Science.gov

Sample records for h1n1 virus replication

  1. 2009 pandemic H1N1 influenza virus replicates in human lung tissues

    PubMed Central

    Zhang, Jinxia; Zhang, Zengfeng; Fan, Xiaohui; Liu, Yuansheng; Wang, Jia; Zheng, Zuoyi; Chen, Rirong; Wang, Pui; Song, Wenjun; Chen, Honglin; Guan, Yi

    2009-01-01

    Replication activity of 2009 pandemic H1N1 influenza virus in human lung cells was evaluated in this study. Twenty-two surgically removed human lung tissue samples were infected ex vivo with pandemic H1N1, A/California/04/2009, seasonal human H1N1 virus, A/ST/92/2009, or a highly pathogenic H5N1 virus, A/Vietnam/1194/04. Examination of nucleoprotein (NP) protein expression and vRNA replication in infected human lung tissues showed that while CA/04 replication varied between tissue samples, overall, it replicated more efficiently than seasonal H1N1 but less efficiently than H5N1 virus. Double immunostaining for viral antigens and cellular markers indicated that CA/04 replicates in type II alveolar epithelial cells. PMID:20370480

  2. Infectious Progeny of 2009 A (H1N1) Influenza Virus Replicated in and Released from Human Neutrophils.

    PubMed

    Zhang, Zhang; Huang, Tao; Yu, Feiyuan; Liu, Xingmu; Zhao, Conghui; Chen, Xueling; Kelvin, David J; Gu, Jiang

    2015-01-01

    Various reports have indicated that a number of viruses could infect neutrophils, but the multiplication of viruses in neutrophils was abortive. Based on our previous finding that avian influenza viral RNA and proteins were present in the nucleus of infected human neutrophils in vivo, we investigated the possibility of 2009 A (H1N1) influenza viral synthesis in infected neutrophils and possible release of infectious progeny from host cells. In this study we found that human neutrophils in vitro without detectable level of sialic acid expression could be infected by this virus strain. We also show that the infected neutrophils can not only synthesize 2009 A (H1N1) viral mRNA and proteins, but also produce infectious progeny. These findings suggest that infectious progeny of 2009 A (H1N1) influenza virus could be replicated in and released from human neutrophils with possible clinical implications. PMID:26639836

  3. Infectious Progeny of 2009 A (H1N1) Influenza Virus Replicated in and Released from Human Neutrophils

    PubMed Central

    Zhang, Zhang; Huang, Tao; Yu, Feiyuan; Liu, Xingmu; Zhao, Conghui; Chen, Xueling; Kelvin, David J.; Gu, Jiang

    2015-01-01

    Various reports have indicated that a number of viruses could infect neutrophils, but the multiplication of viruses in neutrophils was abortive. Based on our previous finding that avian influenza viral RNA and proteins were present in the nucleus of infected human neutrophils in vivo, we investigated the possibility of 2009 A (H1N1) influenza viral synthesis in infected neutrophils and possible release of infectious progeny from host cells. In this study we found that human neutrophils in vitro without detectable level of sialic acid expression could be infected by this virus strain. We also show that the infected neutrophils can not only synthesize 2009 A (H1N1) viral mRNA and proteins, but also produce infectious progeny. These findings suggest that infectious progeny of 2009 A (H1N1) influenza virus could be replicated in and released from human neutrophils with possible clinical implications. PMID:26639836

  4. Pandemic Influenza A (H1N1) Virus Infection Increases Apoptosis and HIV-1 Replication in HIV-1 Infected Jurkat Cells

    PubMed Central

    Wang, Xue; Tan, Jiying; Biswas, Santanu; Zhao, Jiangqin; Devadas, Krishnakumar; Ye, Zhiping; Hewlett, Indira

    2016-01-01

    Influenza virus infection has a significant impact on public health, since it is a major cause of morbidity and mortality. It is not well-known whether influenza virus infection affects cell death and human immunodeficiency virus (HIV)-1 replication in HIV-1-infected patients. Using a lymphoma cell line, Jurkat, we examined the in vitro effects of pandemic influenza A (H1N1) virus (pH1N1) infection on cell death and HIV-1 RNA production in infected cells. We found that pH1N1 infection increased apoptotic cell death through Fas and Bax-mediated pathways in HIV-1-infected Jurkat cells. Infection with pH1N1 virus could promote HIV-1 RNA production by activating host transcription factors including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), nuclear factor of activated T-cells (NFAT) and activator protein 1 (AP-1) through mitogen-activated protein kinases (MAPK) pathways and T-cell antigen receptor (TCR)-related pathways. The replication of HIV-1 latent infection could be reactivated by pH1N1 infection through TCR and apoptotic pathways. These data indicate that HIV-1 replication can be activated by pH1N1 virus in HIV-1-infected cells resulting in induction of cell death through apoptotic pathways. PMID:26848681

  5. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    NASA Astrophysics Data System (ADS)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  6. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    PubMed Central

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-01-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses. PMID:27080193

  7. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses.

    PubMed

    Simon, Philippe F; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M; Kobasa, Darwyn; Beauchemin, Catherine A A

    2016-01-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain's generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses. PMID:27080193

  8. Evaluation of replication, immunogenicity and protective efficacy of a live attenuated cold-adapted pandemic H1N1 influenza virus vaccine in non-human primates

    PubMed Central

    Boonnak, Kobporn; Paskel, Myeisha; Matsuoka, Yumiko; Vogel, Leatrice; Subbarao, Kanta

    2012-01-01

    We studied the replication of influenza A/California/07/09 (H1N1) wild type (CA09wt) virus in two non-human primate species and used one of these models to evaluate the immunogenicity and protective efficacy of a live attenuated cold-adapted vaccine, which contains the hemagglutinin and neuraminidase from the H1N1 wild type virus and six internal protein gene segments of the A/Ann Arbor/6/60 cold-adapted (ca) master donor virus. We infected African green monkeys (AGMs) and rhesus macaques with 2 × 106 TCID50 of CA09wt and CA09ca influenza viruses. The virus replicated in the upper respiratory tract of all animals but the titers in upper respiratory tract tissues of rhesus macaques were significant higher than in AGMs (mean peak titers 104.5 TCID50/g and 102.0 TCID50/g on days 4 and 2 post-infection, respectively; p<0.01). Virus replication was observed in the lungs of all rhesus macaques (102.0–105.4TCID50/g) whereas only 2 out of 4 AGMs had virus recovered from the lungs (102.5– 103.5 TCID50/g). The CA09ca vaccine virus was attenuated and highly restricted in replication in both AGMs and rhesus macaques. We evaluated the immunogenicity and protective efficacy of the CA09ca vaccine in rhesus macaques because CA09wt virus replicated more efficiently in this species. One or two doses of vaccine were administered intranasally and intratracheally to rhesus macaques. For the two-dose group, the vaccine was administered 4-weeks apart. Immunogenicity was assessed by measuring hemagglutination-inhibiting (HAI) antibodies in the serum and specific IgA antibodies to CA09wt virus in the nasal wash. One or two doses of the vaccine elicited a significant rise in HAI titers (range 40–320). Two doses of CA09ca elicited higher pH1N1-specific IgA titers than in the mock-immunized group (p<0.01). Vaccine efficacy was assessed by comparing titers of CA09wt challenge virus in the respiratory tract of mock immunized and CA09ca vaccinated monkeys. Significantly lower virus titers

  9. Replication and transcription activities of ribonucleoprotein complexes reconstituted from avian H5N1, H1N1pdm09 and H3N2 influenza A viruses.

    PubMed

    Ngai, Karry L K; Chan, Martin C W; Chan, Paul K S

    2013-01-01

    Avian influenza viruses pose a serious pandemic threat to humans. Better knowledge on cross-species adaptation is important. This study examined the replication and transcription efficiency of ribonucleoprotein complexes reconstituted by plasmid co-transfection between H5N1, H1N1pdm09 and H3N2 influenza A viruses, and to identify mutations in the RNA polymerase subunit that affect human adaptation. Viral RNA polymerase subunits PB1, PB2, PA and NP derived from influenza viruses were co-expressed with pPolI-vNP-Luc in human cells, and with its function evaluated by luciferase reporter assay. A quantitative RT-PCR was used to measure vRNA, cRNA, and mRNA levels for assessing the replication and transcription efficiency. Mutations in polymerase subunit were created to identify signature of increased human adaptability. H5N1 ribonucleoprotein complexes incorporated with PB2 derived from H1N1pdm09 and H3N2 viruses increased the polymerase activity in human cells. Furthermore, single amino acid substitutions at PB2 of H5N1 could affect polymerase activity in a temperature-dependent manner. By using a highly sensitive quantitative reverse transcription-polymerase chain reaction, an obvious enhancement in replication and transcription activities of ribonucleoproteins was observed by the introduction of lysine at residue 627 in the H5N1 PB2 subunit. Although less strongly in polymerase activity, E158G mutation appeared to alter the accumulation of H5N1 RNA levels in a temperature-dependent manner, suggesting a temperature-dependent mechanism in regulating transcription and replication exists. H5N1 viruses can adapt to humans either by acquisition of PB2 from circulating human-adapted viruses through reassortment, or by mutations at critical sites in PB2. This information may help to predict the pandemic potential of newly emerged influenza strains, and provide a scientific basis for stepping up surveillance measures and vaccine production. PMID:23750226

  10. Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells.

    PubMed

    Wörmann, Xenia; Lesch, Markus; Welke, Robert-William; Okonechnikov, Konstantin; Abdurishid, Mirshat; Sieben, Christian; Geissner, Andreas; Brinkmann, Volker; Kastner, Markus; Karner, Andreas; Zhu, Rong; Hinterdorfer, Peter; Anish, Chakkumkal; Seeberger, Peter H; Herrmann, Andreas; Meyer, Thomas F; Karlas, Alexander

    2016-05-01

    The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less pathogenic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epithelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput sequencing of viral gene segments identified five dominant mutations, whose contribution to the enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two mutations within the hemagglutinin (HA) gene segment (HA1 D130E, HA2 I91L), near the receptor binding site and the stem domain. The adapted virus also replicated more efficiently in mice in vivo. Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of high titer cell culture strains for vaccine production. PMID:26914510

  11. Pandemic Swine-Origin H1N1 Influenza Virus Replicates to Higher Levels and Induces More Fever and Acute Inflammatory Cytokines in Cynomolgus versus Rhesus Monkeys and Can Replicate in Common Marmosets

    PubMed Central

    Mooij, Petra; Koopman, Gerrit; Mortier, Daniëlla; van Heteren, Melanie; Oostermeijer, Herman; Fagrouch, Zahra; de Laat, Rudy; Kobinger, Gary; Li, Yan; Remarque, Edmond J.; Kondova, Ivanela; Verschoor, Ernst J.; Bogers, Willy M. J. M.

    2015-01-01

    The close immunological and physiological resemblance with humans makes non-human primates a valuable model for studying influenza virus pathogenesis and immunity and vaccine efficacy against infection. Although both cynomolgus and rhesus macaques are frequently used in influenza virus research, a direct comparison of susceptibility to infection and disease has not yet been performed. In the current study a head-to-head comparison was made between these species, by using a recently described swine-origin pandemic H1N1 strain, A/Mexico/InDRE4487/2009. In comparison to rhesus macaques, cynomolgus macaques developed significantly higher levels of virus replication in the upper airways and in the lungs, involving both peak level and duration of virus production, as well as higher increases in body temperature. In contrast, clinical symptoms, including respiratory distress, were more easily observed in rhesus macaques. Expression of sialyl-α-2,6-Gal saccharides, the main receptor for human influenza A viruses, was 50 to 73 times more abundant in trachea and bronchus of cynomolgus macaques relative to rhesus macaques. The study also shows that common marmosets, a New World non-human primate species, are susceptible to infection with pandemic H1N1. The study results favor the cynomolgus macaque as model for pandemic H1N1 influenza virus research because of the more uniform and high levels of virus replication, as well as temperature increases, which may be due to a more abundant expression of the main human influenza virus receptor in the trachea and bronchi. PMID:25946071

  12. Prevention of influenza virus shedding and protection from lethal H1N1 challenge using a consensus 2009 H1N1 HA and NA adenovirus vector vaccine.

    PubMed

    Jones, Frank R; Gabitzsch, Elizabeth S; Xu, Younong; Balint, Joseph P; Borisevich, Viktoriya; Smith, Jennifer; Smith, Jeanon; Peng, Bi-Hung; Walker, Aida; Salazar, Magda; Paessler, Slobodan

    2011-09-16

    Vaccines against emerging pathogens such as the 2009 H1N1 pandemic virus can benefit from current technologies such as rapid genomic sequencing to construct the most biologically relevant vaccine. A novel platform (Ad5 [E1-, E2b-]) has been utilized to induce immune responses to various antigenic targets. We employed this vector platform to express hemagglutinin (HA) and neuraminidase (NA) genes from 2009 H1N1 pandemic viruses. Inserts were consensuses sequences designed from viral isolate sequences and the vaccine was rapidly constructed and produced. Vaccination induced H1N1 immune responses in mice, which afforded protection from lethal virus challenge. In ferrets, vaccination protected from disease development and significantly reduced viral titers in nasal washes. H1N1 cell mediated immunity as well as antibody induction correlated with the prevention of disease symptoms and reduction of virus replication. The Ad5 [E1-, E2b-] should be evaluated for the rapid development of effective vaccines against infectious diseases. PMID:21821082

  13. Chloroquine enhances replication of influenza A virus A/WSN/33 (H1N1) in dose-, time-, and MOI-dependent manners in human lung epithelial cells A549.

    PubMed

    Wu, Liqi; Dai, Jianping; Zhao, Xiangfeng; Chen, Youying; Wang, Gefei; Li, Kangsheng

    2015-07-01

    Anti-malaria drug, chloroquine, has been reported to be effective against influenza A virus (IAV) in vitro and used in in-vivo experiments and clinical trial for prevention or treatment of influenza. In this study, it has been shown by immunofluorescence, hemagglutination, and plaque assays that chloroquine enhanced A/WSN/33 (H1N1) replication with pronounced cytopathic effect in dose-, time-, and MOI-dependent manners in human lung epithelial cells A549. Time-of-addition assay showed that inhibitory effect on virus replication by chloroquine pre-treatment was indistinctive, and virus productions were enhanced when the drug was applied after viral adsorption. The effectiveness of chloroquine as an anti-influenza drug is questioned, and caution in its use is recommended. PMID:25715935

  14. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    PubMed

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. PMID:27321744

  15. Characterization of H1N1 swine influenza viruses circulating in Canadian pigs in 2009

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2009 pandemic H1N1 (pH1N1), of apparent swine origin, may have evolved in pigs unnoticed because of insufficient surveillance. Consequently, the need for surveillance of influenza viruses circulating in pigs has received added attention. In this study we characterized H1N1 viruses isolated from ...

  16. Influenza A Pandemic (H1N1) 2009 Virus Infection in Domestic Cat

    PubMed Central

    Strait, Erin; Jergens, Albert; Trujillo, Jessie; Harmon, Karen; Koster, Leo; Jenkins-Moore, Melinda; Killian, Mary; Swenson, Sabrina; Bender, Holly; Waller, Ken; Miles, Kristina; Pearce, Tracy; Yoon, Kyoung-Jin; Nara, Peter

    2010-01-01

    Influenza A pandemic (H1N1) 2009 virus continues to rapidly spread worldwide. In 2009, pandemic (H1N1) 2009 infection in a domestic cat from Iowa was diagnosed by a novel PCR assay that distinguishes between Eurasian and North American pandemic (H1N1) 2009 virus matrix genes. Human-to-cat transmission is presumed. PMID:20202440

  17. Susceptibility of poultry to pandemic (H1N1) 2009 virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beginning in April 2009, cases of acute respiratory disease were reported in humans caused by a novel H1N1 influenza A virus in Mexico. The causative agent was complex reassortant influenza A virus with gene segments from North American classic H1N1 swine viruses, North American avian viruses, huma...

  18. Isolation and characterization of pandemic H1N1 influenza viruses in pigs in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza A virus (IAV) infections are endemic diseases in pork producing countries around the world. The emergence of the pandemic 2009 human H1N1 influenza A virus (pH1N1) raised questions about the occurrence of this virus in Brazilian swine populations. During a 2009-2010 swine influenza virus r...

  19. The PB1 segment of an influenza A virus H1N1 2009pdm isolate enhances the replication efficiency of specific influenza vaccine strains in cell culture and embryonated eggs.

    PubMed

    Mostafa, Ahmed; Kanrai, Pumaree; Ziebuhr, John; Pleschka, Stephan

    2016-03-01

    Influenza vaccine strains (IVSs) contain the haemagglutinin (HA) and neuraminidase (NA) genome segments of relevant circulating strains in the genetic background of influenza A/PR/8/1934 virus (PR8). Previous work has shown that the nature of the PB1 segment may be a limiting factor for the efficient production of IVSs. Here, we showed that the PB1 segment (PB1Gi) from the 2009 pandemic influenza A virus (IAV) A/Giessen/06/2009 (Gi wt, H1N1pdm) may help to resolve (some of) these limitations. We produced a set of recombinant PR8-derived viruses that contained (i) the HA and NA segments from representative IAV strains (H3N2, H5N1, H7N9, H9N2); (ii) the PB1 segment from PR8 or Gi wt, respectively; and (iii) the remaining five genome segments from PR8. Viruses containing the PB1Gi segment, together with the heterologous HA/NA segments and five PR8 segments (5+2+1), replicated to higher titres compared with their 6+2 counterparts containing six PR8 segments and the equivalent heterologous HA/NA segments. Compared with PB1PR8-containing IVSs, viruses with the PB1Gi segment replicated to higher or similar titres in both cell culture and embryonated eggs, most profoundly IVSs of the H5N1 and H7N9 subtype, which are known to grow poorly in these systems. IVSs containing either the PB1Gi or the cognate PB1 segment of the respective specific HA/NA donor strain showed enhanced or similar virus replication levels. This study suggests that substitution of PB1PR8 with the PB1Gi segment may greatly improve the large-scale production of PR8-derived IVSs, especially of those known to replicate poorly in vitro. PMID:26743314

  20. Anti-Human H1N1pdm09 and swine H1N1 Virus Antibodies among Swine Workers in Guangdong Province, China

    PubMed Central

    Wu, Jie; Yi, Lina; Ni, Hanzhong; Zou, Lirong; Zhang, Hongbin; Zeng, Xianqiao; Liang, Lijun; Li, Laiqing; Zhong, Haojie; Zhang, Xin; Lin, Jin-yan; Ke, Changwen

    2015-01-01

    To assess the potential transmission for zoonotic influenza, sero-antibodies against two kinds of influenza viruses—classical swine H1N1 and human H1N1pdm09 virus were detected in persons whose profession involved contact with swine in Guangdong province, China. Compared to the non-exposed control group, a significantly higher proportion of subjects with occupational contact to pigs exhibited positive seroreaction against the classical H1N1 SIV. Participants aged 26–50 years were at high risk of classic swine H1N1 infections. Seropositive rate to 2009 pandemic H1N1 virus among swine workers was similar with controls. The major impact of age was apparent for younger populations. Our present study has documented evidence for swine influenza virus infection among persons with occupational swine exposures. The differences of seroreactivity for the two tested influenza subtypes emphasize the necessity of regular surveillance both in pigs and human. PMID:26205221

  1. Absence of Pandemic H1N1 Influenza A Virus in Fresh Pork

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pigs experimentally infected with pandemic 2009 H1N1 influenza A virus developed respiratory disease; however, there was no evidence for systemic disease to suggest that pork from pigs infected with H1N1 influenza would contain infectious virus. These findings support the WHO recommendation that po...

  2. [Effect of Yinghua Pinggan granule against influenza A/H1N1 virus in vivo].

    PubMed

    Peng, Xue-qian; He, Yu; Zhou, Hui-fen; Zhang, Yu-yan; Yang, Jie-hong; Chen, Jun-kui; Lu, Yi-yu; Wan, Hai-tong

    2015-10-01

    To study the effect of Yinghua Pinggan granule (YHPG) against influenza A/H1N1 virus in vivo and on the immunologic function of infected mice. The intranasal influenza virus infection was adopted in ICR mouse to establish the influenza virus pneumonia model. At the 3rd and 7th day after the infection, the lung index and pathologic changes in lung tissues of mice were detected. Realtime PCR and flow cytometry were employed to observe the virus load in lung tissues and the levels of CD4+, CD8+, and CD4+/CD8+ in peripheral blood. The result showed that at the 3rd and 7th day after the infection, YHPG (15, 30 g x kg(-1)) can significant decrease in the lung index and virus load in lung tissues of mice infected with influenza virus, alleviate the pathologic changes in lung tissues, significantly increase the levels of CD4+ and CD4+/CD8+ ratio and reduce the levels of CD8+ in whole blood. This indicated that YHPG can inhibit the influenza virus replication, alleviate pulmonary damage and adjust the weak immunologic function of infected mice, with a certain therapeutic effect on mice infected by H1N1 virus in vivo. PMID:26975112

  3. Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus

    PubMed Central

    Qiao, Chuanling; Liu, Qinfang; Bawa, Bhupinder; Shen, Huigang; Qi, Wenbao; Chen, Ying; Mok, Chris Ka Pun; García-Sastre, Adolfo; Richt, Jürgen A.

    2012-01-01

    Both H9N2 avian influenza and 2009 pandemic H1N1 viruses (pH1N1) are able to infect humans and swine, which has raised concerns that novel reassortant H9 viruses with pH1N1 genes might be generated in these hosts by reassortment. Although previous studies have demonstrated that reassortant H9 viruses with pH1N1 genes show increased virulence in mice and transmissibility in ferrets, the virulence and transmissibility of reassortant H9 viruses in natural hosts such as chickens and swine remain unknown. This study generated two reassortant H9 viruses (H9N2/CA09 and H9N1/CA09) in the background of the pH1N1 A/California/04/2009 (CA09) virus by replacing either both the haemagglutinin (HA) and neuraminidase (NA) genes or only the HA gene with the respective genes from the A/quail/Hong Kong/G1/1997 (H9N2) virus and evaluated their replication, pathogenicity and transmission in chickens and pigs compared with the parental viruses. Chickens that were infected with the parental H9N2 and reassortant H9 viruses seroconverted. The parental H9N2 and reassortant H9N2/CA09 viruses were transmitted to sentinel chickens, but H9N1/CA09 virus was not. The parental H9N2 replicated poorly and was not transmitted in pigs, whereas both H9N2/CA09 and H9N1/CA09 viruses replicated and were transmitted efficiently in pigs, similar to the pH1N1 virus. These results demonstrated that reassortant H9 viruses with pH1N1 genes show enhanced replication and transmissibility in pigs compared with the parental H9N2 virus, indicating that they may pose a threat for humans if such reassortants arise in swine. PMID:22875253

  4. Phenotypic characteristics of novel swine‐origin influenza A/California/07/2009 (H1N1) virus

    PubMed Central

    Kiseleva, Irina; Larionova, Natalie; Kuznetsov, Vasily; Rudenko, Larisa

    2009-01-01

    Background  The 2009 novel A(H1N1) virus appears to be of swine origin. This strain causing the current outbreaks is a new virus that has not been seen previously either in humans or animals. We have previously reported that viruses causing pandemics or large outbreaks were able to grow at a temperature above the normal physiological range (temperature resistance, non‐ts phenotype), were found to be inhibitor resistant and restricted in replication at suboptimal temperature (sensitivity to grow at low temperature, non‐ca phenotype). In this study, we performed phenotypic analysis of novel A(H1N1) virus to evaluate its pandemic potential and its suitability for use in developing a live attenuated influenza vaccine. Objectives  The goal of this study is to identify phenotypic properties of novel A(H1N1) influenza virus. Methods  A/California/07/2009 (H1N1) swine‐origin influenza virus was studied in comparison with some influenza A viruses isolated in different years with respect to their ability to grow at non‐permissive temperatures. We also analyzed its sensitivity to gamma‐inhibitors of animal sera and its ability to agglutinate chicken, human and guinea pig erythrocytes. Results  Swine‐origin A/California/07/2009 (H1N1) virus was found to be non‐ts and inhibitor resistant and was not able to grow at 25°C (non‐ca). We did not find any difference in the ability of the hemagglutinin of A/California/07/2009 (H1N1) virus to bind to erythrocytes of different origin. Conclusion  The novel swine‐origin A(H1N1) virus displays a phenotype typical of the past pandemic and epidemic viruses. This finding suggests that this virus might be a good wild type parental prototype for live vaccine for potential use for controlling pandemic influenza. PMID:20021501

  5. Susceptibility of turkeys to pandemic H1N1 virus by reproductive tract insemination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beginning in April 2009, cases of acute respiratory disease were reported in humans caused by a novel H1N1 influenza A virus (pH1N1) in Mexico which has since spread globally in the human population and been declared a pandemic. Initial studies using intranasal route of inoculation failed to produc...

  6. Akt inhibitor MK2206 prevents influenza pH1N1 virus infection in vitro.

    PubMed

    Denisova, Oxana V; Söderholm, Sandra; Virtanen, Salla; Von Schantz, Carina; Bychkov, Dmitrii; Vashchinkina, Elena; Desloovere, Jens; Tynell, Janne; Ikonen, Niina; Theisen, Linda L; Nyman, Tuula A; Matikainen, Sampsa; Kallioniemi, Olli; Julkunen, Ilkka; Muller, Claude P; Saelens, Xavier; Verkhusha, Vladislav V; Kainov, Denis E

    2014-07-01

    The influenza pH1N1 virus caused a global flu pandemic in 2009 and continues manifestation as a seasonal virus. Better understanding of the virus-host cell interaction could result in development of better prevention and treatment options. Here we show that the Akt inhibitor MK2206 blocks influenza pH1N1 virus infection in vitro. In particular, at noncytotoxic concentrations, MK2206 alters Akt signaling and inhibits endocytic uptake of the virus. Interestingly, MK2206 is unable to inhibit H3N2, H7N9, and H5N1 viruses, indicating that pH1N1 evolved specific requirements for efficient infection. Thus, Akt signaling could be exploited further for development of better therapeutics against pH1N1 virus. PMID:24752266

  7. Akt Inhibitor MK2206 Prevents Influenza pH1N1 Virus Infection In Vitro

    PubMed Central

    Denisova, Oxana V.; Söderholm, Sandra; Virtanen, Salla; Von Schantz, Carina; Bychkov, Dmitrii; Vashchinkina, Elena; Desloovere, Jens; Tynell, Janne; Ikonen, Niina; Theisen, Linda L.; Nyman, Tuula A.; Matikainen, Sampsa; Kallioniemi, Olli; Julkunen, Ilkka; Muller, Claude P.; Saelens, Xavier; Verkhusha, Vladislav V.

    2014-01-01

    The influenza pH1N1 virus caused a global flu pandemic in 2009 and continues manifestation as a seasonal virus. Better understanding of the virus-host cell interaction could result in development of better prevention and treatment options. Here we show that the Akt inhibitor MK2206 blocks influenza pH1N1 virus infection in vitro. In particular, at noncytotoxic concentrations, MK2206 alters Akt signaling and inhibits endocytic uptake of the virus. Interestingly, MK2206 is unable to inhibit H3N2, H7N9, and H5N1 viruses, indicating that pH1N1 evolved specific requirements for efficient infection. Thus, Akt signaling could be exploited further for development of better therapeutics against pH1N1 virus. PMID:24752266

  8. Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus

    PubMed Central

    Liu, Mi; Zhao, Xiang; Hua, Sha; Du, Xiangjun; Peng, Yousong; Li, Xiyan; Lan, Yu; Wang, Dayan; Wu, Aiping; Shu, Yuelong; Jiang, Taijiao

    2015-01-01

    The influenza A (H1N1) virus causes seasonal epidemics that result in severe illnesses and deaths almost every year. A deep understanding of the antigenic patterns and evolution of human influenza A (H1N1) virus is extremely important for its effective surveillance and prevention. Through development of antigenicity inference method for human influenza A (H1N1), named PREDAC-H1, we systematically mapped the antigenic patterns and evolution of the human influenza A (H1N1) virus. Eight dominant antigenic clusters have been inferred for seasonal H1N1 viruses since 1977, which demonstrated sequential replacements over time with a similar pattern in Asia, Europe and North America. Among them, six clusters emerged first in Asia. As for China, three of the eight antigenic clusters were detected in South China earlier than in North China, indicating the leading role of South China in H1N1 transmission. The comprehensive view of the antigenic evolution of human influenza A (H1N1) virus can help formulate better strategy for its prevention and control. PMID:26412348

  9. Serological Evidence of Pandemic H1N1 Influenza Virus Infections in Greek Swine.

    PubMed

    Kyriakis, C S; Papatsiros, V G; Athanasiou, L V; Valiakos, G; Brown, I H; Simon, G; Van Reeth, K; Tsiodras, S; Spyrou, V; Billinis, C

    2016-08-01

    The introduction of the 2009 pandemic H1N1 (pH1N1) influenza virus in pigs changed the epidemiology of influenza A viruses (IAVs) in swine in Europe and the rest of the world. Previously, three IAV subtypes were found in the European pig population: an avian-like H1N1 and two reassortant H1N2 and H3N2 viruses with human-origin haemagglutinin (HA) and neuraminidase proteins and internal genes of avian decent. These viruses pose antigenically distinct HAs, which allow the retrospective diagnosis of infection in serological investigations. However, cross-reactions between the HA of pH1N1 and the HAs of the other circulating H1 IAVs complicate serological diagnosis. The prevalence of IAVs in Greek swine has been poorly investigated. In this study, we examined and compared haemagglutination inhibition (HI) antibody titres against previously established IAVs and pH1N1 in 908 swine sera from 88 herds, collected before and after the 2009 pandemic. While we confirmed the historic presence of the three IAVs established in European swine, we also found that 4% of the pig sera examined after 2009 had HI antibodies only against the pH1N1 virus. Our results indicate that pH1N1 is circulating in Greek pigs and stress out the importance of a vigorous virological surveillance programme. PMID:26477456

  10. Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus

    SciTech Connect

    Xu, Rui; Ekiert, Damian C.; Krause, Jens C.; Hai, Rong; Crowe, Jr., James E.; Wilson, Ian A.

    2010-05-25

    The 2009 H1N1 swine flu is the first influenza pandemic in decades. The crystal structure of the hemagglutinin from the A/California/04/2009 H1N1 virus shows that its antigenic structure, particularly within the Sa antigenic site, is extremely similar to those of human H1N1 viruses circulating early in the 20th century. The cocrystal structure of the 1918 hemagglutinin with 2D1, an antibody from a survivor of the 1918 Spanish flu that neutralizes both 1918 and 2009 H1N1 viruses, reveals an epitope that is conserved in both pandemic viruses. Thus, antigenic similarity between the 2009 and 1918-like viruses provides an explanation for the age-related immunity to the current influenza pandemic.

  11. PLC-γ1 is involved in the inflammatory response induced by influenza A virus H1N1 infection.

    PubMed

    Zhu, Liqian; Yuan, Chen; Ding, Xiuyan; Xu, Shuai; Yang, Jiayun; Liang, Yuying; Zhu, Qiyun

    2016-09-01

    We have previously reported that phosphoinositide-specific phospholipase γ1 (PLC-γ1) signaling is activated by influenza virus H1N1 infection and mediates efficient viral entry in human epithelial cells. In this study, we show that H1N1 also activates PLCγ-1 signaling in human promonocytic cell line -derived macrophages. Surprisingly, the activated PLCγ-1 signaling is not important for viral replication in macrophages, but is involved in the virus-induced inflammatory responses. PLC-γ1-specific inhibitor U73122 strongly inhibits the H1N1 virus-induced NF-κB signaling, blocking the up-regulation of TNF-α, IL-6, MIP-1α, and reactive oxidative species. In a positive feedback loop, IL-1β and TNF-α activate the PLCγ-1 signaling in both epithelial and macrophage cell lines. In summary, we have shown for the first time that the PLCγ-1 signaling plays an important role in the H1N1-induced inflammatory responses. Our study suggests that targeting the PLCγ-1 signaling is a potential antiviral therapy against H1N1 by inhibiting both viral replication and excessive inflammation. PMID:27310357

  12. Effectiveness of seasonal influenza vaccine against pandemic (H1N1) 2009 virus, Australia, 2010.

    PubMed

    Fielding, James E; Grant, Kristina A; Garcia, Katherine; Kelly, Heath A

    2011-07-01

    To estimate effectiveness of seasonal trivalent and monovalent influenza vaccines against pandemic influenza A (H1N1) 2009 virus, we conducted a test-negative case-control study in Victoria, Australia, in 2010. Patients seen for influenza-like illness by general practitioners in a sentinel surveillance network during 2010 were tested for influenza; vaccination status was recorded. Case-patients had positive PCRs for pandemic (H1N1) 2009 virus, and controls had negative influenza test results. Of 319 eligible patients, test results for 139 (44%) were pandemic (H1N1) 2009 virus positive. Adjusted effectiveness of seasonal vaccine against pandemic (H1N1) 2009 virus was 79% (95% confidence interval 33%-93%); effectiveness of monovalent vaccine was 47% and not statistically significant. Vaccine effectiveness was higher among adults. Despite some limitations, this study indicates that the first seasonal trivalent influenza vaccine to include the pandemic (H1N1) 2009 virus strain provided significant protection against laboratory-confirmed pandemic (H1N1) 2009 infection. PMID:21762570

  13. Transmission of influenza A(H1N1) 2009 pandemic viruses in Australian swine

    PubMed Central

    Deng, Yi‐Mo; Iannello, Pina; Smith, Ina; Watson, James; Barr, Ian G.; Daniels, Peter; Komadina, Naomi; Harrower, Bruce; Wong, Frank Y. K.

    2012-01-01

    Please cite this paper as: Deng et al. (2012). Transmission of influenza A(H1N1) 2009 pandemic viruses in Australian swine. Influenza and Other Respiratory Viruses 6(3), e42–e47. Background  Swine have receptors for both human and avian influenza viruses and are a natural host for influenza A viruses. The 2009 influenza A(H1N1) pandemic (H1N1pdm) virus that was derived from avian, human and swine influenza viruses has infected pigs in various countries. Objectives  To investigate the relationship between the H1N1pdm viruses isolated from piggery outbreaks in Australia and human samples associated with one of the outbreaks by phylogenetic analysis, and to determine whether there was any reassortment event occurring during the human‐pig interspecies transmission. Methods  Real‐time RT‐PCR and full genome sequencing were carried out on RNA isolated from nasal swabs and/or virus cultures. Phylogenetic analysis was performed using the Geneious package. Results  The influenza H1N1pdm outbreaks were detected in three pig farms located in three different states in Australia. Further analysis of the Queensland outbreak led to the identification of two distinct virus strains in the pigs. Two staff working in the same piggery were also infected with the same two strains found in the pigs. Full genome sequence analysis on the viruses isolated from pigs and humans did not identify any reassortment of these H1N1pdm viruses with seasonal or avian influenza A viruses. Conclusions  This is the first report of swine infected with influenza in Australia and marked the end of the influenza‐free era for the Australian swine industry. Although no reassortment was detected in these cases, the ability of these viruses to cross between pigs and humans highlights the importance of monitoring swine for novel influenza infections. PMID:22336333

  14. Exhaled Aerosol Transmission of Pandemic and Seasonal H1N1 Influenza Viruses in the Ferret

    PubMed Central

    Koster, Frederick; Gouveia, Kristine; Zhou, Yue; Lowery, Kristin; Russell, Robert; MacInnes, Heather; Pollock, Zemmie; Layton, R. Colby; Cromwell, Jennifer; Toleno, Denise; Pyle, John; Zubelewicz, Michael; Harrod, Kevin; Sampath, Rangarajan; Hofstadler, Steven; Gao, Peng; Liu, Yushi; Cheng, Yung-Sung

    2012-01-01

    Person-to-person transmission of influenza viruses occurs by contact (direct and fomites) and non-contact (droplet and small particle aerosol) routes, but the quantitative dynamics and relative contributions of these routes are incompletely understood. The transmissibility of influenza strains estimated from secondary attack rates in closed human populations is confounded by large variations in population susceptibilities. An experimental method to phenotype strains for transmissibility in an animal model could provide relative efficiencies of transmission. We developed an experimental method to detect exhaled viral aerosol transmission between unanesthetized infected and susceptible ferrets, measured aerosol particle size and number, and quantified the viral genomic RNA in the exhaled aerosol. During brief 3-hour exposures to exhaled viral aerosols in airflow-controlled chambers, three strains of pandemic 2009 H1N1 strains were frequently transmitted to susceptible ferrets. In contrast one seasonal H1N1 strain was not transmitted in spite of higher levels of viral RNA in the exhaled aerosol. Among three pandemic strains, the two strains causing weight loss and illness in the intranasally infected ‘donor’ ferrets were transmitted less efficiently from the donor than the strain causing no detectable illness, suggesting that the mucosal inflammatory response may attenuate viable exhaled virus. Although exhaled viral RNA remained constant, transmission efficiency diminished from day 1 to day 5 after donor infection. Thus, aerosol transmission between ferrets may be dependent on at least four characteristics of virus-host relationships including the level of exhaled virus, infectious particle size, mucosal inflammation, and viral replication efficiency in susceptible mucosa. PMID:22509254

  15. Influenza A(H1N1)pdm09 virus infection in giant pandas, China.

    PubMed

    Li, Desheng; Zhu, Ling; Cui, Hengmin; Ling, Shanshan; Fan, Shengtao; Yu, Zhijun; Zhou, Yuancheng; Wang, Tiecheng; Qian, Jun; Xia, Xianzhu; Xu, Zhiwen; Gao, Yuwei; Wang, Chengdong

    2014-03-01

    We confirmed infection with influenza A(H1N1)pdm09 in giant pandas in China during 2009 by using virus isolation and serologic analysis methods. This finding extends the host range of influenza viruses and indicates a need for increased surveillance for and control of influenza viruses among giant pandas. PMID:24565026

  16. Clinical aspects and cytokine response in severe H1N1 influenza A virus infection

    PubMed Central

    2010-01-01

    Introduction The immune responses in patients with novel A(H1N1) virus infection (nvA(H1N1)) are incompletely characterized. We investigated the profile of Th1 and Th17 mediators and interferon-inducible protein-10 (IP-10) in groups with severe and mild nvA(H1N1) disease and correlated them with clinical aspects. Methods Thirty-two patients hospitalized with confirmed nvA(H1N1) infection were enrolled in the study: 21 patients with nvA(H1N1)-acute respiratory distress syndrome (ARDS) and 11 patients with mild disease. One group of 20 patients with bacterial sepsis-ARDS and another group of 15 healthy volunteers were added to compare their cytokine levels with pandemic influenza groups. In the nvA(H1N1)-ARDS group, the serum cytokine samples were obtained on admission and 3 days later. The clinical aspects were recorded prospectively. Results In the nvA(H1N1)-ARDS group, obesity and lymphocytopenia were more common and IP-10, interleukin (IL)-12, IL-15, tumor necrosis factor (TNF)α, IL-6, IL-8 and IL-9 were significantly increased versus control. When comparing mild with severe nvA(H1N1) groups, IL-6, IL-8, IL-15 and TNFα were significantly higher in the severe group. In nonsurvivors versus survivors, IL-6 and IL-15 were increased on admission and remained higher 3 days later. A positive correlation of IL-6, IL-8 and IL-15 levels with C-reactive protein and with > 5-day interval between symptom onset and admission, and a negative correlation with the PaO2:FiO2 ratio, were found in nvA(H1N1) groups. In obese patients with influenza disease, a significant increased level of IL-8 was found. When comparing viral ARDS with bacterial ARDS, the level of IL-8, IL-17 and TNFα was significantly higher in bacterial ARDS and IL-12 was increased only in viral ARDS. Conclusions In our critically ill patients with novel influenza A(H1N1) virus infection, the hallmarks of the severity of disease were IL-6, IL-15, IL-8 and TNFα. These cytokines, except TNFα, had a positive

  17. The infection of turkeys and chickens by reassortants derived from pandemic H1N1 2009 and avian H9N2 influenza viruses

    PubMed Central

    Sun, Honglei; Kong, Weili; Liu, Litao; Qu, Yi; Li, Chong; Shen, Ye; Zhou, Yu; Wang, Yu; Wu, Sizhe; Pu, Juan; Liu, Jinhua; Sun, Yipeng

    2015-01-01

    Outbreaks of pandemic H1N1 2009 (pH1N1) in turkeys have been reported in several countries. Co-infection of pH1N1 and avian H9N2 influenza viruses in turkeys provide the opportunity for their reassortment, and novel reassortant viruses might further be transmitted to other avian species. However, virulence and transmission of those reassortant viruses in poultry remain unclear. In the present study, we generated 16 single-gene reassortant influenza viruses including eight reassortants on the pH1N1 background by individual replacement with a corresponding gene segment from H9N2 and eight reassortants on the H9N2 background replaced individually with corresponding gene from pH1N1, and characterized reassortants viruses in turkeys and chickens. We found that the pH1N1 virus dramatically increased its infectivity and transmissibility in turkeys and chickens after introducing any gene (except for PB2) from H9N2 virus, and H9N2 virus acquired single gene (except for HA) of pH1N1 almost did not influence its replication and transmission in turkeys and chickens. Additionally, 13 reassortant viruses transmitted from turkeys to chickens. Our results indicate that turkeys and chickens are susceptible to pH1N1-H9N2 reassortant viruses, and mixing breeding of different avian species would facilitate the transmission of these reassortant viruses. PMID:26030097

  18. Influenza A(H1N1)pdm09 virus in pigs, Togo, 2013

    PubMed Central

    Ducatez, Mariette F.; Awoume, Félix; Webby, Richard J.

    2015-01-01

    We collected 325 nasal swabs from freshly slaughtered previously healthy pigs from October 2012 through January 2014 in a slaughterhouse near Lomé in Togo. Influenza A virus genome was detected by RT-PCR in 2.5% to 12.3% of the pooled samples, and results of hemagglutinin subtyping RT-PCR assays showed the virus in all the positive pools to be A(H1N1)pdm09. Virus was isolated on MDCK cells from a representative specimen, A/swine/Togo/ONA32/2013(H1N1). The isolate was fully sequenced and harbored 8 genes similar to A(H1N1)pdm09 virus genes circulating in humans in 2012–2013, suggesting human-to-swine transmission of the pathogen. PMID:25778544

  19. Antigenic and genetic analysis of a recently isolated H1N1 swine influenza virus.

    PubMed

    Olsen, C W; McGregor, M W; Cooley, A J; Schantz, B; Hotze, B; Hinshaw, V S

    1993-10-01

    Hemagglutinins (HA) of H1N1 swine influenza viruses isolated in the United States have remained antigenically and genetically conserved for many years. In contrast to such conservation, the HA of A/Swine/Nebraska/1/92 (Sw/Neb) could readily be distinguished from those of contemporary porcine viruses. Twenty-eight amino acid mutations differentiated the HA of Sw/Neb and A/Swine/Indiana/1726/88, the most recent H1N1 swine influenza virus for which HA sequence data were available. Among these differences were mutations at potential asparagine-linked glycosylation sites and charge changes at many residues. The Sw/Neb virus also could be differentiated from other swine influenza viruses in hemagglutination-inhibition assays with monoclonal antibodies to recent H1 swine HA. Nonetheless, overall sequence analysis of the HA and the nucleoprotein genes of Sw/Neb indicated that this virus was more closely related genetically to classic H1N1 swine influenza viruses than to H1N1 avian or human viruses. Infection of swine with Sw/Neb under experimental conditions induced clinical signs and lesions typical of swine influenza. However, affected swine in the field had high, persistent fevers, but relatively mild signs of respiratory tract disease. This study indicated that an antigenically and genetically novel variant of swine influenza virus was detected in the United States. PMID:8250388

  20. Changes to the dynamic nature of hemagglutinin and the emergence of the 2009 pandemic H1N1 influenza virus.

    PubMed

    Yoon, Sun-Woo; Chen, Noam; Ducatez, Mariette F; McBride, Ryan; Barman, Subrata; Fabrizio, Thomas P; Webster, Robert G; Haliloglu, Turkan; Paulson, James C; Russell, Charles J; Hertz, Tomer; Ben-Tal, Nir; Webby, Richard J

    2015-01-01

    The virologic factors that limit the transmission of swine influenza viruses between humans are unresolved. While it has been shown that acquisition of the neuraminidase (NA) and matrix (M) gene segments from a Eurasian-lineage swine virus was required for airborne transmission of the 2009 pandemic H1N1 virus (H1N1pdm09), we show here that an arginine to lysine change in the hemagglutinin (HA) was also necessary. This change at position 149 was distal to the receptor binding site but affected virus-receptor affinity and HA dynamics, allowing the virus to replicate more efficiently in nasal turbinate epithelium and subsequently transmit between ferrets. Receptor affinity should be considered as a factor limiting swine virus spread in humans. PMID:26269288

  1. Enhanced Pneumonia With Pandemic 2009 A/H1N1 Swine Influenza Virus in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. Swine influenza A viruses (SIV) in the major swine producing regions of North America consist of multiple subtypes of endemic H1N1, H1N2, and H3N2 derived from swine, avian and human influenza viruses with a triple reassortant internal gene (TRIG) constellation (1). Genetic drift and r...

  2. The novel influenza A (H1N1) virus pandemic: An update

    PubMed Central

    Petrosillo, N.; Di Bella, S.; Drapeau, C. M.; Grilli, E.

    2009-01-01

    In the 4 months since it was first recognized, the pandemic strain of a novel influenza A (H1N1) virus has spread to all continents and, after documentation of human-to-human transmission of the virus in at least three countries in two separate World Health Organization (WHO) regions, the pandemic alert was raised to level 6. The agent responsible for this pandemic, a swine-origin influenza A (H1N1) virus (S-OIV), is characterized by a unique combination of gene segments that has not previously been identified among human or swine influenza A viruses. As of 31th July 2009, 168 countries and overseas territories/communities have each reported at least one laboratory-confirmed case of pandemic H1N1 infection. There have been a total of 162,380 reported cases and 1154 associated deaths. Influenza epidemics usually take off in autumn, and it is important to prepare for an earlier start this season. Estimates from Europe indicate that 230 millions Europe inhabitants will have clinical signs and symptoms of S-OIV this autumn, and 7–35% of the clinical cases will have a fatal outcome, which means that there will be 160,000–750,000 H1N1-related deaths. A vaccine against H1N1 is expected to be the most effective tool for controlling influenza A (H1N1) infection in terms of reducing morbidity and mortality and limiting diffusion. However, there are several issues with regard to vaccine manufacture and approval, as well as production capacity, that remain unsettled. We searched the literature indexed in PubMed as well as the websites of major international health agencies to obtain the material presented in this update on the current S-OIV pandemic. PMID:19881161

  3. The hemagglutinin structure of an avian H1N1 influenza A virus

    SciTech Connect

    Lin, Tianwei; Wang, Gengyan; Li, Anzhang; Zhang, Qian; Wu, Caiming; Zhang, Rongfu; Cai, Qixu; Song, Wenjun; Yuen, Kwok-Yung

    2009-09-15

    The interaction between hemagglutinin (HA) and receptors is a kernel in the study of evolution and host adaptation of H1N1 influenza A viruses. The notion that the avian HA is associated with preferential specificity for receptors with Sia{alpha}2,3Gal glycosidic linkage over those with Sia{alpha}2,6Gal linkage is not all consistent with the available data on H1N1 viruses. By x-ray crystallography, the HA structure of an avian H1N1 influenza A virus, as well as its complexes with the receptor analogs, was determined. The structures revealed no preferential binding of avian receptor analogs over that of the human analog, suggesting that the HA/receptor binding might not be as stringent as is commonly believed in determining the host receptor preference for some subtypes of influenza viruses, such as the H1N1 viruses. The structure also showed difference in glycosylation despite the preservation of related sequences, which may partly contribute to the difference between structures of human and avian origin.

  4. 1918 and 2009 H1N1 influenza viruses are not pathogenic in birds.

    PubMed

    Babiuk, Shawn; Albrecht, Randy; Berhane, Yohannes; Marszal, Peter; Richt, Jürgen A; García-Sastre, Adolfo; Pasick, John; Weingartl, Hana

    2010-02-01

    The susceptibility of chickens to both 1918 and 2009 H1N1 influenza virus was evaluated. The intravenous pathogenicity index of 1918 and 2009 H1N1 viruses in chickens was 0. Chickens did not develop clinical signs following experimental inoculation simulating natural infection. No gross pathological changes were observed in any tissues of chickens between 2 and 18 days post-infection (p.i.) and viral RNA was not detected by real-time RT-PCR in mucosal secretions or tissues. Seroconversion was not detected in any of the chickens following inoculation with H1N1 2009 virus, whereas half the chickens developed influenza-specific antibodies at 28 days p.i. with 1918 influenza, suggesting limited infection. Viral RNA was detected by real-time RT-PCR in mallard ducks following inoculation with 1918 influenza virus at 3 days p.i. in cloacal swabs, but not in tissues, and all ducks seroconverted by 28 days p.i. Both 1918 and 2009 H1N1 influenza viruses behave as LPAI in gallinaceous poultry. PMID:19889930

  5. Eurasian-Origin Gene Segments Contribute to the Transmissibility, Aerosol Release, and Morphology of the 2009 Pandemic H1N1 Influenza Virus

    PubMed Central

    Lakdawala, Seema S.; Lamirande, Elaine W.; Suguitan, Amorsolo L.; Wang, Weijia; Santos, Celia P.; Vogel, Leatrice; Matsuoka, Yumiko; Lindsley, William G.; Jin, Hong; Subbarao, Kanta

    2011-01-01

    The epidemiological success of pandemic and epidemic influenza A viruses relies on the ability to transmit efficiently from person-to-person via respiratory droplets. Respiratory droplet (RD) transmission of influenza viruses requires efficient replication and release of infectious influenza particles into the air. The 2009 pandemic H1N1 (pH1N1) virus originated by reassortment of a North American triple reassortant swine (TRS) virus with a Eurasian swine virus that contributed the neuraminidase (NA) and M gene segments. Both the TRS and Eurasian swine viruses caused sporadic infections in humans, but failed to spread from person-to-person, unlike the pH1N1 virus. We evaluated the pH1N1 and its precursor viruses in a ferret model to determine the contribution of different viral gene segments on the release of influenza virus particles into the air and on the transmissibility of the pH1N1 virus. We found that the Eurasian-origin gene segments contributed to efficient RD transmission of the pH1N1 virus likely by modulating the release of influenza viral RNA-containing particles into the air. All viruses replicated well in the upper respiratory tract of infected ferrets, suggesting that factors other than viral replication are important for the release of influenza virus particles and transmission. Our studies demonstrate that the release of influenza viral RNA-containing particles into the air correlates with increased NA activity. Additionally, the pleomorphic phenotype of the pH1N1 virus is dependent upon the Eurasian-origin gene segments, suggesting a link between transmission and virus morphology. We have demonstrated that the viruses are released into exhaled air to varying degrees and a constellation of genes influences the transmissibility of the pH1N1 virus. PMID:22241979

  6. Specific Inhibitory Effect of κ-Carrageenan Polysaccharide on Swine Pandemic 2009 H1N1 Influenza Virus

    PubMed Central

    Shao, Qiang; Guo, Qiang; Xu, Wen ping; Li, Zandong; Zhao, Tong tong

    2015-01-01

    The 2009 influenza A H1N1 pandemic placed unprecedented demands on antiviral drug resources and the vaccine industry. Carrageenan, an extractive of red algae, has been proven to inhibit infection and multiplication of various enveloped viruses. The aim of this study was to examine the ability of κ-carrageenan to inhibit swine pandemic 2009 H1N1 influenza virus to gain an understanding of antiviral ability of κ-carrageenan. It was here demonstrated that κ-carrageenan had no cytotoxicity at concentrations below 1000 μg/ml. Hemagglutination, 50% tissue culture infectious dose (TCID50) and cytopathic effect (CPE) inhibition assays showed that κ-carrageenan inhibited A/Swine/Shandong/731/2009 H1N1 (SW731) and A/California/04/2009 H1N1 (CA04) replication in a dose-dependent fashion. Mechanism studies show that the inhibition of SW731 multiplication and mRNA expression was maximized when κ-carrageenan was added before or during adsorption. The result of Hemagglutination inhibition assay indicate that κ-carrageenan specifically targeted HA of SW731 and CA04, both of which are pandemic H1N/2009 viruses, without effect on A/Pureto Rico/8/34 H1N1 (PR8), A/WSN/1933 H1N1 (WSN), A/Swine/Beijing/26/2008 H1N1 (SW26), A/Chicken/Shandong/LY/2008 H9N2 (LY08), and A/Chicken/Shandong/ZB/2007 H9N2 (ZB07) viruses. Immunofluorescence assay and Western blot showed that κ-carrageenan also inhibited SW731 protein expression after its internalization into cells. These results suggest that κ-carrageenan can significantly inhibit SW731 replication by interfering with a few replication steps in the SW731 life cycles, including adsorption, transcription, and viral protein expression, especially interactions between HA and cells. In this way, κ-carrageenan might be a suitable alternative approach to therapy meant to address anti-IAV, which contains an HA homologous to that of SW731. PMID:25969984

  7. Specific Inhibitory Effect of κ-Carrageenan Polysaccharide on Swine Pandemic 2009 H1N1 Influenza Virus.

    PubMed

    Shao, Qiang; Guo, Qiang; Xu, Wen ping; Li, Zandong; Zhao, Tong tong

    2015-01-01

    The 2009 influenza A H1N1 pandemic placed unprecedented demands on antiviral drug resources and the vaccine industry. Carrageenan, an extractive of red algae, has been proven to inhibit infection and multiplication of various enveloped viruses. The aim of this study was to examine the ability of κ-carrageenan to inhibit swine pandemic 2009 H1N1 influenza virus to gain an understanding of antiviral ability of κ-carrageenan. It was here demonstrated that κ-carrageenan had no cytotoxicity at concentrations below 1000 μg/ml. Hemagglutination, 50% tissue culture infectious dose (TCID50) and cytopathic effect (CPE) inhibition assays showed that κ-carrageenan inhibited A/Swine/Shandong/731/2009 H1N1 (SW731) and A/California/04/2009 H1N1 (CA04) replication in a dose-dependent fashion. Mechanism studies show that the inhibition of SW731 multiplication and mRNA expression was maximized when κ-carrageenan was added before or during adsorption. The result of Hemagglutination inhibition assay indicate that κ-carrageenan specifically targeted HA of SW731 and CA04, both of which are pandemic H1N/2009 viruses, without effect on A/Pureto Rico/8/34 H1N1 (PR8), A/WSN/1933 H1N1 (WSN), A/Swine/Beijing/26/2008 H1N1 (SW26), A/Chicken/Shandong/LY/2008 H9N2 (LY08), and A/Chicken/Shandong/ZB/2007 H9N2 (ZB07) viruses. Immunofluorescence assay and Western blot showed that κ-carrageenan also inhibited SW731 protein expression after its internalization into cells. These results suggest that κ-carrageenan can significantly inhibit SW731 replication by interfering with a few replication steps in the SW731 life cycles, including adsorption, transcription, and viral protein expression, especially interactions between HA and cells. In this way, κ-carrageenan might be a suitable alternative approach to therapy meant to address anti-IAV, which contains an HA homologous to that of SW731. PMID:25969984

  8. Pandemic H1N1 influenza virus infection in a Canadian cat.

    PubMed

    Knight, Cameron G; Davies, Jennifer L; Joseph, Tomy; Ondrich, Sarah; Rosa, Brielle V

    2016-05-01

    A cat was presented for necropsy after being found dead at home. Histologic findings suggested viral pneumonia. Polymerase chain reaction and viral typing revealed influenza A(H1N1)pdm09. This is the first report of influenza in a Canadian cat and highlights the importance of considering influenza virus in the differential diagnosis for feline respiratory distress. PMID:27152036

  9. Inside the Outbreak of the 2009 Influenza A (H1N1)v Virus in Mexico

    PubMed Central

    Zepeda-Lopez, Hector M.; Perea-Araujo, Lizbeth; Miliar-García, Angel; Dominguez-López, Aarón; Xoconostle-Cázarez, Beatriz; Lara-Padilla, Eleazar; Ramírez Hernandez, Jorge A.; Sevilla-Reyes, Edgar; Orozco, Maria Esther; Ahued-Ortega, Armando; Villaseñor-Ruiz, Ignacio; Garcia-Cavazos, Ricardo J.; Teran, Luis M.

    2010-01-01

    Background Influenza viruses pose a threat to human health because of their potential to cause global disease. Between mid March and mid April a pandemic influenza A virus emerged in Mexico. This report details 202 cases of infection of humans with the 2009 influenza A virus (H1N1)v which occurred in Mexico City as well as the spread of the virus throughout the entire country. Methodology and Findings From May 1st to May 5th nasopharyngeal swabs, derived from 751 patients, were collected at 220 outpatient clinics and 28 hospitals distributed throughout Mexico City. Analysis of samples using real time RT-PCR revealed that 202 patients out of the 751 subjects (26.9%) were confirmed to be infected with the new virus. All confirmed cases of human infection with the strain influenza (H1N1)v suffered respiratory symptoms. The greatest number of confirmed cases during the outbreak of the 2009 influenza A (H1N1)v were seen in neighbourhoods on the northeast side of Mexico City including Iztapalapa, Gustavo A. Madero, Iztacalco, and Tlahuac which are the most populated areas in Mexico City. Using these data, together with data reported by the Mexican Secretariat of Health (MSH) to date, we plot the course of influenza (H1N1)v activity throughout Mexico. Conclusions Our data, which is backed up by MSH data, show that the greatest numbers of the 2009 influenza A (H1N1) cases were seen in the most populated areas. We speculate on conditions in Mexico which may have sparked this flu pandemic, the first in 41 years. We accept the hypothesis that high population density and a mass gathering which took in Iztapalapa contributed to the rapid spread of the disease which developed in three peaks of activity throughout the Country. PMID:20949040

  10. Influenza A viral loads in respiratory samples collected from patients infected with pandemic H1N1, seasonal H1N1 and H3N2 viruses

    PubMed Central

    2010-01-01

    Background Nasopharyngeal aspirate (NPA), nasal swab (NS), and throat swab (TS) are common specimens used for diagnosis of respiratory virus infections based on the detection of viral genomes, viral antigens and viral isolation. However, there is no documented data regarding the type of specimen that yields the best result of viral detection. In this study, quantitative real time RT-PCR specific for M gene was used to determine influenza A viral loads present in NS, NPA and TS samples collected from patients infected with the 2009 pandemic H1N1, seasonal H1N1 and H3N2 viruses. Various copy numbers of RNA transcripts derived from recombinant plasmids containing complete M gene insert of each virus strain were assayed by RT-PCR. A standard curve for viral RNA quantification was constructed by plotting each Ct value against the log quantity of each standard RNA copy number. Results Copy numbers of M gene were obtained through the extrapolation of Ct values of the test samples against the corresponding standard curve. Among a total of 29 patients with severe influenza enrolled in this study (12 cases of the 2009 pandemic influenza, 5 cases of seasonal H1N1 and 12 cases of seasonal H3N2 virus), NPA was found to contain significantly highest amount of viral loads and followed in order by NS and TS specimen. Viral loads among patients infected with those viruses were comparable regarding type of specimen analyzed. Conclusion Based on M gene copy numbers, we conclude that NPA is the best specimen for detection of influenza A viruses, and followed in order by NS and TS. PMID:20403211

  11. Severe H1N1 virus in pregnancy requiring extracorporeal membrane oxygenation and lobectomy

    PubMed Central

    McNamee, K; Dawood, F

    2010-01-01

    Prompt diagnosis and treatment of H1N1 is crucial during pregnancy to prevent major morbidity and mortality as the virus poses an increased risk of severe illness in pregnant women. Currently, there is limited obstetric literature concerning pregnancy and the pandemic swine flu outbreak in the UK. Although there was a concerted effort to stockpile the HIN1 virus vaccinations, critical care adult extracorporeal membrane oxygenation is only available in one centre in the UK.

  12. Structural Stability of Influenza A(H1N1)pdm09 Virus Hemagglutinins

    PubMed Central

    Yang, Hua; Chang, Jessie C.; Guo, Zhu; Carney, Paul J.; Shore, David A.; Donis, Ruben O.; Cox, Nancy J.; Villanueva, Julie M.; Klimov, Alexander I.

    2014-01-01

    ABSTRACT The noncovalent interactions that mediate trimerization of the influenza hemagglutinin (HA) are important determinants of its biological activities. Recent studies have demonstrated that mutations in the HA trimer interface affect the thermal and pH sensitivities of HA, suggesting a possible impact on vaccine stability (). We used size exclusion chromatography analysis of recombinant HA ectodomain to compare the differences among recombinant trimeric HA proteins from early 2009 pandemic H1N1 viruses, which dissociate to monomers, with those of more recent virus HAs that can be expressed as trimers. We analyzed differences among the HA sequences and identified intermolecular interactions mediated by the residue at position 374 (HA0 numbering) of the HA2 subdomain as critical for HA trimer stability. Crystallographic analyses of HA from the recent H1N1 virus A/Washington/5/2011 highlight the structural basis for this observed phenotype. It remains to be seen whether more recent viruses with this mutation will yield more stable vaccines in the future. IMPORTANCE Hemagglutinins from the early 2009 H1N1 pandemic viruses are unable to maintain a trimeric complex when expressed in a recombinant system. However, HAs from 2010 and 2011 strains are more stable, and our work highlights that the improvement in stability can be attributed to an E374K substitution in the HA2 subunit of the stalk that emerged naturally in the circulating viruses. PMID:24522930

  13. Molecular epidemiology study of swine influenza virus revealing a reassorted virus H1N1 in swine farms in Cuba.

    PubMed

    Pérez, Lester J; Perera, Carmen Laura; Coronado, Liani; Rios, Liliam; Vega, Armando; Frías, Maria T; Ganges, Llilianne; Núñez, José Ignacio; Díaz de Arce, Heidy

    2015-05-01

    In this report, we describe the emergence of reassorted H1N1 swine influenza virus, originated from a reassortment event between the H1N1 pandemic influenza virus (H1N1p/2009) and endemic swine influenza virus in Cuban swine population. In November 2010, a clinical respiratory outbreak was reported on a pig fattening farm in Cuba. Phylogenetic analysis showed that all the genes of one of the isolate obtained, with the exception of neuraminidase, belonged to the H1N1p/2009 cluster. This finding suggests that H1N1pdm has been established in swine and has become a reservoir of reassortment that may produce new viruses with both animal and public health risks. PMID:25745869

  14. Course of pandemic influenza A(H1N1) 2009 virus infection in Dutch patients

    PubMed Central

    Friesema, Ingrid H. M.; Meijer, Adam; van Gageldonk‐Lafeber, Arianne B.; van der Lubben, Mariken; van Beek, Janko; Donker, Gé A.; Prins, Jan M.; de Jong, Menno D.; Boskamp, Simone; Isken, Leslie D.; Koopmans, Marion P. G.; van der Sande, Marianne A. B.

    2012-01-01

    Please cite this paper as: Friesema et al. (2012). Course of pandemic influenza A(H1N1) 2009 virus infection in Dutch patients. Influenza and Other Respiratory Viruses 6(3), e16–e20. The clinical dynamics of influenza A(H1N1) 2009 infections in 61 laboratory‐confirmed Dutch cases were examined. An episode lasted a median of 7·5 days of which 2 days included fever. Respiratory symptoms resolved slowly, while systemic symptoms peaked early in the episode and disappeared quickly. Severity of each symptom was rated highest in the first few days. Furthermore, diarrhoea was negatively associated with viral load, but not with faecal excretion of influenza virus. Cases with comorbidities appeared to have higher viral loads than the cases without, suggesting a less effective immune response. These results complement information obtained through traditional surveillance. PMID:22372759

  15. Risk factors for pandemic (H1N1) 2009 virus seroconversion among hospital staff, Singapore.

    PubMed

    Chen, Mark I C; Lee, Vernon J M; Barr, Ian; Lin, Cui; Goh, Rachelle; Lee, Caroline; Singh, Baldev; Tan, Jessie; Lim, Wei Yen; Cook, Alex R; Ang, Brenda; Chow, Angela; Tan, Boon Huan; Loh, Jimmy; Shaw, Robert; Chia, Kee Seng; Lin, Raymond T P; Leo, Yee Sin

    2010-10-01

    We describe incidence and risk factors for pandemic (H1N1) 2009 virus infection in healthcare personnel during the June-September 2009 epidemic in Singapore. Personnel contributed 3 serologic samples during June-October 2009, with seroconversion defined as a ≥4-fold increase in hemagglutination inhibition titers to pandemic (H1N1) 2009. Of 531 participants, 35 showed evidence of seroconversion. Seroconversion rates were highest in nurses (28/290) and lowest in allied health staff (2/116). Significant risk factors on multivariate analysis were being a nurse (adjusted odds ratio [aOR] 4.5, 95% confidence interval [CI] 1.0-19.6) and working in pandemic (H1N1) 2009 isolation wards (aOR 4.5, 95% CI 1.3-15.6). Contact with pandemic (H1N1) 2009-infected colleagues (aOR 2.5, 95% CI 0.9-6.6) and larger household size (aOR 1.2, 95% CI 1.0-1.4) were of borderline significance. Our study suggests that seroconversion was associated with occupational and nonoccupational risk factors. PMID:20875280

  16. Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review

    PubMed Central

    Boëlle, Pierre‐Yves; Ansart, Séverine; Cori, Anne; Valleron, Alain‐Jacques

    2011-01-01

    Please cite this paper as: Boëlle P‐Y et al. (2011) Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review. Influenza and Other Respiratory Viruses 5(5), 306–316. Background  The new influenza virus A/H1N1 (2009), identified in mid‐2009, rapidly spread over the world. Estimating the transmissibility of this new virus was a public health priority. Methods  We reviewed all studies presenting estimates of the serial interval or generation time and the reproduction number of the A/H1N1 (2009) virus infection. Results  Thirteen studies documented the serial interval from household or close‐contact studies, with overall mean 3 days (95% CI: 2·4, 3·6); taking into account tertiary transmission reduced this estimate to 2·6 days. Model‐based estimates were more variable, from 1·9 to 6 days. Twenty‐four studies reported reproduction numbers for community‐based epidemics at the town or country level. The range was 1·2–3·1, with larger estimates reported at the beginning of the pandemic. Accounting for under‐reporting in the early period of the pandemic and limiting variation because of the choice of the generation time interval, the reproduction number was between 1·2 and 2·3 with median 1·5. Discussion  The serial interval of A/H1N1 (2009) flu was typically short, with mean value similar to the seasonal flu. The estimates of the reproduction number were more variable. Compared with past influenza pandemics, the median reproduction number was similar (1968) or slightly smaller (1889, 1918, 1957). PMID:21668690

  17. Flavonoids from Matteuccia struthiopteris and Their Anti-influenza Virus (H1N1) Activity.

    PubMed

    Li, Bo; Ni, Yang; Zhu, Ling-Juan; Wu, Feng-Bo; Yan, Fei; Zhang, Xue; Yao, Xin-Sheng

    2015-05-22

    Seven new flavonoid glycosides (1-7), matteflavosides A-G, together with 12 known flavonoids (8-19) were isolated from the rhizomes of Matteuccia struthiopteris (L.) Todar. Their structures were established via the analyses of extensive spectroscopic data. All compounds were evaluated for their anti-influenza virus (H1N1) activity using the neuraminidase inhibition assay. The results showed that compound 7 exhibited significant inhibitory activity against the H1N1 influenza virus neuraminidase with an EC50 value of 6.8 ± 1.1 μM and an SI value of 34.4, and compounds 8 and 17 showed moderate inhibitory activity. PMID:25927664

  18. Pandemic influenza A (H1N1) virus in households with young children

    PubMed Central

    Peltola, Ville; Teros‐Jaakkola, Tamara; Rulli, Maris; Toivonen, Laura; Broberg, Eeva; Waris, Matti; Mertsola, Jussi

    2011-01-01

    Please cite this paper as: Peltola et al. (2011) Pandemic influenza A (H1N1) virus in households with young children. Influenza and Other Respiratory Viruses 6(3), e21–e24. Abstract Background  Influenza viruses may cause a severe infection in infants and young children. The transmission patterns of pandemic 2009 influenza A (H1N1) within households with young children are poorly characterized. Methods  Household members of six children younger than 1·5 years with documented 2009 influenza A (H1N1) infection were studied by daily symptom diaries and serial parent‐collected nasal swab samples for detection of influenza A by reverse transcription polymerase chain reaction (RT‐PCR) assay. Results  Laboratory‐confirmed, symptomatic influenza was documented in 11 of 15 household contacts of young children with pandemic influenza (73%; 95% CI, 48–99). In five contact cases symptoms started earlier, in three cases on the same day, and in three cases after the onset of symptoms in the youngest child. The first case with influenza A (H1N1) within the household was an elder sibling in two households, father in two households, the youngest child in one household, and the youngest child at the same time with a sibling in one household. The median copy number of influenza virus was higher in children than in adults (4·2 × 107 versus 4·9 × 104, P = 0·02). Conclusions  This study demonstrates the feasibility of nasal swab sampling by parents in investigation of household transmission of influenza. The results support influenza vaccination of all household contacts of young children. PMID:21951638

  19. The Genomic Contributions of Avian H1N1 Influenza A Viruses to the Evolution of Mammalian Strains

    PubMed Central

    Wu, Gang; Zhang, Jinghui; Webster, Robert G.

    2015-01-01

    Among the influenza A viruses (IAVs) in wild aquatic birds, only H1, H2, and H3 subtypes have caused epidemics in humans. H1N1 viruses of avian origin have also caused 3 of 5 pandemics. To understand the reappearance of H1N1 in the context of pandemic emergence, we investigated whether avian H1N1 IAVs have contributed to the evolution of human, swine, and 2009 pandemic H1N1 IAVs. On the basis of phylogenetic analysis, we concluded that the polymerase gene segments (especially PB2 and PA) circulating in North American avian H1N1 IAVs have been reintroduced to swine multiple times, resulting in different lineages that led to the emergence of the 2009 pandemic H1N1 IAVs. Moreover, the similar topologies of hemagglutinin and nucleoprotein and neuraminidase and matrix gene segments suggest that each surface glycoprotein coevolved with an internal gene segment within the H1N1 subtype. The genotype of avian H1N1 IAVs of Charadriiformes origin isolated in 2009 differs from that of avian H1N1 IAVs of Anseriformes origin. When the antigenic sites in the hemagglutinin of all 31 North American avian H1N1 IAVs were considered, 60%-80% of the amino acids at the antigenic sites were identical to those in 1918 and/or 2009 pandemic H1N1 viruses. Thus, although the pathogenicity of avian H1N1 IAVs could not be inferred from the phylogeny due to the small dataset, the evolutionary process within the H1N1 IAV subtype suggests that the circulation of H1N1 IAVs in wild birds poses a continuous threat for future influenza pandemics in humans. PMID:26208281

  20. Adaptation of influenza A(H1N1)pdm09 virus in experimental mouse models.

    PubMed

    Prokopyeva, E A; Sobolev, I A; Prokopyev, M V; Shestopalov, A M

    2016-04-01

    In the present study, three mouse-adapted variants of influenza A(H1N1)pdm09 virus were obtained by lung-to-lung passages of BALB/c, C57BL/6z and CD1 mice. The significantly increased virulence and pathogenicity of all of the mouse-adapted variants induced 100% mortality in the adapted mice. Genetic analysis indicated that the increased virulence of all of the mouse-adapted variants reflected the incremental acquisition of several mutations in PB2, PB1, HA, NP, NA, and NS2 proteins. Identical amino acid substitutions were also detected in all of the mouse-adapted variants of A(H1N1)pdm09 virus, including PB2 (K251R), PB1 (V652A), NP (I353V), NA (I106V, N248D) and NS1 (G159E). Apparently, influenza A(H1N1)pdm09 virus easily adapted to the host after serial passages in the lungs, inducing 100% lethality in the last experimental group. However, cross-challenge revealed that not all adapted variants are pathogenic for different laboratory mice. Such important results should be considered when using the influenza mice model. PMID:26829383

  1. Neutralization and Binding Profile of Monoclonal Antibodies Generated Against Influenza A H1N1 Viruses.

    PubMed

    Shembekar, Nachiket; Mallajosyula, Vamsee V Aditya; Malik, Ankita; Saini, Ashok; Varadarajan, Raghavan; Gupta, Satish Kumar

    2016-08-01

    Monoclonal antibodies (MAbs) provide scope for the development of better therapeutics and diagnostic tools. Herein, we describe the binding and neutralization profile(s) for a panel of murine MAbs generated against influenza A H1N1 viruses elicited by immunization with pandemic H1 recombinant hemagglutinin (rHA)/whole virus or seasonal H1 rHA. Neutralizing MAbs, MA-2070 and MA-M, were obtained after pandemic A/California/07/2009 (H1N1) virus/rHA immunization(s). Both MAbs reacted specifically with rHA from A/California/07/2009 and A/England/195/2009 in ELISA. MA-2070 bound rHA of A/California/07/2009 with high affinity (KD = 51.36 ± 9.20 nM) and exhibited potent in vitro neutralization (IC50 = 2.50 μg/mL). MA-2070 bound within the stem domain of HA. MA-M exhibited both hemagglutination inhibition (HI, 1.50 μg/mL) and in vitro neutralization (IC50 = 0.66 μg/mL) activity against the pandemic A/California/07/2009 virus and showed higher binding affinity (KD = 9.80 ± 0.67 nM) than MA-2070. MAb, MA-H generated against the seasonal A/Solomon Islands/03/2006 (H1N1) rHA binds within the head domain and bound the seasonal H1N1 (A/Solomon Islands/03/2006 and A/New Caledonia/20/1990) rHAs with high affinity (KD; 0.72-8.23 nM). MA-H showed high HI (2.50 μg/mL) and in vitro neutralization (IC50 = 2.61 μg/mL) activity against the A/Solomon Islands/03/2006 virus. All 3 MAbs failed to react in ELISA with rHA from various strains of H2N2, H3N2, H5N1, H7N9, and influenza virus B, suggesting their specificity for either pandemic or seasonal H1N1 influenza virus. The MAbs reported here may be useful in developing diagnostic assays. PMID:27463230

  2. Novel route of exposure through reproductive tract insemination infects turkeys with pandemic-H1N1 virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the known susceptibility of turkeys to type A influenza viruses and the history of infection with triple reassortant viruses, when the pandemic influenza A H1N1 2009 (pH1N1) emerged, the possibility of turkeys becoming infected with the novel virus was investigated. Several studies showe...

  3. Identification of small molecules acting against H1N1 influenza A virus.

    PubMed

    Agamennone, Mariangela; Pietrantoni, Agostina; Superti, Fabiana

    2016-01-15

    Influenza virus represents a serious threat to public health. The lack of effective drugs against flu prompted researchers to identify more promising viral target. In this respect hemagglutinin (HA) can represent an interesting option because of its pivotal role in the infection process. With this aim we collected a small library of commercially available compounds starting from a large database and performing a diversity-based selection to reduce the number of screened compounds avoiding structural redundancy of the library. Selected compounds were tested for their hemagglutination-inhibiting (HI) ability against two different A/H1N1 viral strains (one of which is oseltamivir sensitive), and 17 of them showed the ability to interact with HA. Five drug-like molecules, in particular, were able to impair hemagglutination of both A/H1N1 viral strains under study and to inhibit cytopathic effect and hemolysis at sub-micromolar level. PMID:26655243

  4. Novel triple-reassortant H1N1 swine influenza viruses in pigs in Tianjin, Northern China.

    PubMed

    Sun, Ying-Feng; Wang, Xiu-Hui; Li, Xiu-Li; Zhang, Li; Li, Hai-Hua; Lu, Chao; Yang, Chun-Lei; Feng, Jing; Han, Wei; Ren, Wei-Ke; Tian, Xiang-Xue; Tong, Guang-Zhi; Wen, Feng; Li, Ze-Jun; Gong, Xiao-Qian; Liu, Xiao-Min; Ruan, Bao-Yang; Yan, Ming-Hua; Yu, Hai

    2016-02-01

    Pigs are susceptible to both human and avian influenza viruses and therefore have been proposed to be mixing vessels for the generation of pandemic influenza viruses through reassortment. In this study, for the first time, we report the isolation and genetic analyses of three novel triple-reassortant H1N1 swine influenza viruses from pigs in Tianjin, Northern China. Phylogenetic analysis showed that these novel viruses contained genes from the 2009 pandemic H1N1 (PB2, PB1, PA and NP), Eurasian swine (HA, NA and M) and triple-reassortant swine (NS) lineages. This indicated that the reassortment among the 2009 pandemic H1N1, Eurasian swine and triple-reassortant swine influenza viruses had taken place in pigs in Tianjin and resulted in the generation of new viruses. Furthermore, three human-like H1N1, two classical swine H1N1 and two Eurasian swine H1N1 viruses were also isolated during the swine influenza virus surveillance from 2009 to 2013, which indicated that multiple genetic lineages of swine H1N1 viruses were co-circulating in the swine population in Tianjin, China. The emergence of novel triple-reassortant H1N1 swine influenza viruses may be a potential threat to human health and emphasizes the importance of further continuous surveillance. PMID:26790939

  5. Inactivation of H1N1 viruses exposed to acidic ozone water

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lee, Kwang H.; Seong, Baik L.

    2009-10-01

    The inactivation of H1N1 viruses upon exposure to acidic ozone water was investigated using chicken allantoic fluids of different dilutions, pH values, and initial ozone concentrations. The inactivation effect of the acidic ozone water was found to be stronger than the inactivation effect of the ozone water combined with the degree of acidity, indicating a synergic effect of acidity on ozone decay in water. It is also shown that acidic ozone water with a pH value of 4 or less is very effective means of virus inactivation if provided in conjunction with an ozone concentration of 20 mg/l or higher.

  6. Continual re-introduction of human pandemic H1N1 influenza A viruses into US swine, 2009-2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human-to-swine transmission of pandemic H1N1 influenza viruses (pH1N1) increased the genetic diversity of influenza A viruses in swine (swIAVs) globally and is linked to the emergence of new pandemic threats, including H3N2v variants. Through phylogenetic analysis of contemporary swIAVs in the Unit...

  7. Possible basis for the emergence of H1N1 viruses with pandemic potential from avian hosts

    PubMed Central

    Koçer, Zeynep A; Krauss, Scott; Zanin, Mark; Danner, Angela; Gulati, Shelly; Jones, Jeremy C; Friedman, Kimberly; Graham, Allison; Forrest, Heather; Seiler, Jon; Air, Gillian M; Webster, Robert G

    2015-01-01

    Influenza A viruses of the H1N1 subtype have emerged from the avian influenza gene pool in aquatic birds and caused human pandemics at least twice during the past century. Despite this fact, surprisingly little is known about the H1N1 gene pool in the aquatic bird reservoir. A preliminary study showed that an H1N1 virus from a shorebird of the Charadriiformes order was transmitted between animals through the airborne route of infection, whereas an H1N1 virus from a bird of the Anseriformes order was not. Here we show that two of the three H1N1 viruses isolated from Charadriiformes species in 2009 were transmitted between animals through the airborne route of infection, and five H1N1 isolates from Anseriformes species were not. The one H1N1 virus from a Charadriiformes species that failed to transmit through the airborne route was a reassortant possessing multiple internal gene segments from Anseriformes species. The molecular differences between the airborne-transmissible and non-airborne-transmissible H1N1 viruses were multigenic, involving the selection of virus with human-like receptor-binding specificity (α2-6 sialic acid) and multiple differences in the polymerase complex, mainly in the PB2, PB1-F2, and nonstructural genes. PMID:26251829

  8. Spillback transmission of European H1N1 avian-like swine influenza viruses to turkeys: A strain-dependent possibility?

    PubMed

    Bonfante, Francesco; Fusaro, Alice; Tassoni, Luca; Patrono, Livia Victoria; Milani, Adelaide; Maniero, Silvia; Salviato, Annalisa; Terregino, Calogero

    2016-04-15

    In 1979, an avian influenza virus of the H1N1 subtype began to circulate in European swine herds, rapidly replacing classical swine H1N1 viruses. Spill-back transmissions to turkeys were recorded occasionally, but they might have been underreported due to the asymptomatic nature of the infection and the lack of specific surveillance. In our study, we evaluated the infectivity and transmissibility in turkeys of seven strains of H1N1 avian-like swine viruses isolated from 1979 to 2006, and compared them with their closest progenitor A/duck/Bavaria/1/77 (H1N1), to establish whether the adaptation to pigs has gradually decreased their fitness in turkeys. Our data indicate that the circulation of European H1N1 in pigs might have impaired the possibility of infecting turkeys. Nevertheless, the two swine-origin strains, which showed the ability to replicate and transmit in turkeys, possess typical swine-like genetic traits, not different from the rest of the tested isolates, suggesting replication of avian-like swine H1N1 viruses in turkeys as a strain-dependent polygenic feature. PMID:27016764

  9. [Direct immunofluorescence assay performance in diagnosis of the Influenza A(H1N1) virus].

    PubMed

    Pianciola, Luis; González, Gladys; Mazzeo, Melina; Navello, Mariano; Quidel, Natalia; Bulgheroni, María Fernanda

    2010-06-01

    By 25 April 2009, less than one month after the first human with Influenza A(H1N1) virus was detected in Mexico, the disease had already spread to more than 40 countries, with over 10,000 cases reported. Due to its unpredictability, this type of virus requires appropriate, reliable, and safe diagnostic methods that are also accessible to clinical laboratories. Through the analysis of 291 samples taken from patients with suspected Influenza A(H1N1) virus infection in Neuquén, Argentina, this study compares the two diagnostic methods used simultaneously: direct immunofluorescence assay (DFA) and real-time polymerase chain reaction (RT-PCR). DFA had a sensitivity of 44.4%, a specificity of 99.6%, a positive predictive value of 95.2%, and a negative predictive value of 90.7%. Positive results obtained with this method can be considered true positives. A negative result does not rule out the presence of the virus. In this case, the sample should be examined by RT-PCR. Out of a total of 291 samples, there were 45 positive results with RT-PCR and 21 positive results with DFA. PMID:20721445

  10. Interactome Analysis of the NS1 Protein Encoded by Influenza A H1N1 Virus Reveals a Positive Regulatory Role of Host Protein PRP19 in Viral Replication.

    PubMed

    Kuo, Rei-Lin; Li, Zong-Hua; Li, Li-Hsin; Lee, Kuo-Ming; Tam, Ee-Hong; Liu, Helene M; Liu, Hao-Ping; Shih, Shin-Ru; Wu, Chih-Ching

    2016-05-01

    Influenza A virus, which can cause severe respiratory illnesses in infected individuals, is responsible for worldwide human pandemics. The NS1 protein encoded by this virus plays a crucial role in regulating the host antiviral response through various mechanisms. In addition, it has been reported that NS1 can modulate cellular pre-mRNA splicing events. To investigate the biological processes potentially affected by the NS1 protein in host cells, NS1-associated protein complexes in human cells were identified using coimmunoprecipitation combined with GeLC-MS/MS. By employing software to build biological process and protein-protein interaction networks, NS1-interacting cellular proteins were found to be related to RNA splicing/processing, cell cycle, and protein folding/targeting cellular processes. By monitoring spliced and unspliced RNAs of a reporter plasmid, we further validated that NS1 can interfere with cellular pre-mRNA splicing. One of the identified proteins, pre-mRNA-processing factor 19 (PRP19), was confirmed to interact with the NS1 protein in influenza A virus-infected cells. Importantly, depletion of PRP19 in host cells reduced replication of influenza A virus. In summary, the interactome of influenza A virus NS1 in host cells was comprehensively profiled, and our findings reveal a novel regulatory role for PRP19 in viral replication. PMID:27096427

  11. QSAR study of flavonoids and biflavonoids as influenza H1N1 virus neuraminidase inhibitors.

    PubMed

    Mercader, Andrew G; Pomilio, Alicia B

    2010-05-01

    We performed a predictive analysis based on Quantitative Structure-Activity Relationships (QSAR) of a very important property of flavonoids which is the inhibition (IC50) of influenza H1N1 virus neuraminidase. The best linear model constructed from 20 molecular structures incorporated four molecular descriptors, selected from more than a thousand geometrical, topological, quantum-mechanical and electronic types of descriptors. The obtained model suggests that the activity depends on the electric charges, masses and polarizabilities of the atoms present in the molecule as well as its conformation. The model showed good predictive ability established by the theoretical and external test set validations. PMID:20116898

  12. IL-1β and IL-6 Upregulation in Children with H1N1 Influenza Virus Infection

    PubMed Central

    Chiaretti, Antonio; Pulitanò, Silvia; Barone, Giovanni; Ferrara, Pietro; Capozzi, Domenico; Riccardi, Riccardo

    2013-01-01

    The role of cytokines in relation to clinical manifestations, disease severity, and outcome of children with H1N1 virus infection remains thus far unclear. The aim of this study was to evaluate interleukin IL-1β and IL-6 plasma expressions and their association with clinical findings, disease severity, and outcome of children with H1N1 infection. We prospectively evaluated 15 children with H1N1 virus infection and 15 controls with lower respiratory tract infections (LRTI). Interleukin plasma levels were measured using immunoenzymatic assays. Significantly higher levels of IL-1β and IL-6 were detected in all patients with H1N1 virus infection compared to controls. It is noteworthy to mention that in H1N1 patients with more severe clinical manifestations of disease IL-1β and IL-6 expressions were significantly upregulated compared to H1N1 patients with mild clinical manifestations. In particular, IL-6 was significantly correlated with specific clinical findings, such as severity of respiratory compromise and fever. No correlation was found between interleukin expression and final outcome. In conclusion, H1N1 virus infection induces an early and significant upregulation of both interleukins IL1β and IL-6 plasma expressions. The upregulation of these cytokines is likely to play a proinflammatory role in H1N1 virus infection and may contribute to airway inflammation and bronchial hyperreactivity in these patients. PMID:23737648

  13. Early Outbreak of 2009 Influenza A (H1N1) in Mexico Prior to Identification of pH1N1 Virus

    PubMed Central

    Hsieh, Ying-Hen; Ma, Stefan; Velasco Hernandez, Jorge X.; Lee, Vernon J.; Lim, Wei Yen

    2011-01-01

    Background In the aftermath of the global spread of 2009 influenza A (pH1N1) virus, still very little is known of the early stages of the outbreak in Mexico during the early months of the year, before the virus was identified. Methodology/Main Findings We fit a simple mathematical model, the Richards model, to the number of excess laboratory-confirmed influenza cases in Mexico and Mexico City during the first 15 weeks in 2009 over the average influenza case number of the previous five baseline years of 2004-2008 during the same period to ascertain the turning point (or the peak incidence) of a wave of early influenza infections, and to estimate the transmissibility of the virus during these early months in terms of its basic reproduction number. The results indicate that there may have been an early epidemic in Mexico City as well as in all of Mexico during February/March. Based on excess influenza cases, the estimated basic reproduction number R0 for the early outbreak was 1.59 (0.55 to 2.62) for Mexico City during weeks 5–9, and 1.25 (0.76, 1.74) for all of Mexico during weeks 5–14. Conclusions We established the existence of an early epidemic in Mexico City and in all of Mexico during February/March utilizing the routine influenza surveillance data, although the location of seeding is unknown. Moreover, estimates of R0 as well as the time of peak incidence (the turning point) for Mexico City and all of Mexico indicate that the early epidemic in Mexico City in February/March had been more transmissible (larger R0) and peaked earlier than the rest of the country. Our conclusion lends support to the possibility that the virus could have already spread to other continents prior to the identification of the virus and the reporting of lab-confirmed pH1N1 cases in North America in April. PMID:21909366

  14. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus

    NASA Astrophysics Data System (ADS)

    Mori, Yasutaka; Ono, Takeshi; Miyahira, Yasushi; Nguyen, Vinh Quang; Matsui, Takemi; Ishihara, Masayuki

    2013-02-01

    Silver nanoparticle (Ag NP)/chitosan (Ch) composites with antiviral activity against H1N1 influenza A virus were prepared. The Ag NP/Ch composites were obtained as yellow or brown floc-like powders following reaction at room temperature in aqueous medium. Ag NPs (3.5, 6.5, and 12.9 nm average diameters) were embedded into the chitosan matrix without aggregation or size alternation. The antiviral activity of the Ag NP/Ch composites was evaluated by comparing the TCID50 ratio of viral suspensions treated with the composites to untreated suspensions. For all sizes of Ag NPs tested, antiviral activity against H1N1 influenza A virus increased as the concentration of Ag NPs increased; chitosan alone exhibited no antiviral activity. Size dependence of the Ag NPs on antiviral activity was also observed: antiviral activity was generally stronger with smaller Ag NPs in the composites. These results indicate that Ag NP/Ch composites interacting with viruses exhibit antiviral activity.

  15. Monitoring and Characterization of Oseltamivir-Resistant Pandemic (H1N1) 2009 Virus, Japan, 2009–2010

    PubMed Central

    Ujike, Makoto; Ejima, Miho; Anraku, Akane; Shimabukuro, Kozue; Obuchi, Masatsugu; Kishida, Noriko; Hong, Xu; Takashita, Emi; Fujisaki, Seiichiro; Yamashita, Kazuyo; Horikawa, Hiroshi; Kato, Yumiko; Oguchi, Akio; Fujita, Nobuyuki; Tashiro, Masato

    2011-01-01

    To monitor and characterize oseltamivir-resistant (OR) pandemic (H1N1) 2009 virus with the H275Y mutation, we analyzed 4,307 clinical specimens from Japan by neuraminidase (NA) sequencing or inhibition assay; 61 OR pandemic (H1N1) 2009 viruses were detected. NA inhibition assay and M2 sequencing indicated that OR pandemic (H1N1) 2009 virus was resistant to M2 inhibitors, but sensitive to zanamivir. Full-genome sequencing showed OR and oseltamivir-sensitive (OS) viruses had high sequence similarity, indicating that domestic OR virus was derived from OS pandemic (H1N1) 2009 virus. Hemagglutination inhibition test demonstrated that OR and OS pandemic (H1N1) 2009 viruses were antigenically similar to the A/California/7/2009 vaccine strain. Of 61 case-patients with OR viruses, 45 received oseltamivir as treatment, and 10 received it as prophylaxis, which suggests that most cases emerged sporadically from OS pandemic (H1N1) 2009, due to selective pressure. No evidence of sustained spread of OR pandemic (H1N1) 2009 was found in Japan; however, 2 suspected incidents of human-to-human transmission were reported. PMID:21392439

  16. Chicken interferon alpha pretreatment reduces virus replication of pandemic H1N1 and H5N9 avian influenza viruses in lung cell cultures from different avian species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type I interferons, including interferon (IFN)-alpha, represent one of the first lines of innate immune defense against influenza virus infection. Following natural infection of chickens with avian influenza virus (AIV), transcription of IFN-alpha is quickly up regulated along with multiple other im...

  17. Oseltamivir-Resistant Influenza A(H1N1)pdm09 Viruses, United States, 2013–14

    PubMed Central

    Okomo-Adhiambo, Margaret; Fry, Alicia M.; Su, Su; Nguyen, Ha T.; Elal, Anwar Abd; Negron, Elizabeth; Hand, Julie; Garten, Rebecca J.; Barnes, John; Xiyan, Xu; Villanueva, Julie M.

    2015-01-01

    We report characteristics of oseltamivir-resistant influenza A(H1N1)pdm09 viruses and patients infected with these viruses in the United States. During 2013–14, fifty-nine (1.2%) of 4,968 analyzed US influenza A(H1N1)pdm09 viruses had the H275Y oseltamivir resistance–conferring neuraminidase substitution. Our results emphasize the need for local surveillance for neuraminidase inhibitor susceptibility among circulating influenza viruses. PMID:25532050

  18. Studies of Influenza A/H1N1 A/Tomsk/13/2010 Virus Topology during Development of Infectious Process in Mammals.

    PubMed

    Potapova, O V; Kovner, A V; Anikina, A G; Cherdantseva, L A; Sharkova, T V; Shkurupy, V A; Vasil'eva, E V; Shestopalov, A M

    2016-03-01

    Influenza A/H1N1 A/Tomsk/13/2010 virus registered in Siberia in 2010 proved to be an extremely pathogenic strain. Dynamic study of the topology of this influenza virus strain in the lungs, liver, kidneys, lymph nodes, and great vessels of infected mice was carried out. Influenza A virus was detected by immunohistochemical methods in cells of different histogenesis in all the studied organs throughout the observation period (days 1-30 postinfection), which indicated effective replication and long persistence of influenza A/H1N1 A/Tomsk/13/2010 virus in mammalian cells. PMID:27025855

  19. Healthcare personnel infected with novel influenza A H1N1 virus in university hospitals in Buenos Aires, Argentina.

    PubMed

    Querci, Marcia; Stryjewski, Martin E; Herrera, Fabián; Temporiti, Elena; Alcalá, Wanda; Chavez, Natalia; Figueras, Laura; Barberis, Fernanda; Echavarría, Marcela; Videla, Cristina; Martínez, Alfredo; Carballal, Guadalupe; Bonvehí, Pablo

    2011-01-01

    Data on the clinical presentation, risk factors, and outcomes for healthcare personnel (HCP) infected with influenza A H1N1 virus (H1N1) are limited. From June to July 2009, a prospective study was conducted among HCP with influenza-like illness (ILI) at university hospitals in Buenos Aires. A reverse transcription polymerase chain reaction (RT-PCR) was used to diagnose H1N1. A logistic regression model was developed to identify factors associated with H1N1. Among 1519 HCP, 96 (6.3%) were diagnosed with an ILI. Of these, 85 (88.5%) were swabbed for H1N1 detection, with 43 positive cases (2.8%). Seasonal influenza immunization was recorded in 76%. Comparison of H1N1-positive vs. H1N1-negative cases showed that H1N1-positive cases more frequently had asthenia (72% vs. 48%, p = 0.03) and cough (79% vs. 43%, p = 0.008) and less frequently had diarrhoea (9% vs. 29%, p = 0.03) and prior prophylaxis with oseltamivir (5% vs. 31%, p = 0.002). The logistic regression model showed that presence of cough (odds ratio (OR) 6.93, 95% confidence interval (CI) 2.24, 21.4) was associated with an increased risk of H1N1. Prior prophylaxis with oseltamivir (OR 0.08, 95% CI 0.01, 0.43) was associated with a lower probability of H1N1 infection. A high proportion of HCP with an ILI were infected with H1N1. Complication rates were relatively low. Prior prophylaxis with oseltamivir was associated with a lower risk of developing H1N1. PMID:20854220

  20. [Influenza a (H1N1) virus infection in humans: review to 30th October 2009].

    PubMed

    Navarro-Marí, José María; Mayoral-Cortés, José María; Pérez-Ruiz, Mercedes; Rodríguez-Baño, Jesús; Carratalá, Jordi; Gallardo-García, Virtudes

    2010-01-01

    Since human infection by a novel influenza virus A H1N1 of swine origin was reported in April 2009, the virus has spread worldwide causing a pandemic. In the Southern Hemisphere, the first pandemic wave has taken place, coinciding with Austral Winter. In the Northern Hemisphere, transmission has been sustained under the basal level of epidemic until the first weeks of October, when incidence rates have risen up to the pidemic level in some countries, including Spain. This work reviews the differential characteristics of this novel virus in terms of pathogenicity, clinical syndrome and epidemiology, as well as the diagnostic, prophylactic and therapeutic procedures available; information we consider relevant to minimize the impact of this new pandemic in our area. PMID:19962791

  1. Prior Infections With Seasonal Influenza A/H1N1 Virus Reduced the Illness Severity and Epidemic Intensity of Pandemic H1N1 Influenza in Healthy Adults

    PubMed Central

    Atmar, Robert L.; Franco, Luis M.; Quarles, John M.; Niño, Diane; Wells, Janet M.; Arden, Nancy; Cheung, Sheree; Belmont, John W.

    2012-01-01

    Background. A new influenza A/H1N1 (pH1N1) virus emerged in April 2009, proceeded to spread worldwide, and was designated as an influenza pandemic. A/H1N1 viruses had circulated in 1918–1957 and 1977–2009 and were in the annual vaccine during 1977–2009. Methods. Serum antibody to the pH1N1 and seasonal A/H1N1 viruses was measured in 579 healthy adults at enrollment (fall 2009) and after surveillance for illness (spring 2010). Subjects reporting with moderate to severe acute respiratory illness had illness and virus quantitation for 1 week; evaluations for missed illnesses were conducted over holiday periods and at the spring 2010 visit. Results. After excluding 66 subjects who received pH1N1 vaccine, 513 remained. Seventy-seven had reported with moderate to severe illnesses; 31 were infected with pH1N1 virus, and 30 with a rhinovirus. Determining etiology from clinical findings was not possible, but fever and prominent myalgias favored influenza and prominent rhinorrhea favored rhinovirus. Tests of fall and spring antibody indicated pH1N1 infection of 23% had occurred, with the rate decreasing with increasing anti-pH1N1 antibody; a similar pattern was seen for influenza-associated illness. A reducing frequency of pH1N1 infections was also seen with increasing antibody to the recent seasonal A/H1N1 virus (A/Brisbane/59/07). Preexisting antibody to pH1N1 virus, responses to a single vaccine dose, a low infection-to-illness ratio, and a short duration of illness and virus shedding among those with influenza indicated presence of considerable preexisting immunity to pH1N1 in the population. Conclusions. The 2009 A/H1N1 epidemic among healthy adults was relatively mild, most likely because of immunity from prior infections with A/H1N1 viruses. PMID:22075792

  2. Twin Peaks: A/H1N1 Pandemic Influenza Virus Infection and Vaccination in Norway, 2009–2010

    PubMed Central

    Van Effelterre, Thierry; Dos Santos, Gaël; Shinde, Vivek

    2016-01-01

    Background Vaccination campaigns against A/H1N1 2009 pandemic influenza virus (A/H1N1p) began in autumn 2009 in Europe, after the declaration of the pandemic at a global level. This study aimed to estimate the proportion of individuals vaccinated against A/H1N1p in Norway who were already infected (asymptomatically or symptomatically) by A/H1N1p before vaccination, using a mathematical model. Methods A dynamic, mechanistic, mathematical model of A/H1N1p transmission was developed for the Norwegian population. The model parameters were estimated by calibrating the model-projected number of symptomatic A/H1N1p cases to the number of laboratory-confirmed A/H1N1p cases reported to the surveillance system, accounting for potential under-reporting. It was assumed in the base case that the likelihood of vaccination was independent of infection/disease state. A sensitivity analysis explored the effects of four scenarios in which current or previous symptomatic A/H1N1p infection would influence the likelihood of being vaccinated. Results The number of model-projected symptomatic A/H1N1p cases by week during the epidemic, accounting for under-reporting and timing, closely matched that of the laboratory-confirmed A/H1N1p cases reported to the surveillance system. The model-projected incidence of symptomatic A/H1N1p infection was 27% overall, 55% in people <10 years old and 41% in people 10–20 years old. The model-projected percentage of individuals vaccinated against A/H1N1p who were already infected with A/H1N1p before being vaccinated was 56% overall, 62% in people <10 years old and 66% in people 10–20 years old. The results were sensitive to assumptions about the independence of vaccination and infection; however, even when current or previous symptomatic A/H1N1p infection was assumed to reduce the likelihood of vaccination, the estimated percentage of individuals who were infected before vaccination remained at least 32% in all age groups. Conclusion This analysis

  3. From where did the 2009 'swine-origin' influenza A virus (H1N1) emerge?

    PubMed

    Gibbs, Adrian J; Armstrong, John S; Downie, Jean C

    2009-01-01

    The swine-origin influenza A (H1N1) virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative framework coordinating

  4. Virulence and Genetic Compatibility of Polymerase Reassortant Viruses Derived from the Pandemic (H1N1) 2009 Influenza Virus and Circulating Influenza A Viruses▿†

    PubMed Central

    Song, Min-Suk; Pascua, Philippe Noriel Q.; Lee, Jun Han; Baek, Yun Hee; Park, Kuk Jin; Kwon, Hyeok-il; Park, Su-Jin; Kim, Chul-Joong; Kim, Hyunggee; Webby, Richard J.; Webster, Robert G.; Choi, Young Ki

    2011-01-01

    Gene mutations and reassortment are key mechanisms by which influenza A virus acquires virulence factors. To evaluate the role of the viral polymerase replication machinery in producing virulent pandemic (H1N1) 2009 influenza viruses, we generated various polymerase point mutants (PB2, 627K/701N; PB1, expression of PB1-F2 protein; and PA, 97I) and reassortant viruses with various sources of influenza viruses by reverse genetics. Although the point mutations produced no significant change in pathogenicity, reassortment between the pandemic A/California/04/09 (CA04, H1N1) and current human and animal influenza viruses produced variants possessing a broad spectrum of pathogenicity in the mouse model. Although most polymerase reassortants had attenuated pathogenicity (including those containing seasonal human H3N2 and high-pathogenicity H5N1 virus segments) compared to that of the parental CA04 (H1N1) virus, some recombinants had significantly enhanced virulence. Unexpectedly, one of the five highly virulent reassortants contained a A/Swine/Korea/JNS06/04(H3N2)-like PB2 gene with no known virulence factors; the other four had mammalian-passaged avian-like genes encoding PB2 featuring 627K, PA featuring 97I, or both. Overall, the reassorted polymerase complexes were only moderately compatible for virus rescue, probably because of disrupted molecular interactions involving viral or host proteins. Although we observed close cooperation between PB2 and PB1 from similar virus origins, we found that PA appears to be crucial in maintaining viral gene functions in the context of the CA04 (H1N1) virus. These observations provide helpful insights into the pathogenic potential of reassortant influenza viruses composed of the pandemic (H1N1) 2009 influenza virus and prevailing human or animal influenza viruses that could emerge in the future. PMID:21507962

  5. Protection against divergent influenza H1N1 virus by a centralized influenza hemagglutinin.

    PubMed

    Weaver, Eric A; Rubrum, Adam M; Webby, Richard J; Barry, Michael A

    2011-01-01

    Influenza poses a persistent worldwide threat to the human population. As evidenced by the 2009 H1N1 pandemic, current vaccine technologies are unable to respond rapidly to this constantly diverging pathogen. We tested the utility of adenovirus (Ad) vaccines expressing centralized consensus influenza antigens. Ad vaccines were produced within 2 months and protected against influenza in mice within 3 days of vaccination. Ad vaccines were able to protect at doses as low as 10(7) virus particles/kg indicating that approximately 1,000 human doses could be rapidly generated from standard Ad preparations. To generate broadly cross-reactive immune responses, centralized consensus antigens were constructed against H1 influenza and against H1 through H5 influenza. Twenty full-length H1 HA sequences representing the main branches of the H1 HA phylogenetic tree were used to create a synthetic centralized gene, HA1-con. HA1-con minimizes the degree of sequence dissimilarity between the vaccine and existing circulating viruses. The centralized H1 gene, HA1-con, induced stronger immune responses and better protection against mismatched virus challenges as compared to two wildtype H1 genes. HA1-con protected against three genetically diverse lethal influenza challenges. When mice were challenged with 1934 influenza A/PR/8/34, HA1-con protected 100% of mice while vaccine generated from 2009 A/TX/05/09 only protected 40%. Vaccination with 1934 A/PR/8/34 and 2009 A/TX/05/09 protected 60% and 20% against 1947 influenza A/FM/1/47, respectively, whereas 80% of mice vaccinated with HA1-con were protected. Notably, 80% of mice challenged with 2009 swine flu isolate A/California/4/09 were protected by HA1-con vaccination. These data show that HA1-con in Ad has potential as a rapid and universal vaccine for H1N1 influenza viruses. PMID:21464940

  6. A novel monoclonal antibody effective against lethal challenge with swine-lineage and 2009 pandemic H1N1 influenza viruses in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The HA protein of the 2009 pandemic H1N1viruses (14 H1N1pdm) is antigenically closely related to the HA of classical North American swine H1N1 influenza viruses (cH1N1). Since 1998, through reassortment and incorporation of HA genes from human H3N2 and H1N1 influenza viruses, swine influenza strains...

  7. Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic

    PubMed Central

    Cook, Samantha; Conrad, Corrie; Fowlkes, Ashley L.; Mohebbi, Matthew H.

    2011-01-01

    Background Google Flu Trends (GFT) uses anonymized, aggregated internet search activity to provide near-real time estimates of influenza activity. GFT estimates have shown a strong correlation with official influenza surveillance data. The 2009 influenza virus A (H1N1) pandemic [pH1N1] provided the first opportunity to evaluate GFT during a non-seasonal influenza outbreak. In September 2009, an updated United States GFT model was developed using data from the beginning of pH1N1. Methodology/Principal Findings We evaluated the accuracy of each U.S. GFT model by comparing weekly estimates of ILI (influenza-like illness) activity with the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). For each GFT model we calculated the correlation and RMSE (root mean square error) between model estimates and ILINet for four time periods: pre-H1N1, Summer H1N1, Winter H1N1, and H1N1 overall (Mar 2009–Dec 2009). We also compared the number of queries, query volume, and types of queries (e.g., influenza symptoms, influenza complications) in each model. Both models' estimates were highly correlated with ILINet pre-H1N1 and over the entire surveillance period, although the original model underestimated the magnitude of ILI activity during pH1N1. The updated model was more correlated with ILINet than the original model during Summer H1N1 (r = 0.95 and 0.29, respectively). The updated model included more search query terms than the original model, with more queries directly related to influenza infection, whereas the original model contained more queries related to influenza complications. Conclusions Internet search behavior changed during pH1N1, particularly in the categories “influenza complications” and “term for influenza.” The complications associated with pH1N1, the fact that pH1N1 began in the summer rather than winter, and changes in health-seeking behavior each may have played a part. Both GFT models performed well prior to and during pH1N1

  8. A Combinatorial approach: To design inhibitory molecules on Hemagglutinin protein of H1N1 virus (Swine Flu)

    PubMed Central

    Prasad, Chekkara Venkata Satya Siva; Chaudhary, Kamal Kumar; Dinkar, Parul

    2013-01-01

    The Hemagglutinin (HA) is a protein of influenza A virus. It is present on the surface of influenza A virus and it is a glycoprotein. The HA is identified as potential drug target. H1N1 thiazolides, proved to be a potent drug in the inhibition of H1N1 replication. It is also known as inhibitor of other strains of influenza A virus. Thiazolide drug represses viral HA's maturation at a level which exists just before the resistance from digestion of endoglycosidase-H and thereby it hampers, HA insertion in host membrane. Blocking the appropriate active site of hemagglutinin protein helps in the disease control. In the present work, we have generated diverse combinatorial library based ligands on known inhibitor thiazolides and they were used for virtual screening by Molegro virtual docker program. K-means clustering approach was used for finding new inhibitory molecules with more appropriate features. These resulted molecules are may be helpful in the treatment of swine flu and many other related diseases. PMID:23888097

  9. Immunogenicity of Virus Like Particle Forming Baculoviral DNA Vaccine against Pandemic Influenza H1N1

    PubMed Central

    Gwon, Yong-Dae; Kim, Sehyun; Cho, Yeondong; Heo, Yoonki; Cho, Hansam; Park, Kihoon; Lee, Hee-Jung; Choi, Jiwon; Poo, Haryoung; Kim, Young Bong

    2016-01-01

    An outbreak of influenza H1N1 in 2009, representing the first influenza pandemic of the 21st century, was transmitted to over a million individuals and claimed 18,449 lives. The current status in many countries is to prepare influenza vaccine using cell-based or egg-based killed vaccine. However, traditional influenza vaccine platforms have several limitations. To overcome these limitations, many researchers have tried various approaches to develop alternative production platforms. One of the alternative approach, we reported the efficacy of influenza HA vaccination using a baculoviral DNA vaccine (AcHERV-HA). However, the immune response elicited by the AcHERV-HA vaccine, which only targets the HA antigen, was lower than that of the commercial killed vaccine. To overcome the limitations of this previous vaccine, we constructed a human endogenous retrovirus (HERV) envelope-coated, baculovirus-based, virus-like-particle (VLP)–forming DNA vaccine (termed AcHERV-VLP) against pandemic influenza A/California/04/2009 (pH1N1). BALB/c mice immunized with AcHERV-VLP (1×107 FFU AcHERV-VLP, i.m.) and compared with mice immunized with the killed vaccine or mice immunized with AcHERV-HA. As a result, AcHERV-VLP immunization produced a greater humoral immune response and exhibited neutralizing activity with an intrasubgroup H1 strain (PR8), elicited neutralizing antibody production, a high level of interferon-γ secretion in splenocytes, and diminished virus shedding in the lung after challenge with a lethal dose of influenza virus. In conclusion, VLP-forming baculovirus DNA vaccine could be a potential vaccine candidate capable of efficiently delivering DNA to the vaccinee and VLP forming DNA eliciting stronger immunogenicity than egg-based killed vaccines. PMID:27149064

  10. Immunogenicity of Virus Like Particle Forming Baculoviral DNA Vaccine against Pandemic Influenza H1N1.

    PubMed

    Gwon, Yong-Dae; Kim, Sehyun; Cho, Yeondong; Heo, Yoonki; Cho, Hansam; Park, Kihoon; Lee, Hee-Jung; Choi, Jiwon; Poo, Haryoung; Kim, Young Bong

    2016-01-01

    An outbreak of influenza H1N1 in 2009, representing the first influenza pandemic of the 21st century, was transmitted to over a million individuals and claimed 18,449 lives. The current status in many countries is to prepare influenza vaccine using cell-based or egg-based killed vaccine. However, traditional influenza vaccine platforms have several limitations. To overcome these limitations, many researchers have tried various approaches to develop alternative production platforms. One of the alternative approach, we reported the efficacy of influenza HA vaccination using a baculoviral DNA vaccine (AcHERV-HA). However, the immune response elicited by the AcHERV-HA vaccine, which only targets the HA antigen, was lower than that of the commercial killed vaccine. To overcome the limitations of this previous vaccine, we constructed a human endogenous retrovirus (HERV) envelope-coated, baculovirus-based, virus-like-particle (VLP)-forming DNA vaccine (termed AcHERV-VLP) against pandemic influenza A/California/04/2009 (pH1N1). BALB/c mice immunized with AcHERV-VLP (1×107 FFU AcHERV-VLP, i.m.) and compared with mice immunized with the killed vaccine or mice immunized with AcHERV-HA. As a result, AcHERV-VLP immunization produced a greater humoral immune response and exhibited neutralizing activity with an intrasubgroup H1 strain (PR8), elicited neutralizing antibody production, a high level of interferon-γ secretion in splenocytes, and diminished virus shedding in the lung after challenge with a lethal dose of influenza virus. In conclusion, VLP-forming baculovirus DNA vaccine could be a potential vaccine candidate capable of efficiently delivering DNA to the vaccinee and VLP forming DNA eliciting stronger immunogenicity than egg-based killed vaccines. PMID:27149064

  11. Toward a method for tracking virus evolutionary trajectory applied to the pandemic H1N1 2009 influenza virus.

    PubMed

    Squires, R Burke; Pickett, Brett E; Das, Sajal; Scheuermann, Richard H

    2014-12-01

    In 2009 a novel pandemic H1N1 influenza virus (H1N1pdm09) emerged as the first official influenza pandemic of the 21st century. Early genomic sequence analysis pointed to the swine origin of the virus. Here we report a novel computational approach to determine the evolutionary trajectory of viral sequences that uses data-driven estimations of nucleotide substitution rates to track the gradual accumulation of observed sequence alterations over time. Phylogenetic analysis and multiple sequence alignments show that sequences belonging to the resulting evolutionary trajectory of the H1N1pdm09 lineage exhibit a gradual accumulation of sequence variations and tight temporal correlations in the topological structure of the phylogenetic trees. These results suggest that our evolutionary trajectory analysis (ETA) can more effectively pinpoint the evolutionary history of viruses, including the host and geographical location traversed by each segment, when compared against either BLAST or traditional phylogenetic analysis alone. PMID:25064525

  12. Non-hydrolyzed in digestive tract and blood natural L-carnosine peptide ("bioactivated Jewish penicillin") as a panacea of tomorrow for various flu ailments: signaling activity attenuating nitric oxide (NO) production, cytostasis, and NO-dependent inhibition of influenza virus replication in macrophages in the human body infected with the virulent swine influenza A (H1N1) virus.

    PubMed

    Babizhayev, Mark A; Deyev, Anatoliy I; Yegorov, Yegor E

    2013-01-01

    in excessive amounts mediate the overreaction of the host's immune response against the organs or tissues in which viruses are replicating, and this may explain the mechanism of tissue injuries observed in influenza virus infection of various types. In this article, the types of protection of carnosine in its bioavailable non-hydrolyzed forms in formulations are considered against reactive oxygen radical species-dependent injury, peroxynitrite damage, and other types of viral injuries in which impaired immune responses to viral pathogens are usually involved. Carnosine (β-alanyl-L-histidine) shows the pharmacological intracellular correction of NO release, which might be one of the important factors of natural immunity in controlling the initial stages of influenza A virus infection (inhibition of virus replication) and virus-induced regulation of cytokine gene expression. The protective effects of orally applied non-hydrolyzed formulated species of carnosine include at least the direct interaction with NO, inhibition of cytotoxic NO-induced proinflammatory condition, and attenuation of the effects of cytokines and chemokines that can exert profound effects on inflammatory cells. These data are consistent with the hypothesis that natural products, such as chicken soup and chicken breast extracts rich in carnosine and its derivative anserine (β-alanyl-1-methyl-L-histidine), could contribute to the pathogenesis and prevention of influenza virus infections and cold but have a limitation due to the susceptibility to enzymatic hydrolysis of dipeptides with serum carnosinase and urine excretion after oral ingestion of a commercial chicken extract. The formulations of non-hydrolyzed in digestive tract and blood natural carnosine peptide and isopeptide (γ-glutamyl-carnosine) products, manufactured at the cGMP-certified facility and patented by the authors, have promise in the control and prevention of influenza A (H1N1) virus infection, cough, and cold. PMID:23425625

  13. Pandemic swine influenza virus (H1N1): A threatening evolution.

    PubMed

    Khanna, Madhu; Kumar, Binod; Gupta, Neha; Kumar, Prashant; Gupta, Ankit; Vijayan, V K; Kaur, Harpreet

    2009-12-01

    "Survival of the fittest" is an old axiom laid down by the great evolutionist Charles Darwin and microorganisms seem to have exploited this statement to a great extent. The ability of viruses to adapt themselves to the changing environment has made it possible to inhabit itself in this vast world for the past millions of years. Experts are well versed with the fact that influenza viruses have the capability to trade genetic components from one to the other within animal and human population. In mid April 2009, the Centers for Disease Control and Prevention and the World Health Organization had recognized a dramatic increase in number of influenza cases. These current 2009 infections were found to be caused by a new strain of influenza type A H1N1 virus which is a re-assortment of several strains of influenza viruses commonly infecting human, avian, and swine population. This evolution is quite dependent on swine population which acts as a main reservoir for the reassortment event in virus. With the current rate of progress and the efforts of heath authorities worldwide, we have still not lost the race against fighting this virus. This article gives an insight to the probable source of origin and the evolutionary progress it has gone through that makes it a potential threat in the future, the current scenario and the possible measures that may be explored to further strengthen the war against pandemic. PMID:23100799

  14. Efficacy of Inactivated Swine Influenza Virus Vaccines Against 2009 H1N1 Influenza Virus in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. The gene constellation of the 2009 pandemic H1N1 virus is a unique combination from swine influenza A viruses (SIV) of North American and Eurasian lineages, but prior to April 2009 had never before been identified in swine or other species (1). Although its hemagglutinin gene is relat...

  15. Efficacy of Inactivated Swine Influenza Virus Vaccines Against the 2009 A/H1N1 Influenza Virus in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene constellation of the 2009 pandemic A/H1N1 virus is a unique combination from swine influenza A viruses (SIV) of North American and Eurasian lineages, but prior to April 2009 had never before been identified in swine or other species. Although its hemagglutinin gene is related to North Ameri...

  16. Detection of influenza A(H1N1)v virus by real-time RT-PCR.

    PubMed

    Panning, M; Eickmann, M; Landt, O; Monazahian, M; Olschläger, S; Baumgarte, S; Reischl, U; Wenzel, J J; Niller, H H; Günther, S; Hollmann, B; Huzly, D; Drexler, J F; Helmer, A; Becker, S; Matz, B; Eis-Hübinger, Am; Drosten, C

    2009-09-10

    Influenza A(H1N1)v virus was first identified in April 2009. A novel real-time RT-PCR for influenza A(H1N1)v virus was set up ad hoc and validated following industry-standard criteria. The lower limit of detection of the assay was 384 copies of viral RNA per ml of viral transport medium (95% confidence interval: 273-876 RNA copies/ml). Specificity was 100% as assessed on a panel of reference samples including seasonal human influenza A virus H1N1 and H3N2, highly pathogenic avian influenza A virus H5N1 and porcine influenza A virus H1N1, H1N2 and H3N2 samples. The real-time RT-PCR assay for the influenza A matrix gene recommended in 2007 by the World Health Organization was modified to work under the same reaction conditions as the influenza A(H1N1)v virus-specific test. Both assays were equally sensitive. Clinical applicability of both assays was demonstrated by screening of almost 2,000 suspected influenza (H1N1)v specimens, which included samples from the first cases of pandemic H1N1 influenza imported to Germany. Measuring influenza A(H1N1)v virus concentrations in 144 laboratory-confirmed samples yielded a median of 4.6 log RNA copies/ml. The new methodology proved its principle and might assist public health laboratories in the upcoming influenza pandemic. PMID:19758541

  17. The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses

    PubMed Central

    Gao, Huijie; Sun, Yipeng; Hu, Jiao; Qi, Lu; Wang, Jinliang; Xiong, Xin; Wang, Yu; He, Qiming; Lin, Yang; Kong, Weili; Seng, Lai-Giea; Sun, Honglei; Pu, Juan; Chang, Kin-Chow; Liu, Xiufan; Liu, Jinhua

    2015-01-01

    PA-X is a novel protein encoded by PA mRNA and is found to decrease the pathogenicity of pandemic 1918 H1N1 virus in mice. However, the importance of PA-X proteins in current epidemiologically important influenza A virus strains is not known. In this study, we report on the pathogenicity and pathological effects of PA-X deficient 2009 pandemic H1N1 (pH1N1) and highly pathogenic avian influenza H5N1 viruses. We found that loss of PA-X expression in pH1N1 and H5N1 viruses increased viral replication and apoptosis in A549 cells and increased virulence and host inflammatory response in mice. In addition, PA-X deficient pH1N1 and H5N1 viruses up-regulated PA mRNA and protein synthesis and increased viral polymerase activity. Loss of PA-X was also accompanied by accelerated nuclear accumulation of PA protein and reduced suppression of PA on non-viral protein expression. Our study highlights the effects of PA-X on the moderation of viral pathogenesis and pathogenicity. PMID:25652161

  18. PB2 residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in mice.

    PubMed

    Zhou, Bin; Li, Yan; Halpin, Rebecca; Hine, Erin; Spiro, David J; Wentworth, David E

    2011-01-01

    Influenza A viruses are human and animal pathogens that cause morbidity and mortality, which range from mild to severe. The 2009 H1N1 pandemic was caused by the emergence of a reassortant H1N1 subtype (H1N1pdm) influenza A virus containing gene segments that originally circulated in human, avian, and swine virus reservoirs. The molecular determinants of replication and pathogenesis of H1N1pdm viruses in humans and other mammals are poorly understood. Therefore, we set out to elucidate viral determinants critical to the pathogenesis of this novel reassortant using a mouse model. We found that a glutamate-to-glycine substitution at residue 158 of the PB2 gene (PB2-E158G) increased the morbidity and mortality of the parental H1N1pdm virus. Results from mini-genome replication assays in human cells and virus titration in mouse tissues demonstrated that PB2-E158G is a pathogenic determinant, because it significantly increases viral replication rates. The virus load in PB2-E158G-infected mouse lungs was 1,300-fold higher than that of the wild-type virus. Our data also show that PB2-E158G had a much stronger influence on the RNA replication and pathogenesis of H1N1pdm viruses than PB2-E627K, which is a known pathogenic determinant. Remarkably, PB2-E158G substitutions also altered the pathotypes of two avian H5 viruses in mice, indicating that this residue impacts genetically divergent influenza A viruses and suggesting that this region of PB2 could be a new antiviral target. Collectively, the data presented in this study demonstrate that PB2-E158G is a novel pathogenic determinant of influenza A viruses in the mouse model. We speculate that PB2-E158G may be important in the adaptation of avian PB2 genes to other mammals, and BLAST sequence analysis identified a naturally occurring human H1N1pdm isolate that has this substitution. Therefore, future surveillance efforts should include scrutiny of this region of PB2 because of its potential impact on pathogenesis. PMID

  19. Sequential Infection in Ferrets with Antigenically Distinct Seasonal H1N1 Influenza Viruses Boosts Hemagglutinin Stalk-Specific Antibodies

    PubMed Central

    Kirchenbaum, Greg A.; Carter, Donald M.

    2015-01-01

    ABSTRACT Broadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus. IMPORTANCE The influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses

  20. Thoracic computerized tomographic (CT) findings in 2009 influenza A (H1N1) virus infection in Isfahan, Iran

    PubMed Central

    Rostami, Mojtaba; Javadi, Abbas-Ali; Khorvash, Farzin; Mostafavizadeh, Kamyar; Adibi, Atoosa; Babak, Anahita; Ataei, Behrooz; Meidani, Mohsen; Naeini, Alireza Emami; Salehi, Hasan; Avijgan, Majid; Yazdani, Mohammad Reza; Rezaei, Farshid

    2011-01-01

    BACKGROUND: Pandemic 2009 H1N1 influenza A virus arrived at Isfahan in August 2009. The virus is still circulating in the world. The abnormal thoracic computerized tomographic (CT) scan findings vary widely among the studies of 2009 H1N1 influenza. We evaluated the thoracic CT findings in patients with 2009 H1N1 virus infection to describe findings compared to previously reported findings, and to suggest patterns that may be suggestive for 2009 influenza A (H1N1) in an appropriate clinical setting. METHODS: Retrospectively, the archive of all patients with a diagnosis of 2009 H1N1 influenza A were reviewed, in Al-Zahra Hospital in Isfahan, central Iran, between September 23rd 2009 to February 20th 2010. Out of 216 patients with confirmed 2009 influenza A (H1N1) virus, 26 cases with abnormal CT were enrolled in the study. Radiologic findings were characterized by the type and pattern of opacities and zonal distribution. RESULTS: Patchy infiltration (34.6%), lobar consolidation (30.8%), and interstitial infiltration (26.9%) with airbronchogram (38.5%) were the predominant findings in our patients. Bilateral distribution was seen in 80.8% of the patients. Only one patient (3.8%) showed ground-glass opacity, predominant radiographic finding in the previous reports and severe acute respiratory syndrome (SARS). CONCLUSIONS: The most common thoracic CT findings in pandemic H1N1 were patchy infiltration, lobar consolidation, and interstitial infiltration with airbronchogram and bilateral distribution. While these findings can be associated with other infections; they may be suggestive to 2009 influenza A (H1N1) in the appropriate clinical setting. Various radiographic patterns can be seen in thoracic CT scans of the influenza patients. Imaging findings are nonspecific. PMID:22091280

  1. Evolution of 2009 H1N1 influenza viruses during the pandemic correlates with increased viral pathogenicity and transmissibility in the ferret model.

    PubMed

    Otte, Anna; Marriott, Anthony C; Dreier, Carola; Dove, Brian; Mooren, Kyra; Klingen, Thorsten R; Sauter, Martina; Thompson, Katy-Anne; Bennett, Allan; Klingel, Karin; van Riel, Debby; McHardy, Alice C; Carroll, Miles W; Gabriel, Gülsah

    2016-01-01

    There is increasing evidence that 2009 pandemic H1N1 influenza viruses have evolved after pandemic onset giving rise to severe epidemics in subsequent waves. However, it still remains unclear which viral determinants might have contributed to disease severity after pandemic initiation. Here, we show that distinct mutations in the 2009 pandemic H1N1 virus genome have occurred with increased frequency after pandemic declaration. Among those, a mutation in the viral hemagglutinin was identified that increases 2009 pandemic H1N1 virus binding to human-like α2,6-linked sialic acids. Moreover, these mutations conferred increased viral replication in the respiratory tract and elevated respiratory droplet transmission between ferrets. Thus, our data show that 2009 H1N1 influenza viruses have evolved after pandemic onset giving rise to novel virus variants that enhance viral replicative fitness and respiratory droplet transmission in a mammalian animal model. These findings might help to improve surveillance efforts to assess the pandemic risk by emerging influenza viruses. PMID:27339001

  2. Evolution of 2009 H1N1 influenza viruses during the pandemic correlates with increased viral pathogenicity and transmissibility in the ferret model

    PubMed Central

    Otte, Anna; Marriott, Anthony C.; Dreier, Carola; Dove, Brian; Mooren, Kyra; Klingen, Thorsten R.; Sauter, Martina; Thompson, Katy-Anne; Bennett, Allan; Klingel, Karin; van Riel, Debby; McHardy, Alice C.; Carroll, Miles W.; Gabriel, Gülsah

    2016-01-01

    There is increasing evidence that 2009 pandemic H1N1 influenza viruses have evolved after pandemic onset giving rise to severe epidemics in subsequent waves. However, it still remains unclear which viral determinants might have contributed to disease severity after pandemic initiation. Here, we show that distinct mutations in the 2009 pandemic H1N1 virus genome have occurred with increased frequency after pandemic declaration. Among those, a mutation in the viral hemagglutinin was identified that increases 2009 pandemic H1N1 virus binding to human-like α2,6-linked sialic acids. Moreover, these mutations conferred increased viral replication in the respiratory tract and elevated respiratory droplet transmission between ferrets. Thus, our data show that 2009 H1N1 influenza viruses have evolved after pandemic onset giving rise to novel virus variants that enhance viral replicative fitness and respiratory droplet transmission in a mammalian animal model. These findings might help to improve surveillance efforts to assess the pandemic risk by emerging influenza viruses. PMID:27339001

  3. Natural A(H1N1)pdm09 influenza virus infection case in a pet ferret in Taiwan.

    PubMed

    Lin, Hui-Ting; Wang, Ching-Ho; Wu, Wen-Ling; Chi, Chau-Hwa; Wang, Lih Chiann

    2014-11-01

    Ferrets have demonstrated high susceptibility to the influenza virus. This study discusses a natural 2009 pandemic influenza A (H1N1) (A(H1N1)pdm09) virus infection in a pet ferret (Mustela putorius furo) identified in Taiwan in 2013. The ferret was in close contact with family members who had recently experienced an influenza-like illness (ILI). The ferret nasal swab showed positive results for influenza A virus using one-step RT-PCR. The virus was isolated and the phylogenetic analysis indicated that all of the eight segmented genes were closely related to the human A(H1N1)pdm09 virus linage isolated in Taiwan. This study may provide a perspective view on natural influenza A virus transmission from the local human population into pet ferrets. PMID:25597188

  4. Cross‐protection between antigenically distinct H1N1 swine influenza viruses from Europe and North America

    PubMed Central

    De Vleeschauwer, Annebel R.; Van Poucke, Sjouke G.; Karasin, Alexander I.; Olsen, Christopher W.; Van Reeth, Kristien

    2010-01-01

    Please cite this paper as: De Vleeschauwer et al. (2011) Cross‐protection between antigenically distinct H1N1 swine influenza viruses from Europe and North America. Influenza and Other Respiratory Viruses 5(2), 115–122. Background  An avian‐like H1N1 swine influenza virus (SIV) is enzootic in swine populations of Western Europe. The virus is antigenically distinct from H1N1 SIVs in North America that have a classical swine virus‐lineage H1 hemagglutinin, as does the pandemic (H1N1) 2009 virus. However, the significance of this antigenic difference for cross‐protection among pigs remains unknown. Objectives  We examined protection against infection with a North American triple reassortant H1N1 SIV [A/swine/Iowa/H04YS2/04 (sw/IA/04)] in pigs infected with a European avian‐like SIV [A/swine/Belgium/1/98 (sw/B/98)] 4 weeks earlier. We also examined the genetic relationships and serologic cross‐reactivity between both SIVs and with a pandemic (H1N1) 2009 virus [A/California/04/09 (Calif/09)]. Results  After intranasal inoculation with sw/IA/04, all previously uninfected control pigs showed nasal virus excretion, high virus titers in the entire respiratory tract at 4 days post‐challenge (DPCh) and macroscopic lung lesions. Most pigs previously infected with sw/B/98 tested negative for sw/IA/04 in nasal swabs and respiratory tissues, and none had lung lesions. At challenge, these pigs had low levels of cross‐reactive virus neutralizing and neuraminidase inhibiting (NI) antibodies to sw/IA/04, but no hemagglutination‐inhibiting antibodies. They showed similar antibody profiles when tested against Calif/09, but NI antibody titers were higher against Calif/09 than sw/IA/04, reflecting the higher genetic homology of the sw/B/98 neuraminidase with Calif/09. Conclusions  Our data indicate that immunity induced by infection with European avian‐like H1N1 SIV affords protection for pigs against North American H1N1 SIVs with a classical H1, and

  5. Corticosteroid Treatment Ameliorates Acute Lung Injury Induced by 2009 Swine Origin Influenza A (H1N1) Virus in Mice

    PubMed Central

    Sun, Yang; Wang, Wei; Zou, Zhen; Xing, Li; Chen, Zhongwei; Tang, Chong; Guo, Feng; Deng, Jiejie; Zhao, Yan; Yan, Yiwu; Tang, Jun; Wang, Xiliang; Jiang, Chengyu

    2012-01-01

    Background The 2009 influenza pandemic affected people in almost all countries in the world, especially in younger age groups. During this time, the debate over whether to use corticosteroid treatment in severe influenza H1N1 infections patients resurfaced and was disputed by clinicians. There is an urgent need for a susceptible animal model of 2009 H1N1 infection that can be used to evaluate the pathogenesis and the therapeutic effect of corticosteroid treatment during infection. Methodology/Principal Findings We intranasally inoculated two groups of C57BL/6 and BALB/c mice (using 4- or 6-to 8-week-old mice) to compare the pathogenesis of several different H1N1 strains in mice of different ages. Based on the results, a very susceptible 4-week-old C57BL/6 mouse model of Beijing 501 strain of 2009 H1N1 virus infection was established, showing significantly elevated lung edema and cytokine levels compared to controls. Using our established animal model, the cytokine production profile and lung histology were assessed at different times post-infection, revealing increased lung lesions in a time-dependent manner. In additional,the mice were also treated with dexamethasone, which significantly improved survival rate and lung lesions in infected mice compared to those in control mice. Our data showed that corticosteroid treatment ameliorated acute lung injury induced by the 2009 A/H1N1 virus in mice and suggested that corticosteroids are valid drugs for treating 2009 A/H1N1 infection. Conclusions/Significance Using the established, very susceptible 2009 Pandemic Influenza A (H1N1) mouse model, our studies indicate that corticosteroids are a potential therapeutic remedy that may address the increasing concerns over future 2009 A/H1N1pandemics. PMID:22952892

  6. Pathogenesis of pandemic influenza A (H1N1) and triple-reassortant swine influenza A (H1) viruses in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pandemic H1N1 virus of 2009 (2009 H1N1) continues to cause illness worldwide, primarily in younger age groups. To better understand the pathogenesis of these viruses in mammals, we used a mouse model to evaluate the relative virulence of selected 2009 H1N1 viruses and compared them to a represe...

  7. Pandemic influenza A(H1N1)v viruses currently circulating in New Zealand are sensitive to oseltamivir.

    PubMed

    Hall, R J; Peacey, M P; Ralston, J C; Bocacao, J; Ziki, M; Gunn, W; Quirk, A; Huang, Q S

    2009-07-30

    New Zealand, like other southern hemisphere countries with a temperate climate, has been in the winter period with seasonal influenza activity. New Zealand has also experienced a dramatic increase in the number of cases of pandemic influenza A(H1N1)v virus. Early reports from the northern hemisphere at the beginning of the pandemic showed that the virus was sensitive to the antiviral drug oseltamivir. In this study we report that pandemic influenza A(H1N1)v viruses currently circulating in New Zealand are sensitive to oseltamivir, but seasonal influenza A(H1N1) viruses - the co-circulating predominant seasonal strain, is resistant to oseltamivir. PMID:19643060

  8. [Advances in the structure and function of pandemic A/H1N1/2009 influenza virus HA protein].

    PubMed

    Zhang, Wen-Qiang; Song, Shao-Xia; Wang, Tong-Zhan

    2012-06-01

    Since March 2009, pandemic A/H1N1/2009 influenza virus has been spreading throughout many countries including China. The emerged virus caused great harm to human health and social economy. Hemagglutinin (HA) is the most important viral surface glycoprotein, mainly possessing three kinds of functions: (1) binding to host cell receptor, (2) triggering the fusion between viral envelop and target cell membrane, (3) stimulating the body to generate the neutralizing antibody. Advances in the structure, primary function, evolution and antigenicity of pandemic A/H1N1/2009 influenza virus HA protein are reviewed in this paper. PMID:22978172

  9. An outbreak of the 2009 influenza a (H1N1) virus in a children’s hospital

    PubMed Central

    Bearden, Allison; Friedrich, Thomas C.; Goldberg, Tony L.; Byrne, Barbara; Spiegel, Carol; Schult, Peter; Safdar, Nasia

    2012-01-01

    Please cite this paper as: Bearden et al. (2012) An outbreak of the 2009 influenza a (H1N1) virus in a children’s hospital. Influenza and Other Respiratory Viruses 6(5), 374–379. Context  Preventing nosocomial transmission of influenza is essential to reduce the morbidity and mortality associated with this infection. In October 2009, an outbreak of the 2009 influenza A (H1N1) virus occurred in a hematology ward of a children’s hospital over a 21‐day period and involved two patients and four healthcare workers. Objective  To investigate nosocomial transmission of the 2009 influenza A (H1N1) virus in patients and healthcare workers. Design, setting, and participants  An outbreak investigation was initiated in response to suspected nosocomial transmission of the 2009 influenza A (H1N1) virus during the peak of the 2009 pandemic. Cases were confirmed using a polymerase chain reaction (PCR) test specific for the 2009 H1N1 influenza A virus. Viruses isolated from nasopharyngeal swabs were genetically characterized using Sanger sequencing of uncloned “bulk” PCR products. Main outcome measures  Virus sequencing to investigate nosocomial transmission. Results  Two immunocompromised patients and four healthcare workers were found to be part of a nosocomial outbreak of the 2009 influenza A (H1N1) virus. One immunocompromised patient had a second episode of clinical influenza infection after isolation precautions had been discontinued, resulting in additional exposures. Strain‐specific PCR showed that all cases were caused by infection of the 2009 H1N1 virus. Sequencing of viral genes encoding hemagglutinin and polymerase basic subunit 2 (PB2) revealed that all viruses isolated were genetically identical at these loci, including the two episodes occurring in the same immunocompromised patient. Conclusions  Prompt institution of isolation precautions is essential in preventing nosocomial outbreaks of the 2009 novel influenza A (H1N1) virus. Our data

  10. Obesity increases mortality and modulates the lung metabolome during pandemic H1N1 influenza virus infection in mice1

    PubMed Central

    Milner, J. Justin; Rebeles, Jenny; Dhungana, Suraj; Stewart, Delisha A.; Sumner, Susan C.J.; Meyers, Matthew H.; Mancuso, Peter; Beck, Melinda A.

    2015-01-01

    Obese individuals are at greater risk for hospitalization and death from infection with the 2009 pandemic H1N1 influenza virus (pH1N1). In this study, diet-induced and genetic-induced obese mouse models were utilized to uncover potential mechanisms by which obesity increases pH1N1 severity. High fat diet-induced and genetic-induced obese mice exhibited greater pH1N1 mortality, lung inflammatory responses and excess lung damage despite similar levels of viral burden compared with lean control mice. Further, obese mice had fewer bronchoalveolar macrophages and regulatory T cells during infection. Obesity is inherently a metabolic disease, and metabolic profiling has found widespread usage in metabolic and infectious disease models for identifying biomarkers and enhancing understanding of complex mechanisms of disease. To further characterize the consequences of obesity on pH1N1 infection responses, we performed global liquid chromatography-mass spectrometry metabolic profiling of lung tissue and urine. An array of metabolites were perturbed by obesity both prior to and during infection. Uncovered metabolic signatures were used to identify changes in metabolic pathways that were differentially altered in the lungs of obese mice such as fatty acid, phospholipid, and nucleotide metabolism. Taken together, obesity induces distinct alterations in the lung metabolome, perhaps contributing to aberrant pH1N1 immune responses. PMID:25862817

  11. Simple, rapid detection of influenza A (H1N1) viruses using a highly sensitive peptide-based molecular beacon.

    PubMed

    Lim, Eun-Kyung; Guk, Kyeonghye; Kim, Hyeran; Chung, Bong-Hyun; Jung, Juyeon

    2016-01-01

    A peptide-based molecular beacon (PEP-MB) was prepared for the simple, rapid, and specific detection of H1N1 viruses using a fluorescence resonance energy transfer (FRET) system. The PEP-MB exhibited minimal fluorescence in its "closed" hairpin structure. However, in the presence of H1N1 viruses, the specific recognition of the hemagglutinin (HA) protein of H1 strains by the PEP-MB causes the beacon to assume an "open" structure that emits strong fluorescence. The PEP-MB could detect H1N1 viruses within 15 min or even 5 min and can exhibit strong fluorescence even at low viral concentrations, with a detection limit of 4 copies. PMID:26509476

  12. Frequent global transmission of H1N1pdm09 influenza viruses from humans to swine, 2009-2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a large-scale phylogenetic approach we identify at least 52 human-to-swine transmission events of pandemic A/H1N1/09 influenza virus. These results highlight the global frequency of swine exposure to human influenza viruses and the permeability of the human-swine species barrier, even followin...

  13. Epidemiological aspects of pandemic influenza A(H1N1) virus from 2009 to 2011 in Iran

    PubMed Central

    Yavarian, Jila; Naseri, Maryam; Shadab, Azadeh; Shafiei Jandaghi, Nazanin Z.; Mokhtari Azad, Talat

    2012-01-01

    Please cite this paper as: Yavarian et al. (2012). Epidemiological aspects of pandemic influenza A(H1N1) virus from 2009 to 2011 in Iran. Influenza and Other Respiratory Viruses 6(601), e74–e76. PMID:22487173

  14. Co-infection of classic swine H1N1 influenza virus in pigs persistently infected with porcine rubulavirus.

    PubMed

    Rivera-Benitez, José Francisco; De la Luz-Armendáriz, Jazmín; Saavedra-Montañez, Manuel; Jasso-Escutia, Miguel Ángel; Sánchez-Betancourt, Ivan; Pérez-Torres, Armando; Reyes-Leyva, Julio; Hernández, Jesús; Martínez-Lara, Atalo; Ramírez-Mendoza, Humberto

    2016-02-29

    Porcine rubulavirus (PorPV) and swine influenza virus infection causes respiratory disease in pigs. PorPV persistent infection could facilitate the establishment of secondary infections. The aim of this study was to analyse the pathogenicity of classic swine H1N1 influenza virus (swH1N1) in growing pigs persistently infected with porcine rubulavirus. Conventional six-week-old pigs were intranasally inoculated with PorPV, swH1N1, or PorPV/swH1N1. A mock-infected group was included. The co-infection with swH1N1 was at 44 days post-infection (DPI), right after clinical signs of PorPV infection had stopped. The pigs of the co-infection group presented an increase of clinical signs compared to the simple infection groups. In all infected groups, the most recurrent lung lesion was hyperplasia of the bronchiolar-associated lymphoid tissue and interstitial pneumonia. By means of immunohistochemical evaluation it was possible to demonstrate the presence of the two viral agents infecting simultaneously the bronchiolar epithelium. Viral excretion of PorPV in nasal and oral fluid was recorded at 28 and 52 DPI, respectively. PorPV persisted in several samples from respiratory tissues (RT), secondary lymphoid organs (SLO), and bronchoalveolar lavage fluid (BALF). For swH1N1, the viral excretion in nasal fluids was significantly higher in single-infected swH1N1 pigs than in the co-infected group. However, the co-infection group exhibited an increase in the presence of swH1N1 in RT, SLO, and BALF at two days after co-infection. In conclusion, the results obtained confirm an increase in the clinical signs of infection, and PorPV was observed to impact the spread of swH1N1 in analysed tissues in the early stage of co-infection, although viral shedding was not enhanced. In the present study, the interaction of swH1N1 infection is demonstrated in pigs persistently infected with PorPV. PMID:26854342

  15. Fatal pandemic (H1N1) 2009 influenza A virus infection in a Pennsylvania domestic cat.

    PubMed

    Campagnolo, E R; Rankin, J T; Daverio, S A; Hunt, E A; Lute, J R; Tewari, D; Acland, H M; Ostrowski, S R; Moll, M E; Urdaneta, V V; Ostroff, S M

    2011-11-01

    We report the earliest recognized fatality associated with laboratory-confirmed pandemic H1N1 (pH1N1) influenza in a domestic cat in the United States. The 12-year old, indoor cat died on 6 November 2009 after exposure to multiple family members who had been ill with influenza-like illness during the peak period of the fall wave of pH1N1 in Pennsylvania during late October 2009. The clinical presentation, history, radiographic, laboratory and necropsy findings are presented to assist veterinary care providers in understanding the features of this disease in cats and the potential for transmission of infection to pets from infected humans. PMID:21824345

  16. Rapid and highly sensitive method for influenza A (H1N1) virus detection.

    PubMed

    Su, Li-Chen; Chang, Chung-Ming; Tseng, Ya-Ling; Chang, Ying-Feng; Li, Ying-Chang; Chang, Yu-Sun; Chou, Chien

    2012-05-01

    In this study, we applied the developed paired surface plasma waves biosensor (PSPWB) in a dual-channel biosensor for rapid and sensitive detection of swine-origin influenza A (H1N1) virus (S-OIV). In conjunction with the amplitude ratio of the signal and the reference channel, the stability of the PSPWB system is significantly improved experimentally. The theoretical limit of detection (LOD) of the dual-channel PSPWB for S-OIV is 30 PFU/mL (PFU, plaque-forming unit), which was calculated from the fitting curve of the surface plasmon resonance signal with a S-OIV clinical isolate concentration in phosphate-buffered saline (PBS) over a range of 18-1.8 × 10(6) PFU/mL. The LOD is 2 orders of magnitude more sensitive than the commercial rapid influenza diagnostic test at worst and an order of magnitude less sensitive than real-time quantitative polymerase chain reaction (PCR) whose LOD for S-OIV in PBS was determined to be 3.5 PFU/mL in this experiment. Furthermore, under in vivo conditions, this experiment demonstrates that the assay successfully measured S-OIV at a concentration of 1.8 × 10(2) PFU/mL in mimic solution, which contained PBS-diluted normal human nasal mucosa. Most importantly, the assay time took less than 20 min. From the results, the dual-channel PSPWB potentially offers great opportunity in developing an alternative PCR-free diagnostic method for rapid, sensitive, and accurate detection of viral pathogens with epidemiological relevance in clinical samples by using an appropriate pathogen-specific antibody. PMID:22401570

  17. Genetic makeup of amantadine-resistant and oseltamivir-resistant human influenza A/H1N1 viruses.

    PubMed

    Zaraket, Hassan; Saito, Reiko; Suzuki, Yasushi; Baranovich, Tatiana; Dapat, Clyde; Caperig-Dapat, Isolde; Suzuki, Hiroshi

    2010-04-01

    The emergence and widespread occurrence of antiviral drug-resistant seasonal human influenza A viruses, especially oseltamivir-resistant A/H1N1 virus, are major concerns. To understand the genetic background of antiviral drug-resistant A/H1N1 viruses, we performed full genome sequencing of prepandemic A/H1N1 strains. Seasonal influenza A/H1N1 viruses, including antiviral-susceptible viruses, amantadine-resistant viruses, and oseltamivir-resistant viruses, obtained from several areas in Japan during the 2007-2008 and 2008-2009 influenza seasons were analyzed. Sequencing of the full genomes of these viruses was performed, and the phylogenetic relationships among the sequences of each individual genome segment were inferred. Reference genome sequences from the Influenza Virus Resource database were included to determine the closest ancestor for each segment. Phylogenetic analysis revealed that the oseltamivir-resistant strain evolved from a reassortant oseltamivir-susceptible strain (clade 2B) which circulated in the 2007-2008 season by acquiring the H275Y resistance-conferring mutation in the NA gene. The oseltamivir-resistant lineage (corresponding to the Northern European resistant lineage) represented 100% of the H1N1 isolates from the 2008-2009 season and further acquired at least one mutation in each of the polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), hemagglutinin (HA), and neuraminidase (NA) genes. Therefore, a reassortment event involving two distinct oseltamivir-susceptible lineages, followed by the H275Y substitution in the NA gene and other mutations elsewhere in the genome, contributed to the emergence of the oseltamivir-resistant lineage. In contrast, amantadine-resistant viruses from the 2007-2008 season distinctly clustered in clade 2C and were characterized by extensive amino acid substitutions across their genomes, suggesting that a fitness gap among its genetic components might have driven these mutations to maintain it in the

  18. Computational 3D structures of drug-targeting proteins in the 2009-H1N1 influenza A virus

    NASA Astrophysics Data System (ADS)

    Du, Qi-Shi; Wang, Shu-Qing; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-01-01

    The neuraminidase (NA) and M2 proton channel of influenza virus are the drug-targeting proteins, based on which several drugs were developed. However these once powerful drugs encountered drug-resistant problem to the H5N1 and H1N1 flu. To address this problem, the computational 3D structures of NA and M2 proteins of 2009-H1N1 influenza virus were built using the molecular modeling technique and computational chemistry method. Based on the models the structure features of NA and M2 proteins were analyzed, the docking structures of drug-protein complexes were computed, and the residue mutations were annotated. The results may help to solve the drug-resistant problem and stimulate designing more effective drugs against 2009-H1N1 influenza pandemic.

  19. Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans

    PubMed Central

    Peiris, JS Malik; Poon, Leo LM; Guan, Yi

    2016-01-01

    A recently emerged novel influenza A H1N1 virus continues to spread globally. The virus contains a novel constellation of gene segments, the nearest known precursors being viruses found in swine and it likely arose through reassortment of two or more viruses of swine origin. H1N1, H1N2 and H3N2 subtype swine influenza viruses have occasionally infected humans before but such zoonotic transmission-events did not lead to sustained human-to-human transmission in the manner this swine-origin influenza virus (S-OIV) has done. Its transmission among humans appears to be higher than that observed with seasonal influenza. Children and young adults appear to those most affected and also those who appear to maintain transmission. Clinical disease generally appears mild but complications leading to hospitalization can occur, especially in those with underlying lung or cardiac disease, diabetes or those on immunosuppresive therapies. There are concerns that the virus may reassort with existing human influenza virus giving rise to more transmissible or more pathogenic viruses. The virus appears to retain the potential to transmit back to swine and thus continued reassortment with swine viruses is a cause for concern. PMID:19540800

  20. Neuraminidase H275Y and hemagglutinin D222G mutations in a fatal case of 2009 pandemic influenza A (H1N1) virus infection

    PubMed Central

    DeVries, Aaron; Wotton, Jason; Lees, Christine; Boxrud, David; Uyeki, Timothy; Lynfield, Ruth

    2012-01-01

    Please cite this paper as: DeVries et al. (2012) Neuraminidase H275Y and hemagglutinin D222G mutations in a fatal case of 2009 pandemic influenza A (H1N1) virus infection. Influenza and Other Respiratory Viruses 6(601), e85–e88. Oseltamivir‐resistant 2009 H1N1 influenza virus infections associated with neuraminidase (NA) H275Y have been identified sporadically. Strains possessing the hemagglutinin (HA) D222G mutation have been detected in small numbers of fatal 2009 H1N1 cases. We report the first clinical description of 2009 H1N1 virus infection with both NA‐H275Y and HA‐D222G mutations detected by pyrosequencing of bronchioalveolar lavage fluid obtained on symptom day 19. The 59‐year‐old immunosuppressed patient had multiple conditions conferring higher risk of prolonged viral replication and severe illness and died on symptom day 34. Further investigations are needed to determine the significance of infection with strains possessing NA‐H275Y and HA‐D222G. PMID:22243670

  1. Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers

    PubMed Central

    Wan, Hongquan; Yang, Hua; Shore, David A.; Garten, Rebecca J.; Couzens, Laura; Gao, Jin; Jiang, Lianlian; Carney, Paul J.; Villanueva, Julie; Stevens, James; Eichelberger, Maryna C.

    2015-01-01

    A(H1N1)pdm09 influenza A viruses predominated in the 2013–2014 USA influenza season, and although most of these viruses remain sensitive to Food and Drug Administration-approved neuraminidase (NA) inhibitors, alternative therapies are needed. Here we show that monoclonal antibody CD6, selected for binding to the NA of the prototypic A(H1N1)pdm09 virus, A/California/07/2009, protects mice against lethal virus challenge. The crystal structure of NA in complex with CD6 Fab reveals a unique epitope, where the heavy-chain complementarity determining regions (HCDRs) 1 and 2 bind one NA monomer, the light-chain CDR2 binds the neighbouring monomer, whereas HCDR3 interacts with both monomers. This 30-amino-acid epitope spans the lateral face of an NA dimer and is conserved among circulating A(H1N1)pdm09 viruses. These results suggest that the large, lateral CD6 epitope may be an effective target of antibodies selected for development as therapeutic agents against circulating H1N1 influenza viruses. PMID:25668439

  2. Seroprevalence of influenza A(H1N1)pdm09 virus antibody, England, 2010 and 2011.

    PubMed

    Hoschler, Katja; Thompson, Catherine; Andrews, Nick; Galiano, Monica; Pebody, Richard; Ellis, Joanna; Stanford, Elaine; Baguelin, Marc; Miller, Elizabeth; Zambon, Maria

    2012-11-01

    The intense influenza activity in England during the 2010-11 winter resulted from a combination of factors. Population-based seroepidemiology confirms that the third wave of influenza A(H1N1)pdm09 virus circulation was associated with a shift in age groups affected, with the highest rate of infection in young adults. PMID:23092684

  3. Seroprevalence of Influenza A(H1N1)pdm09 Virus Antibody, England, 2010 and 2011

    PubMed Central

    Thompson, Catherine; Andrews, Nick; Galiano, Monica; Pebody, Richard; Ellis, Joanna; Stanford, Elaine; Baguelin, Marc; Miller, Elizabeth; Zambon, Maria

    2012-01-01

    The intense influenza activity in England during the 2010–11 winter resulted from a combination of factors. Population-based seroepidemiology confirms that the third wave of influenza A(H1N1)pdm09 virus circulation was associated with a shift in age groups affected, with the highest rate of infection in young adults. PMID:23092684

  4. Contact tracing for influenza A(H1N1)pdm09 virus-infected passenger on international flight.

    PubMed

    Shankar, Ananda G; Janmohamed, Kulsum; Olowokure, Babatunde; Smith, Gillian E; Hogan, Angela H; De Souza, Valerie; Wallensten, Anders; Oliver, Isabel; Blatchford, Oliver; Cleary, Paul; Ibbotson, Sue

    2014-01-01

    In April 2009, influenza A(H1N1)pdm09 virus infection was confirmed in a person who had been symptomatic while traveling on a commercial flight from Mexico to the United Kingdom. Retrospective public health investigation and contact tracing led to the identification of 8 additional confirmed cases among passengers and community contacts of passengers. PMID:24377724

  5. Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay.

    PubMed

    Tseng, Yi-Ting; Wang, Chih-Hung; Chang, Chih-Peng; Lee, Gwo-Bin

    2016-08-15

    The rapid spread of influenza-associated H1N1 viruses has caused serious concern in recent years. Therefore, there is an urgent need for the development of automatic, point-of-care devices for rapid diagnosis of the influenza virus. Conventional approaches suffer from several critical issues; notably, they are time-consuming, labor-intensive, and are characterized by relatively low sensitivity. In this work, we present a new approach for fluorescence-based detection of the influenza A H1N1 virus using a sandwich-based aptamer assay that is automatically performed on an integrated microfluidic system. The entire detection process was shortened to 30min using this chip-based system which is much faster than the conventional viral culture method. The limit of detection was significantly improved to 0.032 hemagglutination unit due to the high affinity and high specificity of the H1N1-specific aptamers. The results showed that the two-aptamer microfluidic system had about 10(3) times higher sensitivity than the conventional serological diagnosis. It was demonstrated that the developed microfluidic system may play as a powerful tool in the detection of the H1N1 virus. PMID:27054814

  6. Dual resistance to adamantanes and oseltamivir among seasonal influenza A(H1N1) viruses: 2008-2010.

    PubMed

    Sheu, Tiffany G; Fry, Alicia M; Garten, Rebecca J; Deyde, Varough M; Shwe, Thein; Bullion, Lesley; Peebles, Patrick J; Li, Yan; Klimov, Alexander I; Gubareva, Larisa V

    2011-01-01

    Two distinct genetic clades of seasonal influenza A(H1N1) viruses have cocirculated in the recent seasons: clade 2B oseltamivir-resistant and adamantane-susceptible viruses, and clade 2C viruses that are resistant to adamantanes and susceptible to oseltamivir. We tested seasonal influenza A(H1N1) viruses collected in 2008-2010 from the United States and globally for resistance to antivirals approved by the Food and Drug Administration. We report 28 viruses with both adamantane and oseltamivir (dual) resistance from 5 countries belonging to 4 distinct genotypes. Because of limited options for antiviral treatment, emergence of dual-resistant influenza viruses poses a public health concern, and their circulation needs to be closely monitored. PMID:21148491

  7. Dual Resistance to Adamantanes and Oseltamivir Among Seasonal Influenza A(H1N1) Viruses: 2008–2010

    PubMed Central

    Sheu, Tiffany G.; Fry, Alicia M.; Garten, Rebecca J.; Deyde, Varough M.; Shwe, Thein; Bullion, Lesley; Peebles, Patrick J.; Li, Yan; Klimov, Alexander I.

    2011-01-01

    Two distinct genetic clades of seasonal influenza A(H1N1) viruses have cocirculated in the recent seasons: clade 2B oseltamivir-resistant and adamantane-susceptible viruses, and clade 2C viruses that are resistant to adamantanes and susceptible to oseltamivir. We tested seasonal influenza A(H1N1) viruses collected in 2008-2010 from the United States and globally for resistance to antivirals approved by the Food and Drug Administration. We report 28 viruses with both adamantane and oseltamivir (dual) resistance from 5 countries belonging to 4 distinct genotypes. Because of limited options for antiviral treatment, emergence of dual-resistant influenza viruses poses a public health concern, and their circulation needs to be closely monitored. PMID:21148491

  8. Enhanced Mammalian Transmissibility of Seasonal Influenza A/H1N1 Viruses Encoding an Oseltamivir-Resistant Neuraminidase

    PubMed Central

    Rahmat, Saad; Pica, Natalie

    2012-01-01

    Between 2007 and 2009, oseltamivir resistance developed among seasonal influenza A/H1N1 (sH1N1) virus isolates at an exponential rate, without a corresponding increase in oseltamivir usage. We hypothesized that the oseltamivir-resistant neuraminidase (NA), in addition to being relatively insusceptible to the antiviral effect of oseltamivir, might confer an additional fitness advantage on these viruses by enhancing their transmission efficiency among humans. Here we demonstrate that an oseltamivir-resistant clinical isolate, an A/Brisbane/59/2007(H1N1)-like virus isolated in New York State in 2008, transmits more efficiently among guinea pigs than does a highly similar, contemporaneous oseltamivir-sensitive isolate. With reverse genetics reassortants and point mutants of the two clinical isolates, we further show that expression of the oseltamivir-resistant NA in the context of viral proteins from the oseltamivir-sensitive virus (a 7:1 reassortant) is sufficient to enhance transmissibility. In the guinea pig model, the NA is the critical determinant of transmission efficiency between oseltamivir-sensitive and -resistant Brisbane/59-like sH1N1 viruses, independent of concurrent drift mutations that occurred in other gene products. Our data suggest that the oseltamivir-resistant NA (specifically, one or both of the companion mutations, H275Y and D354G) may have allowed resistant Brisbane/59-like viruses to outtransmit sensitive isolates. These data provide in vivo evidence of an evolutionary mechanism that would explain the rapidity with which oseltamivir resistance achieved fixation among sH1N1 isolates in the human reservoir. PMID:22532693

  9. Structure and anti-influenza A (H1N1) virus activity of three polysaccharides from Eucheuma denticulatum

    NASA Astrophysics Data System (ADS)

    Yu, Guangli; Li, Miaomiao; Wang, Wei; Liu, Xin; Zhao, Xiaoliang; Lv, Youjing; Li, Guangsheng; Jiao, Guangling; Zhao, Xia

    2012-12-01

    Three polysaccharides (EW, EH and EA) were prepared from a red alga Eucheuma denticulatum by sequential extraction with cold water, hot water and sodium hydroxide water solution. Their monosaccharide compositions, relative molecular mass and structural characterization were determined by gas chromatography, high performance 1iquid chromatography, fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy methods. EW was hybrid ı/κ/ν-carrageenan (70 ı/17κ/13ν-carrabiose), EH was mainly ı-carrageenan, and EA was mainly α-1,4-Glucan (88%) but mixed with small amount of ı-carrageenan (12%). The relative molecular mass of EW, EH and EA was 480, 580 and 510 kDa, respectively. The anti-influenza A (H1N1) virus activity of these three polysaccharides was evaluated using the Madin-Darby canine kidney cells model. EW showed good anti-H1N1 virus activity, its IC50 was 276.5 μg mL-1, and the inhibition rate to H1N1 virus was 52% when its concentration was 250 μg mL-1. The IC50 of ı-carrageenan EH was 366.4 μg mL-1, whereas EA showed lower anti-H1N1 virus activity (IC50>430 μg mL-1). Available data obtained give positive evidence that the hybrid carrageenan EW from Eucheuma denticulatum can be used as potential anti-H1N1 virus inhibitor in future.

  10. A PB1 T296R substitution enhance polymerase activity and confer a virulent phenotype to a 2009 pandemic H1N1 influenza virus in mice.

    PubMed

    Yu, Zhijun; Cheng, Kaihui; Sun, Weiyang; Zhang, Xinghai; Li, Yuanguo; Wang, Tiecheng; Wang, Hualei; Zhang, Qianyi; Xin, Yue; Xue, Li; Zhang, Kun; Huang, Jing; Yang, Songtao; Qin, Chuan; Wilker, Peter R; Yue, Donghui; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2015-12-01

    While the 2009 pandemic H1N1 virus has become established in the human population as a seasonal influenza virus, continued adaptation may alter viral virulence. Here, we passaged a 2009 pandemic H1N1 virus (A/Changchun/01/2009) in mice. Serial passage in mice generated viral variants with increased virulence. Adapted variants displayed enhanced replication kinetics in vitro and vivo. Analysis of the variants genomes revealed 6 amino acid changes in the PB1 (T296R), PA (I94V), HA (H3 numbering; N159D, D225G, and R226Q), and NP (D375N). Using reverse genetics, we found that a PB1-T296R substitution found in all adapted viral variants enhanced viral replication kinetics in vitro and vivo, increased viral polymerase activity in human cells, and was sufficient for enhanced virulence of the 2009 pandemic H1N1 virus in mice. Therefore, we defined a novel influenza pathogenic determinant, providing further insights into the pathogenesis of influenza viruses in mammals. PMID:26453960

  11. Evolutionary Dynamics of Local Pandemic H1N1/2009 Influenza Virus Lineages Revealed by Whole-Genome Analysis

    PubMed Central

    Baillie, Gregory J.; Galiano, Monica; Agapow, Paul-Michael; Myers, Richard; Chiam, Rachael; Gall, Astrid; Palser, Anne L.; Watson, Simon J.; Hedge, Jessica; Underwood, Anthony; Platt, Steven; McLean, Estelle; Pebody, Richard G.; Rambaut, Andrew; Green, Jonathan; Daniels, Rod; Pybus, Oliver G.; Zambon, Maria

    2012-01-01

    Virus gene sequencing and phylogenetics can be used to study the epidemiological dynamics of rapidly evolving viruses. With complete genome data, it becomes possible to identify and trace individual transmission chains of viruses such as influenza virus during the course of an epidemic. Here we sequenced 153 pandemic influenza H1N1/09 virus genomes from United Kingdom isolates from the first (127 isolates) and second (26 isolates) waves of the 2009 pandemic and used their sequences, dates of isolation, and geographical locations to infer the genetic epidemiology of the epidemic in the United Kingdom. We demonstrate that the epidemic in the United Kingdom was composed of many cocirculating lineages, among which at least 13 were exclusively or predominantly United Kingdom clusters. The estimated divergence times of two of the clusters predate the detection of pandemic H1N1/09 virus in the United Kingdom, suggesting that the pandemic H1N1/09 virus was already circulating in the United Kingdom before the first clinical case. Crucially, three clusters contain isolates from the second wave of infections in the United Kingdom, two of which represent chains of transmission that appear to have persisted within the United Kingdom between the first and second waves. This demonstrates that whole-genome analysis can track in fine detail the behavior of individual influenza virus lineages during the course of a single epidemic or pandemic. PMID:22013031

  12. Evolutionary dynamics of local pandemic H1N1/2009 influenza virus lineages revealed by whole-genome analysis.

    PubMed

    Baillie, Gregory J; Galiano, Monica; Agapow, Paul-Michael; Myers, Richard; Chiam, Rachael; Gall, Astrid; Palser, Anne L; Watson, Simon J; Hedge, Jessica; Underwood, Anthony; Platt, Steven; McLean, Estelle; Pebody, Richard G; Rambaut, Andrew; Green, Jonathan; Daniels, Rod; Pybus, Oliver G; Kellam, Paul; Zambon, Maria

    2012-01-01

    Virus gene sequencing and phylogenetics can be used to study the epidemiological dynamics of rapidly evolving viruses. With complete genome data, it becomes possible to identify and trace individual transmission chains of viruses such as influenza virus during the course of an epidemic. Here we sequenced 153 pandemic influenza H1N1/09 virus genomes from United Kingdom isolates from the first (127 isolates) and second (26 isolates) waves of the 2009 pandemic and used their sequences, dates of isolation, and geographical locations to infer the genetic epidemiology of the epidemic in the United Kingdom. We demonstrate that the epidemic in the United Kingdom was composed of many cocirculating lineages, among which at least 13 were exclusively or predominantly United Kingdom clusters. The estimated divergence times of two of the clusters predate the detection of pandemic H1N1/09 virus in the United Kingdom, suggesting that the pandemic H1N1/09 virus was already circulating in the United Kingdom before the first clinical case. Crucially, three clusters contain isolates from the second wave of infections in the United Kingdom, two of which represent chains of transmission that appear to have persisted within the United Kingdom between the first and second waves. This demonstrates that whole-genome analysis can track in fine detail the behavior of individual influenza virus lineages during the course of a single epidemic or pandemic. PMID:22013031

  13. Influenza A virus infection in Brazilian swine herds following the introduction of pandemic 2009 H1N1.

    PubMed

    Ciacci-Zanella, Janice Reis; Schaefer, Rejane; Gava, Danielle; Haach, Vanessa; Cantão, Maurício Egídio; Coldebella, Arlei

    2015-10-22

    Influenza A virus (FLUAV) infections are endemic in pork producing countries worldwide but in Brazil it was not considered an important pathogen in pigs. Since the emergence of 2009 pandemic H1N1 (H1N1pdm) FLUAV, many outbreaks of respiratory disease were observed in pig herds. The aim of this study was to evaluate FLUAV infection in swine in 48 pig farms located in seven Brazilian states with previous reports of influenza-like signs by clinical, serological and virological cross-sectional studies. Serological results showed that pigs from all farms had anti-influenza antibodies by NP-ELISA. Antibodies to H3N2, H1N2 and H1N1pdm were detected by HI in pigs from 24 farms. Co-infection with two or more FLUAV subtypes was detected in pigs in seven of those 24 farms. Detection of FLUAV in nasal swabs and oral fluids by RT-qPCR indicated a global concordance >81% for the two biological samples. Moreover, our results show that H1N1pdm, H1N2 and H3N2 viruses are widespread in Brazilian pig herds. The monitoring of FLUAV emergence and evolution in pigs is urgent, as well the study of the pathogenesis of Brazilian isolates, aiming to control influenza in pigs. PMID:26345257

  14. Unseasonal transmission of H3N2 influenza A virus during the swine-origin H1N1 pandemic.

    PubMed

    Ghedin, Elodie; Wentworth, David E; Halpin, Rebecca A; Lin, Xudong; Bera, Jayati; DePasse, Jay; Fitch, Adam; Griesemer, Sara; Hine, Erin; Katzel, Daniel A; Overton, Larry; Proudfoot, Kathleen; Sitz, Jeffrey; Szczypinski, Bridget; StGeorge, Kirsten; Spiro, David J; Holmes, Edward C

    2010-06-01

    The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza "off-season," we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed. PMID:20237080

  15. Protection of pigs against pandemic swine origin H1N1 influenza A virus infection by hemagglutinin- or neuraminidase-expressing attenuated pseudorabies virus recombinants.

    PubMed

    Klingbeil, Katharina; Lange, Elke; Blohm, Ulrike; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2015-03-01

    Influenza is an important respiratory disease of pigs, and may lead to novel human pathogens like the 2009 pandemic H1N1 swine-origin influenza virus (SoIV). Therefore, improved influenza vaccines for pigs are required. Recently, we demonstrated that single intranasal immunization with a hemagglutinin (HA)-expressing pseudorabies virus recombinant of vaccine strain Bartha (PrV-Ba) protected pigs from H1N1 SoIV challenge (Klingbeil et al., 2014). Now we investigated enhancement of efficacy by prime-boost vaccination and/or intramuscular administration. Furthermore, a novel PrV-Ba recombinant expressing codon-optimized N1 neuraminidase (NA) was included. In vitro replication of this virus was only slightly affected compared to parental virus. Unlike HA, the abundantly expressed NA was efficiently incorporated into PrV particles. Immunization of pigs with the two PrV recombinants, either singly or in combination, induced B cell proliferation and the expected SoIV-specific antibodies, whose titers increased substantially after boost vaccination. After immunization of animals with either PrV recombinant H1N1 SoIV challenge virus replication was significantly reduced compared to PrV-Ba vaccinated or naïve controls. Protective efficacy of HA-expressing PrV was higher than of NA-expressing PrV, and not significantly enhanced by combination. Despite higher serum antibody titers obtained after intramuscular immunization, transmission of challenge virus to naïve contact animals was only prevented after intranasal prime-boost vaccination with HA-expressing PrV-Ba. PMID:25599604

  16. Seropositivity for Influenza A(H1N1)pdm09 Virus among Frontline Health Care Personnel

    PubMed Central

    Alagappan, Kumar; Hancock, Kathy; Ward, Mary Frances; Akerman, Meredith; Dawood, Fatimah S.; Branch, Alicia; De Cicco, Sandra; Steward-Clark, Evelene; McCullough, Megan; Tenner, Karen; Katz, Jacqueline M.

    2013-01-01

    Seroprevalence of antibodies to influenza A(H1N1)pdm09 virus among 193 emergency department health care personnel was similar among 147 non–health care personnel (odds ratio 1.4, 95% CI 0.8–2.4). Working in an acute care setting did not substantially increase risk for virus infection above risk conferred by community-based exposures. PMID:23260627

  17. Can breathing circuit filters help prevent the spread of influenza A (H1N1) virus from intubated patients?

    PubMed Central

    Heuer, Jan F.; Crozier, Thomas A.; Howard, Glenn; Quintel, Michael

    2013-01-01

    Introduction: In March 2010, more than 213 countries worldwide reported laboratory confirmed cases of influenza H1N1 infections with at least 16,813 deaths. In some countries, roughly 10 to 30% of the hospitalized patients were admitted to the ICU and up to 70% of those required mechanical ventilation. The question now arises whether breathing system filters can prevent virus particles from an infected patient from entering the breathing system and passing through the ventilator into the ambient air. We tested the filters routinely used in our institution for their removal efficacy and efficiency for the influenza virus A H1N1 (A/PR/8/34). Methods: Laboratory investigation of three filters (PALL Ultipor® 25, Ultipor® 100 and Pall BB50T Breathing Circuit Filter, manufactured by Pall Life Sciences) using a monodispersed aerosol of human influenza A (H1N1) virus in an air stream model with virus particles quantified as cytopathic effects in cultured canine kidney cells (MDCK). Results: The initial viral load of 7.74±0.27 log10 was reduced to a viral load of ≤2.43 log10, behind the filter. This represents a viral filtration efficiency of ≥99.9995%. Conclusion: The three tested filters retained the virus input, indicating that their use in the breathing systems of intubated and mechanically ventilated patients can reduce the risk of spreading the virus to the breathing system and the ambient air. PMID:23967395

  18. Compliance with immunization against H1N1 influenza virus among children with cancer.

    PubMed

    Doganis, Dimitrios; Tsolia, Maria; Dana, Helen; Bouhoutsou, Despina; Pourtsidis, Apostolos; Baka, Margarita; Varvoutsi, Maria; Servitzoglou, Marina; Kosmidis, Helen

    2013-03-01

    In this report, we describe the experience with immunization against pandemic influenza A H1N1 in children with cancer treated at a pediatric oncology department during the pandemic season (2009). According to the guidelines, vaccination of all children with cancer receiving chemotherapy as well as those who had completed treatment was scheduled. Among the 140 children who were eligible for immunization, 122 were immunized, achieving a compliance rate of 87% despite negative publicity and low vaccine uptake in the general population. The vaccine was tolerated and none of the vaccinated children developed influenza. It is concluded that high immunization rates can be achieved among pediatric oncology patients. PMID:23301621

  19. Effectiveness of Periodic Treatment of Quercetin against Influenza A Virus H1N1 through Modulation of Protein Expression.

    PubMed

    Vaidya, Bipin; Cho, Se-Young; Oh, Kyung-Seo; Kim, Song Hak; Kim, Yeong O; Jeong, Eun-Hye; Nguyen, Thoa Thi; Kim, Sung Hyun; Kim, In Seon; Kwon, Joseph; Kim, Duwoon

    2016-06-01

    Kimchi, a traditional fermented food regularly consumed in Korea, contains various types of antimicrobial compounds. Among the tested compounds present in common spices used in Kimchi, quercetin showed the highest selectivity index against influenza A virus (IAV) H1N1. In this study, the effect of pretreatment and periodic treatment with quercetin against IAV in Madin-Darby canine kidney cells was observed. Compared to pretreatment, periodic treatment resulted in significantly higher cell viability but lower relative expression of the IAV PA gene and total apoptosis and cell death. To explain the mechanisms underlying the antiviral effects of quercetin treatment, a comparative proteomic analysis was performed in four samples (mock, quercetin-treated, IAV-infected, and quercetin-treated IAV-infected). Among the 220 proteins, 56 proteins were classified nonhierarchically into three clusters and were differentially modulated by quercetin treatment in IAV-infected cells. Post-translational modifications were identified in 68 proteins. In conclusion, periodic treatment with quercetin is effective in reducing IAV infection, and differentially regulates the expression of key proteins, including heat shock proteins, fibronectin 1, and prohibitin to reduce IAV replication. PMID:27157719

  20. Genetic and Antigenic Characterization of H1 Influenza Viruses from United States Swine Prior to the Emergence of the 2009 Pandemic H1N1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine play a role for the evolution of influenza A viruses. Prior to the introduction of the 2009 pandemic H1N1 virus from humans into pigs, four phylogenetic clusters of the hemagglutinin (HA) gene from H1 influenza viruses could be found in U.S. swine. Viruses from the classical H1N1 swine lineage...

  1. Research update on avian influenza viruses and H1N1 influenza virus in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Southeast Poultry Research Laboratory conducts research on many areas related to AI including pathogenesis and transmission studies, use of vaccination, virus ...

  2. Evaluation of MChip with Historic Subtype H1N1 Influenza A Viruses, Including the 1918 “Spanish Flu” Strain▿

    PubMed Central

    Moore, Chad L.; Smagala, James A.; Smith, Catherine B.; Dawson, Erica D.; Cox, Nancy J.; Kuchta, Robert D.; Rowlen, Kathy L.

    2007-01-01

    The robustness of a recently developed diagnostic microarray for influenza, the MChip, was evaluated with 16 historic subtype H1N1 influenza A viruses (A/H1N1), including A/Brevig Mission/1/1918. The matrix gene segments from all 16 viruses were successfully detected on the array. An artificial neural network trained with temporally related A/H1N1 viruses identified A/Brevig Mission/1/1918 as influenza virus A/H1N1 with 94% probability. PMID:17855577

  3. Clinical and Virological Factors Associated with Viremia in Pandemic Influenza A/H1N1/2009 Virus Infection

    PubMed Central

    Tse, Herman; To, Kelvin K. W.; Wen, Xi; Chen, Honglin; Chan, Kwok-Hung; Tsoi, Hoi-Wah; Li, Iris W. S.; Yuen, Kwok-Yung

    2011-01-01

    Background Positive detection of viral RNA in blood and other non-respiratory specimens occurs in severe human influenza A/H5N1 viral infection but is not known to occur commonly in seasonal human influenza infection. Recently, viral RNA was detected in the blood of patients suffering from severe pandemic influenza A/H1N1/2009 viral infection, although the significance of viremia had not been previously studied. Our study aims to explore the clinical and virological factors associated with pandemic influenza A/H1N1/2009 viremia and to determine its clinical significance. Methodology/Principal Findings Clinical data of patients admitted to hospitals in Hong Kong between May 2009 and April 2010 and tested positive for pandemic influenza A/H1N1/2009 was collected. Viral RNA was detected by reverse-transcription polymerase chain reactions (RT-PCR) targeting the matrix (M) and HA genes of pandemic influenza A/H1N1/2009 virus from the following specimens: nasopharyngeal aspirate (NPA), endotracheal aspirate (ETA), blood, stool and rectal swab. Stool and/ or rectal swab was obtained only if the patient complained of any gastrointestinal symptoms. A total of 139 patients were included in the study, with viral RNA being detected in the blood of 14 patients by RT-PCR. The occurrence of viremia was strongly associated with a severe clinical presentation and a higher mortality rate, although the latter association was not statistically significant. D222G/N quasispecies were observed in 90% of the blood samples. Conclusion Presence of pandemic influenza A/H1N1/2009 viremia is an indicator of disease severity and strongly associated with D222G/N mutation in the viral hemagglutinin protein. PMID:21980333

  4. Differential Viral Fitness Between H1N1 and H3N8 Avian Influenza Viruses Isolated from Mallards (Anas platyrhynchos).

    PubMed

    Ferreira, Helena Lage; Vangeluwe, Didier; Van Borm, Steven; Poncin, Olivier; Dumont, Nathalie; Ozhelvaci, Orkun; Munir, Muhammad; van den Berg, Thierry; Lambrecht, Bénédicte

    2016-05-01

    Homosubtypic and heterosubtypic immunity in mallards (Anas platyrhynchos) play an important role in the avian influenza virus (AIV) diversity. The mechanisms of AIV replication among wild birds and the role of immunity in AIV diversity have thus not been completely clarified. During the monitoring of AI circulation among wild waterfowl in 2007-2008, two viruses (H3N8 and H1N1) were isolated from ducks caught in a funnel trap located in La Hulpe wetland in Belgium. H3N8 viruses were revealed to be more prevalent in the mallard population than was H1N1, which might suggest a better adaptation to this species. In order to investigate this hypothesis, we characterized both isolated viruses biologically by experimental inoculation. Virus excretion and humoral response induced by both isolated viruses were evaluated in mallards after a first infection followed by a homo-or heterosubtypic reinfection under controlled experimental conditions. The H1N1 virus had a delayed peak of excretion of 4 days compared to the H3N8, but the virus shedding was more limited, earlier, and shorter after each reinfection. Moreover, the H3N8 virus could spread to all ducks after homo- or heterosubtypic reinfections and during a longer period. Although the humoral response induced by both viruses after infection and reinfection could be detected efficiently by competitive ELISA, only a minimal H1 antibody response and almost no H3-specific antibodies could be detected by the HI test. Our results suggest that the H3N8 isolate replicates better in mallards under experimental controlled conditions. PMID:27309085

  5. Full Genome Analysis of Influenza A(H1N1)pdm09 Virus Isolated from Peru, 2013.

    PubMed

    Padilla, Carlos; Condori, Fredy; Huaringa, Maribel; Marcos, Pool; Rojas, Nancy; Gutierrez, Victoria; Cáceres, Omar

    2014-01-01

    The pandemic influenza A(H1N1)pdm09 virus has been reported in Peru since 2009. We report the whole-genome sequence analysis of a viral isolate from an infection case that occurred during an influenza outbreak in 2013. This strain shows novel hemagglutinin (HA) mutations that may cause an antigenic drift that diminishes the protective effect of the vaccine. PMID:24744325

  6. Pandemic H1N1 virus transmission and shedding dynamics in index case households of a prospective Vietnamese cohort☆

    PubMed Central

    Thai, Pham Quang; Mai, Le Quynh; Welkers, Matthijs R.A.; Hang, Nguyen Le Khanh; Thanh, Le Thi; Dung, Vu Tien Viet; Yen, Nguyen Thi Thu; Duong, Tran Nhu; Hoa, Le Nguyen Minh; Thoang, Dang Dinh; Trang, Hoang Thi Huyen; de Jong, Menno D.; Wertheim, Heiman; Hien, Nguyen Tran; Horby, Peter; Fox, Annette

    2014-01-01

    Summary Objectives Influenza household transmission studies are required to guide prevention strategies but most passively recruit index cases that seek healthcare. We investigated A(H1N1)pdm09 transmission in a household-based cohort during 2009. Methods Health-workers visited 270 households weekly, and collected swabs from influenza-like-illness cases. If A(H1N1)pdm09 was RT-PCR-confirmed, all household members had symptoms assessed and swabs collected daily for 10–15 days. Viral RNA was quantified and sequenced and serology performed on pre-pandemic sera. Results Index cases were detected in 20 households containing 81 people. 98.5% lacked A(H1N1)pdm09 neutralizing antibodies in pre-pandemic sera. Eleven (18.6%, 95% CI 10.7–30.4%) of 59 contacts were infected. Virus genetic diversity within households was negligible and less than between households. Index and secondary cases were distributed between mothers, daughters and sons, and had similar virus-RNA shedding and symptom dynamics. Fathers were rarely infected. Five secondary cases (45%) had no apparent symptoms and three shed virus before symptoms. Secondary infection was associated with index case wet cough (OR 1.56, 95% CI 1.22–1.99). Conclusions In this cohort of A(H1N1)pdm09 susceptible persons, virus sequencing was capable of discriminating household from community transmission. Household transmission involved mothers and children but rarely fathers. Asymptomatic or pre-symptomatic shedding was common. PMID:24491598

  7. [Virological surveillance of pandemic (H1N1) 2009 virus and its genetic characteristics in Hunan Province, 2009-2011].

    PubMed

    Zhang, Hong; Huang, Yi-Wei; Liu, Yun-Zhi; Li, Fang-Cai; Chen, Zhang; Li, Wen-Chao; Deng, Zhi-Hong; Hu, Shi-Xiong; Gao, Li-Dong

    2013-03-01

    To understand and master the dynamic variation of the pandemic influenza A (H1N1) 2009 in Hunan province from 2009 to 2011, and to know the genetic characteristics and drug resistance of the pandemic (H1N1) 2009 viruses. Throat swab specimens of influenza-like illness patients were collected from sentinel hospitals and tested for influenza by fluorescent PCR or virus isolation methods. Partial isolates were selected for sequencing. The sequences were used for phylogenetic analysis by MEGA 5. 05 software. From the 20th week of 2009 to the 52nd week of 2011, 17 773 specimens were tested. 3 831 specimens were influenza-positive with a positive rate of 21. 6%, of which 1 794 were positive specimens of pandemic (H1N1) 2009, accounting for 46. 8%00 of the influenza-positives. There were 2 epidemic peaks of pandemic (H1N1) 2009, which were in the 41st-53rd week of 2009 and the 1st-12nd week of 2011, respectively. The HA genes of 23 strains that were selected for sequencing had close relationship; the distribution of strains in the phylogenetic tree was basically in chronological order. The complete genome sequence analysis showed that all of 8 gene segments of 7 strains were homologous to the vaccine strain, and there was no gene reassortment. The HA amino acid sites of the 23 strains were highly similar to the vaccine strain (98. 2% - 100. 0% in homology), but all 23 strains had P83S, S203T and 1321V mutations. The 222 site mutation that may lead to enhanced virulence was found in the A/Hunan/YQ30/2009 strain. The mutation was D222E. There was no oseltamivir resistance mutation found in all strains. The pandemic (H1N1) 2009 in Hunan province from 2009 to 2011 had a bimodal distribution. There was no large-scale variation of virus genes. The clinical use of oseltamivir was still effective. Key words: Pandemic (H1N1) 2009; Surveillance; Genetic characteristics PMID:23757845

  8. Post-pandemic influenza A (H1N1) 2009 virus infection in pregnant women in Ceará, Brazil

    PubMed Central

    Perdigão, Anne C B; Araújo, Fernanda M C; Melo, Maria E L; Lemos, Daniele R Q; Cavalcanti, Luciano P; Ramalho, Izabel L C; Araújo, Lia C; Sousa, Deborah M; Siqueira, Marilda M; Guedes, Maria I F

    2015-01-01

    Objective The aim of this study was to present results of the post-pandemic phase of A(H1N1)pdm09 virus infection in pregnant women in Ceará, Brazil, during the January–June 2012 influenza season. Results One hundred and fifty-four nasopharyngeal swab samples were collected from pregnant women admitted to hospitals with suspected severe acute respiratory infection (SARI). Fifty-three (34·4%) had laboratory-confirmed A(H1N1)pdm09 virus infection with 15 (28·3%) outpatients and 38 (71·7%) hospitalized. Five (9·4%) women were in the first trimester of pregnancy, 20 (37·7%) in the second trimester of pregnancy, and 24 (45·2%) in the third trimester of pregnancy. Three had no information about the time of pregnancy. Six samples from newborns were also analyzed, of which three were nasopharyngeal swab positive for A(H1N1)pdm09. These swabs were collected immediately after birth, with the exception of one that was collected on the day after birth. Conclusion Our findings suggest that transplacental transfer of influenza viruses could occur as a result of severe illness in pregnancy. It is therefore important to encourage women to be vaccinated against influenza in order to avoid pregnancy complications. PMID:26290133

  9. Implication of inflammatory macrophages, nuclear receptors and interferon regulatory factors in increased virulence of pandemic 2009 H1N1 influenza A virus after host adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While pandemic 2009 H1N1 influenza A viruses were responsible for numerous severe infections in humans, these viruses do not typically cause corresponding severe disease in mammalian models. However, the generation of a virulent 2009 H1N1 virus following serial lung passage in mice has allowed for...

  10. One-Step Real-Time RT-PCR for Pandemic Influenza A Virus (H1N1) 2009 Matrix Gene Detection in Swine Samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the spring of 2009, a novel H1N1 influenza A virus began to spread among humans worldwide. The genomic features of the new pandemic H1N1 were immediately identified: it contained gene segments with ancestors in North American and Eurasian swine influenza virus (SIV) lineages providing the virus a...

  11. An Outbreak of 2009 Pandemic Influenza A (H1N1) Virus Infection in an Elementary School in Pennsylvania

    PubMed Central

    Bhattarai, Achuyt; Fagan, Ryan P.; Ostroff, Stephen; Sodha, Samir V.; Moll, Mària E.; Lee, Bruce Y.; Chang, Chung-Chou H.; Ennis, Brent; Britz, Phyllis; Fiore, Anthony; Nguyen, Michael; Palekar, Rakhee; Archer, W. Roodly; Gift, Thomas L.; Leap, Rebecca; Nygren, Benjamin L.; Cauchemez, Simon; Angulo, Frederick J.; Swerdlow, David

    2011-01-01

    In May 2009, one of the earliest outbreaks of 2009 pandemic influenza A virus (pH1N1) infection resulted in the closure of a semi-rural Pennsylvania elementary school. Two sequential telephone surveys were administered to 1345 students (85% of the students enrolled in the school) and household members in 313 households to collect data on influenza-like illness (ILI). A total of 167 persons (12.4%) among those in the surveyed households, including 93 (24.0%) of the School A students, reported ILI. Students were 3.1 times more likely than were other household members to develop ILI (95% confidence interval [CI], 2.3–4.1). Fourth-grade students were more likely to be affected than were students in other grades (relative risk, 2.2; 95% CI, 1.2–3.9). pH1N1 was confirmed in 26 (72.2%) of the individuals tested by real-time reverse-transcriptase polymerase chain reaction. The outbreak did not resume upon the reopening of the school after the 7-day closure. This investigation found that pH1N1 outbreaks at schools can have substantial attack rates; however, grades and classrooms are affected variably. Additioanl study is warranted to determine the effectiveness of school closure during outbreaks. PMID:21342888

  12. Serologic cross reactivity of avian influenza H1 vaccinated commercial U.S. turkeys to the emergent H1N1 influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, the 2009 human H1N1 influenza virus was identified in turkey breeders in Chile, Canada and the U.S. resulting in infection and production losses. In these studies sera from turkeys vaccinated against avian influenza H1 were tested against the recent human pandemic H1N1 virus. Genetic ana...

  13. Association of swine influenza H1N1 pandemic virus (SIV-H1N1p) with porcine respiratory disease complex in sows from commercial pig farms in Colombia.

    PubMed

    Jiménez, Luisa Fernanda Mancipe; Ramírez Nieto, Gloria; Alfonso, Victor Vera; Correa, Jairo Jaime

    2014-08-01

    Porcine respiratory disease complex (PRDC) is a serious health problem that mainly affects growing and finishing pigs. PRDC is caused by a combination of viral and bacterial agents, such as porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), Mycoplasma hyopneumoniae (Myh), Actinobacillus pleuropneumoniae (APP), Pasteurella multocida and Porcine circovirus 2 (PCV2). To characterize the specific role of swine influenza virus in PRDC presentation in Colombia, 11 farms from three major production regions in Colombia were examined in this study. Nasal swabs, bronchial lavage and lung tissue samples were obtained from animals displaying symptoms compatible with SIV. Isolation of SIV was performed in 9-day embryonated chicken eggs or Madin-Darby Canine Kidney (MDCK) cells. Positive isolates, identified via the hemagglutination inhibition test, were further analyzed using PCR. Overall, 7 of the 11 farms were positive for SIV. Notably, sequencing of the gene encoding the hemagglutinin (HA) protein led to grouping of strains into circulating viruses identified during the human outbreak of 2009, classified as pandemic H1N1-2009. Serum samples from 198 gilts and multiparous sows between 2008 and 2009 were obtained to determine antibody presence of APP, Myh, PCV2 and PRRSV in both SIV-H1N1p-negative and -positive farms, but higher levels were recorded for SIV-H1N1p-positive farms. Odds ratio (OR) and P values revealed statistically significant differences (p<0.05) in PRDC presentation in gilts and multiparous sows of farms positive for SIV-H1N1p. Our findings indicate that positive farms have increased risk of PRDC presentation, in particular, PCV2, APP and Myh. PMID:25160760

  14. Efficacy, Safety, and Pharmacokinetics of Intravenous Peramivir in Children with 2009 Pandemic H1N1 Influenza A Virus Infection

    PubMed Central

    Kohno, Shigeru; Ishibashi, Toru; Wajima, Toshihiro; Takahashi, Takao

    2012-01-01

    Peramivir is a new neuraminidase inhibitor for intravenous administration that was first introduced in clinical practice in Japan. We conducted a multicenter, open-label, uncontrolled study in children with influenza virus infection ranging in age from ≥28 days to <16 years during the 2009 pandemic A (H1N1) influenza epidemic to evaluate the efficacy, safety, and pharmacokinetics of peramivir in children after intravenous infusion of 10 mg/kg (600 mg maximum) once daily. Among the 106 children (125 days to 15 years old) confirmed to have been infected with the pH1N1 virus by the PCR who were treated with peramivir, the median time to alleviation of symptoms was 29.1 h (95% confidence interval = 22.1 to 32.4), and the proportion of the 106 children who were virus positive was 78.2% on day 2 after the start of treatment and had decreased to 7.1% on day 6. The results of the safety evaluation among 117 patients enrolled in this study showed that adverse events and adverse drug reactions were reported in 62.4 and 29.1%, respectively, of the patients. All of the adverse events and adverse drug reactions resolved or improved rapidly. A population pharmacokinetic analysis was performed on the basis of 297 observed plasma concentration data obtained from 115 children with influenza virus infection. Peramivir exposure in children was within the range of levels within which the efficacy and safety was confirmed in adults, and it is considered that peramivir is clinically and virologically effective and safe in children with pH1N1 virus infection. PMID:22024821

  15. Top leads for swine influenza A/H1N1 virus revealed by steered molecular dynamics approach.

    PubMed

    Mai, Binh Khanh; Viet, Man Hoang; Li, Mai Suan

    2010-12-27

    Since March 2009, the rapid spread of infection during the recent A/H1N1 swine flu pandemic has raised concerns of a far more dangerous outcome should this virus become resistant to current drug therapies. Currently oseltamivir (tamiflu) is intensively used for the treatment of influenza and is reported effective for 2009 A/H1N1 virus. However, as this virus is evolving fast, some drug-resistant strains are emerging. Therefore, it is critical to seek alternative treatments and identify roots of the drug resistance. In this paper, we use the steered molecular dynamics (SMD) approach to estimate the binding affinity of ligands to the glycoprotein neuraminidase. Our idea is based on the hypothesis that the larger is the force needed to unbind a ligand from a receptor the higher its binding affinity. Using all-atom models with Gromos force field 43a1 and explicit water, we have studied the binding ability of 32 ligands to glycoprotein neuraminidase from swine flu virus A/H1N1. The electrostatic interaction is shown to play a more important role in binding affinity than the van der Waals one. We have found that four ligands 141562, 5069, 46080, and 117079 from the NSC set are the most promising candidates to cope with this virus, while peramivir, oseltamivir, and zanamivir are ranked 8, 11, and 20. The observation that these four ligands are better than existing commercial drugs has been also confirmed by our results on the binding free energies obtained by the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method. Our prediction may be useful for the therapeutic application. PMID:21090736

  16. Diversifying Selection Analysis Predicts Antigenic Evolution of 2009 Pandemic H1N1 Influenza A Virus in Humans

    PubMed Central

    Lee, Alexandra J.; Das, Suman R.; Wang, Wei; Fitzgerald, Theresa; Pickett, Brett E.; Aevermann, Brian D.; Topham, David J.; Falsey, Ann R.

    2015-01-01

    ABSTRACT Although a large number of immune epitopes have been identified in the influenza A virus (IAV) hemagglutinin (HA) protein using various experimental systems, it is unclear which are involved in protective immunity to natural infection in humans. We developed a data mining approach analyzing natural H1N1 human isolates to identify HA protein regions that may be targeted by the human immune system and can predict the evolution of IAV. We identified 16 amino acid sites experiencing diversifying selection during the evolution of prepandemic seasonal H1N1 strains and found that 11 sites were located in experimentally determined B-cell/antibody (Ab) epitopes, including three distinct neutralizing Caton epitopes: Sa, Sb, and Ca2 [A. J. Caton, G. G. Brownlee, J. W. Yewdell, and W. Gerhard, Cell 31:417–427, 1982, http://dx.doi.org/10.1016/0092-8674(82)90135-0]. We predicted that these diversified epitope regions would be the targets of mutation as the 2009 H1N1 pandemic (pH1N1) lineage evolves in response to the development of population-level protective immunity in humans. Using a chi-squared goodness-of-fit test, we identified 10 amino acid sites that significantly differed between the pH1N1 isolates and isolates from the recent 2012-2013 and 2013-2014 influenza seasons. Three of these sites were located in the same diversified B-cell/Ab epitope regions as identified in the analysis of prepandemic sequences, including Sa and Sb. As predicted, hemagglutination inhibition (HI) assays using human sera from subjects vaccinated with the initial pH1N1 isolate demonstrated reduced reactivity against 2013-2014 isolates. Taken together, these results suggest that diversifying selection analysis can identify key immune epitopes responsible for protective immunity to influenza virus in humans and thereby predict virus evolution. IMPORTANCE The WHO estimates that approximately 5 to 10% of adults and 20 to 30% of children in the world are infected by influenza virus each

  17. Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health.

    PubMed

    Kong, Weili; Wang, Feibing; Dong, Bin; Ou, Changbo; Meng, Demei; Liu, Jinhua; Fan, Zhen-Chuan

    2015-12-01

    Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens. PMID:26344393

  18. Pathogenesis and transmission of the novel swine-origin influenza virus A/H1N1 after experimental infection of pigs.

    PubMed

    Lange, Elke; Kalthoff, Donata; Blohm, Ulrike; Teifke, Jens P; Breithaupt, Angele; Maresch, Christina; Starick, Elke; Fereidouni, Sasan; Hoffmann, Bernd; Mettenleiter, Thomas C; Beer, Martin; Vahlenkamp, Thomas W

    2009-09-01

    Influenza virus A/H1N1, which is currently causing a pandemic, contains gene segments with ancestors in the North American and Eurasian swine lineages. To get insights into virus replication dynamics, clinical symptoms and virus transmission in pigs, we infected animals intranasally with influenza virus A/Regensburg/D6/09/H1N1. Virus excretion in the inoculated pigs was detected in nasal swabs from 1 day post-infection (p.i.) onwards and the pigs developed generally mild symptoms, including fever, sneezing, nasal discharge and diarrhoea. Contact pigs became infected, shed virus and developed clinical symptoms similar to those in the inoculated animals. Plasma samples of all animals remained negative for virus RNA. Nucleoprotein- and haemagglutinin H1-specific antibodies could be detected by ELISA 7 days p.i. CD4(+) T cells became activated immediately after infection and both CD4(+) and CD8(+) T-cell populations expanded from 3 to 7 days p.i., coinciding with clinical signs. Contact chickens remained uninfected, as judged by the absence of virus excretion, clinical signs and seroconversion. PMID:19592456

  19. Detection of Novel Reassortant Influenza A (H3N2) and H1N1 2009 Pandemic Viruses in Swine in Hanoi, Vietnam.

    PubMed

    Baudon, E; Poon, L L; Dao, T D; Pham, N T; Cowling, B J; Peyre, M; Nguyen, K V; Peiris, M

    2015-09-01

    From May to September 2013, monthly samples were collected from swine in a Vietnamese slaughterhouse for influenza virus isolation and serological testing. A(H1N1)pdm09 viruses and a novel H3N2 originating from reassortment between A(H1N1)pdm09 and novel viruses of the North American triple reassortant lineage were isolated. Serological results showed low seroprevalence for the novel H3N2 virus and higher seroprevalence for A(H1N1)pdm09 viruses. In addition, serology suggested that other swine influenza viruses are also circulating in Vietnamese swine. PMID:25363845

  20. Large-scale evolutionary surveillance of the 2009 H1N1 influenza A virus using resequencing arrays

    PubMed Central

    Lee, Charlie Wah Heng; Koh, Chee Wee; Chan, Yang Sun; Aw, Pauline Poh Kim; Loh, Kuan Hon; Han, Bing Ling; Thien, Pei Ling; Nai, Geraldine Yi Wen; Hibberd, Martin L.; Wong, Christopher W.; Sung, Wing-Kin

    2010-01-01

    In April 2009, a new influenza A (H1N1 2009) virus emerged that rapidly spread around the world. While current variants of this virus have caused widespread disease, particularly in vulnerable groups, there remains the possibility that future variants may cause increased virulence, drug resistance or vaccine escape. Early detection of these virus variants may offer the chance for increased containment and potentially prevention of the virus spread. We have developed and field-tested a resequencing kit that is capable of interrogating all eight segments of the 2009 influenza A(H1N1) virus genome and its variants, with added focus on critical regions such as drug-binding sites, structural components and mutation hotspots. The accompanying base-calling software (EvolSTAR) introduces novel methods that utilize neighbourhood hybridization intensity profiles and substitution bias of probes on the microarray for mutation confirmation and recovery of ambiguous base queries. Our results demonstrate that EvolSTAR is highly accurate and has a much improved call rate. The high throughput and short turn-around time from sample to sequence and analysis results (30 h for 24 samples) makes this kit an efficient large-scale evolutionary biosurveillance tool. PMID:20185568

  1. A plant-produced H1N1 trimeric hemagglutinin protects mice from a lethal influenza virus challenge

    PubMed Central

    Shoji, Yoko; Jones, R. Mark; Mett, Vadim; Chichester, Jessica A.; Musiychuk, Konstantin; Sun, Xiangjie; Tumpey, Terrence M.; Green, Brian J.; Shamloul, Moneim; Norikane, Joey; Bi, Hong; Hartman, Caitlin E.; Bottone, Cory; Stewart, Michelle; Streatfield, Stephen J.; Yusibov, Vidadi

    2013-01-01

    The increased worldwide awareness of seasonal and pandemic influenza, including pandemic H1N1 virus, has stimulated interest in the development of economic platforms for rapid, large-scale production of safe and effective subunit vaccines. In recent years, plants have demonstrated their utility as such a platform and have been used to produce vaccine antigens against various infectious diseases. Previously, we have produced in our transient plant expression system a recombinant monomeric hemagglutinin (HA) protein (HAC1) derived from A/California/04/09 (H1N1) strain of influenza virus and demonstrated its immunogenicity and safety in animal models and human volunteers. In the current study, to mimic the authentic HA structure presented on the virus surface and to improve stability and immunogenicity of the HA antigen, we generated trimeric HA by introducing a trimerization motif from a heterologous protein into the HA sequence. Here, we describe the engineering, production in Nicotiana benthamiana plants, and characterization of the highly purified recombinant trimeric HA protein (tHA-BC) from A/California/04/09 (H1N1) strain of influenza virus. The results demonstrate the induction of serum hemagglutination inhibition antibodies by tHA-BC and its protective efficacy in mice against a lethal viral challenge. In addition, the immunogenic and protective doses of tHA-BC were much lower compared with monomeric HAC1. Further investigation into the optimum vaccine dose and/or regimen as well as the stability of trimerized HA is necessary to determine whether trimeric HA is a more potent vaccine antigen than monomeric HA. PMID:23296194

  2. Recipients of vaccine against the 1976 "swine flu" have enhanced neutralization responses to the 2009 novel H1N1 influenza virus.

    PubMed

    McCullers, Jonathan A; Van De Velde, Lee-Ann; Allison, Kim J; Branum, Kristen C; Webby, Richard J; Flynn, Patricia M

    2010-06-01

    BACKGROUND. The world is facing a novel H1N1 influenza pandemic. A pandemic scare with a similar influenza virus in 1976 resulted in the vaccination of nearly 45 million persons. We hypothesized that prior receipt of the 1976 "swine flu" vaccine would enhance immune responses to the 2009 novel H1N1 influenza strain. METHODS. A prospective, volunteer sample of employees aged > or = 55 years at a children's cancer hospital in August 2009 was assessed for antibody responses to the 2009 pandemic H1N1 influenza virus and the 2008-2009 seasonal H1N1 influenza virus. RESULTS. Antibody responses by hemagglutination-inhibition assay were high against both the seasonal influenza virus (89.7% had a titer considered seroprotective) and pandemic H1N1 influenza virus (88.8% had a seroprotective titer). These antibodies were effective at neutralizing the seasonal H1N1 influenza virus in 68.1% of participants (titer > or = 40), but only 18.1% had detectable neutralizing titers against the pandemic H1N1 influenza virus. Of 116 participants, 46 (39.7%) received the 1976 "swine flu" vaccine. Receipt of this vaccine significantly enhanced neutralization responses; 8 (17.4%) of 46 vaccine recipients had titers > or = 160, compared with only 3 (4.3%) of 70 who did not receive the vaccine (P = .018 by chi(2) test). CONCLUSIONS. In this cohort, persons aged > or = 55 years had evidence of robust immunity to the 2008-2009 seasonal H1N1 influenza virus. These antibodies were cross-reactive but nonneutralizing against the 2009 pandemic H1N1 influenza strain. Receipt of a vaccine to a related virus significantly enhanced the neutralization capacity of these responses, suggesting homologous vaccination against the 2009 pandemic H1N1 influenza virus would have a similar effect. PMID:20415539

  3. Evidence of Cross-Reactive Immunity to 2009 Pandemic Influenza A Virus in Workers Seropositive to Swine H1N1 Influenza Viruses Circulating in Italy

    PubMed Central

    De Marco, Maria A.; Porru, Stefano; Cordioli, Paolo; Cesana, Bruno M.; Moreno, Ana; Calzoletti, Laura; Bonfanti, Lebana; Boni, Arianna; Di Carlo, Antonio Scotto; Arici, Cecilia; Carta, Angela; Castrucci, Maria R.; Donatelli, Isabella; Tomao, Paola; Peri, Vittoria M.; Di Trani, Livia; Vonesch, Nicoletta

    2013-01-01

    Background Pigs play a key epidemiologic role in the ecology of influenza A viruses (IAVs) emerging from animal hosts and transmitted to humans. Between 2008 and 2010, we investigated the health risk of occupational exposure to swine influenza viruses (SIVs) in Italy, during the emergence and spread of the 2009 H1N1 pandemic (H1N1pdm) virus. Methodology/Principal Findings Serum samples from 123 swine workers (SWs) and 379 control subjects (Cs), not exposed to pig herds, were tested by haemagglutination inhibition (HI) assay against selected SIVs belonging to H1N1 (swH1N1), H1N2 (swH1N2) and H3N2 (swH3N2) subtypes circulating in the study area. Potential cross-reactivity between swine and human IAVs was evaluated by testing sera against recent, pandemic and seasonal, human influenza viruses (H1N1 and H3N2 antigenic subtypes). Samples tested against swH1N1 and H1N1pdm viruses were categorized into sera collected before (n. 84 SWs; n. 234 Cs) and after (n. 39 SWs; n. 145 Cs) the pandemic peak. HI-antibody titers ≥10 were considered positive. In both pre-pandemic and post-pandemic peak subperiods, SWs showed significantly higher swH1N1 seroprevalences when compared with Cs (52.4% vs. 4.7% and 59% vs. 9.7%, respectively). Comparable HI results were obtained against H1N1pdm antigen (58.3% vs. 7.7% and 59% vs. 31.7%, respectively). No differences were found between HI seroreactivity detected in SWs and Cs against swH1N2 (33.3% vs. 40.4%) and swH3N2 (51.2 vs. 55.4%) viruses. These findings indicate the occurrence of swH1N1 transmission from pigs to Italian SWs. Conclusion/Significance A significant increase of H1N1pdm seroprevalences occurred in the post-pandemic peak subperiod in the Cs (p<0.001) whereas SWs showed no differences between the two subperiods, suggesting a possible occurrence of cross-protective immunity related to previous swH1N1 infections. These data underline the importance of risk assessment and occupational health surveillance activities aimed at

  4. The value of radiographic findings for the progression of pandemic 2009 influenza A/H1N1 virus infection

    PubMed Central

    2013-01-01

    Background Most illnesses caused by pandemic influenza A (H1N1) pdm09 virus (A/H1N1) infection are acute and self-limiting among children. However, in some children, disease progression is rapid and may require hospitalization and transfer to a pediatric intensive care unit (PICU). We investigated factors associated with rapid disease progression among children admitted to hospital for A/H1N1 infection, particularly findings on initial chest radiographs. Methods In this retrospective study, we investigated the records of children who had received a laboratory or clinical diagnosis of A/H1N1 infection and were admitted to the largest children’s hospital in Japan between May 2009 and March 2010. The medical records were reviewed for age, underlying diseases, vital signs on admission, initial chest radiographic findings, and clinical outcomes. According to chest radiographic findings, patients were classified into 4 groups, as follows: [1] normal (n = 46), [2] hilar and/or peribronchial markings alone (n = 64), [3] consolidation (n = 64), and [4] other findings (n = 29). Factors associated with clinical outcomes were analyzed using logistic regression. Results Two hundreds and three patients (median 6.8 years) were enrolled in this study. Fifteen percent (31/203) of patients were admitted to PICU. Among 31 patients, 39% (12/31) of patients required mechanical ventilation (MV). When the initial chest radiographic findings were compared between patients with consolidation (n = 64) and those without consolidation (n = 139), a higher percentage of patients with consolidation were admitted to PICU (29.7% vs.8.6%, P < 0.001) and required MV (17.2% vs. 0.7%, P < 0.001). These findings remain significant when the data were analyzed with the logistic regression (P < 0.001, P < 0.001, respectively). Conclusions Consolidation on initial chest radiographs was the most significant factor to predict clinical course of hospitalized children with the 2009 A/H1N1 infection. PMID

  5. Lower Respiratory Tract Infection of the Ferret by 2009 H1N1 Pandemic Influenza A Virus Triggers Biphasic, Systemic, and Local Recruitment of Neutrophils

    PubMed Central

    Camp, Jeremy V.; Bagci, Ulas; Chu, Yong-Kyu; Squier, Brendan; Fraig, Mostafa; Uriarte, Silvia M.; Guo, Haixun; Mollura, Daniel J.

    2015-01-01

    and death. Well-developed animal models that mimic human disease are essential to understanding the complex relationships of the microenvironment, organ, and system in controlling virus replication, inflammation, and disease progression. Employing the ferret model of H1N1pdm virus infection, we used live imaging and comprehensive histological analyses to address specific hypotheses regarding spatial and temporal relationships that occur during the progression of infection and inflammation. We show the general invasion of neutrophils at the organ level (lung) but also a distinct pattern of localized accumulation within the microenvironment at the site of infection. Moreover, we show that these responses were biphasic within the lung. Finally, live imaging revealed an early and sustained host metabolic response at sites of infection that may reflect damage and repair of tissues in the lungs. PMID:26063430

  6. MS2 Coliphage as a Surrogate for 2009 Pandemic Influenza A (H1N1) Virus (pH1N1) in Surface Survival Studies on N95 Filtering Facepiece Respirators

    PubMed Central

    Coulliette, A.D.; Perry, K.A.; Fisher, E.M.; Edwards, J.R.; Shaffer, R.E.; Noble-Wang, J.

    2015-01-01

    Research on influenza viruses regarding transmission and survival has surged in the recent years due to infectious emerging strains and outbreaks such as the 2009 Influenza A (H1N1) pandemic. MS2 coliphage has been applied as a surrogate for pathogenic respiratory viruses, such as influenza, as it’s safe for personnel to handle and requires less time and labor to measure virus infectivity. However, direct comparisons to determine the effectiveness of coliphage as a surrogate for influenza virus regarding droplet persistence on personal protective equipment such as N95 filtering facepiece respirators (FFRs) are lacking. Persistence of viral droplets deposited on FFRs in healthcare settings is important to discern due to the potential risk of infection via indirect fomite transmission. The objective of this study was to determine if MS2 coliphage could be applied as a surrogate for influenza A viruses for studying persistence when applied to the FFRs as a droplet. The persistence of MS2 coliphage and 2009 Pandemic Influenza A (H1N1) Virus on FFR coupons in different matrices (viral media, 2% fetal bovine serum, and 5 mg ml−1 mucin) were compared over time (4, 12, 24, 48, 72, and 144 hours) in typical absolute humidity conditions (4.1 × 105 mPa [18°C/20% relative humidity (RH)]). Data revealed significant differences in viral infectivity over the 6-day period (H1N1- P <0.0001; MS2 - P <0.005), although a significant correlation of viral log10 reduction in 2% FBS (P <0.01) was illustrated. Overall, MS2 coliphage was not determined to be a sufficient surrogate for influenza A virus with respect to droplet persistence when applied to the N95 FFR as a droplet. PMID:26500392

  7. [Severe acute pancreatitis and infection by influenza A (H1N1) virus in a child: case report].

    PubMed

    Rodríguez Schulz, Diego; Martínez, Agustina; Guzmán, María Belén; Robledo, Hugo; Capocasa, Patricia; Martínez, Luz; Garnero, Analía

    2015-08-01

    Acute pancreatitis is an inflammatory disease of the pancreas, characterized by abdominal pain and high level of pancreatic enzymes. Pancreatitis is the most common disease of pancreas in children and adults. For the diagnosis we need 2 of 3 characteristics: abdominal pain characteristic of acute pancreatitis, amylase and/or lipase 3 times higher than the normal upper limit and characteristic findings in images. The etiologies are multiple: trauma, metabolic disease and infections: mixovirus, HIV, measles, coxsackie, hepatitis B, C, cytomegalovirus, varicella, herpes simplex. Three cases of PA associated with H1N1 Influenza virus were reported, only one in a child with uncomplicated features. PMID:26172021

  8. Detection of swine-origin influenza A (H1N1) viruses using a paired surface plasma waves biosensor

    NASA Astrophysics Data System (ADS)

    Su, Li-Chen; Chang, Ying-Feng; Li, Ying-Chang; Hsieh, Jo-Ping; Lee, Cheng-Chung; Chou, Chien

    2010-08-01

    In order to enhance the sensitivity of conventional rapid test technique for the detection of swine-origin influenza A (H1N1) viruses (S-OIVs), we used a paired surface plasma waves biosensor (PSPWB) based on SPR in conjunction with an optical heterodyne technique. Experimentally, PSPWB showed a 125-fold improvement at least in the S-OIV detection as compared to conventional enzyme linked immunosorbent assay. Moreover, the detection limit of the PSPWB for the S-OIV detection was enhanced 250-fold in buffer at least in comparison with that of conventional rapid influenza diagnostic test.

  9. Increased Viral Loads and Exacerbated Innate Host Responses in Aged Macaques Infected with the 2009 Pandemic H1N1 Influenza A Virus

    PubMed Central

    Josset, Laurence; Engelmann, Flora; Haberthur, Kristen; Kelly, Sara; Park, Byung; Kawoaka, Yoshi; García-Sastre, Adolfo; Katze, Michael G.

    2012-01-01

    In contrast to seasonal influenza virus infections, which typically cause significant morbidity and mortality in the elderly, the 2009 H1N1 virus caused severe infection in young adults. This phenomenon was attributed to the presence of cross-protective antibodies acquired by older individuals during previous exposures to H1N1 viruses. However, this hypothesis could not be empirically tested. To address this question, we compared viral replication and the development of the immune response in naïve young adult and aged female rhesus macaques infected with A/California/04/2009 H1N1 (CA04) virus. We show higher viral loads in the bronchoalveolar lavage (BAL) fluid and nasal and ocular swabs in aged animals, suggesting increased viral replication in both the lower and upper respiratory tracts. T cell proliferation was higher in the BAL fluid but delayed and reduced in peripheral blood in aged animals. This delay in proliferation correlated with a reduced frequency of effector CD4 T cells in old animals. Aged animals also mobilized inflammatory cytokines to higher levels in the BAL fluid. Finally, we compared changes in gene expression using microarray analysis of BAL fluid samples. Our analyses revealed that the largest difference in host response between aged and young adult animals was detected at day 4 postinfection, with a significantly higher induction of genes associated with inflammation and the innate immune response in aged animals. Overall, our data suggest that, in the absence of preexisting antibodies, CA04 infection in aged macaques is associated with changes in innate and adaptive immune responses that were shown to correlate with increased disease severity in other respiratory disease models. PMID:22855494

  10. Immunologic Characterization of a Rhesus Macaque H1N1 Challenge Model for Candidate Influenza Virus Vaccine Assessment

    PubMed Central

    Skinner, Jason A.; Zurawski, Sandra M.; Sugimoto, Chie; Vinet-Oliphant, Heather; Vinod, Parvathi; Xue, Yaming; Russell-Lodrigue, Kasi; Albrecht, Randy A.; García-Sastre, Adolfo; Salazar, Andres M.; Roy, Chad J.; Kuroda, Marcelo J.; Oh, SangKon

    2014-01-01

    Despite the availability of annually formulated vaccines, influenza virus infection remains a worldwide public health burden. Therefore, it is important to develop preclinical challenge models that enable the evaluation of vaccine candidates while elucidating mechanisms of protection. Here, we report that naive rhesus macaques challenged with 2009 pandemic H1N1 (pH1N1) influenza virus do not develop observable clinical symptoms of disease but develop a subclinical biphasic fever on days 1 and 5 to 6 postchallenge. Whole blood microarray analysis further revealed that interferon activity was associated with fever. We then tested whether type I interferon activity in the blood is a correlate of vaccine efficacy. The animals immunized with candidate vaccines carrying hemagglutinin (HA) or nucleoprotein (NP) exhibited significantly reduced interferon activity on days 5 to 6 postchallenge. Supported by cellular and serological data, we conclude that blood interferon activity is a prominent marker that provides a convenient metric of influenza virus vaccine efficacy in the subclinical rhesus macaque model. PMID:25298110

  11. Genetic and phylogenetic analyses of influenza A H1N1pdm virus in Buenos Aires, Argentina.

    PubMed

    Barrero, P R; Viegas, M; Valinotto, L E; Mistchenko, A S

    2011-01-01

    An influenza pandemic caused by swine-origin influenza virus A/H1N1 (H1N1pdm) spread worldwide in 2009, with 12,080 confirmed cases and 626 deaths occurring in Argentina. A total of 330 H1N1pdm viruses were detected from May to August 2009, and phylogenetic and genetic analyses of 21 complete genome sequences from both mild and fatal cases were achieved with reference to concatenated whole genomes. In addition, the analysis of another 16 hemagglutinin (HA), neuraminidase (NA), and matrix (M) gene sequences of Argentinean isolates was performed. The microevolution timeline was assessed and resistance monitoring of an NA fragment from 228 samples throughout the 2009 pandemic peak was performed by sequencing and pyrosequencing. We also assessed the viral growth kinetics for samples with replacements at the genomic level or special clinical features. In this study, we found by Bayesian inference that the Argentinean complete genome sequences clustered with globally distributed clade 7 sequences. The HA sequences were related to samples from the northern hemisphere autumn-winter from September to December 2009. The NA of Argentinean sequences belonged to the New York group. The N-4 fragment as well as the hierarchical clustering of samples showed that a consensus sequence prevailed in time but also that different variants, including five H275Y oseltamivir-resistant strains, arose from May to August 2009. Fatal and oseltamivir-resistant isolates had impaired growth and a small plaque phenotype compared to oseltamivir-sensitive and consensus strains. Although these strains might not be fit enough to spread in the entire population, molecular surveillance proved to be essential to monitor resistance and viral dynamics in our country. PMID:21047959

  12. Point of Care Strategy for Rapid Diagnosis of Novel A/H1N1 Influenza Virus

    PubMed Central

    Nougairede, Antoine; Ninove, Laetitia; Zandotti, Christine; de Lamballerie, Xavier; Gazin, Celine; Drancourt, Michel; La Scola, Bernard; Raoult, Didier; Charrel, Remi N.

    2010-01-01

    Background Within months of the emergence of the novel A/H1N1 pandemic influenza virus (nA/H1N1v), systematic screening for the surveillance of the pandemic was abandoned in France and in some other countries. At the end of June 2009, we implemented, for the public hospitals of Marseille, a Point Of Care (POC) strategy for rapid diagnosis of the novel A/H1N1 influenza virus, in order to maintain local surveillance and to evaluate locally the kinetics of the pandemic. Methodology/Principal Findings Two POC laboratories, located in strategic places, were organized to receive and test samples 24 h/24. POC strategy consisted of receiving and processing naso-pharyngeal specimens in preparation for the rapid influenza diagnostic test (RIDT) and real-time RT-PCR assay (rtRT-PCR). This strategy had the theoretical capacity of processing up to 36 samples per 24 h. When the flow of samples was too high, the rtRT-PCR test was abandoned in the POC laboratories and transferred to the core virology laboratory. Confirmatory diagnosis was performed in the core virology laboratory twice a day using two distinct rtRT-PCR techniques that detect either influenza A virus or nA/N1N1v. Over a period of three months, 1974 samples were received in the POC laboratories, of which 111 were positive for nA/H1N1v. Specificity and sensitivity of RIDT were 100%, and 57.7% respectively. Positive results obtained using RIDT were transmitted to clinical practitioners in less than 2 hours. POC processed rtRT-PCR results were available within 7 hours, and rtRT-PCR confirmation within 24 hours. Conclusions/Significance The POC strategy is of benefit, in all cases (with or without rtRT-PCR assay), because it provides continuous reception/processing of samples and reduction of the time to provide consolidated results to the clinical practitioners. We believe that implementation of the POC strategy for the largest number of suspect cases may improve the quality of patient care and our knowledge of the

  13. Vaccinees against the 1976 “swine flu” have enhanced neutralization responses to the 2009 novel H1N1 influenza virus

    PubMed Central

    McCullers, Jonathan A.; Van De Velde, Lee-Ann; Allison, Kim J.; Branum, Kristen C.; Webby, Richard J.; Flynn, Patricia M.

    2010-01-01

    Background The world is facing a novel H1N1 pandemic. A pandemic scare with a similar virus in 1976 resulted in the vaccination of nearly 45 million persons. We hypothesized that prior receipt of the 1976 “swine flu” vaccine would enhance immune responses to the 2009 novel H1N1 strain. Methods A prospective, volunteer sample of employees 55 years of age and older at a children’s cancer hospital in August of 2009 was assessed for antibody responses to the 2009 pandemic H1N1 influenza virus and the 2008-2009 seasonal H1N1 influenza virus. Results Antibody responses by hemagglutination-inhibition assay were high against both the seasonal (89.7% had a titer considered seroprotective) and pandemic (88.8% had a seroprotective titer) H1N1 viruses. These antibodies were effective at neutralizing the seasonal H1N1 virus in 68.1% of participants (titer ≥ 40), but only 18.1% had detectable neutralizing titers against the pandemic H1N1. Of 116 participants, 46 (39.7%) received the 1976 “swine flu” vaccine. Receipt of this vaccine significantly enhanced neutralization responses as 8 of 46 (17.4%) vaccine recipients had titers ≥ 160 compared to only 3 of 70 (4.3%) who did not receive the vaccine (P = 0.018 by chi-squared test). Conclusions In this cohort, persons 55 years and older had evidence of robust immunity to the 2008-2009 seasonal H1N1 virus. These antibodies were cross-reactive but non-neutralizing against the 2009 pandemic H1N1 strain. Receipt of a vaccine to a related virus significantly enhanced the neutralization capacity of these responses, suggesting homologous vaccination against the 2009 pandemic H1N1 would have a similar effect. PMID:20415539

  14. Estimating the fitness advantage conferred by permissive neuraminidase mutations in recent oseltamivir-resistant A(H1N1)pdm09 influenza viruses.

    PubMed

    Butler, Jeff; Hooper, Kathryn A; Petrie, Stephen; Lee, Raphael; Maurer-Stroh, Sebastian; Reh, Lucia; Guarnaccia, Teagan; Baas, Chantal; Xue, Lumin; Vitesnik, Sophie; Leang, Sook-Kwan; McVernon, Jodie; Kelso, Anne; Barr, Ian G; McCaw, James M; Bloom, Jesse D; Hurt, Aeron C

    2014-04-01

    Oseltamivir is relied upon worldwide as the drug of choice for the treatment of human influenza infection. Surveillance for oseltamivir resistance is routinely performed to ensure the ongoing efficacy of oseltamivir against circulating viruses. Since the emergence of the pandemic 2009 A(H1N1) influenza virus (A(H1N1)pdm09), the proportion of A(H1N1)pdm09 viruses that are oseltamivir resistant (OR) has generally been low. However, a cluster of OR A(H1N1)pdm09 viruses, encoding the neuraminidase (NA) H275Y oseltamivir resistance mutation, was detected in Australia in 2011 amongst community patients that had not been treated with oseltamivir. Here we combine a competitive mixtures ferret model of influenza infection with a mathematical model to assess the fitness, both within and between hosts, of recent OR A(H1N1)pdm09 viruses. In conjunction with data from in vitro analyses of NA expression and activity we demonstrate that contemporary A(H1N1)pdm09 viruses are now more capable of acquiring H275Y without compromising their fitness, than earlier A(H1N1)pdm09 viruses circulating in 2009. Furthermore, using reverse engineered viruses we demonstrate that a pair of permissive secondary NA mutations, V241I and N369K, confers robust fitness on recent H275Y A(H1N1)pdm09 viruses, which correlated with enhanced surface expression and enzymatic activity of the A(H1N1)pdm09 NA protein. These permissive mutations first emerged in 2010 and are now present in almost all circulating A(H1N1)pdm09 viruses. Our findings suggest that recent A(H1N1)pdm09 viruses are now more permissive to the acquisition of H275Y than earlier A(H1N1)pdm09 viruses, increasing the risk that OR A(H1N1)pdm09 will emerge and spread worldwide. PMID:24699865

  15. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses

    PubMed Central

    Yang, Huanliang; Chen, Yan; Qiao, Chuanling; He, Xijun; Zhou, Hong; Sun, Yu; Yin, Hang; Meng, Shasha; Liu, Liping; Zhang, Qianyi; Kong, Huihui; Gu, Chunyang; Li, Chengjun; Bu, Zhigao; Kawaoka, Yoshihiro; Chen, Hualan

    2016-01-01

    Pigs are important intermediate hosts for generating novel influenza viruses. The Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses (SIVs) have circulated in pigs since 1979, and human cases associated with EAH1N1 SIVs have been reported in several countries. However, the biologic properties of EAH1N1 SIVs are largely unknown. Here, we performed extensive influenza surveillance in pigs in China and isolated 228 influenza viruses from 36,417 pigs. We found that 139 of the 228 strains from pigs in 10 provinces in China belong to the EAH1N1 lineage. These viruses formed five genotypes, with two distinct antigenic groups, represented by A/swine/Guangxi/18/2011 and A/swine/Guangdong/104/2013, both of which are antigenically and genetically distinct from the current human H1N1 viruses. Importantly, the EAH1N1 SIVs preferentially bound to human-type receptors, and 9 of the 10 tested viruses transmitted in ferrets by respiratory droplet. We found that 3.6% of children (≤10 y old), 0% of adults, and 13.4% of elderly adults (≥60 y old) had neutralization antibodies (titers ≥40 in children and ≥80 in adults) against the EAH1N1 A/swine/Guangxi/18/2011 virus, but none of them had such neutralization antibodies against the EAH1N1 A/swine/Guangdong/104/2013 virus. Our study shows the potential of EAH1N1 SIVs to transmit efficiently in humans and suggests that immediate action is needed to prevent the efficient transmission of EAH1N1 SIVs to humans. PMID:26711995

  16. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses.

    PubMed

    Yang, Huanliang; Chen, Yan; Qiao, Chuanling; He, Xijun; Zhou, Hong; Sun, Yu; Yin, Hang; Meng, Shasha; Liu, Liping; Zhang, Qianyi; Kong, Huihui; Gu, Chunyang; Li, Chengjun; Bu, Zhigao; Kawaoka, Yoshihiro; Chen, Hualan

    2016-01-12

    Pigs are important intermediate hosts for generating novel influenza viruses. The Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses (SIVs) have circulated in pigs since 1979, and human cases associated with EAH1N1 SIVs have been reported in several countries. However, the biologic properties of EAH1N1 SIVs are largely unknown. Here, we performed extensive influenza surveillance in pigs in China and isolated 228 influenza viruses from 36,417 pigs. We found that 139 of the 228 strains from pigs in 10 provinces in China belong to the EAH1N1 lineage. These viruses formed five genotypes, with two distinct antigenic groups, represented by A/swine/Guangxi/18/2011 and A/swine/Guangdong/104/2013, both of which are antigenically and genetically distinct from the current human H1N1 viruses. Importantly, the EAH1N1 SIVs preferentially bound to human-type receptors, and 9 of the 10 tested viruses transmitted in ferrets by respiratory droplet. We found that 3.6% of children (≤10 y old), 0% of adults, and 13.4% of elderly adults (≥60 y old) had neutralization antibodies (titers ≥40 in children and ≥80 in adults) against the EAH1N1 A/swine/Guangxi/18/2011 virus, but none of them had such neutralization antibodies against the EAH1N1 A/swine/Guangdong/104/2013 virus. Our study shows the potential of EAH1N1 SIVs to transmit efficiently in humans and suggests that immediate action is needed to prevent the efficient transmission of EAH1N1 SIVs to humans. PMID:26711995

  17. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs

    PubMed Central

    Hiremath, Jagadish; Kang, Kyung-il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B.; Jiang, X.; Lee, Chang Won; Renukaradhya, Gourapura J.

    2016-01-01

    Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs. PMID:27093541

  18. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    PubMed

    Hiremath, Jagadish; Kang, Kyung-Il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B; Jiang, X; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-01-01

    Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs. PMID:27093541

  19. Dietary lactosucrose suppresses influenza A (H1N1) virus infection in mice

    PubMed Central

    KISHINO, Eriko; TAKEMURA, Naho; MASAKI, Hisaharu; ITO, Tetsuya; NAKAZAWA, Masatoshi

    2015-01-01

    This study examined the effects of lactosucrose (4G-β-D-galactosylsucrose) on influenza A virus infections in mice. First, the effects of lactosucrose on fermentation in the cecum and on immune function were investigated. In female BALB/c mice, lactosucrose supplementation for 6 weeks promoted cecal fermentation and increased both secretory IgA (SIgA) levels in feces and total IgA and IgG2a concentrations in serum. Both the percentage of CD4+ T cells in Peyer’s patches and the cytotoxic activity of splenic natural killer (NK) cells increased significantly in response to lactosucrose. Next, we examined the effects of lactosucrose on low-dose influenza A virus infection in mice. After 2 weeks of dietary supplementation with lactosucrose, the mice were infected with low-dose influenza A virus. At 7 days post infection, a comparison with control mice showed that weight loss was suppressed, as were viral titers in the lungs. In the spleens of lactosucrose-fed mice, there was an increase in the percentage of NK cells. Lastly, mice fed lactosucrose were challenged with a lethal dose of influenza A virus. The survival rate of these mice was significantly higher than that of mice fed a control diet. These results suggested that lactosucrose supplementation suppresses influenza A virus infection by augmenting innate immune responses and enhancing cellular and mucosal immunity. PMID:26594606

  20. Molecular Basis for Broad Neuraminidase Immunity: Conserved Epitopes in Seasonal and Pandemic H1N1 as Well as H5N1 Influenza Viruses

    PubMed Central

    Wan, Hongquan; Gao, Jin; Xu, Kemin; Chen, Hongjun; Couzens, Laura K.; Rivers, Katie H.; Easterbrook, Judy D.; Yang, Kevin; Zhong, Lei; Rajabi, Mohsen; Ye, Jianqiang; Sultana, Ishrat; Wan, Xiu-Feng; Liu, Xiufan; Perez, Daniel R.; Taubenberger, Jeffery K.

    2013-01-01

    Influenza A viruses, including H1N1 and H5N1 subtypes, pose a serious threat to public health. Neuraminidase (NA)-related immunity contributes to protection against influenza virus infection. Antibodies to the N1 subtype provide protection against homologous and heterologous H1N1 as well as H5N1 virus challenge. Since neither the strain-specific nor conserved epitopes of N1 have been identified, we generated a panel of mouse monoclonal antibodies (MAbs) that exhibit different reactivity spectra with H1N1 and H5N1 viruses and used these MAbs to map N1 antigenic domains. We identified 12 amino acids essential for MAb binding to the NA of a recent seasonal H1N1 virus, A/Brisbane/59/2007. Of these, residues 248, 249, 250, 341, and 343 are recognized by strain-specific group A MAbs, while residues 273, 338, and 339 are within conserved epitope(s), which allows cross-reactive group B MAbs to bind the NAs of seasonal H1N1 and the 1918 and 2009 pandemic (09pdm) H1N1 as well as H5N1 viruses. A single dose of group B MAbs administered prophylactically fully protected mice against lethal challenge with seasonal and 09pdm H1N1 viruses and resulted in significant protection against the highly pathogenic wild-type H5N1 virus. Another three N1 residues (at positions 396, 397, and 456) are essential for binding of cross-reactive group E MAbs, which differ from group B MAbs in that they do not bind 09pdm H1N1 viruses. The identification of conserved N1 epitopes reveals the molecular basis for NA-mediated immunity between H1N1 and H5N1 viruses and demonstrates the potential for developing broadly protective NA-specific antibody treatments for influenza. PMID:23785204

  1. Identification of oseltamivir resistance among pandemic and seasonal influenza A (H1N1) viruses by an His275Tyr genotyping assay using the cycling probe method.

    PubMed

    Suzuki, Yasushi; Saito, Reiko; Sato, Isamu; Zaraket, Hassan; Nishikawa, Makoto; Tamura, Tsutomu; Dapat, Clyde; Caperig-Dapat, Isolde; Baranovich, Tatiana; Suzuki, Takako; Suzuki, Hiroshi

    2011-01-01

    Neuraminidase inhibitors are agents used against influenza viruses; however, the emergence of drug-resistant strains is a major concern. Recently, the prevalence of oseltamivir-resistant seasonal influenza A (H1N1) virus increased globally and the emergence of oseltamivir-resistant pandemic influenza A (H1N1) 2009 viruses was reported. In this study, we developed a cycling probe real-time PCR method for the detection of oseltamivir-resistant seasonal influenza A (H1N1) and pandemic influenza A (H1N1) 2009 viruses. We designed two sets of primers and probes that were labeled with 6-carboxyfluorescein or 6-carboxy-X-rhodamine to identify single nucleotide polymorphisms (SNPs) that correspond to a histidine and a tyrosine at position 275 in the neuraminidase protein, respectively. These SNPs confer susceptibility and resistance to oseltamivir, respectively. In the 2007-2008 season, the prevalence of oseltamivir-resistant H1N1 viruses was 0% (0/72), but in the 2008-2009 season, it increased to 100% (282/282). In the 2009-2010 season, all of the pandemic influenza A (H1N1) 2009 viruses were susceptible to oseltamivir (0/73, 0%). This method is sensitive and specific for the screening of oseltamivir-resistant influenza A (H1N1) viruses. This method is applicable to routine laboratory-based monitoring of drug resistance and patient management during antiviral therapy. PMID:21084523

  2. Challenge of Pigs with Natural Immunity to H1 and H3 Swine Influenza Virus with Pandemic 2009 H1N1 Influenza Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. The emergence of the pandemic 2009 human H1N1 influenza A virus raised many questions about the implications for this virus in swine (1). One such question is, does prior exposure to influenza virus confer any protection against the new virus? This report describes a study to evaluate ...

  3. In silico modification of oseltamivir as neuraminidase inhibitor of influenza A virus subtype H1N1

    PubMed Central

    Tambunan, Usman Sumo Friend; Rachmania, Rizky Archintya; Parikesit, Arli Aditya

    2015-01-01

    Abstract This research focused on the modification of the functional groups of oseltamivir as neuraminidase inhibitor against influenza A virus subtype H1N1. Interactions of three of the best ligands were evaluated in the hydrated state using molecular dynamics simulation at two different temperatures. The docking result showed that AD3BF2D ligand (N-[(1S,6R)-5-amino-5-{[(2R,3S,4S)-3,4-dihydroxy-4-(hydroxymethyl) tetrahydrofuran-2-yl]oxy}-4-formylcyclohex-3-en-1-yl]acetamide-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate) had better binding energy values than standard oseltamivir. AD3BF2D had several interactions, including hydrogen bonds, with the residues in the catalytic site of neuraminidase as identified by molecular dynamics simulation. The results showed that AD3BF2D ligand can be used as a good candidate for neuraminidase inhibitor to cope with influenza A virus subtype H1N1. PMID:25859271

  4. Epistatic interactions between neuraminidase mutations facilitated the emergence of the oseltamivir-resistant H1N1 influenza viruses

    PubMed Central

    Duan, Susu; Govorkova, Elena A.; Bahl, Justin; Zaraket, Hassan; Baranovich, Tatiana; Seiler, Patrick; Prevost, Kristi; Webster, Robert G.; Webby, Richard J.

    2014-01-01

    Oseltamivir-resistant H1N1 influenza viruses carrying the H275Y neuraminidase mutation predominated worldwide during the 2007–2009 seasons. While several neuraminidase substitutions were found to be necessary to counteract the adverse effects of H275Y, the order and impact of evolutionary events involved remain elusive. Here, we reconstruct H1N1 neuraminidase phylogeny during 1999–2009, estimate the timing and order of crucial amino acid changes, and evaluate their impact on the biological outcome of the H275Y mutation. Of the twelve neuraminidase substitutions that occurred during 1999–2009, five (chronologically, V234M, R222Q, K329E, D344N, H275Y, and D354G) are necessary for maintaining full neuraminidase function in the presence of the H275Y mutation by altering protein accumulation or enzyme affinity/activity. The sequential emergence and cumulative effects of these mutations clearly illustrate a role for epistasis in shaping the emergence and subsequent evolution of a drug-resistant virus population, which can be useful in understanding emergence of novel viral phenotypes of influenza. PMID:25297528

  5. Oseltamivir-resistant pandemic (H1N1) 2009 virus infection in England and Scotland, 2009-2010.

    PubMed

    Calatayud, Laurence; Lackenby, Angie; Reynolds, Arlene; McMenamin, Jim; Phin, Nick F; Zambon, Maria; Pebody, Richard

    2011-10-01

    Oseltamivir has been widely used for pandemic (H1N1) 2009 virus infection, and by April 30, 2010, a total of 285 resistant cases were reported worldwide, including 45 in the United Kingdom. To determine risk factors for emergence of oseltamivir resistance and severe infection, a case-control study was conducted in the United Kingdom. Study participants were hospitalized in England or Scotland during January 4, 2009-April 30, 2010. Controls had confirmed oseltamivir-sensitive pandemic (H1N1) 2009 virus infections, and case-patients had confirmed oseltamivir-resistant infections. Of 28 case-patients with available information, 21 (75%) were immunocompromised; 31 of 33 case-patients (94%) received antiviral drugs before a sample was obtained. After adjusting for confounders, case-patients remained significantly more likely than controls to be immunocompromised and at higher risk for showing development of respiratory complications. Selective drug pressure likely explains the development of oseltamivir resistance, especially among immunocompromised patients. Monitoring of antiviral resistance is strongly recommended in this group. PMID:22000349

  6. Oseltamivir-Resistant Pandemic (H1N1) 2009 Virus Infection in England and Scotland, 2009–2010

    PubMed Central

    Lackenby, Angie; Reynolds, Arlene; McMenamin, Jim; Phin, Nick F.; Zambon, Maria C.; Pebody, Richard

    2011-01-01

    Oseltamivir has been widely used for pandemic (H1N1) 2009 virus infection, and by April 30, 2010, a total of 285 resistant cases were reported worldwide, including 45 in the United Kingdom. To determine risk factors for emergence of oseltamivir resistance and severe infection, a case–control study was conducted in the United Kingdom. Study participants were hospitalized in England or Scotland during January 4, 2009–April 30, 2010. Controls had confirmed oseltamivir-sensitive pandemic (H1N1) 2009 virus infections, and case-patients had confirmed oseltamivir-resistant infections. Of 28 case-patients with available information, 21 (75%) were immunocompromised; 31 of 33 case-patients (94%) received antiviral drugs before a sample was obtained. After adjusting for confounders, case-patients remained significantly more likely than controls to be immunocompromised and at higher risk for showing development of respiratory complications. Selective drug pressure likely explains the development of oseltamivir resistance, especially among immunocompromised patients. Monitoring of antiviral resistance is strongly recommended in this group. PMID:22000349

  7. First isolation of an H1N1 avian influenza virus from wild terrestrial non-migratory birds in Argentina.

    PubMed

    Alvarez, Paula; Mattiello, Rosana; Rivailler, Pierre; Pereda, Ariel; Davis, Charles T; Boado, Lorena; D'Ambrosio, Elisa; Aguirre, Sebastian; Espinosa, Cora; La Torre, José; Donis, Ruben; Mattion, Nora

    2010-01-01

    A type A avian influenza (AI) virus was isolated from dead or severely ill red-winged tinamous (Rhynchotus rufescens) found in a hunting ground in April 2008 in Argentina. The subtype of A/red-winged tinamou/Argentina/MP1/2008 was determined as H1N1 by sequence analysis. The cleavage site of the viral hemagglutinin corresponded to a low pathogenic influenza virus, although the clinical presentation and pathological studies suggest that the virus was pathogenic for red-winged tinamous. Phylogenetic analysis of the viral genome suggested that while the hemagglutinin and neuraminidase genes were related to AIV from North America, the internal genes were most closely related to other South American isolates. These findings support the postulated South American phylogenetic lineage for AIV PB2, PB1, PA, M and NS genes, and suggest that the evolutionary pathways of HA and NA genes involve exchanges between the Northern and Southern hemispheres. PMID:19896684

  8. Comparing Deaths from Influenza H1N1 and Seasonal Influenza A: Main Sociodemographic and Clinical Differences between the Most Prevalent 2009 Viruses

    PubMed Central

    Gutierrez, Juan Pablo

    2012-01-01

    Background. During the 2009 spring epidemic outbreak in Mexico, an important research and policy question faced was related to the differences in clinical profile and population characteristics of those affected by the new H1N1 virus compared with the seasonal virus. Methods and Findings. Data from clinical files from all influenza A deaths in Mexico between April 10 and July 13, 2009 were analyzed to describe differences in clinical and socioeconomic profile between H1N1 and non-H1N1 cases. A total of 324 influenza A mortality cases were studied of which 239 presented rt-PCR confirmation for H1N1 virus and 85 for seasonal influenza A. From the differences of means and multivariate logistic regression, it was found that H1N1 deaths occurred in younger and less educated people, and among those who engage in activities where there is increased contact with other unknown persons (OR 4.52, 95% CI 1.56–13.14). Clinical symptoms were similar except for dyspnea, headache, and chest pain that were less frequently found among H1N1 cases. Conclusions. Findings suggest that age, education, and occupation are factors that may be useful to identify risk for H1N1 among influenza cases, and also that patients with early dyspnea, headache, and chest pain are more likely to be non-H1N1 cases. PMID:23346393

  9. A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918

    PubMed Central

    2012-01-01

    Background The H1N1 influenza A virus has been circulating in the human population for over 95 years, first manifesting itself in the pandemic of 1917–1918. Initial mortality was extremely high, but dropped exponentially over time. Influenza viruses have high mutation rates, and H1N1 has undergone significant genetic changes since 1918. The exact nature of H1N1 mutation accumulation over time has not been fully explored. Methods We have made a comprehensive historical analysis of mutational changes within H1N1 by examining over 4100 fully-sequenced H1N1 genomes. This has allowed us to examine the genetic changes arising within H1N1 from 1918 to the present. Results We document multiple extinction events, including the previously known extinction of the human H1N1 lineage in the 1950s, and an apparent second extinction of the human H1N1 lineage in 2009. These extinctions appear to be due to a continuous accumulation of mutations. At the time of its disappearance in 2009, the human H1N1 lineage had accumulated over 1400 point mutations (more than 10% of the genome), including approximately 330 non-synonymous changes (7.4% of all codons). The accumulation of both point mutations and non-synonymous amino acid changes occurred at constant rates (μ = 14.4 and 2.4 new mutations/year, respectively), and mutations accumulated uniformly across the entire influenza genome. We observed a continuous erosion over time of codon-specificity in H1N1, including a shift away from host (human, swine, and bird [duck]) codon preference patterns. Conclusions While there have been numerous adaptations within the H1N1 genome, most of the genetic changes we document here appear to be non-adaptive, and much of the change appears to be degenerative. We suggest H1N1 has been undergoing natural genetic attenuation, and that significant attenuation may even occur during a single pandemic. This process may play a role in natural pandemic cessation and has apparently contributed to the

  10. Characteristic amino acid changes of influenza A(H1N1)pdm09 virus PA protein enhance A(H7N9) viral polymerase activity.

    PubMed

    Liu, Jun; Huang, Feng; Zhang, Junsong; Tan, Likai; Lu, Gen; Zhang, Xu; Zhang, Hui

    2016-06-01

    Human coinfection with a novel H7N9 influenza virus and the 2009 pandemic A(H1N1) influenza virus, H1N1pdm09, has recently been reported in China. Because reassortment can occur during coinfection, it is necessary to clarify the effects of gene reassortment between these two viruses. Among the viral ribonucleoprotein complex (vRNP) genes, only the PA gene of H1N1pdm09 enhances the avian influenza viral polymerase activity. Based on a phylogenetic analysis, we show a special evolutionary feature of the H1N1pdm09 PA gene, which clustered with those of the novel H7N9 virus and related H9N2 viruses, rather than in the outgroup as the H1N1pdm09 genes do on the phylogenetic trees of other vRNP genes. Using a minigenome system of the novel H7N9 virus, we further demonstrate that replacement of its PA gene significantly enhanced its polymerase activity, whereas replacement of the other vRNP genes reduced its polymerase activity. We also show that the residues of PA evolutionarily conserved between H1N1pdm09 and the novel H7N9 virus are associated with attenuated or neutral polymerase activity. The mutations associated with the increased activity of the novel H7N9 polymerase are characteristic of the H1N1pdm09 gene, and are located almost adjacent to the surface of the PA protein. Our results suggest that the novel H7N9 virus has more effective PB1, PB2, and NP genes than H1N1pdm09, and that H1N1pdm09-like PA mutations enhance the novel H7N9 polymerase function. PMID:26980671

  11. Influenza H1N1 A/Solomon Island/3/06 virus receptor binding specificity correlates with virus pathogenicity, antigenicity, and immunogenicity in ferrets.

    PubMed

    Xu, Qi; Wang, Weijia; Cheng, Xing; Zengel, James; Jin, Hong

    2010-05-01

    Influenza viruses attach to cells via a sialic acid moiety (sialic acid receptor) that is alpha2-3 linked or alpha2-6 linked to galactose (alpha2-3SAL or alpha2-6SAL); sialic acid acts as a receptor for the virus. Using lectin staining, we demonstrated that the alpha2-6SAL configuration is predominant in the respiratory tract of ferrets, including trachea, bronchus, and lung alveolus tissues. Recombinant wild-type (rWT) influenza A/Solomon Island/3/06 (SI06) (H1N1) viruses were constructed to assess the impact of the hemagglutinin (HA) variations (amino acids 190 or 226) identified in natural variants on virus replication in the upper and lower respiratory tract of ferrets, as well as virus antigenicity and immunogenicity. A single amino acid change at residue 226 (from Gln to Arg) in the HA of SI06 resulted in the complete loss of binding to alpha2-6SAL and a concomitant loss of the virus's ability to replicate in the lower respiratory tract of ferrets. In contrast, the virus with Gln226 in the HA protein has a receptor binding preference for alpha2-6SAL and replicates efficiently in the lungs. There was a good correlation between viral replication in the lungs of ferrets and disease symptoms. In addition, we also showed that the 190 and 226 residues affected viral antigenicity and immunogenicity. Our data emphasize the necessity of thoroughly assessing wild-type influenza viruses for their suitability as reference strains and for carefully selecting the HA antigen for vaccine production during annual influenza vaccine evaluation processes. PMID:20200248

  12. CD206+ Cell Number Differentiates Influenza A (H1N1)pdm09 from Seasonal Influenza A Virus in Fatal Cases

    PubMed Central

    Rodriguez-Ramirez, Heidi G.; Salinas-Carmona, Mario C.; Barboza-Quintana, Oralia; Melo-de la Garza, Americo; Ceceñas-Falcon, Luis Angel; Rangel-Martinez, Lilia M.; Rosas-Taraco, Adrian G.

    2014-01-01

    In 2009, a new influenza A (H1N1) virus affected many persons around the world. There is an urgent need for finding biomarkers to distinguish between influenza A (H1N1)pdm09 and seasonal influenza virus. We investigated these possible biomarkers in the lung of fatal cases of confirmed influenza A (H1N1)pdm09. Cytokines (inflammatory and anti-inflammatory) and cellular markers (macrophages and lymphocytes subpopulation markers) were analyzed in lung tissue from both influenza A (H1N1)pdm09 and seasonal influenza virus. High levels of IL-17, IFN-γ, and TNF-α positive cells were identical in lung tissue from the influenza A (H1N1)pdm09 and seasonal cases when compared with healthy lung tissue (P < 0.05). Increased IL-4+ cells, and CD4+ and CD14+ cells were also found in high levels in both influenza A (H1N1)pdm09 and seasonal influenza virus (P < 0.05). Low levels of CD206+ cells (marker of alternatively activated macrophages marker in lung) were found in influenza A (H1N1)pdm09 when compared with seasonal influenza virus (P < 0.05), and the ratio of CD206/CD14+ cells was 2.5-fold higher in seasonal and noninfluenza group compared with influenza A (H1N1)pdm09 (P < 0.05). In conclusion, CD206+ cells differentiate between influenza A (H1N1)pdm09 and seasonal influenza virus in lung tissue of fatal cases. PMID:25614715

  13. The first cases of 2009 pandemic influenza A (H1N1) virus infection in the United States: a serologic investigation demonstrating early transmission

    PubMed Central

    Fry, Alicia M.; Hancock, Kathy; Patel, Minal; Gladden, Matthew; Doshi, Saumil; Blau, Dianna M.; Sugerman, David; Veguilla, Vic; Lu, Xiuhua; Noland, Heather; Bai, Yaohui; Maroufi, Azarnoush; Kao, Annie; Kriner, Paula; Lopez, Karla; Ginsberg, Michele; Jain, Seema; Olsen, Sonja J.; Katz, Jacqueline M.

    2012-01-01

    Please cite this paper as: Fry et al. (2012) The first cases of 2009 pandemic influenza A (H1N1) virus infection in the United States: a serologic investigation demonstrating early transmission. Influenza and Other Respiratory Viruses 6(3), e48–e53. Background  The first two laboratory‐confirmed cases of 2009 pandemic influenza A (H1N1) virus (H1N1pdm09) infection were detected in San Diego (SD) and Imperial County (IC) in southern California, April 2009. Objectives  To describe H1N1pdm09 infections and transmission early in the 2009 H1N1 pandemic. Patients/Methods  We identified index case‐patients from SD and IC with polymerase chain reaction (PCR)‐confirmed H1N1pdm09 infections and investigated close contacts for a subset of case‐patients from April 17–May 6, 2009. Acute and convalescent serum was collected. Serologic evidence for H1N1pdm09 infection was determined by microneutralization and hemagglutination inhibition assays. Results  Among 75 close contacts of seven index case‐patients, three reported illness onset prior to patient A or B, including two patient B contacts and a third with no links to patient A or B. Among the 69 close contacts with serum collected >14 days after the onset of index case symptoms, 23 (33%) were seropositive for H1N1pdm09, and 8 (35%) had no fever, cough, or sore throat. Among 15 household contacts, 8 (53%) were seropositive for H1N1pdm09. The proportion of contacts seropositive for H1N1pdm09 was highest in persons aged 5–24 years (50%) and lowest in persons aged ≥50 years (13%) (P = 0·07). Conclusions  By the end of April 2009, before H1N1pdm09 was circulating widely in the community, a third of persons with close contact to confirmed H1N1pdm09 cases had H1N1pdm09 infection in SD and IC. Three unrelated clusters during March 21–30 suggest that transmission of H1N1pdm09 had begun earlier in southern California. PMID:22353441

  14. Accumulation of Human-Adapting Mutations during Circulation of A(H1N1)pdm09 Influenza Virus in Humans in the United Kingdom

    PubMed Central

    Elderfield, Ruth A.; Watson, Simon J.; Godlee, Alexandra; Adamson, Walt E.; Thompson, Catherine I.; Dunning, Jake; Fernandez-Alonso, Mirian; Blumenkrantz, Deena; Hussell, Tracy; Zambon, Maria; Openshaw, Peter; Kellam, Paul

    2014-01-01

    ABSTRACT The influenza pandemic that emerged in 2009 provided an unprecedented opportunity to study adaptation of a virus recently acquired from an animal source during human transmission. In the United Kingdom, the novel virus spread in three temporally distinct waves between 2009 and 2011. Phylogenetic analysis of complete viral genomes showed that mutations accumulated over time. Second- and third-wave viruses replicated more rapidly in human airway epithelial (HAE) cells than did the first-wave virus. In infected mice, weight loss varied between viral isolates from the same wave but showed no distinct pattern with wave and did not correlate with viral load in the mouse lungs or severity of disease in the human donor. However, second- and third-wave viruses induced less alpha interferon in the infected mouse lungs. NS1 protein, an interferon antagonist, had accumulated several mutations in second- and third-wave viruses. Recombinant viruses with the third-wave NS gene induced less interferon in human cells, but this alone did not account for increased virus fitness in HAE cells. Mutations in HA and NA genes in third-wave viruses caused increased binding to α-2,6-sialic acid and enhanced infectivity in human mucus. A recombinant virus with these two segments replicated more efficiently in HAE cells. A mutation in PA (N321K) enhanced polymerase activity of third-wave viruses and also provided a replicative advantage in HAE cells. Therefore, multiple mutations allowed incremental changes in viral fitness, which together may have contributed to the apparent increase in severity of A(H1N1)pdm09 influenza virus during successive waves. IMPORTANCE Although most people infected with the 2009 pandemic influenza virus had mild or unapparent symptoms, some suffered severe and devastating disease. The reasons for this variability were unknown, but the numbers of severe cases increased during successive waves of human infection in the United Kingdom. To determine the causes

  15. Growth and Pathogenic Potential of Naturally Selected Reassortants after Coinfection with Pandemic H1N1 and Highly Pathogenic Avian Influenza H5N1 Viruses

    PubMed Central

    Song, Min-Suk; Baek, Yun Hee; Pascua, Philippe Noriel Q.; Kwon, Hyeok-il; Kim, Eun-Ha; Park, Su-Jin; Kim, Se Mi; Kim, Young-Il; Choi, Won-Suk; Kim, Eung-Gook; Kim, Chul-Joong

    2015-01-01

    Coinfection of ferrets with H5N1 and pH1N1 viruses resulted in two predominate genotypes in the lungs containing surface genes of highly pathogenic avian influenza H5N1 virus in the backbone of pandemic H1N1 2009 (pH1N1). Compared to parental strains, these reassortants exhibited increased growth and virulence in vitro and in mice but failed to be transmitted indirectly to naive contact ferrets. Thus, this demonstrates a possible natural reassortment following coinfection as well as the pathogenicity of the potential reassortants. PMID:26491154

  16. Growth and Pathogenic Potential of Naturally Selected Reassortants after Coinfection with Pandemic H1N1 and Highly Pathogenic Avian Influenza H5N1 Viruses.

    PubMed

    Song, Min-Suk; Baek, Yun Hee; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Kim, Eun-Ha; Park, Su-Jin; Kim, Se Mi; Kim, Young-Il; Choi, Won-Suk; Kim, Eung-Gook; Kim, Chul-Joong; Choi, Young Ki

    2016-01-01

    Coinfection of ferrets with H5N1 and pH1N1 viruses resulted in two predominate genotypes in the lungs containing surface genes of highly pathogenic avian influenza H5N1 virus in the backbone of pandemic H1N1 2009 (pH1N1). Compared to parental strains, these reassortants exhibited increased growth and virulence in vitro and in mice but failed to be transmitted indirectly to naive contact ferrets. Thus, this demonstrates a possible natural reassortment following coinfection as well as the pathogenicity of the potential reassortants. PMID:26491154

  17. Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: are we facing the expansion of potential epicenters of influenza emergence?

    PubMed

    Pereda, Ariel; Rimondi, Agustina; Cappuccio, Javier; Sanguinetti, Ramon; Angel, Matthew; Ye, Jianqiang; Sutton, Troy; Dibárbora, Marina; Olivera, Valeria; Craig, Maria I; Quiroga, Maria; Machuca, Mariana; Ferrero, Andrea; Perfumo, Carlos; Perez, Daniel R

    2011-11-01

    In this report, we describe the occurrence of two novel swine influenza viruses (SIVs) in pigs in Argentina. These viruses are the result of two independent reassortment events between the H1N1 pandemic influenza virus (H1N1pdm) and human-like SIVs, showing the constant evolution of influenza viruses at the human-swine interface and the potential health risk of H1N1pdm as it appears to be maintained in the swine population. It must be noted that because of the lack of information regarding the circulation of SIVs in South America, we cannot discard the possibility that ancestors of the H1N1pdm or other SIVs have been present in this part of the world. More importantly, these findings suggest an ever-expanding geographic range of potential epicenters of influenza emergence with public health risks. PMID:21668680

  18. Evidence of Reassortment of Pandemic H1N1 Influenza Virus in Swine in Argentina: Are we facing the expansion of potential epicenters of influenza emergence?

    PubMed Central

    Pereda, Ariel; Rimondi, Agustina; Cappuccio, Javier; Sanguinetti, Ramon; Angel, Matthew; Ye, Jianqiang; Sutton, Troy; Dibárbora, Marina; Olivera, Valeria; Craig, Maria I; Quiroga, Maria; Machuca, Mariana; Ferrero, Andrea; Perfumo, Carlos; Perez, Daniel R.

    2011-01-01

    In this report we describe the occurrence of two novel swine influenza viruses (SIVs) in pigs in Argentina. These viruses are the result of two independent reassortment events between the H1N1 pandemic influenza virus (H1N1pdm) and Human Like SIVs, showing the constant evolution of influenza viruses at the human-swine interface and the potential health risk of H1N1pdm as it appears to be maintained in the swine population. It must be noted that due to the lack of information regarding the circulation of SIVs in South America, we cannot discard the possibility that ancestors of the H1N1pdm or other SIVs have been present in this part of the world. More importantly, these findings suggest an ever-expanding geographic range of potential epicenters of influenza emergence with public health risks. PMID:21668680

  19. Short communication: antiviral activity of subcritical water extract of Brassica juncea against influenza virus A/H1N1 in nonfat milk.

    PubMed

    Lee, N-K; Lee, J-H; Lim, S-M; Lee, K A; Kim, Y B; Chang, P-S; Paik, H-D

    2014-09-01

    Subcritical water extract (SWE) of Brassica juncea was studied for antiviral effects against influenza virus A/H1N1 and for the possibility of application as a nonfat milk supplement for use as an "antiviral food." At maximum nontoxic concentrations, SWE had higher antiviral activity against influenza virus A/H1N1 than n-hexane, ethanol, or hot water (80°C) extracts. Addition of 0.5mg/mL of B. juncea SWE to culture medium led to 50.35% cell viability (% antiviral activity) for Madin-Darby canine kidney cells infected with influenza virus A/H1N1. Nonfat milk supplemented with 0.28mg/mL of B. juncea SWE showed 39.62% antiviral activity against influenza virus A/H1N1. Thus, the use of B. juncea SWE as a food supplement might aid in protection from influenza viral infection. PMID:25022686

  20. Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs

    PubMed Central

    Ma, Jingjiao; Shen, Huigang; Liu, Qinfang; Bawa, Bhupinder; Qi, Wenbao; Duff, Michael; Lang, Yuekun; Lee, Jinhwa; Yu, Hai; Bai, Jianfa; Tong, Guangzhi; Hesse, Richard A.; Richt, Jürgen A.

    2014-01-01

    ABSTRACT At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza

  1. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012

    PubMed Central

    Grgić, Helena; Costa, Marcio; Friendship, Robert M.; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors. PMID:26030614

  2. #Nitrosocarbonyls 1: Antiviral Activity of N-(4-Hydroxycyclohex-2-en-1-yl)quinoline-2-carboxamide against the Influenza A Virus H1N1

    PubMed Central

    Al-Saad, Dalya; Memeo, Misal Giuseppe; Quadrelli, Paolo

    2014-01-01

    Influenza virus flu A H1N1 still remains a target for its inhibition with small molecules. Fleeting nitrosocarbonyl intermediates are at work in a short-cut synthesis of carbocyclic nucleoside analogues. The strategy of the synthetic approaches is presented along with the in vitro antiviral tests. The nucleoside derivatives were tested for their inhibitory activity against a variety of viruses. Promising antiviral activities were found for specific compounds in the case of flu A H1N1. PMID:25610906

  3. Experimental Inoculation of Pigs with Pandemic H1N1 2009 Virus and HI Cross-Reactivity with Contemporary Swine Influenza Virus Antisera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In March-April 2009, a novel A/H1N1 emerged in the human population in North America. The gene constellation of the virus was demonstrated to be a combination from swine influenza A viruses (SIV) of North American and Eurasian lineages that had never before been identified in swine or other species...

  4. Synthesis and inhibitory effects of novel pyrimido-pyrrolo-quinoxalinedione analogues targeting nucleoproteins of influenza A virus H1N1.

    PubMed

    Lin, Meng-I; Su, Bo-Han; Lee, Chia-Hsin; Wang, Suz-Ting; Wu, Wen-Chun; Dangate, Prasad; Wang, Shi-Yun; Huang, Wen-I; Cheng, Ting-Jen; Lin, Olivia A; Cheng, Yih-Shyun E; Tseng, Yufeng Jane; Sun, Chung-Ming

    2015-09-18

    The influenza nucleoprotein (NP) is a single-strand RNA-binding protein and the core of the influenza ribonucleoprotein (RNP) particle that serves many critical functions for influenza replication. NP has been considered as a promising anti-influenza target. A new class of anti-influenza compounds, nucleozin and analogues were reported recently in several laboratories to inhibit the synthesis of influenza macromolecules and prevent the cytoplasmic trafficking of the influenza RNP. In this study, pyrimido-pyrrolo-quinoxalinedione (PPQ) analogues as a new class of novel anti-influenza agents are reported. Compound PPQ-581 was identified as a potential anti-influenza lead with EC50 value of 1 μM for preventing virus-induced cytopathic effects. PPQ produces similar anti-influenza effects as nucleozin does in influenza-infected cells. Treatment with PPQ at the beginning of H1N1 infection inhibited viral protein synthesis, while treatment at later times blocked the RNP nuclear export and the appearance of cytoplasmic RNP aggregation. PPQ resistant H1N1 (WSN) viruses were isolated and found to have a NPS377G mutation. Recombinant WSN carrying the S377G NP is resistant to PPQ in anti-influenza and RNA polymerase assays. The WSN virus with the NPS377G mutation also is devoid of the PPQ-mediated RNP nuclear retention and cytoplasmic aggregation. The NPS377G expressing WSN virus is not resistant to the reported NP inhibitors nucleozin. Similarly, the nucleozin resistant WSN viruses are not resistant to PPQ, suggesting that PPQ targets a different site from the nucleozin-binding site. Our results also suggest that NP can be targeted through various binding sites to interrupt the crucial RNP trafficking, resulting in influenza replication inhibition. PMID:26310893

  5. Outcomes of Influenza A(H1N1)pdm09 Virus Infection: Results from Two International Cohort Studies

    PubMed Central

    Lynfield, Ruth; Davey, Richard; Dwyer, Dominic E.; Losso, Marcelo H.; Wentworth, Deborah; Cozzi-Lepri, Alessandro; Herman-Lamin, Kathy; Cholewinska, Grazyna; David, Daniel; Kuetter, Stefan; Ternesgen, Zelalem; Uyeki, Timothy M.; Lane, H. Clifford; Lundgren, Jens; Neaton, James D.

    2014-01-01

    Background Data from prospectively planned cohort studies on risk of major clinical outcomes and prognostic factors for patients with influenza A(H1N1)pdm09 virus are limited. In 2009, in order to assess outcomes and evaluate risk factors for progression of illness, two cohort studies were initiated: FLU 002 in outpatients and FLU 003 in hospitalized patients. Methods and Findings Between October 2009 and December 2012, adults with influenza-like illness (ILI) were enrolled; outpatients were followed for 14 days and inpatients for 60 days. Disease progression was defined as hospitalization and/or death for outpatients, and hospitalization for >28 days, transfer to intensive care unit (ICU) if enrolled from general ward, and/or death for inpatients. Infection was confirmed by RT-PCR. 590 FLU 002 and 392 FLU 003 patients with influenza A (H1N1)pdm09 were enrolled from 81 sites in 17 countries at 2 days (IQR 1–3) and 6 days (IQR 4–10) following ILI onset, respectively. Disease progression was experienced by 29 (1 death) outpatients (5.1%; 95% CI: 3.4–7.2%) and 80 inpatients [death (32), hospitalization >28 days (43) or ICU transfer (20)] (21.6%; 95% CI: 17.5–26.2%). Disease progression (death) for hospitalized patients was 53.1% (26.6%) and 12.8% (3.8%), respectively, for those enrolled in the ICU and general ward. In pooled analyses for both studies, predictors of disease progression were age, longer duration of symptoms at enrollment and immunosuppression. Patients hospitalized during the pandemic period had a poorer prognosis than in subsequent seasons. Conclusions Patients with influenza A(H1N1)pdm09, particularly when requiring hospital admission, are at high risk for disease progression, especially if they are older, immunodeficient, or admitted late in infection. These data reinforce the need for international trials of novel treatment strategies for influenza infection and serve as a reminder of the need to monitor the severity of seasonal and pandemic

  6. Prevalence of Influenza A(H1N1)pdm09 Virus Resistant to Oseltamivir in Shiraz, Iran, During 2012 - 2013

    PubMed Central

    Khodadad, Nastaran; Moattari, Afagh; Shamsi Shahr Abadi, Mahmoud; Kadivar, Mohammad Rahim; Sarvari, Jamal; Tavakoli, Forough; Pirbonyeh, Neda; Emami, Amir

    2015-01-01

    Background: Oseltamivir has been used as a drug of choice for the prophylaxis and treatment of human influenza A(H1N1)pdm09 infection across the world. However, the most frequently identified oseltamivir resistant virus, influenza A(H1N1)pdm09, exhibit the H275Y substitution in NA gene. Objectives: This study aimed to determine the prevalence and phylogenetic relationships of oseltamivir resistance in influenza A(H1N1)pdm09 viruses isolated in Shiraz, Iran. Patients and Methods: Throat swab samples were collected from 200 patients with influenza-like disease from December 2012 until February 2013. A total of 77 influenza A(H1N1)pdm09 positive strains were identified by real-time polymerase chain reaction (PCR). Oseltamivir resistance was detected using quantal assay and nested-PCR method. The NA gene sequencing was conducted to detect oseltamivir-resistant mutants and establish the phylogeny of the prevalent influenza variants. Results: Our results revealed that A(H1N1)pdm09 viruses present in these samples were susceptible to oseltamivir, and contained 5 site specific mutations (V13G, V106I, V241I, N248D, and N369K) in NA gene. These mutations correlated with increasing expression and enzymatic activity of NA protein in the influenza A(H1N1)pdm09 viruses, which were closely related to a main influenza A(H1N1)pdm09 cluster isolated around the world. Conclusions: A(H1N1)pdm09 viruses, identified in this study in Shiraz, Iran, contained 5 site specific mutations and were susceptible to oseltamivir. PMID:26464773

  7. An investigation into human pandemic influenza virus (H1N1) 2009 on an Alberta swine farm.

    PubMed

    Howden, Krista J; Brockhoff, Egan J; Caya, Francois D; McLeod, Laura J; Lavoie, Martin; Ing, Joan D; Bystrom, Janet M; Alexandersen, Soren; Pasick, John M; Berhane, Yohannes; Morrison, Margaret E; Keenliside, Julia M; Laurendeau, Sonja; Rohonczy, Elizabeth B

    2009-11-01

    On May 2, 2009 the Canadian Food Inspection Agency notified the World Organization for Animal Health that an emerging novel influenza A virus (pandemic H1N1 2009) had been confirmed on a swine farm in Alberta. Over a 4-week period pigs in this farrow-to-finish operation were clinically affected by respiratory disease consistent with an influenza A virus infection and the presence of active viral infection was confirmed in all production areas by real-time polymerase chain reaction (RT-PCR). Despite clinical recovery of animals, there was reluctance by purchasers to receive animals from this operation due to concerns about the effect on both domestic and international markets. The owner decided to depopulate the entire herd due to impending welfare issues associated with overcrowding and economic concerns resulting from the inability to market these animals. Carcasses were rendered or composted and did not enter the human food or animal feed chain. The source of virus in this herd was determined to be an infected human. Zoonotic transmission to 2 individuals responding to the outbreak was suspected and recommendations to prevent occupational exposure are discussed. PMID:20119537

  8. Low Level of Cross-Reactive Antibodies to Pandemic Influenza (H1N1) 2009 Virus in Humans in Pre-Pandemic Period in Maharashtra, India.

    PubMed

    Kode, Sadhana S; Pawar, Shailesh D; Tandale, Babasaheb V; Parkhi, Saurabh S; Barde, Tanaji D; Mishra, Akhilesh C

    2012-06-01

    In India, the first outbreak of pandemic influenza (H1N1) 2009 (H1N1pdm) was reported from Panchgani, Maharashtra, in June 2009. Studies from several countries have revealed different levels of pre-existing immunity to H1N1pdm 2009 in various age groups. This study was undertaken using age-stratified pre-pandemic human sera to understand baseline cross-reactivity of antibodies against H1N1pdm. Using cut off antibody titers 20 and 40, overall cross-reactivity was 2.1 and 0.9% respectively by microneutralization assay; 1.2% and 0.7% by haemagglutination inhibition assay, respectively. Results showed higher baseline antibodies and cross-reactive antibodies in the 0-19 age group whereas the elderly age group (≥60) showed no cross-reactivity to H1N1pdm. The higher baseline and cross-reactive antibodies in 0-19 years age group could be because of higher positivity to seasonal H1N1 in that age group. Overall, low level of cross-reactive antibodies to H1N1pdm virus were found in humans in pre-pandemic period in Maharashtra, India. PMID:23730000

  9. Influenza A (H1N1) Virus Infection Triggers Severe Pulmonary Inflammation in Lupus-Prone Mice following Viral Clearance

    PubMed Central

    Slight-Webb, Samantha R.; Bagavant, Harini; Crowe, Sherry R.; James, Judith A.

    2015-01-01

    Each year, up to one fifth of the United States population is infected with influenza virus. Although mortality rates are low, hundreds of thousands are hospitalized each year in the United States. Specific high risk groups, such as those with suppressed or dysregulated immune systems, are at greater danger for influenza complications. Respiratory infections are a common cause of hospitalizations and early mortality in patients with systemic lupus erythematosus (SLE); however, whether this increased infection risk is a consequence of the underlying dysregulated immune background and/or immunosuppressing drugs is unknown. To evaluate the influenza immune response in the context of lupus, as well as assess the effect of infection on autoimmune disease in a controlled setting, we infected lupus-prone MRL/MpJ-Faslpr mice with influenza virus A PR/8/34 H1N1. Interestingly, we found that Faslpr mice generated more influenza A virus specific T cells with less neutrophil accumulation in the lung during acute infection. Moreover, Faslpr mice produced fewer flu-specific IgG and IgM antibodies, but effectively cleared the virus. Further, increased extrinsic apoptosis during influenza infection led to a delay in autoimmune disease pathology with decreased severity of splenomegaly and kidney disease. Following primary influenza A infection, Faslpr mice had severe complications during the contraction and resolution phase with widespread severe pulmonary inflammation. Our findings suggest that influenza infection may not exacerbate autoimmune pathology in mice during acute infection as a direct result of virus induced apoptosis. Additionally, autoimmunity drives an enhanced antigen-specific T cell response to clear the virus, but persisting pulmonary inflammation following viral clearance may cause complications in this lupus animal model. PMID:25563403

  10. Investigation of Pathogenesis of H1N1 Influenza Virus and Swine Streptococcus suis Serotype 2 Co-Infection in Pigs by Microarray Analysis.

    PubMed

    Lin, Xian; Huang, Canhui; Shi, Jian; Wang, Ruifang; Sun, Xin; Liu, Xiaokun; Zhao, Lianzhong; Jin, Meilin

    2015-01-01

    Swine influenza virus and Streptococcus suis are two important contributors to the porcine respiratory disease complex, and both have significant economic impacts. Clinically, influenza virus and Streptococcus suis co-infections in pigs are very common, which often contribute to severe pneumonia and can increase the mortality. However, the co-infection pathogenesis in pigs is unclear. In the present study, co-infection experiments were performed using swine H1N1 influenza virus and Streptococcus suis serotype 2 (SS2). The H1N1-SS2 co-infected pigs exhibited more severe clinical symptoms, serious pathological changes, and robust apoptosis of lungs at 6 days post-infection compared with separate H1N1 and SS2 infections. A comprehensive gene expression profiling using a microarray approach was performed to investigate the global host responses of swine lungs against the swine H1N1 infection, SS2 infection, co-infection, and phosphate-buffered saline control. Results showed 457, 411, and 844 differentially expressed genes in the H1N1, SS2, and H1N1-SS2 groups, respectively, compared with the control. Noticeably, genes associated with the immune, inflammatory, and apoptosis responses were highly overexpressed in the co-infected group. Pathway analysis indicated that the cytokine-cytokine receptor interactions, MAPK, toll-like receptor, complement and coagulation cascades, antigen processing and presentation, and apoptosis pathway were significantly regulated in the co-infected group. However, the genes related to these were less regulated in the separate H1N1 and SS2 infection groups. This observation suggested that a certain level of synergy was induced by H1N1 and SS2 co-infection with significantly stronger inflammatory and apoptosis responses, which may lead to more serious respiratory disease syndrome and pulmonary pathological lesion. PMID:25906258

  11. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China.

    PubMed

    Peng, Xiuming; Wu, Haibo; Xu, Lihua; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Xie, Tiansheng; Lu, Xiangyun; Wu, Nanping

    2016-06-01

    Pandemic outbreaks of H1N1 swine influenza virus have been reported since 2009. Reassortant H1N2 viruses that contain genes from the pandemic H1N1 virus have been isolated in Italy and the United States. However, there is limited information regarding the molecular characteristics of reassortant H1N2 swine influenza viruses in eastern China. Active influenza surveillance programs in Zhejiang Province identified a novel H1N2 influenza virus isolated from pigs displaying clinical signs of influenza virus infection. Whole-genome sequencing was performed and this strain was compared with other influenza viruses available in GenBank. Phylogenetic analysis suggested that the novel strain contained genes from the 2009 pandemic human H1N1 and swine H3N2 viruses. BALB/c mice were infected with the isolated virus to assess its virulence in mice. While the novel H1N2 isolate replicated well in mice, it was found to be less virulent. These results provide additional evidence that swine serve as intermediate hosts or 'mixing vessels' for novel influenza viruses. They also emphasize the importance of surveillance in the swine population for use as an early warning system for influenza outbreaks in swine and human populations. PMID:26980674

  12. Antiviral activity of baicalin against influenza A (H1N1/H3N2) virus in cell culture and in mice and its inhibition of neuraminidase.

    PubMed

    Ding, Yue; Dou, Jie; Teng, Zaijin; Yu, Jie; Wang, Tingting; Lu, Na; Wang, Hui; Zhou, Changlin

    2014-12-01

    Scutellaria baicalensis Georgi, a Chinese herbal decoction, has been used for the treatment of the common cold, fever and influenza virus infections. In previous studies, we found that oral administration of baicalein resulted in the inhibition of influenza A virus replication in vivo, which was linked to baicalin in serum. However, the effective dose and underlying mechanisms of the efficacy of baicalin against influenza A virus have not been fully elucidated. In this study, the antiviral effects of baicalin in influenza-virus-infected MDCK cells and mice were examined. The neuraminidase inhibition assay was performed to investigate the mechanism of action of baicalin. In vitro results showed that baicalin exhibited a half-maximal effective concentration (EC50) of 43.3 μg/ml against the influenza A/FM1/1/47 (H1N1) virus and 104.9 μg/ml against the influenza A/Beijing/32/92 (H3N2) virus. When added to MDCK cell cultures after inoculation with influenza virus, baicalin demonstrated obvious antiviral activity that increased in a dose-dependent manner, indicating that baicalin affected virus budding. Baicalin had clear inhibitory effects against neuraminidases, with half-maximal inhibitory concentration (IC50) of 52.3 μg/ml against the influenza A/FM1/1/47 (H1N1) virus and 85.8 μg/ml against the influenza A/Beijing/32/92 (H3N2) virus. In vivo studies showed that an intravenous injection of baicalin effectively reduced the death rate, prolonged the mean day to death (MDD) and improved the lung parameters of mice infected with influenza A virus. These results demonstrate that baicalin acts as a neuraminidase inhibitor, with clear inhibitory activities that are effective against different strains of influenza A virus in both cell culture and a mouse model, and that baicalin has potential utility in the management of influenza virus infections. PMID:25078390

  13. Single-step multiplex reverse transcription-polymerase chain reaction assay for detection and differentiation of the 2009 (H1N1) influenza A virus pandemic in Thai swine populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recently emerged H1N1 Influenza A virus (pandemic 1 H1N1: pH1N1) with a Swine influenza virus (SIV) genetic background spread globally from human-to-human causing the first influenza virus pandemic of the 21st century. In a short period reverse zoonotic cases in pigs followed by a wide spread of t...

  14. A Whole Virus Pandemic Influenza H1N1 Vaccine Is Highly Immunogenic and Protective in Active Immunization and Passive Protection Mouse Models

    PubMed Central

    Kistner, Otfried; Crowe, Brian A.; Wodal, Walter; Kerschbaum, Astrid; Savidis-Dacho, Helga; Sabarth, Nicolas; Falkner, Falko G.; Mayerhofer, Ines; Mundt, Wolfgang; Reiter, Manfred; Grillberger, Leopold; Tauer, Christa; Graninger, Michael; Sachslehner, Alois; Schwendinger, Michael; Brühl, Peter; Kreil, Thomas R.; Ehrlich, Hartmut J.; Barrett, P. Noel

    2010-01-01

    The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus challenge. The immunogenicity in this model was comparable to that of a whole virus H5N1 vaccine, which had previously been demonstrated to induce high levels of seroprotection in clinical studies. The efficacy of the H1N1 pandemic vaccine in protecting against live virus challenge was also seen to be equivalent to that of the H5N1 vaccine. The protective efficacy of the H1N1 vaccine was also confirmed using a severe combined immunodeficient (SCID) mouse model. It was demonstrated that mouse and guinea pig immune sera elicited following active H1N1 vaccination resulted in 100% protection of SCID mice following passive transfer of immune sera and lethal challenge. The immune responses to a whole virus pandemic H1N1 and a split seasonal H1N1 vaccine were also compared in this study. It was demonstrated that the whole virus vaccine induced a balanced Th-1 and Th-2 response in mice, whereas the split vaccine induced mainly a Th-2 response and only minimal levels of Th-1 responses. These data supported the initiation of clinical studies with the same low doses of whole virus vaccine that had previously been demonstrated to be immunogenic in clinical studies with a whole virus H5N1 vaccine. PMID:20186321

  15. Oseltamivir-Resistant Influenza Viruses A (H1N1) during 2007–2009 Influenza Seasons, Japan

    PubMed Central

    Ujike, Makoto; Shimabukuro, Kozue; Mochizuki, Kiku; Obuchi, Masatsugu; Kageyama, Tsutomu; Shirakura, Masayuki; Kishida, Noriko; Yamashita, Kazuyo; Horikawa, Hiroshi; Kato, Yumiko; Fujita, Nobuyuki; Tashiro, Masato

    2010-01-01

    To monitor oseltamivir-resistant influenza viruses A (H1N1) (ORVs) with H275Y in neuraminidase (NA) in Japan during 2 influenza seasons, we analyzed 3,216 clinical samples by NA sequencing and/or NA inhibition assay. The total frequency of ORVs was 2.6% (45/1,734) during the 2007–08 season and 99.7% (1,477/1,482) during the 2008–09 season, indicating a marked increase in ORVs in Japan during 1 influenza season. The NA gene of ORVs in the 2007–08 season fell into 2 distinct lineages by D354G substitution, whereas that of ORVs in the 2008–09 season fell into 1 lineage. NA inhibition assay and M2 sequencing showed that almost all the ORVs were sensitive to zanamivir and amantadine. The hemagglutination inhibition test showed that ORVs were antigenetically similar to the 2008–09 vaccine strain A/Brisbane/59/2007. Our data indicate that the current vaccine or zanamivir and amantadine are effective against recent ORVs, but continuous surveillance remains necessary. PMID:20507742

  16. Real time reverse transcription (RRT)-polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND. Requirement to detect pandemic (H1N1) 2009 (H1N1v) and established swine influenza A viruses (SIVs) by RealTime real time reverse transcription (RRT) PCR methods. Objectives. First, modify an existing M gene RRT PCR for sensitive generic detection of H1N1v and other European SIVs. S...

  17. The C terminus of NS1 protein of influenza A/WSN/1933(H1N1) virus modulates antiviral responses in infected human macrophages and mice.

    PubMed

    Anastasina, Maria; Schepens, Bert; Söderholm, Sandra; Nyman, Tuula A; Matikainen, Sampsa; Saksela, Kalle; Saelens, Xavier; Kainov, Denis E

    2015-08-01

    Non-structural protein NS1 of influenza A viruses interacts with cellular factors through its N-terminal RNA-binding, middle effector and C-terminal non-structured domains. NS1 attenuates antiviral responses in infected cells and thereby secures efficient virus replication. Some influenza strains express C-terminally truncated NS1 proteins due to nonsense mutations in the NS1 gene. To understand the role of the NS1 C-terminal region in regulation of antiviral responses, we engineered influenza viruses expressing C-terminally truncated NS1 proteins using A/WSN/33(H1N1) reverse genetics and tested them in human macrophages and in mice. We showed that a WSN virus expressing NS1 with a 28 aa deletion from its C terminus is a more powerful inducer of antiviral responses than the virus expressing full-length NS1, or one with a 10 aa truncation of NS1 in vitro. Thus, our findings suggest that the C-terminal region of NS1 is essential for regulation of antiviral responses. Moreover, viruses expressing truncated NS1 proteins could be good vaccine candidates. PMID:25934792

  18. Preventive Activity against Influenza (H1N1) Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice.

    PubMed

    Cho, Seungchan; Youn, Ha-Na; Hoang, Phuong Mai; Cho, Sungrae; Kim, Kee-Eun; Kil, Eui-Joon; Lee, Gunsup; Cho, Mun-Ju; Hong, Juhyun; Byun, Sung-June; Song, Chang-Seon; Lee, Sukchan

    2015-09-01

    The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1) was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day) for five days prior to infection demonstrated an antiviral activity (70% survival) against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system. PMID:26402693

  19. Preventive Activity against Influenza (H1N1) Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice

    PubMed Central

    Cho, Seungchan; Youn, Ha-Na; Hoang, Phuong Mai; Cho, Sungrae; Kim, Kee-Eun; Kil, Eui-Joon; Lee, Gunsup; Cho, Mun-Ju; Hong, Juhyun; Byun, Sung-June; Song, Chang-Seon; Lee, Sukchan

    2015-01-01

    The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1) was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day) for five days prior to infection demonstrated an antiviral activity (70% survival) against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system. PMID:26402693

  20. Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses.

    PubMed Central

    Gorman, O T; Bean, W J; Kawaoka, Y; Donatelli, I; Guo, Y J; Webster, R G

    1991-01-01

    A phylogenetic analysis of 52 published and 37 new nucleoprotein (NP) gene sequences addressed the evolution and origin of human and swine influenza A viruses. H1N1 human and classical swine viruses (i.e., those related to Swine/Iowa/15/30) share a single common ancestor, which was estimated to have occurred in 1912 to 1913. From this common ancestor, human and classical swine virus NP genes have evolved at similar rates that are higher than in avian virus NP genes (3.31 to 3.41 versus 1.90 nucleotide changes per year). At the protein level, human virus NPs have evolved twice as fast as classical swine virus NPs (0.66 versus 0.34 amino acid change per year). Despite evidence of frequent interspecies transmission of human and classical swine viruses, our analysis indicates that these viruses have evolved independently since well before the first isolates in the early 1930s. Although our analysis cannot reveal the original host, the ancestor virus was avianlike, showing only five amino acid differences from the root of the avian virus NP lineage. The common pattern of relationship and origin for the NP and other genes of H1N1 human and classical swine viruses suggests that the common ancestor was an avian virus and not a reassortant derived from previous human or swine influenza A viruses. The new avianlike H1N1 swine viruses in Europe may provide a model for the evolution of newly introduced avian viruses into the swine host reservoir. The NPs of these viruses are evolving more rapidly than those of human or classical swine viruses (4.50 nucleotide changes and 0.74 amino acid change per year), and when these rates are applied to pre-1930s human and classical swine virus NPs, the predicted date of a common ancestor is 1918 rather than 1912 to 1913. Thus, our NP phylogeny is consistent with historical records and the proposal that a short time before 1918, a new H1N1 avianlike virus entered human or swine hosts (O. T. Gorman, R. O. Donis, Y. Kawaoka, and R. G. Webster

  1. TGF-β Blood Levels Distinguish Between Influenza A (H1N1)pdm09 Virus Sepsis and Sepsis due to Other Forms of Community-Acquired Pneumonia.

    PubMed

    Rendón-Ramirez, Erick J; Ortiz-Stern, Alejandro; Martinez-Mejia, Corazon; Salinas-Carmona, Mario C; Rendon, Adrian; Mata-Tijerina, Viviana L; Rosas-Taraco, Adrian G

    2015-06-01

    There is a strong interest in finding adequate biomarkers to aid in the diagnosis and prognosis of influenza A (H1N1)pdm09 virus infection. In this study, serum levels of inflammatory cytokines and laboratory markers were evaluated to assess their usefulness as biomarkers of influenza A (H1N1)pdm09 and their association with fatal cases. Serum samples of consecutive patients with a clinical presentation suggestive of influenza A (H1N1)pdm09 and progression to sepsis were evaluated. Serum inflammatory cytokines and routine laboratory tests were performed and correlated with positivity for influenza A (H1N1)pdm09 influenza by real time reverse transcription polymerase chain reaction and the results of three clinical severity scores (Sequential Organ Failure Assessment [SOFA], CURB-65, and Acute Physiology and Chronic Health Evaluation II [APACHE II]). High SOFA scores and some of its individual components, but not CURB-65 or APACHE II scores, correlate with fatal cases regardless of etiology. Total and unconjugated bilirubin, Ca(++), Cl(-), prothrombin times, and partial thromboplastin times discriminate influenza A (H1N1)pdm09 from other causes of community-acquired pneumonia. High levels of IL-8, IL-10, and IL-17 were increased in influenza A (H1N1)pdm09 patients when compared with controls (p<0.05). IL-6 levels were significantly elevated in influenza A (H1N1)pdm09 patients and non-(H1N1)pdm09 patients when compared with controls (p<0.05). TGF-β serum levels discern between healthy controls, influenza A (H1N1)pdm09 patients, and patients with other causes of community-acquired pneumonia. TGF-β levels were negatively correlated with SOFA on admission in influenza A (H1N1)pdm09 patients. TGF-β levels are a useful tool for differentiating influenza A (H1N1)pdm09 from other causes of pneumonia progressing to sepsis. PMID:25923384

  2. TGF-β Blood Levels Distinguish Between Influenza A (H1N1)pdm09 Virus Sepsis and Sepsis due to Other Forms of Community-Acquired Pneumonia

    PubMed Central

    Rendón-Ramirez, Erick J.; Ortiz-Stern, Alejandro; Martinez-Mejia, Corazon; Salinas-Carmona, Mario C.; Rendon, Adrian; Mata-Tijerina, Viviana L.

    2015-01-01

    Abstract There is a strong interest in finding adequate biomarkers to aid in the diagnosis and prognosis of influenza A (H1N1)pdm09 virus infection. In this study, serum levels of inflammatory cytokines and laboratory markers were evaluated to assess their usefulness as biomarkers of influenza A (H1N1)pdm09 and their association with fatal cases. Serum samples of consecutive patients with a clinical presentation suggestive of influenza A (H1N1)pdm09 and progression to sepsis were evaluated. Serum inflammatory cytokines and routine laboratory tests were performed and correlated with positivity for influenza A (H1N1)pdm09 influenza by real time reverse transcription polymerase chain reaction and the results of three clinical severity scores (Sequential Organ Failure Assessment [SOFA], CURB-65, and Acute Physiology and Chronic Health Evaluation II [APACHE II]). High SOFA scores and some of its individual components, but not CURB-65 or APACHE II scores, correlate with fatal cases regardless of etiology. Total and unconjugated bilirubin, Ca++, Cl−, prothrombin times, and partial thromboplastin times discriminate influenza A (H1N1)pdm09 from other causes of community-acquired pneumonia. High levels of IL-8, IL-10, and IL-17 were increased in influenza A (H1N1)pdm09 patients when compared with controls (p<0.05). IL-6 levels were significantly elevated in influenza A (H1N1)pdm09 patients and non-(H1N1)pdm09 patients when compared with controls (p<0.05). TGF-β serum levels discern between healthy controls, influenza A (H1N1)pdm09 patients, and patients with other causes of community-acquired pneumonia. TGF-β levels were negatively correlated with SOFA on admission in influenza A (H1N1)pdm09 patients. TGF-β levels are a useful tool for differentiating influenza A (H1N1)pdm09 from other causes of pneumonia progressing to sepsis. PMID:25923384

  3. Continual Reintroduction of Human Pandemic H1N1 Influenza A Viruses into Swine in the United States, 2009 to 2014

    PubMed Central

    Stratton, Jered; Killian, Mary Lea; Janas-Martindale, Alicia; Vincent, Amy L.

    2015-01-01

    ABSTRACT The diversity of influenza A viruses in swine (swIAVs) presents an important pandemic threat. Knowledge of the human-swine interface is particularly important for understanding how viruses with pandemic potential evolve in swine hosts. Through phylogenetic analysis of contemporary swIAVs in the United States, we demonstrate that human-to-swine transmission of pandemic H1N1 (pH1N1) viruses has occurred continuously in the years following the 2009 H1N1 pandemic and has been an important contributor to the genetic diversity of U.S. swIAVs. Although pandemic H1 and N1 segments had been largely removed from the U.S. swine population by 2013 via reassortment with other swIAVs, these antigens reemerged following multiple human-to-swine transmission events during the 2013-2014 seasonal epidemic. These findings indicate that the six internal gene segments from pH1N1 viruses are likely to be sustained long term in the U.S. swine population, with periodic reemergence of pandemic hemagglutinin (HA) and neuraminidase (NA) segments in association with seasonal pH1N1 epidemics in humans. Vaccinating U.S. swine workers may reduce infection of both humans and swine and in turn limit the role of humans as sources of influenza virus diversity in pigs. IMPORTANCE Swine are important hosts in the evolution of influenza A viruses with pandemic potential. Here, we analyze influenza virus sequence data generated by the U.S. Department of Agriculture's national surveillance system to identify the central role of humans in the reemergence of pandemic H1N1 (pH1N1) influenza viruses in U.S. swine herds in 2014. These findings emphasize the important role of humans as continuous sources of influenza virus diversity in swine and indicate that influenza viruses with pandemic HA and NA segments are likely to continue to reemerge in U.S. swine in association with seasonal pH1N1 epidemics in humans. PMID:25833052

  4. TNF, IL6, and IL1B Polymorphisms Are Associated with Severe Influenza A (H1N1) Virus Infection in the Mexican Population

    PubMed Central

    García-Ramírez, Román Alejandro; Ramírez-Venegas, Alejandra; Quintana-Carrillo, Roger; Camarena, Ángel Eduardo; Falfán-Valencia, Ramcés; Mejía-Aranguré, Juan Manuel

    2015-01-01

    Background Hypercytokinemia is the main immunopathological mechanism contributing to a more severe clinical course in influenza A (H1N1) virus infections. Most patients infected with the influenza A (H1N1) pdm09 virus had increased systemic levels of pro-inflammatory cytokines; including interleukin IL-6, IL-8, and tumor necrosis factor-alpha (TNF-α). We propose that single-nucleotide polymorphisms (SNPs) in the promoter regions of pro-inflammatory genes are associated with the severity of influenza A (H1N1) pdm09 virus infection. Methods 145 patients with influenza A (H1N1) (pA/H1N1), 133 patients with influenza-like illness (ILI), and 360 asymptomatic healthy contacts (AHCs) were included. Eleven SNPs were genotyped in six genes (TNF, LT, IL1B, IL6, CCL1, and IL8) using real-time PCR; the ancestral genotype was used for comparison. Genotypes were correlated with 27 clinical severity variables. Ten cytokines (GM-CSF, TNF-α, IL-2, IL-1β, IL-6, IL-8, IFN-γ, IL-10, IL-5, and IL-4) were measured on a Luminex 100. Results The IL6 rs1818879 (GA) heterozygous genotype was associated with severe influenza A (H1N1) virus infection (odds ratio [OR] = 5.94, 95% confidence interval [CI] 3.05–11.56), and two IL1B SNPs, rs16944 AG and rs3136558 TC, were associated with a decreased risk of infection (OR = 0.52 and OR = 0.51, respectively). Genetic susceptibility was determined (pA/H1N1 vs. AHC): the LTA rs909253 TC heterozygous genotype conferred greater risk (OR = 1.9), and a similar association was observed with the IL1B rs3136558 CC genotype (OR = 1.89). Additionally, severely ill patients were compared with moderately ill patients. The TNF-238 GA genotype was associated with an increased risk of disease severity (OR = 16.06, p = 0.007). Compared with ILIs, patients with severe pA/H1N1 infections exhibited increased serum IL-5 (p <0.001) and IL-6 (p  =  0.007) levels. Conclusions The TNF gene was associated with disease severity, whereas IL1B and IL6 SNPs were

  5. Serologic cross reactivity of serum samples from avian influenza vaccinated commercial U.S. turkeys to the emergent H1N1 influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, the 2009 human H1N1 influenza virus was identified in turkey breeders in Chile and Canada resulting in infection and egg production losses. In the U.S., vaccination of turkeys against avian influenza may include H1 and H3 viruses also isolated from swine. We tested whether sera from turk...

  6. Identification and Characterization of a Highly Virulent Triple Reassortant H1N1 Swine Influenza Virus in the Midwest of the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An H1N1 influenza A virus, A/Swine/Kansas/77778/2007 (KS07) was isolated from a herd in Kansas that was suffering severe respiratory disease and 10% mortality. A pig challenge model was developed to evaluate the pathogenicity and transmission capacity of the KS07 virus. The pathogenicity and trans...

  7. PD-L1 Expression Induced by the 2009 Pandemic Influenza A(H1N1) Virus Impairs the Human T Cell Response

    PubMed Central

    Arriaga-Pizano, Lourdes; Ferat-Osorio, Eduardo; Mora-Velandia, Luz María; Pastelin-Palacios, Rodolfo; Villasís-Keever, Miguel Ángel; Alpuche-Aranda, Celia; Sánchez-Torres, Luvia Enid; Isibasi, Armando; Bonifaz, Laura; López-Macías, Constantino

    2013-01-01

    PD-L1 expression plays a critical role in the impairment of T cell responses during chronic infections; however, the expression of PD-L1 on T cells during acute viral infections, particularly during the pandemic influenza virus (A(H1N1)pdm09), and its effects on the T cell response have not been widely explored. We found that A(H1N1)pdm09 virus induced PD-L1 expression on human dendritic cells (DCs) and T cells, as well as PD-1 expression on T cells. PD-L1 expression impaired the T cell response against A(H1N1)pdm09 by promoting CD8+ T cell death and reducing cytokine production. Furthermore, we found increased PD-L1 expression on DCs and T cells from influenza-infected patients from the first and second 2009 pandemic waves in Mexico City. PD-L1 expression on CD8+ T cells correlated inversely with T cell proportions in patients infected with A(H1N1)pdm09. Therefore, PD-L1 expression on DCs and T cells could be associated with an impaired T cell response during acute infection with A(H1N1)pdm09 virus. PMID:24187568

  8. H1N1 influenza (Swine flu)

    MedlinePlus

    Swine flu; H1N1 type A influenza ... of the H1N1 virus were found in pigs (swine). Over time, the virus changed (mutated) and infected ... 25654610 . Treanor JJ. Influenza (including avian influenza and swine influenza). In: Bennett JE, Dolin R, Blaser MJ, ...

  9. Role of Host Immune Response and Viral Load in the Differential Outcome of Pandemic H1N1 (2009) Influenza Virus Infection in Indian Patients

    PubMed Central

    Arankalle, Vidya A.; Lole, Kavita S.; Arya, Ravi P.; Tripathy, Anuradha S.; Ramdasi, Ashwini Y.; Chadha, Mandeep S.; Sangle, Shashi A.; Kadam, Deelip B.

    2010-01-01

    Background An unusually high number of severe pneumonia cases with considerable mortality is being observed with the pandemic H1N1 2009 virus infections globally. In India, all mild as well as critically ill cases were admitted and treated in the government hospitals during the initial phase of the pandemic. The present study was undertaken during this early phase of the pandemic. Methodology The role of viral load and host factors in the pathogenesis were assessed by examining 26 mild (MP), 15 critically ill patients (CIP) and 20 healthy controls from Pune, India. Sequential blood and lung aspirate samples were collected from CIP. Viral load and cytokines/chemokine levels were determined from the plasma and lung aspirates of the patients. TLR levels were determined by staining and FACS analysis. Gene profiling was done for both cells in the lung aspirates and PBMCs using TaqMan Low Density arrays. Antibody titres and isotyping was done using HA protein based ELISAs. Principal Findings 13/15 critically ill patients expired. All plasma samples were negative for the virus irrespective of the patient's category. Sequential lung samples from CIP showed lower viral loads questioning association of viral replication with the severity. Anti-rpH1N1-09-HA-IgG titres were significantly higher in critically ill patients and both categories circulated exclusively IgG1 isotype. Critically ill patients exhibited increase in TLR-3, 4, 7 and decrease in TLR-2 expressions. The disease severity correlated with increased plasma levels of IL1RA, IL2, IL6, CCL3, CCL4 and IL10. Majority of the immune-function genes were down-regulated in the PBMCs and up-regulated in the cells from lung aspirates of critically ill patients. No distinct pattern differentiating fatal and surviving patients was observed when sequential samples were examined for various parameters. Conclusions Disease severity was associated with pronounced impairment of host immune response. PMID:20957032

  10. Genetic variants in IL1A and IL1B contribute to the susceptibility to 2009 pandemic H1N1 influenza A virus

    PubMed Central

    2013-01-01

    Background Host genetic variations may contribute to disease susceptibility of influenza. IL-1A and IL-1B are important inflammatory cytokines that mediate the inflammation and initiate the immune response against virus infection. In this study, we investigated the relationship between single-nucleotide polymorphisms (SNPs) of Interleukin-1A (IL-1A) and Interleukin-1B (IL-1B) and the susceptibility to 2009 pandemic A/H1N1 influenza (A(H1N1)pdm09). 167 patients whom were confirmed with A(H1N1)pdm09 and 192 healthy controls were included in this study. Four SNPs (rs1304037, rs16347, rs17561, rs2071373) in IL1A gene and three SNPs (rs1143623, rs3917345, rs1143627) in IL1B gene were genotyped by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry platform, and the associations of the genetic variants of IL-1 with susceptibility to A(H1N1)pdm09 were then assessed. Results The polymorphisms of rs17561 in IL1A gene and rs1143627 in IL1B gene were found to be associated with susceptibility to A(H1N1)pdm09 with P values of 0.003 (OR 2.08, 95% CI 1.27-3.41) and 0.002 (OR 1.62 , 95% CI 1.20-2.18), respectively. However, no significant difference in allelic frequency was observed for other SNPs between cases and controls. Conclusions This study provides a new insight into pathogenesis of A(H1N1)pdm09, suggesting that genetic variants of IL-1A and IL-1B may exert a substantial impact on the susceptibility of A(H1N1)pdm09 virus infection. PMID:23927441

  11. Characterization of Quasispecies of Pandemic 2009 Influenza A Virus (A/H1N1/2009) by De Novo Sequencing Using a Next-Generation DNA Sequencer

    PubMed Central

    Kuroda, Makoto; Katano, Harutaka; Nakajima, Noriko; Tobiume, Minoru; Ainai, Akira; Sekizuka, Tsuyoshi; Hasegawa, Hideki; Tashiro, Masato; Sasaki, Yuko; Arakawa, Yoshichika; Hata, Satoru; Watanabe, Masahide; Sata, Tetsutaro

    2010-01-01

    Pandemic 2009 influenza A virus (A/H1N1/2009) has emerged globally. In this study, we performed a comprehensive detection of potential pathogens by de novo sequencing using a next-generation DNA sequencer on total RNAs extracted from an autopsy lung of a patient who died of viral pneumonia with A/H1N1/2009. Among a total of 9.4×106 40-mer short reads, more than 98% appeared to be human, while 0.85% were identified as A/H1N1/2009 (A/Nagano/RC1-L/2009(H1N1)). Suspected bacterial reads such as Streptococcus pneumoniae and other oral bacteria flora were very low at 0.005%, and a significant bacterial infection was not histologically observed. De novo assembly and read mapping analysis of A/Nagano/RC1-L/2009(H1N1) showed more than ×200 coverage on average, and revealed nucleotide heterogeneity on hemagglutinin as quasispecies, specifically at two amino acids (Gly172Glu and Gly239Asn of HA) located on the Sa and Ca2 antigenic sites, respectively. Gly239 and Asn239 on antigenic site Ca2 appeared to be minor amino acids compared with the highly distributed Asp239 in H1N1 HAs. This study demonstrated that de novo sequencing can comprehensively detect pathogens, and such in-depth investigation facilitates the identification of influenza A viral heterogeneity. To better characterize the A/H1N1/2009 virus, unbiased comprehensive techniques will be indispensable for the primary investigations of emerging infectious diseases. PMID:20428231

  12. Continued emergence and changing epidemiology of oseltamivir-resistant influenza A(H1N1)2009 virus, United Kingdom, winter 2010/11.

    PubMed

    Lackenby, A; Moran Gilad, J; Pebody, R; Miah, S; Calatayud, L; Bolotin, S; Vipond, I; Muir, P; Guiver, M; McMenamin, J; Reynolds, A; Moore, C; Gunson, R; Thompson, C; Galiano, M; Bermingham, A; Ellis, J; Zambon, M

    2011-01-01

    During the winter period 2010/11 27 epidemiologically unlinked, confirmed cases of oseltamivir-resistant influenza A(H1N1)2009 virus infection have been detected in multiple, geographically dispersed settings. Three of these cases were in community settings, with no known exposure to oseltamivir. This suggests possible onward transmission of resistant strains and could be an indication of a possibility of changing epidemiology of oseltamivir-resistant influenza A(H1N1)2009 virus. PMID:21315056

  13. Fight Against H1N1 Influenza A Virus: Recent Insights Towards the Development of Druggable Compounds.

    PubMed

    Tonelli, Michele; Cichero, Elena

    2016-01-01

    In this review we discuss drug design strategies directed to the development of potential anti-influenza A(H1N1) inhibitors of M2 ion channel, neuraminidase (NA), hemagglutinin (HA) and RNA-dependent RNA-polymerase complex (RdRp) major targets, following temporal chronology of their findings. Besides searching for new chemotypes, eventually active against new targets of influenza A (H1N1), the design of optimized analogues of proven drugs is largely pursued, taking into account the emerging insight into the mechanisms of resistance to existing antivirals. Computational studies are also summarized, in order to highlight the structural requirements for further chemical optimizations. PMID:26861005

  14. No Serological Evidence of Influenza A H1N1pdm09 Virus Infection as a Contributing Factor in Childhood Narcolepsy after Pandemrix Vaccination Campaign in Finland

    PubMed Central

    Melén, Krister; Partinen, Markku; Tynell, Janne; Sillanpää, Maarit; Himanen, Sari-Leena; Saarenpää-Heikkilä, Outi; Hublin, Christer; Olsen, Päivi; Ilonen, Jorma; Nohynek, Hanna; Syrjänen, Ritva; Kilpi, Terhi; Vuorela, Arja; Kirjavainen, Turkka; Vaarala, Outi; Julkunen, Ilkka

    2013-01-01

    Background Narcolepsy cataplexy syndrome, characterised by excessive daytime sleepiness and cataplexy, is strongly associated with a genetic marker, human leukocyte antigen (HLA) DQB1*06:02. A sudden increase in the incidence of childhood narcolepsy was observed after vaccination with AS03-adjuvanted Pandemrix influenza vaccine in Finland at the beginning of 2010. Here, we analysed whether the coinciding influenza A H1N1pdm pandemic contributed, together with the Pandemrix vaccination, to the increased incidence of childhood narcolepsy in 2010. The analysis was based on the presence or absence of antibody response against non-structural protein 1 (NS1) from H1N1pdm09 virus, which was not a component of Pandemrix vaccine. Methods Non-structural (NS) 1 proteins from recombinant influenza A/Udorn/72 (H3N2) and influenza A/Finland/554/09 (H1N1pdm09) viruses were purified and used in Western blot analysis to determine specific antibody responses in human sera. The sera were obtained from 45 patients who fell ill with narcolepsy after vaccination with AS03-adjuvanted Pandemrix at the end of 2009, and from controls. Findings Based on quantitative Western blot analysis, only two of the 45 (4.4%) Pandemrix-vaccinated narcoleptic patients showed specific antibody response against the NS1 protein from the H1N1pdm09 virus, indicating past infection with the H1N1pdm09 virus. Instead, paired serum samples from patients, who suffered from a laboratory confirmed H1N1pdm09 infection, showed high levels or diagnostic rises (96%) in H1N1pdm virus NS1-specific antibodies and very high cross-reactivity to H3N2 subtype influenza A virus NS1 protein. Conclusion Based on our findings, it is unlikely that H1N1pdm09 virus infection contributed to a sudden increase in the incidence of childhood narcolepsy observed in Finland in 2010 after AS03-adjuvanted Pandemrix vaccination. PMID:23950869

  15. Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus

    SciTech Connect

    Wang, Jing-Fang; Wei, Dong-Qing; Chou, Kuo-Chen

    2009-10-16

    The M2 proton channel is one of indispensable components for the influenza A virus that plays a vital role in its life cycle and hence is an important target for drug design against the virus. In view of this, the three-dimensional structure of the H1N1-M2 channel was developed based on the primary sequence taken from a patient recently infected by the H1N1 (swine flu) virus. With an explicit water-membrane environment, molecular docking studies were performed for amantadine and rimantadine, the two commercial drugs generally used to treat influenza A infection. It was found that their binding affinity to the H1N1-M2 channel is significantly lower than that to the H5N1-M2 channel, fully consistent with the recent report that the H1N1 swine virus was resistant to the two drugs. The findings and the relevant analysis reported here might provide useful structural insights for developing effective drugs against the new swine flu virus.

  16. Live attenuated influenza A virus vaccine protects against A(H1N1)pdm09 heterologous challenge without vaccine associated enhanced respiratory disease.

    PubMed

    Gauger, Phillip C; Loving, Crystal L; Khurana, Surender; Lorusso, Alessio; Perez, Daniel R; Kehrli, Marcus E; Roth, James A; Golding, Hana; Vincent, Amy L

    2014-12-01

    Live-attenuated influenza virus (LAIV) vaccines may provide cross-protection against contemporary influenza A virus (IAV) in swine. Conversely, whole inactivated virus (WIV) vaccines have the potential risk of vaccine-associated enhanced respiratory disease (VAERD) when challenged with IAV of substantial antigenic drift. A temperature sensitive, intranasal H1N2 LAIV was compared to wild type exposure (WT) and an intramuscular WIV vaccine in a model shown to induce VAERD. WIV vaccinated swine challenged with pandemic A/H1N1 (H1N1pdm09) were not protected from infection and demonstrated severe respiratory disease consistent with VAERD. Lung lesions were mild and challenge virus was not detected in the respiratory tract of LAIV vaccinates. High levels of post-vaccination IgG serum antibodies targeting the H1N1pdm09 HA2 stalk domain were exclusively detected in the WIV group and associated with increased H1N1pdm09 virus infectivity in MDCK cells. In contrast, infection-enhancing antibodies were not detected in the serum of LAIV vaccinates and VAERD was not observed. PMID:25461535

  17. Production impact of influenza A(H1N1)pdm09 virus infection on fattening pigs in Norway.

    PubMed

    Er, Chiek; Skjerve, Eystein; Brun, Edgar; Hofmo, Peer Ola; Framstad, Tore; Lium, Bjørn

    2016-02-01

    Newly emerged influenza A(H1N1)pdm09 virus infection in Norwegian pigs, although often observed in a subclinical form, can lower the pig's growth performance by reducing feed efficiency in terms of a poorer feed conversion ratio. Infected pigs would consume more feed and require protracted production time to reach market weight. In our observational longitudinal study, growth performance data from 728 control pigs and 193 infected pigs with known viral shedding time points were analyzed using mixed linear regression models to give estimates of the marginal effects of infection. Gaussian curves describing the variability of the estimates at the individual pig level formed the fundamental inputs to our stochastic models. The models were constructed to simulate the summed negative effects of the infection at the batch level of 150 fattening pigs growing from 33 to 100 kg. Other inputs of variability and uncertainty were 1) batch transmission points, 2) pig infection points to reflect the disease transmission dynamics of the virus, and 3) final prevalence of infected pigs in the batch. Monte Carlo random sampling gave 5,000 estimates on the outputs of the marginal effects for each pig. These results were summed up to provide estimates for a batch size of 150 pigs. This figure was adjusted by our final prevalence distribution function, which was also derived from the longitudinal study with 12 cohorts of infected pigs. For a 150-fattening-pig herd randomly selected from the population, the marginal effects of the infection were 1) 835 kg (fifth percentile) to 1,350 kg (95th percentile) increased feed intake and 2) 194 (fifth percentile) to 334 (95th percentile) pig days in excess of expected figures for an uninfected batch. A batch infected during growth phase 3 (81 to 100 kg BW) gave the worst results since the longitudinal study showed that a pig infected during growth phase 3 required more feed and a greater protracted production time compared to younger infected

  18. Decreased Serologic Response in Vaccinated Military Recruits during 2011 Correspond to Genetic Drift in Concurrent Circulating Pandemic A/H1N1 Viruses

    PubMed Central

    Faix, Dennis J.; Hawksworth, Anthony W.; Myers, Christopher A.; Hansen, Christian J.; Ortiguerra, Ryan G.; Halpin, Rebecca; Wentworth, David; Pacha, Laura A.; Schwartz, Erica G.; Garcia, Shawn M. S.; Eick-Cost, Angelia A.; Clagett, Christopher D.; Khurana, Surender; Golding, Hana; Blair, Patrick J.

    2012-01-01

    Background Population-based febrile respiratory illness surveillance conducted by the Department of Defense contributes to an estimate of vaccine effectiveness. Between January and March 2011, 64 cases of 2009 A/H1N1 (pH1N1), including one fatality, were confirmed in immunized recruits at Fort Jackson, South Carolina, suggesting insufficient efficacy for the pH1N1 component of the live attenuated influenza vaccine (LAIV). Methodology/Principal Findings To test serologic protection, serum samples were collected at least 30 days post-vaccination from recruits at Fort Jackson (LAIV), Parris Island (LAIV and trivalent inactivated vaccine [TIV]) at Cape May, New Jersey (TIV) and responses measured against pre-vaccination sera. A subset of 78 LAIV and 64 TIV sera pairs from recruits who reported neither influenza vaccination in the prior year nor fever during training were tested by microneutralization (MN) and hemagglutination inhibition (HI) assays. MN results demonstrated that seroconversion in paired sera was greater in those who received TIV versus LAIV (74% and 37%). Additionally, the fold change associated with TIV vaccination was significantly different between circulating (2011) versus the vaccine strain (2009) of pH1N1 viruses (ANOVA p value = 0.0006). HI analyses revealed similar trends. Surface plasmon resonance (SPR) analysis revealed that the quantity, IgG/IgM ratios, and affinity of anti-HA antibodies were significantly greater in TIV vaccinees. Finally, sequence analysis of the HA1 gene in concurrent circulating 2011 pH1N1 isolates from Fort Jackson exhibited modest amino acid divergence from the vaccine strain. Conclusions/Significance Among military recruits in 2011, serum antibody response differed by vaccine type (LAIV vs. TIV) and pH1N1 virus year (2009 vs. 2011). We hypothesize that antigen drift in circulating pH1N1 viruses contributed to reduce vaccine effectiveness at Fort Jackson. Our findings have wider implications regarding vaccine

  19. One-Step Detection of the 2009 Pandemic Influenza A(H1N1) Virus by the RT-SmartAmp Assay and Its Clinical Validation

    PubMed Central

    Kawai, Yuki; Kimura, Yasumasa; Lezhava, Alexander; Kanamori, Hajime; Usui, Kengo; Hanami, Takeshi; Soma, Takahiro; Morlighem, Jean-Étienne; Saga, Satomi; Ishizu, Yuri; Aoki, Shintaro; Endo, Ryuta; Oguchi-Katayama, Atsuko; Kogo, Yasushi; Mitani, Yasumasa; Ishidao, Takefumi; Kawakami, Chiharu; Kurata, Hideshi; Furuya, Yumiko; Saito, Takayuki; Okazaki, Norio; Chikahira, Masatsugu; Hayashi, Eiji; Tsuruoka, Sei-ichi; Toguchi, Tokumichi; Saito, Yoshitomo; Ban, Toshiaki; Izumi, Shinyu; Uryu, Hideko; Kudo, Koichiro; Sakai-Tagawa, Yuko; Kawaoka, Yoshihiro; Hirai, Aizan; Hayashizaki, Yoshihide; Ishikawa, Toshihisa

    2012-01-01

    Background In 2009, a pandemic (pdm) influenza A(H1N1) virus infection quickly circulated globally resulting in about 18,000 deaths around the world. In Japan, infected patients accounted for 16% of the total population. The possibility of human-to-human transmission of highly pathogenic novel influenza viruses is becoming a fear for human health and society. Methodology To address the clinical need for rapid diagnosis, we have developed a new method, the “RT-SmartAmp assay”, to rapidly detect the 2009 pandemic influenza A(H1N1) virus from patient swab samples. The RT-SmartAmp assay comprises both reverse transcriptase (RT) and isothermal DNA amplification reactions in one step, where RNA extraction and PCR reaction are not required. We used an exciton-controlled hybridization-sensitive fluorescent primer to specifically detect the HA segment of the 2009 pdm influenza A(H1N1) virus within 40 minutes without cross-reacting with the seasonal A(H1N1), A(H3N2), or B-type (Victoria) viruses. Results and Conclusions We evaluated the RT-SmartAmp method in clinical research carried out in Japan during a pandemic period of October 2009 to January 2010. A total of 255 swab samples were collected from outpatients with influenza-like illness at three hospitals and eleven clinics located in the Tokyo and Chiba areas in Japan. The 2009 pdm influenza A(H1N1) virus was detected by the RT-SmartAmp assay, and the detection results were subsequently compared with data of current influenza diagnostic tests (lateral flow immuno-chromatographic tests) and viral genome sequence analysis. In conclusion, by the RT-SmartAmp assay we could detect the 2009 pdm influenza A(H1N1) virus in patients' swab samples even in early stages after the initial onset of influenza symptoms. Thus, the RT-SmartAmp assay is considered to provide a simple and practical tool to rapidly detect the 2009 pdm influenza A(H1N1) virus. PMID:22295077

  20. Cross-Reactive Neuraminidase-Inhibiting Antibodies Elicited by Immunization with Recombinant Neuraminidase Proteins of H5N1 and Pandemic H1N1 Influenza A Viruses

    PubMed Central

    Liu, Wen-Chun; Lin, Chia-Ying; Tsou, Yung-Ta; Jan, Jia-Tsrong

    2015-01-01

    ABSTRACT Neuraminidase (NA), an influenza virus envelope glycoprotein, removes sialic acid from receptors for virus release from infected cells. For this study, we used a baculovirus-insect cell expression system to construct and purify recombinant NA (rNA) proteins of H5N1 (A/Vietnam/1203/2004) and pandemic H1N1 (pH1N1) (A/Texas/05/2009) influenza viruses. BALB/c mice immunized with these proteins had high titers of NA-specific IgG and NA-inhibiting (NI) antibodies against H5N1, pH1N1, H3N2, and H7N9 viruses. H5N1 rNA immunization resulted in higher quantities of NA-specific antibody-secreting B cells against H5N1 and heterologous pH1N1 viruses in the spleen. H5N1 rNA and pH1N1 rNA immunizations both provided complete protection against homologous virus challenges, with H5N1 rNA immunization providing better protection against pH1N1 virus challenges. Cross-reactive NI antibodies were further dissected via pH1N1 rNA protein immunizations with I149V (NA with a change of Ile to Val at position 149), N344Y, and I365T/S366N NA mutations. The I365T/S366N mutation of pH1N1 rNA enhanced cross-reactive NI antibodies against H5N1, H3N2, and H7N9 viruses. It is our hope that these findings provide useful information for the development of an NA-based universal influenza vaccine. IMPORTANCE Neuraminidase (NA) is an influenza virus enzymatic protein that cleaves sialic acid linkages on infected cell surfaces, thus facilitating viral release and contributing to viral transmission and mucus infection. In currently available inactivated or live, attenuated influenza vaccines based on the antigenic content of hemagglutinin proteins, vaccine efficacy can be contributed partly through NA-elicited immune responses. We investigated the NA immunity of different recombinant NA (rNA) proteins associated with pH1N1 and H5N1 viruses. Our results indicate that H5N1 rNA immunization induced more potent cross-protective immunity than pH1N1 rNA immunization, and three mutated residues, I149V

  1. Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1).

    PubMed

    Makkoch, Jarika; Poomipak, Witthaya; Saengchoowong, Suthat; Khongnomnan, Kritsada; Praianantathavorn, Kesmanee; Jinato, Thananya; Poovorawan, Yong; Payungporn, Sunchai

    2016-02-01

    MicroRNAs (miRNAs) play an important role in regulation of gene silencing and are involved in many cellular processes including inhibition of infected viral replication. This study investigated cellular miRNA expression profiles operating in response to influenza virus in early stage of infection which might be useful for understanding and control of viral infection. A549 cells were infected with different subtypes of influenza virus (pH1N1, H3N2 and H5N1). After 24 h post-infection, miRNAs were extracted and then used for DNA library construction. All DNA libraries with different indexes were pooled together with equal concentration, followed by high-throughput sequencing based on MiSeq platform. The miRNAs were identified and counted from sequencing data by using MiSeq reporter software. The miRNAs expressions were classified into up and downregulated miRNAs compared to those found in non-infected cells. Mostly, each subtype of influenza A virus triggered the upregulated responses in miRNA expression profiles. Hsa-miR-101, hsa-miR-193b, hsa-miR-23b, and hsa-miR-30e* were upregulated when infected with all three subtypes of influenza A virus. Target prediction results showed that virus infection can trigger genes in cellular process, metabolic process, developmental process and biological regulation. This study provided some insights into the cellular miRNA profiling in response to various subtypes of influenza A viruses in circulation and which have caused outbreaks in human population. The regulated miRNAs might be involved in virus-host interaction or host defense mechanism, which should be investigated for effective antiviral therapeutic interventions. PMID:26518627

  2. Control of a Reassortant Pandemic 2009 H1N1 Influenza Virus Outbreak in an Intensive Swine Breeding Farm: Effect of Vaccination and Enhanced Farm Management Practices

    PubMed Central

    Mughini-Gras, Lapo; Beato, Maria Serena; Angeloni, Giorgia; Monne, Isabella; Buniolo, Filippo; Zuliani, Federica; Morini, Matteo; Castellan, Alberto; Bonfanti, Lebana; Marangon, Stefano

    2015-01-01

    Influenza A viruses in swine cause considerable economic losses and raise concerns about their zoonotic potential. The current paucity of thorough empirical assessments of influenza A virus infection levels in swine herds under different control interventions hinders our understanding of their effectiveness. Between 2012 and 2013, recurrent outbreaks of respiratory disease caused by a reassortant pandemic 2009 H1N1 (H1N1pdm) virus were registered in a swine breeding farm in North-East Italy, providing the opportunity to assess an outbreak response plan based on vaccination and enhanced farm management. All sows/gilts were vaccinated with a H1N1pdm-specific vaccine, biosecurity was enhanced, weaning cycles were lengthened, and cross-fostering of piglets was banned. All tested piglets had maternally-derived antibodies at 30 days of age and were detectable in 5.3% of ~90 day-old piglets. There was a significant reduction in H1N1pdm RT-PCR detections after the intervention. Although our study could not fully determine the extent to which the observed trends in seropositivity or RT-PCR positivity among piglets were due to the intervention or to the natural course of the disease in the herd, we provided suggestive evidence that the applied measures were useful in controlling the outbreak, even without an all-in/all-out system, while keeping farm productivity at full. PMID:25932349

  3. Control of a Reassortant Pandemic 2009 H1N1 Influenza Virus Outbreak in an Intensive Swine Breeding Farm: Effect of Vaccination and Enhanced Farm Management Practices.

    PubMed

    Mughini-Gras, Lapo; Beato, Maria Serena; Angeloni, Giorgia; Monne, Isabella; Buniolo, Filippo; Zuliani, Federica; Morini, Matteo; Castellan, Alberto; Bonfanti, Lebana; Marangon, Stefano

    2015-01-01

    Influenza A viruses in swine cause considerable economic losses and raise concerns about their zoonotic potential. The current paucity of thorough empirical assessments of influenza A virus infection levels in swine herds under different control interventions hinders our understanding of their effectiveness. Between 2012 and 2013, recurrent outbreaks of respiratory disease caused by a reassortant pandemic 2009 H1N1 (H1N1pdm) virus were registered in a swine breeding farm in North-East Italy, providing the opportunity to assess an outbreak response plan based on vaccination and enhanced farm management. All sows/gilts were vaccinated with a H1N1pdm-specific vaccine, biosecurity was enhanced, weaning cycles were lengthened, and cross-fostering of piglets was banned. All tested piglets had maternally-derived antibodies at 30 days of age and were detectable in 5.3% of ~90 day-old piglets. There was a significant reduction in H1N1pdm RT-PCR detections after the intervention. Although our study could not fully determine the extent to which the observed trends in seropositivity or RT-PCR positivity among piglets were due to the intervention or to the natural course of the disease in the herd, we provided suggestive evidence that the applied measures were useful in controlling the outbreak, even without an all-in/all-out system, while keeping farm productivity at full. PMID:25932349

  4. 2009 Pandemic Influenza A (H1N1) Virus Infection in Pediatric Oncology and Hematopoietic Stem Cell Transplantation Patients

    PubMed Central

    Cost, Carrye; Brock, Evangeline; Adams-Huet, Beverley; Siegel, Jane D.; Ardura, Monica I.

    2010-01-01

    Background Pediatric oncology and hematopoietic stem cell transplantation (HSCT) patients are at high risk for influenza infection and its associated complications. Little is known about infection with novel 2009 influenza A (H1N1) in this population. Procedure Prospective laboratory surveillance identified all children with positive influenza test results from 4/27/09-12/5/09. 2009 H1N1 infection was confirmed by PCR subtyping; cases in which subtyping was not performed were considered probable. Medical records of all pediatric oncology and HSCT cases were reviewed. Results Thirty children with cancer or HSCT had laboratory-confirmed influenza A. Patients with ALL (18), CNS tumors (4), CML (1), Ewing sarcoma (1), Hodgkin lymphoma (1), LCH (1), severe aplastic anemia (1), and HSCT (3), had confirmed (5) and probable (25) H1N1 by rapid (22; 73%), DFA (4; 13%), or RVP (4; 13%) assays. Most frequent presenting signs and symptoms were fever (93%; median 38.6°C), cough (97%), and rhinorrhea (83%). Ten patients required hospitalization for a median of 5 days, most commonly for fever and neutropenia (8). Imaging demonstrated lower respiratory tract involvement in 3 patients. There were no concomitant bacteremias; one patient had rhinovirus co-infection. Three patients required ICU care; 1 developed ARDS, multi-organ failure, and died after 5 days. Chemotherapy was delayed in 5 patients. Oseltamivir was administered to 28 patients; 1 patient developed an oseltamivir-resistant strain and was treated with zanamivir. Conclusions 2009 influenza A H1N1 infection in children with cancer and HSCT is mild in most patients, but can lead to serious complications. PMID:20973099

  5. Vaccination of Patients with Mild and Severe Asthma with a 2009 Pandemic H1N1 Influenza Virus Vaccine

    PubMed Central

    Busse, William W.; Peters, Stephen P.; Fenton, Matthew J.; Mitchell, Herman; Bleecker, Eugene R.; Castro, Mario; Wenzel, Sally; Erzurum, Serpil C.; Fitzpatrick, Anne M.; Teague, W. Gerald; Jarjour, Nizar; Moore, Wendy C.; Sumino, Kaharu; Simeone, Scott; Ratanamaneechat, Suphagaphan; Penugonda, Madhuri; Gaston, Benjamin; Ross, Ted M.; Sigelman, Steve; Schiepan, Joella R.; Zaccaro, Daniel J.; Crevar, Corey J.; Carter, Donald M.; Togias, Alkis

    2010-01-01

    BACKGROUND Asthma was the most common comorbidity of patients hospitalized with 2009 H1N1 influenza. OBJECTIVE To assess immunogenicity and safety of an unadjuvanted, inactivated 2009 H1N1 vaccine in severe versus mild/moderate asthma. METHODS We conducted an open-label study involving 390 participants (age:12–79y) enrolled in October-November 2009. Severe asthma was defined as need for ≥880mcg/d of inhaled fluticasone equivalent and/or systemic corticosteroids. Within each severity group, participants were randomized to receive intramuscularly 15mcg or 30mcg of 2009 H1N1 vaccine twice, 21 days apart. Immunogenicity endpoints were seroprotection (≥40 titer in hemagglutination inhibition assay) and seroconversion (4-fold or greater titer increase). Safety was assessed through local and systemic reactogenicity, asthma exacerbations and pulmonary function. RESULTS In mild/moderate asthma (N=217), the 2009 H1N1 vaccine provided equal seroprotection 21 days after the first immunization at the 15mcg (90.6%,CI:83.5–95.4) and 30mcg (95.3%,CI:89.4–98.5) doses. In severe asthma (N=173), seroprotection 21 days after the first immunization was 77.9% (CI:67.7–86.1) and 94.1% (CI:86.8–98.1) at the 15mcg and 30mcg dose, respectively (p=0.004). The second vaccination did not provide further increases in seroprotection. Participants with severe asthma ≥60y showed the lowest seroprotection (44.4% at Day 21) with the 15mcg dose, but had adequate seroprotection with 30mcg. The two dose groups did not differ in seroconversion rates. There were no safety concerns. CONCLUSION Monovalent inactivated 2009 H1N1 pandemic influenza vaccine was safe and provided overall seroprotection as a surrogate of efficacy. In severe asthma participants over 60y, a 30mcg dose may be more appropriate. PMID:21145578

  6. Whole genome characterization of human influenza A(H1N1)pdm09 viruses isolated from Kenya during the 2009 pandemic.

    PubMed

    Gachara, George; Symekher, Samuel; Otieno, Michael; Magana, Japheth; Opot, Benjamin; Bulimo, Wallace

    2016-06-01

    An influenza pandemic caused by a novel influenza virus A(H1N1)pdm09 spread worldwide in 2009 and is estimated to have caused between 151,700 and 575,400 deaths globally. While whole genome data on new virus enables a deeper insight in the pathogenesis, epidemiology, and drug sensitivities of the circulating viruses, there are relatively limited complete genetic sequences available for this virus from African countries. We describe herein the full genome analysis of influenza A(H1N1)pdm09 viruses isolated in Kenya between June 2009 and August 2010. A total of 40 influenza A(H1N1)pdm09 viruses isolated during the pandemic were selected. The segments from each isolate were amplified and directly sequenced. The resulting sequences of individual gene segments were concatenated and used for subsequent analysis. These were used to infer phylogenetic relationships and also to reconstruct the time of most recent ancestor, time of introduction into the country, rates of substitution and to estimate a time-resolved phylogeny. The Kenyan complete genome sequences clustered with globally distributed clade 2 and clade 7 sequences but local clade 2 viruses did not circulate beyond the introductory foci while clade 7 viruses disseminated country wide. The time of the most recent common ancestor was estimated between April and June 2009, and distinct clusters circulated during the pandemic. The complete genome had an estimated rate of nucleotide substitution of 4.9×10(-3) substitutions/site/year and greater diversity in surface expressed proteins was observed. We show that two clades of influenza A(H1N1)pdm09 virus were introduced into Kenya from the UK and the pandemic was sustained as a result of importations. Several closely related but distinct clusters co-circulated locally during the peak pandemic phase but only one cluster dominated in the late phase of the pandemic suggesting that it possessed greater adaptability. PMID:26921801

  7. Design and performance of the CDC real-time reverse transcriptase PCR swine flu panel for detection of 2009 A (H1N1) pandemic influenza virus.

    PubMed

    Shu, Bo; Wu, Kai-Hui; Emery, Shannon; Villanueva, Julie; Johnson, Roy; Guthrie, Erica; Berman, LaShondra; Warnes, Christine; Barnes, Nathelia; Klimov, Alexander; Lindstrom, Stephen

    2011-07-01

    Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10(-1.3 - -0.7) 50% infectious doses (ID(50)) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation. PMID:21593260

  8. Evidence of person-to-person transmission of oseltamivir-resistant pandemic influenza A(H1N1) 2009 virus in a hematology unit.

    PubMed

    Moore, Catherine; Galiano, Monica; Lackenby, Angie; Abdelrahman, Tamer; Barnes, Rosemary; Evans, Meirion R; Fegan, Christopher; Froude, Susannah; Hastings, Mark; Knapper, Steven; Litt, Emma; Price, Nicola; Salmon, Roland; Temple, Mark; Davies, Eleri

    2011-01-01

    We describe the first confirmed person-to-person transmission of oseltamivir-resistant pandemic influenza A(H1N1) 2009 virus that occurred in a hematology unit in the United Kingdom. Eleven cases of (H1N1) 2009 virus infection were identified, of which, ten were related as shown by sequence analysis of the hemagglutinin and neuraminidase genes. H275Y analysis demonstrated that 8 of 10 case patients had oseltamivir-resistant virus, with 4 of 8 case patients infected by direct transmission of resistant virus. Zanamivir should be considered as first-line therapy for influenza in patients with lymphopenic hematological conditions and uptake of influenza vaccination encouraged to further reduce the number of susceptible individuals. PMID:21148492

  9. Social factors related to the clinical severity of influenza cases in Spain during the A (H1N1) 2009 virus pandemic

    PubMed Central

    2013-01-01

    Background During the 2009 influenza pandemic, a change in the type of patients most often affected by influenza was observed. The objective of this study was to assess the role of individual and social determinants in hospitalizations due to influenza A (H1N1) 2009 infection. Methods We studied hospitalized patients (cases) and outpatients (controls) with confirmed influenza A (H1N1) 2009 infection. A standardized questionnaire was used to collect data. Variables that might be related to the hospitalization of influenza cases were compared by estimation of the odds ratio (OR) and 95% confidence intervals (CI) and the variables entered into binomial logistic regression models. Results Hospitalization due to pandemic A (H1N1) 2009 influenza virus infections was associated with non-Caucasian ethnicity (OR: 2.18, 95% CI 1.17 − 4.08), overcrowding (OR: 2.84, 95% CI 1.20 − 6.72), comorbidity and the lack of previous preventive information (OR: 2.69, 95% CI: 1.50 − 4.83). Secondary or higher education was associated with a lower risk of hospitalization (OR 0.56, 95% CI: 0.36 − 0.87) Conclusions In addition to individual factors such as comorbidity, other factors such as educational level, ethnicity or overcrowding were associated with hospitalization due to A (H1N1) 2009 influenza virus infections. PMID:23391376

  10. Unseasonal Transmission of H3N2 Influenza A Virus During the Swine-Origin H1N1 Pandemic▿ †

    PubMed Central

    Ghedin, Elodie; Wentworth, David E.; Halpin, Rebecca A.; Lin, Xudong; Bera, Jayati; DePasse, Jay; Fitch, Adam; Griesemer, Sara; Hine, Erin; Katzel, Daniel A.; Overton, Larry; Proudfoot, Kathleen; Sitz, Jeffrey; Szczypinski, Bridget; StGeorge, Kirsten; Spiro, David J.; Holmes, Edward C.

    2010-01-01

    The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza “off-season,” we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed. PMID:20237080