raising rats on a diet supplemented with (HOCH2CH2N(CD3)3) Cl or (HOCD2CH2N(CH3)3) Cl . Deuterium NMR spectra have been obtained from excised deuterated brain, sciatic nerve, heart, and lung, from isolated brain myelin and brain microsomes, and from aqueous dispersions of lipid extracts. Measurements of residual quadrupole splittings for excised deuterated neural tissues demonstrate that the orientational order of the choline head group is similar to that observed in model membranes. The spin-lattice relaxation time of the choline head group in deuterated neural tissue is indistinguishable from that observed in model membranes. These results support the proposal that the conformation and motional dynamics of the choline head groups of the bulk choline-containing lipids of neural tissue are similar to those in model membranes. Spectra of biosynthetically deuterated brain myelin and brain microsomes exhibit similar quadrupole splittings. Since these membranes have significantly different protein contents, these results indicate that no strong polar interactions exist between membrane proteins and the choline head groups of choline-containing membrane lipids. Spectra of intact deuterated heart and lung exhibit broad lines and a range of quadrupole splittings.

  8. Monitoring bound HA1(H1N1) and HA1(H5N1) on freely suspended graphene over plasmonic platforms with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Banerjee, Amrita; Chakraborty, Sumit; Altan-Bonnet, Nihal; Grebel, Haim

    2013-09-01

    Infrared (IR) spectroscopy provides fingerprinting of the energy and orientation of molecular bonds. The IR signals are generally weak and require amplification. Here we present a new plasmonic platform, made of freely suspended graphene, which was coating periodic metal structures. Only monolayer thick films were needed for a fast signal recording. We demonstrated unique IR absorption signals of bound proteins: these were the hemagglutinin area (HA1) of swine influenza (H1N1) and the avian influenza (H5N1) viruses bound to their respective tri-saccharides ligand receptors. The simplicity and sensitivity of such approach may find applications in fast monitoring of binding events.

  9. Characterization of covalent protein conjugates using solid-state sup 13 C NMR spectroscopy

    SciTech Connect

    Garbow, J.R.; Fujiwara, Hideji; Sharp, C.R.; Logusch, E.W. )

    1991-07-23

    Cross-polarization magic-angle spinning (CPMAS) {sup 13}C NMR spectroscopy has been used to characterize covalent conjugates of alachlor, an {alpha}-chloroacetamide hapten, with glutathione (GSH) and bovine serum albumin (BSA). The solid-state NMR method demonstrates definitively the covalent nature of these conjugates and can also be used to characterize the sites of hapten attachment to proteins. Three different sites of alachlor binding are observed in the BSA system. Accurate quantitation of the amount of hapten covalently bound to GSH and BSA is reported. The solid-state {sup 13}C NMR technique can easily be generalized to study other small molecule/protein conjugates and can be used to assist the development and refinement of synthetic methods needed for the successful formation of such protein alkylation products.

  10. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  11. High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins.

    PubMed

    Kamatari, Yuji O; Kitahara, Ryo; Yamada, Hiroyuki; Yokoyama, Shigeyuki; Akasaka, Kazuyuki

    2004-09-01

    Extensive structural studies using high-pressure NMR spectroscopy have recently been carried out on proteins, which potentially contribute to our understanding of the mechanisms of protein folding. Pressure shifts the conformational equilibrium from higher to lower volume conformers. If the pressure is varied, starting from the folded native structure, in many cases we observe intermediate conformers before the onset of total unfolding. This enables the investigation of details of the structure and thermodynamic characteristics of various intermediate conformers of proteins under equilibrium conditions. We can also examine pressure effects on the structure and stability of some typical denatured states such as helical denatured, molten globule, and unfolded states. The high-pressure NMR method can also be used to investigate association/dissociation equilibria of oligomeric or aggregated proteins. Beside direct observation of kinetic intermediates upon pressure jump, NMR structural investigations of equilibrium conformers under pressure provide information about the structures of kinetic intermediates during folding/unfolding reactions. PMID:15283922

  12. Bis(pentamethylcyclopentadienyl)ytterbium: An investigation of weak interactions in solution using multinuclear NMR spectroscopy

    SciTech Connect

    Schwartz, D.J.

    1995-07-01

    NMR spectroscopy is ideal for studying weak interactions (formation enthalpy {le}20 kcal/mol) in solution. The metallocene bis(pentamethylcyclopentadienyl)ytterbium, Cp*{sub 2}Yb, is ideal for this purpose. cis-P{sub 2}PtH{sub 2}complexes (P = phosphine) were used to produce slow-exchange Cp*{sub 2}YbL adducts for NMR study. Reversible formation of (P{sub 2}PtH){sub 2} complexes from cis-P{sub 2}PtH{sub 2} complexes were also studied, followed by interactions of Cp*{sub 2}Yb with phosphines, R{sub 3}PX complexes. A NMR study was done on the interactions of Cp*{sub 2}Yb with H{sub 2}, CH{sub 4}, Xe, CO, silanes, stannanes, C{sub 6}H{sub 6}, and toluene.

  13. Towards single-molecule NMR detection and spectroscopy using single spins in diamond

    NASA Astrophysics Data System (ADS)

    Perunicic, V. S.; Hall, L. T.; Simpson, D. A.; Hill, C. D.; Hollenberg, L. C. L.

    2014-02-01

    Nanomagnetometry using the nitrogen-vacancy (NV) center in diamond has attracted a great deal of interest due to its unique combination of room temperature operation, nanoscale resolution, and high sensitivity. One of the important goals for nanomagnetometry is to be able to detect nanoscale nuclear magnetic resonance (NMR) in individual molecules. Our theoretical analysis details a method by which a single molecule on the surface of diamond, with characteristic NMR frequencies, can be detected using a proximate NV center on a time scale of an order of seconds with nanometer precision. We perform spatiotemporal resolution optimization and subsequently outline paths to greater sensitivity. Our method is suitable for application in low and relatively inhomogeneous background magnetic fields in contrast to both conventional liquid and solid state NMR spectroscopy.

  14. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    PubMed

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified. PMID:24041242

  15. 33S NMR spectroscopy 3. Substituent effects on 33S NMR parameters in 2-substituted ethanesulfonates.

    PubMed

    Musio, Roberta; Sciacovelli, Oronzo

    2006-08-01

    33S NMR parameters (chemical shifts and linewidths) in 2-substituted sodium ethanesulfonates, XCH2CH2SO3Na (X = H, CH3, OH, SH, NH2, Cl, Br, NH3+) depend upon the electronic properties of substituents. To explain experimental results and obtain additional information on the origin of the observed substituent effect (SE), sulfur isotropic absolute shielding constants have been calculated at DFT level of theory (B3LYP/6-311++G(2d,p)) by gauge-including atomic orbitals (GIAO) method. Data have been interpreted with the aid of natural bond orbital (NBO) method and natural chemical shielding (NCS) analysis. It has been demonstrated that in the class of compounds considered the diamagnetic contribution to sulfur-shielding constant is constant and the observed upfield shift of 33S resonance induced by electron-withdrawing substituents (reverse chemical shift effect) can be related to variations of the paramagnetic contribution. Substituents with different electronic properties cause variations in the polarization of S-C and S-O bonds of the -C-SO3- moiety thus determining changes of the electron density at sulfur nucleus and consequently the expansion or contraction of 3p sulfur orbitals. Also oxygen lone-pairs and sulfur core 2p electrons can play an active role in determining the paramagnetic contribution to sulfur shielding. With regard to linewidth variations, they can be ascribed primarily to changes in the nuclear quadrupole coupling constant values. B3LYP/6-311++G(2d,p) method allows obtaining a good reproducibility of SE on the electric field gradient (EFG) at sulfur, although its values tend to be underestimated significantly. Moreover, 17O shielding constants have been calculated. PMID:16741982

  16. Polyoxomolybdate promoted hydrolysis of a DNA-model phosphoester studied by NMR and EXAFS spectroscopy.

    PubMed

    Absillis, Gregory; Van Deun, Rik; Parac-Vogt, Tatjana N

    2011-11-21

    Hydrolysis of (p-nitrophenyl)phosphate (NPP), a commonly used phosphatase model substrate, was examined in molybdate solutions by means of (1)H, (31)P, and (95)Mo NMR spectroscopy and Mo K-edge Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. At 50 °C and pD 5.1 the cleavage of the phosphoester bond in NPP proceeds with a rate constant of 2.73 × 10(-5) s(-1) representing an acceleration of nearly 3 orders of magnitude as compared to the hydrolysis measured in the absence of molybdate. The pD dependence of k(obs) exhibits a bell-shaped profile, with the fastest cleavage observed in solutions where [Mo(7)O(24)](6-) is the major species in solution. Mixing of NPP and [Mo(7)O(24)](6-) resulted in formation of these two intermediate complexes that were detected by (31)P NMR spectroscopy. Complex A was characterized by a (31)P NMR resonance at -4.27 ppm and complex B was characterized by a (31)P NMR resonance at -7.42 ppm. On the basis of the previous results from diffusion ordered NMR spectroscopy, performed with the hydrolytically inactive substrate phenylphosphonate (PhP), the structure of these two complexes was deduced to be (NPP)(2)Mo(5)O(21)(4-) (complex A) and (NPP)(2)Mo(12)O(36)(H(2)O)(6)(4-) (complex B). The pH studies point out that both complexes are hydrolytically active and lead to the hydrolysis of phosphoester bond in NPP. The NMR spectra did not show evidence of any paramagnetic species, excluding the possibility of Mo(VI) reduction to Mo(V), and indicating that the cleavage of the phosphomonoester bond is purely hydrolytic. The Mo K-edge XANES region also did not show any sign of Mo(VI) to Mo(V) reduction during the hydrolytic reaction. (95)Mo NMR and Mo K-edge EXAFS spectra measured during different stages of the hydrolytic reaction showed a gradual disappearance of [Mo(7)O(24)](6-) during the hydrolytic reaction and appearance of [P(2)Mo(5)O(23)](6-), which was the final complex observed at the end of hydrolytic reaction. PMID:22029272

  17. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts.

    PubMed

    Beckonert, Olaf; Keun, Hector C; Ebbels, Timothy M D; Bundy, Jacob; Holmes, Elaine; Lindon, John C; Nicholson, Jeremy K

    2007-01-01

    Metabolic profiling, metabolomic and metabonomic studies mainly involve the multicomponent analysis of biological fluids, tissue and cell extracts using NMR spectroscopy and/or mass spectrometry (MS). We summarize the main NMR spectroscopic applications in modern metabolic research, and provide detailed protocols for biofluid (urine, serum/plasma) and tissue sample collection and preparation, including the extraction of polar and lipophilic metabolites from tissues. 1H NMR spectroscopic techniques such as standard 1D spectroscopy, relaxation-edited, diffusion-edited and 2D J-resolved pulse sequences are widely used at the analysis stage to monitor different groups of metabolites and are described here. They are often followed by more detailed statistical analysis or additional 2D NMR analysis for biomarker discovery. The standard acquisition time per sample is 4-5 min for a simple 1D spectrum, and both preparation and analysis can be automated to allow application to high-throughput screening for clinical diagnostic and toxicological studies, as well as molecular phenotyping and functional genomics. PMID:18007604

  18. Differentiating and characterizing geminal silanols in silicas by (29)Si NMR spectroscopy.

    PubMed

    Murray, David K

    2010-12-01

    Single and geminal hydroxyl species in silicas have been characterized using solid-state (29)Si NMR spectroscopy. Differentiating hydroxyl types is important in understanding their roles in chemical toxicity mechanisms for inhaled crystalline silicas responsible for silicosis. (1)H-(29)Si cross polarization NMR spectroscopy has been employed to obtain (29)Si NMR chemical shift data and signal accrual and relaxation characteristics. Spectral deconvolution is used to examine relative single and geminal hydroxyl resonance areas for a series of representative silicas and silica gels. Silicon-containing materials examined include 1878a quartz, and 1879a cristobalite from the National Institute for Science and Technology, kaolin, and several widely used respirable silicas and silica gels. Geminal hydroxyls were observed in every case, with relative resonance areas accounting for 21-65% of total hydroxyl signals. Factors affecting relative areas measured as a function of contact time, relaxation, and surface area are discussed. Subsequent (29)Si and (31)P NMR studies of a silica coated with various sodium hydrogen phosphates show preferential single silanol-phosphate interaction for basic phosphates, and oligomerization products for acidic phosphates. Geminal hydroxyl resonance areas displayed significant error (4-17%) for low surface area silicas, limiting this method to studies exhibiting major changes in chemical or spectroscopic properties. PMID:20825948

  19. Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy

    PubMed Central

    2013-01-01

    A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium–oxygen battery. PMID:24489976

  20. Analysis and aging of unsaturated polyester resins in contemporary art installations by NMR spectroscopy.

    PubMed

    Stamatakis, Georgios; Knuutinen, Ulla; Laitinen, Kai; Spyros, Apostolos

    2010-12-01

    Two original art installations constructed from unsaturated polyester resins (UPR) and four different reference UPR products (before and after UVB aging) were analyzed by high-resolution 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. Breaking strain studies were also conducted for the four UPR model products before and after different aging procedures (moisture, UVB exposure, melt/freeze). NMR analysis of the chemical composition of the UPR resin extracts showed they contain several low MW organic compounds and oligomers rich in polar -OH groups that play a significant role in the degradation behavior of the composite UPR materials. Statistical analysis of the NMR compositional data showed that styrene and benzaldehyde contents can be used to differentiate between fresh and aged UPR samples. The phthalate and propylene glycol unit speciation (esterified, primary or secondary -OH) of the extracts provided evidence that UPR resin C was used in the construction of the two art installations, and direct comparison of (1)H and (13)C NMR spectra verified this compositional similarity. UPR resin C was shown by both NMR and breaking strain studies to be the reference UPR most susceptible to degradation by different aging procedures, a characteristic attributed to the lower styrene content of resin C. PMID:20922516

  1. Uroscopy in the 21st century: high-field NMR spectroscopy.

    PubMed

    Neild, G H; Foxall, P J; Lindon, J C; Holmes, E C; Nicholson, J K

    1997-03-01

    From the experiments described, it can be seen that there are different research approaches that can be taken and these are summarized in Table 1. Whereas much scientific research is principally hypothesis led, there remains, nevertheless, an important place for exploratory research. High resolution NMR can measure, directly and simultaneously, a wide range of endogenous metabolites in biological fluids and has the unique capability of providing structural information on the metabolites detected. It has proved to be a powerful research tool with which to study inherited metabolic diseases, renal disease, drug metabolism, and toxicity, and can be used to monitor the effects of drug therapy. For instance, by using a library of experimental toxins one can map the metabolic profile of site-specific nephron injury. With this approach in man one could eventually take an unknown disease such as Balkan nephropathy and predict the initial site of tubular injury, the mode of injury and therefore the kind of toxin capable of producing that injury. NMR spectroscopic techniques are still advancing rapidly, with ever increasing sensitivity and sophistication of NMR pulse sequences to enhance structural elucidation in complex mixtures. Given the advances in directly coupled HPLC-NMR and even HPLC-NMR-mass spectroscopy it is likely that these technologies in conjunction with pattern recognition will make major contribution to our understanding of renal processes and provide new diagnostic insights in the 21st century. PMID:9075117

  2. Structural characterization of selenosubtilisin by sup 77 Se-NMR spectroscopy

    SciTech Connect

    House, K.L.; Dunlap, R.B.; Odom, J.D.; Wu, Z.P.; Hilvert. D. Research Inst. of Scripps Clinic, La Jolla, CA )

    1991-03-15

    Selenosubtilisin is an artificial enzyme containing an active site selenocysteine residue. In this environment the selenium atom is a valuable probe of structure-function relationships and also confers novel redox and hydrolytic properties to the original protease template. The authors have used {sup 77}Se NMR spectroscopy to characterize different oxidation states of {sup 77}Se isotopically enriched selenosubtilisin. The oxidized form of the enzyme exhibits a {sup 77}Se resonance at 1,189 ppm. This is in good agreement with the {sup 77}Se chemical shifts for model seleninic acids, confirming that the prosthetic group is in the seleninic acid oxidation state. On treatment of the oxidized enzyme with three equivalents of 3-carboxy-4-nitrobenzenethiol at pH 5.0, they observe the enzyme bound selenenyl sulfide at 388.5 ppm. This work demonstrates the utility of {sup 77}Se NMR spectroscopy for examining structure-function relationships of selenium containing proteins.

  3. Facile backbone structure determination of human membrane proteins by NMR spectroscopy

    PubMed Central

    Klammt, Christian; Maslennikov, Innokentiy; Bayrhuber, Monika; Eichmann, Cédric; Vajpai, Navratna; Chiu, Ellis Jeremy Chua; Blain, Katherine Y; Esquivies, Luis; Kwon, June Hyun Jung; Balana, Bartosz; Pieper, Ursula; Sali, Andrej; Slesinger, Paul A; Kwiatkowski, Witek; Riek, Roland; Choe, Senyon

    2013-01-01

    Although nearly half of today’s major pharmaceutical drugs target human integral membrane proteins (hIMPs), only 30 hIMP structures are currently available in the Protein Data Bank, largely owing to inefficiencies in protein production. Here we describe a strategy for the rapid structure determination of hIMPs, using solution NMR spectroscopy with systematically labeled proteins produced via cell-free expression. We report new backbone structures of six hIMPs, solved in only 18 months from 15 initial targets. Application of our protocols to an additional 135 hIMPs with molecular weight <30 kDa yielded 38 hIMPs suitable for structural characterization by solution NMR spectroscopy without additional optimization. PMID:22609626

  4. Application of /sup 1/H and /sup 13/C NMR spectroscopy in structural investigations of Vinca indole alkaloids

    SciTech Connect

    Yagudaev, M.R.

    1986-07-01

    This paper considers the laws connecting the parameters of the H 1 and C 13 NMR spectra with the structure of the substances and the use of these laws for solving structural and stereochemical problems of the Vinca indole alkaloids and other compounds of closely related structure. For each type of alkaloid, characteristic features of the PMR and C 13 NMR spectra are given that permit the structures of similar bases to be established and their stereochemical identification to be performed.

  5. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched. The Hartmann-Hahn condition can be expressed as γHB1H = γCB1C, where γH and γC are the gyromagnetic ratios of protons and carbons, whereas B1H and B1C are the 1H and 13C radio-frequency (r.f.) fields applied to the nuclei. The Hartmann-Hahn condition is affected by the H-C dipolar interaction strength (Stejskal & Memory, 1994). All the factors affecting dipolar interactions may mismatch the Hartmann-Hahn condition and prevent a quantitative representation of the NOM chemical composition (Conte et al., 2004). It has been reported that under low speed MAS conditions, broad matching profiles are centered around the Hartmann-Hahn condition....... With increasing spinning speed the Hartmann-Hahn matching profiles break down in a series of narrow matching bands separated by the rotor frequency (Stejskal & Memory, 1994). In order to account for the instability of the Hartmann-Hahn condition at higher rotor spin rates (>10 kHz), variable amplitude cross-polarization techniques (RAMP-CP) have been developed (Metz et al., 1996). So far, to our knowledge, the prevailing way used to obtain quantitative 13C-CPMAS NMR results was to optimize the 1H and 13C spin lock r.f. fields on simple standard systems such as glycine and to use those r.f. field values to run experiments on unknown organic samples. The aim of the present study was to experimentally evidence that the stability of the Hartmann-Hahn condition was different for different samples with a known structure. Moreover, Hartmann-Hahn profiles of four different humic acids (HAs) were also provided in order to show that the 1H/13C r.f. spin lock field strength must also be tested on the HAs prior to a quantitative evaluation of their 13C-CPMAS NMR spectra. Baldock, J.A., Oades, J.M., Nelson, P.N., Skene, T.M., Golchin, A. & Clarke, P., 1997. Assessing the extent of decomposition of natural organic materials using solid-state C-13 NMR spectroscopy. Australian Journal of Soil Research, 35, 1061-1083. Conte, P., Piccolo, A., van Lagen, B., Buurman, P. & de Jager, P.A., 1997. Quantitative Aspects of Solid-State 13C-NMR Spectra of Humic Substances from Soils of Volcanic Systems. Geoderma, 80, 327-338. Conte, P., Piccolo, A., van Lagen, B., Buurman, P. & Hemminga, M.A., 2002. Elemental quantitation of natural organic matter by CPMAS C-13 NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 21, 158-170. Conte, P., Spaccini, R. & Piccolo, A., 2004. State of the art of CPMAS C-13-NMR spectroscopy applied to natural organic matter. Progress in Nuclear Magnetic Resonance Spectroscopy, 44, 215-223. Dria, K.J., Sachleben, J.R. & Hatcher, P.G., 2002. Solid-state carbon-13 nuclear magnetic resonance of humic acids at high magnetic field strengths. Journal of Environmental Quality, 31, 393-401. Kiem, R., Knicker, H., Korschens, M. & Kogel-Knabner, I., 2000. Refractory organic carbon in C-depleted arable soils, as studied by C-13 NMR spectroscopy and carbohydrate analysis. Organic Geochemistry, 31, 655-668. Kögel-Knabner, I., 2000. Analytical approaches for characterizing soil organic matter. Organic Geochemistry, 31, 609-625. Mao, J.D., Hu, W.G., Schmidt-Rohr, K., Davies, G., Ghabbour, E.A. & Xing, B., 2000. Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance. Soil Science Society of America Journal, 64, 873-884. Metz, G., Ziliox, M. & Smith, S.O., 1996. Towards quantitative CP-MAS NMR. Solid State Nuclear Magnetic Resonance, 7, 155-160. Preston, C.M., 2001. Carbon-13 solid-state NMR of soil organic matter - using the technique effectively. Canadian Journal of Soil Science, 81, 255-270. Smernik, R.J. & Oades, J.M., 2000a. The use of spin counting for determining quantitation in solid state C-13 NMR spectra of natural organic matter 1. Model systems and the effects of paramagnetic impurities. Geoderma, 96, 101-129. Smernik, R.J. & Oades, J.M., 2000b. The use of spin counting for determining quantitation in solid state C-13 NMR spectra of natural organic matter 2. HF-treated soil fractions. Geoderma, 96, 159-171. Stejskal, E.O. & Memory, J.D., 1994. High Resolution NMR in the Solid State. Fundamentals of CP/MAS. Oxford University Press, New York.

  6. INVESTIGATION INTO HOW WOOD CELL WALLS INTERACT WITH SYNTHETIC ADHESIVES USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the continued growth of the wood adhesive industry and the need to create durable and environmentally friendly adhesive systems, it is still unclear whether covalent bonds contribute to wood adhesive bond strength. In order to investigate this question, solid-state NMR spectroscopy (NMR) has be...

  7. Single-shot diffusion trace (1)H NMR spectroscopy.

    PubMed

    de Graaf, R A; Braun, K P; Nicolay, K

    2001-05-01

    Ignoring diffusion anisotropy can severely hamper the quantitative determination of water and metabolite diffusion in complex tissues. The measurement of the trace of the diffusion tensor provides unambiguous and rotationally invariant ADC values, but usually requires three separate experiments. A single-shot technique developed earlier, originally designed for diffusion trace MR imaging (Mori and van Zijl, Magn Reson Med 1995;33:41-52), was improved and adapted for diffusion trace MR spectroscopy. A double spin-echo pulse sequence was incorporated with four pairs of bipolar gradients with specific predetermined relative signs in each of the three orthogonal directions. The combination of gradient directions leads to cancellation of all off-diagonal tensor elements while constructively adding the diagonal elements. Furthermore, the pulse scheme provides complete compensation for cross-terms between static magnetic field gradients and the applied diffusion gradients, while simultaneously avoiding cross-terms with localization gradients. The sequence was tested at 4.7 T in vivo on rat brain for MRI and on rat skeletal muscle and brain for MRS. It is shown that the average ADC as determined from the measurement of the ADCs in the three orthogonal directions is in close agreement with the ADC obtained along the trace of the diffusion tensor in a single acquisition, for both water and metabolite diffusion. The large differences in water and metabolite diffusion coefficients as measured in the individual orthogonal directions illustrate the need for diffusion trace measurements when accurate and rotationally invariant diffusion quantitation is required. The pulse scheme presented here may be applied for such purposes in MRS and MRI studies. PMID:11323799

  8. Synthesis and Characterisation of Pd(II) Complexes with a Derivative of Aminoazobenzene - Dynamic H-1-NMR Study of Cyclopalladation Reactions in DMF

    SciTech Connect

    Curic, M; Babic, D; Pasa-Tolic, Liljiana; Butkovic, V; Plavec, J; Tusek-Bozic, L

    2003-12-01

    Three new Pd(II) complexes, i.e. [PdCl{sub 2}L]{sub 2} (A), PdCl{sub 2}L{sub 2} (B) and [Pd({mu}-Cl)(L-H)]{sub 2} (C), each with two diethyl [{alpha}-(4-benzenazoanilino)-2-hydroxybenzyl]phosphonates (L) bound to either one or two palladium atoms, are synthesized and characterized by elemental analysis, by IR, UV-vis and solid-state {sup 13}C-NMR spectra. Complexes B and C are additionally characterized by {sup 1}H-, {sup 13}C- and {sup 31}P-NMR and electrospray mass spectrometry (ESMS) studies using dimethylformamide (DMF) as a solvent. In DMF solution adducts A and B undergo spontaneous rearrangement into the cyclopalladated complex C. Dynamic {sup 1}H-NMR study of this rearrangement as well as of the reactions of L with PdCl{sub 2} and Na{sub 2}PdCl{sub 4} revealed a complex equilibrium in DMF solutions and enabled the formation mechanism of all involved species to be resolved. The complex A is immediately solvolyzed producing two molecules of intermediate M [PdCl{sub 2}(L)(DMF)]. Complex M was also the first intermediate in the reaction of L with PdCl{sub 2}. Once present in concentration above 10{sup -5} mol{sup -3} M dimerizes very fast into chloro-bridged dimer [PdCl({mu}-Cl)(L)]{sub 2} (D) which undergoes cyclopalladation and converts into the complex C. The formation of C from the intermediate D is clearly demonstrated by the concentration dependence of the cyclopalladation reaction which has order greater than one. Chloride ions, released by cyclopalladation, react with D by splitting chloro-bridge and binding to metal atoms to produce byproduct [PdCl{sub 3}(L)]{sup -} (T). The same species T are formed in the reaction of L with Na{sub 2}PdCl{sub 4} whereby a chloride ion is replaced by the ligand L. The complex B undergoes similar, but slower, solvolytic reaction producing M and L while further reaction steps are identical as in the solvolysis of A.

  9. Probing structure and dynamics of protein assemblies by magic angle spinning NMR spectroscopy.

    PubMed

    Yan, Si; Suiter, Christopher L; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2013-09-17

    In living organisms, biological molecules often organize into multicomponent complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral infectivity. To understand the biological functions of these assemblies, in both healthy and disease states, researchers need to study their three-dimensional architecture and molecular dynamics. To date, the large size, the lack of inherent long-range order, and insolubility have made atomic resolution studies of many protein assemblies challenging or impractical using traditional structural biology methods such as X-ray diffraction and solution NMR spectroscopy. In the past 10 years, we have focused our work on the development and application of magic angle spinning solid-state NMR (MAS NMR) methods to characterize large protein assemblies at atomic-level resolution. In this Account, we discuss the rapid progress in the field of MAS NMR spectroscopy, citing work from our laboratory and others on methodological developments that have facilitated the in-depth analysis of biologically important protein assemblies. We emphasize techniques that yield enhanced sensitivity and resolution, such as fast MAS (spinning frequencies of 40 kHz and above) and nonuniform sampling protocols for data acquisition and processing. We also discuss the experiments for gaining distance restraints and for recoupling anisotropic tensorial interactions under fast MAS conditions. We give an overview of sample preparation approaches when working with protein assemblies. Following the overview of contemporary MAS NMR methods, we present case studies into the structure and dynamics of two classes of biological systems under investigation in our laboratory. We will first turn our attention to cytoskeletal microtubule motor proteins including mammalian dynactin and dynein light chain 8. We will then discuss protein assemblies from the HIV-1 retrovirus. PMID:23402263

  10. Identification and quantitation of xenobiotics by 1H NMR spectroscopy in poisoning cases.

    PubMed

    Imbenotte, M; Azaroual, N; Cartigny, B; Vermeersch, G; Lhermitte, M

    2003-04-23

    In order to analyse a wide range of xenobiotics and their metabolites present in biological fluids, NMR spectroscopy can be used. A large variety of xenobiotics (therapeutic agents, pesticides, solvents, alcohols) can be characterized and quantitated directly, without sample preparation. NMR investigations were applied to acute poisoning cases, involving drugs such as salicylates and valproic acid (VPA). In a salicylate poisoning case, the three major metabolites of acetylsalicylic acid have been detected in crude urine, and rapid identification of lysine revealed the origin of the intoxication, namely lysine acetylsalicylate (Aspegic). Valproic acid as its glucuronide was identified in urine samples from two poisoned patients. 1H NMR was also used to identify and quantitate paraquat (Gramoxone) in urine owing to its two aromatic signals at 8.49 and 9.02 ppm, in two acutely poisoned patients (183 and 93 mg/l). An intentional poisoning case with tetrahydrofuran (THF) was also investigated. Serum and urine samples were collected. THF was characterized by its resonances at 1.90 and 3.76 ppm, and quantified at 813 and 850 mg/l in the two biological fluids, respectively. Moreover, two other compounds were detected: lactate and gamma-hydroxybutyric acid (GHB). 1H NMR spectroscopic analysis of serum samples from three poisoned patients revealed methanol in one case and ethylene glycol in the two others. Moreover, in the same spectrum, the corresponding metabolites formate and glycolate were found. Compared with the reference chromatographic or spectrophotometric methods, requiring time-consuming extraction and/or derivatization steps, NMR spectroscopy allows the determination of many exogenous and endogenous compounds, without any pre-selection of the analytes. PMID:12742700

  11. NMR studies in chemistry. I. Organometallic tin and geramanium compounds. II. The sorbitol pathway in intact lenses

    SciTech Connect

    Williams, W.F.

    1985-01-01

    Nuclear magnetic resonance spectroscopy has been utilized in the study of two very different chemical problems. The bonding and structure of various cyclopropyl derivatives of tin and germanium has been investigated by means of Sn-119, Ge-73, C-13, and H-1 NMR spectroscopy. Intact rabbit lenses have also been studied using NMR spectroscopy with regard to diabetic cataract formation. C-13 and P-31 NMR spectroscopies have been utilized in the study of the sorbitol pathway and aldose reductase inhibition.

  12. Identifying metabolites related to nitrogen mineralisation using 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    . T McDonald, Noeleen; Graham, Stewart; Watson, Catherine; Gordon, Alan; Lalor, Stan; Laughlin, Ronnie; Elliott, Chris; . P Wall, David

    2015-04-01

    Exploring new analysis techniques to enhance our knowledge of the various metabolites within our soil systems is imperative. Principally, this knowledge would allow us to link key metabolites with functional influences on critical nutrient processes, such as the nitrogen (N) mineralisation in soils. Currently there are few studies that utilize proton nuclear magnetic resonance spectroscopy (1H NMR) to characterize multiple metabolites within a soil sample. The aim of this research study was to examine the effectiveness of 1H NMR for isolating multiple metabolites that are related to the mineralizable N (MN) capacity across a range of 35 Irish grassland soils. Soils were measured for MN using the standard seven day anaerobic incubation (AI-7). Additionally, soils were also analysed for a range of physio-chemical properties [e.g. total N, total C, mineral N, texture and soil organic matter (SOM)]. Proton NMR analysis was carried on these soils by extracting with 40% methanol:water, lyophilizing and reconstituting in deuterium oxide and recording the NMR spectra on a 400MHz Bruker AVANCE III spectrometer. Once the NMR data were spectrally processed and analysed using multivariate statistical analysis, seven metabolites were identified as having significant relationships with MN (glucose, trimethylamine, glutamic acid, serine, aspartic acid, 4-aminohippuirc acid and citric acid). Following quantification, glucose was shown to explain the largest percentage variability in MN (72%). These outcomes suggest that sources of labile carbon are essential in regulating N mineralisation and the capacity of plant available N derived from SOM-N pools in these soils. Although, smaller in concentration, the amino acids; 4-aminohippuirc acid, glutamic acid and serine also significantly (P<0.05) explained 43%, 27% and 19% of the variability in MN, respectively. This novel study highlights the effectiveness of using 1H NMR as a practical approach to profile multiple metabolites in soils simultaneously, and increasing the potential to identify those related to various soil processes.

  13. Distinguishing Phosphate Structural Defects From Inclusions in Calcite and Aragonite by NMR Spectroscopy (Invited)

    NASA Astrophysics Data System (ADS)

    Phillips, B. L.; Mason, H. E.

    2010-12-01

    Variations in the concentration of minor and trace elements are being studied extensively for potential use as proxies to infer environmental conditions at the time of mineral deposition. Such proxies rely fundamentally on a relationship between the activities in the solution and in the solid that would seem to be simple only in the case that the species substitutes into the mineral structure. Other incorporation mechanisms are possible, including inclusions (both mineral and fluid) and occlusion of surface adsorbate complexes, that might be sensitive to other factors, such as crystallization kinetics, and difficult to distinguish analytically. For example, it is known from mineral adsorption studies that surface precipitates can be nanoscopic, and might not be apparent at resolutions typical of microchemical analysis. Techniques by which a structural relationship between the substituting element and the host mineral structure are needed to provide a sound basis for geochemical proxies. NMR spectroscopy offers methods for probing such spatial relationship. We are using solid-state NMR spectroscopy to investigate phosphate incorporation in calcium carbonate minerals, including calcite speleothems and coral skeletal aragonite, at concentrations of the order 100 μg P g -1. In 31P NMR spectra of most samples, narrow peaks arising from crystalline inclusions can be resolved, including apatite in coral aragonite and an unidentified phase in calcite. All samples studied yield also a broad 31P signal, centered near chemical shifts of +3 to +4 ppm, that could be assigned to phosphate defects in the host mineral and from which the fraction of P occurring in the carbonate mineral structure can be determined. To test this assignment we applied rotational-echo double-resonance (REDOR) NMR techniques that probe the molecular-scale proximity of carbonate groups to the phosphate responsible for the broad 31P peak. This method measures dipole-dipole coupling between 31P of phosphate and carbonate carbon, which varies with the inverse-cube of the internuclear distance. 31P{13C} REDOR NMR results for synthetic phosphate/(13C)-aragonite coprecipitates show that the broad peak is closely associated with carbonate, exhibiting a 31P-13C dipolar coupling qualitatively consistent with phosphate occupying an anion structural site (i.e., 6 C at 0.32 nm). 31P-detected 1H NMR spectra, which contain signal only from H located near P, show that structural water molecules help accommodate phosphate in the structure. Similar methods can be applied to other elements of potential paleo-proxy interest having NMR-active isotopes, including B, Mg, and Cd.

  14. 13C NMR spectroscopy for the differentiation of enantiomers using chiral solvating agents.

    PubMed

    Pérez-Trujillo, Míriam; Monteagudo, Eva; Parella, Teodor

    2013-11-19

    The utility of (13)C NMR spectroscopy for the differentiation of enantiomers using chiral solvating agents (CSA) is stated. Three examples involving the enantiodifferentiation of a drug, a metabolite and a reactant in aqueous and organic solutions have been chosen to show it. The intrinsic high dispersion of (13)C nucleus, as well as the singlet nature of the signals in standard experiments makes (13)C NMR experiments a powerful alternative or complement to (1)H NMR experiments; specially, when studying pure compounds with complex proton spectra or mixtures of compounds, as in chiral metabonomics, where severe overlapping exists in proton spectrum. To evaluate and compare the quality of the enantioresolution of a NMR signal we introduce the enantiodifferentiation quotient, E, that considers the complexity of (1)H multiplets (and in general the width) of the original signal. It has been observed that the error in the measurement of the enantiomeric molar ratio can be related to the E value. The sensitivity and experimental time of a wide range of chiral analyte concentrations were also assessed. PMID:24125534

  15. Structure-Correlation NMR Spectroscopy for Macromolecules Using Repeated Bidirectional Photoisomerization of Azobenzene.

    PubMed

    Nagashima, Toshio; Ueda, Keisuke; Nishimura, Chiaki; Yamazaki, Toshio

    2015-11-17

    Control over macromolecular structure offers bright potentials for manipulation of macromolecular functions. We here present structure-correlation NMR spectroscopy to analyze the correlation between polymorphic macromolecular structures driven by photoisomerization of azobenzene. The structural conversion of azobenzene was induced within the mixing time of a NOESY experiment using a colored light source, and the reverse structural conversion was induced during the relaxation delay using a light source of another color. The correlation spectrum between trans- and cis-azobenzene was then obtained. To maximize the efficiency of the bidirectional photoisomerization of azobenzene-containing macromolecules, we developed a novel light-irradiation NMR sample tube and method for irradiating target molecules in an NMR radio frequency (rf) coil. When this sample tube was used for photoisomerization of an azobenzene derivative at a concentration of 0.2 mM, data collection with reasonable sensitivity applicable to macromolecules was achieved. We performed isomerization of an azobenzene-cross-linked peptide within the mixing time of a NOESY experiment that produced cross-peaks between helix and random-coil forms of the peptide. Thus, these results indicate that macromolecular structure manipulation can be incorporated into an NMR pulse sequence using an azobenzene derivative and irradiation with light of two types of wavelengths, providing a new method for structural analysis of metastable states of macromolecules. PMID:26479462

  16. NMR spectroscopy as a tool to close the gap on metabolite characterization under MIST.

    PubMed

    Caceres-Cortes, Janet; Reily, Michael D

    2010-07-01

    Withdrawals from the market due to unforeseen adverse events have triggered changes in the way therapeutics are discovered and developed. This has resulted in an emphasis on truly understanding the efficacy and toxicity profile of new chemical entities (NCE) and the contributions of their metabolites to on-target pharmacology and off-target receptor-mediated toxicology. Members of the pharmaceutical industry, scientific community and regulatory agencies have held dialogues with respect to metabolites in safety testing (MIST); and both the US FDA and International Conference on Harmonisation have issued guidances with respect to when and how to characterize metabolites for human safety testing. This review provides a brief overview of NMR spectroscopy as applied to the structure elucidation and quantification of drug metabolites within the drug discovery and development process. It covers advances in this technique, including cryogenic cooling of detection circuitry for enhanced sensitivity, hyphenated LC-NMR techniques, improved dynamic range through new solvent-suppression pulse sequences and quantitation. These applications add to the already diverse NMR toolkit and further anchor NMR as a technique that is directly applicable to meeting the requirements of MIST guidelines. PMID:21083239

  17. High resolution sup 27 Al NMR spectroscopy of the aluminophosphate molecular sieve VPI-5

    SciTech Connect

    Wu, Y.; Chmelka, B.F.; Pines, A. ); Davis, M.E. ); Grobet, P.J.; Jacobs, P.A. )

    1990-08-01

    Aluminium plays an important part in determining the properties of many materials, such as the catalytic behavior of zeolites. Aluminophosphate molecular sieves, in particular, have useful applications as superlattice hosts in the fabrication of quantum-effect devices. Although nuclear magnetic resonance (NMR) spectroscopy is often a sensitive probe of solids, the use of {sup 27}Al NMR to investigate the structure of aluminosilicates and aluminophosphates has been severely limited because anisotropic second-order quadrupolar interactions, responsible for spectral broadening, cannot be eliminated by conventional magic-angle-spinning or multiple-pulse techniques. Here the authors report the first high-resolution NMR spectra of {sup 27}Al in a solid using double rotation and demonstrate its usefulness for probing subtle structural perturbations in the aluminophosphate molecular sieve VPI-5. From their results, they conclude that high-resolution {sup 27}Al NMR is capable of resolving discrete framework aluminium sites, permitting quantitative investigation of site-specific adsorbate interactions with the VPI-5 host.

  18. μHigh resolution-magic-angle spinning NMR spectroscopy for metabolic phenotyping of Caenorhabditis elegans.

    PubMed

    Wong, Alan; Li, Xiaonan; Molin, Laurent; Solari, Florence; Elena-Herrmann, Bénédicte; Sakellariou, Dimitris

    2014-06-17

    Analysis of model organisms, such as the submillimeter-size Caenorhabditis elegans, plays a central role in understanding biological functions across species and in characterizing phenotypes associated with genetic mutations. In recent years, metabolic phenotyping studies of C. elegans based on (1)H high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy have relied on the observation of large populations of nematodes, requiring labor-intensive sample preparation that considerably limits high-throughput characterization of C. elegans. In this work, we open new platforms for metabolic phenotyping of C. elegans mutants. We determine rich metabolic profiles (31 metabolites identified) from samples of 12 individuals using a (1)H NMR microprobe featuring high-resolution magic-angle coil spinning (HR-MACS), a simple conversion of a standard HR-MAS probe to μHR-MAS. In addition, we characterize the metabolic variations between two different strains of C. elegans (wild-type vs slcf-1 mutant). We also acquire a NMR spectrum of a single C. elegans worm at 23.5 T. This study represents the first example of a metabolomic investigation carried out on a small number of submillimeter-size organisms, demonstrating the potential of NMR microtechnologies for metabolomics screening of small model organisms. PMID:24897622

  19. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGESBeta

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  20. Survey and qualification of internal standards for quantification by 1H NMR spectroscopy.

    PubMed

    Rundlöf, Torgny; Mathiasson, Marie; Bekiroglu, Somer; Hakkarainen, Birgit; Bowden, Tim; Arvidsson, Torbjörn

    2010-09-01

    In quantitative NMR (qNMR) selection of an appropriate internal standard proves to be crucial. In this study, 25 candidate compounds considered to be potent internal standards were investigated with respect to the ability of providing unique signal chemical shifts, purity, solubility, and ease of use. The (1)H chemical shift (delta) values, assignments, multiplicities and number of protons (for each signal), appropriateness (as to be used as internal standards) in four different deuterated solvents (D(2)O, DMSO-d(6), CD(3)OD, CDCl(3)) were studied. Taking into account the properties of these 25 internal standards, the most versatile eight compounds (2,4,6-triiodophenol, 1,3,5-trichloro-2-nitrobenzene, 3,4,5-trichloropyridine, dimethyl terephthalate, 1,4-dinitrobenzene, 2,3,5-triiodobenzoic acid, maleic acid and fumaric acid) were qualified using both differential scanning calorimetry (DSC) and NMR spectroscopy employing highly pure acetanilide as the reference standard. The data from these two methods were compared as well as utilized in the quality assessment of the compounds as internal standards. Finally, the selected internal standards were tested and evaluated in a real case of quantitative NMR analysis of a paracetamol pharmaceutical product. PMID:20207092

  1. Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy.

    PubMed

    Morgado, Leonor; Zeth, Kornelius; Burmann, Björn M; Maier, Timm; Hiller, Sebastian

    2015-04-01

    The insertase BamA is the central protein of the Bam complex responsible for outer membrane protein biogenesis in Gram-negative bacteria. BamA features a 16-stranded transmembrane β-barrel and five periplasmic POTRA domains, with a total molecular weight of 88 kDa. Whereas the structure of BamA has recently been determined by X-ray crystallography, its functional mechanism is not well understood. This mechanism comprises the insertion of substrates from a dynamic, chaperone-bound state into the bacterial outer membrane, and NMR spectroscopy is thus a method of choice for its elucidation. Here, we report solution NMR studies of different BamA constructs in three different membrane mimetic systems: LDAO micelles, DMPC:DiC7PC bicelles and MSP1D1:DMPC nanodiscs. The impact of biochemical parameters on the spectral quality was investigated, including the total protein concentration and the detergent:protein ratio. The barrel of BamA is folded in micelles, bicelles and nanodiscs, but the N-terminal POTRA5 domain is flexibly unfolded in the absence of POTRA4. Measurements of backbone dynamics show that the variable insertion region of BamA, located in the extracellular lid loop L6, features high local flexibility. Our work establishes biochemical preparation schemes for BamA, which will serve as a platform for structural and functional studies of BamA and its role within the Bam complex by solution NMR spectroscopy. PMID:25638436

  2. NMR Spectroscopy of Human Eye Tissues: A New Insight into Ocular Biochemistry

    PubMed Central

    Kryczka, Tomasz; Wylęgała, Edward; Dobrowolski, Dariusz; Midelfart, Anna

    2014-01-01

    Background. The human eye is a complex organ whose anatomy and functions has been described very well to date. Unfortunately, the knowledge of the biochemistry and metabolic properties of eye tissues varies. Our objective was to reveal the biochemical differences between main tissue components of human eyes. Methods. Corneas, irises, ciliary bodies, lenses, and retinas were obtained from cadaver globes 0-1/2 hours postmortem of 6 male donors (age: 44–61 years). The metabolic profile of tissues was investigated with HR MAS 1H NMR spectroscopy. Results. A total of 29 metabolites were assigned in the NMR spectra of the eye tissues. Significant differences between tissues were revealed in contents of the most distant eye-tissues, while irises and ciliary bodies showed minimal biochemical differences. ATP, acetate, choline, glutamate, lactate, myoinositol, and taurine were identified as the primary biochemical compounds responsible for differentiation of the eye tissues. Conclusions. In this study we showed for the first time the results of the analysis of the main human eye tissues with NMR spectroscopy. The biochemical contents of the selected tissues seemed to correspond to their primary anatomical and functional attributes, the way of the delivery of the nutrients, and the location of the tissues in the eye. PMID:25525621

  3. Determination of the DNA sugar pucker using sup 13 C NMR spectroscopy

    SciTech Connect

    Santos, R.A.; Tang, P.; Harbison, G.S. )

    1989-11-28

    Solid-state {sup 13}C NMR spectroscopy of a series of crystalline nucleosides and nucleotides allows direct measurement of the effect of the deoxyribose ring conformation on the carbon chemical shift. It is found that 3{prime}-endo conformers have 3{prime} and 5{prime} chemical shifts significantly (5-10 ppm) upfield of comparable 3{prime}-exo and 2{prime}-endo conformers. The latter two conformers may be distinguished by smaller but still significant differences in the carbon chemical shifts at the C-2{prime} and C-4{prime} positions. High-resolution solid-state NMR of three modifications of fibrous calf thymus DNA shows that these trends are maintained in high-molecular-weight DNA and confirms that the major ring pucker in A-DNA is 3{prime}-endo, while both B-DNA and C-DNA are largely 2{prime}-endo. The data show that {sup 13}C NMR spectroscopy is a straightforward and useful probe of DNA ring pucker in both solution and the solid state.

  4. The study of transient protein-nanoparticle interactions by solution NMR spectroscopy.

    PubMed

    Assfalg, Michael; Ragona, Laura; Pagano, Katiuscia; D'Onofrio, Mariapina; Zanzoni, Serena; Tomaselli, Simona; Molinari, Henriette

    2016-01-01

    The rapid development of novel nanoscale materials for applications in biomedicine urges an improved characterization of the nanobio interfaces. Nanoparticles exhibit unique structures and properties, often different from the corresponding bulk materials, and the nature of their interactions with biological systems remains poorly characterized. Solution NMR spectroscopy is a mature technique for the investigation of biomolecular structure, dynamics, and intermolecular associations, however its use in protein-nanoparticle interaction studies remains scarce and highly challenging, particularly due to unfavorable hydrodynamic properties of most nanoscale assemblies. Nonetheless, recent efforts demonstrated that a number of NMR observables, such as chemical shifts, signal intensities, amide exchange rates and relaxation parameters, together with newly designed saturation transfer experiments, could be successfully employed to characterize the orientation, structure and dynamics of proteins adsorbed onto nanoparticle surfaces. This review provides the first survey and critical assessment of the contributions from solution NMR spectroscopy to the study of transient interactions between proteins and both inorganic (gold, silver, and silica) and organic (polymer, carbon and lipid based) nanoparticles. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:25936778

  5. Qualitative and Quantitative Control of Carbonated Cola Beverages Using 1H NMR Spectroscopy

    PubMed Central

    2012-01-01

    1H Nuclear magnetic resonance (NMR) spectroscopy (400 MHz) was used in the context of food surveillance to develop a reliable analytical tool to differentiate brands of cola beverages and to quantify selected constituents of the soft drinks. The preparation of the samples required only degassing and addition of 0.1% of TSP in D2O for locking and referencing followed by adjustment of pH to 4.5. The NMR spectra obtained can be considered as “fingerprints” and were analyzed by principal component analysis (PCA). Clusters from colas of the same brand were observed, and significant differences between premium and discount brands were found. The quantification of caffeine, acesulfame-K, aspartame, cyclamate, benzoate, hydroxymethylfurfural (HMF), sulfite ammonia caramel (E 150D), and vanillin was simultaneously possible using external calibration curves and applying TSP as internal standard. Limits of detection for caffeine, aspartame, acesulfame-K, and benzoate were 1.7, 3.5, 0.8, and 1.0 mg/L, respectively. Hence, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of soft drinks and quantification of selected constituents. PMID:22356160

  6. Ultrafast double-quantum NMR spectroscopy with optimized sensitivity for the analysis of mixtures.

    PubMed

    Rouger, Laetitia; Gouilleux, Boris; Pourchet-Gellez, Mariane; Dumez, Jean-Nicolas; Giraudeau, Patrick

    2016-02-15

    Ultrafast (UF) 2D NMR enables the acquisition of 2D spectra within a single-scan. This methodology has become a powerful analytical tool, used in a large array of applications. However, UF NMR spectroscopy still suffers from the need to compromise between sensitivity, spectral width and resolution. With the commonly used UF-COSY pulse sequence, resolution issues are compounded by the presence of strong auto-correlation signals, particularly in the case of samples with high dynamic ranges. The recently proposed concept of UF Double Quantum Spectroscopy (DQS) allows a better peak separation as it provides a lower spectral peak density. This paper presents the detailed investigation of this new NMR tool in an analytical chemistry context. Theoretical calculations and numerical simulations are used to characterize the modulation of peak intensities as a function of pulse-sequence parameters, and thus enable a significant enhancement of the sensitivity. The analytical comparison of UF-COSY and UF-DQS shows similar performances, however the ultrafast implementation of the DQS approach is found to have some sensitivity advantages over its conventional counterpart. The analytical performance of the pulse sequence is illustrated by the quantification of taurine in complex mixtures (homemade and commercial energy drinks). The results demonstrate the high potential of this experiment, which forms a valuable alternative to UF-COSY spectra when the latter are characterized by strong overlaps and high dynamic ranges. PMID:26865359

  7. Low Temperature 65Cu NMR Spectroscopy of the Cu+ Site in Azurin

    PubMed Central

    Lipton, Andrew S.; Heck, Robert W.; de Jong, Wibe A.; Gao, Amy R.; Wu, Xiongjian; Roehrich, Adrienne; Harbison, Gerard S.; Ellis, Paul D.

    2009-01-01

    65Cu central-transition NMR spectroscopy of the blue copper protein azurin in the reduced Cu(I) state, conducted at 18.8 Tesla and 10 K, gave a strongly second order quadrupole perturbed spectrum, which yielded a 65Cu quadrupole coupling constant of ±71.2 ± 1 MHz, corresponding to an electric field gradient of ±1.49 atomic units at the copper site, and an asymmetry parameter of approximately 0.2. Quantum chemical calculations employing second order Møller-Plesset perturbation theory and large basis sets successfully reproduced these experimental results. Sensitivity and relaxation times were quite favorable, suggesting that NMR may be a useful probe of the electronic state of copper sites in proteins. PMID:19746904

  8. An instrument control and data analysis program for NMR imaging and spectroscopy

    SciTech Connect

    Roos, M.S.; Mushlin, R.A.; Veklerov, E.; Port, J.D.; Ladd, C.; Harrison, C.G.

    1988-01-01

    We describe a software environment created to support real-time instrument control and signal acquisition as well as array-processor based signal and image processing in up to five dimensions. The environment is configured for NMR imaging and in vivo spectroscopy. It is designed to provide flexible tools for implementing novel NMR experiments in the research laboratory. Data acquisition and processing operations are programmed in macros which are loaded in assembled from to minimize instruction overhead. Data arrays are dynamically allocated for efficient use of memory and can be mapped directly into disk files. The command set includes primitives for real-time control of data acquisition, scalar arithmetic, string manipulation, branching, a file system and vector operations carried out by an array processor. 6 figs.

  9. N-15 NMR Spectroscopy as a Method for Comparing the Rates of Imidization of Several Diamines

    NASA Technical Reports Server (NTRS)

    Johnson, J. Christopher; Kuczmarski, Maria A.

    2006-01-01

    The relative rates of the conversion of amide-acid to imide was measured for a series or aromatic diamines that have been identified as potential replacements for 4,4'-methylene dianiline (MDA) in high-temperature polyimides and polymer composites. These rates were compared with the N-15 NMR resonances of the unreacted amines. The initial rates of imidization track with the difference in chemical shift between the amine nitrogens in MDA and those in the subject diamines. This comparison demonstrated that N-15 NMR spectroscopy is appropriate for the rapid screening of candidate diamines to determine their reactivity relative to MDA, and can serve to provide guidance to the process of creating the time-temperature profiles used in processing these materials into polymer matrix composites.

  10. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy.

    PubMed

    Kimata, Naoki; Reeves, Philip J; Smith, Steven O

    2015-04-01

    G protein-coupled receptors (GPCRs) span cell membranes with seven transmembrane helices and respond to a diverse array of extracellular signals. Crystal structures of GPCRs have provided key insights into the architecture of these receptors and the role of conserved residues. However, the question of how ligand binding induces the conformational changes that are essential for activation remains largely unanswered. Since the extracellular sequences and structures of GPCRs are not conserved between receptor subfamilies, it is likely that the initial molecular triggers for activation vary depending on the specific type of ligand and receptor. In this article, we describe NMR studies on the rhodopsin subfamily of GPCRs and propose a mechanism for how retinal isomerization switches the receptor to the active conformation. These results suggest a general approach for determining the triggers for activation in other GPCR subfamilies using NMR spectroscopy. PMID:25797010

  11. Isotope-Filtered 4D NMR Spectroscopy for Structure Determination of Humic Substances.

    PubMed

    Bell, Nicholle G A; Michalchuk, Adam A L; Blackburn, John W T; Graham, Margaret C; Uhrín, Dušan

    2015-07-13

    Humic substances, the main component of soil organic matter, could form an integral part of green and sustainable solutions to the soil fertility problem. However, their global-scale application is hindered from both scientific and regulatory perspectives by the lack of understanding of the molecular make-up of these chromatographically inseparable mixtures containing thousands of molecules. Here we show how multidimensional NMR spectroscopy of isotopically tagged molecules enables structure characterization of humic compounds. We illustrate this approach by identifying major substitution patterns of phenolic aromatic moieties of a peat soil fulvic acid, an operational fraction of humic substances. Our methodology represents a paradigm shift in the use of NMR active tags in structure determination of small molecules in complex mixtures. Unlike previous tagging methodologies that focused on the signals of the tags, we utilize tags to directly probe the identity of the molecules they are attached to. PMID:26036217

  12. Structural studies of pravastatin and simvastatin and their complexes with SDS micelles by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Rakhmatullin, I. Z.; Galiullina, L. F.; Klochkova, E. A.; Latfullin, I. A.; Aganov, A. V.; Klochkov, V. V.

    2016-02-01

    Conformational features of pravastatin and simvastatin molecules in solution and in their complexes with sodium dodecyl sulfate micelles (SDS) were studied by 2D NOESY NMR spectroscopy. On the basis of the nuclear magnetic resonance experiments it was established that pravastatin and simvastatin can form molecular complex with SDS micelles which were considered as the model of cell membrane. In addition, interatomic distances for studied compounds were calculated based on 2D NOESY NMR experiments. It was shown that pravastatin interacts only with a surface of model membrane. However, in contrast to pravastatin, simvastatin penetrates into the inner part of SDS micelles. Observed distinctions in the mechanisms of interaction of pravastatin and simvastatin with models of cell membranes could explain the differences in their pharmacological properties.

  13. 15N NMR Spectroscopy of Cyclotriphosphazenes and Polyphosphazenes Based on 31P, 15N HMQC Correlations

    NASA Astrophysics Data System (ADS)

    Peláez-Arango, Elvira; García-Alonso, Francisco J.; Carriedo, Gabino; López-Ortiz, Fernando

    A 31P and 15N NMR study of cyclotriphosphazenes 1-4 and polyphosphazene 5 has been carried out including solvent and substituent effects. 15N chemical shifts and 31P, 15N coupling constants are readily obtained through 1D and 2D 31P, 15N HMQC correlation spectroscopy on natural-abundance samples. This methodology combined with spectral simulation also yields 15N-induced isotope shifts. 31P and 15N are both relatively insensitive to changes in solvent polarity. Chemical shifts are reasonably explained in terms of electronic density variations, and 31P, 15N couplings are rationalized by considering their absolute sign, which depends on the substituent bonded to phosphorus. 15N proved to be more sensitive to structural modifications than 31P. Therefore, the availability of 15N NMR data on cyclotriphosphazenes can be considered a valuable tool in the design of model compounds for polyphosphazene synthesis.

  14. Structure of lysozyme dissolved in neat organic solvents as assessed by NMR and CD spectroscopies

    SciTech Connect

    Knubovets, T.; Klibanov, A.M.; Osterhout, J.J.

    1999-04-20

    The structure of the model protein hen egg-white lysozyme dissolved in water and in five neat organic solvents (ethylene glycol, methanol, dimethylsufloxide (DMSO), formamide, and dimethylformamide (DMF)) has been examined by means of {sup 1}H NMR and circular dichroism (CD) spectroscopies. The NMR spectra of lysozyme reveal the lack of a defined tertiary structure in all five organic solvents, although the examination of line widths suggests the possibility of some ordered structure in ethylene glycol and in methanol. The near-UV CD spectra of the protein suggest no tertiary structure in lysozyme dissolved in DMSO, formamide, and DMF, while a distinctive tertiary structure is seen in ethylene glycol and a drastically changed one in methanol. A highly developed secondary structure was observed by far-UV CD in ethylene glycol and methanol; interestingly, the {alpha}-helix content of the protein in both was greater than in water, while the {beta}-structure content was lower.

  15. Determination of iodine value of lubricating oils by nuclear magnetic resonance (NMR) spectroscopy

    SciTech Connect

    Sarpal, A.S.; Kapur, G.S.; Mukherjee, S.

    1995-03-01

    A direct, quick and non-destructive method for estimating the iodine value of fats, fatty oils and their blends in mineral oils has been developed based on {sup 1}H and {sup 13}C-NMR spectroscopy. The method involves the determination of unsaturation content of the samples by {sup 1}H and {sup 13}C-NMR spectroscopic techniques. The iodine value of the sample is directly proportional to the unsaturated proton or carbon content. The value of the proportionality constant is independent of the nature of the fats and their blends in mineral oils for the limited samples studied. The iodine value determined by this method also includes the contribution from additives containing unsaturation. Saturated ingredients in the sample do not contribute to the iodine value as is the case with the standard IP-84 method. 5 refs., 3 figs., 4 tabs.

  16. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kimata, Naoki; Reeves, Philip J.; Smith, Steven O.

    2015-04-01

    G protein-coupled receptors (GPCRs) span cell membranes with seven transmembrane helices and respond to a diverse array of extracellular signals. Crystal structures of GPCRs have provided key insights into the architecture of these receptors and the role of conserved residues. However, the question of how ligand binding induces the conformational changes that are essential for activation remains largely unanswered. Since the extracellular sequences and structures of GPCRs are not conserved between receptor subfamilies, it is likely that the initial molecular triggers for activation vary depending on the specific type of ligand and receptor. In this article, we describe NMR studies on the rhodopsin subfamily of GPCRs and propose a mechanism for how retinal isomerization switches the receptor to the active conformation. These results suggest a general approach for determining the triggers for activation in other GPCR subfamilies using NMR spectroscopy.

  17. Microfabricated Inserts for Magic Angle Coil Spinning (MACS) Wireless NMR Spectroscopy

    PubMed Central

    Badilita, Vlad; Fassbender, Birgit; Kratt, Kai; Wong, Alan; Bonhomme, Christian; Sakellariou, Dimitris; Korvink, Jan G.; Wallrabe, Ulrike

    2012-01-01

    This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS) NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i) reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii) improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the “magic angle” of 54.74° with respect to the direction of the magnetic field (magic angle spinning – MAS), accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii) given the high spinning rates (tens of kHz) involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz) testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds. PMID:22936994

  18. Functional assessment of skeletal muscle in intact mice lacking myostatin by concurrent NMR imaging and spectroscopy.

    PubMed

    Baligand, C; Gilson, H; Ménard, J C; Schakman, O; Wary, C; Thissen, J-P; Carlier, P G

    2010-03-01

    Inhibiting myostatin (mstn) causes spectacular increase in muscle mass, spurring research for therapeutic approaches against neuromuscular disorders. Yet, possible functional deterioration and compromised force production have been reported in isolated muscle of null mstn(-/-) mice. We analyzed vascular and metabolic response to repeated electro-stimulated exercise in vivo in mstn(-/-) mice compared with FVB wild-type controls (WT), using interleaved multi-parametric functional nuclear magnetic resonance (NMR) imaging and spectroscopy. At steady-state exercise, specific force of plantar flexion, phosphocreatine consumption measured by phosphorus spectroscopy and maximum perfusion measured by arterial spin-labeled (ASL) NMR imaging were identical in both groups. After exercise, phosphorus spectroscopy revealed reduced oxidative mitochondrial capacity in mstn(-/-), whereas early recovery perfusion was identical and oxygen extraction, estimated from the blood oxygen level-dependent (BOLD) contrast, was decreased when compared with WT. Hyperemia was prolonged, indicating specific regulation of the perfusional response in mstn(-/-) mice. Histology showed an increased proportion of type IIb fibers in hypertrophied muscles, but the distribution of capillary contacts per fiber between oxidative and glycolytic fibers was unaltered in mstn(-/-) compared with WT. These integrated results formed coherent evidence of a congruous, non-pathologic shift toward a more glycolytic metabolism in this model of mstn(-/-). PMID:20010628

  19. Purification, crystallization, NMR spectroscopy and biochemical analyses of alpha-phycoerythrocyanin peptides.

    PubMed

    Wiegand, Georg; Parbel, Axel; Seifert, Markus H J; Holak, Tad A; Reuter, Wolfgang

    2002-10-01

    The alpha-phycoerythrocyanin subunits of the different phycoerythrocyanin complexes of the phycobilisomes from the cyanobacterium Mastigocladus laminosus perform a remarkable photochemistry. Similar to phytochromes - the photoreceptors of higher plants - the spectral properties of the molecule reversibly change according to the irradiation wavelength. To enable extensive analyses, the protein has been produced at high yield by improving purification protocols. As a result, several comparative studies on the Z- and E-configurations of the intact alpha-subunit, and also on photoactive peptides originating from nonspecific degradations of the chromoprotein, were possible. The analyses comprise absorbance, fluorescence and CD spectroscopy, crystallization, preliminary X-ray measurements, mass spectrometry, N-terminal amino acid sequencing and 1D NMR spectroscopy. Intact alpha-phycoerythrocyanin aggregates significantly, due to hydrophobic interactions between the two N-terminal helices. Removal of these helices reduces the aggregation but also destabilizes the protein fold. The complete subunit could be crystallized in its E-configuration, but the X-ray measurement conditions must be improved. Nevertheless, NMR spectroscopy on a soluble photoactive peptide presents the first insight into the complex chromophore protein interactions that are dependent on the light induced state. The chromophore environment in the Z-configuration is rigid whereas other regions of the protein are more flexible. In contrast, the E-configuration has a mobile chromophore, especially the pyrrole ring D, while other regions of the protein rigidified compared to the Z-configuration. PMID:12383264

  20. Biophysical investigations of membrane perturbations by polypeptides using solid-state NMR spectroscopy (review).

    PubMed

    Bechinger, B

    2000-01-01

    Polypeptides have been prepared by solid-phase peptide synthesis and labelled with 15N at single sites to be used for static or magic angle spinning solid-state NMR spectroscopy. After reconstitution into oriented membranes, the alignment of polypeptide alpha-helices with respect to the bilayer surface is accessible by proton-decoupled 15N solid-state NMR spectroscopy. In addition, limiting values of rotational diffusion coefficients are obtained. The effects of membrane inserted peptides on the bilayer phospholipids have been investigated by 2H and 31P solid-state NMR spectroscopy. Long hydrophobic peptides such as the channel-forming domains of Vpu of HIV-1 or M2 of influenza A adopt stable alignments approximately parallel to the bilayer normal in agreement with models suggesting transmembrane helical bundle formation. The 15N chemical shift data agree with tilt angles of approximately 20 degrees and 33 degrees, respectively. In contrast, multi-charged amphipathic alpha-helices adopt stable orientations parallel to the bilayer surface. In the presence of these peptides, decreased order parameters of the fatty acyl chains, membrane thinning, and the loss of long-range order are observed. Peptides that change topology in a pH dependent manner are more potent in antibiotic assays under experimental conditions where they show in-plane alignments. This result suggests that their detergent-like properties, rather than the formation of transmembrane helical bundles, are responsible for their cell-killing activities. Topological equilibria are also observed within proteins or for polypeptides that do not match the hydrophobic thickness of the bilayer. PMID:11128972

  1. Heteronuclear dipolar couplings, total spin coherence, and bilinear rotations in NMR spectroscopy

    SciTech Connect

    Garbow, J.R.

    1983-07-01

    In Chapter 1 a variety of different introductory topics are presented. The potential complexity of the nuclear magnetic resonsnace (NMR) spectra of molecules dissolved in liquid crystal solvents serves to motivate the development of multiple quantum (MQ) spectroscopy. The basics of MQ NMR are reviewed in Chapter 2. An experimental search procedure for the optimization of MQ pulse sequences is introduced. Chapter 3 discusses the application of MQ NMR techniques to the measurement of dipolar couplings in heteronuclear spin systems. The advantages of MQ methods in such systems are developed and experimental results for partially oriented (1-/sup 13/C) benzene are presented. Several pulse sequences are introduced which employ a two-step excitation of heteronuclear MQ coherence. A new multiple pulse method, involving the simultaneous irradiation of both rare and abundant spin species, is described. The problem of the broadening of MQ transitions due to magnetic field inhomogeneity is considered in Chapter 4. The method of total spin coherence transfer echo spectroscopy (TSCTES) is presented, with experimets on partially oriented acetaldehyde serving to demonstrate this new technique. TSCTES results in MQ spectra which are sensitive to all chemical shifts and spin-spin couplings and which are free of inhomogeneous broadening. In Chapter 5 the spectroscopy of spin systems of several protons and a /sup 13/C nucleus in the isotropic phase is discussed. The usefulness of the heteronuclear bilinear rotation as a calculational tool is illustrated. Compensated bilinear ..pi.. rotations, which are relatively insensitive to timing parameter missets, are presented. A new technique for homonuclear proton decoupling, Bilinear Rotation Decoupling, is described and its success in weakly coupled systems is demonstrated.

  2. Correlating high-resolution magic angle spinning NMR spectroscopy and gene analysis in osteoarthritic cartilage.

    PubMed

    Tufts, Lauren; Shet Vishnudas, Keerthi; Fu, Eunice; Kurhanewicz, John; Ries, Michael; Alliston, Tamara; Li, Xiaojuan

    2015-05-01

    Osteoarthritis (OA) is a common multifactorial and heterogeneous degenerative joint disease, and biochemical changes in cartilage matrix occur during the early stages of OA before morphological changes occur. Thus, it is desired to measure regional biochemical changes in the joint. High-resolution magic angle spinning (HRMAS) NMR spectroscopy is a powerful method of observing cartilaginous biochemical changes ex vivo, including the concentrations of alanine and N-acetyl, which are markers of collagen and total proteoglycan content, respectively. Previous studies have observed significant changes in chondrocyte metabolism of OA cartilage via the altered gene expression profiles of ACAN, COL2A1 and MMP13, which encode aggrecan, type II collagen and matrix metalloproteinase 13 (a protein crucial in the degradation of type II collagen), respectively. Employing HRMAS, this study aimed to elucidate potential relationships between N-acetyl and/or alanine and ACAN, COL2A1 and/or MMP13 expression profiles in OA cartilage. Thirty samples from the condyles of five subjects undergoing total knee arthroplasty to treat OA were collected. HRMAS spectra were obtained at 11.7 T for each sample. RNA was subsequently extracted to determine gene expression profiles. A significant negative correlation between N-acetyl metabolite and ACAN gene expression levels was observed; this provides further evidence of N-acetyl as a biomarker of cartilage degeneration. The alanine doublet was distinguished in the spectra of 15 of the 30 specimens of this study. Alanine can only be detected with HRMAS NMR spectroscopy when the collagen framework has been degraded such that alanine is sufficiently mobile to form a distinguished peak in the spectrum. Thus, HRMAS NMR spectroscopy may provide unique localized measurements of collagenous degeneration in OA cartilage. The identification of imaging markers that could provide a link between OA pathology and chondrocyte metabolism will facilitate the development of more sensitive diagnostic techniques and will improve methods of monitoring treatment for patients suffering from OA. PMID:25761416

  3. Dynamic processes and chemical composition of Lepidium sativum seeds determined by means of field-cycling NMR relaxometry and NMR spectroscopy.

    PubMed

    Rachocki, A; Latanowicz, L; Tritt-Goc, J

    2012-12-01

    Proton nuclear magnetic resonance (NMR) techniques, such as field-cycling relaxometry, wide-line NMR spectroscopy, and magic angle spinning NMR spectroscopy, were applied to study the seeds of cress, Lepidium sativum. Field-cycling NMR relaxometry was used for the first time to investigate the properties of the whole molecular system of dry cress seeds. This method not only allowed the dynamics to be studied, but was also successful in the differentiation among the solid (i.e., carbohydrates, proteins, or fats forming a solid form of lipids) and liquid-like (oil compounds) components of the seeds. The (1)H NMR relaxation dispersion of oils was interpreted as a superposition of intramolecular and intermolecular contributions. The intramolecular part was described in terms of a Lorentzian spectral density function, whereas a log-Gaussian distribution of correlation times was applied for the intermolecular dipole-dipole contribution. The models applied led to very good agreement with the experimental data and demonstrate that the contribution of the intermolecular relaxation to the overall relaxation should not be disregarded, especially at low frequencies. A power-law frequency dependence of the proton relaxation dispersion was used for the interpretation of the solid components. From the analysis of the (1)H wide-line NMR spectra of the liquid-like component of hydrated cress seeds, we can conclude that the contribution of oil protons should always be taken into account when evaluating the spin-lattice relaxation times values or measuring the moisture and oil content. The application of (1)H magic angle spinning NMR significantly improves resolution in the liquid-like spectrum of seeds and allows the determination of the chemical composition of cress seeds. PMID:23001307

  4. Silica sol assisted chromatographic NMR spectroscopy for resolution of trans- and cis-isomers

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Wu, Rui; Huang, Shaohua; Bai, Zhengwu

    2016-04-01

    Chromatographic NMR spectroscopy can separate the mixtures of species with significantly different molecular size, but generally fails for isomeric species. Herein, we reported the resolution of trans- and cis-isomers and their structural analogue, which are different in molecular shapes, but similar in mass, were greatly enhanced in the presence of silica sol. The mixtures of maleic acid, fumaric acid and succinic acid, and the mixtures of trans- and cis-1,2-cyclohexanedicarboxylic acids, were distinguished by virtue of their different degrees of interaction with silica sol. Moreover, we found mixed solvents could improve the spectral resolution of DOSY spectra of mixtures.

  5. Silica sol assisted chromatographic NMR spectroscopy for resolution of trans- and cis-isomers.

    PubMed

    Yang, Ying; Wu, Rui; Huang, Shaohua; Bai, Zhengwu

    2016-04-01

    Chromatographic NMR spectroscopy can separate the mixtures of species with significantly different molecular size, but generally fails for isomeric species. Herein, we reported the resolution of trans- and cis-isomers and their structural analogue, which are different in molecular shapes, but similar in mass, were greatly enhanced in the presence of silica sol. The mixtures of maleic acid, fumaric acid and succinic acid, and the mixtures of trans- and cis-1,2-cyclohexanedicarboxylic acids, were distinguished by virtue of their different degrees of interaction with silica sol. Moreover, we found mixed solvents could improve the spectral resolution of DOSY spectra of mixtures. PMID:26942864

  6. Electromagnetic susceptibility anisotropy and its importance for paramagnetic NMR and optical spectroscopy in lanthanide coordination chemistry.

    PubMed

    Blackburn, Octavia A; Edkins, Robert M; Faulkner, Stephen; Kenwright, Alan M; Parker, David; Rogers, Nicola J; Shuvaev, Sergey

    2016-04-19

    The importance of the directional dependence of magnetic susceptibility in magnetic resonance and of electric susceptibility in the optical spectroscopy of lanthanide coordination complexes is assessed. A body of more reliable shift, relaxation and optical emission data is emerging for well-defined isostructural series of complexes, allowing detailed comparative analyses to be undertaken. Such work is highlighting the limitations of the current NMR shift and relaxation theories, as well as emphasising the absence of a compelling theoretical framework to explain optical emission phenomena. PMID:26898996

  7. Probabilistic Interaction Network of Evidence Algorithm and its Application to Complete Labeling of Peak Lists from Protein NMR Spectroscopy

    PubMed Central

    Bahrami, Arash; Assadi, Amir H.; Markley, John L.; Eghbalnia, Hamid R.

    2009-01-01

    The process of assigning a finite set of tags or labels to a collection of observations, subject to side conditions, is notable for its computational complexity. This labeling paradigm is of theoretical and practical relevance to a wide range of biological applications, including the analysis of data from DNA microarrays, metabolomics experiments, and biomolecular nuclear magnetic resonance (NMR) spectroscopy. We present a novel algorithm, called Probabilistic Interaction Network of Evidence (PINE), that achieves robust, unsupervised probabilistic labeling of data. The computational core of PINE uses estimates of evidence derived from empirical distributions of previously observed data, along with consistency measures, to drive a fictitious system M with Hamiltonian H to a quasi-stationary state that produces probabilistic label assignments for relevant subsets of the data. We demonstrate the successful application of PINE to a key task in protein NMR spectroscopy: that of converting peak lists extracted from various NMR experiments into assignments associated with probabilities for their correctness. This application, called PINE-NMR, is available from a freely accessible computer server (http://pine.nmrfam.wisc.edu). The PINE-NMR server accepts as input the sequence of the protein plus user-specified combinations of data corresponding to an extensive list of NMR experiments; it provides as output a probabilistic assignment of NMR signals (chemical shifts) to sequence-specific backbone and aliphatic side chain atoms plus a probabilistic determination of the protein secondary structure. PINE-NMR can accommodate prior information about assignments or stable isotope labeling schemes. As part of the analysis, PINE-NMR identifies, verifies, and rectifies problems related to chemical shift referencing or erroneous input data. PINE-NMR achieves robust and consistent results that have been shown to be effective in subsequent steps of NMR structure determination. PMID:19282963

  8. Structural studies of an arabinan from the stems of Ephedra sinica by methylation analysis and 1D and 2D NMR spectroscopy.

    PubMed

    Xia, Yong-Gang; Liang, Jun; Yang, Bing-You; Wang, Qiu-Hong; Kuang, Hai-Xue

    2015-05-01

    Plant arabinan has important biological activity. In this study, a water-soluble arabinan (Mw∼6.15kDa) isolated from the stems of Ephedra sinica was found to consist of (1→5)-Araƒ, (1→3,5)-Araƒ, T-Araƒ, (1→3)-Araƒ and (1→2,5)-Araƒ residues at proportions of 10:2:3:2:1. A tentative structure was proposed by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy ((1)H NMR, (13)C NMR, DEPT-135, (1)H-(1)H COSY, HSQC, HMBC and ROESY) and literature. The structure proposed includes a branched (1→5)-α-Araf backbone where branching occurs at the O-2 and O-3 positions of the residues with 7.7% and 15.4% of the 1,5-linked α-Araf substituted at the O-2 and O-3 positions. The presence of a branched structure was further observed by atomic force microscopy. This polymer was characterized as having a much longer linear (1→5)-α-Araf backbone as a repeating unit. In particular, the presence of α-Araf→3)-α-Araf-(1→3)-α-Araf-(1→ attached at the O-2 is a new finding. This study may facilitate a deeper understanding of structure-activity relationships of biological polysaccharides from the stems of E. sinica. PMID:25659720

  9. High-sensitivity multinuclear NMR spectroscopy of a smectite clay and of clay-intercalated polymer.

    PubMed

    Hou, S S; Beyer, F L; Schmidt-Rohr, K

    2002-01-01

    The nuclear magnetic resonance (NMR) properties of a smectite clay low in paramagnetic ions, and NMR experiments to detect organic material near the silicate surfaces with high sensitivity, have been explored by 1H, 29Si, and 13C NMR. In oven-dried hectorite clay, 1H NMR reveals a sharp signal at 0.35 ppm that narrows significantly with spinning speed. It is assigned to the "inner" OH protons of the silicate layers. In fluorohectorite, where the OH groups are replaced by fluorines, no such 1H peak is observed. The assignment is further confirmed by the efficient cross-polarization observed in two-dimensional (2D) 1H-29Si HETCOR spectra, and by 29Si-detected REDOR experiments with 1H-dephasing in the 29Si dipolar field, which yield a 1H-29Si distance of 2.9 + 0.4 A. In these 1H-29Si experiments, the sensitivity of the 29Si signal is enhanced at least fivefold by refocusing the decay resulting from the inhomogeneous broadening of the single 29Si peak, stretching the 29Si signal out over 80 ms. The small 1H linewidth of this signal at spinning frequencies exceeding 4 kHz is attributed to the large proton-proton distances in the clay. The upfield isotropic chemical shift of the OH groups is explained by their inaccessibility to hydrogen-bonding partners, as a result of their location in hexagonal "cavities" of the clay structure. The well-resolved, easily selectable OH-proton signal and the high-sensitivity 29Si detection open excellent perspectives for NMR studies of composites of clays with organic molecules. Two-dimensional 1H-29Si and 1H-1H chemical-shift correlation experiments enable efficient detection of the 1H spectrum of organic segments near the clay surface. Combined with 1H spin diffusion, the organic segments at up to several nanometers from the clay surfaces can be probed. A 2D 1H-13C correlation experiment yields the 13C spectrum of the organic species near the clay surfaces. A mobility gradient of intercalated poly(ethylene oxide), PEO, segments is proven in 1H-3Si WISE experiments with spin diffusion. PMID:12469807

  10. Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy

    SciTech Connect

    Hastings, Adam F.; Otting, Gottfried; Folmer, Rutger H.A.; Duggin, Iain G.; Wake, R. Gerry; Wilce, Matthew C.J.; Wilce, Jacqueline A. . E-mail: Jackie.Wilce@med.monash.edu.au

    2005-09-23

    Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the dimeric 29 kDa replication terminator protein (RTP) and DNA terminator sites. We have used NMR spectroscopy to probe the changes in {sup 1}H-{sup 15}N correlation spectra of a {sup 15}N-labelled RTP.C110S mutant upon the addition of a 21 base pair symmetrical DNA binding site. Assignment of the {sup 1}H-{sup 15}N correlations was achieved using a suite of triple resonance NMR experiments with {sup 15}N,{sup 13}C,70% {sup 2}H enriched protein recorded at 800 MHz and using TROSY pulse sequences. Perturbations to {sup 1}H-{sup 15}N spectra revealed that the N-termini, {alpha}3-helices and several loops are affected by the binding interaction. An analysis of this data in light of the crystallographically determined apo- and DNA-bound forms of RTP.C110S revealed that the NMR spectral perturbations correlate more closely to protein structural changes upon complex formation rather than to interactions at the protein-DNA interface.

  11. Biological effects and physical safety aspects of NMR imaging and in vivo spectroscopy

    SciTech Connect

    Tenforde, T.S.; Budinger, T.F.

    1985-08-01

    An assessment is made of the biological effects and physical hazards of static and time-varying fields associated with the NMR devices that are being used for clinical imaging and in vivo spectroscopy. A summary is given of the current state of knowledge concerning the mechanisms of interaction and the bioeffects of these fields. Additional topics that are discussed include: (1) physical effects on pacemakers and metallic implants such as aneurysm clips, (2) human health studies related to the effects of exposure to nonionizing electromagnetic radiation, and (3) extant guidelines for limiting exposure of patients and medical personnel to the fields produced by NMR devices. On the basis of information available at the present time, it is concluded that the fields associated with the current generation of NMR devices do not pose a significant health risk in themselves. However, rigorous guidelines must be followed to avoid the physical interaction of these fields with metallic implants and medical electronic devices. 476 refs., 5 figs., 2 tabs.

  12. Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

    SciTech Connect

    Alam, Todd M.; Celina, Mathew; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.; Wheeler David R.

    1999-07-20

    The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

  13. 60 MHz (1)H NMR spectroscopy for the analysis of edible oils.

    PubMed

    Parker, T; Limer, E; Watson, A D; Defernez, M; Williamson, D; Kemsley, E Kate

    2014-05-01

    We report the first results from a new 60 MHz (1)H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ∼13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsar's performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ∼1130 cm(-1), attributable to a double-bond vibration. PMID:24850979

  14. Oil droplet size determination in complex flavor delivery systems by diffusion NMR spectroscopy.

    PubMed

    Fieber, Wolfgang; Hafner, Valeria; Normand, Valéry

    2011-04-15

    Droplet size distribution of flavor oils in two different solid flavor delivery systems were determined with pulsed field gradient NMR spectroscopy: yeast encapsulation system, a spray dried flavor encapsulation system based on empty yeast cells, and glassy encapsulation system, an extruded solid water soluble carbohydrate delivery system. The oil droplet sizes are limited by the yeast cell walls in the yeast encapsulation system and the size distribution is unimodal according to images from transmission electron microscopy. The droplet size determination with diffusion NMR is based on the Murday and Cotts theory of restricted diffusion of liquids in geometrical confinements. Good fits of the diffusion data could be obtained by applying a unimodal, log-normal size distribution model and average droplet sizes of about 2 μm were found that correspond approximately to the inner diameter of the yeast cells. Scanning electron microscopy images showed a multimodal droplet size distribution in the glassy extruded delivery systems. To fit the NMR data a bimodal log-normal distribution function with five independent fitting parameters was implemented that yielded consistent and robust results. The two size populations were found in the micron and sub-micron range, respectively. The method was sufficiently accurate to depict variation of droplet size distributions in glassy encapsulation systems of different formulation. PMID:21316700

  15. Functional group analysis in coal and on coal surfaces by NMR spectroscopy

    SciTech Connect

    Verkade, J.G.

    1990-01-01

    An accurate knowledge of the oxygen-bearing labile hydrogen functional groups (e.g., carboxylic acids, phenols and alcohols) in coal is required for today's increasingly sophisticated coal cleaning and beneficiation processes. Phospholanes (compounds having the general structure -POCH{sub 2}CH{sub 2}O (1)) are being investigated as reagents for the tagging of liable hydrogen functional groups in coal materials with the NMR-active {sup 31}P nucleus. Of twelve such reagents investigated so far, 2 (2-chloro-1,3-dioxaphospholane, ClPOCH{sub 2}CH{sub 2}O) and 8 (2-chloro-1,3-dithiaphospholane, ClPSCH{sub 2}CH{sub 2}S) have been found to be useful in identifying and quantitating, by {sup 31}P NMR spectroscopy, labile hydrogen functional groups in an Illinois No. 6 coal condensate. Reagent 2 has also been used to quantitate moisture in pyridine extracts of Argonne Premium Coal Samples. Preliminary {sup 119}Sn NMR spectroscopic results on model compounds with the new reagent CF{sub 3}C(O)NHSnMe{sub 3} (N-trimethylstannyltrifluoroacetamide, 14) suggest that labile hydrogen functional groups in coal materials may be more precisely identified with 14 than with phospholanes. 14 refs., 2 figs., 2 tabs.

  16. Quality assessment and authentication of virgin olive oil by NMR spectroscopy: a critical review.

    PubMed

    Dais, Photis; Hatzakis, Emmanuel

    2013-02-26

    Nuclear Magnetic Resonance (NMR) Spectroscopy has been extensively used for the analysis of olive oil and it has been established as a valuable tool for its quality assessment and authenticity. To date, a large number of research and review articles have been published with regards to the analysis of olive oil reflecting the potential of the NMR technique in these studies. In this critical review, we cover recent results in the field and discuss deficiencies and precautions of the three NMR techniques ((1)H, (13)C, (31)P) used for the analysis of olive oil. The two methodological approaches of metabonomics, metabolic profiling and metabolic fingerprinting, and the statistical methods applied for the classification of olive oils will be discussed in critical way. Some useful information about sample preparation, the required instrumentation for an effective analysis, the experimental conditions and data processing for obtaining high quality spectra will be presented as well. Finally, a constructive criticism will be exercised on the present methodologies used for the quality control and authentication of olive oil. PMID:23410622

  17. Rapid Etiological Classification of Meningitis by NMR Spectroscopy Based on Metabolite Profiles and Host Response

    PubMed Central

    Himmelreich, Uwe; Malik, Richard; Kühn, Till; Daniel, Heide-Marie; Somorjai, Ray L.; Dolenko, Brion; Sorrell, Tania C.

    2009-01-01

    Bacterial meningitis is an acute disease with high mortality that is reduced by early treatment. Identification of the causative microorganism by culture is sensitive but slow. Large volumes of cerebrospinal fluid (CSF) are required to maximise sensitivity and establish a provisional diagnosis. We have utilised nuclear magnetic resonance (NMR) spectroscopy to rapidly characterise the biochemical profile of CSF from normal rats and animals with pneumococcal or cryptococcal meningitis. Use of a miniaturised capillary NMR system overcame limitations caused by small CSF volumes and low metabolite concentrations. The analysis of the complex NMR spectroscopic data by a supervised statistical classification strategy included major, minor and unidentified metabolites. Reproducible spectral profiles were generated within less than three minutes, and revealed differences in the relative amounts of glucose, lactate, citrate, amino acid residues, acetate and polyols in the three groups. Contributions from microbial metabolism and inflammatory cells were evident. The computerised statistical classification strategy is based on both major metabolites and minor, partially unidentified metabolites. This data analysis proved highly specific for diagnosis (100% specificity in the final validation set), provided those with visible blood contamination were excluded from analysis; 6–8% of samples were classified as indeterminate. This proof of principle study suggests that a rapid etiologic diagnosis of meningitis is possible without prior culture. The method can be fully automated and avoids delays due to processing and selective identification of specific pathogens that are inherent in DNA-based techniques. PMID:19390697

  18. 60MHz 1H NMR spectroscopy for the analysis of edible oils?

    PubMed Central

    Parker, T.; Limer, E.; Watson, A.D.; Defernez, M.; Williamson, D.; Kemsley, E. Kate

    2014-01-01

    We report the first results from a new 60MHz 1H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ?13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsars performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ?1130cm?1, attributable to a double-bond vibration. PMID:24850979

  19. Solid-State 87Sr NMR Spectroscopy at Natural Abundance and High Magnetic Field Strength.

    PubMed

    Faucher, Alexandra; Terskikh, Victor V; Ye, Eric; Bernard, Guy M; Wasylishen, Roderick E

    2015-12-10

    Twenty-five strontium-containing solids were characterized via (87)Sr NMR spectroscopy at natural abundance and high magnetic field strength (B0 = 21.14 T). Strontium nuclear quadrupole coupling constants in these compounds are sensitive to the strontium site symmetry and range from 0 to 50.5 MHz. An experimental (87)Sr chemical shift scale is proposed, and available data indicate a chemical shift range of approximately 550 ppm, from -200 to +350 ppm relative to Sr(2+)(aq). In general, magnetic shielding increased with strontium coordination number. Experimentally measured chemical shift anisotropy is reported for stationary samples of solid powdered SrCl2·6H2O, SrBr2·6H2O, and SrCO3, with δaniso((87)Sr) values of +28, +26, and -65 ppm, respectively. NMR parameters were calculated using CASTEP, a gauge including projector augmented wave (GIPAW) DFT-based program, which addresses the periodic nature of solids using plane-wave basis sets. Calculated NMR parameters are in good agreement with those measured. PMID:26565918

  20. Analysis of trivalent cation complexation to functionalized mesoporous silica using solid-state NMR spectroscopy.

    PubMed

    Shusterman, Jennifer; Mason, Harris; Bruchet, Anthony; Zavarin, Mavrik; Kersting, Annie B; Nitsche, Heino

    2014-11-28

    Functionalized mesoporous silica has applications in separations science, catalysis, and sensors. In this work, we studied the fundamental interactions of trivalent cations with functionalized mesoporous silica. We contacted trivalent cations of varying ionic radii with N-[5-(trimethoxysilyl)-2-aza-1-oxopentyl]caprolactam functionalized mesoporous silica with the aim of probing the binding mechanism of the metal to the surface of the solid. We studied the functionalized silica using solid-state nuclear magnetic resonance (NMR) spectroscopy before and after contact with the metals of interest. We collected NMR spectra of the various metals, as well as of (29)Si and (13)C to probe the silica substrate and the ligand properties, respectively. The NMR spectra indicate that the metals bind to the functionalized silica via two mechanisms. Aluminum sorbed to both the silica and the ligand, but with different coordination for each. Scandium also sorbed to both the silica and the ligand, and unlike the aluminum, had the same coordination number. Additionally, the functionalized silica was susceptible to acid hydrolysis and two primary mechanisms of degradation were observed: detachment from the silica surface and opening of the seven-membered ring in the ligand. Opening of the seven-membered ring may be beneficial in that it decreases steric hindrance of the molecule for binding. PMID:25265419

  1. Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy

    SciTech Connect

    Isern, Nancy G.; Xue, Junfeng; Rao, Jaya V.; Cort, John R.; Ahring, Birgitte K.

    2013-04-03

    Profiles of metabolites produced by the thermophilic obligately anaerobic cellulose-degrading Gram-positive bacterium Caldicellulosiruptor saccharolyticus DSM 8903 strain following growth on different monosaccharides (D-glucose, D-mannose, L-arabinose, D-arabinose, D-xylose, L-fucose, and D-fucose) as carbon sources revealed several unexpected fermentation products, suggesting novel metabolic capacities and unexplored metabolic pathways in this organism. Both 1H and 13C nuclear magnetic resonance (NMR) spectroscopy were used to determine intracellular and extracellular metabolite profiles. Metabolite profiles were determined from 1-D 1H NMR spectra by curve fitting against spectral libraries provided in Chenomx software. To reduce uncertainties due to unassigned, overlapping, or poorly-resolved peaks, metabolite identifications were confirmed with 2-D homonuclear and heteronuclear NMR experiments. In addition to expected metabolites such as acetate, lactate, glycerol, and ethanol, several novel fermentation products were identified: ethylene glycol (from growth on D-arabinose, though not L-arabinose), acetoin and 2,3-butanediol (from D-glucose and L-arabinose), and hydroxyacetone (from D-mannose and L-arabinose). Production of ethylene glycol from D-arabinose was particularly notable, with around 10% of the substrate carbon converted into this uncommon fermentation product. The novel products have not previously been reported to be produced by C. saccharolyticus, nor would they be easily predicted from the current genome annotation, and show new potentials for using this strain for production of bioproducts.

  2. Siderochromes from Pseudomonas fluorescens. II. Structural homology as revealed by NMR spectroscopy.

    PubMed

    Philson, S B; Llinás, M

    1982-07-25

    Ferribactin and the pyoverdines, siderochromes that are obtained from liquid cultures of Pseudomonas fluorescens cells, have been studied and compared by 1H and 13C NMR spectroscopy. The proton spectra of the iron-free compounds show that the pyoverdines share with ferribactin a common feature, formyl hydroxamic acid groups, that previously had only been observed in hadacidin, and antitumor antibiotic produced by Penicillium frequentans. The 1H and 13C NMR data confirm that ferribactin is a nonapeptide that contains two residues each of lysine and N6-formyl-N6-hydroxyornithine. This corrects an earlier report (Maurer, B., Müller, A., Keller-Schierlein, W., and Zähner, H. (1968) Arch. Mikrobiol. 60, 326-339) ascribing two acetyl hydroxamic acid groups and three lysyl residues to ferribactin. Similarly, the spectroscopic data show that pyoverdine lacks the Glx and Tyr residues present in ferribactin. On the basis of the compositional analogy exhibited by pyoverdine and ferribactin, it is suggested that the two siderochromes may be metabolically related. The 13C NMR spectra of pyoverdine indicate that its fluorescent component is a nine-carbon aromatic heterocycle, probably identical with an o-dihydroxyquinoline chromophore found in pseudobactin, a fluorescent siderophore produced by Pseudomonas B10. PMID:6211451

  3. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  4. Characterization of silica catalyst supports by single and multiple quantum proton NMR spectroscopy

    SciTech Connect

    Hwang, S.J.; Uner, D.O.; King, T.S. |; Pruski, M.; Gerstein, B.C.

    1995-03-16

    Cab-O-Sil HS5, used as the support in silica supported ruthenium (Ru/SiO{sub 2}) catalysts, was characterized via single and multiple quantum (MQ) {sup 1}H NMR spectroscopy. The samples were studied both in the presence and in the absence of ruthenium. Single quantum spin counting of protons on silica support with and without ruthenium metal indicated that the total number of hydroxyl groups decreased significantly with increasing reduction temperature over the range of 350-530{degree}C. Two different components shown in static {sup 1}H NMR were found to reveal homogeneous and inhomogenous broadening via spectral hole burning experiments. {sup 1}H MQ-NMR spin, counting, based on the number of MQ coherences observed, showed the existence of small clusters of proton spins on the silica surface. The maximum measured cluster size was 6-7, or less, spins. Segments of silica resembling the 100 face of cristobalite on the surface are postulated to be possible sites for the clusters. The clusters in pure silica became smaller as the reduction temperature increased over 500{degree}C. No such change was detected in the presence of ruthenium. 33 refs., 11 figs., 2 tabs.

  5. Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy.

    PubMed

    Piveteau, Laura; Ong, Ta-Chung; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Kovalenko, Maksym V

    2015-11-01

    Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands. PMID:26473384

  6. Structural characterization of lignins isolated from Caragana sinica using FT-IR and NMR spectroscopy.

    PubMed

    Xiao, Ling-Ping; Shi, Zheng-Jun; Xu, Feng; Sun, Run-Cang; Mohanty, Amar K

    2011-09-01

    In order to efficiently explore and use woody biomass, six lignin fractions were isolated from dewaxed Caragana sinica via successive extraction with organic solvents and alkaline solutions. The lignin structures were characterized by Fourier transform infrared spectroscopy (FT-IR) and 1D and 2D Nuclear Magnetic Resonance (NMR). FT-IR spectra revealed that the "core" of the lignin structure did not significantly change during the treatment under the conditions given. The results of 1H and 13C NMR demonstrated that the lignin fraction L2, isolated with 70% ethanol containing 1% NaOH, was mainly composed of beta-O-4 ether bonds together with G and S units and trace p-hydroxyphenyl unit. Based on the 2D HSQC NMR spectrum, the ethanol organosolv lignin fraction L1, extracted with 70% ethanol, presents a predominance of beta-O-4' aryl ether linkages (61% of total side chains), and a low abundance of condensed carbon-carbon linked structures (such as beta-beta', beta-1', and beta-5') and a lower S/G ratio. Furthermore, a small percentage (ca. 9%) of the linkage side chain was found to be acylated at the gamma-carbon. PMID:22097829

  7. Directly Decoupled Diffusion-Ordered NMR Spectroscopy for the Analysis of Compound Mixtures

    PubMed Central

    Glanzer, Simon; Zangger, Klaus

    2014-01-01

    For the analysis of compound mixtures by NMR spectroscopy, it is important to assign the different peaks to the individual constituents. Diffusion-ordered spectroscopy (DOSY) is often used for the separation of signals based on their self-diffusion coefficient. However, this method often fails in the case of signal overlap, which is a particular problem for 1H-detected DOSY spectra. Herein, an approach that allows the acquisition of homonuclear broadband-decoupled DOSY spectra without the introduction of an additional decoupling dimension, by instant decoupling during acquisition, is presented. It was demonstrated on a mixture of six alcohols, and the investigation of the binding of a dodecapeptide to membrane mimetics. PMID:25059845

  8. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

  9. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how

  10. Phosphorus Speciation of Sequential Extracts of Organic Amendments using NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Akinremi, O.

    2009-04-01

    O.O. 1Akinremi Babasola Ajiboye and Donald N. Flaten 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2NT, Canada We carried out this study in order to determine the forms of phosphorus in various organic amendments using state-of-the art spectroscopic technique. Anaerobically digested biosolids (BIO), hog (HOG), dairy (DAIRY), beef (BEEF) and poultry (POULTRY) manures were subjected to sequential extraction. The extracts were analyzed by solution 31P nuclear magnetic resonance (NMR) spectroscopy. Most of the total P analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) in the sequential extracts of organic amendments were orthophosphate, except POULTRY, which was dominated by organic P. The labile P fraction in all the organic amendments, excluding POULTRY, was mainly orthophosphate P from readily soluble calcium and some aluminum phosphates. In the poultry litter, however, Ca phytate was the main P species controlling P solubility. Such knowledge of the differences in the chemical forms of phosphorus in organic amendments are essential for proper management of these amendments for agro-environmental purposes Key words: organic amendments, solution NMR, sequential fractionation, labile phosphorus

  11. High Resolution NMR Spectroscopy of Nanocrystalline Proteins at Ultra-High Magnetic Field

    PubMed Central

    Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

    2010-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of 500, 750, and 900 MHz). For two protein systems—GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein—line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies. PMID:19953303

  12. Secondary structure determination of human. beta. -endorphin by /sup 1/H NMR spectroscopy

    SciTech Connect

    Lichtarge, O.; Jardetzky, O.; Li, C.H.

    1987-09-08

    The /sup 1/H NMR spectra of human ..beta..-endorphin indicate that the peptide exists in random-coil form in aqueous solution but becomes helical in mixed solvent. Thermal denaturation NMR experiments show that in water there is no transition between 24 and 75/sup 0/C, while a slow noncooperative thermal unfolding is observed in a 60% methanol-40% water mixed solvent in the same temperature range. These findings are consistent with circular dichroism studies by other workers concluding that ..beta..-endorphin is a random coil in water but that it forms 50% ..cap alpha..-helix or more in mixed solvents. The peptide in the mixed water-methanol solvent was further studied by correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) experiments. These allow a complete set of assignments to be made and establish two distinct stretches over which the solvent induces formation of ..cap alpha..-helices: the first occurs between Tyr-1 and Thr-12 and the second between Leu-14 and extending to Lys-28. There is evidence that the latter is capped by a turn occurring between Lys-28 and Glu-31. These helices form at the enkephalin receptor binding site, which is at the amino terminus, and at the morphine receptor binding site, located at the carboxyl terminus. The findings suggest that these two receptors may specifically recognize ..cap alpha..-helices.

  13. Studying Lyotropic Crystalline Phases Using High-Resolution MAS NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pampel, André; Volke, Frank

    There is a large area, both in basic science and in applied research, in which lamellar liquid-crystalline phases play in important role. Dispersions of lipids and water, forming such phases, serve as models for biological membranes or because of there unique physico-chemical properties, they have been used as drug delivery systems. In this chapter the reader will be introduced in NMR methods for studying such systems. The chapter focuses on an experimental approach that is based on techniques that were developed for investigations of liquid-crystalline phases in combination with MAS. These techniques unsheathe properties that are related to the dynamic, liquid character of liquid-crystalline phases. Their general applicability and their limits are discussed. Their use is demonstrated with some examples covering biophysical studies as well as practical applications. The major focus is on problems that are related to molecules interacting with the lipid-water interfaces. The methods discussed reach from two-dimensional NOE spectroscopy for structure determination, up to the latest development, the combination of MAS with pulsed field gradient NMR spectroscopy to study diffusion properties.

  14. Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy

    PubMed Central

    Chen, Bin; Zuo, Xiaobing; Wang, Yun-Xing; Dayie, T. Kwaku

    2012-01-01

    Riboswitches are a newly discovered large family of structured functional RNA elements that specifically bind small molecule targets out of a myriad of cellular metabolites to modulate gene expression. Structural studies of ligand-bound riboswitches by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy have provided insights into detailed RNA–ligand recognition and interactions. However, the structures of ligand-free riboswitches remain poorly characterized. In this study, we have used a variety of biochemical, biophysical and computational techniques including small-angle X-ray scattering and NMR spectroscopy to characterize the ligand-free and ligand-bound forms of SAM-II riboswitch. Our data demonstrate that the RNA adopts multiple conformations along its folding pathway and suggest that the RNA undergoes marked conformational changes upon Mg2+ compaction and S-adenosylmethionine (SAM) metabolite binding. Further studies indicated that Mg2+ ion is not essential for the ligand binding but can stabilize the complex by facilitating loop/stem interactions. In the presence of millimolar concentration of Mg2+ ion, the RNA samples a more compact conformation. This conformation is near to, but distinct from, the native fold and competent to bind the metabolite. We conclude that the formation of various secondary and tertiary structural elements, including a pseudoknot, occur to sequester the putative Shine–Dalgarno sequence of the RNA only after metabolite binding. PMID:22139931

  15. Understanding J-Modulation during Spatial Encoding for Sensitivity-Optimized Ultrafast NMR Spectroscopy.

    PubMed

    Gouilleux, Boris; Rouger, Laetitia; Charrier, Benoît; Kuprov, Ilya; Akoka, Serge; Dumez, Jean-Nicolas; Giraudeau, Patrick

    2015-10-01

    Ultrafast (UF) NMR spectroscopy is an approach that yields 2D spectra in a single scan. This methodology has become a powerful analytical tool that is used in a large array of applications. However, UF NMR spectroscopy still suffers from an intrinsic low sensitivity, and from the need to compromise between sensitivity, spectral width, and resolution. In particular, the modulation of signal intensities by the spin-spin J-coupling interaction (J-modulation) impacts significantly on the intensities of the spectral peaks. This effect can lead to large sensitivity losses and even to missing spectral peaks, depending on the nature of the spin system. Herein, a general simulation package (Spinach) is used to describe J-modulation effects in UF experiments. The results from simulations match with experimental data and the results of product operator calculations. Several methods are proposed to optimize the sensitivity in UF COSY spectra. The potential and drawbacks of the different strategies are also discussed. These approaches provide a way to adjust the sensitivity of UF experiments for a large range of applications. PMID:26401975

  16. Labeling strategy and signal broadening mechanism of Protein NMR spectroscopy in Xenopus laevis oocytes.

    PubMed

    Ye, Yansheng; Liu, Xiaoli; Chen, Yanhua; Xu, Guohua; Wu, Qiong; Zhang, Zeting; Yao, Chendie; Liu, Maili; Li, Conggang

    2015-06-01

    We used Xenopus laevis oocytes, a paradigm for a variety of biological studies, as a eukaryotic model system for in-cell protein NMR spectroscopy. The small globular protein GB1 was one of the first studied in Xenopus oocytes, but there have been few reports since then of high-resolution spectra in oocytes. The scarcity of data is at least partly due to the lack of good labeling strategies and the paucity of information on resonance broadening mechanisms. Here, we systematically evaluate isotope enrichment and labeling methods in oocytes injected with five different proteins with molecular masses of 6 to 54 kDa. (19) F labeling is more promising than (15) N, (13) C, and (2) H enrichment. We also used (19) F NMR spectroscopy to quantify the contribution of viscosity, weak interactions, and sample inhomogeneity to resonance broadening in cells. We found that the viscosity in oocytes is only about 1.2 times that of water, and that inhomogeneous broadening is a major factor in determining line width in these cells. PMID:25965532

  17. The Development of 460 GHz gyrotrons for 700 MHz DNP-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, T.; Tatematsu, Y.; Yamaguchi, Y.; Khutoryan, E. M.; Kuleshov, A. N.; Ueda, K.; Matsuki, Y.; Fujiwara, T.

    2015-07-01

    Two demountable gyrotrons with internal mode converters were developded as sub-THz radiation sources for 700 MHz DNP (Dynamic Nuclear Polarization) enhanced NMR spectroscopy. Experimental study on the DNP-NMR spectroscopy will be carried out in Osaka University, Institute for Protein Research, as a collaboration with FIR UF. Both gyrotrons operate near 460 GHz and the output CW power measured at the end of transmission system made by circular waveguides is typically 20 to 30 watts. One of them named Gyrotron FU CW GVI (we are using "Gyrotron FU CW GO-1" as an official name in Osaka University) is designed to have a special function of high speed frequency modulation δ f within 100 MHz band. This will expand excitable band width of ESR and increase the number of electron spins contributing to DNP. The other gyrotron, Gyrotron FU CW GVIA ("Gyrotron FU CW GO-II") has a function of frequency tunability Δ f in the range of wider than 1.5 GHz, which is achieved in steady state by changing magnetic field intensity. This function should be used for adjusting the output frequency at the optimal value to achieve the highest enhancement factor of DNP.

  18. Identification and quantitative determination of lignans in Cedrus atlantica resins using 13C NMR spectroscopy.

    PubMed

    Nam, Anne-Marie; Paoli, Mathieu; Castola, Vincent; Casanova, Joseph; Bighelli, Ange

    2011-03-01

    Identification and quantitative determination of individual components of resin collected on the trunk of 28 Cedrus atlantica trees, grown in Corsica, has been carried out using 13C NMR spectroscopy. Eight resin acids bearing either the pimarane or abietane skeleton, two monoterpene hydrocarbons and four oxygenated neutral diterpenes have been identified, as well as three lignans, scarcely found in resins. Three groups could be distinguished within the 28 resin samples. The nine samples of Group I had their composition dominated by diterpene acids (33.7-45.8%), with abietic acid (6.2-18.7%) and isopimaric acid (5.1-12.6%) being the major components. The four samples of Group II contained resin acids (main components) and lignans in moderate amounts (up to 10.3%). Conversely, lignans (38.8-63.8%) were by far the major components of the 15 samples of Group III. Depending on the sample, the major component was pinoresinol (18.1-38.9%), lariciresinol (17.2-33.7%) or lariciresinol 9'-acetate (16.9-29.1%). Finally, due to the high biological interest in lignans, a rapid procedure, based on 1H NMR spectroscopy, was developed for quantification of lignans in resins of C. atlantica. PMID:21485279

  19. Determination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy

    PubMed Central

    Drögemüller, Johanna; Strauß, Martin; Schweimer, Kristian; Jurk, Marcel; Rösch, Paul; Knauer, Stefan H.

    2015-01-01

    In bacteria, RNA polymerase (RNAP), the central enzyme of transcription, is regulated by N-utilization substance (Nus) transcription factors. Several of these factors interact directly, and only transiently, with RNAP to modulate its function. As details of these interactions are largely unknown, we probed the RNAP binding surfaces of Escherichia coli (E. coli) Nus factors by nuclear magnetic resonance (NMR) spectroscopy. Perdeuterated factors with [1H,13C]-labeled methyl groups of Val, Leu, and Ile residues were titrated with protonated RNAP. After verification of this approach with the N-terminal domain (NTD) of NusG and RNAP we determined the RNAP binding site of NusE. It overlaps with the NusE interaction surface for the NusG C-terminal domain, indicating that RNAP and NusG compete for NusE and suggesting possible roles for the NusE:RNAP interaction, e.g. in antitermination and direct transcription:translation coupling. We solved the solution structure of NusA-NTD by NMR spectroscopy, identified its RNAP binding site with the same approach we used for NusG-NTD, and here present a detailed model of the NusA-NTD:RNAP:RNA complex. PMID:26560741

  20. Reexamination of C-NMR13 in (TMTTF)2AsF6 : Comparison with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hirose, Shinji; Kawamoto, Atsushi; Matsunaga, Noriaki; Nomura, Kazushige; Yamamoto, Kaoru; Yakushi, Kyuya

    2010-05-01

    The charge order (CO) state can be observed by microprobe measurements such as nuclear magnetic resonance (NMR) and infrared spectroscopy. We used the infrared spectroscopy to examine (TMTTF)2AsF6 and confirmed the CO transition seen in previous C13 -NMR studies. However we found the degree of charge disproportionation, Δρ=0.16 , to be smaller than that obtained from the analysis of T1 in C13 -NMR and the redistribution of charge density below spin Peierls transition predicted by C13 -NMR was not observed at low temperature. We estimated the degree of spin disproportionation to be 0.11 from the analysis of the NMR shift in previous NMR studies. This small disproportionation does not require the redistribution of charge density at low temperature. The different behaviors of T1 at charge-rich and charge-poor molecular sites observed by C13 -NMR can be examined by the contribution of the commensurate antiferromagnetic fluctuation with 4kF .

  1. Metabolic differentiations of Pueraria lobata and Pueraria thomsonii using ¹H NMR spectroscopy and multivariate statistical analysis.

    PubMed

    Chen, Yan-Gan; Song, Yue-Lin; Wang, Ying; Yuan, Yun-Fei; Huang, Xiao-Jun; Ye, Wen-Cai; Wang, Yi-Tao; Zhang, Qing-Wen

    2014-05-01

    Puerariae Radix was a widely used herbal medicine. Pueraria lobata (PL) and Pueraria thomsonii (PT) were the two authorized sources of Puerariae Radix (gegen) in China. In this study, metabolic differentiations between these two species were investigated using NMR spectroscopy followed by principal components analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The content of puerarin in PL and PT was also determined using quantitative (1)H NMR spectroscopy. Thirteen isoflavones were tentatively identified based on 1D and 2D NMR spectroscopic data in two species. The (1)H NMR spectra of PL and PT were obviously different. PL and PT could also be markedly discriminated from (1)H NMR spectroscopic data by PCA and PLS-DA. For the crude drug resources, isoflavones, in which puerarin is the most important one, were regarded as the reasonable markers for the discrimination of the two species. The contents of puerarin and total isoflavones in PL were quantitated much higher than those in PT. Above all, (1)H NMR spectroscopy, which can provide comprehensive profiles of the metabolites and achieve convenient determinations of puerarin and total isoflavones in a single run, is an efficient means for evaluating the medicinal samples and achieving a better quality control of Puerariae Radix. PMID:23746990

  2. Earle K. Plyler Prize for Molecular Spectroscopy Talk: Coherent Ultrafast Multidimensional Spectroscopy of Molecules; From NMR to X-rays

    NASA Astrophysics Data System (ADS)

    Mukamel, Shaul

    2011-03-01

    Multidimensional spectroscopic techniques which originated with NMR in the 1970s have been extended over the past 15 years to the optical regime. NMR spectroscopists have developed methods for the design of pulse sequences that resolve otherwise congested spectra, enhance selected spectral features and reveal desired dynamical events. The major experimental and computational advances required for extending these ideas to study electronic and vibrational motions on the femtosecond timescale will be surveyed. The response of complex molecules and semiconductor nanostructures to sequences of optical pulses provides snapshots of their structure and dynamical processes. Two-dimensional correlation plots of the signals show characteristic cross-peak patterns which carry information about hydrogen bonding, secondary structure fluctuations of proteins and amyloid fibrils, and coherent and incoherent energy and charge transfer in photosynthetic complexes. Double quantum coherence signals that are induced by correlations among electrons or excitons allow the visualization of correlated wavefunctions. Future extensions to the attosecond regime using xray pulses will be discussed. Since core excitations are highly localized at selected atoms, such signals can monitor the motions of valence electron wavepackets in real space with atomic spatial resolution. Common principles underlying coherent spectroscopy techniques for spins, valence electrons, and core electronic excitations, spanning frequencies from radiowaves, infrared, ultraviolet all the way to hard X-rays will be discussed.

  3. Liposcale: a novel advanced lipoprotein test based on 2D diffusion-ordered 1H NMR spectroscopy[S

    PubMed Central

    Mallol, Roger; Amigó, Núria; Rodríguez, Miguel A.; Heras, Mercedes; Vinaixa, Maria; Plana, Núria; Rock, Edmond; Ribalta, Josep; Yanes, Oscar; Masana, Lluís; Correig, Xavier

    2015-01-01

    Determination of lipoprotein particle size and number using advanced lipoprotein tests (ALTs) is of particular importance to improve cardiovascular risk prediction. Here we present the Liposcale test, a novel ALT based on 2D diffusion-ordered 1H NMR spectroscopy. Our method uses diffusion coefficients to provide a direct measure of the mean particle sizes and numbers. Using 177 plasma samples from healthy individuals and the concentration of ApoB and ApoA from isolated lipoprotein fractions, our test showed a stronger correlation between the NMR-derived lipoprotein particle numbers and apolipoprotein concentrations than the LipoProfile® test commercialized by Liposcience. We also converted LDL particle numbers to ApoB equivalents (milligrams per deciliter) and our test yielded similar values of LDL-ApoB to the LipoProfile® test (absolute mean bias of 8.5 and 7.4 mg/dl, respectively). In addition, our HDL particle number values were more concordant with the calibrated values determined recently using ion mobility. Finally, principal component analysis distinguished type 2 diabetic patients with and without atherogenic dyslipidemia (AD) on a second cohort of 307 subjects characterized using the Liposcale test (area under the curve = 0.88) and showed concordant relationships between variables explaining AD. Altogether, our method provides reproducible and reliable characterization of lipoprotein particles and it is applicable to pathological states such as AD. PMID:25568061

  4. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy.

    PubMed

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  5. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy

    PubMed Central

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  6. The contribution of solid-state NMR spectroscopy to understanding biomineralization: Atomic and molecular structure of bone

    NASA Astrophysics Data System (ADS)

    Duer, Melinda J.

    2015-04-01

    Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.

  7. Specific inclusion mode of guest compounds in the amylose complex analyzed by solid state NMR spectroscopy.

    PubMed

    Tozuka, Yuichi; Takeshita, Aya; Nagae, Ayako; Wongmekiat, Arpansiree; Moribe, Kunikazu; Oguchi, Toshio; Yamamoto, Keiji

    2006-08-01

    The inclusion compound formation between linear amylose of molecular weight 102500 (AS100) and p-aminobenzoic acid (PA) during the sealed-heating process was investigated by powder X-ray diffractometry, infrared spectroscopy and solid state NMR spectroscopy. Sealed-heating of AS100 and PA at 100 degrees C for 6 h provided an inclusion compound with 6(1)-helix structure, while a 7(1)-helix structure was found when sealed-heating was carried out at 150 degrees C for 1 h. The formation of an inclusion compound was not observed when sealed-heating was performed at 50 degrees C for 6 h. The 7(1)-helix inclusion compound maintained its structure even during storage at high temperature while the 6(1)-helix inclusion compound decomposed and returned to the original V(a)-amylose upon heating to 180 degrees C. Quantitative determination revealed that one PA molecule could be included per one helical turn of AS100 for both 6(1)-helix and 7(1)-helix inclusion compounds. Solid state NMR spectroscopy suggested that PA molecules were included in the amylose helix core in the 7(1)-helix inclusion compound, while in the case of 6(1)-helix inclusion compound, PA molecules were accommodated in the interstices between amylose helices. Moreover, the inclusion compound formation by sealed-heating of AS100 was also observed when using PA analogues as guest compounds. The binding ratio of AS100 and PA analogues varied depending on the size of guest molecules. PMID:16880651

  8. Synthesis, spectral (FT-IR, UV-visible, NMR) features, biological activity prediction and theoretical studies of 4-Amino-3-(4-hydroxybenzyl)-1H-1,2,4-triazole-5(4H)-thione and its tautomer

    NASA Astrophysics Data System (ADS)

    Srivastava, Ambrish Kumar; Kumar, Abhishek; Misra, Neeraj; Manjula, P. S.; Sarojini, B. K.; Narayana, B.

    2016-03-01

    Triazole compounds constitute an important class of organic chemistry due to their various biological and corrosion inhibition activities. The synthesis scheme of a new triazole compound namely, 4-Amino-3-(4-hydroxybenzyl)-1H-1,2,4-triazole-5(4H)-thione (4AHT) has been theoretically analyzed. Our density functional theory (DFT) based calculations show that the synthesis of 4AHT is energetically feasible at the room temperature as the reaction is exothermic, spontaneous as well as favored in forward direction. The calculated bond-lengths are found to be in good agreement with corresponding crystallographic values. We have considered two possible tautomers of 4AHT viz. thione and thiol forms. The FT-IR (KBr disc), UV-visible (ethanol) and 1H-NMR (DMSO) spectra of 4AHT have been recorded. The vibrational modes have been assigned on the basis of their potential energy distributions and scaled wavenumbers agree well with the FT-IR wavenumbers. Time dependent DFT calculations are performed to analyze the electronic transitions for various excited states which reproduce the experimental peak observed in UV-visible spectrum. Using gauge independent atomic orbital method 1H-NMR chemical shifts have been calculated and correlated with the experimental chemical shifts with the linear correlation coefficient of 0.9453. Our spectral analyses reveal the dominance of thione over thiol form of 4AHT. The chemical reactivity of 4AHT has been discussed by molecular electrostatic potential surface as well as various electronic parameters. The biological activities of 4AHT have also been explored theoretically and it has been found that the title molecule can act as a potential inhibitor of cyclin-dependent kinase 5 enzyme. These findings may guide the synthesis and design of new triazole compounds with interesting biological activity.

  9. Elucidation of meso- and microporosity in soil components with 129-Xe NMR spectroscopy of adsorbed xenon

    NASA Astrophysics Data System (ADS)

    Filimonova, Svetlana; Nossov, Andrey; Knicker, Heike; Kögel-Knabner, Ingrid

    2010-05-01

    Soil meso- and micropores (2-50 nm and <2 nm) are usually studied with the use of common adsorption methods. As a complementary technique, 129-Xe NMR spectroscopy of adsorbed xenon was only recently suggested for the use in soil science. In this present study, we applied both conventional, i.e. thermally polarised (TP), and hyperpolarised (HP) 129-Xe NMR for elucidating pore environments of a series of samples representing porous soil constituents. Aluminium (hydr)oxides, Al2O3 and AlOOH, both pure and subjected to the sorption of dissolved organic matter (DOM) were chosen as model mineral systems. Charcoals were used for understanding adsorption behaviour of xenon within organic polymeric structures formed by thermally altered bio-macromolecules. Natural soil particle size fractions were obtained from a non-allophanic Andosol and from Arenosol, i.e. soils containing charred residues and also characterised by a high content of Al oxides (case of the Andosol). DOM sorption on the studied Al oxides occurred inhomogeneously as it was inferred from the existence of the "empty" pores and the pores coated with OM. The latter were evidenced by the different Xe adsorption enthalpies estimated from the temperature dependences of the chemical shift. The increased sensitivity of the HP 129-Xe NMR allowed us detecting micropores in the charcoals, where the N2 adsorption method underestimated porosity due to the restricted diffusion of N2 at 77 K. The observed differences between the HP and TP 129-Xe patterns were explained by the slow diffusion of xenon within an interconnected but highly constricted pore system of the charcoals. The estimated width of those constricted pore openings was of the order of one or two diameters of the Xe atom. Similar "bottle neck" effects may also exist in the natural soil particle size fractions, as it was inferred from the increased pore access for Xe adsorption performed at elevated pressures (2-4 bar). The unusually large 129-Xe shifts (up to 170 ppm) detected for the for the H2O2-treated clay fractions of the Andosol (Bw horizon) coincided with their large specific surface areas(up to 220 m2/g) and were attributed to the pores formed by agglomerates of the nano-sized Al - humus complexes with contribution from the charred residues. Micropores found in the Arenosol fractions were attributed to the charred residues. Briefly, 129-Xe NMR spectroscopy shows its potential for studying soil meso- and micropores due to: i) higher sensitivity for probing micropores within polymeric organic structures, e.g. charcoals, as compared to the N2 adsorption; ii) possibility to use elevated pressures of the adsorbate for increasing the pore accessibility; iii) evaluating not only the pore size range but also adsorption enthalpies that reflect the nature of Xe - pore surface interactions. On the other hand, a combination of the HP- and TP 129-Xe NMR was shown to be helpful for modelling the pore structures of solids, since relaxation phenomena determining appearance of the HP 129-Xe NMR patterns also relate to the pore attainability.

  10. In vivo 31P-NMR spectroscopy of right ventricle in pigs.

    PubMed

    Schwartz, G G; Steinman, S K; Weiner, M W; Matson, G B

    1992-06-01

    The energy metabolism of the right ventricle (RV) in vivo has been largely unexplored. The goal of this study was to develop and implement techniques for in vivo 31P nuclear magnetic resonance (NMR) spectroscopy of the RV free wall. A two-turn, crossover-design elliptical surface coil was constructed to provide high sensitivity across the thin RV wall but minimal sensitivity in the blood-filled RV cavity. In 36 open-chest, anesthetized pigs, 31P spectroscopy of the RV free wall was performed with this coil at a field strength of 2 Tesla. Spectra were obtained from 800 acquisitions in 24 min with an average signal-to-noise ratio of 13.2 for phosphocreatine (PCr). The PCr-to-ATP (PCr/ATP) ratio of porcine RV was 1.42 +/- 0.05 (mean +/- SE), uncorrected for saturation at a repetition time of 1.8 s. With the use of literature values of the time constant of longitudinal relaxation (T1) to correct for partial saturation, the RV PCr/ATP was estimated to lie between 1.7 and 2.3. Decreased RV PCr/ATP was observed during RV ischemia and pressure overload. Thus in vivo 31P spectroscopy of the RV is readily accomplished with an appropriate surface coil and can provide new information about RV energy metabolism. PMID:1621852

  11. Organic solute changes with acidification in Lake Skjervatjern as shown by 1H-NMR spectroscopy

    USGS Publications Warehouse

    Malcolm, R.L.; Hayes, T.

    1994-01-01

    1H-NMR spectroscopy has been found to be a useful tool to establish possible real differences and trends between all natural organic solute fractions (fulvic acids, humic acids, and XAD-4 acids) after acid-rain additions to the Lake Skjervatjern watershed. The proton NMR technique used in this study determined the spectral distribution of nonexchangeable protons among four peaks (aliphatic protons; aliphatic protons on carbon ?? or attached to electronegative groups; protons on carbons attached to O or N heteroatoms; and aromatic protons). Differences of 10% or more in the respective peak areas were considered to represent a real difference. After one year of acidification, fulvic acids decreased 13% (relative) in Peak 3 protons on carbon attached to N and O heteratoms and exhibited a decrease in aromatic protons between 27% and 31%. Humic acids also exhibited an 11% relative decrease in aromatic protons as a result of acidification. After one year of acidification, real changes were shown in three of the four proton assignments in XAD-4 acids. Peak 1 aliphatic protons increased by 14% (relative), Peak 3 protons on carbons attached to O and N heteroatoms decreased by 13% (relative), and aromatic protons (Peak 4) decreased by 35% (relative). Upon acidification, there was a trend in all solutes for aromatic protons to decrease and aliphatic protons to increase. The natural variation in organic solutes as shown in the Control Side B of the lake from 1990 to 1991 is perhaps a small limitation to the same data interpretations of acid rain changes at the Lake Skjervatjern site, but the proton NMR technique shows great promise as an independent scientific tool to detect and support other chemical techniques in establishing organic solute changes with different treatments (i.e., additions of acid rain).

  12. Synthesis and Resolution of the Atropisomeric 1,1'-Bi-2-Naphthol: An Experiment in Organic Synthesis and 2-D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.

    2004-01-01

    NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.

  13. The dynamic complex of cytochrome c6 and cytochrome f studied with paramagnetic NMR spectroscopy.

    PubMed

    Díaz-Moreno, Irene; Hulsker, Rinske; Skubak, Pavol; Foerster, Johannes M; Cavazzini, Davide; Finiguerra, Michelina G; Díaz-Quintana, Antonio; Moreno-Beltrán, Blas; Rossi, Gian-Luigi; Ullmann, G Matthias; Pannu, Navraj S; De la Rosa, Miguel A; Ubbink, Marcellus

    2014-08-01

    The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge-charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process. PMID:24685428

  14. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  15. In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization**

    PubMed Central

    Barskiy, Danila A.; Kovtunov, Kirill V.; Koptyug, Igor V.; He, Ping; Groome, Kirsten A.; Best, Quinn A.; Shi, Fan; Goodson, Boyd M.; Shchepin, Roman V.; Truong, Milton L.; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2015-01-01

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. PMID:25367202

  16. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy.

    PubMed

    Jakes, W; Gerdova, A; Defernez, M; Watson, A D; McCallum, C; Limer, E; Colquhoun, I J; Williamson, D C; Kemsley, E K

    2015-05-15

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz (1)H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional "authentic" beef region (p=0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze-thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz (1)H NMR represents a feasible high-throughput approach for screening raw meat. PMID:25577043

  17. Low Temperature 1H MAS NMR Spectroscopy Studies of Proton Motion in Zeolite

    SciTech Connect

    Huo, H.; Peng, L; Grey, C

    2009-01-01

    Low temperature {sup 1}H MAS NMR spectroscopy is used to study protonic motion in zeolite HZSM-5 in both samples that have been dried using procedures that are standard in the literature and samples that have been more carefully dehydrated. A significant enhancement of proton mobility is seen for the ''standard'' dehydrated HZSM-5 sample in comparison to that seen for the much drier sample. This is ascribed to a vehicle-hopping mechanism involving the residual water that is present in these zeolites. A gradual change of the framework structure is observed on cooling to approximately 213 K, as monitored via the change in {sup 1}H chemical shift values of the Broensted acid resonances and by X-ray diffraction. A more sudden change in structure is seen by differential scanning calorimetry and NMR at approximately 220?230 K, which is associated with changes in both the mobility and the modes of binding of the residual water to the Broensted acid sites and the zeolite framework.

  18. In vivo 31P-NMR spectroscopy of chronically stimulated canine skeletal muscle.

    PubMed

    Clark, B J; Acker, M A; McCully, K; Subramanian, H V; Hammond, R L; Salmons, S; Chance, B; Stephenson, L W

    1988-02-01

    Chronic stimulation converts skeletal muscle of mixed fiber type to a uniform muscle made up of type I, fatigue-resistant fibers. Here, the bioenergetic correlates of fatigue resistance in conditioned canine latissimus dorsi are assessed with in vivo phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy. After chronic electrical stimulation, five dogs underwent 31P-NMR spectroscopic and isometric tension measurements on conditioned and contralateral control muscle during stimulation for 200, 300, 500, and 800 ms of an 1,100-ms duty cycle. With stimulation, phosphocreatine (PCr) fell proportional to the degree of stimulation in both conditioned and control muscle but fell significantly less in conditioned muscle at all but the least intense stimulation period (200 ms). Isometric tension, expressed as a tension time index per gram muscle, was significantly greater in the conditioned muscle at the two longest stimulation periods. The overall small change in PCr and the lack of a plateau in tension observed in the conditioned muscle are similar to that seen in cardiac muscle during increased energy demand. This study indicates that the conditioned muscle's markedly enhanced resistance to fatigue is in part the result of its increased capacity for oxidative phosphorylation. PMID:3348365

  19. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy

    PubMed Central

    Jakes, W.; Gerdova, A.; Defernez, M.; Watson, A.D.; McCallum, C.; Limer, E.; Colquhoun, I.J.; Williamson, D.C.; Kemsley, E.K.

    2015-01-01

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz 1H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional “authentic” beef region (p = 0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze–thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz 1H NMR represents a feasible high-throughput approach for screening raw meat. PMID:25577043

  20. Time-domain Bayesian detection and estimation of noisy damped sinusoidal signals applied to NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Rubtsov, Denis V.; Griffin, Julian L.

    2007-10-01

    The problem of model detection and parameter estimation for noisy signals arises in different areas of science and engineering including audio processing, seismology, electrical engineering, and NMR spectroscopy. We have adopted the Bayesian modeling framework to jointly detect and estimate signal resonances. This considers a model of the time-domain complex free induction decay (FID) signal as a sum of exponentially damped sinusoidal components. The number of model components and component parameters are considered unknown random variables to be estimated. A Reversible Jump Markov Chain Monte Carlo technique is used to draw samples from the joint posterior distribution on the subspaces of different dimensions. The proposed algorithm has been tested on synthetic data, the 1H NMR FID of a standard of L-glutamic acid and a blood plasma sample. The detection and estimation performance is compared with Akaike information criterion (AIC), minimum description length (MDL) and the matrix pencil method. The results show the Bayesian algorithm superior in performance especially in difficult cases of detecting low-amplitude and strongly overlapping resonances in noisy signals.

  1. Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing

    USGS Publications Warehouse

    Kogel-Knabner, I.; Hatcher, P.G.

    1989-01-01

    Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

  2. Multinuclear NMR spectroscopy for differentiation of molecular configurations and solvent properties between acetone and dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Wen, Yuan-Chun; Kuo, Hsiao-Ching; Jia, Hsi-Wei

    2016-04-01

    The differences in molecular configuration and solvent properties between acetone and dimethyl sulfoxide (DMSO) were investigated using the developed technique of 1H, 13C, 17O, and 1H self-diffusion liquid state nuclear magnetic resonance (NMR) spectroscopy. Acetone and DMSO samples in the forms of pure solution, ionic salt-added solution were used to deduce their active sites, relative dipole moments, dielectric constants, and charge separations. The NMR results suggest that acetone is a trigonal planar molecule with a polarized carbonyl double bond, whereas DMSO is a trigonal pyramidal-like molecule with a highly polarized S-O single bond. Both molecules use their oxygen atoms as the active sites to interact other molecules. These different molecular models explain the differences their physical and chemical properties between the two molecules and explain why DMSO is classified as an aprotic but highly dipolar solvent. The results are also in agreement with data obtained using X-ray diffraction, neutron diffraction, and theoretical calculations.

  3. In vivo sup 31 P-NMR spectroscopy of chronically stimulated canine skeletal muscle

    SciTech Connect

    Clark, B.J. III; McCully, A.K.; Subramanian, H.V.; Hammond, R.L.; Salmons, S.; Chance, B.; Stephenson, L.W. Univ. of Pennsylvania School of Medicine, Philadelphia Univ. of Birmingham )

    1988-02-01

    Chronic stimulation converts skeletal muscle of mixed fiber type to a uniform muscle made up of type I, fatigue-resistant fibers. Here, the bioenergetic correlates of fatigue resistance in conditioned canine latissimus dorsi are assessed with in vivo phosphorus-31 nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy. After chronic electrical stimulation, five dogs underwent {sup 31}P-NMR spectroscopic and isometric tension measurements on conditioned and contralateral control muscle during stimulation for 200, 300, 500, and 800 ms of an 1,100-ms duty cycle. With stimulation, phosphocreatine (PCr) fell proportional to the degree of stimulation in both conditioned and control muscle but fell significantly less in conditioned muscle at all the least intense stimulation period (200 ms). Isometric tension, expressed as a tension time index per gram muscle, was significantly greater in the conditioned muscle at the two longest stimulation periods. The overall small change in PCr and the lack of a plateau in tension observed in the conditioned muscle are similar to that seen in cardiac muscle during increased energy demand. This study indicates that the conditioned muscle's markedly enhanced resistance to fatigue is in part the result of its increased capacity for oxidative phosphorylation.

  4. The Interaction between tRNALys3 and the Primer Activation Signal Deciphered by NMR Spectroscopy

    PubMed Central

    Brachet, Franck; Tisne, Carine

    2013-01-01

    The initiation of reverse transcription of the human immunodeficiency virus type 1 (HIV-1) requires the opening of the three-dimensional structure of the primer tRNALys3 for its annealing to the viral RNA at the primer binding site (PBS). Despite the fact that the result of this rearrangement is thermodynamically more stable, there is a high-energy barrier that requires the chaperoning activity of the viral nucleocapsid protein. In addition to the nucleotide complementarity to the PBS, several regions of tRNALys3 have been described as interacting with the viral genomic RNA. Among these sequences, a sequence of the viral genome called PAS for “primer activation signal” was proposed to interact with the T-arm of tRNALys3, this interaction stimulating the initiation of reverse transcription. In this report, we investigate the formation of this additional interaction with NMR spectroscopy, using a simple system composed of the primer tRNALys3, the 18 nucleotides of the PBS, the PAS (8 nucleotides) encompassed or not in a hairpin structure, and the nucleocapsid protein. Our NMR study provides molecular evidence of the existence of this interaction and highlights the role of the nucleocapsid protein in promoting this additional RNA-RNA annealing. This study presents the first direct observation at a single base-pair resolution of the PAS/anti-PAS association, which has been proposed to be involved in the chronological regulation of the reverse transcription. PMID:23762248

  5. In situ and ex situ low-field NMR spectroscopy and MRI endowed by SABRE hyperpolarization.

    PubMed

    Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Shchepin, Roman V; Truong, Milton L; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y

    2014-12-15

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 10(5)-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. PMID:25367202

  6. Zinc Solid-State NMR Spectroscopy of Human Carbonic Anhydrase: Implications for the Enzymatic Mechanism.

    SciTech Connect

    Lipton, Andrew S.; Heck, Robert W.; Ellis, Paul D.

    2004-04-14

    Many zinc enzymes utilize zinc bound water as a critical component of a catalytic reaction. The Zn2+ ion activates water through ionization, polarization, or simple displacement depending upon the mechanistic details. The fate of one proton from the bound water is determined primarily by the influence of directly bound Zn-ligands, as well as hydrogen bonding with a secondary coordination sphere of side chains and/or bound waters within the protein. We have employed low temperature solid-state 67Zn NMR spectroscopy to probe the nature of the bonding at Zn2+ in human carbonic anhydrase isozyme II (CAII). In particular we wanted to characterize the 67Zn NMR parameters of the metal with both water and hydroxide as the fourth ligand, but instead we show that hydroxide is bound to Zn2+ over the pH range of 5 to 8.5. These results suggest the accepted mechanism of action of CAII needs to be revised. These data serve to provide further understanding of the observed pH dependence of the activity of this well studied protein.

  7. Solid-State Ru-99 NMR Spectroscopy: A Useful Tool for Characterizing Prototypal Diamagnetic Ruthenium Compounds Compounds

    SciTech Connect

    Ooms, Kristopher J.; Wasylishen, Roderick E.

    2004-09-08

    The feasibility of 99Ru NMR spectroscopy as a tool to characterize solid compounds is demonstrated. Results of the first solid-state 99Ru NMR investigation of diamagnetic compounds are presented for Ru(NH3)6Cl2, K4Ru(CN)6 xH2O (x) 0, 3, LaKRu(CN)6, and Ru3(CO)12. The sensitivity of the ruthenium magnetic shielding tensor to subtle changes in the local structure about the ruthenium nucleus is highlighted by comparing the 99Ru isotropic chemical shift of Ru(NH3)6Cl2 in aqueous solutions and in the solid state. The narrow isotropic 99Ru NMR peak observed for solid Ru(NH3)6Cl2 indicates that this compound is an ideal secondary reference sample for solid-state 99Ru NMR studies.

  8. 13C NMR spectroscopy of D and B, D-ring seco-limonoids of Meliaceae family.

    PubMed

    Narender, T; Khaliq, T; Shweta

    2008-06-15

    The modified limonoids isolated from the Meliaceae are too complex or obtained in too small quantities to determine their structures by chemical and spectroscopic means, including 1H NMR. One method of dealing with such problem is direct crystallographic analysis, without or having a heavy atom, which requires an able crystallographic collaborator. The determination of the structure Utilin is one example. The analysis of the 13C NMR spectral data for different compounds has been very useful for the identification of the various skeletal types of limonoids and also for the determination of the substitution pattern. Owing to the great utilities that these data could help the scientific community, who are working in the area of limonoids, we here describe the application of NMR spectroscopy in the structure elucidation of D and B, D-ring seco-limonoids and a collection of 177 compound's 13C NMR spectral data. PMID:18569718

  9. Structures of glycans bound to receptors from saturation transfer difference (STD) NMR spectroscopy: quantitative analysis by using CORCEMA-ST.

    PubMed

    Enríquez-Navas, Pedro M; Guzzi, Cinzia; Muñoz-García, Juan C; Nieto, Pedro M; Angulo, Jesús

    2015-01-01

    Glycan-receptor interactions are of fundamental relevance for a large number of biological processes, and their kinetics properties (medium/weak binding affinities) make them appropriated to be studied by ligand observed NMR techniques, among which saturation transfer difference (STD) NMR spectroscopy has been shown to be a very robust and powerful approach. The quantitative analysis of the results from a STD NMR study of a glycan-receptor interaction is essential to be able to translate the resulting spectral intensities into a 3D molecular model of the complex. This chapter describes how to carry out such a quantitative analysis by means of the Complete Relaxation and Conformational Exchange Matrix Approach for STD NMR (CORCEMA-ST), in general terms, and an example of a previous work on an antibody-glycan interaction is also shown. PMID:25753726

  10. Off-Resonance Nutation NMR Spectroscopy of Half-Integer Quadrupolar Nuclei

    NASA Astrophysics Data System (ADS)

    Kentgens, A. P. M.

    The possibilities of off-resonance irradiation in nutation experiments of half-integer quadrupolar nuclei are demonstrated experimentally and theoretically. Off-resonance irradiation extends the applicability of nutation NMR spectroscopy at a given radiofrequency field strength to a larger range of quadrupole coupling constants. Moreover, it is possible to obtain several spectra with different resonance offsets on one spectrometer, thus facilitating the determination of the quadrupole parameters. A loss of signal to the uninformative zero-frequency signal which accompanies off-resonance irradiation can be avoided by using a frequency-stepped adiabatic half-passage or a soft selective 90° pulse as preparation for the experiment. Simulated off-resonance nutation spectra are presented as a function of quadrupole coupling constant and resonance offsets. The technique is demonstrated experimentally for a number of sodium compounds.

  11. Quantitative analysis of sesquiterpene lactones in extract of Arnica montana L. by 1H NMR spectroscopy.

    PubMed

    Staneva, Jordanka; Denkova, Pavletta; Todorova, Milka; Evstatieva, Ljuba

    2011-01-01

    (1)H NMR spectroscopy was used as a method for quantitative analysis of sesquiterpene lactones present in a crude lactone fraction isolated from Arnica montana. Eight main components - tigloyl-, methacryloyl-, isobutyryl- and 2-methylbutyryl-esters of helenalin (H) and 11α,13-dihydrohelenalin (DH) were identified in the studied sample. The method allows the determination of the total amount of sesquiterpene lactones and the quantity of both type helenalin and 11α,13-dihydrohelenalin esters separately. Furthermore, 6-O-tigloylhelenalin (HT, 1), 6-O-methacryloylhelenalin (HM, 2), 6-O-tigloyl-11α,13-dihydrohelenalin (DHT, 5), and 6-O-methacryloyl-11α,13-dihydrohelenalin (DHM, 6) were quantified as individual components. PMID:20837387

  12. Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter

    2000-08-01

    A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.

  13. Recent applications of /sup 13/C NMR spectroscopy to biological systems

    SciTech Connect

    Matwiyoff, N.A.

    1981-01-01

    Carbon-13 nuclear magnetic resonance (NMR) spectroscopy, in conjunction with carbon-13 labelling, is a powerful new analytical technique for the study of metabolic pathways and structural components in intact organelles, cells, and tissues. The technique can provide, rapidly and non-destructively, unique information about: the architecture and dynamics of structural components; the nature of the intracellular environment; and metabolic pathways and relative fluxes of individual carbon atoms. With the aid of results recently obtained by us and those reported by a number of other laboratories, the problems and potentialities of the technique will be reviewed with emphasis on: the viscosities of intracellular fluids; the structure and dynamics of the components of membranes; and the primary and secondary metabolic pathways of carbon in microorganisms, plants, and mammalian cells in culture.

  14. Studies of the complexation of sugars by diffusion-ordered NMR spectroscopy.

    PubMed

    Díaz, M D; Berger, S

    2000-10-20

    In the presence of lanthanide cations, some sugars with a special relationship between their hydroxyl groups are able to form complexes in water. Diffusion-ordered NMR spectroscopy (DOSY) can be used as a tool to distinguish between the complexed and noncomplexed forms in a mixture due to the differences in their relative diffusion coefficient values. The lowest diffusion was attributed to the complexed species because of the increase in both size and molecular weight when compared with the noncomplexed forms. Mixtures of sugars of the same molecular weight and also the isomers of a single monosaccharide can be 'separated' by DOSY on the basis of their different tendencies to form complexes with different diffusion coefficient values. PMID:11086680

  15. Photo-CIDNP NMR spectroscopy of a heme-containing protein

    NASA Astrophysics Data System (ADS)

    Day, Iain J.; Wain, Rachel; Tozawa, Kaeko; Smith, Lorna J.; Hore, P. J.

    2005-08-01

    There are relatively few examples of the application of photo-CIDNP NMR spectroscopy to chromophore-containing proteins. The most likely reason for this is that simultaneous absorption of light by the photosensitiser molecule and the protein chromophore reduces the effectiveness of the photochemical reaction that produces the observed nuclear polarisation. We present details of experiments performed on the air-oxidised form of a small cytochrome, from the thermophilic bacterium Hydrogenobacter thermophilus, using both the wild-type protein and apo and holo forms of a double alanine b-type mutant. We show that, along with the apo state, it is possible to generate CIDNP in the air-oxidised form of the b-type mutant, but not in the corresponding c-type cytochrome. This finding is supported by control experiments using horse-heart cytochrome c.

  16. Differentiation of enantiomers by 2D NMR spectroscopy at 1 T using residual dipolar couplings.

    PubMed

    Koos, Martin R M; Danieli, Ernesto; Casanova, Federico; Blümich, Bernhard; Luy, Burkhard

    2016-06-01

    Differentiating enantiomers using 2D bench-top NMR spectroscopy. Spectrometers working with permanent magnets at 1 T field strength allow the acquisition of 2D data sets. In conjunction with previously reported chiral alignment media, this setup allows the measurement of enantiomeric excess via residual dipolar couplings in stretched gelatine as a result of the reduced line width obtained by 2D J-resolved spectroscopy. PMID:25773020

  17. pH-dependent complexation of histamine H1 receptor antagonists and human serum albumin studied by UV resonance Raman spectroscopy.

    PubMed

    Tardioli, Silvia; Buijs, Joost; Gooijer, Cees; van der Zwan, Gert

    2012-03-29

    UV resonance Raman spectroscopy was used to characterize the binding of three first-generation histamine H(1) receptor antagonists-tripelennamine (TRP), mepyramine (MEP), and brompheniramine (BPA)-to human serum albumin (HSA) at pH 7.2 and pH 9.0. Binding constants differ at these pH values, which can be ascribed to the different extent of protonation of the ethylamino side chain of the ligands. We have recently shown [Tardioli et al. J. Raman Spectrosc. 2011, 42, 1016-1024] that for the solution conformation of TRP and MEP the side chain plays an important role by allowing an internal hydrogen bond with the aminopyridine nitrogen in TRP and MEP. Results presented in this paper suggest that the existence of such molecular structures has serious biological significance on the binding affinity of those ligands to HSA. At pH 7.2, only the stretched conformers of protonated TRP and MEP bind in HSA binding site I. Using UV absorption data, we derived binding constants for the neutral and protonated forms of TRP to HSA. The neutral species seems to be conjugated to a positive group of the protein, affecting both the tryptophan W214 and some of the tyrosine (Y) vibrations. BPA, for which the structure with an intramolecular hydrogen bonded side chain is not possible, is H bound to the indole ring nitrogen of W214, of which the side chain rotates over a certain angle to accommodate the drug in site I. We propose that the protonated BPA is also bound in site I, where the Y150 residue stabilizes the presence of this compound in the binding pocket. No spectroscopic evidence was found for conformational changes of the protein affecting the spectroscopic properties of W and Y in this pH range. PMID:22372713

  18. Reaction monitoring using online vs tube NMR spectroscopy: seriously different results.

    PubMed

    Foley, David A; Dunn, Anna L; Zell, Mark T

    2016-06-01

    We report findings from the qualitative evaluation of nuclear magnetic resonance (NMR) reaction monitoring techniques of how each relates to the kinetic profile of a reaction process. The study highlights key reaction rate differences observed between the various NMR reaction monitoring methods investigated: online NMR, static NMR tubes, and periodic inversion of NMR tubes. The analysis of three reaction processes reveals that rates derived from NMR analysis are highly dependent on monitoring method. These findings indicate that users must be aware of the effect of their monitoring method upon the kinetic rate data derived from NMR analysis. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26248898

  19. NMR spectroscopy with force-gradient detection on a GaAs epitaxial layer

    NASA Astrophysics Data System (ADS)

    Alexson, Dimitri A.; Smith, Doran D.

    2013-10-01

    We demonstrate nuclear magnetic resonance spectroscopy on 35 μm3 of 69Ga in a GaAs epitaxial layer in vacuum at 5 K, and 5 T yielding a linewidth on the order of 10 kHz. This was achieved by a force-gradient magnetic resonance detection scheme, using the interaction between the force-gradient of a Ni sphere-tipped single crystal Si cantilever and the nuclear spins to register changes in the spin state as a change in the driven cantilever's natural resonant frequency. The dichotomy between the background magnetic field (B0) homogeneity requirements imposed by NMR spectroscopy and the magnetic particle's large magnetic field gradient is resolved via sample shuttling during the NMR pulse encoding. A GaAs sample is polarized in a B0 of 5 T for 3 * T1. The sample is shuttled away from the magnetic particle to a region of negligible magnetic field inhomogeneity. A (π/2)x pulse rotates the polarization to the xy-plane, the magnetization is allowed to precess for 2-200 μs before a (π/2)x or (π/2)y pulse stores the remaining spin along the z-axis that represents a single point of the free induction decay (FID). The sample is shuttled back to the established tip-sample distance. An adiabatic rapid passage (ARP) sweep inverts the spins in a volume of interest, causing the cantilever's natural resonance frequency to shift an amount proportional to the spin polarization in the volume. By varying the delay between the first and second (π/2) pulses the entire FID is measured.

  20. Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by ¹H NMR spectroscopy.

    PubMed

    Sachleben, Joseph R; Yi, Ruiyang; Volden, Paul A; Conzen, Suzanne D

    2014-07-01

    Quantifying the amounts and types of lipids present in mixtures is important in fields as diverse as medicine, food science, and biochemistry. Nuclear magnetic resonance (NMR) spectroscopy can quantify the total amounts of saturated and unsaturated fatty acids in mixtures, but identifying the length of saturated fatty acid or the position of unsaturation by NMR is a daunting challenge. We have developed an NMR technique, aliphatic chain length by isotropic mixing, to address this problem. Using a selective total correlation spectroscopy technique to excite and transfer magnetization from a resolved resonance, we demonstrate that the time dependence of this transfer to another resolved site depends linearly on the number of aliphatic carbons separating the two sites. This technique is applied to complex natural mixtures allowing the identification and quantification of the constituent fatty acids. The method has been applied to whole adipocytes demonstrating that it will be of great use in studies of whole tissues. PMID:24831341

  1. Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by 1H NMR spectroscopy

    PubMed Central

    Yi, Ruiyang; Volden, Paul A.; Conzen, Suzanne D.

    2015-01-01

    Quantifying the amounts and types of lipids present in mixtures is important in fields as diverse as medicine, food science, and biochemistry. Nuclear magnetic resonance (NMR) spectroscopy can quantify the total amounts of saturated and unsaturated fatty acids in mixtures, but identifying the length of saturated fatty acid or the position of unsaturation by NMR is a daunting challenge. We have developed an NMR technique, aliphatic chain length by isotropic mixing, to address this problem. Using a selective total correlation spectroscopy technique to excite and transfer magnetization from a resolved resonance, we demonstrate that the time dependence of this transfer to another resolved site depends linearly on the number of aliphatic carbons separating the two sites. This technique is applied to complex natural mixtures allowing the identification and quantification of the constituent fatty acids. The method has been applied to whole adipocytes demonstrating that it will be of great use in studies of whole tissues. PMID:24831341

  2. 1,3-Alternate calix[4]arene nitronyl nitroxide tetraradical and diradical: synthesis, X-ray crystallography, paramagnetic NMR spectroscopy, EPR spectroscopy, and magnetic studies

    SciTech Connect

    Rajca, Andrzej; Pink, Maren; Mukherjee, Sumit; Rajca, Suchada; Das, Kausik

    2008-04-02

    Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two nitronyl nitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, and magnetic studies. Such calix[4]arene tetraradicals and diradicals provide scaffolds for through-bond and through-space intramolecular exchange couplings.

  3. NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils: An Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Crowther, Molly W.

    2008-01-01

    This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy for analysis of several edible fats and oils that are structurally similar but differ in physical properties and health implications. Five different fats and oils are analyzed for average chain length,

  4. NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils: An Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Crowther, Molly W.

    2008-01-01

    This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy for analysis of several edible fats and oils that are structurally similar but differ in physical properties and health implications. Five different fats and oils are analyzed for average chain length,…

  5. Response to the Letter to the Editor regarding "Determination of the fatty acid profile by 1H-NMR spectroscopy."

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In expansion of previous work (G. Knothe, J.A. Kenar, Determination of the fatty acid profile by 1H-NMR spectroscopy, Eur. J. Lipid Sci. Technol. 2004, 106, 88-96), an additional approach is discussed for quantitating saturated fatty acids in the fatty acid profiles of common vegetable oils by 1H-NM...

  6. Consortium to develop the medical uses of NMR imaging, NMR spectroscopy, and positron emission tomography. Final technical report

    SciTech Connect

    Pohost, G.M.

    1998-06-01

    The goal of this work is to, perform clinically relevant studies using a new whole-body 4.1 T NMR imaging spectrometer. Initially we will develop and approach for the assessment of the severity of skeletal muscle involvement in ischemic peripheral vascular disease.

  7. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies

    NASA Astrophysics Data System (ADS)

    Mote, Kaustubh R.; Madhu, Perunthiruthy K.

    2015-12-01

    1H -detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong 1H -1H dipolar coupled network that would otherwise severely broaden resonances, high MAS frequencies (>40 kHz) are often employed. Here, we have explored the alternative of stroboscopic 1H -detection at moderate MAS frequencies of 5-30 kHz using windowed version of supercycled-phase-modulated Lee-Goldburg homonuclear decoupling. We show that improved resolution in the 1H dimension, comparable to that obtainable at high spinning frequencies of 40-60 kHz without homonuclear decoupling, can be obtained in these experiments for fully protonated proteins. Along with detailed analysis of the performance of the method on the standard tri-peptide f-MLF, experiments on micro-crystalline GB1 and amyloid- β aggregates are used to demonstrate the applicability of these pulse-sequences to challenging biomolecular systems. With only two parameters to optimize, broadbanded performance of the homonuclear decoupling sequence, linear dependence of the chemical-shift scaling factor on resonance offset and a straightforward implementation under experimental conditions currently used for many biomolecular studies (viz. spinning frequencies and radio-frequency amplitudes), we expect these experiments to complement the current 13C -detection based methods in assignments and characterization through chemical-shift mapping.

  8. State-of-the-Art Direct 13C and Indirect 1H-[13C] NMR Spectroscopy In Vivo

    PubMed Central

    de Graaf, Robin A.; Rothman, Douglas L.; Behar, Kevin L.

    2013-01-01

    Carbon-13 NMR spectroscopy in combination with 13C-labeled substrate infusion is a powerful technique to measure a large number of metabolic fluxes non-invasively in vivo. It has been used to quantify glycogen synthesis rates, establish quantitative relationships between energy metabolism and neurotransmission and evaluate the importance of different substrates. All measurements can, in principle, be performed through direct 13C NMR detection or via indirect 1H-[13C] NMR detection of the protons attached to 13C nuclei. The choice for detection scheme and pulse sequence depends on the magnetic field strength, whereas substrate selection depends on the metabolic pathways that are studied. 13C NMR spectroscopy remains a challenging technique that requires several non-standard hardware modifications, infusion of 13C-labeled substrates and sophisticated processing and metabolic modeling. Here the various aspects of direct 13C and indirect 1H-[13C] NMR are reviewed with the aim of providing a practical guide. PMID:21919099

  9. Molecular-level characterization of probucol nanocrystal in water by in situ solid-state NMR spectroscopy.

    PubMed

    Zhang, Junying; Higashi, Kenjirou; Limwikrant, Waree; Moribe, Kunikazu; Yamamoto, Keiji

    2012-02-28

    The molecular state of colloidal probucol nanoparticles with additives was evaluated by (13)C in situ solid-state NMR spectroscopy. The nanoparticles were obtained by dispersing a ternary co-ground mixture of probucol/polyvinylpyrrolidon (PVP)/sodium dodecyl sulfate (SDS) in water. Their mean particle size was found to be approximately 150 nm by dynamic light scattering and cryogenic-scanning electron microscopy measurements. The results of the (13)C in situ solid-state NMR spectroscopy showed that probucol existed in the crystalline state (form I) in water. (13)C liquid-state NMR results indicated that PVP and SDS interacted with probucol in water. Their broad signals suggested that the surface interaction of the probucol nanocrystal with PVP and SDS stabilized the suspension. In addition, a freeze-dried sample of the suspension was studied by (13)C solid-state NMR and powder X-ray diffraction experiments, which confirmed the presence of the probucol nanocrystals. The combination of the in situ solid-state, solid-state, and liquid-state NMR measurement results provided molecular-level insights about the role of intermolecular interactions in the design of nanoformulations. PMID:22138607

  10. Multiple Acquisition/Multiple Observation Separated Local Field/Chemical Shift Correlation Solid-state Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Das, Bibhuti B.; Opella, Stanley J.

    2014-01-01

    Multiple acquisition spectroscopy (MACSY) experiments that enable multiple free induction decays to be recorded during individual experiments are demonstrated. In particular, the experiments incorporate separated local field spectroscopy into homonuclear and heteronuclear correlation spectroscopy. The measured heteronuclear dipolar couplings are valuable in structure determination as well as in enhancing resolution by providing an additional frequency axis. In one example four different three-dimensional spectra are obtained in a single experiment, demonstrating that substantial potential saving in experimental time is available when multiple multi-dimensional spectra are required as part of solid-state NMR studies. PMID:25023566

  11. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques.

    PubMed

    Hamzah, Rosniza; Bakar, Mohamad Abu; Khairuddean, Melati; Mohammed, Issam Ahmed; Adnan, Rohana

    2012-01-01

    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the <(13)C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS(2)), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C-S moiety of CS(2) at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C-O were clearly observed in the FTIR spectrum while the (1)H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The (13)C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50. PMID:22971583

  12. Metabolic Characterization of Advanced Liver Fibrosis in HCV Patients as Studied by Serum 1H-NMR Spectroscopy

    PubMed Central

    Embade, Nieves; Mariño, Zoe; Diercks, Tammo; Cano, Ainara; Lens, Sabela; Cabrera, Diana; Navasa, Miquel; Falcón-Pérez, Juan M.; Caballería, Joan; Castro, Azucena; Bosch, Jaume; Mato, José M.; Millet, Oscar

    2016-01-01

    Several etiologies result in chronic liver diseases including chronic hepatitis C virus infection (HCV). Despite its high incidence and the severe economic and medical consequences, liver disease is still commonly overlooked due to the lack of efficient non-invasive diagnostic methods. While several techniques have been tested for the detection of fibrosis, the available biomarkers still present severe limitations that preclude their use in clinical diagnostics. Liver diseases have also been the subject of metabolomic analysis. Here, we demonstrate the suitability of 1H NMR spectroscopy for characterizing the metabolism of liver fibrosis induced by HCV. Serum samples from HCV patients without fibrosis or with liver cirrhosis were analyzed by NMR spectroscopy and the results were submitted to multivariate and univariate statistical analysis. PLS-DA test was able to discriminate between advanced fibrotic and non-fibrotic patients and several metabolites were found to be up or downregulated in patients with cirrhosis. The suitability of the most significantly regulated metabolites was validated by ROC analysis. Our study reveals that choline, acetoacetate and low-density lipoproteins are the most informative biomarkers for predicting cirrhosis in HCV patients. Our results demonstrate that statistical analysis of 1H-NMR spectra is able to distinguish between fibrotic and non-fibrotic patients suffering from HCV, representing a novel diagnostic application for NMR spectroscopy. PMID:27158896

  13. Improvements in localized proton NMR spectroscopy of human brain. Water suppression, short echo times, and 1 ml resolution

    NASA Astrophysics Data System (ADS)

    Frahm, J.; Michaelis, T.; Merboldt, K. D.; Bruhn, H.; Gyngell, M. L.; Hänicke, W.

    Considerable technical improvements are reported for localized proton NMR spectroscopy using stimulated echoes. When compared to previous results, proton NMR spectra of the human brain are now obtainable (i) with in vivo water suppression factors of ⩾1000, (ii) with only minor T2 losses and negligible distortions due to J modulation at short echo times of 10-20 ms, and (iii) from volumes of interest as small as 1-8 ml within measuring times of 1-10 min. As a consequence, the detection of cerebral metabolites is greatly facilitated. This particularly applies to the assignment of those resonances (e.g., glutamate, taurine, inositols) that suffer from strong spin-spin coupling at the field strengths commonly in use for NMR in man. Studies of regional metabolite differences, tissue heterogeneity, and focal lesions in patients benefit from the increased spatial resolution and a concomitant reduction of partial volume effects. Localized proton NMR spectroscopy was performed on young healthy volunteers. Experiments were carried out on a 2.0 T whole-body MRI/MRS system using the standard headcoil for both imaging and spectroscopy.

  14. The use of high-resolution ¹H nuclear magnetic resonance (NMR) spectroscopy in the clinical diagnosis of Acanthamoeba.

    PubMed

    Hauber, Sandra; Parkes, Hary; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2011-12-01

    Acanthamoeba are opportunistic protozoan pathogens that can produce sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba spp. followed by aggressive treatment regimen. In this study, we tested the use of high-resolution (1)H NMR spectroscopy in the clinical diagnosis of Acanthamoeba. Using NMR spectroscopy combined with Pattern Recognition Analysis (PRA), we analysed variations in the biochemical 'fingerprint' of invasive and non-invasive Acanthamoeba, its closely related genus, Balamuthia mandrillaris, neuropathogenic Escherichia coli K1 strain E44, a laboratory strain of E. coli K-12, HB101, mammalian cells including human brain microvascular endothelial cells and monkey kidney cells. The findings revealed significant variations in the metabolites of amoebae, mammalian cells and bacteria. Interestingly, (1)H NMR spectra provided distinct biochemical profiles of clinical and non-clinical Acanthamoeba isolates highlighting the potential of (1)H NMR spectroscopy combined with PRA for the development of a novel diagnostic test that could rapidly identify pathogenic Acanthamoeba isolates with high sensitivity and specificity. PMID:21556684

  15. Characterization of Cu Mordenite deNOx Catalysts at Variable Si/Al Ratios, by NMR, TPD and Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Marzke, Robert F.; Petranovskii, Vitalii P.; Bogdanchikova, Nina E.

    2002-03-01

    Cu mordenite is an effective catalyst for nitrogen oxide removal (deNOx), which is readily produced from H mordenite at various silica-to-alumina (Si/Al) ratios by ion exchange. We have characterized a set of H and Cu mordenite catalysts prepared from material originally supplied by the TOSOH Corp. (Japan), using NMR, TPD and optical Diffuse Reflectance Spectroscopy. The nuclei observed in NMR were Silicon-29, Aluminum-27 and protons. Resulst show strong effects of Si/Al ratio, upon both framework and extra-framework structures of the mordenites. Information about the state of the Cu ion in the catalysts will be reviewed.

  16. Triterpenes in the hexane extract of leaves of Olea europaea L.: analysis using 13C-NMR spectroscopy.

    PubMed

    Duquesnoy, Emilie; Castola, Vincent; Casanova, Joseph

    2007-01-01

    Two neutral triterpenes and a triterpene acid were identified and quantified directly, in the absence of any purification steps, in a precipitate obtained during the industrial extraction of the leaves of Olea europaea L. using 13C-NMR spectroscopy (spectrometer operating at 4.7 T equipped with a 10 mm probe). The method was optimised in order to reduce the duration of analysis with a routine NMR spectrometer. Together with long-chain linear compounds, erythrodiol, uvaol and oleanolic acid accounted for 27.3, 18.3 and 12.5% of the precipitate, respectively. PMID:17623370

  17. Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies.

    PubMed

    Gupta, Rupal; Lu, Manman; Hou, Guangjin; Caporini, Marc A; Rosay, Melanie; Maas, Werner; Struppe, Jochem; Suiter, Christopher; Ahn, Jinwoo; Byeon, In-Ja L; Franks, W Trent; Orwick-Rydmark, Marcella; Bertarello, Andrea; Oschkinat, Hartmut; Lesage, Anne; Pintacuda, Guido; Gronenborn, Angela M; Polenova, Tatyana

    2016-01-21

    Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies. PMID:26709853

  18. Intracellular free calcium concentration measured with /sup 19/F NMR spectroscopy in intact ferret hearts

    SciTech Connect

    Marban, E.; Kitakaze, M.; Kusuoka, H.; Porterfield, J.K.; Yue, D.T.; Chacko, V.P.

    1987-08-01

    Changes in the intracellular free Ca/sup 2 +/ concentration, (Ca/sup 2 +/)/sub i/, mediate excitation-contraction coupling in the heart and contribute to cellular injury during ischemia and reperfusion. To study these processes directly, the authors measured (Ca/sup 2 +/)/sub i/ in perfused ferret (Mustela putorius furo) hearts using /sup 19/F NMR spectroscopy to detect the 5,5'-difluoro derivative of the Ca/sup 2 +/ chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). To load cells, hearts were perfused with the acetoxymethyl ester derivative of 5,5'-F/sub 2/-BAPTA. They measured /sup 19/F NMR spectra and left ventricular pressure simultaneously,at rest and during pacing at various external Ca concentrations ((Ca)/sub 0/). Although contractile force was attenuated by the Ca/sup 2 +/ buffering properties of 5,5'-F/sup 2/-BAPTA, the decrease in pressure could be overcome by raising (Ca)/sub 0/. The mean value of 104 nM for (Ca/sup 2 +/)/sub i/ at rest in the perfused heart agrees well with previous measurements in isolated ventricular muscle. During pacing at 0.6-4 Hz, time-averaged (Ca/sup 2 +/)/sub i/ increased; the effect of pacing was augmented by increasing (Ca)/sub 0/. (Ca/sup 2 +/)/sub i/ more than tripled during 10-20 min of global ischemia, and returned toward control levels upon reperfusion. This approach promises to be particularly useful in investigating the physiology of intact hearts and the pathophysiology of alterations in the coronary circulation

  19. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ,ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  20. Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy

    PubMed Central

    Debelouchina, Galia T.; Bayro, Marvin J.; Fitzpatrick, Anthony W.; Ladizhansky, Vladimir; Colvin, Michael T.; Caporini, Marc A.; Jaroniec, Christopher P.; Bajaj, Vikram S.; Rosay, Melanie; MacPhee, Cait E.; Vendruscolo, Michele; Maas, Werner E.; Dobson, Christopher M.; Griffin, Robert G.

    2014-01-01

    Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide β-strands into β-sheets but also the β-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The β-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the side-chains buried within the interior of the fibrils. PMID:24304221

  1. Higher order amyloid fibril structure by MAS NMR and DNP spectroscopy.

    PubMed

    Debelouchina, Galia T; Bayro, Marvin J; Fitzpatrick, Anthony W; Ladizhansky, Vladimir; Colvin, Michael T; Caporini, Marc A; Jaroniec, Christopher P; Bajaj, Vikram S; Rosay, Melanie; Macphee, Cait E; Vendruscolo, Michele; Maas, Werner E; Dobson, Christopher M; Griffin, Robert G

    2013-12-26

    Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure, and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide β-strands into β-sheets but also the β-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The β-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the residues buried within the interior of the fibrils. PMID:24304221

  2. Acid epimerization of 20-keto pregnane glycosides is determined by 2D-NMR spectroscopy.

    PubMed

    Garca, Vctor P

    2011-05-01

    Carbohydrates influence many essential biological events such as apoptosis, differentiation, tumor metastasis, cancer, neurobiology, immunology, development, host-pathogen interactions, diabetes, signal transduction, protein folding, and many other contexts. We now report on the structure determination of pregnane glycosides isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae). The observation of cicatrizant, vulnerary and cytostatic activities in some humans and animals of Ceropegia fusca Bolle, a species endemic to the Canary Islands, encouraged us to begin a pharmacological study to determine their exact therapeutic properties. High resolution (1)H-NMR spectra of pregnane glycosides very often display well-resolved signals that can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. ROESY is especially suited for molecules such that ??(c) ~ 1, where ?(c) are the motional correlation times and ? is the angular frequency. In these cases the NOE is nearly zero, while the rotating-frame Overhauser effect spectroscopy (ROESY) is always positive and increases monotonically for increasing values of ?(c). The ROESY shows dipolar interactions cross peaks even in medium-sized molecules which are helpful in unambiguous assignment of all the interglycosidic linkages. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180 Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY and DPFGSE-TOCSY experiments, while DPFGSE-ROESY was used to monitor the spatial environment of the selectively excited proton. Dipolar interactions between nuclei close in space can be detected by the 1D GROESY experiment, which is a one-dimensional counterpart of the 2D ROESY method. The C-12 and C-17 configurations were determined by ROESY experiments. PMID:21431831

  3. Skeletal muscle metabolism in Duchenne muscular dystrophy (DMD): an in-vitro proton NMR spectroscopy study.

    PubMed

    Sharma, Uma; Atri, Surinder; Sharma, M C; Sarkar, Chitra; Jagannathan, N R

    2003-02-01

    The metabolic differences in the skeletal muscle of patients with Duchenne muscular dystrophy (DMD) and normal subjects (controls) were investigated using in-vitro high-resolution proton NMR spectroscopy. In all, 56 metabolites were unambiguously identified in the perchloric acid extract of muscle tissue using one- and two-dimensional NMR. The concentrations of glycolytic substrate glucose (Glc; p < 0.05), gluconeogenic amino acids such as glutamine (Gln; p < 0.05) and alanine (Ala; p < 0.05) and the glycolytic product lactate (Lac; p < 0.05) were statistically significantly lower in DMD patients as compared to controls. A significant reduction in the concentrations of total creatine (TCr; p < 0.05), glycerophosphoryl choline + phosphoryl choline + carnitine (GPC/PC/Car; p < 0.05), choline (Cho; p < 0.05) and acetate (Ace; p < 0.05) was also observed in these patients. Decrease in the level of glucose may be attributed to the reduction in the concentrations of gluconeogenic substrates or membrane abnormalities in degenerated muscle of DMD patients. Lower levels of choline containing compounds indicate membrane abnormalities. Decrease in the concentration of lactate in the muscle of DMD patients may be due to the reduction in anaerobic glycolytic activity or lower substrate concentration. The decrease in the concentration of acetate may reflect reduced transport of fatty acids into mitochondria due to decreased concentration of carnitine in DMD patients. Kreb's cycle intermediate alpha-ketoglutarate was observed only in the diseased muscle, which is suggestive of predominant oxidative metabolism for energy generation. PMID:12670601

  4. High-Speed Frequency Modulation of a 460-GHz Gyrotron for Enhancement of 700-MHz DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, T.; Khutoryan, E. M.; Tatematsu, Y.; Yamaguchi, Y.; Kuleshov, A. N.; Dumbrajs, O.; Matsuki, Y.; Fujiwara, T.

    2015-09-01

    The high-speed frequency modulation of a 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) was achieved by modulation of acceleration voltage of beam electrons. The modulation speed f m can be increased up to 10 kHz without decreasing the modulation amplitude δ f of frequency. The amplitude δ f was increased almost linearly with the modulation amplitude of acceleration voltage Δ V a. At the Δ V a = 1 kV, frequency spectrum width df was 50 MHz in the case of f m < 10 kHz. The frequency modulation was observed as both the variation of the IF frequency in the heterodyne detection system measured by a high-speed oscilloscope and the widths of frequency spectra df measured on a frequency spectrum analyzer. Both results well agree reasonably. When f m exceeds 10 kHz, the amplitude δ f is decreased gradually with increasing f m because of the degradation of the used amplifier in response for high-speed modulation. The experiment was performed successfully for both a sinusoidal wave and triangle wave modulations. We can use the high-speed frequency modulation for increasing the enhancement factor of the dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy, which is one of effective and attractive methods for the high-frequency DNP-NMR spectroscopy, for example, at 700 MHz. Because the sensitivity of NMR is inversely proportional to the frequency, high-speed frequency modulation can compensate the decreasing the enhancement factor in the high-frequency DNP-NMR spectroscopy and keep the factor at high value. In addition, the high-speed frequency modulation is useful for frequency stabilization by a PID control of an acceleration voltage by feeding back of the fluctuation of frequency. The frequency stabilization in long time is also useful for application of a DNP-NMR spectroscopy to the analysis of complicated protein molecules.

  5. Conformational solution studies of neuropeptide gamma using CD and NMR spectroscopy.

    PubMed

    Rodziewicz-Motowidło, Sylwia; Brzozowskl, Krzysztof; Legowska, Anna; Liwo, Adam; Silbering, Jerzy; Smoluch, Marek; Rolka, Krzysztof

    2002-05-01

    Neuropeptide gamma is one of the largest members of the tachykinin family of peptides, exhibiting strong agonistic activity towards the NK-2 tachykinin receptor. This peptide was synthesized by the solid-phase method using the Fmoc chemistry. Circular-dichroism spectroscopy (CD) investigations of this peptide were performed in phosphate buffer, in the presence of sodium dodecylsulphate (SDS) micelles and trifluoroethanol (TFE) solutions and in DMSO-d6 using the 2D NMR technique in conjunction with two different theoretical approaches. The first assumes multiconformational equilibrium of the peptide studied characterized by the values of statistical weights of low-energy conformations. These calculations were performed using three different force fields ECEPP/3, AMBER4.1 and CHARMM (implemented in the X-PLOR program). The second method incorporates interproton distance and dihedral angle constraints into the starting conformation using the Simulated Annealing algorithm (X-PLOR program). The CD experiments revealed that although the peptide studied is flexible in polar solvents, a tendency to adopt a helical structure was observed in the hydrophobic environment. The NMR data (NOE effects) indicate a helical or reverse structure in the Ile7-His12 fragment of the peptide studied in DMSO-d6 solution. The results obtained cannot be interpreted in terms of a single conformation. Most of the conformations obtained with the ECEPP/3 force field possess a high content of a helical structure. None of the conformers, obtained with the AMBER4.1 and CHARMM force fields, can be considered as the dominant one. In all conformations several beta-turns were detected and in some cases gamma-turns were also found. But in fact, it is rather difficult to select the position of the secondary element(s) present in the structure of NPgamma in solution. All conformers calculated with the X-PLOR program (with using NMR derived distance and torsion angle constraints) are stabilized by several beta-turns. Common structural motives are a type IV beta-turn in the Gln6-His12 fragment. All conformations obtained using two approaches adopt very similar turn shapes in the middle region of molecule and a random structure on the N- and C-terminal fragments. PMID:12043996

  6. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    SciTech Connect

    Mao, Kanmi

    2011-08-15

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-{gamma} nuclei (e.g., {sup 13}C and {sup 15}N) via the sensitive high-{gamma} nuclei (e.g., {sup 1}H and {sup 19}F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for {sup 1}H-{sup 1}H homonuclear decoupling. Also presented is a simple new strategy for optimization of {sup 1}H-{sup 1}H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in {sup 1}H detected 2D {sup 1}H{l_brace}{sup 13}C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional {sup 13}C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear {sup 1}H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5{sub m}{sup {bar x}}, PMLG5{sub mm}{sup {bar x}x} and SAM3) were analyzed to maximize the performance of through-bond transfer based on decoupling efficiency as well as scaling factors. Indirect detection with assistance of PMLG{sub m}{sup {bar x}} during INEPTR transfer proved to offer the highest sensitivity gains of 3-10. In addition, the CRAMPS sequence was applied under fast MAS to increase the {sup 1}H resolution during t{sub 1} evolution in the traditional, {sup 13}C detected HETCOR scheme. Two naturally abundant solids, tripeptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (f-MLF-OH) and brown coal, with well ordered and highly disordered structures, respectively, are studied to confirm the capabilities of these techniques. Concomitantly, a simple optimization of {sup 1}H homonuclear dipolar decoupling at MAS rates exceeding 10 kHz was developed (Chapter 4). The fine-tuned decoupling efficiency can be obtained by minimizing the signal loss due to transverse relaxation in a simple spin-echo experiment, using directly the sample of interest. The excellent agreement between observed decoupling pattern and earlier theoretical predictions confirmed the utility of this strategy. The properties of naturally abundant surface-bound fluorocarbon groups in mesoporous silica nanoparticles (MSNs) were investigated by the above-mentioned multidimensional solid-state NMR experiments and theoretical modeling (Chapter 5). Two conformations of (pentafluorophenyl)propyl groups (abbreviated as PFP) were determined as PFP-prone and PFP-upright, whose aromatic rings are located above the siloxane bridges and in roughly upright position, respectively. Several 1D and 2D NMR techniques were implemented in the characterizations, including indirectly detected {sup 1}H{l_brace}{sup 13}C{r_brace} and {sup 19}F{l_brace}{sup 13}C{r_brace} 2D HETCOR, Carr-Purcell-Meiboom-Gill (CPMG) assisted {sup 29}Si direct polarization and {sup 29}Si{sup 19}F 2D experiments, 2D double-quantum (DQ) {sup 19}F MAS NMR spectra and spin-echo measurements. Furthermore, conformational details of two types of PFP were confirmed by theoretical calculation, operated by Dr. Takeshi Kobayashi. Finally, the arrangement of two surfactants, cetyltrimetylammoium bromide (CTAB) and cetylpyridinium bromide (CPB), mixed inside the MSN pores, was studied by solid-state NMR (Chapter 6). By analyzing the {sup 1}H-{sup 1}H DQMAS and NOESY correlation spectra, the CTAB and CPB molecules were shown to co-exist inside the pores without forming significant monocomponent domains. A 'folded-over' conformation of CPB headgroups was proposed according to the results from {sup 1}H-{sup 29}Si 2D HETCOR.

  7. QUANTITATIVE SOLID-STATE 13C NMR SPECTROSCOPY OF ORGANIC MATTER FRACTIONS IN LOWLAND RICE SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spin counting on solid-state **13C cross-polarization (CP) nuclear magnetic resonance (NMR) spectra of two humic fractions isolated from tropical lowland soils showed that only 32-81% of potential **13C NMR signal was detected. The observability of **13C NMR signal (Cobs) was higher in the mobile h...

  8. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    SciTech Connect

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von . E-mail: m.vonitzstein@griffith.edu.au

    2007-08-10

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand ({alpha}/{beta}-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.

  9. Characterization of Al30 in commercial poly-aluminum chlorohydrate by solid-state (27)Al NMR spectroscopy.

    PubMed

    Phillips, Brian L; Vaughn, John S; Smart, Scott; Pan, Long

    2016-08-15

    Investigation of commercially produced hydrolysis salts of aluminum by solid-state (27)Al NMR spectroscopy and size-exclusion chromatography (SEC) reveals well-defined and distinct Al environments that can be related to physicochemical properties. (27)Al MAS and MQ-MAS NMR spectroscopic data show that the local structure of the solids is dominated by moieties that closely resemble the Al30 polyoxocation (Al30O8(OH)56(H2O)26(18+)), accounting for 72-85% of the total Al. These Al30-like clusters elute as several size fractions by SEC. Comparison of the SEC and NMR results indicates that the Al30-like clusters includes intact isolated clusters, moieties of larger polymers or aggregates, and possibly fragments resembling δ-Al13 Keggin clusters. The coagulation efficacy of the solids appears to correlate best with the abundance of intact Al30-like clusters and of smaller species available to promote condensation reactions. PMID:27232539

  10. Enhanced detection of aldehydes in Extra-Virgin Olive Oil by means of band selective NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dugo, Giacomo; Rotondo, Archimede; Mallamace, Domenico; Cicero, Nicola; Salvo, Andrea; Rotondo, Enrico; Corsaro, Carmelo

    2015-02-01

    High resolution Nuclear Magnetic Resonance (NMR) spectroscopy is a very powerful tool for comprehensive food analyses and especially for Extra-Virgin Olive Oils (EVOOs). We use the NMR technique to study the spectral region of aldehydes (8-10 ppm) for EVOOs coming from the south part of Italy. We perform novel experiments by using mono and bidimensional band selective spin-echo pulse sequences and identify four structural classes of aldehydes in EVOOs. For the first time such species are identified in EVOOs without any chemical treatment; only dilution with CDCl3 is employed. This would allow the discrimination of different EVOOs for the aldehydes content increasing the potentiality of the NMR technique in the screening of metabolites for geographical characterization of EVOOs.

  11. Molecular Dynamics and NMR Spectroscopy Studies of E. coli Lipopolysaccharide Structure and Dynamics

    PubMed Central

    Wu, Emilia L.; Engström, Olof; Jo, Sunhwan; Stuhlsatz, Danielle; Yeom, Min Sun; Klauda, Jeffery B.; Widmalm, Göran; Im, Wonpil

    2013-01-01

    Lipopolysaccharide (LPS), a component of Gram-negative bacterial outer membranes, comprises three regions: lipid A, core oligosaccharide, and O-antigen polysaccharide. Using the CHARMM36 lipid and carbohydrate force fields, we have constructed a model of an Escherichia coli R1 (core) O6 (antigen) LPS molecule. Several all-atom bilayers are built and simulated with lipid A only (LIPA) and varying lengths of 0 (LPS0), 5 (LPS5), and 10 (LPS10) O6 antigen repeating units; a single unit of O6 antigen contains five sugar residues. From 1H,1H-NOESY experiments, cross-relaxation rates are obtained from an O-antigen polysaccharide sample. Although some experimental deviations are due to spin-diffusion, the remaining effective proton-proton distances show generally very good agreement between NMR experiments and molecular dynamics simulations. The simulation results show that increasing the LPS molecular length has an impact on LPS structure and dynamics and also on LPS bilayer properties. Terminal residues in a LPS bilayer are more flexible and extended along the membrane normal. As the core and O-antigen are added, per-lipid area increases and lipid bilayer order decreases. In addition, results from mixed LPS0/5 and LPS0/10 bilayer simulations show that the LPS O-antigen conformations at a higher concentration of LPS5 and LPS10 are more orthogonal to the membrane and less flexible. The O-antigen concentration of mixed LPS bilayers does not have a significant effect on per-lipid area and hydrophobic thickness. Analysis of ion and water penetration shows that water molecules can penetrate inside the inner core region, and hydration is critical to maintain the integrity of the bilayer structure. PMID:24047996

  12. Investigation of Local Structures in Layered Niobates by Solid-state NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Ting

    Research on ion-exchangeable layered niobates has attracted great attention due to their unique structures and corresponding variations in properties and applications, such as ion conductors, solid acids, and water splitting catalysts. Families of layered niobates include double-layered or triple-layered Dion-Jacobson type perovskites (ALaNb2O7, A = Cs, Rb, K, H; AM2Nb3O10, A = Rb, K, H; M = Sr, Ca), layered niobates with both edge and corner sharing of NbO6 octahedra (KNb3O8, HNb3O6, Nb 6O17 and H4Nb6O17) and many others. Lately, more developments in the layered niobates through a variety of topochemical manipulations have been achieved. The topochemical reactions include ion exchange, exfoliation, substitution, and etc. As a result, many new materials have been successfully prepared, for example, solid solutions (ALa2NbTi2O10, ACaLaNb2TiO 10 and ACa2Nb3-xTaxO10, etc.), nanosheets (HNb3O8, H4Nb6O17, HLaNb2O7, HCa2Nb3O10, etc., to intercalate with organic molecules such as tetrabutylammonium hydroxide or n-butylamines), and nanoscrolls (from H2K2Nb 6O17). While these structural modifications often induce improvements in properties, the fundamental mechanisms of improvements in properties upon the modifications, especially local structural arrangements are poorly understood, which is often limited by structural characterizations. Particularly, the characterizations of the exfoliated nanosheets can be difficult by conventional X-ray diffraction (XRD) method due to disordered structures. Alternatively, solid-state nuclear magnetic resonance (NMR) spectroscopy is a useful tool to study local structures in solids. The structural information can be extracted by examining intrinsic interactions, such as quadrupolar, chemical shielding, and dipolar interactions, which are all associated with local environments surrounding a specific nucleus, 1H or 93Nb in layered niobates. The ultimate goal of this dissertation is to understand the relationships between local structures of layered niobates and their chemical or physical properties, and provide insights into further modifications and improvements. The primary objectives of this work are summarized below: I. Synthesis of series of layered niobates (ALaNb2O7 , A = Cs, Rb, K; KNb3O8; K4Nb 6O17; RbLa2NbTi2O10 and RbCaLaNb2TiO10) by microwave heating or cation exchange methods, their protonated forms by acid exchange (HLaNb2O 7, H3ONb3O8 and HNb3O 8, H4Nb8O17, HLa2NbTi 2O10 and HCaLaNb2TiO10), and three nanosheet niobates by exfoliation (HNb3O8, H4Nb 6O17 and HLaNb2O7 nanosheets). II. Structural characterizations of all niobates by powder XRD and solid-state NMR spectroscopy. Powder XRD is used to determine lattice constants and long-range structural ordering. Solid-state NMR is used to determine the electric field gradient parameters, chemical shift anisotropy parameters and dipolar coupling constants. Solid-state NMR techniques include 93Nb MQMAS, wide-line VOCS echo and WURST-echo; 1H{93Nb} CP, TRAPDOR, S-RESPDOR and iS-RESPDOR experiments. III. Understanding the trends of changes in NMR parameters with respect to cation exchange, exfoliation and compositional alteration, and correlation of the NMR parameters with local environments and possible structural rearrangements. IV. Identification of proton locations in the acid-exchanged niobates and surface acidity for the exfoliated nanosheets, based on 1H chemical shifts and dipolar coupling information from CP, S-RESPDOR and iS-RESPDOR experiments.

  13. The Stoichiometry of Synthetic Alunite as a Function of Hydrothermal Aging Investigated by Solid-State NMR Spectroscopy, Powder X-ray Diffraction and Infrared Spectroscopy

    SciTech Connect

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-05-01

    The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1–31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7–10 % impurities in the samples.

  14. The stoichiometry of synthetic alunite as a function of hydrothermal aging investigated by solid-state NMR spectroscopy, powder X-ray diffraction and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-05-01

    The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1-31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7-10 % impurities in the samples.

  15. Structure of the propeptide of prothrombin containing the. gamma. -carboxylation recognition site determined by two-dimensional NMR spectroscopy

    SciTech Connect

    Sanford, D.G.; Sudmeier, J.L.; Bachovchin, W.W.; Kanagy, C.; Furie, B.C.; Furie, B. )

    1991-10-15

    The propeptides of the vitamin K dependent blood clotting and regulatory proteins contain a {gamma}-carboxylation recognition site that directs precursor forms of these proteins for posttranslational {gamma}-carboxylation. Peptides corresponding to the propeptide of prothrombin were synthesized and examined by circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMR). CD spectra indicate that these peptides have little or no secondary structure in aqueous solutions but that the addition of trifluoroethanol induces or stabilizes a structure containing {alpha}-helical character. The maximum helical content occurs at 35-40% trifluoroethanol. This trifluoroethanol-stabilized structure was solved by two-dimensional NMR spectroscopy. The NMR results demonstrate that residues {minus}13 to {minus}3 form an amphipathic {alpha}-helix. NMR spectra indicate that a similar structure is present at 5C, in the absence of trifluoroethanol. Of the residues previously implicated in defining the {gamma}-carboxylation recognition site, four residues ({minus}18, {minus}17, {minus}16, and {minus}15) are adjacent to the helical region and one residue ({minus}10) is located within the helix. The potential role of the amphipathic {alpha}-helix in the {gamma}-carboxylation recognition site is discussed.

  16. Diffusion in Model Networks as Studied by NMR and Fluorescence Correlation Spectroscopy

    PubMed Central

    2009-01-01

    We have studied the diffusion of small solvent molecules (octane) and larger hydrophobic dye probes in octane-swollen poly(dimethyl siloxane) linear-chain solutions and end-linked model networks, using pulsed-gradient nuclear magnetic resonance (NMR) and fluorescence correlation spectroscopy (FCS), respectively, focusing on diffusion in the bulk polymer up to the equilibrium degree of swelling of the networks, that is, 4.8 at most. The combination of these results allows for new conclusions on the feasibility of different theories describing probe diffusion in concentrated polymer systems. While octane diffusion shows no cross-link dependence, the larger dyes are increasingly restricted by fixed chemical meshes. The simple Fujita free-volume theory proved most feasible to describe probe diffusion in linear long-chain solutions with realistic parameters, while better fits were obtained assuming a stretched exponential dependence on concentration. Importantly, we have analyzed the cross-link specific effect on probe diffusion independently of any specific model by comparing the best-fit interpolation of the solution data with the diffusion in the networks. The most reasonable description is obtained by assuming that the cross-link effect is additive in the effective friction coefficient of the probes. The concentration dependences as well as the data compared at the equilibrium degrees of swelling indicate that swelling heterogeneities and diffusant shape have a substantial influence on small-molecule diffusion in networks. PMID:19812716

  17. Application of NMR Spectroscopy in the Assessment of Radiation Dose in Human Primary Cells.

    PubMed

    Kang, Chang-Mo; Seong Hyeon, Jin; Ra Kim, So; Kyeong Lee, Eun; Jin Yun, Hyun; Young Kim, Sun; Kee Chae, Young

    2015-11-01

    We employed the primary cell model system as a first step toward establishing a method to assess the influence of ionizing radiation by using a combination of common and abundant metabolites. We applied X-ray irradiation amounts of 0, 1, and 5 Gy to the cells that were harvested 24, 48, or 72 h later, and profiled metabolites by 2D-NMR spectroscopy to sort out candidate molecules that could be used to distinguish the samples under different irradiation conditions. We traced metabolites stemming from the input ¹³C-glucose, identified twelve of them from the cell extracts, and applied statistical analysis to find out that all the metabolites, including glycine, alanine, and gluatamic acid, increased upon irradiation. The combinatorial use of the selected metabolites showed promising results where the product of signal intensities of alanine and lactate could differentiate samples according to the dose of X-ray irradiation. We hope that this work can form a base for treating radiation-poisoned patients in the future. PMID:26567947

  18. Near constant loss regime in fast ionic conductors analyzed by impedance and NMR spectroscopies.

    PubMed

    Bucheli, Wilmer; Arbi, Kamel; Sanz, Jesús; Nuzhnyy, Dmitry; Kamba, Stanislav; Várez, Alejandro; Jimenez, Ricardo

    2014-08-01

    Universal dielectric response (UDR) and nearly constant loss (NCL) dispersive regimes have been investigated in fast ion conductors with perovskite and NASICON structure by using NMR and impedance spectroscopy (IS). In this study, the electrical behavior of La(0.5)Li(0.5)TiO3 (LLTO-05) perovskite and Li(1.2)Ti(1.8)Al(0.2)(PO4)3 (LTAP0-02) NASICON compounds was investigated. In both systems a three-dimensional network of conduction paths is present. In the Li-rich LLTO-05 sample, lithium and La are randomly distributed on A-sites of perovskites, but in LTAP0-02 Li and cation vacancies are preferentially disposed at M1 and M2 sites. In perovskite compounds, local motions produced inside unit cells are responsible for the large "near constant loss" regime detected at low temperatures, however, in the case of NASICON compounds, local motions not participating in long-range charge transport were not detected. In both analyzed systems long-range correlated motions are responsible for dc-conductivity values of ceramic grains near 10(-3) S cm(-1) at room temperature, indicating that low-temperature local motions, producing large NCL contribution, are not required to achieve the highest ionic conductivities. PMID:24944081

  19. Structural investigations of borosilicate glasses containing MoO 3 by MAS NMR and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Caurant, D.; Majérus, O.; Fadel, E.; Quintas, A.; Gervais, C.; Charpentier, T.; Neuville, D.

    2010-01-01

    High molybdenum concentration in glass compositions may lead to alkali and alkaline-earth molybdates crystallization during melt cooling that must be controlled particularly during the preparation of highly radioactive nuclear glassy waste forms. To understand the effect of molybdenum addition on the structure of a simplified nuclear glass and to know how composition changes can affect molybdates crystallization tendency, the structure of two glass series belonging to the SiO 2-B 2O 3-Na 2O-CaO-MoO 3 system was studied by 29Si, 11B, 23Na MAS NMR and Raman spectroscopies by increasing MoO 3 or B 2O 3 concentrations. Increasing MoO 3 amount induced an increase of the silicate network reticulation but no significant effect was observed on the proportion of BO4- units and on the distribution of Na + cations in glass structure. By increasing B 2O 3 concentration, a strong evolution of the distribution of Na + cations was observed that could explain the evolution of the nature of molybdate crystals (CaMoO 4 or Na 2MoO 4) formed during melt cooling.

  20. Hetergeneous tumour response to photodynamic therapy assessed by in vivo localised 31P NMR spectroscopy.

    PubMed Central

    Ceckler, T. L.; Gibson, S. L.; Kennedy, S. D.; Hill, R.; Bryant, R. G.

    1991-01-01

    Photodynamic therapy (PDT) is efficacious in the treatment of small malignant lesions when all cells in the tumour receive sufficient drug, oxygen and light to induce a photodynamic effect capable of complete cytotoxicity. In large tumours, only partial effectiveness is observed presumably because of insufficient light penetration into the tissue. The heterogeneity of the metabolic response in mammary tumours following PDT has been followed in vivo using localised phosphorus NMR spectroscopy. Alterations in nucleoside triphosphates (NTP), inorganic phosphate (Pi) and pH within localised regions of the tumour were monitored over 24-48 h following PDT irradiation of the tumour. Reduction of NTP and increases in Pi were observed at 4-6 h after PDT irradiation in all regions of treated tumours. The uppermost regions of the tumours (those nearest the skin surface and exposed to the greatest light fluence) displayed the greatest and most prolonged reduction of NTP and concomitant increase in Pi resulting in necrosis. The metabolite concentrations in tumour regions located towards the base of the tumour returned a near pre-treatment levels by 24-48 h after irradiation. The ability to follow heterogeneous metabolic responses in situ provides one means to assess the degree of metabolic inhibition which subsequently leads to tumour necrosis. Images Figure 4 PMID:1829953

  1. Conformational studies on five octasaccharides isolated from chondroitin sulfate using NMR spectroscopy and molecular modeling.

    PubMed

    Blanchard, Véronique; Chevalier, Franck; Imberty, Anne; Leeflang, Bas R; Basappa; Sugahara, Kazuyuki; Kamerling, Johannis P

    2007-02-01

    Chondroitin sulfate proteoglycans (CS-PG) are involved in the regulation of the central nervous system in vertebrates due to their presence on cell surfaces and in the extracellular matrix of tissues. The CS moieties are built up from repeating -4)GlcA(beta1-3)GalNAc(beta1- disaccharide units, partly O-sulfated at different positions. The presence of the disulfated disaccharide D-unit, GlcA2S(beta1-3)GalNAc6S, in the CS moiety of the proteoglycan DSD-1-PG/phosphacan, correlates with neurite outgrowth promotion. The binding of monoclonal antibody (mAb) 473HD to DSD-1-PG, reducing neuronal stimulation, is inhibited by shark cartilage CS-D. CS-D is also recognized by two other mAbs, MO-225 and CS-56. Conformational studies were performed using NMR spectroscopy and molecular modeling on five octasaccharides isolated from shark cartilage CS-D. These octasaccharides present different binding properties toward the three mAbs. The combination of the experimental and theoretical approaches revealed that the sulfate group at position 2 of GlcA in disaccharide D and the presence of an exocyclic negative tail in disaccharides C [GlcA(beta1-3)GalNAc6S] and DeltaC [Delta4,5HexA(alpha1-3)GalNAc6S] are important for antibody recognition. PMID:17260946

  2. Thermodynamic Study on the Protonation Reactions of Glyphosate in Aqueous Solution: Potentiometry, Calorimetry and NMR spectroscopy.

    PubMed

    Liu, Bijun; Dong, Lan; Yu, Qianhong; Li, Xingliang; Wu, Fengchang; Tan, Zhaoyi; Luo, Shunzhong

    2016-03-10

    Glyphosate [N-(phosphonomethyl)glycine] has been described as the ideal herbicide because of its unique properties. There is some conflicting information concerning the structures and conformations involved in the protonation process of glyphosate. Protonation may influence the chemical and physical properties of glyphosate, modifying its structure and the chemical processes in which it is involved. To better understand the species in solution associated with changes in pH, thermodynamic study (potentiometry, calorimetry and NMR spectroscopy) about the protonation pathway of glyphosate is performed. Experimental results confirmed that the order of successive protonation sites of totally deprotonated glyphosate is phosphonate oxygen, amino nitrogen, and finally carboxylate oxygen. This trend is in agreement with the most recent theoretical work in the literature on the subject ( J. Phys. Chem. A 2015, , 119 , 5241 - 5249 ). The result is important because it confirms that the protonated site of glyphosate in pH range 7-8, is not on the amino but on the phosphonate group instead. This corrected information can improve the understanding of the glyphosate chemical and biochemical action. PMID:26862689

  3. Unraveling complex small-molecule binding mechanisms by using simple NMR spectroscopy.

    PubMed

    Quinternet, Marc; Starck, Jean-Philippe; Delsuc, Marc-André; Kieffer, Bruno

    2012-03-26

    Heteronuclear NMR spectroscopy provides a unique way to obtain site-specific information about protein-ligand interactions. Usually, such studies rely on the availability of isotopically labeled proteins, thereby allowing both editing of the spectra and ligand signals to be filtered out. Herein, we report that the use of the methyl SOFAST correlation experiment enables the determination of site-specific equilibrium binding constants by using unlabeled proteins. By using the binding of L- and D-tryptophan to serum albumin as a test case, we determined very accurate dissociation constants for both the high- and low-affinity sites present at the protein surface. The values of site-specific dissociation constants were closer to those obtained by isothermal titration calorimetry than those obtained from ligand-observed methods, such as saturation transfer difference. The possibility of measuring ligand binding to serum albumin at physiological concentrations with unlabeled proteins may open up new perspectives in the field of drug discovery. PMID:22336999

  4. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea

    PubMed Central

    De Pascali, Sandra A.; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P.

    2015-01-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  5. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy.

    PubMed

    Li, Yan; Li, Qingxin; Wong, Ying Lei; Liew, Lynette Sin Yee; Kang, CongBao

    2015-10-01

    Non-structural (NS) proteins of dengue virus (DENV) are important for viral replication. There are four membrane proteins that are coded by viral genome. NS2B was shown to be one of the membrane proteins and its main function was confirmed to regulate viral protease activity. Its membrane topology is still not known because only few studies have been conducted to understand its structure. Here we report the determination of membrane topology of NS2B from DENV serotype 4 using NMR spectroscopy. NS2B of DENV4 was expressed and purified in detergent micelles. The secondary structure of NS2B was first defined based on backbone chemical resonance assignment. Four helices were identified in NS2B. The membrane topology of NS2B was defined based on relaxation analysis and paramagnetic relaxation enhancement experiments. The last three helices were shown to be more stable than the first helix. The NS3 protease cofactor region between α2 and α3 is highly dynamic. Our results will be useful for further structural and functional analysis of NS2B. PMID:26072288

  6. Detection of Anisotropy in Cartilage Using 2H Double-Quantum-Filtered NMR-Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharf, Y.; Eliav, U.; Shinar, H.; Navon, G.

    Double-quantum-filtered (DQF) NMR spectroscopy of I = 1 spin systems is a diagnostic tool for the detection of anisotropy in macroscopically disordered systems. For deuterium, this method reveals the presence of a residual quadrupolar interaction for D 2O in bovine nasal cartilage. This tissue is not macroscopically ordered and the quadrupolar splitting is not resolved. Fitting the calculated spectral lineshapes to the experimental results was possible only when a distribution of the residual quadrupolar interaction, omega(q), was assumed. The series of DQF lineshapes obtained for different creation times in the DQF experiment could be fitted using a single set of three parameters: the average residual quadrupolar interaction overlineω q/2π = 110 Hz, its standard deviation Δω q/2π = 73 Hz, and the transverse relaxation rate of 63 s -1. Separate deuterium DQF measurements for the constituents of the cartilage, collagen, and chondroitin sulfate indicated that the DQF spectra of cartilage are the result of anisotropic motion of D 2O due to binding to the fibrous collagen in the tissue.

  7. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea.

    PubMed

    De Pascali, Sandra A; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P

    2015-06-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  8. Evaluation of characteristic deuterium distributions of ephedrines and methamphetamines by NMR spectroscopy for drug profiling.

    PubMed

    Matsumoto, Teruki; Urano, Yasuteru; Makino, Yukiko; Kikura-Hanajiri, Ruri; Kawahara, Nobuo; Goda, Yukihiro; Nagano, Tetsuo

    2008-02-15

    We have established a method for quantitative analysis of the deuterium contents (D/H) at the phenyl, methine, benzyl, N-methyl and methyl groups of l-ephedrine/HCl, d-pseudoephedrine/HCl and methamphetamine/HCl by 2H NMR spectroscopy. Comparison of the 5 position-specific D/H values of l-ephedrine/HCl and d-pseudoephedrine/HCl prepared by three methods (chemical synthesis, semichemical synthesis, and biosynthesis) showed that chemically synthesized ephedrines and semisynthetic ephedrines have highly specific distributions of deuterium at the methine position and at the benzyl position, compared with the other positions. The classification of several methamphetamine samples seized in Japan in terms of the D/H values at these two positions clearly showed that the methamphetamine samples had been synthesized from ephedrines extracted from Ephedra plants or semisynthetic ephedrines but not from synthetic ephedrine. This isotope ratio analysis method should be useful to trace the origins of seized methamphetamine in Southeast Asia. PMID:18271510

  9. Probing the structural details of xylan degradation by real-time NMR spectroscopy.

    PubMed

    Petersen, Bent Ole; Lok, Finn; Meier, Sebastian

    2014-11-01

    The biodegradation of abundantly available cell wall polysaccharides has recently received much attention, not least because cell wall polysaccharides are substrates for the human gut microbiota and for environmentally sustainable processes of biomass conversion to value-added compounds. A major fraction of cereal cell wall polysaccharides consists of arabinoxylans. Arabinoxylan and its degradation products are therefore present in a variety of agro-industrial residues and products. Here, we undertook to track the structural details of wheat arabinoxylan degradation with high resolution NMR spectroscopy. More than 15 carbohydrate residues were distinguished in the substrate and more than 20 residues in partially degraded samples without any sample cleanup. The resolution of a plethora of structural motifs in situ permits the readout of persisting structures in degradation processes and in products. Reaction progress was visualized for the biodegradation of arabinoxylan by different crude microbial enzyme preparations. The direct observation of structural details in complex mixtures containing arabinoxylan fragments is significant, as such structural details reportedly modulate the health-promoting functions of arabinoxylan fragments. PMID:25129786

  10. Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy.

    PubMed Central

    Gruetter, R; Novotny, E J; Boulware, S D; Rothman, D L; Mason, G F; Shulman, G I; Shulman, R G; Tamborlane, W V

    1992-01-01

    Glucose is the main fuel for energy metabolism in the normal human brain. It is generally assumed that glucose transport into the brain is not rate-limiting for metabolism. Since brain glucose concentrations cannot be determined directly by radiotracer techniques, we used 13C NMR spectroscopy after infusing enriched D-[1-13C]glucose to measure brain glucose concentrations at euglycemia and at hyperglycemia (range, 4.5-12.1 mM) in six healthy children (13-16 years old). Brain glucose concentrations averaged 1.0 +/- 0.1 mumol/ml at euglycemia (4.7 +/- 0.3 mM plasma) and 1.8-2.7 mumol/ml at hyperglycemia (7.3-12.1 mM plasma). Michaelis-Menten parameters of transport were calculated to be Kt = 6.2 +/- 1.7 mM and Tmax = 1.2 +/- 0.1 mumol/g.min from the relationship between plasma and brain glucose concentrations. The brain glucose concentrations and transport constants are consistent with transport not being rate-limiting for resting brain metabolism at plasma levels greater than 3 mM. PMID:1736294

  11. 31P NMR spectroscopy for quantification of moieties present in the backbone of poly(aryloxycyclotriphosphazene)

    NASA Astrophysics Data System (ADS)

    Al-Shukri, Salah Mahdi

    2015-03-01

    A new method for semi-quantification of the moieties present in the back bone of poly(aryloxycyclotriphosphazene) using 31P NMR spectroscopy was proposed based on integral values and number of phosphorus atoms of the representative resonance. Poly(m-phenylenedioxy)cyclotriphosphazenes with a different degree of crosslink were synthesized from the reaction of hexachlorocyclotriphosphazene (NPCl2)3 with 1,3-benzenediol and triethylamine in five different mole ratios, afforded structurally different products designated as PI-PV. The structures of these products and their isomeric compositions were identified based on the correlation between chemical shifts and JPP coupling constants. The data clearly demonstrated presence of a mixture contains different substitution modes and isomers. When the mole ratio of the reactants is in equal amount, the non-geminal mode is predominantly formed of about 89.03% and also geminal mode of about 10.95% has been observed. The formation of the later increased to 52.19% when the ratio of substituent was raised at the tris and tetra stage of chlorine replacement.

  12. Analysis of the hydrolysis of inulin using real time 1H NMR spectroscopy

    PubMed Central

    Barclay, Thomas; Ginic-Markovic, Milena; Johnston, Martin R.; Cooper, Peter D.; Petrovsky, Nikolai

    2012-01-01

    The hydrolysis of various carbohydrates was investigated under acidic conditions in real time by 1H NMR spectroscopy, with a focus on the polysaccharide inulin. Sucrose was used as a model compound to illustrate the applicability of this technique. The hydrolysis of sucrose was shown to follow pseudo first order kinetics and have an activation energy of 107.0 kJ.mol−1 (s.d. 1.7 kJ.mol−1). Inulin, pullulan and glycogen also all followed pseudo first order kinetics, but had an initiation phase at least partially generated by the protonation of the glycosidic bonds. It was also demonstrated that polysaccharide chain length has an effect on the hydrolysis of inulin. For short chain inulin (DPn 18, s.d. 0.70) the activation energy calculated for the hydrolytic cleavage of glucose was similar to sucrose at 108.5 kJ.mol−1 (std. dev. 0.60). For long chain inulin (DPn 30, s.d. 1.3) the activation energy for the hydrolytic cleavage of glucose was reduced to 80.5 kJ.mol−1 (s.d. 2.3 kJ.mol−1). This anomaly has been attributed to varied conformations for the two different lengths of inulin chain in solution. PMID:22464225

  13. Characterizing mixed phosphonic acid ligand capping on CdSe/ZnS quantum dots using ligand exchange and NMR spectroscopy.

    PubMed

    Davidowski, Stephen K; Lisowski, Carmen E; Yarger, Jeffery L

    2016-03-01

    The ligand capping of phosphonic acid functionalized CdSe/ZnS core-shell quantum dots (QDs) was investigated with a combination of solution and solid-state (31) P nuclear magnetic resonance (NMR) spectroscopy. Two phosphonic acid ligands were used in the synthesis of the QDs, tetradecylphosphonic acid and ethylphosphonic acid. Both alkyl phosphonic acids showed broad liquid and solid-state (31) P NMR resonances for the bound ligands, indicative of heterogeneous binding to the QD surface. In order to quantify the two ligand populations on the surface, ligand exchange facilitated by phenylphosphonic acid resulted in the displacement of the ethylphosphonic acid and tetradecylphosphonic acid and allowed for quantification of the free ligands using (31) P liquid-state NMR. After washing away the free ligand, two broad resonances were observed in the liquids' (31) P NMR corresponding to the alkyl and aromatic phosphonic acids. The washed samples were analyzed via solid-state (31) P NMR, which confirmed the ligand populations on the surface following the ligand exchange process. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26639792

  14. Fragment-Linking Approach Using (19)F NMR Spectroscopy To Obtain Highly Potent and Selective Inhibitors of β-Secretase.

    PubMed

    Jordan, John B; Whittington, Douglas A; Bartberger, Michael D; Sickmier, E Allen; Chen, Kui; Cheng, Yuan; Judd, Ted

    2016-04-28

    Fragment-based drug discovery (FBDD) has become a widely used tool in small-molecule drug discovery efforts. One of the most commonly used biophysical methods in detecting weak binding of fragments is nuclear magnetic resonance (NMR) spectroscopy. In particular, FBDD performed with (19)F NMR-based methods has been shown to provide several advantages over (1)H NMR using traditional magnetization-transfer and/or two-dimensional methods. Here, we demonstrate the utility and power of (19)F-based fragment screening by detailing the identification of a second-site fragment through (19)F NMR screening that binds to a specific pocket of the aspartic acid protease, β-secretase (BACE-1). The identification of this second-site fragment allowed the undertaking of a fragment-linking approach, which ultimately yielded a molecule exhibiting a more than 360-fold increase in potency while maintaining reasonable ligand efficiency and gaining much improved selectivity over cathepsin-D (CatD). X-ray crystallographic studies of the molecules demonstrated that the linked fragments exhibited binding modes consistent with those predicted from the targeted screening approach, through-space NMR data, and molecular modeling. PMID:26978477

  15. Interpretation of NMR spectroscopy human brain data with a multi-compartment computational model of cerebral metabolism.

    PubMed

    Occhipinti, Rossana; Somersalo, Erkki; Calvetti, Daniela

    2011-01-01

    One of the main difficulties in studying human brain metabolism at rest and during neuronal stimulation is that direct quantitative information of metabolite and intermediate concentrations in real time from in vivo and in situ brain cells is extremely difficult to obtain. We present a new six compartment dynamic computational model of the astrocyte-glutamatergic neuron cellular complex, previously used and validated for steady state investigations [1],which utilizes Michaelis-Menten type kinetic expressions for the reaction fluxes and transport rates. The model is employed to interpret experimental data (total tissue concentrations of glucose, lactate, aspartate, and glutamate) collected via NMR spectroscopy [2] in terms of compartmentalized metabolism. By integrating numerical methods with Bayesian statistics, we obtain an ensemble of models in statistical agreement with the data. Moreover, our preliminary results seem to suggest that NMR spectroscopy detects the time profile of the concentrations of glucose, lactate and aspartate in glutamatergic neuron. PMID:21445794

  16. Solution-State (17) O?Quadrupole Central-Transition NMR Spectroscopy in the Active Site of Tryptophan Synthase.

    PubMed

    Young, Robert P; Caulkins, Bethany G; Borchardt, Dan; Bulloch, Daryl N; Larive, Cynthia K; Dunn, Michael F; Mueller, Leonard J

    2016-01-01

    Oxygen is an essential participant in the acid-base chemistry that takes place within many enzyme active sites, yet has remained virtually silent as a probe in NMR spectroscopy. Here, we demonstrate the first use of solution-state (17) O?quadrupole central-transition NMR spectroscopy to characterize enzymatic intermediates under conditions of active catalysis. In the 143?kDa pyridoxal-5'-phosphate-dependent enzyme tryptophan synthase, reactions of the ?-aminoacrylate intermediate with the nucleophiles indoline and 2-aminophenol correlate with an upfield shift of the substrate carboxylate oxygen resonances. First principles calculations suggest that the increased shieldings for these quinonoid intermediates result from the net increase in the charge density of the substrate-cofactor ?-bonding network, particularly at the adjacent ?-carbon site. PMID:26661504

  17. Cherry tomatoes metabolic profile determined by ¹H-High Resolution-NMR spectroscopy as influenced by growing season.

    PubMed

    Masetti, Olimpia; Ciampa, Alessandra; Nisini, Luigi; Valentini, Massimiliano; Sequi, Paolo; Dell'Abate, Maria Teresa

    2014-11-01

    The content of the most valuable metabolites present in the lipophilic fraction of Protected Geographical Indication cherry tomatoes produced in Pachino (Italy) was observed for 2 cultivated varieties, i.e. cv. Naomi and cv. Shiren, over a period of 3 years in order to observe variations due to relevant climatic parameters, e.g. solar radiation and average temperature, characterising different seasons. (1)H-NMR spectroscopy was applied and spectral data were processed by means of Principal Component Analysis (PCA). We found that the metabolic profile was different for the two considered cultivated varieties and they were differently affected by climatic conditions. Major metabolites influenced by cropping period were α-tocopherol and the unsaturated lipid fraction in Naomi cherry tomatoes, and chlorophylls and phospholipids in Shiren variety, respectively. These results furnished useful information on seasonal dynamics of such important nutritional metabolites contained in tomatoes, confirming also NMR spectroscopy as powerful tool to define a complete metabolic profiling. PMID:24874378

  18. Rapid approach to identify the presence of Arabica and Robusta species in coffee using 1H NMR spectroscopy.

    PubMed

    Monakhova, Yulia B; Ruge, Winfried; Kuballa, Thomas; Ilse, Maren; Winkelmann, Ole; Diehl, Bernd; Thomas, Freddy; Lachenmeier, Dirk W

    2015-09-01

    NMR spectroscopy was used to verify the presence of Arabica and Robusta species in coffee. Lipophilic extracts of authentic roasted and green coffees showed the presence of established markers for Robusta (16-O-methylcafestol (16-OMC)) and for Arabica (kahweol). The integration of the 16-OMC signal (δ 3.165 ppm) was used to estimate the amount of Robusta in coffee blends with an approximate limit of detection of 1-3%. The method was successfully applied for the analysis of 77 commercial coffee samples (coffee pods, coffee capsules, and coffee beans). Furthermore, principal component analysis (PCA) was applied to the spectra of lipophilic and aqueous extracts of 20 monovarietal authentic samples. Clusters of the two species were observed. NMR spectroscopy can be used as a rapid prescreening tool to discriminate Arabica and Robusta coffee species before the confirmation applying the official method. PMID:25842325

  19. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of a variety of chemical and biological solids. PMID:26801026

  20. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological solids.

  1. Solid state NMR spectroscopy investigation of the molecular structure of epoxy based materials cured in different conditions

    NASA Astrophysics Data System (ADS)

    Alessi, S.; Spinella, A.; Caponetti, E.; Sabatino, Maria Antonietta; Spadaro, G.

    2012-07-01

    In this work two epoxy resin model systems, whose monomers are typically used in structural composites, were thermally cured in different cure conditions in order to obtain different cross-linking densities. Their molecular structures were investigated through solid state NMR spectroscopy in order to correlate them to the cure process conditions used and the results were discussed in the light of the dynamical mechanical thermal analysis (DMTA) performed.

  2. Method of Continuous Variation: Characterization of Alkali Metal Enolates Using 1H and 19F NMR Spectroscopies

    PubMed Central

    2015-01-01

    The method of continuous variation in conjunction with 1H and 19F NMR spectroscopies was used to characterize lithium and sodium enolates solvated by N,N,N′,N′-tetramethylethyldiamine (TMEDA) and tetrahydrofuran (THF). A strategy developed using lithium enolates was then applied to the more challenging sodium enolates. A number of sodium enolates solvated by TMEDA or THF afford exclusively tetramers. Evidence suggests that TMEDA chelates sodium on cubic tetramers. PMID:24915602

  3. Determination of the time course of an enzymatic reaction by 1H NMR spectroscopy: hydroxynitrile lyase catalysed transhydrocyanation

    NASA Astrophysics Data System (ADS)

    Hickel, A.; Gradnig, G.; Griengl, H.; Schall, M.; Sterk, H.

    1996-01-01

    The time course of the enzyme catalysed transhydrocyanation of benzaldehyde to give ( S)-mandelonitrile was investigated using a hydroxynitrile lyase from Hevea brasiliensis as catalyst and acetone cyanohydrin as cyanide donor. Employing special techniques it was possible to apply 1H NMR spectroscopy in aqueous medium to monitor the concentration changes of all substrates and products. By this technique strong evidence for inhibition of the enzyme at higher substrate concentrations was obtained.

  4. Use of nuclear magnetic resonance (NMR) spectroscopy for the analysis of chemical warfare agents and their degradation products in enviornmental samples

    SciTech Connect

    Szafraniec, L.L.; Beaudry, W.T.

    1995-06-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful analytical techniques for elucidating the molecular structure of organic compounds. In environmental samples, the identification and detection of chemical warfare related compounds is best accomplished using high field high resolution NMR. This paper describes the experimental procedures.

  5. High sensitivity 1H-NMR spectroscopy of homeopathic remedies made in water

    PubMed Central

    Anick, David J

    2004-01-01

    Background The efficacy of homeopathy is controversial. Homeopathic remedies are made via iterated shaking and dilution, in ethanol or in water, from a starting substance. Remedies of potency 12 C or higher are ultra-dilute (UD), i.e. contain zero molecules of the starting material. Various hypotheses have been advanced to explain how a UD remedy might be different from unprepared solvent. One such hypothesis posits that a remedy contains stable clusters, i.e. localized regions where one or more hydrogen bonds remain fixed on a long time scale. High sensitivity proton nuclear magnetic resonance spectroscopy has not previously been used to look for evidence of differences between UD remedies and controls. Methods Homeopathic remedies made in water were studied via high sensitivity proton nuclear magnetic resonance spectroscopy. A total of 57 remedy samples representing six starting materials and spanning a variety of potencies from 6 C to 10 M were tested along with 46 controls. Results By presaturating on the water peak, signals could be reliably detected that represented H-containing species at concentrations as low as 5 ?M. There were 35 positions where a discrete signal was seen in one or more of the 103 spectra, which should theoretically have been absent from the spectrum of pure water. Of these 35, fifteen were identified as machine-generated artifacts, eight were identified as trace levels of organic contaminants, and twelve were unexplained. Of the unexplained signals, six were seen in just one spectrum each. None of the artifacts or unexplained signals occurred more frequently in remedies than in controls, using a p < .05 cutoff. Some commercially prepared samples were found to contain traces of one or more of these small organic molecules: ethanol, acetate, formate, methanol, and acetone. Conclusion No discrete signals suggesting a difference between remedies and controls were seen, via high sensitivity 1H-NMR spectroscopy. The results failed to support a hypothesis that remedies made in water contain long-lived non-dynamic alterations of the H-bonding pattern of the solvent. PMID:15518588

  6. Metabolomics-Based Study of Logarithmic and Stationary Phases of Promastigotes in Leishmania major by 1H NMR Spectroscopy

    PubMed Central

    Arjmand, Mohammad; Madrakian, Azadeh; Khalili, Ghader; Najafi, Ali; Zamani, Zahra; Akbari, Ziba

    2016-01-01

    Background: Cutaneous leishmaniasis is one of the most important parasitic diseases in humans. In this disease, one of the responsible organisms is Leishmania major, which is transmitted by sandfly vector. There are specific differences in biochemical profiles and metabolite pathways in logarithmic and stationary phases of Leishmania parasites. In the present study, 1H NMR spectroscopy was used to examine the metabolites outliers in the logarithmic and stationary phases of promastigotes in L. major to enlighten more about the transmission mechanism in metacyclogenesis of L. major. Methods: Promastigote was cultured, logarithmic and stationary phases were separated by the peanut agglutinin, and cell metabolites were extracted. 1H NMR spectroscopy was applied, and outliers were analyzed using principal component analysis. Results: The most altered metabolites in stationary and logarithmic phases were limited to citraconic acid, isopropylmalic acid, L-leucine, ornithine, caprylic acid, capric acid, and acetic acid. Conclusion: 1H NMR spectroscopy could play an important role in the characterization of metabolites in biochemical pathways during a metacyclogenesis process. These metabolites and their pathways can help in exploiting a transmission mechanism in metacyclogenesis, and outcoming data might be used in the metabolic network reconstruction of L. major modeling. PMID:26592771

  7. Improving Assessment of Lipoprotein Profile in Type 1 Diabetes by 1H NMR Spectroscopy

    PubMed Central

    Brugnara, Laura; Mallol, Roger; Ribalta, Josep; Vinaixa, Maria; Murillo, Serafín; Casserras, Teresa; Guardiola, Montse; Vallvé, Joan Carles; Kalko, Susana G.; Correig, Xavier; Novials, Anna

    2015-01-01

    Patients with type 1 diabetes (T1D) present increased risk of cardiovascular disease (CVD). The aim of this study is to improve the assessment of lipoprotein profile in patients with T1D by using a robust developed method 1H nuclear magnetic resonance spectroscopy (1H NMR), for further correlation with clinical factors associated to CVD. Thirty patients with T1D and 30 non-diabetes control (CT) subjects, matched for gender, age, body composition (DXA, BMI, waist/hip ratio), regular physical activity levels and cardiorespiratory capacity (VO2peak), were analyzed. Dietary records and routine lipids were assessed. Serum lipoprotein particle subfractions, particle sizes, and cholesterol and triglycerides subfractions were analyzed by 1H NMR. It was evidenced that subjects with T1D presented lower concentrations of small LDL cholesterol, medium VLDL particles, large VLDL triglycerides, and total triglycerides as compared to CT subjects. Women with T1D presented a positive association with HDL size (p<0.005; R = 0.601) and large HDL triglycerides (p<0.005; R = 0.534) and negative (p<0.005; R = -0.586) to small HDL triglycerides. Body fat composition represented an important factor independently of normal BMI, with large LDL particles presenting a positive correlation to total body fat (p<0.005; R = 0.505), and total LDL cholesterol and small LDL cholesterol a positive correlation (p<0.005; R = 0.502 and R = 0.552, respectively) to abdominal fat in T1D subjects; meanwhile, in CT subjects, body fat composition was mainly associated to HDL subclasses. VO2peak was negatively associated (p<0.005; R = -0.520) to large LDL-particles only in the group of patients with T1D. In conclusion, patients with T1D with adequate glycemic control and BMI and without chronic complications presented a more favourable lipoprotein profile as compared to control counterparts. In addition, slight alterations in BMI and/or body fat composition showed to be relevant to provoking alterations in lipoproteins profiles. Finally, body fat composition appears to be a determinant for cardioprotector lipoprotein profile. PMID:26317989

  8. Cholesterol in oriented bilayers: Determination of order parameters by proton detected local field NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Massou, S.; Tropis, M.; Milon, A.

    1999-10-01

    Cholesterol order parameters are usually determined by deuterium NMR using specifically deuterated cholesterol. We demonstrate herein that the same information may be obtained from the C-H dipolar couplings using 2D experiments correlating 13C chemical shifts and H-C dipolar couplings (PDLF spectroscopy) which we have performed for the first time on oriented lipid bilayers. The order parameters of C4-Ha and C4-He vectors calculated from this experiment are in agreement with those previously determined on the same sample from deuterium NMR. This experiment opens the way to the simultaneous determination of order parameters of all C-H vectors without the need of specific labeling. La détermination des paramètres d'ordre du cholestérol dans une bicouche lipidique est possible par RMN du deutérium après synthèse de cholestérol spécifiquement marqué. Nous montrons dans cet article que la même information peut être extraite à partir des constantes de couplage dipolaire C-H à l'aide d'expériences 2D de corrélation déplacement chimique 13C - couplage dipolaire 13C-H, appelées PDLF, qui ont été réalisées pour la première fois sur des bicouches lipidiques orientées. Les paramètres d'ordre des vecteurs C4-Ha et C4-He issus de cette expérience sont en accord avec ceux déterminés précédemment, sur le même échantillon, par RMN du deutérium. Cette approche permet d'envisager la détermination en une seule expérience des couplages dipolaires de tous les vecteurs C-H sans avoir recours au marquage spécifique.

  9. The microporous structure of coals and a microporous carbon studied using xenon-129 NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Anderson, Stasia A.

    sp{129}Xe nuclear magnetic resonance spectroscopy of xenon gas adsorbed in coal is used to describe coal microporous structure. Emphasis is on establishing micropore diameter, whether pores are open, the type of connectivity, and changes associated with coal rank. Pressure dependent sp{129}Xe NMR spectra were acquired for a rank-varied set of coals. Micropore diameters calculated from the spectra range from 5.6 to 7.5 A and are related to coal rank. Signal linewidths decrease with increasing coal rank. The packing density of powdered coal affected the spectral appearance. Micropore diameters were also calculated for a microporous carbon before and after pore-size alteration. Selective low power presaturation of the adsorbed xenon signal for four coals produces a hole-burning effect in the spectra indicating that the signal is composed of a series of overlapped chemical shifts. Saturation transfer to the external gas signal, (which most likely originates from xenon in large pores) is observed as presaturation time is increased. Saturation transfer occurs significantly faster in two low-rank than in two higher-rank coals. The process of xenon adsorption was monitored by acquisition of sp{129}Xe NMR during adsorption. Equilibrium is achieved faster in smaller particle size anthracite than in larger, and for either, the time is slower than for the microporous carbon. The external xenon is observed only in the larger particle size and loses intensity as the internally-adsorbed xenon increases. No intermediate signal location is indicated prior to equilibrium. These experiments indicate coal porosity is open and that it constitutes a constricted network. The degree of constriction is higher in coals over ˜89% carbon. Microporosity in low-rank coals is consistent with a dendritic pore structure. For higher rank coals over 89% carbon, the microporosity is more isolated and is open via constricted micropores but lacks a route through larger pores. Smaller particle size anthracite has less constriction in its porosity than larger particle size, and may also have less larger porosity or fracture.

  10. Lithium ion diffusion in Li β-alumina single crystals measured by pulsed field gradient NMR spectroscopy

    SciTech Connect

    Chowdhury, Mohammed Tareque Takekawa, Reiji; Iwai, Yoshiki; Kuwata, Naoaki; Kawamura, Junichi

    2014-03-28

    The lithium ion diffusion coefficient of a 93% Li β-alumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 × 10{sup −11} m{sup 2}/s in the direction perpendicular to the c axis at room temperature. The Li ion diffusion coefficient along the c axis direction was found to be very small (6.4 × 10{sup −13} m{sup 2}/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the β-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297–333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li β-alumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li β-alumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li β–alumina system.

  11. Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets.

    PubMed

    Cloarec, Olivier; Dumas, Marc-Emmanuel; Craig, Andrew; Barton, Richard H; Trygg, Johan; Hudson, Jane; Blancher, Christine; Gauguier, Dominique; Lindon, John C; Holmes, Elaine; Nicholson, Jeremy

    2005-03-01

    We describe here the implementation of the statistical total correlation spectroscopy (STOCSY) analysis method for aiding the identification of potential biomarker molecules in metabonomic studies based on NMR spectroscopic data. STOCSY takes advantage of the multicollinearity of the intensity variables in a set of spectra (in this case 1H NMR spectra) to generate a pseudo-two-dimensional NMR spectrum that displays the correlation among the intensities of the various peaks across the whole sample. This method is not limited to the usual connectivities that are deducible from more standard two-dimensional NMR spectroscopic methods, such as TOCSY. Moreover, two or more molecules involved in the same pathway can also present high intermolecular correlations because of biological covariance or can even be anticorrelated. This combination of STOCSY with supervised pattern recognition and particularly orthogonal projection on latent structure-discriminant analysis (O-PLS-DA) offers a new powerful framework for analysis of metabonomic data. In a first step O-PLS-DA extracts the part of NMR spectra related to discrimination. This information is then cross-combined with the STOCSY results to help identify the molecules responsible for the metabolic variation. To illustrate the applicability of the method, it has been applied to 1H NMR spectra of urine from a metabonomic study of a model of insulin resistance based on the administration of a carbohydrate diet to three different mice strains (C57BL/6Oxjr, BALB/cOxjr, and 129S6/SvEvOxjr) in which a series of metabolites of biological importance can be conclusively assigned and identified by use of the STOCSY approach. PMID:15732908

  12. Organic Spectroscopy Laboratory: Utilizing IR and NMR in the Identification of an Unknown Substance

    ERIC Educational Resources Information Center

    Glagovich, Neil M.; Shine, Timothy D.

    2005-01-01

    A laboratory experiment that emphasizes the interpretation of both infrared (IR) and nuclear magnetic resonance (NMR) spectra in the elucidation of the structure of an unknown compound was developed. The method helps students determine [to the first power]H- and [to the thirteenth power]C-NMR spectra from the structures of compounds and to

  13. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Smith, Pieter E. S.; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan; Chen, Zhong

    2015-12-01

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials' structure and dynamics. Because 2D NMR relies on systematic changes in coherences' phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, "ultrafast" NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.

  14. Organic Spectroscopy Laboratory: Utilizing IR and NMR in the Identification of an Unknown Substance

    ERIC Educational Resources Information Center

    Glagovich, Neil M.; Shine, Timothy D.

    2005-01-01

    A laboratory experiment that emphasizes the interpretation of both infrared (IR) and nuclear magnetic resonance (NMR) spectra in the elucidation of the structure of an unknown compound was developed. The method helps students determine [to the first power]H- and [to the thirteenth power]C-NMR spectra from the structures of compounds and to…

  15. Solution secondary structure of calcium-saturated troponin C monomer determined by multidimensional heteronuclear NMR spectroscopy.

    PubMed Central

    Slupsky, C. M.; Reinach, F. C.; Smillie, L. B.; Sykes, B. D.

    1995-01-01

    The solution secondary structure of calcium-saturated skeletal troponin C (TnC) in the presence of 15% (v/v) trifluoroethanol (TFE), which has been shown to exist predominantly as a monomer (Slupsky CM, Kay CM, Reinach FC, Smillie LB, Sykes BD, 1995, Biochemistry 34, forthcoming), has been investigated using multidimensional heteronuclear nuclear magnetic resonance spectroscopy. The 1H, 15N, and 13C NMR chemical shift values for TnC in the presence of TFE are very similar to values obtained for calcium-saturated NTnC (residues 1-90 of skeletal TnC), calmodulin, and synthetic peptide homodimers. Moreover, the secondary structure elements of TnC are virtually identical to those obtained for calcium-saturated NTnC, calmodulin, and the synthetic peptide homodimers, suggesting that 15% (v/v) TFE minimally perturbs the secondary and tertiary structure of this stably folded protein. Comparison of the solution structure of calcium-saturated TnC with the X-ray crystal structure of half-saturated TnC reveals differences in the phi/psi angles of residue Glu 41 and in the linker between the two domains. Glu 41 has irregular phi/psi angles in the crystal structure, producing a kink in the B helix, whereas in calcium-saturated TnC, Glu 41 has helical phi/psi angles, resulting in a straight B helix. The linker between the N and C domains of calcium-saturated TnC is flexible in the solution structure. PMID:7670371

  16. Metabotyping of long-lived mice using 1H NMR spectroscopy.

    PubMed

    Wijeyesekera, Anisha; Selman, Colin; Barton, Richard H; Holmes, Elaine; Nicholson, Jeremy K; Withers, Dominic J

    2012-04-01

    Significant advances in understanding aging have been achieved through studying model organisms with extended healthy lifespans. Employing 1H NMR spectroscopy, we characterized the plasma metabolic phenotype (metabotype) of three long-lived murine models: 30% dietary restricted (DR), insulin receptor substrate 1 null (Irs1-/-), and Ames dwarf (Prop1df/df). A panel of metabolic differences were generated for each model relative to their controls, and subsequently, the three long-lived models were compared to one another. Concentrations of mobile very low density lipoproteins, trimethylamine, and choline were significantly decreased in the plasma of all three models. Metabolites including glucose, choline, glycerophosphocholine, and various lipids were significantly reduced, while acetoacetate, d-3-hydroxybutyrate and trimethylamine-N-oxide levels were increased in DR compared to ad libitum fed controls. Plasma lipids and glycerophosphocholine were also decreased in Irs1-/- mice compared to controls, as were methionine and citrate. In contrast, high density lipoproteins and glycerophosphocholine were increased in Ames dwarf mice, as were methionine and citrate. Pairwise comparisons indicated that differences existed between the metabotypes of the different long-lived mice models. Irs1-/- mice, for example, had elevated glucose, acetate, acetone, and creatine but lower methionine relative to DR mice and Ames dwarfs. Our study identified several potential candidate biomarkers directionally altered across all three models that may be predictive of longevity but also identified differences in the metabolic signatures. This comparative approach suggests that the metabolic networks underlying lifespan extension may not be exactly the same for each model of longevity and is consistent with multifactorial control of the aging process. PMID:22225495

  17. Natural Abundance 17O NMR Spectroscopy of Rat Brain In Vivo

    PubMed Central

    de Graaf, Robin A.; Brown, Peter B.; Rothman, Douglas L.; Behar, Kevin L.

    2008-01-01

    Oxygen is an abundant element that is present in almost all biologically relevant molecules. NMR observation of oxygen has been relatively limited since the NMR-active isotope, oxygen-17, is only present at a 0.037% natural abundance. Furthermore, as a spin 5/2 nucleus oxygen-17 has a moderately strong quadrupole moment which leads to fairly broad resonances (T2* = 1 - 4 ms). However, the similarly short T1 relaxation constants allow substantial signal averaging, whereas the large chemical shift range (> 300 ppm) improves the spectral resolution of 17O NMR. Here it is shown that high-quality, natural abundance 17O NMR spectra can be obtained from rat brain in vivo at 11.74 T. The chemical shifts and line widths of more than 20 oxygen-containing metabolites are established and the sensitivity and potential for 17O-enriched NMR studies are estimated. PMID:18456525

  18. Dissolution mechanism of crystalline cellulose in H3PO4 as assessed by high-field NMR spectroscopy and fast field cycling NMR relaxometry.

    PubMed

    Conte, Pellegrino; Maccotta, Antonella; De Pasquale, Claudio; Bubici, Salvatore; Alonzo, Giuseppe

    2009-10-14

    Many processes have been proposed to produce glucose as a substrate for bacterial fermentation to obtain bioethanol. Among others, cellulose degradation appears as the most convenient way to achieve reliable amounts of glucose units. In fact, cellulose is the most widespread biopolymer, and it is considered also as a renewable resource. Due to extended intra- and interchain hydrogen bonds that provide a very efficient packing structure, however, cellulose is also a very stable polymer, the degradation of which is not easily achievable. In the past decade, researchers enhanced cellulose reactivity by increasing its solubility in many solvents, among which concentrated phosphoric acid (H(3)PO(4)) played the major role because of its low volatility and nontoxicity. In the present study, the solubilization mechanism of crystalline cellulose in H(3)PO(4) has been elucidated by using high- and low-field NMR spectroscopy. In particular, high-field NMR spectra showed formation of direct bonding between phosphoric acid and dissolved cellulose. On the other hand, molecular dynamics studies by low-field NMR with a fast field cycling (FFC) setup revealed two different H(3)PO(4) relaxing components. The first component, described by the fastest longitudinal relaxation rate (R(1)), was assigned to the H(3)PO(4) molecules bound to the biopolymer. Conversely, the second component, characterized by the slowest R(1), was attributed to the bulk solvent. The understanding of cellulose dissolution in H(3)PO(4) represents a very important issue because comprehension of chemical mechanisms is fundamental for process ameliorations to produce bioenergy from biomasses. PMID:19769370

  19. Quantitative Determination of Methylcyclohexanone Mixtures Using 13C NMR Spectroscopy: A Project for an Advanced Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Lefevre, Joseph W.; Silveira, Augustine, Jr.

    2000-01-01

    The percentage composition of mixtures of four methylcyclohexanones was determined using 13C NMR spectroscopy as a quantitative analytical method. The data were acquired using standard broadband proton decoupling and inverse-gated decoupling, the latter done both with and without the paramagnetic relaxation reagent chromium(III) acetylacetonate [Cr(acac)3]. The standard broadband decoupled spectrum resulted in percentages far from the actual values owing to the varying nuclear Overhauser enhancements (NOEs) and spin-lattice relaxation times (T1's) of the various carbon atoms. These effects were eliminated in the inverse-gated experiments, and the results were very close to the actual percentages. Before examining the mixtures, the students studied a pure sample of 2-methylcyclohexanone. They assigned the 13C spectrum and determined the T1 of the carbonyl group both with and without Cr(acac)3 using the inversion-recovery method. Then a five-times-T1 delay was inserted between pulses in all subsequent inverse-gated decoupling experiments. This project provides students with valuable experience with modern NMR techniques. These include COrrelated SpectroscopY (COSY), Distortionless Enhancement by Polarization Transfer (DEPT) spectroscopy, HETeronuclear CORrelated (HETCOR) spectroscopy, T1 determination, standard broadband versus inverse-gated decoupling, and the addition of a paramagnetic relaxation reagent to dramatically shorten both the T

  20. Analyzing the adsorption of blood plasma components by means of fullerene-containing silica gels and NMR spectroscopy in solids

    NASA Astrophysics Data System (ADS)

    Melenevskaya, E. Yu.; Mokeev, M. V.; Nasonova, K. V.; Podosenova, N. G.; Sharonova, L. V.; Gribanov, A. V.

    2012-10-01

    The results from studying the adsorption of blood plasma components (e.g., protein, triglycerides, cholesterol, and lipoproteins of low and high density) using silica gels modified with fullerene molecules (in the form of C60 or the hydroxylated form of C60(OH) x ) and subjected to hydration (or, alternatively, dehydration) are presented. The conditions for preparing adsorbents that allow us to control the adsorption capacity of silica gel and the selectivity of adsorption toward the components of blood plasma, are revealed. The nature and strength of the interactions of the introduced components (fullerene molecules and water) with functional groups on the silica surface are studied by means of solid state NMR spectroscopy (NMR-SS). Conclusions regarding the nature of the centers that control adsorption are drawn on the basis of NMR-SS spectra in combination with direct measurements of adsorption. The interaction of the oxygen of the hydroxyl group of silica gel with fullerene, leading to the formation of electron-donor complexes of C60-H, C60-OH, or C60-OSi type, is demonstrated by the observed changes in the NMR-SS spectra of silica gels in the presence of fullerene.

  1. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    SciTech Connect

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurement of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.

  2. Reconstitution of the Cytb5 -CytP450 Complex in Nanodiscs for Structural Studies using NMR Spectroscopy.

    PubMed

    Zhang, Meng; Huang, Rui; Ackermann, Rose; Im, Sang-Choul; Waskell, Lucy; Schwendeman, Anna; Ramamoorthy, Ayyalusamy

    2016-03-24

    Cytochrome P450s (P450s) are a superfamily of enzymes responsible for the catalysis of a wide range of substrates. Dynamic interactions between full-length membrane-bound P450 and its redox partner cytochrome b5 (cytb5 ) have been found to be important for the enzymatic activity of P450. However, the stability of the circa 70 kDa membrane-bound complex in model membranes renders high-resolution structural NMR studies particularly difficult. To overcome these challenges, reconstitution of the P450-cytb5 complex in peptide-based nanodiscs, containing no detergents, has been demonstrated, which are characterized by size exclusion chromatography and NMR spectroscopy. In addition, NMR experiments are used to identify the binding interface of the P450-cytb5 complex in the nanodisc. This is the first successful demonstration of a protein-protein complex in a nanodisc using NMR structural studies and should be useful to obtain valuable structural information on membrane-bound protein complexes. PMID:26924779

  3. Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping.

    PubMed

    Dona, Anthony C; Jiménez, Beatriz; Schäfer, Hartmut; Humpfer, Eberhard; Spraul, Manfred; Lewis, Matthew R; Pearce, Jake T M; Holmes, Elaine; Lindon, John C; Nicholson, Jeremy K

    2014-10-01

    Proton nuclear magnetic resonance (NMR)-based metabolic phenotyping of urine and blood plasma/serum samples provides important prognostic and diagnostic information and permits monitoring of disease progression in an objective manner. Much effort has been made in recent years to develop NMR instrumentation and technology to allow the acquisition of data in an effective, reproducible, and high-throughput approach that allows the study of general population samples from epidemiological collections for biomarkers of disease risk. The challenge remains to develop highly reproducible methods and standardized protocols that minimize technical or experimental bias, allowing realistic interlaboratory comparisons of subtle biomarker information. Here we present a detailed set of updated protocols that carefully consider major experimental conditions, including sample preparation, spectrometer parameters, NMR pulse sequences, throughput, reproducibility, quality control, and resolution. These results provide an experimental platform that facilitates NMR spectroscopy usage across different large cohorts of biofluid samples, enabling integration of global metabolic profiling that is a prerequisite for personalized healthcare. PMID:25180432

  4. 1H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet

    PubMed Central

    Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Ferrantelli, Vincenzo; Dugo, Giacomo; Cicero, Nicola

    2015-01-01

    NMR spectroscopy has become an experimental technique widely used in food science. The experimental procedures that allow precise and quantitative analysis on different foods are relatively simple. For a better sensitivity and resolution, NMR spectroscopy is usually applied to liquid sample by means of extraction procedures that can be addressed to the observation of particular compounds. For the study of semisolid systems such as intact tissues, High-Resolution Magic Angle Spinning (HR-MAS) has received great attention within the biomedical area and beyond. Metabolic profiling and metabolism changes can be investigated both in animal organs and in foods. In this work we present a proton HR-MAS NMR study on the typical vegetable foods of Mediterranean diet such as the Protected Geographical Indication (PGI) cherry tomato of Pachino, the PGI Interdonato lemon of Messina, several Protected Designation of Origin (PDO) extra virgin olive oils from Sicily, and the Traditional Italian Food Product (PAT) red garlic of Nubia. We were able to identify and quantify the main metabolites within the studied systems that can be used for their characterization and authentication. PMID:26495154

  5. Molecular characterization of dissolved organic matter in glacial ice: coupling natural abundance 1H NMR and fluorescence spectroscopy.

    PubMed

    Pautler, Brent G; Woods, Gwen C; Dubnick, Ashley; Simpson, André J; Sharp, Martin J; Fitzsimons, Sean J; Simpson, Myrna J

    2012-04-01

    Glaciers and ice sheets are the second largest freshwater reservoir in the global hydrologic cycle, and the onset of global climate warming has necessitated an assessment of their contributions to sea-level rise and the potential release of nutrients to nearby aquatic environments. In particular, the release of dissolved organic matter (DOM) from glacier melt could stimulate microbial activity in both glacial ecosystems and adjacent watersheds, but this would largely depend on the composition of the material released. Using fluorescence and (1)H NMR spectroscopy, we characterize DOM at its natural abundance in unaltered samples from a number of glaciers that differ in geographic location, thermal regime, and sample depth. Parallel factor analysis (PARAFAC) modeling of DOM fluorophores identifies components in the ice that are predominantly proteinaceous in character, while (1)H NMR spectroscopy reveals a mixture of small molecules that likely originate from native microbes. Spectrofluorescence also reveals a terrestrial contribution that was below the detection limits of NMR; however, (1)H nuclei from levoglucosan was identified in Arctic glacier ice samples. This study suggests that the bulk of the DOM from these glaciers is a mixture of biologically labile molecules derived from microbes. PMID:22385100

  6. Use of residual dipolar couplings in structural analysis of protein-ligand complexes by solution NMR spectroscopy.

    PubMed

    Jain, Nitin U

    2009-01-01

    Investigation of structure-function relationships in protein complexes, specifically protein-ligand interactions, carry great significance in elucidating the structural and mechanistic bases of molecular recognition events and their role in regulating cell processes. Nuclear magnetic resonance (NMR) spectroscopy is one of the leading structural and analytical techniques in in-depth studies of protein-ligand interactions. Recent advances in NMR methodology such as transverse relaxation-optimized spectroscopy (TROSY) and residual dipolar couplings (RDCs) measured in liquid crystalline alignment medium, offer a viable alternative to traditional nuclear Overhauser enhancement (NOE)-based approaches for structure determination of large protein complexes. RDCs provide a way to constrain the relative orientation of two molecules in complex with each other by aligning their independently determined order tensors. The potential for utilization of RDCs can be extended to proteins with multiple ligands or even multimeric protein-ligand complexes, where symmetry properties of the protein can be taken advantage of. Availability of effective RDC data collection and analysis protocols can certainly aid this process by their incorporation into structure calculation protocols using intramolecular and intermolecular orientational restraints. This chapter discusses in detail some of these protocols including methods for sample preparation in liquid crystalline media, NMR experiments for RDC data collection, as well as software tools for RDC data analysis and protein-ligand complex structure determination. PMID:19488703

  7. Use of Residual Dipolar Couplings in Structural Analysis of Protein-Ligand Complexes by Solution NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jain, Nitin U.

    Investigation of structure-function relationships in protein complexes, specifically protein-ligand interactions, carry great significance in elucidating the structural and mechanistic bases of molecular recognition events and their role in regulating cell processes. Nuclear magnetic resonance (NMR) spectroscopy is one of the leading structural and analytical techniques in in-depth studies of protein-ligand interactions. Recent advances in NMR methodology such as transverse relaxation-optimized spectroscopy (TROSY) and residual dipolar couplings (RDCs) measured in liquid crystalline alignment medium, offer a viable alternative to traditional nuclear Overhauser enhancement (NOE)-based approaches for structure determination of large protein complexes. RDCs provide a way to constrain the relative orientation of two molecules in complex with each other by aligning their independently determined order tensors. The potential for utilization of RDCs can be extended to proteins with multiple ligands or even multimeric protein-ligand complexes, where symmetry properties of the protein can be taken advantage of. Availability of effective RDC data collection and analysis protocols can certainly aid this process by their incorporation into structure calculation protocols using intramolecular and intermolecular orientational restraints. This chapter discusses in detail some of these protocols including methods for sample preparation in liquid crystalline media, NMR experiments for RDC data collection, as well as software tools for RDC data analysis and protein-ligand complex structure determination.

  8. A metabonomic approach to the investigation of drug-induced phospholipidosis: an NMR spectroscopy and pattern recognition study.

    PubMed

    Andrew W Nicholls Jeremy K Nicholson John N Haselden Catherine J Waterfield

    2000-01-01

    (1)H NMR spectroscopy of urine and pattern recognition analysis have been used to study the metabolic perturbations caused following dosing of five novel drug candidates, two of which (GWA, GWB) caused mild lung and liver phospholipidosis, whilst the rest (GWC-GWE) did not cause any detectable toxicity. Urine samples were collected predose, 0-8 h, 8-16 h, 16-24 h and 24-32 h after single, oral dosing with each compound to Han Wistar rats (n = 3 per group), and liver and lung samples for were taken at 48 h for histology. (1)H NMR spectra of whole urine were acquired, processed and subsequently analysed using principal component analysis. All animals administered the drug candidates showed a significant reduction in serum triglycerides and those animals administered either GWA or GWB were observed to have foamy alveolar macrophages and the presence of multilamellar bodies in hepatocytes by electron microscopy. In the plot of the first two principal components, urinary spectra of those animals dosed with GWA or GWB mapped separately to controls, all pre-dose samples and animals dosed with GWC-GWE. Inspection of the principal components loadings indicated an increase in urinary phenylacetylglycine with a concomitant decrease in urinary citrate and 2-oxoglutarate, possibly constituting a novel urinary biomarker set for phospholipidosis. This work exemplifies the use of NMR spectroscopy and pattern recognition methods for the detection of novel biomarker combinations for poorly understood toxicity types and the potential in screening novel drugs for toxicity. PMID:23898812

  9. Observation of the keto tautomer of D-fructose in D2O using 1H NMR spectroscopy

    PubMed Central

    Barclay, Thomas; Ginic-Markovic, Milena; Johnston, Martin R.; Cooper, Peter; Petrovsky, Nikolai

    2011-01-01

    D-Fructose was analysed by NMR spectroscopy and previously unidentified 1H NMR resonances were assigned to the keto and α-pyranose tautomers. The full assignment of shifts for the various fructose tautomers enabled the use of 1H NMR spectroscopy in studies of the mutarotation (5 – 25 °C) and tautomeric composition at equilibrium (5 – 50 °C). The mutarotation of β-pyranose to furanose tautomers in D2O at a concentration of 0.18 M was found to have an activation energy of 62.6 kJ.mol−1. At tautomeric equilibrium (20 °C in D2O) the distribution of the β-pyranose, β-furanose, α-furanose, α-pyranose and the keto tautomers was found to be 68.23%, 22.35%, 6.24%, 2.67% and 0.50%, respectively. This tautomeric composition was not significantly affected by varying concentration between 0.089 and 0.36 M or acidification to pH 3. Upon equilibrating at 6 temperatures between 5 and 50 °C there was a linear relationship between the change in concentration and temperature for all forms. PMID:22129837

  10. Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelleher, Brian P.; Simpson, Myrna J.; Simpson, Andre J.

    2006-08-01

    Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO 2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on 13C and 15N labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D) 13C HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional 1H- 15N HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell components, and provide a powerful tool with which to assess carbon sequestration and transformation in the environment.

  11. NMR Spectroscopy Using a Chiral Lanthanide Shift Reagent to Assess the Optical Purity of 1-Phenylethylamine

    NASA Astrophysics Data System (ADS)

    Viswanathan, Tito; Toland, Alan

    1995-10-01

    Enantiomeric forms of 1-phenylethylamine cannot be distinguished by 1H or 13C-NMR because the groups attached to the stereocenter are in an enantiopic environment. However, the chemical shifts of the protons in the groups attached to the stereocenter can be differentially altered to appear as distinct peaks in the NMR spectrum. This is accomplished by the use of a commercially available chiral lanthanide shift reagent, Yb(tfC)3. The NMR spectrum after the addition of a chiral shift reagent allows one to assess the optical purity of the sample.

  12. Si-29 NMR spectroscopy of naturally-shocked quartz from Meteor Crater, Arizona: Correlation to Kieffer's classification scheme

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Cygan, R. T.; Kirkpatrick, R. J.

    1993-01-01

    We have applied solid state Si-29 nuclear magnetic resonance (NMR) spectroscopy to five naturally-shocked Coconino Sandstone samples from Meteor Crater, Arizona, with the goal of examining possible correlations between NMR spectral characteristics and shock level. This work follows our observation of a strong correlation between the width of a Si-29 resonance and peak shock pressure for experimentally shocked quartz powders. The peak width increase is due to the shock-induced formation of amorphous silica, which increases as a function of shock pressure over the range that we studied (7.5 to 22 GPa). The Coconino Sandstone spectra are in excellent agreement with the classification scheme of Kieffer in terms of presence and approximate abundances of quartz, coesite, stishovite, and glass. We also observe a new resonance in two moderately shocked samples that we have tentatively identified with silicon in tetrahedra with one hydroxyl group in a densified form of amorphous silica.

  13. Metabolic discrimination of mango juice from various cultivars by band-selective NMR spectroscopy.

    PubMed

    Koda, Masanori; Furihata, Kazuo; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2012-02-01

    NMR-based metabolic analysis of foods has been widely applied in food science. In this study, we performed discrimination of five different mango cultivars, Awin, Carabao, Keitt, Kent, and Nam Dok Mai, using metabolic analysis with band-selective excitation NMR spectra. A combination of unsupervised principal component analysis (PCA) with low-field region (1)H NMR spectra obtained by band-selective excitation provided a good discriminant model of the five mango cultivars. Using F(2)-selective 2D NMR spectra, we also identified various minor components in the mango juice. Signal assignment of the minor components facilitated the interpretation of the loading plot, and it was found that arginine, histidine, phenylalanine, glutamine, shikimic acid, and trigonelline were important for classification of the five mango cultivars. PMID:22242555

  14. Nuclear Magnetic Resonance Spectroscopy Applications: Proton NMR In Biological Objects Subjected To Magic Angle Spinning

    SciTech Connect

    Wind, Robert A.; Hu, Jian Zhi

    2005-01-01

    Proton NMR in Biological Objects Submitted to Magic Angle Spinning, In Encyclopedia of Analytical Science, Second Edition (Paul J. Worsfold, Alan Townshend and Colin F. Poole, eds.), Elsevier, Oxford 6:333-342. Published January 1, 2005. Proposal Number 10896.

  15. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  16. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    PubMed

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26687421

  17. Metabolism of 3-chloro-4-fluoroaniline in rat using [14C]-radiolabelling, 19F-NMR spectroscopy, HPLC-MS/MS, HPLC-ICPMS and HPLC-NMR.

    PubMed

    Duckett, C J; Lindon, J C; Walker, H; Abou-Shakra, F; Wilson, I D; Nicholson, J K

    2006-01-01

    The metabolic fate of 3-chloro-4-fluoroaniline was investigated in rat following intraperitoneal (i.p.) administration at 5 and 50 mg kg(-1) using a combination of HPLC-MS, HPLC-MS/MS, (19)F-NMR spectroscopy, HPLC-NMR spectroscopy and high-pressure liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) with (35)Cl and (34)S detection. The metabolism of 3-chloro-4-fluoroaniline at both doses was rapid and extensive, to a large number of metabolites, with little unchanged compound excreted via the urine. Dosing at 5 mg kg(-1) with [(14)C]-labelled compound enabled the comparison of standard radioassay analysis methods with (19)F-NMR spectroscopy. (19)F-NMR resonances were only readily detectable in the 0-12 h post-dose samples. Dosing at 50 mg kg(-1) allowed the facile and specific detection and quantification of metabolites by (19)F-NMR spectroscopy. Metabolite profiling was also possible at this dose level using HPLC-ICPMS with (35)Cl-specific detection. The principal metabolites of 3-chloro-4-fluoroaniline were identified as 2-amino-4-chloro-5-fluorophenyl sulfate and 2-acetamido-4-chloro-5-fluorophenyl glucuronide. N-acetylation and hydroxylation followed by O-sulfation were the major metabolic transformations observed. PMID:16507513

  18. Recent developments and applications of saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy.

    PubMed

    Wagstaff, Jane L; Taylor, Samantha L; Howard, Mark J

    2013-04-01

    This review aims to illustrate that STD NMR is not simply a method for drug screening and discovery, but has qualitative and quantitative applications that can answer fundamental and applied biological and biomedical questions involving molecular interactions between ligands and proteins. We begin with a basic introduction to the technique of STD NMR and report on recent advances and biological applications of STD including studies to follow the interactions of non-steroidal anti-inflammatories, minimum binding requirements for virus infection and understating inhibition of amyloid fibre formation. We expand on this introduction by reporting recent STD NMR studies of live-cell receptor systems, new methodologies using scanning STD, magic-angle spinning STD and approaches to use STD NMR in a quantitative fashion for dissociation constants and group epitope mapping (GEM) determination. We finish by outlining new approaches that have potential to influence future applications of the technique; NMR isotope-editing, heteronuclear multidimensional STD and (19)F STD methods that are becoming more amenable due to the latest NMR equipment technologies. PMID:23232937

  19. Method for accurate measurements of nuclear-spin optical rotation for applications in correlated optical-NMR spectroscopy.

    PubMed

    Savukov, I M; Chen, H-Y; Karaulanov, T; Hilty, C

    2013-07-01

    The nuclear-spin optical rotation (NSOR) effect recently attracted much attention due to potential applications in combined optical-NMR spectroscopy and imaging. Currently, the main problem with applications of NSOR is low SNR and accuracy of measurements. In this work we demonstrate a new method for data acquisition and analysis based on a low-power laser and an emphasis on software based processing. This method significantly reduces cost and is suitable for application in most NMR spectroscopy laboratories for exploration of the NSOR effect. Despite the use of low laser power, SNR can be substantially improved with fairly simple strategies including the use of short wavelength and a multi-pass optical cell with in-flow pre-polarization in a 7 T magnet. Under these conditions, we observed that NSOR signal can be detected in less than 1 min and discuss strategies for further improvement of signal. With higher SNR than previously reported, NSOR constants can be extracted with improved accuracy. On the example of water, we obtained measurements at a level of accuracy of 5%. We include a detailed theoretical analysis of the geometrical factors of the experiment, which is required for accurate quantification of NSOR. This discussion is particularly important for relatively short detection cells, which will be necessary to use in spectroscopy or imaging applications that impose geometrical constraints. PMID:23685716

  20. NMR spectroscopy and structural characterization of dithiophosphinate ligands relevant to minor actinide extraction processes.

    PubMed

    Daly, Scott R; Klaehn, John R; Boland, Kevin S; Kozimor, Stosh A; MacInnes, Molly M; Peterman, Dean R; Scott, Brian L

    2012-02-21

    Synthetic routes to alkyl and aryl substituted dithiophosphinate salts that contain non-coordinating PPh(4)(+) counter cations are reported. In general, these compounds can be prepared via a multi-step procedure that starts with reacting secondary phosphines, i.e. HPR(2), with two equivalents of elemental S. The synthetic transformation proceeds by oxidation of the phosphine followed by insertion of S into the H-P bond. This approach was used to synthesize a series of dithiophosphinic acids that were fully characterized, namely HS(2)P(p-CF(3)C(6)H(4))(2), HS(2)P(m-CF(3)C(6)H(4))(2), HS(2)P(o-MeC(6)H(4))(2) and HS(2)P(o-MeOC(6)H(4))(2). Although the insertion step was found to be much slower than the oxidation reaction, the formation of (NH(4))S(2)PR(2) from HPSR(2) occurred rapidly upon addition of NH(4)OH. Subsequent cation exchange reactions proceeded readily with PPh(4)Cl in water, under air and at ambient conditions to provide analytically pure samples of [PPh(4)][S(2)PR(2)] (R = p-CF(3)C(6)H(4), m-CF(3)C(6)H(4), o-CF(3)C(6)H(4), o-MeC(6)H(4), o-MeOC(6)H(4), Ph, and Me, 1b-7b, respectively), which were characterized by elemental analysis, multinuclear NMR, and IR spectroscopy. In addition, S(2)PPh(2)(-) and dithiophosphinates with ortho-substituted aryl groups (3b-6b) were characterized by X-ray crystallography. As opposed to the acids, which have short P=S double bonds and long P-SH single bonds, the metric parameters for the S atoms in S(2)PR(2)(-) are equivalent. In addition, the presence of large non-coordinating PPh(4)(+) cations guard against intermolecular P-S···X interactions and ensure that the P-S bond is isolated. These S(2)PR(2)(-) anions, which can be prepared in large quantities and isolated in crystalline form, are attractive for spectroscopic and theoretical studies because the P-S interaction can be probed independently in the absence of intermolecular interactions. PMID:22175060

  1. High field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter from the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.

    2012-01-01

    Non target high resolution organic structural spectroscopy of marine dissolved organic matter (DOM) isolated on 27 November 2008 by means of solid phase extraction (SPE) from four different depths in the South Atlantic Ocean off the Angola coast (3.1° E; -17.7° S; Angola basin) provided molecular level information of complex unknowns with unprecedented coverage and resolution. The sampling was intended to represent major characteristic oceanic regimes of general significance: 5 m (FISH; near surface photic zone), 48 m (FMAX; fluorescence maximum), 200 m (upper mesopelagic zone) and 5446 m (30 m above ground). 800 MHz proton (1H) nuclear magnetic resonance (NMR) 1H NMR, spectra were least affected by fast and differential transverse NMR relaxation and produced at first similar looking, rather smooth bulk NMR envelopes reflecting intrinsic averaging from massive signal overlap. Visibly resolved NMR signatures were most abundant in surface DOM but contributed at most a few percent to the total 1H NMR integral and were mainly limited to unsaturated and singly oxygenated carbon chemical environments. The relative abundance and variance of resolved signatures between samples was maximal in the aromatic region; in particular, the aromatic resolved NMR signature of the deep ocean sample at 5446 m was considerably different from that of all other samples. When scaled to equal total NMR integral, 1H NMR spectra of the four marine DOM samples revealed considerable variance in abundance for all major chemical environments across the entire range of chemical shift. Abundance of singly oxygenated CH units and acetate derivatives declined from surface to depth whereas aliphatics and carboxyl-rich alicyclic molecules (CRAM) derived molecules increased in abundance. Surface DOM contained a remarkably lesser abundance of methyl esters than all other marine DOM, likely a consequence of photodegradation from direct exposure to sunlight. All DOM showed similar overall 13C NMR resonance envelopes typical of an intricate mixture of natural organic matter with noticeable peaks of anomerics and C-aromatics carbon whereas oxygenated aromatics and ketones were of too low abundance to result in noticeable humps at the S/N ratio provided. Integration according to major substructure regimes revealed continual increase of carboxylic acids and ketones from surface to deep marine DOM, reflecting a progressive oxygenation of marine DOM, with concomitant decline of carbohydrate-related substructures. Isolation of marine DOM by means of SPE likely discriminated against carbohydrates but produced materials with beneficial NMR relaxation properties: a substantial fraction of dissolved organic molecules present allowed the acquisition of two-dimensional NMR spectra with exceptional resolution. JRES, COSY and HMBC NMR spectra were capable to depict resolved molecular signatures of compounds exceeding a certain minimum abundance. Here, JRES spectra suffered from limited resolution whereas HMBC spectra were constrained because of limited S/N ratio. Hence, COSY NMR spectra appeared best suited to depict organic complexity in marine DOM. The intensity and number of COSY cross peaks was found maximal for sample FMAX and conformed to about 1500 molecules recognizable in variable abundance. Surface DOM (FISH) produced a slightly (~25%) lesser number of cross peaks with remarkable positional accordance to FMAX (~80% conforming COSY cross peaks were found in FISH and FMAX). With increasing water depth, progressive attenuation of COSY cross peaks was caused by fast transverse NMR relaxation of yet unknown origin. However, most of the faint COSY cross peak positions of deep water DOM conformed to those observed in the surface DOM, suggesting the presence of a numerous set of identical molecules throughout the entire ocean column even if the investigated water masses belonged to different oceanic regimes and currents. Aliphatic chemical environments of methylene (CH2) and methyl (CH3) in marine DOM were nicely discriminated in DEPT HSQC NMR spectra. Classical methyl groups terminating aliphatic chains represented only ~15% of total methyl in all marine DOM investigated. Chemical shift anisotropy from carbonyl derivatives (i.e. most likely carboxylic acids) displaced aliphatic methyl 1H NMR resonances up to δH ~1.6 ppm, indicative of alicyclic geometry which furnishes more numerous short range connectivities for any given atom pairs. A noticeable fraction of methyl (~2%) was bound to olefinic carbon. The comparatively large abundance of methyl ethers in surface marine DOM contrasted with DOM of freshwater and soil origin. The chemical diversity of carbohydrates as indicated by H2CO-groups (δC ~ 62 ± 2 ppm) and anomerics (δC ~ 102 ± 7 ppm) exceeded that of freshwater and soil DOM considerably. HSQC NMR spectra were best suited to identify chemical environments of methin carbon (CH) and enabled discrimination of olefinic and aromatic cross peaks (δC > 110 ppm) and those of doubly oxygenated carbon (δC < 110 ppm). The abundance of olefinic protons exceeded that of aromatic protons; comparison of relative HSQC cross peak integrals indicated larger abundance of olefinic carbon than aromatic carbon in all marine DOM as well. A considerable fraction of olefins seemed isolated and likely sterically constrained as judged from small nJHH couplings associated with those olefins. High S/N ratio and fair resolution of TOCSY and HSQC cross peaks enabled unprecedented depiction of sp2-hybridized carbon chemical environments in marine DOM with discrimination of isolated and conjugated olefins as well as α, β-unsaturated double bonds. However, contributions from five-membered heterocycles (furan, pyrrol and thiophene derivatives) even if very unlikely from given elemental C/N and C/S ratios and upfield proton NMR chemical shift (δH < 6.5 ppm) could not yet been ruled out entirely. In addition to classical aromatic DOM, like benzene derivatives and phenols, six-membered nitrogen heterocycles were found prominent contributors to the downfield region of proton chemical shift (δH > 8 ppm). Specifically, a rather confined HSQC cross peak at δH/δC = 8.2/164 ppm indicated a limited set of nitrogen heterocycles with several nitrogen atoms in analogy to RNA derivatives present in all four marine DOM. Appreciable amounts of extended HSQC and TOCSY cross peaks derived from various key polycyclic aromatic hydrocarbon substructures suggested the presence of previously proposed but NMR invisible thermogenic organic matter (TMOC) in marine DOM at all water depths. Eventually, olefinic unsaturation in marine DOM will be more directly traceable to ultimate biogenic precursors than aromatic unsaturation of which a substantial fraction originates from an aged material which from the beginning was subjected to complex and less specific biogeochemical reactions like thermal decomposition. The variance in molecular mass as indicated from Fourier transform ion cyclotron resonance (FTICR) mass spectra was limited and could not satisfactorily explain the observed disparity in NMR transverse relaxation of the four marine DOM samples. Likewise, the presence of metal ions in isolated marine DOM remained near constant or declined from surface to depth for important paramagnetic ions like Mn, Cr, Fe, Co, Ni and Cu. Iron in particular, a strong complexing paramagnetic ion, was found most abundant by a considerable margin in surface (FISH) marine DOM for which well resolved COSY cross peaks were observed. Hence, facile relationships between metal content of isolated DOM (which does not reflect authentic marine DOM metal content) and transverse NMR relaxation were not observed. High field (12 T) negative electrospray ionization FTICR mass spectra showed at first view rather conforming mass spectra for all four DOM samples with abundant CHO, CHNO, CHOS and CHNOS molecular series with slightly increasing numbers of mass peaks from surface to bottom DOM and similar fractions (~50%) of assigned molecular compositions throughout all DOM samples. The average mass increased from surface to bottom DOM by about 10 Dalton. The limited variance of FTICR mass spectra probably resulted from a rather inherent conformity of marine DOM at the mandatory level of intrinsic averaging provided by FTICR mass spectrometry, when many isomers unavoidably project on single nominal mass peaks. In addition, averaging from ion suppression added to the accordance observed. The proportion of CHO and CHNO molecular series increased from surface to depth whereas CHOS and especially CHNOS molecular series markedly declined. The abundance of certain aromatic CHOS compounds declined with water depth. For future studies, COSY NMR spectra appear best suited to assess organic molecular complexity of marine DOM and to define individual DOM molecules of yet unknown structure and function. Non-target organic structural spectroscopy at the level demonstrated here covered nearly all carbon present in marine DOM. The exhaustive characterization of complex unknowns in marine DOM will reveal a meaningful assessment of individual marine biogeosignatures which carry the holistic memory of the oceanic water masses (Koch et al., 2011).

  2. Area per Lipid and Cholesterol Interactions in Membranes from Separated Local-Field 13C NMR Spectroscopy

    PubMed Central

    Leftin, Avigdor; Molugu, Trivikram R.; Job, Constantin; Beyer, Klaus; Brown, Michael F.

    2014-01-01

    Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state 13C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved 13C-1H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the 13C-1H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state 13C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive. PMID:25418296

  3. Metabolic Study of Breast MCF-7 Tumor Spheroids after Gamma Irradiation by 1H NMR Spectroscopy and Microimaging

    PubMed Central

    Palma, Alessandra; Grande, Sveva; Luciani, Anna Maria; Mlynárik, Vladimír; Guidoni, Laura; Viti, Vincenza; Rosi, Antonella

    2016-01-01

    Multicellular tumor spheroids are an important model system to investigate the response of tumor cells to radio- and chemotherapy. They share more properties with the original tumor than cells cultured as 2D monolayers do, which helps distinguish the intrinsic properties of monolayer cells from those induced during cell aggregation in 3D spheroids. The paper investigates some metabolic aspects of small tumor spheroids of breast cancer and their originating MCF-7 cells, grown as monolayer, by means of high–resolution (HR) 1H NMR spectroscopy and MR microimaging before and after gamma irradiation. The spectra of spheroids were characterized by higher intensity of mobile lipids, mostly neutral lipids, and glutamine (Gln) signals with respect to their monolayer cells counterpart, mainly owing to the lower oxygen supply in spheroids. Morphological changes of small spheroids after gamma-ray irradiation, such as loss of their regular shape, were observed by MR microimaging. Lipid signal intensity increased after irradiation, as evidenced in both MR localized spectra of the single spheroid and in HR NMR spectra of spheroid suspensions. Furthermore, the intense Gln signal from spectra of irradiated spheroids remained unchanged, while the low Gln signal observed in monolayer cells increased after irradiation. Similar results were observed in cells grown in hypoxic conditions. The different behavior of Gln in 2D monolayers and in 3D spheroids supports the hypothesis that a lower oxygen supply induces both an upregulation of Gln synthetase and a downregulation of glutaminases with the consequent increase in Gln content, as already observed under hypoxic conditions. The data herein indicate that 1H NMR spectroscopy can be a useful tool for monitoring cell response to different constraints. The use of spheroid suspensions seems to be a feasible alternative to localized spectroscopy since similar effects were found after radiation treatment. PMID:27200293

  4. "EASY: A simple tool for simultaneously removing background, deadtime and acoustic ringing in quantitative NMR spectroscopy. Part II: Improved ringing suppression, application to quadrupolar nuclei, cross polarisation and 2D NMR".

    PubMed

    Jaeger, Christian; Hemmann, Felix

    2014-01-01

    A simple experiment for Elimination of Artifacts in NMR SpectroscopY (EASY) was introduced in Part I, and it was shown that NMR probe background signals, spectral distortions due to deadtime effects, and acoustic ringing can be eliminated simultaneously from solid-state NMR spectra. In this Part II, it is shown that acoustic ringing suppression can be improved up to one order of magnitude compared to the original EASY pulse sequence by inserting a delay τ between the two data acquisition scans of the EASY pulse sequence. The achievable ringing suppression depends on the length of this delay and is limited by the spin-lattice relaxation time T1. Furthermore, EASY is considered in conjunction with NMR of quadrupolar nuclei. For strong second-order broadening, EASY can be used to acquire either pure central transition MAS patterns or pure satellite transition NMR spectra. Two further modifications to EASY are introduced. One concerns improved ringing artifact suppression in experiments in which the central transition NMR signal is amplified by Rotor Assisted Population Transfer (RAPT). The second EASY modification enables the acquisition of quantitative NMR spectra if signals with different quadrupole coupling constants are present. In addition, acoustic ringing and (11)B stator signals are removed. Finally, it is demonstrated that the basic idea of EASY for removing ringing artifacts can be realized for heteronuclear one-dimensional and hetero- and homo-nuclear multi-dimensional NMR experiments using extended phase cycling. (15)N{(1)H} CPMAS and (15)N 2D Exchange NMR spectroscopy are considered as examples. PMID:25200102

  5. Molecular recognition of rosmarinic acid from Salvia sclareoides extracts by acetylcholinesterase: a new binding site detected by NMR spectroscopy.

    PubMed

    Marcelo, Filipa; Dias, Catarina; Martins, Alice; Madeira, Paulo J; Jorge, Tiago; Florêncio, M Helena; Cañada, F Javier; Cabrita, Eurico J; Jiménez-Barbero, Jesús; Rauter, Amélia P

    2013-05-17

    Acetylcholinesterase (AChE) inhibition is one of the most currently available therapies for the management of Alzheimer's disease (AD) symptoms. In this context, NMR spectroscopy binding studies were accomplished to explain the inhibition of AChE activity by Salvia sclareoides extracts. HPLC-MS analyses of the acetone, butanol and water extracts eluted with methanol and acidified water showed that rosmarinic acid is present in all the studied samples and is a major constituent of butanol and water extracts. Moreover, luteolin 4'-O-glucoside, luteolin 3',7-di-O-glucoside and luteolin 7-O-(6''-O-acetylglucoside) were identified by MS(2) and MS(3) data acquired during the LC-MS(n) runs. Quantification of rosmarinic acid by HPLC with diode-array detection (DAD) showed that the butanol extract is the richest one in this component (134 μg mg(-1) extract). Saturation transfer difference (STD) NMR spectroscopy binding experiments of S. sclareoides crude extracts in the presence of AChE in buffer solution determined rosmarinic acid as the only explicit binder for AChE. Furthermore, the binding epitope and the AChE-bound conformation of rosmarinic acid were further elucidated by STD and transferred NOE effect (trNOESY) experiments. As a control, NMR spectroscopy binding experiments were also carried out with pure rosmarinic acid, thus confirming the specific interaction and inhibition of this compound against AChE. The binding site of AChE for rosmarinic acid was also investigated by STD-based competition binding experiments using Donepezil, a drug currently used to treat AD, as a reference. These competition experiments demonstrated that rosmarinic acid does not compete with Donepezil for the same binding site. A 3D model of the molecular complex has been proposed. Therefore, the combination of the NMR spectroscopy based data with molecular modelling has permitted us to detect a new binding site in AChE, which could be used for future drug development. PMID:23536497

  6. Biosynthesis of pyrroloquinoline quinone. 1. Identification of biosynthetic precursors using /sup 13/C labeling and NMR spectroscopy

    SciTech Connect

    Houck, D.R.; Hanners, J.L.; Unkefer, C.J.

    1988-09-28

    The biosynthesis of pyrroloquinoline quinone (PQQ) in the methylotropic bacterium methylobacterium AM1 has been investigated using /sup 13/C-labelling of the products and NMR spectroscopy. The data indicated that the quinoline portion of PQQ is formed by a novel condensation of N-1, C-2, -3, and -4 of glutamate with a symmetrical six-carbon ring derived from the shikimate pathway. It is postulated that tyrosine is the shikimate-derived percursor, since pyrrole could be formed by the internal cyclization of the amino acid backbone. 18 references, 2 figures, 2 tables.

  7. Chemical characteristics of dissolved organic matter during composting of different organic wastes assessed by (13)C CPMAS NMR spectroscopy.

    PubMed

    Caricasole, P; Provenzano, M R; Hatcher, P G; Senesi, N

    2010-11-01

    This research aimed at assessing the chemical changes occurring in DOM extracted from different composting substrates by means of (13)C CPMAS NMR spectroscopy. During composting a reduction of carbohydrates and an increase of aromatic, phenolic, carboxylic and carbonylic C were observed. The highest increase in alkyl C and the lowest increase in aromatic C were explained by the presence of hardly degradable pine needles in the substrate, whereas the highest reduction in carbohydrates and the highest increase of the alkyl C/O-alkyl C ratio were attributed to the presence of highly degradable materials such as spent yeast from beer production. PMID:20594836

  8. Identification and quantitative determination of carbohydrates in ethanolic extracts of two conifers using 13C NMR spectroscopy.

    PubMed

    Duquesnoy, Emilie; Castola, Vincent; Casanova, Joseph

    2008-04-01

    We developed a method for the direct identification and quantification of carbohydrates in raw vegetable extracts using (13)C NMR spectroscopy without any preliminary step of precipitation or reduction of the components. This method has been validated (accuracy, precision and response linearity) using pure compounds and artificial mixtures before being applied to authentic ethanolic extracts of pine needles, pine wood and pine cones and fir twigs. We determined that carbohydrates represented from 15% to 35% of the crude extracts in which pinitol was the principal constituent accompanied by arabinitol, mannitol, glucose and fructose. PMID:18299126

  9. Characterization of aging in organic materials on atomic-, meso- and macro-length scales by {sup 13}C NMR spectroscopy

    SciTech Connect

    Assink, R.A.; Jamison, G.M.; Alam, T.M.; Gillen, K.T.

    1997-10-01

    A fundamental understanding of aging in an organic material requires that one understand how aging affects the chemical structure of a material, and how these chemical changes are related to the material`s macroscopic properties. This level of understanding is usually achieved by examining the material on a variety of length scales ranging from atomic to meso-scale to macroscopic. The authors are developing and applying several {sup 13}C nuclear magnetic resonance (NMR) spectroscopy experiments to characterize the aging process of organic materials over a broad range of length scales. Examples of studies which range from atomic to macroscopic will be presented.

  10. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state (13)C NMR and solution (31)P NMR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Meng, Wei; He, Zhongqi; Feng, Weiying; Zhang, Chen; Giesy, John P

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state (13)C NMR and solution (31)P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes. PMID:26624522

  11. Complete assignments of 1H and 13C NMR spectroscopic data for two new triterpenoid saponins from Ilex hainanensis.

    PubMed

    Zhou, Sixiang; Yang, Junshan; Liu, Fucheng; Tu, Pengfei

    2007-02-01

    Two novel unsaturated E-ring pentacyclic triterpenoid saponins, ilexhainanoside A and ilexhainanoside B, were isolated from the leaves of Ilex hainanensis. Their chemical structures were determined by MS, NMR spectroscopy and chemical analysis. Complete assignments of the 1H and 13C NMR spectroscopic data were achieved by 1D and 2D NMR experiments (HSQC, HMBC, ROESY and 1H-1H COSY). PMID:17143912

  12. Traceability of Italian garlic (Allium sativum L.) by means of HRMAS-NMR spectroscopy and multivariate data analysis.

    PubMed

    Ritota, Mena; Casciani, Lorena; Han, Bei-Zhong; Cozzolino, Sara; Leita, Liviana; Sequi, Paolo; Valentini, Massimiliano

    2012-11-15

    (1)H High Resolution Magic Angle Spinning-Nuclear Magnetic Resonance (HRMAS-NMR) spectroscopy was used to analyse garlic (Allium sativum L.) belonging to red and white varieties and collected in different Italian regions, in order to address the traceability issue. 1D and 2D NMR spectra, performed directly on untreated small pieces of garlic, so without any sample manipulation, allowed the assignment of several compounds: organic acids, sugars, fatty acids, amino acids and the nutritionally important fructo-oligosaccharides and allyl-organosulphur compounds. Application of Partial Least Squares projections to latent structures-Discrimination Analysis provided an excellent model for the discrimination of both the variety and, most important, the place origin, allowing the identification of the metabolites contributing to such classifications. The presence of organosulphurs, allicin and some allyl-organosulphurs found by HRMAS-NMR, was confirmed also by SPME-GC-MS; 11 molecules were identified, containing from one up to three sulphur atoms and with and without allyl moieties. PMID:22868146

  13. Metabolic Discrimination of Catharanthus roseus Leaves Infected by Phytoplasma Using 1H-NMR Spectroscopy and Multivariate Data Analysis1

    PubMed Central

    Choi, Young Hae; Tapias, Elisabet Casas; Kim, Hye Kyong; Lefeber, Alfons W.M.; Erkelens, Cornelis; Verhoeven, Jacobus Th.J.; Brzin, Jernej; Zel, Jana; Verpoorte, Robert

    2004-01-01

    A comprehensive metabolomic profiling of Catharanthus roseus L. G. Don infected by 10 types of phytoplasmas was carried out using one-dimensional and two-dimensional NMR spectroscopy followed by principal component analysis (PCA), an unsupervised clustering method requiring no knowledge of the data set and used to reduce the dimensionality of multivariate data while preserving most of the variance within it. With a combination of these techniques, we were able to identify those metabolites that were present in different levels in phytoplasma-infected C. roseus leaves than in healthy ones. The infection by phytoplasma in C. roseus leaves causes an increase of metabolites related to the biosynthetic pathways of phenylpropanoids or terpenoid indole alkaloids: chlorogenic acid, loganic acid, secologanin, and vindoline. Furthermore, higher abundance of Glc, Glu, polyphenols, succinic acid, and Suc were detected in the phytoplasma-infected leaves. The PCA of the 1H-NMR signals of healthy and phytoplasma-infected C. roseus leaves shows that these metabolites are major discriminating factors to characterize the phytoplasma-infected C. roseus leaves from healthy ones. Based on the NMR and PCA analysis, it might be suggested that the biosynthetic pathway of terpenoid indole alkaloids, together with that of phenylpropanoids, is stimulated by the infection of phytoplasma. PMID:15286294

  14. ¹³C NMR spectroscopy as a tool for the in situ characterisation of iron-supplementing preparations.

    PubMed

    Kästele, Xaver; Sturm, Christine; Klüfers, Peter

    2014-04-01

    (13)C NMR spectroscopy provides insight into the chemistry of carbohydrate-based ferric preparations. Specifically, it reveals whether oxygen atoms of the carbohydrate are directly bonded to the preparations' ferric centres or whether more distant interactions are present. After having validated the method by investigating the ferric solutions of low-molecular complexes as well as polynuclear ferric samples, it is demonstrated that common constituents of medically used ferric preparations such as sucrose and other glucose-based saccharides do not support ferric carbohydrate chelates. Instead, these carbohydrates reside outside the NMR-spectroscopically 'blinded' region about the ferric centres and experience the so-called Evans effect that can be used to measure the magnetic moment of the solutions. As a result, an easily accessible physicochemical parameter is provided to characterise commercial iron(III) preparations, namely the samples' magnetism in terms of the in situ-measured spin-normalised effective Bohr magneton number μ(eff)(2)/35. The procedure can, moreover, be combined with a facile NMR-spectroscopic iron assay. PMID:24309008

  15. Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy

    PubMed Central

    Sborgi, Lorenzo; Ravotti, Francesco; Dandey, Venkata P.; Dick, Mathias S.; Mazur, Adam; Reckel, Sina; Chami, Mohamed; Scherer, Sebastian; Huber, Matthias; Böckmann, Anja; Egelman, Edward H.; Stahlberg, Henning; Broz, Petr; Meier, Beat H.; Hiller, Sebastian

    2015-01-01

    Inflammasomes are multiprotein complexes that control the innate immune response by activating caspase-1, thus promoting the secretion of cytokines in response to invading pathogens and endogenous triggers. Assembly of inflammasomes is induced by activation of a receptor protein. Many inflammasome receptors require the adapter protein ASC [apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)], which consists of two domains, the N-terminal pyrin domain (PYD) and the C-terminal CARD. Upon activation, ASC forms large oligomeric filaments, which facilitate procaspase-1 recruitment. Here, we characterize the structure and filament formation of mouse ASC in vitro at atomic resolution. Information from cryo-electron microscopy and solid-state NMR spectroscopy is combined in a single structure calculation to obtain the atomic-resolution structure of the ASC filament. Perturbations of NMR resonances upon filament formation monitor the specific binding interfaces of ASC-PYD association. Importantly, NMR experiments show the rigidity of the PYD forming the core of the filament as well as the high mobility of the CARD relative to this core. The findings are validated by structure-based mutagenesis experiments in cultured macrophages. The 3D structure of the mouse ASC-PYD filament is highly similar to the recently determined human ASC-PYD filament, suggesting evolutionary conservation of ASC-dependent inflammasome mechanisms. PMID:26464513

  16. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

    2012-06-20

    The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two. PMID:24750769

  17. Quantification issues of in vivo (1) H NMR spectroscopy of the rat brain investigated at 16.4 T.

    PubMed

    Hong, Sung-Tak; Pohmann, Rolf

    2013-01-01

    The accuracy and precision of the quantification of metabolite concentrations in in vivo (1) H NMR spectroscopy are affected by linewidth and signal-to-noise ratio (SNR). To study the effect of both factors in in vivo (1) H NMR spectra acquired at ultrahigh field, a reference spectrum was generated by summing nine in vivo (1) H NMR spectra obtained in rat brain with a STEAM sequence at 16.4 T. By progressive deterioration of linewidth and SNR, 6400 single spectra were generated. In an accuracy study, the variation in the mean concentrations of five metabolites was mainly dependent on SNR, whereas 11 metabolites were predominantly susceptible to the linewidth. However, the standard deviations of the concentrations obtained were dependent almost exclusively on the SNR. An insignificant correlation was found between most of the heavily overlapping metabolite peaks, indicating independent and reliable quantification. Two different approaches for the consideration of macromolecular signals were evaluated. The use of prior knowledge derived by parameterization of a metabolite-nulled spectrum demonstrated improved fitting quality, with reduced Cramér-Rao lower bounds, compared to the calculation of a regularized spline baseline. PMID:22711580

  18. Protein analysis by 31p NMR spectroscopy in ionic liquid: quantitative determination of enzymatically created cross-links.

    PubMed

    Monogioudi, Evanthia; Permi, Perttu; Filpponen, Ilari; Lienemann, Michael; Li, Bin; Argyropoulos, Dimitris; Buchert, Johanna; Mattinen, Maija-Liisa

    2011-02-23

    Cross-linking of β-casein by Trichoderma reesei tyrosinase (TrTyr) and Streptoverticillium mobaraense transglutaminase (Tgase) was analyzed by (31)P nuclear magnetic resonance (NMR) spectroscopy in ionic liquid (IL). According to (31)P NMR, 91% of the tyrosine side chains were cross-linked by TrTyr at high dosages. When Tgase was used, no changes were observed because a different cross-linking mechanism was operational. However, this verified the success of the phosphitylation of phenolics within the protein matrix in the IL. Atomic force microscopy (AFM) in solid state showed that disk-shaped nanoparticles were formed in the reactions with average diameters of 80 and 20 nm for TrTyr and Tgase, respectively. These data further advance the current understanding of the action of tyrosinases on proteins on molecular and chemical bond levels. Quantitative (31)P NMR in IL was shown to be a simple and efficient method for the study of protein modification. PMID:21218836

  19. Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy.

    PubMed

    Sborgi, Lorenzo; Ravotti, Francesco; Dandey, Venkata P; Dick, Mathias S; Mazur, Adam; Reckel, Sina; Chami, Mohamed; Scherer, Sebastian; Huber, Matthias; Bckmann, Anja; Egelman, Edward H; Stahlberg, Henning; Broz, Petr; Meier, Beat H; Hiller, Sebastian

    2015-10-27

    Inflammasomes are multiprotein complexes that control the innate immune response by activating caspase-1, thus promoting the secretion of cytokines in response to invading pathogens and endogenous triggers. Assembly of inflammasomes is induced by activation of a receptor protein. Many inflammasome receptors require the adapter protein ASC [apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)], which consists of two domains, the N-terminal pyrin domain (PYD) and the C-terminal CARD. Upon activation, ASC forms large oligomeric filaments, which facilitate procaspase-1 recruitment. Here, we characterize the structure and filament formation of mouse ASC in vitro at atomic resolution. Information from cryo-electron microscopy and solid-state NMR spectroscopy is combined in a single structure calculation to obtain the atomic-resolution structure of the ASC filament. Perturbations of NMR resonances upon filament formation monitor the specific binding interfaces of ASC-PYD association. Importantly, NMR experiments show the rigidity of the PYD forming the core of the filament as well as the high mobility of the CARD relative to this core. The findings are validated by structure-based mutagenesis experiments in cultured macrophages. The 3D structure of the mouse ASC-PYD filament is highly similar to the recently determined human ASC-PYD filament, suggesting evolutionary conservation of ASC-dependent inflammasome mechanisms. PMID:26464513

  20. In vitro analysis of the impact of enrofloxacin residues on the human intestinal microbiota using H-NMR spectroscopy.

    PubMed

    Ahn, Youngbeom; Jung, Ji Young; Chung, Yong Hyun; Chae, Minho; Jeon, Che Ok; Cerniglia, Carl E

    2012-01-01

    Exposure of humans to antimicrobial residues in food-producing animals may alter the intestinal microbiota which could result in a potential risk to human health. To determine the effect of enrofloxacin on the human intestinal microbiota, fecal suspensions (25%) were cultured in the presence of 0.06-5 µg/ml enrofloxacin. The bacterial community was analyzed by plating on selective culture media, pyrosequencing and nuclear magnetic resonance (NMR) spectroscopy. Pyrosequencing analysis of 16S rRNA genes and viable counts on Bacteroides sp., Enterococcus sp., and Bifidobacterium sp. selection medium indicated that there were no significant changes in the bacteria numbers at the selected enrofloxacin concentrations (0.06, 0.1, and 1 µg/ml) relative to the control samples after a 48 h incubation. NMR analysis showed remarkably similar spectra in cultures treated with 0.06, 0.1, and 1 µg/ml enrofloxacin, with some slight differences in peak heights. However, hierarchical clustering analysis indicated significant differences in metabolite concentrations between the control and those samples treated with 1 µg/ml enrofloxacin. Leucine, phenylalanine, proline, and 2-oxovalerate were positively correlated with the concentration of enrofloxacin. NMR analysis is a potentially useful tool to monitor changes of the human intestinal microbiota, in addition to traditional culture methods and pyrosequencing. PMID:23221505

  1. Analysis of monoglycerides, diglycerides, sterols, and free fatty acids in coconut (Cocos nucifera L.) oil by 31P NMR spectroscopy.

    PubMed

    Dayrit, Fabian M; Buenafe, Olivia Erin M; Chainani, Edward T; de Vera, Ian Mitchelle S

    2008-07-23

    Phosphorus-31 nuclear magnetic resonance spectroscopy ( (31)P NMR) was used to differentiate virgin coconut oil (VCO) from refined, bleached, deodorized coconut oil (RCO). Monoglycerides (MGs), diglycerides (DGs), sterols, and free fatty acids (FFAs) in VCO and RCO were converted into dioxaphospholane derivatives and analyzed by (31)P NMR. On the average, 1-MG was found to be higher in VCO (0.027%) than RCO (0.019%). 2-MG was not detected in any of the samples down to a detection limit of 0.014%. On the average, total DGs were lower in VCO (1.55%) than RCO (4.10%). When plotted in terms of the ratio [1,2-DG/total DGs] versus total DGs, VCO and RCO samples grouped separately. Total sterols were higher in VCO (0.096%) compared with RCO (0.032%), and the FFA content was 8 times higher in VCO than RCO (0.127% vs 0.015%). FFA determination by (31)P NMR and titration gave comparable results. Principal components analysis shows that the 1,2-DG, 1,3-DG, and FFAs are the most important parameters for differentiating VCO from RCO. PMID:18576656

  2. Three-dimensional solution structure of mouse [Cd7]-metallothionein-1 by homonuclear and heteronuclear NMR spectroscopy.

    PubMed Central

    Zangger, K.; Oz, G.; Otvos, J. D.; Armitage, I. M.

    1999-01-01

    Sequential 1H-NMR assignments of mouse [Cd7]-metallothionein-1 (MT1) have been carried out by standard homonuclear NMR methods and the use of an accordion-heteronuclear multiple quantum correlation (HMQC) experiment for establishing the metal, 113Cd2+, to cysteine connectivities. The three-dimensional structure was then calculated using the distance constraints from two-dimensional nuclear Overhauser effect (NOE) spectroscopy spectra and the Cys-Cd connectivities as input for a distance geometry-dynamical simulated annealing protocol in X-PLOR 3.851. Similar to the mammalian MT2 isoforms, the homologous primary structure of MT1 suggested two separate domains, each containing one metal cluster. Because there were no interdomain constraints, the structure calculation for the N-terminal beta- and the C-terminal alpha-domain were carried out separately. The structures are based on 409 NMR constraints, consisting of 381 NOEs and 28 cysteine-metal connectivities. The only elements of regular secondary structure found were two short stretches of 3(10) helices along with some half-turns in the alpha-domain. Structural comparison with rat liver MT2 showed high similarity, with the beta-domain structure in mouse MT1 showing evidence of increased flexibility compared to the same domain in MT2. The latter was reflected by the presence of fewer interresidue NOEs, no slowly exchanging backbone amide protons, and enhanced cadmium-cadmium exchange rates found in the beta-domain of MT1. PMID:10631978

  3. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy.

    PubMed

    Cha, Minjun; Shin, Kyuchul; Lee, Huen; Moudrakovski, Igor L; Ripmeester, John A; Seo, Yutaek

    2015-02-01

    In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting. PMID:25565018

  4. Quality assurance in the pre-analytical phase of human urine samples by (1)H NMR spectroscopy.

    PubMed

    Budde, Kathrin; Gök, Ömer-Necmi; Pietzner, Maik; Meisinger, Christine; Leitzmann, Michael; Nauck, Matthias; Köttgen, Anna; Friedrich, Nele

    2016-01-01

    Metabolomic approaches investigate changes in metabolite profiles, which may reflect changes in metabolic pathways and provide information correlated with a specific biological process or pathophysiology. High-resolution (1)H NMR spectroscopy is used to identify metabolites in biofluids and tissue samples qualitatively and quantitatively. This pre-analytical study evaluated the effects of storage time and temperature on (1)H NMR spectra from human urine in two settings. Firstly, to evaluate short time effects probably due to acute delay in sample handling and secondly, the effect of prolonged storage up to one month to find markers of sample miss-handling. A number of statistical procedures were used to assess the differences between samples stored under different conditions, including Projection to Latent Structure Discriminant Analysis (PLS-DA), non-parametric testing as well as mixed effect linear regression analysis. The results indicate that human urine samples can be stored at 10 °C for 24 h or at -80 °C for 1 month, as no relevant changes in (1)H NMR fingerprints were observed during these time periods and temperature conditions. However, some metabolites most likely of microbial origin showed alterations during prolonged storage but without facilitating classification. In conclusion, the presented protocol for urine sample handling and semi-automatic metabolite quantification is suitable for large-scale epidemiological studies. PMID:26264917

  5. Direct Characterization of Metal-Metal Bonds between Nuclei with Strong Quadrupolar Interactions via NMR Spectroscopy.

    PubMed

    Perras, Frédéric A; Bryce, David L

    2014-11-20

    Metal-metal bonds can be difficult to characterize directly. We demonstrate that J couplings between metal nuclei experiencing strong quadrupolar interactions can be easily measured from well-defined splittings in NMR spectra of powdered samples. Using (69/71)Ga NMR, it is shown that homonuclear J coupling, which is four orders of magnitude smaller than the quadrupolar coupling in a series of compounds featuring gallium-gallium bonds, can be extracted with a 2-D NMR experiment. The dependence of the multiplets on crystal symmetry reveals information on the structures of two Ga-Ga-bonded compounds for which diffraction data are unavailable. Interpretation of the data in a molecular orbital framework provides insight into the nature of the metal-metal bond. PMID:26276493

  6. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids

    PubMed Central

    Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua

    2014-01-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (< 25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem’ can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086

  7. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  8. Expanding the limits of human blood metabolite quantitation using NMR spectroscopy.

    PubMed

    Nagana Gowda, G A; Gowda, Yashas N; Raftery, Daniel

    2015-01-01

    A current challenge in metabolomics is the reliable quantitation of many metabolites. Limited resolution and sensitivity combined with the challenges associated with unknown metabolite identification have restricted both the number and the quantitative accuracy of blood metabolites. Focused on alleviating this bottleneck in NMR-based metabolomics, investigations of pooled human serum combining an array of 1D/2D NMR experiments at 800 MHz, database searches, and spiking with authentic compounds enabled the identification of 67 blood metabolites. Many of these (∼1/3) are new compared with those reported previously as a part of the Human Serum Metabolome Database. In addition, considering both the high reproducibility and quantitative nature of NMR as well as the sensitivity of NMR chemical shifts to altered sample conditions, experimental protocols and comprehensive peak annotations are provided here as a guide for identification and quantitation of the new pool of blood metabolites for routine applications. Further, investigations focused on the evaluation of quantitation using organic solvents revealed a surprisingly poor performance for protein precipitation using acetonitrile. One-third of the detected metabolites were attenuated by 10-67% compared with methanol precipitation at the same solvent-to-serum ratio of 2:1 (v/v). Nearly 2/3 of the metabolites were further attenuated by up to 65% upon increasing the acetonitrile-to-serum ratio to 4:1 (v/v). These results, combined with the newly established identity for many unknown metabolites in the NMR spectrum, offer new avenues for human serum/plasma-based metabolomics. Further, the ability to quantitatively evaluate nearly 70 blood metabolites that represent numerous classes, including amino acids, organic acids, carbohydrates, and heterocyclic compounds, using a simple and highly reproducible analytical method such as NMR may potentially guide the evaluation of samples for analysis using mass spectrometry. PMID:25485990

  9. Resurrection of Crushed Magnetization and Chaotic Dynamics in Solution NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Ya; Lisitza, Natalia; Ahn, Sangdoo; Warren, Warren S.

    2000-10-01

    We show experimentally and theoretically that two readily observed effects in solution nuclear magnetic resonance (NMR)-radiation damping and the dipolar field-combine to generate bizarre spin dynamics (including chaotic evolution) even with extraordinarily simple sequences. For example, seemingly insignificant residual magnetization after a crusher gradient triggers exponential regrowth of the magnetization, followed by aperiodic turbulent spin motion. The estimated Lyapunov exponent suggests the onset of spatial-temporal chaos and the existence of chaotic attractors. This effect leads to highly irreproducible experimental decays that amplify minor nonuniformities such as temperature gradients. Imaging applications and consequences for other NMR studies are discussed.

  10. Intermolecular Interactions between Eosin Y and Caffeine Using 1H-NMR Spectroscopy

    PubMed Central

    Okuom, Macduff O.; Wilson, Mark V.; Jackson, Abby; Holmes, Andrea E.

    2014-01-01

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using 1H-NMR, 1H-COSY, and 1H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  11. Resurrection of crushed magnetization and chaotic dynamics in solution NMR spectroscopy.

    PubMed

    Lin, Y Y; Lisitza, N; Ahn, S; Warren, W S

    2000-10-01

    We show experimentally and theoretically that two readily observed effects in solution nuclear magnetic resonance (NMR)-radiation damping and the dipolar field-combine to generate bizarre spin dynamics (including chaotic evolution) even with extraordinarily simple sequences. For example, seemingly insignificant residual magnetization after a crusher gradient triggers exponential regrowth of the magnetization, followed by aperiodic turbulent spin motion. The estimated Lyapunov exponent suggests the onset of spatial-temporal chaos and the existence of chaotic attractors. This effect leads to highly irreproducible experimental decays that amplify minor nonuniformities such as temperature gradients. Imaging applications and consequences for other NMR studies are discussed. PMID:11021793

  12. Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometrics tools.

    PubMed

    Cuny, M; Vigneau, E; Le Gall, G; Colquhoun, I; Lees, M; Rutledge, D N

    2008-01-01

    To discriminate orange juice from grapefruit juice in a context of fraud prevention, (1)H NMR data were submitted to different treatments to extract informative variables which were then analysed using multivariate techniques. Averaging contiguous data points of the spectrum followed by logarithmic transformation improved the results of the data analysis. Moreover, supervised variable selection methods gave better rates of classification of the juices into the correct groups. Last, independent-component analysis gave better classification results than principal-component analysis. Hence, ICA may be an efficient chemometric tool to detect differences in the (1)H NMR spectra of similar samples, and so may be useful for authentication of foods. PMID:18026939

  13. Carbon-13 NMR spectroscopy study of L-zeolite- and silica-supported platinum catalysts

    SciTech Connect

    Sharma, S.B.; Laska, T.E.; Balaraman, P.; Root, T.W.; Dumesic, J.A.

    1994-12-01

    NMR studies of CO adsorbed on small Pt particles show evidence of changes in the metallic nature of these particles with size. Large particles on silica or the exterior of zeolite crystallites have conduction-band electrons that cause a Knight shift for adsorbed CO. Small particles in zeolite cavities are diamagnetic clusters, and yield spectra for linear and bridging carbonyls similar to those of transition-metal cluster compounds. {sup 13}C NMR of CO offers a simple probe of metal dispersion and particle size for these Pt catalysts and other noble metal systems. 29 refs., 7 figs., 2 tabs.

  14. 13C NMR spectroscopy of methane adsorbed in SAPO-11 molecular sieve

    NASA Astrophysics Data System (ADS)

    Koskela, Tuomas; Ylihautala, Mika; Vaara, Juha; Jokisaari, Jukka

    1996-10-01

    Static 13C and 13C-{ 1H} NMR spectra of carbon-13 enriched methane ( 13CH 4) adsorbed into SAPO-11 molecular sieve were recorded at variable temperatures. Moreover, the corresponding MAS NMR spectra were measured. These experiments reveal a temperature-dependent, anisotropic and asymmetric 13C nuclear shielding tensor. Ab initio model calculations of methane in the field of a positive point charge suggest that the deformation of the shielding tensor may be related to the interaction between the methane molecule and the charge-compensating protons. A comparison with existing Xe data is made.

  15. Structural implications of water dissolution in haplogranitic glasses from NMR spectroscopy: influence of total water content and mixed alkali effect

    NASA Astrophysics Data System (ADS)

    Schmidt, B. C.; Riemer, T.; Kohn, S. C.; Holtz, F.; Dupree, R.

    2001-09-01

    To study the effects of total water content and alkali substitution on the structure of aluminosilicate glasses, two series of glasses belonging to the ternary system Quartz (Qz)-Albite (Ab)-Orthoclase (Or) were synthesized and investigated with nuclear magnetic resonance (NMR) spectroscopy. Series I consisted of seven glasses with normative composition Ab 39Or 32Qz 29 (AOQ) and water contents ranging from 0 to 6 wt%. Series II consisted of dry and hydrous glasses (˜2.0 wt% H 2O) with five compositions along the join Qz 37Ab 63-Qz 34Or 66 (AQ-OQ) varying the alkali content (Na/K) at constant Si/Al ratio. All glasses were investigated with 1H, 23Na, 27Al and 29Si magic angle spinning (MAS) NMR. 29Si MAS spectra of AOQ glasses showed no change upon hydration, suggesting little variation of the Si environments although the large linewidth of the 29Si signal may hide the presence of some Si Q 3-OH. The isotropic chemical shift (δ iso) of 27Al showed no change upon hydration, regardless of the amount of dissolved water. The 27Al mean quadrupolar coupling constant (C q) decreased with increasing water content, indicating a general increase of symmetry of the charge distribution around Al, which suggests the absence of significant amounts of Al Q 3-OH. Nonetheless, the evolution of C q upon hydration suggests a correlation with OH concentration in the quenched glass. The evolution of 23Na isotropic chemical shifts upon hydration appears to be correlated with total water content or with the concentration of dissolved H 2O molecules. In general, the NMR data are consistent with the water solubility model of Kohn et al. (1989), involving the exchange of charge balancing cations by protons. However, in addition to the presence of molecular water, 1H-NMR results showed at least two types of OH groups of which one may be related to Al-OH. Although the small intensity of this signal indicates that only a minor fraction of OH groups is present in this species, it demonstrates that water dissolution in aluminosilicate glasses might involve several mechanisms of hydroxyl formation. NMR data for Series II showed only a significant mixed alkali effect (nonlinear behaviour) on NMR parameters for 23Na but not for 29Si or 27Al. Therefore, these data suggest that the mixed alkali effect is related to the charge balancing cation rather than a modified aluminosilicate network.

  16. Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium Trimethylphosphine Complexes: A Mechanistic Investigation using High-Pressure NMR Spectroscopy

    SciTech Connect

    Getty, April D.; Tai, Chih-Cheng; Linehan, John C.; Jessop, Philip G.; Olmstead, Marilyn M.; Rheingold, Arnold

    2009-08-26

    The previously reported complex, cis-(PMe3)4RuCl(OAc) (1) acts as a catalyst for CO2 hydrogenation into formic acid in the presence of a base and an alcohol co-catalyst. NMR spectroscopy has revealed that 1 exists in solution in equilibrium with fac-(PMe3)3RuCl(h2-OAc) (2), [(PMe3)4Ru(h2-OAc)]Cl (3a), and free PMe3. Complex 2 has been isolated and characterized by elemental analysis, NMR spectroscopy, and X-ray crystallography. 2 has been tested as a CO2 hydrogenation catalyst, however, it performed poorly under the conditions of catalysis used for 1. Complex 3a can be prepared by adding certain alcohols, such as MeOH, EtOH, or o-C6H5OH, to a solution of 1 in CDCl3. The chloride ion of 3a has been exchanged for the non-coordinating anions BPh4 or B(ArF )4 (B(ArF)4 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) to produce [(PMe3)4Ru(h2-OAc)]BPh4 (3b) and [(PMe3)4Ru(h2-OAc)]B(ArF)4 (3c). Both of these complexes have been isolated and characterized by elemental analysis, NMR spectroscopy, and in the case of 3b, X-ray crystallography. Complexes 3b and 3c perform just as well as 1 for CO2 hydrogenation to formic acid in the presence of an alcohol co-catalyst; however, 3b,c perform equally well without the added alcohol. High-pressure NMR has been used to investigate the mechanism of CO2 hydrogenation via 3a,b in the presence of base. Two of the intermediates involved have been identified as cis-(PMe3)4RuH2 (5) and cis-(PMe3)4Ru(H)O2CH (6), and the role of the base includes not only trapping of the formic acid product, but also initiation of the catalysis by aiding the conversion of 3b,c to 5.

  17. The Discovery-Oriented Approach to Organic Chemistry. 2. Selectivity in Alcohol Oxidation. An Exercise in 1H NMR Spectroscopy for Sophomore Organic Laboratories

    NASA Astrophysics Data System (ADS)

    Shadwick, Steven R.; Mohan, Ram S.

    1999-08-01

    We have developed a simple oxidation experiment that presents the student with a puzzle and is a good exercise in 1H NMR spectroscopy. The experiment, which illustrates the important concept of selectivity in organic synthesis, involves selective oxidation of a mixture of 1-heptanol and 2-heptanol using commercial swimming pool chlorine. 1H NMR analysis of the product mixture allows the student to determine the selectivity exhibited by the reagent.

  18. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    SciTech Connect

    Cozar, O.; Filip, C.; Tripon, C.; Cioica, N.; Coţa, C.; Nagy, E. M.

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  19. Determination of the structural changes by Raman and 13C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    NASA Astrophysics Data System (ADS)

    Cozar, O.; Filip, C.; Cioica, N.; Coţa, C.; Tripon, C.; Nagy, E. M.

    2013-11-01

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and 13C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  20. Multicomponent analysis of radiolytic products in human body fluids using high field proton nuclear magnetic resonance (NMR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Grootveld, Martin C.; Herz, Herman; Haywood, Rachel; Hawkes, Geoffrey E.; Naughton, Declan; Perera, Anusha; Knappitt, Jacky; Blake, David R.; Claxson, Andrew W. D.

    1994-05-01

    High field proton Hahn spin-echo nuclear magnetic resonance (NMR) spectroscopy has been employed to investigate radiolytic damage to biomolecules present in intact human body fluids. γ-Radiolysis of healthy or rheumatoid human serum (5.00 kGy) in the presence of atmospheric O 2 gave rise to reproducible elevations in the concentration of NMR-detectable acetate which are predominantly ascribable to the prior oxidation of lactate to pyruvate by hydroxyl radical (·OH) followed by oxidative decarboxylation of pyruvate by radiolytically-generated hydrogen peroxide (H 2O 2) and/or further ·OH radical. Increases in the serum levels of non-protein-bound, low-molecular-mass components such as citrate and glutamine were also observed subsequent to γ-radiolysis, an observation which may reflect their mobilisation from protein binding-sites by ·OH radical, superoxide anion and/or H 2O 2. Moreover, substantial radiolytically-mediated elevations in the concentration of serum formate were also detectable. In addition to the above modifications, γ-radiolysis of inflammatory knee-joint synovial fluid (SF) generated a low-molecular-mass oligosaccharide species derived from the radiolytic fragmentation of hyaluronate. The radiolytically-mediated production of acetate in SF samples was markedly greater than that observed in serum samples, a consequence of the much higher levels of ·OH radical-scavenging lactate present. Indeed, increases in SF acetate concentration were detectable at doses as low as 48 Gy. We conclude that high field proton NMR analysis provides much useful information regarding the relative radioprotectant abilities of endogenous components and the nature, status and levels of radiolytic products generated in intact biofluids. We also suggest that NMR-detectable radiolytic products with associated toxicological properties (e.g. formate) may play a role in contributing to the deleterious effects observed following exposure of living organisms to sources of ionising radiation.

  1. Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy

    PubMed Central

    2009-01-01

    Understanding the integrity of well-bore systems that are lined with Portland-based cements is critical to the successful storage of sequestered CO2 in gas and oil reservoirs. As a first step, we investigate reaction rates and mechanistic pathways for cement mineral growth in the absence of CO2 by coupling water chemistry with XRD and NMR spectroscopic data. We find that semi-crystalline calcium (alumino-)silicate hydrate (Al-CSH) forms as a precursor solid to the cement mineral tobermorite. Rate constants for tobermorite growth were found to be k = 0.6 (± 0.1) × 10-5 s-1 for a solution:solid of 10:1 and 1.6 (± 0.8) × 10-4 s-1 for a solution:solid of 5:1 (batch mode; T = 150°C). This data indicates that reaction rates for tobermorite growth are faster when the solution volume is reduced by half, suggesting that rates are dependent on solution saturation and that the Gibbs free energy is the reaction driver. However, calculated solution saturation indexes for Al-CSH and tobermorite differ by less than one log unit, which is within the measured uncertainty. Based on this data, we consider both heterogeneous nucleation as the thermodynamic driver and internal restructuring as possible mechanistic pathways for growth. We also use NMR spectroscopy to characterize the site symmetry and bonding environment of Al and Si in a reacted tobermorite sample. We find two [4]Al coordination structures at δiso = 59.9 ppm and 66.3 ppm with quadrupolar product parameters (PQ) of 0.21 MHz and 0.10 MHz (± 0.08) from 27Al 3Q-MAS NMR and speculate on the Al occupancy of framework sites by probing the protonation environment of Al metal centers using 27Al{1H}CP-MAS NMR. PMID:19144195

  2. Identification of Imitation Cheese and Imitation Ice Cream Based on Vegetable Fat Using NMR Spectroscopy and Chemometrics.

    PubMed

    Monakhova, Yulia B; Godelmann, Rolf; Andlauer, Claudia; Kuballa, Thomas; Lachenmeier, Dirk W

    2013-01-01

    Vegetable oils and fats may be used as cheap substitutes for milk fat to manufacture imitation cheese or imitation ice cream. In this study, 400 MHz nuclear magnetic resonance (NMR) spectroscopy of the fat fraction of the products was used in the context of food surveillance to validate the labeling of milk-based products. For sample preparation, the fat was extracted using an automated Weibull-Stoldt methodology. Using principal component analysis (PCA), imitation products can be easily detected. In both cheese and ice cream, a differentiation according to the type of raw material (milk fat and vegetable fat) was possible. The loadings plot shows that imitation products were distinguishable by differences in their fatty acid ratios. Furthermore, a differentiation of several types of cheese (Edamer, Gouda, Emmentaler, and Feta) was possible. Quantitative data regarding the composition of the investigated products can also be predicted from the same spectra using partial least squares (PLS) regression. The models obtained for 13 compounds in cheese (R (2) 0.75-0.95) and 17 compounds in ice cream (R (2) 0.83-0.99) (e.g., fatty acids and esters) were suitable for a screening analysis. NMR spectroscopy was judged as suitable for the routine analysis of dairy products based on milk or on vegetable fat substitutes. PMID:26904597

  3. Experimental and analytical variation in human urine in 1H NMR spectroscopy-based metabolic phenotyping studies.

    PubMed

    Maher, Anthony D; Zirah, Séverine F M; Holmes, Elaine; Nicholson, Jeremy K

    2007-07-15

    1H NMR spectroscopy potentially provides a robust approach for high-throughput metabolic screening of biofluids such as urine and plasma, but sample handling and preparation need careful optimization to ensure that spectra accurately report biological status or disease state. We have investigated the effects of storage temperature and time on the 1H NMR spectral profiles of human urine from two participants, collected three times a day on four different days. These were analyzed using modern chemometric methods. Analytical and preparation variation (tested between -40 degrees C and room temperature) and time of storage (to 24 h) were found to be much less influential than biological variation in sample classification. Statistical total correlation spectroscopy and discriminant function methods were used to identify the specific metabolites that were hypervariable due to preparation and biology. Significant intraindividual variation in metabolite profiles were observed even for urine collected on the same day and after at least 6 h fasting. The effect of long-term storage at different temperatures was also investigated, showing urine is stable if frozen for at least 3 months and that storage at room temperature for long periods (1-3 months) results in a metabolic profile explained by bacterial activity. Presampling (e.g., previous day) intake of food and medicine can also strongly influence the urinary metabolic profiles indicating that collective detailed participant historical meta data are important for interpretation of metabolic phenotypes and for avoiding false biomarker discovery. PMID:17555297

  4. Identification of Imitation Cheese and Imitation Ice Cream Based on Vegetable Fat Using NMR Spectroscopy and Chemometrics

    PubMed Central

    Monakhova, Yulia B.; Godelmann, Rolf; Andlauer, Claudia; Kuballa, Thomas; Lachenmeier, Dirk W.

    2013-01-01

    Vegetable oils and fats may be used as cheap substitutes for milk fat to manufacture imitation cheese or imitation ice cream. In this study, 400 MHz nuclear magnetic resonance (NMR) spectroscopy of the fat fraction of the products was used in the context of food surveillance to validate the labeling of milk-based products. For sample preparation, the fat was extracted using an automated Weibull-Stoldt methodology. Using principal component analysis (PCA), imitation products can be easily detected. In both cheese and ice cream, a differentiation according to the type of raw material (milk fat and vegetable fat) was possible. The loadings plot shows that imitation products were distinguishable by differences in their fatty acid ratios. Furthermore, a differentiation of several types of cheese (Edamer, Gouda, Emmentaler, and Feta) was possible. Quantitative data regarding the composition of the investigated products can also be predicted from the same spectra using partial least squares (PLS) regression. The models obtained for 13 compounds in cheese (R2 0.75–0.95) and 17 compounds in ice cream (R2 0.83–0.99) (e.g., fatty acids and esters) were suitable for a screening analysis. NMR spectroscopy was judged as suitable for the routine analysis of dairy products based on milk or on vegetable fat substitutes. PMID:26904597

  5. Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase

    SciTech Connect

    Scott, A.I.; Roessner, C.A.; Stolowich, N.J.; Karuso, P.; Williams, H.J.; Grant, S.K.; Gonzalez, M.D.; Hoshino, T. )

    1988-10-18

    The active site of porphobilinogen (PBG){sup 1} deaminase from Escherichia coli has been found to contain an unusual dipyrromethane derived from four molecules of 5-aminolevulinic acid (ALA) covalently linked to Cys-242, one of the two cysteine residues conserved in E. coli and human deaminase. By use of a hemA{sup {minus}} strain of E. coli the enzyme was enriched from (5-{sup 13}C)ALA and examined by {sup 1}H-detected multiple quantum coherence spectroscopy, which revealed all of the salient features of a dipyrromethane composed of two PBG units linked heat to tail and terminating in a CH{sub 2}-S bond to a cysteine residue. Site-specific mutagenesis of Cys-99 and Cys-242, respectively, has shown that substitution of Ser for Cys-99 does not affect the enzymatic activity, whereas substitution of Ser for Cys-242 removes essentially all of the catalytic activity as measured by the conversion of the substrate PBG to uro'gen I. The NMR spectrum of the covalent complex of deaminase with the suicide inhibitor 2-bromo-(2,11-{sup 13}C{sub 2})PBG reveals that the aminomethyl terminus of the inhibitor reacts with the enzyme's cofactor at the {alpha}-free pyrrole. NMR spectroscopy of the ES{sub 2} complex confirmed a PBG-derived head-to-tail dipyrromethane attached to the {alpha}-free pyrrole position of the enzyme. A mechanistic rationale for deaminase is presented.

  6. Metabolome profiling by HRMAS NMR spectroscopy of pheochromocytomas and paragangliomas detects SDH deficiency: clinical and pathophysiological implications.

    PubMed

    Imperiale, Alessio; Moussallieh, Franois-Marie; Roche, Philippe; Battini, Stphanie; Cicek, A Ercument; Sebag, Frdric; Brunaud, Laurent; Barlier, Anne; Elbayed, Karim; Loundou, Anderson; Bachellier, Philippe; Goichot, Bernard; Stratakis, Constantine A; Pacak, Karel; Namer, Izzie-Jacques; Taeb, David

    2015-01-01

    Succinate dehydrogenase gene (SDHx) mutations increase susceptibility to develop pheochromocytomas/paragangliomas (PHEOs/PGLs). In the present study, we evaluate the performance and clinical applications of (1)H high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy-based global metabolomic profiling in a large series of PHEOs/PGLs of different genetic backgrounds. Eighty-seven PHEOs/PGLs (48 sporadic/23 SDHx/7 von Hippel-Lindau/5 REarranged during Transfection/3 neurofibromatosis type 1/1 hypoxia-inducible factor 2?), one SDHD variant of unknown significance, and two Carney triad (CTr)-related tumors were analyzed by HRMAS-NMR spectroscopy. Compared to sporadic, SDHx-related PHEOs/PGLs exhibit a specific metabolic signature characterized by increased levels of succinate (P < .0001), methionine (P = .002), glutamine (P = .002), and myoinositol (P < .0007) and decreased levels of glutamate (P < .0007), regardless of their location and catecholamine levels. Uniquely, ATP/ascorbate/glutathione was found to be associated with the secretory phenotype of PHEOs/PGLs, regardless of their genotype (P < .0007). The use of succinate as a single screening test retained excellent accuracy in distinguishing SDHx versus non-SDHx-related tumors (sensitivity/specificity: 100/100%). Moreover, the quantification of succinate could be considered a diagnostic alternative for assessing SDHx-related mutations of unknown pathogenicity. We were also able, for the first time, to uncover an SDH-like pattern in the two CTr-related PGLs. The present study demonstrates that HRMAS-NMR provides important information for SDHx-related PHEO/PGL characterization. Besides the high succinate-low glutamate hallmark, SDHx tumors also exhibit high values of methionine, a finding consistent with the hypermethylation pattern of these tumors. We also found important levels of glutamine, suggesting that glutamine metabolism might be involved in the pathogenesis of SDHx-related PHEOs/PGLs. PMID:25622899

  7. Large scale human metabolic phenotyping and molecular epidemiological studies via 1H NMR spectroscopy of urine: Investigation of borate preservation

    PubMed Central

    Smith, Leon M.; Maher, Anthony D.; Want, Elizabeth J.; Elliott, Paul; Stamler, Jeremiah; Hawkes, Geoffrey E.; Holmes, Elaine; Lindon, John C.; Nicholson, Jeremy K.

    2009-01-01

    Borate is an antibacterial preservative widely used in clinical and large scale epidemiological studies involving urine sample analysis. Since it readily forms covalent adducts and reversible complexes with hydroxyl and carboxylate groups, the effects of borate preservation in 1H NMR spectroscopy-based metabolic profiling of human urine samples have been assessed. Effects of various concentrations of borate (range 030 mM) on 1H NMR spectra of urine were observed at sequential time points over a 12 month period. Consistent with known borate chemistry, the principal alterations in the 1H resonance metabolite patterns were observed for compounds such as mannitol, citrate and ?-hydroxyisobutyrate and confirmed by ESI-MS analysis. These included line-broadening, T1 and T2 relaxation and chemical shift changes consistent with complex formation and chemical exchange processes. To further investigate complexation behavior in the urinary metabolite profiles, a new tool for visualization of multi-component relaxation variations in which the spectra were color-coded according to the T1 and T2 proton relaxation times respectively (T1 or T2 Ordered Projection SpectroscopY, TOPSY) was also developed and applied. Addition of borate caused a general decrease in 1H T1 values consistent with non-specific effects such as solution viscosity changes. Minor changes in proton T2 relaxation rates were observed for the most strongly complexing metabolites. From a molecular phenotyping and epidemiologic viewpoint, typical interpersonal biological variation was shown to be vastly greater than any variation introduced by the borate complexation which had a negligible effect on the metabolic mapping and classification of samples. Whilst caution is indicated in the assignment of biomarker signals where metabolites have diol groupings or where there are adjacent hydroxyl and carboxylate functions, it is concluded that borate preservation is fit-forpurpose for 1H NMR-based epidemiological studies since the essential biochemical classification features of the samples are robustly maintained. PMID:19453167

  8. NMR Spectroscopy and Structural Characterization of Dithiophosphinates Relevant to Minor Actinide Extraction Processes

    SciTech Connect

    Scott R. Daly; Kevin S. Boland; John R. Klaehn; Stosh A. Kozimor; Molly M. MacInnes; Dean R. Peterman; Brian L. Scott

    2012-02-01

    Synthetic routes to alkyl and aryl substituted dithiophosphinate salts that contain non-coordinating PPh{sub 4}{sup 1+} counter cations are reported. In general, these compounds can be prepared via a multi-step procedure that starts with reacting secondary phosphines, i.e. HPR{sub 2}, with two equivalents elemental S. This transformation proceeds in two steps - first oxidation of the phosphine and second insertion of S into the H-P bond - and has been used to synthesize a series of dithiophoshinic acids, which were fully characterized, namely HS{sub 2}P(p-CF{sub 3}C{sub 6}H{sub 4}){sub 2}, HS{sub 2}P(m-CF{sub 3}C{sub 6}H{sub 4}){sub 2}, HS{sub 2}P(o-MeC{sub 6}H{sub 4}){sub 2}, and HS{sub 2}P(o-MeOC{sub 6}H{sub 4}){sub 2}. Although the insertion step was found to be much slower than the oxidation reaction, the formation of (NH{sub 4})S{sub 2}PR{sub 2} from HPSR{sub 2} occurs almost instantaneous upon addition of NH{sub 4}OH. Subsequent cation exchange reactions proceed readily with PPh{sub 4}Cl in water, under air, and at ambient conditions to provide analytically pure samples of [PPh{sub 4}][S{sub 2}PR{sub 2}] (R = p-CF{sub 3}C{sub 6}H{sub 4}, m-CF{sub 3}C{sub 6}H{sub 4}, o-CF{sub 3}C{sub 6}H{sub 4}, o-MeC{sub 6}H{sub 4}, o-MeOC{sub 6}H{sub 4}, Ph, and Me, 1b-7b, respectively), which were characterized by elemental analysis, multinuclear NMR, and IR spectroscopy. In addition the S{sub 2}PMe{sub 2}{sup 1-}, S{sub 2}PPh{sub 2}{sup 1-}, and dithiophosphinates with ortho-substituted arene rings were characterized by X-ray crystallography. Structural analysis show that, as opposed to the acids which have short P=S double bonds and long P-SH single bonds, the metric parameters for the S atoms in S{sub 2}PR{sub 2}{sup 1-} are equivalent. In addition, the presence of large non-coordinating PPh{sub 4}{sup 1+} cations guard against intermolecular P-S {hor_ellipsis} X interactions and insure that the P-S bond is isolated. Overall, this synthetic procedure provides high-purity S{sub 2}PR{sub 2}{sup 1-} compounds necessary for subsequent spectroscopic and theoretical studies.

  9. Dynamics and intramolecular ligand binding of DtxR studied by MD simulations and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Myunggi; Bhattacharya, Nilakshee; Zhou, Huan-Xiang

    2005-11-01

    Diphtheria toxin repressor (DtxR) regulates the expression of the diphtheria toxin gene through intramolecular ligand binding (Wylie et al., Biochemistry 2005, 44:40-51). Protein dynamics is essential to the binding process of the Pro-rich (Pr) ligand to the C-terminal SH3 domain. We present MD and NMR results on the dynamics and ligand interactions of a Pr-SH3 construct of DtxR. NMR relaxation data (T1, T2, and NOE) showed that the Pr ligand is very flexible, suggesting that it undergoes binding/unbinding transitions. A 50-ns MD trajectory of the protein was used to calculate T1, T2, and NOE, reproducing the NMR results for the SH3 domain but not for the Pr segment. During the MD simulation, the ligand stayed bound to the SH3 domain; thus the simulation represented the bound state. The NMR data for the Pr-segment could be explained by assuming that they represented the average behavior of a fast binding/unbinding exchange. Though unbinding was not observed in the MD simulation, the simulation did show large fluctuations of a loop which forms part of the wall of the binding pocket. The fluctuations led to opening up of the binding pocket, thus weakening the interaction with the Pr segment and perhaps ultimately leading to ligand unbinding.

  10. Microtesla NMR J-coupling spectroscopy with an unshielded atomic magnetometer.

    PubMed

    Bevilacqua, Giuseppe; Biancalana, Valerio; Baranga, Andrei Ben-Amar; Dancheva, Yordanka; Rossi, Claudio

    2016-02-01

    We present experimental data and theoretical interpretation of NMR spectra of remotely magnetized samples, detected in an unshielded environment by means of a differential atomic magnetometer. The measurements are performed in an ultra-low-field at an intermediate regime, where the J-coupling and the Zeeman energies have comparable values and produce rather complex line sets, which are satisfactorily interpreted. PMID:26773528

  11. Optimising selective excitation pulses to maximise saturation transfer difference NMR spectroscopy

    PubMed Central

    Ley, Nathan B.; Rowe, Michelle L.; Williamson, Richard A.

    2016-01-01

    A simple method is presented that optimizes the STD NMR Gaussian pulse to deliver significant increases in STD amplification factors with minimal perturbation of the ligand. This approach is practically demonstrated using the wheat-germ agglutinin/N-acetyl-D-glucosamine protein-ligand system.

  12. Self-Association of N-Methylacetamide Examined by Infrared and NMR Spectroscopies

    ERIC Educational Resources Information Center

    Schenck, Heather L.; Hui, KaWai

    2011-01-01

    These spectroscopic experiments investigate polarity and concentration effects on self-association behavior in N-methylacetamide. Inquiry can be limited to the concentration dependence of hydrogen bonding and estimation of dimerization constant (NMR studies) or to the effect of solvent polarity on extent of hydrogen bonding (IR studies). The…

  13. Self-Assembly, Guest Capture, and NMR Spectroscopy of a Metal-Organic Cage in Water

    ERIC Educational Resources Information Center

    Go, Eun Bin; Srisuknimit, Veerasak; Cheng, Stephanie L.; Vosburg, David A.

    2016-01-01

    A green organic-inorganic laboratory experiment has been developed in which students prepare a self-assembling iron cage in D[subscript 2]O at room temperature. The tetrahedral cage captures a small, neutral molecule such as cyclohexane or tetrahydrofuran. [Superscript 1]H NMR analysis distinguishes captured and free guests through diagnostic…

  14. Resin-bound chiral derivatizing agents for assignment of configuration by NMR spectroscopy.

    PubMed

    Porto, Silvia; Seco, José Manuel; Espinosa, Juan Félix; Quiñoá, Emilio; Riguera, Ricardo

    2008-08-01

    A general methodology for assigning the configuration of chiral mono- and polyfunctional compounds by NMR is presented. The approach is based on the use of polystyrene-bound chiral derivatizing agents (CDA-resins) specifically designed to achieve the high-yield formation of the covalent linkages (amide or ester bonds) between the substrate and the chiral auxiliary within the NMR tube, without the need for other manipulations, on a microscale level and in a short time. The deuterated NMR solvents (CDCl3, CD3CN, CS2/CD2Cl2) are also the reaction solvents and separations, purifications or workups of any kind are not necessary prior to recording the spectra. The CDA-resins prepared included MPA, 9-AMA, BPG, MTPA, and 2-NTBA as auxiliary agents incorporated either as single enantiomers or as mixed combinations of the (R)- and the (S)-enantiomers at unequal and known ratios. The high versatility of these systems was successfully demonstrated in a variety of ways based on double and single derivatization, low temperature experiments, or the formation of metal complexes. The approach allowed the absolute configurations of chiral primary amines, primary and secondary alcohols, cyanohydrins, thiols, diols, triols, and amino alcohols to be determined. Extensive high-resolution magic angle spinning (HR-MAS) NMR experiments allowed the characterization of the new CDA-resins and enabled the study of their stability and regioselectivity. PMID:18582122

  15. Self-Association of N-Methylacetamide Examined by Infrared and NMR Spectroscopies

    ERIC Educational Resources Information Center

    Schenck, Heather L.; Hui, KaWai

    2011-01-01

    These spectroscopic experiments investigate polarity and concentration effects on self-association behavior in N-methylacetamide. Inquiry can be limited to the concentration dependence of hydrogen bonding and estimation of dimerization constant (NMR studies) or to the effect of solvent polarity on extent of hydrogen bonding (IR studies). The

  16. Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy.

    PubMed

    Balakshin, Mikhail; Capanema, Ewellyn; Gracz, Hanna; Chang, Hou-min; Jameel, Hasan

    2011-06-01

    A quantitative approach to characterize lignin-carbohydrate complex (LCC) linkages using a combination of quantitative ¹³C NMR and HSQC 2D NMR techniques has been developed. Crude milled wood lignin (MWLc), LCC extracted from MWLc with acetic acid (LCC-AcOH) and cellulolytic enzyme lignin (CEL) preparations were isolated from loblolly pine (Pinus taeda) and white birch (Betula pendula) woods and characterized using this methodology on a routine 300 MHz NMR spectrometer and on a 950 MHz spectrometer equipped with a cryogenic probe. Structural variations in the pine and birch LCC preparations of different types (MWL, CEL and LCC-AcOH) were elucidated. The use of the high field NMR spectrometer equipped with the cryogenic probe resulted in a remarkable improvement in the resolution of the LCC signals and, therefore, is of primary importance for an accurate quantification of LCC linkages. The preparations investigated showed the presence of different amounts of benzyl ether, γ-ester and phenyl glycoside LCC bonds. Benzyl ester moieties were not detected. Pine LCC-AcOH and birch MWLc preparations were preferable for the analysis of phenyl glycoside and ester LCC linkages in pine and birch, correspondingly, whereas CEL preparations were the best to study benzyl ether LCC structures. The data obtained indicate that pinewood contains higher amounts of benzyl ether LCC linkages, but lower amounts of phenyl glycoside and γ-ester LCC moieties as compared to birch wood. PMID:21298285

  17. Rapid separation and quantitation of curcuminoids combining pseudo two dimensional liquid flash chromatography and NMR spectroscopy

    PubMed Central

    Jayaprakasha, G. K.; Gowda, G.A. Nagana; Marquez, Sixto; Patil, Bhimanagouda S.

    2013-01-01

    Rapid separation, characterization and quantitation of curcuminoids are important owing to their numerous pharmacological properties including antimicrobial, antiviral, antifungal, anticancer, and anti-inflammatory activities. In the present study, pseudo two dimensional liquid flash chromatography was used for the separation of four curcuminoids (curcumin, demethoxy curcumin, bisdemethoxy curcumin and dihydro bisdemethoxy curcumin) for the first time. Silica and diol columns were used for separation of curcuminoids using gradient mobile phase. The separated peaks were monitored at 244, 360 nm to obtain four compounds. The purity of compounds were determined by rapid quantitative 1H NMR (qNMR) using 3-(trimethylsilyl) propionic-(2,2,3,3-d4) acid sodium salt (TSP-d4) (0.012%) in D2O. These results were compared with those obtained by HPLC method. The purity of isolated curcuminoids using pseudo 2D chromatography was found to be in the range of 92.4–95.45%. The structures of these compounds were characterized unambiguously using 13C (APT) NMR spectra. The developed pseudo 2D separation technique has the advantage of simplified automation with shorter run time compared to conventional separation techniques. The method that combines rapid pseudo 2D separation and simple quantitation using qNMR reported herein can be of wide utility for routine analysis of curcuminoids in complex mixtures. PMID:24013126

  18. Self-Assembly, Guest Capture, and NMR Spectroscopy of a Metal-Organic Cage in Water

    ERIC Educational Resources Information Center

    Go, Eun Bin; Srisuknimit, Veerasak; Cheng, Stephanie L.; Vosburg, David A.

    2016-01-01

    A green organic-inorganic laboratory experiment has been developed in which students prepare a self-assembling iron cage in D[subscript 2]O at room temperature. The tetrahedral cage captures a small, neutral molecule such as cyclohexane or tetrahydrofuran. [Superscript 1]H NMR analysis distinguishes captured and free guests through diagnostic

  19. In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism

    PubMed Central

    2013-01-01

    Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance (NMR) methodologies to study changes at the electrodeelectrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations. PMID:24274637

  20. Scalable synthesis of quaterrylene: solution-phase 1H NMR spectroscopy of its oxidative dication.

    PubMed

    Thamatam, Rajesh; Skraba, Sarah L; Johnson, Richard P

    2013-10-14

    Quaterrylene is prepared in a single reaction and high yield by Scholl-type coupling of perylene, utilizing trifluoromethanesulfonic acid as catalyst and DDQ or molecular oxygen as oxidant. Dissolution in 1 M triflic acid/dichloroethane with sonication yields the aromatic quaterrylene oxidative dication, which is characterized by its (1)H NMR spectrum. PMID:23999880

  1. Microtesla NMR J-coupling spectroscopy with an unshielded atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Giuseppe; Biancalana, Valerio; Baranga, Andrei Ben-Amar; Dancheva, Yordanka; Rossi, Claudio

    2016-02-01

    We present experimental data and theoretical interpretation of NMR spectra of remotely magnetized samples, detected in an unshielded environment by means of a differential atomic magnetometer. The measurements are performed in an ultra-low-field at an intermediate regime, where the J-coupling and the Zeeman energies have comparable values and produce rather complex line sets, which are satisfactorily interpreted.

  2. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  3. Post-grafting amination of alkyl halide-functionalized silica for applications in catalysis, adsorption, and 15N NMR spectroscopy.

    PubMed

    Moschetta, Eric G; Sakwa-Novak, Miles A; Greenfield, Jake L; Jones, Christopher W

    2015-02-24

    An anhydrous synthesis of aminosilica materials from alkyl halide-functionalized mesoporous SBA-15 silica by post-grafting amination is introduced for applications in CO2 adsorption, cooperative catalysis, and (15)N solid-state NMR spectroscopy. The synthesis is demonstrated to convert terminal alkyl halide-functionalized silica materials containing Cl, Br, and I to primary alkylamines using anhydrous ammonia in a high-pressure reactor. The benefits of the post-grafting amination procedure include (i) use of anhydrous isotopically labeled ammonia, (15)NH3, to create aminosilica materials that can be investigated using (15)N solid-state NMR to elucidate potential intermediates and surface species in CO2 adsorption processes and catalysis, (ii) similar CO2 uptake in experiments extracting CO2 from dry simulated air experiments, and (iii) improved activity in acid-base bifunctional catalysis compared to traditional amine-grafted materials. The effects of the type of halide, the initial halide loading, and the total reaction time on the conversion of the halides to primary amines are explored. Physical and chemical characterizations of the materials show that the textural properties of the silica are unaffected by the reaction conditions and that quantitative conversion to primary amines is achieved even at short reaction times and high initial alkyl halide loadings. Additionally, preliminary (15)N solid-state NMR experiments indicate formation of nitrogen-containing species and demonstrate that the synthesis can be used to create materials useful for investigating surface species by NMR spectroscopy. The differences between the materials prepared via post-grafting amination vs traditional aminosilane grafting are attributed to the slightly increased spacing of the amines synthesized by amination because the alkylhalosilanes are initially better spaced on the silica surface after grafting, whereas the aminosilanes likely cluster to a greater extent when grafted on the silica surface. A slight increase in amine spacing allows for more effective amine-silanol interactions in cooperative catalysis without reducing the amine efficiency in CO2 uptake under the conditions used here. PMID:25647627

  4. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaroniec, Christopher P.

    2015-04-01

    Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ∼20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags.

  5. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy

    NASA Astrophysics Data System (ADS)

    Rossini, Aaron J.; Schlagnitweit, Judith; Lesage, Anne; Emsley, Lyndon

    2015-10-01

    We demonstrate that high field (9.4 T) dynamic nuclear polarization (DNP) at cryogenic (∼100 K) sample temperatures enables the rapid acquisition of natural abundance 1H-2H cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra of organic solids. Spectra were obtained by impregnating substrates with a solution of the stable DNP polarizing agent TEKPol in tetrachloroethane. Tetrachloroethane is a non-solvent for the solids, and the unmodified substrates are then polarized through spin diffusion. High quality natural abundance 2H CPMAS spectra of histidine hydrochloride monohydrate, glycylglycine and theophylline were acquired in less than 2 h, providing direct access to hydrogen chemical shifts and quadrupolar couplings. The spectral resolution of the 2H solid-state NMR spectra is comparable to that of 1H spectra obtained with state of the art homonuclear decoupling techniques.

  6. Uncovering Intramolecular π-Type Hydrogen Bonds in Solution by NMR Spectroscopy and DFT Calculations.

    PubMed

    Mastrorilli, Piero; Gallo, Vito; Todisco, Stefano; Latronico, Mario; Saielli, Giacomo

    2016-06-01

    Reaction between the phosphinito bridged diplatinum species [(PHCy2 )Pt(μ-PCy2 ){κ(2) P,O-μ-P(O)Cy2 }Pt(PHCy2 )](Pt-Pt) (1), and (trimethylsilyl)acetylene at 273 K affords the σ-acetylide complex [(PHCy2 )(η(1) -Me3 SiC≡C)Pt(μ-PCy2 )Pt(PHCy2 ){κP-P(OH)Cy2 }](Pt-Pt) (2) featuring an intramolecular π-type hydrogen bond. Scalar and dipolar couplings involving the POH proton were detected by 2D NMR experiments. Relativistic DFT calculations of the geometry, relative energy, and NMR properties of model systems of 2 confirmed the structural assignment and allowed the energy of the π-type hydrogen bond to be estimated (ca. 22 kJ mol(-1) ). PMID:27097847

  7. {sup 13}C NMR spectroscopy of amorphous hydrogenated carbon and amorphous hydrogenated boron carbide

    SciTech Connect

    Braddock-Wilking, J.; Lin, S.; Feldman, B.J.

    1999-04-01

    We report the {sup 13}C NMR spectrum of amorphous hydrogenated carbon and boron carbide. The amorphous hydrogenated carbon spectra consist primarily of an sp{sup 3} line at 40 ppm and an sp{sup 2} line at 140 ppm and are in reasonable agreement with the recent theoretical calculations of Mauri, Pfrommer, and Louie, but there are some notable discrepancies. The amorphous hydrogenated boron carbide spectra are very different from those of amorphous hydrogenated carbon, being dominated by one line at 15 ppm. We interpret this line as due to carbon bound in boron carbide icosahedra, because polycrystalline boron carbide with boron carbide icosahedra as the unit cell gives very similar NMR spectra. {copyright} {ital 1999} {ital The American Physical Society}

  8. Observation of a stuffed unmodified network in beryllium silicate glasses with multinuclear NMR spectroscopy

    SciTech Connect

    Sen, Sabyasachi; Yu Ping

    2005-10-01

    The structure of BeO-SiO{sub 2} glasses with up to 20 mol % BeO has been studied with {sup 9}Be and {sup 29}Si NMR spectroscopic techniques. The NMR results are consistent with a glass structure consisting of nanoclusters of corner-shared BeO{sub 4} tetrahedra that occupy the interstices of an unmodified and highly strained corner-shared SiO{sub 4} network. The complete absence of nonbridging oxygens in these glasses contradicts the conventional wisdom of oxide glass structures based on the modified random-network-type models. This structure type may have important implications in understanding and designing glasses with unusual properties.

  9. A LEAN approach toward automated analysis and data processing of polymers using proton NMR spectroscopy.

    PubMed

    de Brouwer, Hans; Stegeman, Gerrit

    2011-02-01

    To maximize utilization of expensive laboratory instruments and to make most effective use of skilled human resources, the entire chain of data processing, calculation, and reporting that is needed to transform raw NMR data into meaningful results was automated. The LEAN process improvement tools were used to identify non-value-added steps in the existing process. These steps were eliminated using an in-house developed software package, which allowed us to meet the key requirement of improving quality and reliability compared with the existing process while freeing up valuable human resources and increasing productivity. Reliability and quality were improved by the consistent data treatment as performed by the software and the uniform administration of results. Automating a single NMR spectrophotometer led to a reduction in operator time of 35%, doubling of the annual sample throughput from 1400 to 2800, and reducing the turn around time from 6 days to less than 2. PMID:21609682

  10. (1)H NMR spectroscopy and chemometrics evaluation of non-thermal processing of orange juice.

    PubMed

    Alves Filho, Elenilson G; Almeida, Francisca D L; Cavalcante, Rosane S; de Brito, Edy S; Cullen, Patrick J; Frias, Jesus M; Bourke, Paula; Fernandes, Fabiano A N; Rodrigues, Sueli

    2016-08-01

    This study evaluated the effect of atmospheric cold plasma and ozone treatments on the key compounds (sugars, amino acids and short chain organic acids) in orange juice by NMR and chemometric analysis. The juice was directly and indirectly exposed to atmospheric cold plasma field at 70kV for different treatment time (15, 30, 45 and 60sec). For ozone processing different loads were evaluated. The Principal Component Analysis shown that the groups of compounds are affected differently depending on the processing. The ozone was the processing that more affected the aromatic compounds and atmospheric cold plasma processing affected more the aliphatic compounds. However, these variations did not result in significant changes in orange juice composition as a whole. Thus, NMR data and chemometrics were suitable to follow quality changes in orange juice processing by atmospheric cold plasma and ozone. PMID:26988481

  11. SIMPSON: A general simulation program for solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2011-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  12. SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2000-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  13. Characterization of water-soluble organic matter in urban aerosol by 1H-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chalbot, Marie-Cecile G.; Chitranshi, Priyanka; Gamboa da Costa, Gonçalo; Pollock, Erik; Kavouras, Ilias G.

    2016-03-01

    The functional and 13C isotopic compositions of water-soluble organic carbon (WSOC) in atmospheric aerosol were determined by nuclear magnetic resonance (1H-NMR) and isotope ratio mass spectrometry (IRMS) in an urban location in the Southern Mississippi Valley. The origin of WSOC was resolved using the functional distribution of organic hydrogen, δ13C ratio, and positive matrix factorization (PMF). Three factors were retained based on NMR spectral bins loadings. Two factors (factors 1 and 3) demonstrated strong associations with the aliphatic region in the NMR spectra and levoglucosan resonances. Differences between the two factors included the abundance of the aromatic functional group for factor 1, indicating fresh emissions and, for factor 3, the presence of resonances attributed to secondary ammonium nitrate and low δ13C ratio values that are indicative of secondary organic aerosol. Factors 1 and 3 added 0.89 and 1.08 μgC m-3, respectively, with the highest contribution in the summer and fall. Factor 2 retained resonances consistent with saccharides and was attributed to pollen particles. Its contribution to WSOC varied from 0.22 μgC m-3 in winter to 1.04 μgC m-3 in spring.

  14. Chemical tagging of chlorinated phenols for their facile detection and analysis by NMR spectroscopy

    SciTech Connect

    Valdez, Carlos A.; Leif, Roald N.

    2015-03-22

    A derivatization method that employs diethyl (bromodifluoromethyl) phosphonate (DBDFP) to efficiently tag the endocrine disruptor pentachlorophenol (PCP) and other chlorinated phenols (CPs) along with their reliable detection and analysis by NMR is presented. The method accomplishes the efficient alkylation of the hydroxyl group in CPs with the difluoromethyl (CF2H) moiety in extremely rapid fashion (5 min), at room temperature and in an environmentally benign manner. The approach proved successful in difluoromethylating a panel of 18 chlorinated phenols, yielding derivatives that displayed unique 1H, 19F NMR spectra allowing for the clear discrimination between isomerically related CPs. Due to its biphasic nature, the derivatization can be applied to both aqueous and organic mixtures where the analysis of CPs is required. Furthermore, the methodology demonstrates that PCP along with other CPs can be selectively derivatized in the presence of other various aliphatic alcohols, underscoring the superiority of the approach over other general derivatization methods that indiscriminately modify all analytes in a given sample. The present work demonstrates the first application of NMR on the qualitative analysis of these highly toxic and environmentally persistent species.

  15. Analytical approaches toward successful human cell metabolome studies by NMR spectroscopy.

    PubMed

    Duarte, Iola F; Marques, Joana; Ladeirinha, Ana F; Rocha, Cláudia; Lamego, Inês; Calheiros, Rita; Silva, Tânia M; Marques, M Paula M; Melo, Joana B; Carreira, Isabel M; Gil, Ana M

    2009-06-15

    The aim of this work was to investigate the effects of cell handling and storage on cell integrity and (1)H high resolution magic angle spinning (HRMAS) NMR spectra. Three different cell types have been considered (lung tumoral, amniocytes, and MG-63 osteosarcoma cells) in order for sample-dependent effects to be identified. Cell integrity of fresh cells and cells frozen in cryopreservative solution was approximately 70-80%, with the former showing higher membrane degradation, probably enzymatic, as indicated by increased phosphocholine (PC) and/or glycerophosphocholine (GPC). Unprotected freezing (either gradual or snap-freezing) was found to lyse cells completely, similar to mechanical cell lysis. Besides enhanced metabolites visibility, lysed cells showed a different lipid profile compared to intact cells, with increased choline, PC, and GPC and decreased phosphatidylcholine (PTC). Cell lysis has, therefore, a significant effect on cell lipid composition, making handling reproducibility an important issue in lipid analysis. Sample spinning was found to disrupt 5-25% of cells, depending on cell type, and HRMAS was shown to be preferable to solution-state NMR of suspensions or supernatant, giving enhanced information on lipids and comparable resolution for smaller metabolites. Relaxation- and diffusion-edited NMR experiments gave limited information on intact cells, compared to lysed cells. The (1)H HRMAS spectra of the three cell types are compared and discussed. PMID:19462963

  16. Mg/Al Ordering in Layered Double Hydroxides Revealed by Multinuclear NMR Spectroscopy

    SciTech Connect

    Sideris, Paul J.; Nielsen, Ulla G.; Gan, Zhehong; Grey, Clare P.

    2008-07-04

    The anion-exchange ability of layered double hydroxides (LDHs) has been exploited to create materials for use in catalysis, drug delivery, and environmental remediation. The specific cation arrangements in the hydroxide layers of hydrotalcite-like LDHs, of general formula Mg2+1–xAl3+xOH2(Anionn– x/n)·yH2O, have, however, remained elusive, and their elucidation could enhance the functional optimization of these materials. We applied rapid (60 kilohertz) magic angle spinning (MAS) to obtain high-resolution hydrogen-1 nuclear magnetic resonance (1H NMR) spectra and characterize the magnesium and aluminum distribution. These data, in combination with 1H-27Al double-resonance and 25Mg triple-quantum MAS NMR data, show that the cations are fully ordered for magnesium:aluminum ratios of 2:1 and that at lower aluminum content, a nonrandom distribution of cations persists, with no Al3+-Al3+ close contacts. The application of rapid MAS NMR methods to investigate proton distributions in a wide range of materials is readily envisaged.

  17. Magneto-optical contrast in liquid-state optically detected NMR spectroscopy.

    PubMed

    Pagliero, Daniela; Meriles, Carlos A

    2011-12-01

    We use optical Faraday rotation (OFR) to probe nuclear spins in real time at high-magnetic field in a range of diamagnetic sample fluids. Comparison of OFR-detected NMR spectra reveals a correlation between the relative signal amplitude and the fluid Verdet constant, which we interpret as a manifestation of the variable detuning between the probe beam and the sample optical transitions. The analysis of chemical-shift-resolved, optically detected spectra allows us to set constraints on the relative amplitudes of hyperfine coupling constants, both for protons at chemically distinct sites and other lower-gyromagnetic-ratio nuclei including carbon, fluorine, and phosphorous. By considering a model binary mixture we observe a complex dependence of the optical response on the relative concentration, suggesting that the present approach is sensitive to the solvent-solute dynamics in ways complementary to those known in inductive NMR. Extension of these experiments may find application in solvent suppression protocols, sensitivity-enhanced NMR of metalloproteins in solution, the investigation of solvent-solute interactions, or the characterization of molecular orbitals in diamagnetic systems. PMID:22100736

  18. Magneto-optical contrast in liquid-state optically detected NMR spectroscopy

    PubMed Central

    Pagliero, Daniela; Meriles, Carlos A.

    2011-01-01

    We use optical Faraday rotation (OFR) to probe nuclear spins in real time at high-magnetic field in a range of diamagnetic sample fluids. Comparison of OFR-detected NMR spectra reveals a correlation between the relative signal amplitude and the fluid Verdet constant, which we interpret as a manifestation of the variable detuning between the probe beam and the sample optical transitions. The analysis of chemical-shift-resolved, optically detected spectra allows us to set constraints on the relative amplitudes of hyperfine coupling constants, both for protons at chemically distinct sites and other lower-gyromagnetic-ratio nuclei including carbon, fluorine, and phosphorous. By considering a model binary mixture we observe a complex dependence of the optical response on the relative concentration, suggesting that the present approach is sensitive to the solvent-solute dynamics in ways complementary to those known in inductive NMR. Extension of these experiments may find application in solvent suppression protocols, sensitivity-enhanced NMR of metalloproteins in solution, the investigation of solvent-solute interactions, or the characterization of molecular orbitals in diamagnetic systems. PMID:22100736

  19. Solution-State One- and Two-Dimensional NMR Spectroscopy of High-Molecular-Weight Cellulose.

    PubMed

    Holding, Ashley J; Mäkelä, Valtteri; Tolonen, Lasse; Sixta, Herbert; Kilpeläinen, Ilkka; King, Alistair W T

    2016-04-21

    High-molecular-weight celluloses (which even include bacterial cellulose) can be dissolved fully in methyltrioctylphosphonium acetate/[D6 ]DMSO solutions to allow the measurement of resonance-overlap-free 1 D and 2 D NMR spectra. This is achieved by a simple and non-destructive dissolution method, without solvent suppression, pre-treatment or deuteration of the ionic component. We studied a range of cellulose samples by using various NMR experiments to make an a priori assignment of the cellulose resonances. Chain-end resonances are also visible in the (1) H NMR spectrum. This allows the rough determination of the degree of polymerisation (DP) of a sample for low-DP celluloses by the integration of non-reducing chain ends C1 versus polymeric cellobiose C1. Low-DP celluloses show a good agreement with the gel-permeation chromatography (GPC) values, but high-DP pulps show more deviation. For high-purity pulps (pre-hydrolysis kraft and sulfite), residual xyloses and mannoses can also be identified from the (1) H-(13) C heteronuclear single-quantum coherence (HSQC) spectra. Resonances are thus assigned for the common polymeric polysaccharides found in chemical pulps. PMID:27010664

  20. Chemical tagging of chlorinated phenols for their facile detection and analysis by NMR spectroscopy.

    PubMed

    Valdez, Carlos A; Leif, Roald N

    2015-05-01

    A derivatization method that employs diethyl (bromodifluoromethyl) phosphonate (DBDFP) to efficiently tag the endocrine disruptor pentachlorophenol (PCP) and other chlorinated phenols (CPs) along with their reliable detection and analysis by NMR is presented. The method accomplishes the efficient alkylation of the hydroxyl group in CPs with the difluoromethyl (CF2H) moiety in extremely rapid fashion (5min), at room temperature and in an environmentally benign manner. The approach proved successful in difluoromethylating a panel of 18 chlorinated phenols, yielding derivatives that displayed unique (1)H, (19)F, and (13)C NMR spectra allowing for the clear discrimination between isomerically related CPs. Due to its biphasic nature, the derivatization can be applied to both aqueous and organic mixtures where the analysis of CPs is required. Furthermore, the methodology demonstrates that PCP along with other CPs can be selectively derivatized in the presence of other various aliphatic alcohols, underscoring the superiority of the approach over other general derivatization methods that indiscriminately modify all analytes in a given sample. The present work demonstrates the first application of NMR on the qualitative analysis of these highly toxic and environmentally persistent species. PMID:25796530

  1. Metabolomic Investigations of American Oysters Using 1H-NMR Spectroscopy

    PubMed Central

    Tikunov, Andrey P.; Johnson, Christopher B.; Lee, Haakil; Stoskopf, Michael K.; Macdonald, Jeffrey M.

    2010-01-01

    The Eastern oyster (Crassostrea virginica) is a useful, robust model marine organism for tissue metabolism studies. Its relatively few organs are easily delineated and there is sufficient understanding of their functions based on classical assays to support interpretation of advanced spectroscopic approaches. Here we apply high-resolution proton nuclear magnetic resonance (1H NMR)-based metabolomic analysis to C. virginica to investigate the differences in the metabolic profile of different organ groups, and magnetic resonance imaging (MRI) to non-invasively identify the well separated organs. Metabolites were identified in perchloric acid extracts of three portions of the oyster containing: (1) adductor muscle, (2) stomach and digestive gland, and (3) mantle and gills. Osmolytes dominated the metabolome in all three organ blocks with decreasing concentration as follows: betaine > taurine > proline > glycine > ß-alanine > hypotaurine. Mitochondrial metabolism appeared most pronounced in the adductor muscle with elevated levels of carnitine facilitating ß-oxidation, and ATP, and phosphoarginine synthesis, while glycogen was elevated in the mantle/gills and stomach/digestive gland. A biochemical schematic is presented that relates metabolites to biochemical pathways correlated with physiological organ functions. This study identifies metabolites and corresponding 1H NMR peak assignments for future NMR-based metabolomic studies in oysters. PMID:21116407

  2. Mesh size analysis of cellulose nanofibril hydrogels using solute exclusion and PFG-NMR spectroscopy.

    PubMed

    Jowkarderis, Leila; van de Ven, Theo G M

    2015-12-21

    The pore structure of TEMPO-mediated oxidized CNF hydrogels, chemically cross-linked with water-soluble diamines, is studied. A solute exclusion method and pulsed-field-gradient NMR are used to estimate the mesh size distribution in the gel network in its hydrated state. Dextran fractions with the nominal molecular weights in the range of 10-2000 kDa are used as probes. The results show a nonuniform network structure, consisting of a group of large openings that contain ∼50% of water, and regions with a more compact structure and smaller mesh units that restrict the diffusivity of the dextran molecules. A biexponential model is proposed for the NMR echo amplitude decay due to the probe diffusion into the gel network. A typical single exponential model does not fit the experimental data when the probe molecular size is comparable to the network mesh size. The results obtained with NMR, using the proposed biexponential model, are in very good agreement with those determined with solute exclusion. Precise mesh size estimation with solute exclusion using pore models is subject to restrictions, and vary with the assumed pore geometry. The average mesh size obtained using a spherical pore model, ∼35 nm, in the compact regions of the hydrogel, is in good agreement with the theoretical value in a network of rodlike particles. Neglecting the wall effects leads to underestimation of the mesh size with both techniques. PMID:26417984

  3. H- and C-NMR spectroscopy of Thy-1-APPSL mice brain extracts indicates metabolic changes in Alzheimer's disease.

    PubMed

    Doert, A; Pilatus, U; Zanella, F; Mller, W E; Eckert, G P

    2015-04-01

    Biochemical alterations underlying the symptoms and pathomechanisms of Alzheimer's disease (AD) are not fully understood. However, alterations of glucose metabolism and mitochondrial dysfunction certainly play an important role. (1)H- and (13)C-NMR spectroscopy exhibits promising results in providing information about those alterations in vivo in patients and animals, especially regarding the mitochondrial tricarboxylic acid (TCA) cycle. Accordingly, transgenic mice expressing mutant human amyloid precursor protein (APP(SL))-serving as a model of neuropathological changes in AD-were examined with in vitro 1D (1)H- and 2D (1)H-(13)C-HSQC-NMR spectroscopy after oral administration of 1-(13)C-glucose and acquisition of brain material after 30 min. Perchloric acid extracts were measured using a 500 MHz spectrometer, providing more detailed information compared to in vivo spectra achievable nowadays. Area under curve (AUC) data of metabolite peaks were obtained and normalized in relation to the creatine signal, serving as internal reference. Besides confirming well-known metabolic alterations in AD like decreased N-acetylaspartate (NAA)/Creatine (Cr) ratio, new findings such as a decrease in phosphorylcholine (PC) are presented. Glutamate (Glu) and glutamine (Gln) concentrations were decreased while ?-aminobutyric acid (GABA) was elevated in Thy1-APP(SL) mice. (13)C-NMR spectroscopy revealed a shift in the Glx-2/Glx-4-ratio-where Glx represents a combined Glu/Gln-signal-towards Glx-2 in AD. These findings correlated well with the NAA/Cr-ratio. The Gln-4/Glu-4-ratio is altered in favor of Glu. Our findings suggest that glutamine synthetase (GS), which is predominantly present in glial cells may be impaired in the brain of Thy1-APP(SL) transgenic mice. Since GS is an ATP-dependent enzyme, mitochondrial dysfunction might contribute to reduced activity, which might also account for the increased metabolism of glutamate via the GABA shunt, a metabolic pathway to bypass intra-mitochondrial ?-ketoglutarate-dehydrogenase, resulting in elevated GABA levels. PMID:25742870

  4. Two-dimensional NMR spectroscopy links structural moieties of soil organic matter to the temperature sensitivity of its decomposition

    NASA Astrophysics Data System (ADS)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

    2015-04-01

    Soil organic matter (SOM) represents a huge carbon pool, specifically in boreal ecosystems. Warming-induced release of large amounts of CO2 from the soil carbon pool might become a significant exacerbating feedback to global warming, if decomposition rates of boreal soils were more sensitive to increased temperatures. Despite a large number of studies dedicated to the topic, it has proven difficult to elucidate how the organo-chemical composition of SOM influences its decomposition, or its quality as a substrate for microbial metabolism. A great part of this challenge results from our inability to achieve a detailed characterization of the complex composition of SOM on the level of molecular structural moieties. 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to characterize SOM. However, SOM is a very complex mixture and the chemical shift regions distinguished in the 13C NMR spectra often represent many different molecular fragments. For example, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. We applied two-dimensional (2D) NMR to characterize SOM with highly increased resolution. We directly dissolved finely ground litters and forest floors'fibric and humic horizons'of both coniferous and deciduous boreal forests in dimethyl sulfoxide and analyzed the resulting solution with a 2D 1H-13C NMR experiment. In the 2D planes of these spectra, signals of CH groups can be resolved based on their 13C and 1H chemical shifts, hence the resolving power and information content of these NMR spectra is hugely increased. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra, so that hundreds of distinct CH groups could be observed and many molecular fragments could be identified. For instance, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to relate signal patterns in the 2D spectra and intensities of identifiable molecular moieties to variability in the temperature response of organic matter decomposition, as assessed by Q10. In conclusion, the characterization of SOM composition at the molecular level by solution-state 2D NMR spectroscopy is highly promising; it offers unprecedented possibilities to link SOM molecular composition to ecosystem processes, and their responses to environmental changes.

  5. Conformational analysis of oxidized peptide fragments of the C-terminal redox center in thioredoxin reductases by NMR spectroscopy.

    PubMed

    Ruggles, Erik L; Deker, P Bruce; Hondal, Robert J

    2014-05-01

    Vicinal disulfide rings (VDRs) occur when a disulfide bond forms between adjacent cysteine residues in a protein and results in a rare eight-membered ring structure. This eight-membered ring has been found to exist in four major conformations in solution, divided between cis and trans conformers. Some selenoenzymes use a special type of VDR in which selenium replaces sulfur, generating a vicinal selenosulfide ring (VSeSR). Here, we provide evidence that this substitution reduces ring strain, resulting in a strong preference for the trans conformation relative to cis in a VSeSR (cis:trans - 9:91). This was determined by using the '?-gauche effect', which makes use of both (1) H-NMR and two-dimensional (2D) NMR techniques for determining the amide bond conformeric ratio. The presence of selenium in a VSeSR also lowers the dihedral strain energy (DSE) of the selenosulfide bond relative to the disulfide bond of VDRs. While cis amide geometry decreases strain on the amide bond, it increases strain on the scissile disulfide bond of the VDR found in thioredoxin reductase from Drosophila melanogaster (DmTR). We hypothesize that the cis conformation of the VDR is the catalytically competent conformer for thiol/disulfide exchange. This hypothesis was investigated by computing the DSE of VDR and VSeSR conformers, the structure of which was determined by 2D NMR spectroscopy and energy minimization. The computed values of the VDR from DmTR are 16.5?kJ/mol DSE and 14.3?kJ/mol for the C+ and T- conformers, respectively, supporting the hypothesis that the enzyme uses the C+ conformer for thiol/disulfide exchange. PMID:24599608

  6. Effect of relative weight group change on NMR spectroscopy derived lipid particle size and concentrations among adolescents

    PubMed Central

    Jago, Russell; Drews, Kimberley L.; Otvos, James D.; Foster, Gary D.; Marcus, Marsh D.; Buse, John B.; Mietus-Snyder, Michele; Willi, Steven M.

    2014-01-01

    Objective To examine whether longitudinal changes in relative weight category (as indicated by change in BMI classification group) were associated with changes in nuclear magnetic resonance (NMR) derived lipoprotein particles among US youth. Study design Secondary analysis of data from clustered RCT. BMI and fasting blood samples were obtained from 2069 participants at the start of 6th grade and end of 8th grade. BMI was categorized as normal weight, overweight or obese at both time points. Lipoprotein particle profiles were measured using NMR spectroscopy at both time points. Regression models were used to examine changes in relative weight group and change in lipoprotein variables. Results 38% of participants changed relative weight category (BMI group) over the 2.5 year study period. Low density lipoprotein cholesterol and non-high density lipoprotein cholesterol decreased almost universally, but more with improved BMI category. There were adverse effects on LDL size and total LDL particles, high density lipoprotein size and cholesterol for participants who remained obese or whose relative weight group worsened. Changes in relative category had no impact on HDL particles. Conclusion Improvement in relative weight group from 6th to 8th grade was associated with favorable changes in non-HDL-C, VLDL size, LDL size, HDL size and LDL particles, but had no effect on HDL particles. Findings indicate that an improvement in relative weight group between 6th and 8th grade had an effect on NMR derived particles sizes and concentrations among a large group of adolescents, which overrepresented low-income minorities. PMID:24508445

  7. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.

    PubMed

    Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira

    2015-05-01

    Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer. PMID:25771526

  8. Simultaneous structural identification of natural products in fractions of crude extract of the rare endangered plant Anoectochilus roxburghii using H NMR/RRLC-MS parallel dynamic spectroscopy.

    PubMed

    Wang, Xiao-Xue; He, Jiu-Ming; Wang, Chun-Lan; Zhang, Rui-Ping; He, Wen-Yi; Guo, Shun-Xing; Sun, Rui-Xiang; Abliz, Zeper

    2011-01-01

    Nuclear magnetic resonance/liquid chromatography-mass spectroscopy parallel dynamic spectroscopy (NMR/LC-MS PDS) is a method aimed at the simultaneous structural identification of natural products in complex mixtures. In this study, the method is illustrated with respect to (1)H NMR and rapid resolution liquid chromatography-mass spectroscopy (RRLC-MS) data, acquired from the crude extract of Anoectochilus roxburghii, which was separated into a series of fractions with the concentration of constituent dynamic variation using reversed-phase preparative chromatography. Through fraction ranges and intensity changing profiles in (1)H NMR/RRLC-MS PDS spectrum, (1)H NMR and the extracted ion chromatogram (XIC) signals deriving from the same individual constituent, were correlated due to the signal amplitude co-variation resulting from the concentration variation of constituents in a series of incompletely separated fractions. 1H NMR/RRLC-MS PDS was then successfully used to identify three types of natural products, including eight flavonoids, four organic acids and p-hydroxybenzaldehyde, five of which have not previously been reported in Anoectochilus roxburghii. In addition, two groups of co-eluted compounds were successfully identified. The results prove that this approach should be of benefit in the unequivocal structural determination of a variety of classes of compounds from extremely complex mixtures, such as herbs and biological samples, which will lead to improved efficiency in the identification of new potential lead compounds. PMID:21731458

  9. Simultaneous Structural Identification of Natural Products in Fractions of Crude Extract of the Rare Endangered Plant Anoectochilus roxburghii Using 1H NMR/RRLC-MS Parallel Dynamic Spectroscopy

    PubMed Central

    Wang, Xiao-Xue; He, Jiu-Ming; Wang, Chun-Lan; Zhang, Rui-Ping; He, Wen-Yi; Guo, Shun-Xing; Sun, Rui-Xiang; Abliz, Zeper

    2011-01-01

    Nuclear magnetic resonance/liquid chromatography-mass spectroscopy parallel dynamic spectroscopy (NMR/LC-MS PDS) is a method aimed at the simultaneous structural identification of natural products in complex mixtures. In this study, the method is illustrated with respect to 1H NMR and rapid resolution liquid chromatography-mass spectroscopy (RRLC-MS) data, acquired from the crude extract of Anoectochilus roxburghii, which was separated into a series of fractions with the concentration of constituent dynamic variation using reversed-phase preparative chromatography. Through fraction ranges and intensity changing profiles in 1H NMR/RRLC–MS PDS spectrum, 1H NMR and the extracted ion chromatogram (XIC) signals deriving from the same individual constituent, were correlated due to the signal amplitude co-variation resulting from the concentration variation of constituents in a series of incompletely separated fractions. 1H NMR/RRLC-MS PDS was then successfully used to identify three types of natural products, including eight flavonoids, four organic acids and p-hydroxybenzaldehyde, five of which have not previously been reported in Anoectochilus roxburghii. In addition, two groups of co-eluted compounds were successfully identified. The results prove that this approach should be of benefit in the unequivocal structural determination of a variety of classes of compounds from extremely complex mixtures, such as herbs and biological samples, which will lead to improved efficiency in the identification of new potential lead compounds. PMID:21731458

  10. Evolution of organic matter during composting of different organic wastes assessed by CPMAS {sup 13}C NMR spectroscopy

    SciTech Connect

    Caricasole, P.; Provenzano, M.R.; Senesi, N.

    2011-03-15

    In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS {sup 13}C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS {sup 13}C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowest increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition.

  11. Characterization of Acetate and Pyruvate Metabolism in Suspension Cultures of Zea mays by 13C NMR Spectroscopy

    PubMed Central

    Ashworth, Dennis J.; Lee, Rino Y.; Adams, Douglas O.

    1987-01-01

    Carbon-13 nuclear magnetic resonance (NMR) spectroscopy has been applied to the direct observation of acetate and pyruvate metabolism in suspension cultures of Zea mays (var Black Mexican Sweet). Growth of the corn cells in the presence of 2 millimolar [2-13C]acetate resulted in a rapid uptake of the substrate from the medium and initial labeling (0-4 hours) of primarily the intracellular glutamate and malate pools. Further metabolism of these intermediates resulted in labeling of glutamine, aspartate, and alanine. With [1-13C]acetate as the substrate very little incorporation into intermediary metabolites was observed in the 13C NMR spectra due to loss of the label as 13CO2. Uptake of [3-13C]pyruvate by the cells was considerably slower than with [2-13C]acetate; however, the labelling patterns were similar with the exception of increased [3-13C] alanine generation with pyruvate as the substrate. Growth of the cells for up to 96 hours with 2 millimolar [3-13C]pyruvate ultimately resulted in labeling of valine, leucine, isoleucine, threonine, and the polyamine putrescine. PMID:16665721

  12. The Effect of Antitumor Glycosides on Glioma Cells and Tissues as Studied by Proton HR-MAS NMR Spectroscopy

    PubMed Central

    García-Álvarez, Isabel; Garrido, Leoncio; Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Fernández-Mayoralas, Alfonso; Campos-Olivas, Ramón

    2013-01-01

    The effect of the treatment with glycolipid derivatives on the metabolic profile of intact glioma cells and tumor tissues, investigated using proton high resolution magic angle spinning (1H HR-MAS) nuclear magnetic resonance (NMR) spectroscopy, is reported here. Two compounds were used, a glycoside and its thioglycoside analogue, both showing anti-proliferative activity on glioma C6 cell cultures; however, only the thioglycoside exhibited antitumor activity in vivo. At the drug concentrations showing anti-proliferative activity in cell culture (20 and 40 µM), significant increases in choline containing metabolites were observed in the 1H NMR spectra of the same intact cells. In vivo experiments in nude mice bearing tumors derived from implanted C6 glioma cells, showed that reduction of tumor volume was associated with significant changes in the metabolic profile of the same intact tumor tissues; and were similar to those observed in cell culture. Specifically, the activity of the compounds is mainly associated with an increase in choline and phosphocholine, in both the cell cultures and tumoral tissues. Taurine, a metabolite that has been considered a biomarker of apoptosis, correlated with the reduction of tumor volume. Thus, the results indicate that the mode of action of the glycoside involves, at least in part, alteration of phospholipid metabolism, resulting in cell death. PMID:24194925

  13. LC-MS- and (1)H NMR Spectroscopy-Guided Identification of Antifungal Diterpenoids from Sagittaria latifolia.

    PubMed

    Ravu, Ranga Rao; Jacob, Melissa R; Jeffries, Cynthia; Tu, Ying; Khan, Shabana I; Agarwal, Ameeta K; Guy, R Kiplin; Walker, Larry A; Clark, Alice M; Li, Xing-Cong

    2015-09-25

    Antifungal screening of small-molecule natural product libraries showed that a column fraction (CF) derived from the plant extract of Sagittaria latifolia was active against the fungal pathogen Cryptococcus neoformans. Dereplication analysis by liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy ((1)H NMR) indicated the presence of new compounds in this CF. Subsequent fractionation of the plant extract resulted in the identification of two new isopimaradiene-type diterpenoids, 1 and 2. The structures of 1 and 2 were determined by chemical methods and spectroscopic analysis as isopimara-7,15-dien-19-ol 19-O-α-l-arabinofuranoside and isopimara-7,15-dien-19-ol 19-O-α-l-(5'-acetoxy)arabinofuranoside, respectively. Compound 1 exhibited IC50 values of 3.7 and 1.8 μg/mL, respectively, against C. neoformans and C. gattii. Its aglycone, isopimara-7,15-dien-19-ol (3), resulting from acid hydrolysis of 1, was also active against the two fungal pathogens, with IC50 values of 9.2 and 6.8 μg/mL, respectively. This study demonstrates that utilization of the combined LC-MS and (1)H NMR analytical tools is an improved chemical screening approach for hit prioritization in natural product drug discovery. PMID:26371504

  14. Complementarity of solvent-free MALDI TOF and solid-state NMR spectroscopy in spectral analysis of polylactides.

    PubMed

    Sroka-Bartnicka, Anna; Ciesielski, Włodzimierz; Libiszowski, Jan; Duda, Andrzej; Sochacki, Marek; Potrzebowski, Marek J

    2010-01-01

    We report systematic studies of solvent-free modification of matrix-assisted laser desorption/ionization time-of-flight (SF MALDI-TOF) mass spectrometry in analysis of synthetic polymers employing solid-state NMR spectroscopy as a supporting technique. In the present work oligomeric (M(n) = 4000 g mol(-1)) poly(L-lactide) (PLLA) was employed as a reference sample. The analyte was embedded into four matrixes commonly used in MALDI-TOF analysis of polymers: 1,8-dihydroxy-9-anthracenone (DT), 2,5-dihydroxybenzoic acid (DHB), 2-(4 hydroxyphenylazo)-benzoic acid (HABA), and trans-3-indoleacrylic acid (IAA). Solid-state NMR measurements clearly showed that the initial crystallinity of PLLA had no influence on quality of SF MALDI-TOF spectra since the crystalline structure of the analyte was not preserved during analyte/matrix grinding. Interestingly, the matrix remained crystalline during the sample's preparation. It was also found that, on the contrary to the dried droplet (DD) method, the SF approach leads to highly resolved mass spectra for a large variety of matrixes. Finally, problems of polymorphism and mechanochemical processes that can occur during the analyte/matrix grinding are briefly discussed. PMID:19957929

  15. Structure of Poly(vinyl alcohol) Cryo-Hydrogels as Studied by Proton Low-Field NMR Spectroscopy

    PubMed Central

    2008-01-01

    The network structure of poly(vinyl alcohol) (PVA) hydrogels obtained by freezing−thawing cycles was investigated by solid-state 1H low-field NMR spectroscopy. By the application of multiple-quantum NMR experiments, we obtain information about the segmental order parameter, which is directly related to the restrictions on chain motion (cross-links) formed upon gelation. These measurements indicate that the network mesh size as well as the relative amount of nonelastic defects (i.e., non-cross-linked chains, dangling chains, loops) decrease with the number of freezing−thawing cycles but are independent of the polymer concentration. The formation of the PVA network is accompanied by an increasing fraction of polymer with fast magnetization decay (∼20 μs). The quantitative study of this rigid phase with a specific refocusing pulse sequence shows that it is composed of a primary crystalline polymer phase (∼5%), which constitutes the main support of the network structure and determines the mesh size, and a secondary population of more imperfect crystallites, which increase the number of elastic chain segments in the polymer gel but do not affect the average network mesh size appreciably. Correspondingly, progressive melting of the secondary crystallites with increasing temperature does not affect the network mesh size but only the amount of network defects, and melting of the main PVA crystallites at ∼80 °C leads to the destruction of the network gel and the formation of an isotropic PVA solution. PMID:19802359

  16. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes.

    PubMed

    Arges, Christopher G; Ramani, Vijay

    2013-02-12

    Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629

  17. Evolution of organic matter during composting of different organic wastes assessed by CPMAS 13C NMR spectroscopy.

    PubMed

    Caricasole, P; Provenzano, M R; Hatcher, P G; Senesi, N

    2011-03-01

    In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS (13)C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS (13)C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowest increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition. PMID:20965714

  18. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy.

    PubMed

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2016-04-01

    Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy. PMID:26864750

  19. Structural investigations of Pu{sup III} phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    SciTech Connect

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J.M.; Somers, Joseph

    2015-10-15

    PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis of room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.

  20. Freezing of Dynamics of a Methyl Group in a Protein Hydrophobic Core at Cryogenic Temperatures by Deuteron NMR Spectroscopy

    SciTech Connect

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Ford, Joseph J.; Lipton, Andrew S.

    2010-03-31

    Proteins undergo a number of changes when their temperature is dropped from the physiological range to much lower values. One of the most well-known dynamical changes undergone by proteins in a solid state is a so-called protein glass-transition, which is a dynamic transition occurring at about 200-230K leading to a loss of biological activity.1,2 X-ray diffraction, neutron scattering studies, and dielectric spectroscopy, as well as evidence from NMR relaxation measurements, indicate freezing of slow collective modes of motion below the glass transition temperature.3-8 Various arguments have been presented that connect the transition to solvent participation.1,4,8-10 In addition to the solvent-related modes that are frozen below the glass-transition temperature, there are anharmonic motions at temperatures below 200K which are likely to be dominated by methyl group dynamics down to about 100K.2,5,7 Recent neutron-scattering and NMR studies emphasize the role of these modes in low temperature dynamics. 2,5,7,11,12 One of the latest works on the subject by Bajaj et al.11 has reported a structural transition associated with dynamic processes in a solvent-free polypeptide. Thus, protein dynamics at low temperatures are complex and more studies are required to discern their pattern.