Science.gov

Sample records for h295r adrenocortical cell

  1. Nesfatin-1 inhibits proliferation and enhances apoptosis of human adrenocortical H295R cells.

    PubMed

    Ramanjaneya, Manjunath; Tan, Bee K; Rucinski, Marcin; Kawan, Mohamed; Hu, Jiamiao; Kaur, Jaspreet; Patel, Vanlata H; Malendowicz, Ludwik K; Komarowska, Hanna; Lehnert, Hendrik; Randeva, Harpal S

    2015-07-01

    NUCB2/nesfatin and its proteolytically cleaved product nesfatin-1 are recently discovered anorexigenic hypothalamic neuroproteins involved in energy homeostasis. It is expressed both centrally and in peripheral tissues, and appears to have potent metabolic actions. NUCB2/nesfatin neurons are activated in response to stress. Central nesfatin-1 administration elevates circulating ACTH and corticosterone levels. Bilateral adrenalectomy increased NUCB2/nesfatin mRNA levels in rat paraventricular nuclei. To date, studies have not assessed the effects of nesfatin-1 stimulation on human adrenocortical cells. Therefore, we investigated the expression and effects of nesfatin-1 in a human adrenocortical cell model (H295R). Our findings demonstrate that NUCB2 and nesfatin-1 are expressed in human adrenal gland and human adrenocortical cells (H295R). Stimulation with nesfatin-1 inhibits the growth of H295R cells and promotes apoptosis, potentially via the involvement of Bax, BCL-XL and BCL-2 genes as well as ERK1/2, p38 and JNK1/2 signalling cascades. This has implications for understanding the role of NUCB2/nesfatin in adrenal zonal development. NUCB2/nesfatin may also be a therapeutic target for adrenal cancer. However, further studies using in vivo models are needed to clarify these concepts. PMID:25869615

  2. H295R Human Adrenocortical Carcinoma Cells as a Screening Platform for Steroidogenesis (NC SOT)

    EPA Science Inventory

    Proper biosynthesis and metabolism of steroid hormones is essential for development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carc...

  3. Effects of ToxCast Phase I Chemicals on Steroidogenesis in H295R Human Adrenocortical Carcinoma cells (SOT)

    EPA Science Inventory

    Steroid hormones are essential for proper development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carcinoma cells were used to evalu...

  4. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells

    EPA Science Inventory

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples...

  5. Rosiglitazone induces autophagy in H295R and cell cycle deregulation in SW13 adrenocortical cancer cells

    SciTech Connect

    Cerquetti, Lidia; Sampaoli, Camilla; Amendola, Donatella; Bucci, Barbara; Masuelli, Laura; Marchese, Rodolfo; Misiti, Silvia; De Venanzi, Agostino; Poggi, Maurizio; Toscano, Vincenzo; Stigliano, Antonio

    2011-06-10

    Thiazolidinediones, specific peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) ligands, used in type-2 diabetes therapy, show favourable effects in several cancer cells. In this study we demonstrate that the growth of H295R and SW13 adrenocortical cancer cells is inhibited by rosiglitazone, a thiazolidinediones member, even though the mechanisms underlying this effect appeared to be cell-specific. Treatment with GW9662, a selective PPAR-{gamma}-inhibitor, showed that rosiglitazone acts through both PPAR-{gamma}-dependent and -independent mechanisms in H295R, while in SW13 cells the effect seems to be independent of PPAR-{gamma}. H295R cells treated with rosiglitazone undergo an autophagic process, leading to morphological changes detectable by electron microscopy and an increased expression of specific proteins such as AMPK{alpha} and beclin-1. The autophagy seems to be independent of PPAR-{gamma} activation and could be related to an increase in oxidative stress mediated by reactive oxygen species production with the disruption of the mitochondrial membrane potential, triggered by rosiglitazone. In SW13 cells, flow cytometry analysis showed an arrest in the G0/G1 phase of the cell cycle with a decrease of cyclin E and cdk2 activity, following the administration of rosiglitazone. Our data show the potential role of rosiglitazone in the therapeutic approach to adrenocortical carcinoma and indicate the molecular mechanisms at the base of its antiproliferative effects, which appear to be manifold and cell-specific in adrenocortical cancer lines.

  6. Steroid hormone related effects of marine persistent organic pollutants in human H295R adrenocortical carcinoma cells.

    PubMed

    van den Dungen, Myrthe W; Rijk, Jeroen C W; Kampman, Ellen; Steegenga, Wilma T; Murk, Albertinka J

    2015-06-01

    Persistent organic pollutants (POPs) such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polychlorobiphenyl (PCB) 126 and 153, perfluorooctanesulfonic acid (PFOS), hexabromocyclododecane (HBCD), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), tributyltin (TBT), and methylmercury (MeHg) can be accumulated in seafood and then form a main source for human exposure. Some POPs have been associated with changes in steroid hormone levels in both humans and animals. This study describes the in vitro effects of these POPs and mixtures thereof in H295R adrenocortical carcinoma cells. Relative responses for 13 steroid hormones and 7 genes involved in the steroidogenic pathway, and CYP1A1, were analyzed. PFOS induced the most pronounced effects on steroid hormone levels by significantly affecting 9 out of 13 hormone levels measured, with the largest increases found for 17β-estradiol, corticosterone, and cortisol. Furthermore, TCDD, both PCBs, and TBT significantly altered steroidogenesis. Increased steroid hormone levels were accompanied by related increased gene expression levels. The differently expressed genes were MC2R, CYP11B1, CYP11B2, and CYP19A1 and changes in gene expression levels were more sensitive than changes in hormone levels. The POP mixtures tested showed mostly additive effects, especially for DHEA and 17β-estradiol levels. This study shows that some seafood POPs are capable of altering steroidogenesis in H295R cells at concentrations that mixtures might reach in human blood, suggesting that adverse health effects cannot be excluded. PMID:25765474

  7. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  8. The effect of mitotane on viability, steroidogenesis and gene expression in NCI‑H295R adrenocortical cells.

    PubMed

    Lehmann, Tomasz P; Wrzesiński, Tomasz; Jagodziński, Paweł P

    2013-03-01

    Mitotane, also known as o,p'‑DDD or (RS)‑1‑chl-oro‑2‑[2,2‑dichloro‑1‑(4‑chlorophenyl)‑ethyl]‑benzene, is an adrenal cortex-specific cytotoxic drug used in the therapy of adrenocortical carcinoma (ACC). The drug also inhibits steroidogenesis, however, the mechanisms of its anticancer and antisteroidogenic effects remain unknown. At present, data on the impact of mitotane on cell viability and the regulation of genes encoding proteins associated with steroids synthesis in the adrenal cortex, including cortisol and dehydroepiandrosterone sulfate (DHEAS), are limited and contradictory. In the present study, the effect of 24‑h mitotane treatment on viability of the ACC cell line, NCI‑H295R, was analyzed, identifying a decrease in cell viability and an increase in caspase‑3 and ‑7 activities. Mitotane treatment also led to decreased cortisol and DHEAS concentration in the culture media. Concomitantly, mitotane resulted in decreased mRNA levels of two cytochromes P450 (CYP11A1 and CYP17A1), mRNAs encoding proteins involved in the synthesis of cortisol and DHEAS. Mitotane did not affect mRNA levels of cyclin dependent kinase inhibitor 1A (encoding p21) and MYC (encoding cMyc). cMyc and p21 are key transcription factors associated with cell cycle regulation. However, mitotane inhibited expression of transforming growth factor β1 gene, encoding a potent inhibitor of cell proliferation and steroidogenesis. PRKAR1A, a protein kinase A regulatory subunit, is involved in the activation of steroidogenesis. PRKAR1A mRNA levels were reduced following 24‑h treatment with mitotane. Results indicate that mitotane markedly inhibited expression of genes involved in steroidogenesis, secretion of cortisol and DHEAS. Reduced expression of TGFB1 cannot account fully for the effect of mitotane on CYP11A1 and CYP17A1. We hypothesized that reduced viability of NCI‑H295R cells in the presence of mitotane may be a result of apoptosis triggered by increased

  9. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells

    PubMed Central

    Toole, Colleen M.; Filer, Dayne L.; Lewis, Kenneth C.; Martin, Matthew T.

    2016-01-01

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis. PMID:26781511

  10. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells.

    PubMed

    Karmaus, Agnes L; Toole, Colleen M; Filer, Dayne L; Lewis, Kenneth C; Martin, Matthew T

    2016-04-01

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis. PMID:26781511

  11. Efonidipine, a Ca(2+)-channel blocker, enhances the production of dehydroepiandrosterone sulfate in NCI-H295R human adrenocortical carcinoma cells.

    PubMed

    Ikeda, Keiichi; Saito, Takatoshi; Tojo, Katsuyoshi

    2011-01-01

    Steroid biosynthesis is initiated with transportation of cholesterol along with steroidogenic acute regulatory protein (StAR) into the mitchondria and is achieved with several steroidogenic enzymes. It has been reported that Ca(2+) channel blockers (CCBs), such as azelnidipine, efonidipine and nifedipine, suppress the biosynthesis of aldosterone and cortisol, but the overall effects of CCBs on steroid biosynthesis remain to be clarified. The present study was designed to evaluate the effects of CCBs on the expression of steroidogenic enzymes and the production of adrenal androgen, dehydroepiandrosterone sulfate (DHEA-S) that has anti-atherosclerotic actions. NCI-H295R human adrenocortical carcinoma cells and HepG2 human hepatoma cells were cultured for 24 hours with or without a CCB (amlodipine, efonidipine, nifedipine, azelnidipine R(-)-efonidipine, verapamil or diltiazem). HepG2 hepatoma cells were used to confirm the effects of CCBs on the expression of StAR. In fact, efonidipine and nifedipine increased the expression of StAR in HepG2 cells. Efonidipine and nifedipine, but not other examined CCBs, also increased the N(6), 2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (dbcAMP)-induced StAR mRNA, which reflects the action of adrenocorticotropic hormone, and efonidipine and R(-)-efonidipine enhanced the dbcAMP-induced DHEA-S production in NCI-H295R adrenocortical carcinoma cells. Therefore, efonidipine and nifedipine might increase the expression of StAR and, in turn, efonidipine enhanced the dbcAMP-induced DHEA-S production, independent of Ca(2+) channel blockade. These results indicate that such effects are not associated with Ca(2+) influx. Moreover, only efonidipine enhanced the angiotensin II-induced expression of StAR mRNA (P < 0.01 vs. angiotensin II alone). In conclusion, efonidipine might exert an additional action beyond anti-hypertensive actions. PMID:21757861

  12. Sphingosine-1-Phosphate Rapidly Increases Cortisol Biosynthesis and the Expression of Genes Involved in Cholesterol Uptake and Transport in H295R Adrenocortical Cells

    PubMed Central

    Lucki, Natasha C.; Li, Donghui; Sewer, Marion B.

    2011-01-01

    In the acute phase of adrenocortical steroidogenesis, adrenocorticotrophin (ACTH) activates a cAMP/PKA-signaling pathway that promotes the transport of free cholesterol to the inner mitochondrial membrane. We have previously shown that ACTH rapidly stimulates the metabolism of sphingolipids and the secretion of sphingosine-1-phosphate (S1P) in H295R cells. In this study, we examined the effect of S1P on genes involved in the acute phase of steroidogenesis. We show that S1P increases the expression of steroidogenic acute regulatory protein (StAR), 18-kDa translocator protein (TSPO), low-density lipoprotein receptor (LDLR), and scavenger receptor class B type I (SR-BI). S1P-induced StAR mRNA expression requires Gαi signaling, phospholipase C (PLC), Ca2+/calmodulin-dependent kinase II (CamKII), and ERK1/2 activation. S1P also increases intracellular Ca2+, the phosphorylation of hormone sensitive lipase (HSL) at Ser563, and cortisol secretion. Collectively, these findings identify multiple roles for S1P in the regulation of glucocorticoid biosynthesis. PMID:21864647

  13. Exposure to the three structurally different PCB congeners (PCB 118, 153, and 126) results in decreased protein expression and altered steroidogenesis in the human adrenocortical carcinoma cell line H295R.

    PubMed

    Tremoen, Nina Hårdnes; Fowler, Paul A; Ropstad, Erik; Verhaegen, Steven; Krogenæs, Anette

    2014-01-01

    Polychlorinated biphenyls (PCB), synthetic, persistent organic pollutants (POP), are detected ubiquitously, in water, soil, air, and sediments, as well as in animals and humans. PCB are associated with range of adverse health effects, such as interference with the immune system and nervous system, reproductive abnormalities, fetotoxicity, carcinogenicity, and endocrine disruption. Our objective was to determine the effects of three structurally different PCB congeners, PCB118, PCB 126, and PCB 153, each at two concentrations, on the steroidogenic capacity and proteome of human adrenocortical carcinoma cell line cultures (H295R) . After 48 h of exposure, cell viability was monitored and estradiol, testosterone, cortisol and progesterone secretion measured to quantify steroidogenic capacity of the cells. Two-dimensional (2D) gel-based proteomics was used to screen for proteome alterations in H295R cells in response to the PCB. Exposure to PCB 118 increased estradiol and cortisol secretion, while exposure to PCB 153 elevated estradiol secretion. PCB 126 was the most potent congener, increasing estradiol, cortisol, and progesterone secretion in exposed H295R cells. Seventy-three of the 711 spots analyzed showed a significant difference in normalized spot volumes between controls (vehicle only) and at least one exposure group. Fourteen of these protein spots were identified by liquid chromatography with mass spectroscopy (LC-MS/MS). Exposure to three PCB congeners with different chemical structure perturbed steroidogenesis and protein expression in the H295R in vitro model. This study represents an initial analysis of the effects on proteins and hormones in the H295R cell model, and additional studies are required in order to obtain a more complete understanding of the pathways disturbed by PCB congeners in H295R cells. Overall, alterations in protein regulation and steroid hormone synthesis suggest that exposure to PCB disturbs several cellular processes, including

  14. The effects of the standardized extracts of Ginkgo biloba on steroidogenesis pathways and aromatase activity in H295R human adrenocortical carcinoma cells

    PubMed Central

    2016-01-01

    Objectives Aromatase inhibitors that block estrogen synthesis are a proven first-line hormonal therapy for postmenopausal breast cancer. Although it is known that standardized extract of Ginkgo biloba (EGb761) induces anti-carcinogenic effects like the aromatase inhibitors, the effects of EGb761 on steroidogenesis have not been studied yet. Therefore, the effects of EGb761 on steroidogenesis and aromatase activity was studied using a H295R cell model, which was a good in vitro model to predict effects on human adrenal steroidogenesis. Methods Cortisol, aldosterone, testosterone, and 17β-estradiol were evaluated in the H295R cells by competitive enzyme-linked immunospecific assay after exposure to EGb761. Real-time polymerase chain reaction were performed to evaluate effects on critical genes in steroid hormone production, specifically cytochrome P450 (CYP11/ 17/19/21) and the hydroxysteroid dehydrogenases (3β-HSD2 and 17β-HSD1/4). Finally, aromatase activities were measured with a tritiated water-release assay and by western blotting analysis. Results H295R cells exposed to EGb761 (10 and 100 μg/mL) showed a significant decrease in 17β-estradiol and testosterone, but no change in aldosterone or cortisol. Genes (CYP19 and 17β-HSD1) related to the estrogen steroidogenesis were significantly decreased by EGb761. EGb761 treatment of H295R cells resulted in a significant decrease of aromatase activity as measured by the direct and indirect assays. The coding sequence/ Exon PII of CYP19 gene transcript and protein level of CYP19 were significantly decreased by EGb761. Conclusions These results suggest that EGb761 could regulate steroidogenesis-related genes such as CYP19 and 17β-HSD1, and lead to a decrease in 17β-estradiol and testosterone. The present study provides good information on potential therapeutic effects of EGb761 on estrogen dependent breast cancer. PMID:27188280

  15. Interaction between Angiotensin II and Insulin/IGF-1 Exerted a Synergistic Stimulatory Effect on ERK1/2 Activation in Adrenocortical Carcinoma H295R Cells

    PubMed Central

    Tong, An-li; Wang, Fen; Cui, Yun-ying; Li, Chun-yan; Li, Yu-xiu

    2016-01-01

    The cross talk between angiotensin II (Ang II) and insulin has been described mainly in cardiovascular cells, hepatocytes, adipocytes, and so forth, and to date no such cross talk was reported in adrenal. In this study, we examined the interaction between Ang II and insulin/IGF-1 in ERK and AKT signaling pathways and expression of steroidogenic enzymes in H295R cells. Compared to the control, 100 nM Ang II increased phospho-ERK1/2 approximately 3-fold. Insulin (100 nM) or IGF-1 (10 nM) alone raised phospho-ERK1/2 1.8- and 1.5-fold, respectively, while, after pretreatment with 100 nM Ang II for 30 min, insulin (100 nM) or IGF-1 (10 nM) elevated phospho-ERK1/2 level 8- and 7-fold, respectively. The synergistic effect of Ang II and insulin/IGF-1 on ERK1/2 activation was inhibited by selective AT1 receptor blocker, PKC inhibitor, and MEK1/2 inhibitor. Ang II marginally suppressed AKT activation under the basal condition, while it had no effect on phospho-AKT induced by insulin/IGF-1. Ang II significantly stimulated mRNA expression of CYP11B1 and CYP11B2, and such stimulatory effects were enhanced when cells were cotreated with insulin/IGF-1. We are led to conclude that Ang II in combination with insulin/IGF-1 had an evident synergistic stimulatory effect on ERK1/2 activation in H295R cells and the effect may be responsible for the enhanced steroid hormone production induced by Ang II plus insulin/IGF-1. PMID:27293433

  16. Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells.

    PubMed

    Sanderson, J Thomas; Boerma, Joke; Lansbergen, Gideon W A; van den Berg, Martin

    2002-07-01

    Various pesticides known or suspected to interfere with steroid hormone function were screened in H295R cells for effects on catalytic activity and mRNA expression of aromatase. Dibutyl-, tributyl-, and triphenyltin chloride decreased aromatase and ethoxyresorufin O-deethylase activities concentration dependently (1-300 nM; 24-h exposure). However, these decreases occurred only at cytotoxic concentrations, indicated by decreases in mitochondrial MTT reduction and intracellular neutral red uptake. The organotins did not cause direct inhibition during the catalytic assay (1-1000 nM; 1.5-h exposure). The same was true for p,p'-DDT, and o,p-DDT, and o,p-DDE, which decreased aromatase activity only at cytotoxic concentrations (> or =10 microM; 24-h exposure). p,p'-DDE had no effect on aromatase activity or cell viability at 1 and 10 microM. Various imidazole-like fungicides were aromatase inhibitors. Imazalil and prochloraz were potent mixed inhibitors (K(i)/K(i)(') = 0.04/0.3 and 0.02/0.3 microM, respectively), whereas propiconazole, difenoconazole, and penconazole were less potent competitive inhibitors (K(i) = 1.9, 4.5, and 4.7 microM, respectively). Fenarimol, tebuconazole, and hexaconazole decreased aromatase activity close to cytotoxic concentrations. Vinclozolin, as was shown previously for atrazine, induced aromatase activity and CYP19 mRNA levels about 2.5- and 1.5-fold, respectively. To investigate the mechanism of aromatase induction in H295R cells, the ability of the pesticides to increase intracellular cAMP levels was examined. Vinclozolin (100 microM) and atrazine (30 microM) increased cAMP levels about 1.5-fold above control. Forskolin and isobutyl methylxanthine (IBMX) increased cAMP levels 3 and 1.8-fold, respectively. Time-response curves for cAMP induction and concentration-response curves for aromatase induction by vinclozolin, atrazine, and IBMX were similar, suggesting that the mechanism of aromatase induction by these pesticides is mediated

  17. Nitrophenols isolated from diesel exhaust particles regulate steroidogenic gene expression and steroid synthesis in the human H295R adrenocortical cell line

    SciTech Connect

    Furuta, Chie; Noda, Shiho; Li Chunmei; Suzuki, Akira K; Taneda, Shinji; Watanabe, Gen; Taya, Kazuyoshi

    2008-05-15

    Studies of nitrophenols isolated from diesel exhaust particles (DEPs), 3-methyl-4-nitrophenol (PNMC) and 4-nitro-3-phenylphenol (PNMPP) have revealed that these chemicals possess estrogenic and anti-androgenic activity in vitro and in vivo and that PNMC accumulate in adrenal glands in vivo. However, the impacts of exposure to these compounds on adrenal endocrine disruption and steroidogenesis have not been investigated. To elucidate the non-receptor mediated effects of PNMC and PNMPP, we investigated the production of the steroid hormones progesterone, cortisol, testosterone, and estradiol-17{beta} and modulation of nine major enzyme genes involved in the synthesis of steroid hormones (CYP11A, CYP11B1, CYP17, CYP19, 17{beta}HSD1, 17{beta}HSD4, CYP21, 3{beta}HSD2, StAR) in human adrenal H295R cells supplied with cAMP. Exposure to 10{sup -7} to 10{sup -5} M PNMC and 1 mM 8-Br-cAMP for 48 h decreased testosterone, cortisol, and estradiol-17{beta} levels and increased progesterone secretion. At 10{sup -5} M, PNMC with 1 mM 8-Br-cAMP significantly stimulated expression of the 17{beta}HSD4 and significantly suppressed expression of 3{beta}HSD2. In comparison, 10{sup -7} to 2 x 10{sup -5} M PNMPP with 1 mM 8-Br-cAMP for 48 h decreased concentrations of estradiol-17{beta}, increased progesterone levels, but did not affect testosterone and cortisol secretion due to the significant suppression of CYP17 and the non-significant but obvious suppression of CYP19. Our results clarified steroidogenic enzymes as candidates responsible for the inhibition or stimulation for the production of steroid hormones in the steroidogenic pathway, thus providing the first experimental evidence for multiple mechanisms of disruption of endocrine pathways by these nitrophenols.

  18. ATR-101, a Selective and Potent Inhibitor of Acyl-CoA Acyltransferase 1, Induces Apoptosis in H295R Adrenocortical Cells and in the Adrenal Cortex of Dogs.

    PubMed

    LaPensee, Christopher R; Mann, Jacqueline E; Rainey, William E; Crudo, Valentina; Hunt, Stephen W; Hammer, Gary D

    2016-05-01

    ATR-101 is a novel, oral drug candidate currently in development for the treatment of adrenocortical cancer. ATR-101 is a selective and potent inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase 1 (ACAT1), an enzyme located in the endoplasmic reticulum (ER) membrane that catalyzes esterification of intracellular free cholesterol (FC). We aimed to identify mechanisms by which ATR-101 induces adrenocortical cell death. In H295R human adrenocortical carcinoma cells, ATR-101 decreases the formation of cholesteryl esters and increases FC levels, demonstrating potent inhibition of ACAT1 activity. Caspase-3/7 levels and terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeled-positive cells are increased by ATR-101 treatment, indicating activation of apoptosis. Exogenous cholesterol markedly potentiates the activity of ATR-101, suggesting that excess FC that cannot be adequately esterified increases caspase-3/7 activation and subsequent cell death. Inhibition of calcium release from the ER or the subsequent uptake of calcium by mitochondria reverses apoptosis induced by ATR-101. ATR-101 also activates multiple components of the unfolded protein response, an indicator of ER stress. Targeted knockdown of ACAT1 in an adrenocortical cell line mimicked the effects of ATR-101, suggesting that ACAT1 mediates the cytotoxic effects of ATR-101. Finally, in vivo treatment of dogs with ATR-101 decreased adrenocortical steroid production and induced cellular apoptosis that was restricted to the adrenal cortex. Together, these studies demonstrate that inhibition of ACAT1 by ATR-101 increases FC, resulting in dysregulation of ER calcium stores that result in ER stress, the unfolded protein response, and ultimately apoptosis. PMID:26986192

  19. Effects of bisphenol A-related diphenylalkanes on vitellogenin production in male carp (Cyprinus carpio) hepatocytes and aromatase (CYP19) activity in human H295r adrenocortical carcinoma cells

    SciTech Connect

    Letcher, Robert J. . E-mail: robert.letcher@ec.gc.ca; Sanderson, J. Thomas; Bokkers, Abraham; Giesy, John P.; Berg, Martin van den

    2005-12-01

    The present study investigated the effects of the known xenoestrogen bisphenol A (BPA) relative to eight BPA-related diphenylalkanes on estrogen receptor (ER)-mediated vitellogenin (vtg) production in hepatocytes from male carp (Cyprinus carpio), and on aromatase (CYP19) activity in the human adrenocortical H295R carcinoma cell line. Of the eight diphenylalkanes, only 4,4'-(hexafluoropropylidene)diphenol (BHF) and 2,2'-bis(4-hydroxy-3-methylphenyl)propane (BPRO) induced vtg, i.e., to a maximum of 3% to 4% (at 100 {mu}M) compared with 8% for BPA relative to the maximum induction by 17{beta}-estradiol (E2, 1 {mu}M). Bisphenol A diglycidyl ether (BADGE) was a potent antagonist of vtg production with an IC50 of 5.5 {mu}M, virtually 100% inhibition of vtg at 20 {mu}M, and an inhibitive (IC50) potency about one-tenth that of the known ER antagonist tamoxifen (IC50, 0.6 {mu}M). 2,2'-Diallyl bisphenol A, 4,4'-(1,4-phenylene-diisopropylidene)bisphenol, BPRO, and BHF were much less inhibitory with IC50 concentrations of 20-70 {mu}M, and relative potencies of 0.03 and 0.009 with tamoxifen. Bisphenol ethoxylate showed no anti-estrogenicity (up to 100 {mu}M), and 4,4'-isopropylidene-diphenol diacetate was only antagonistic at 100 {mu}M. When comparing the (anti)estrogenic potencies of these bisphenol A analogues/diphenylalkanes, anti-estrogenicity occurred at lower concentrations than estrogenicity. 4,4'-Isopropylidenebis(2,6-dimethylphenol) (IC50, 2.0 {mu}M) reduced E2-induced (EC50, 100 nM) vtg production due to concentration-dependent cytotoxicity as indicated by a parallel decrease in MTT activity and vtg, whereas the remaining diphenylalkanes did not cause any cytotoxicity relative to controls. None of the diphenylalkanes (up to 100 {mu}M) induced EROD activity indicating that concentration-dependent, CYP1A enzyme-mediated metabolism of E2, or any Ah-receptor-mediated interaction with the ER, was not a likely explanation for the observed anti-estrogenic effects. At

  20. Effects of bisphenol A-related diphenylalkanes on vitellogenin production in male carp (Cyprinus carpio) hepatocytes and aromatase (CYP19) activity in human H295R adrenocortical carcinoma cells.

    PubMed

    Letcher, Robert J; Sanderson, J Thomas; Bokkers, Abraham; Giesy, John P; van den Berg, Martin

    2005-12-01

    The present study investigated the effects of the known xenoestrogen bisphenol A (BPA) relative to eight BPA-related diphenylalkanes on estrogen receptor (ER)-mediated vitellogenin (vtg) production in hepatocytes from male carp (Cyprinus carpio), and on aromatase (CYP19) activity in the human adrenocortical H295R carcinoma cell line. Of the eight diphenylalkanes, only 4,4'-(hexafluoropropylidene)diphenol (BHF) and 2,2'-bis(4-hydroxy-3-methylphenyl)propane (BPRO) induced vtg, i.e., to a maximum of 3% to 4% (at 100 microM) compared with 8% for BPA relative to the maximum induction by 17beta-estradiol (E2, 1 microM). Bisphenol A diglycidyl ether (BADGE) was a potent antagonist of vtg production with an IC50 of 5.5 microM, virtually 100% inhibition of vtg at 20 microM, and an inhibitive (IC50) potency about one-tenth that of the known ER antagonist tamoxifen (IC50, 0.6 microM). 2,2'-Diallyl bisphenol A, 4,4'-(1,4-phenylene-diisopropylidene)bisphenol, BPRO, and BHF were much less inhibitory with IC50 concentrations of 20-70 microM, and relative potencies of 0.03 and 0.009 with tamoxifen. Bisphenol ethoxylate showed no anti-estrogenicity (up to 100 microM), and 4,4'-isopropylidene-diphenol diacetate was only antagonistic at 100 microM. When comparing the (anti)estrogenic potencies of these bisphenol A analogues/diphenylalkanes, anti-estrogenicity occurred at lower concentrations than estrogenicity. 4,4'-Isopropylidenebis(2,6-dimethylphenol) (IC50, 2.0 microM) reduced E2-induced (EC50, 100 nM) vtg production due to concentration-dependent cytotoxicity as indicated by a parallel decrease in MTT activity and vtg, whereas the remaining diphenylalkanes did not cause any cytotoxicity relative to controls. None of the diphenylalkanes (up to 100 microM) induced EROD activity indicating that concentration-dependent, CYP1A enzyme-mediated metabolism of E2, or any Ah-receptor-mediated interaction with the ER, was not a likely explanation for the observed anti-estrogenic effects. At

  1. Effects of bisphenol analogues on steroidogenic gene expression and hormone synthesis in H295R cells.

    PubMed

    Feng, Yixing; Jiao, Zhihao; Shi, Jiachen; Li, Ming; Guo, Qiaozhen; Shao, Bing

    2016-03-01

    The use of Bisphenol A (BPA) has been regulated in many countries because of its potential adverse effects on human health. As a result of the restriction, structural anologues such as bisphenol S (BPS) and bisphenol F (BPF) have already been used for industrial applications as alternatives to BPA. Bisphenol AF (BPAF) is mainly used as a crosslinker in the synthesis of specialty fluoroelastomers. These compounds have been detected in various environmental matrices and human samples. Previous studies have shown that these compounds have potential endocrine disrupting effects on wildlife and mammals in general. However, the effects on adrenocortical function and the underlying mechanisms are not fully understood. In the present study, the H295R cell line was used as a model to compare the cell toxicity and to investigate the potential endocrine disrupting action of four BPs (including BPA, BPS, BPF, and BPAF). The half lethal concentration (LC50) values at 72 h exposure indicated that the rank order of toxicities of the chemicals was BPAF > BPA > BPS > BPF. The hormone results demonstrated that BPA analogues, such as BPF, BPS and BPAF were capable of altering steroidogenesis in H295R cells. BPA and BPS exhibited inhibition of hormone production, BPF predominantly led to increased progesterone and 17β-estradiol levels and BPAF showed induction of progesterone and reduction of testosterone. Inhibition effects of BPA and BPAF on hormone production were probably mediated by down-regulation of steroidogenic genes in H295R cells. However, the mechanisms of the endocrine interrupting action of BPF and BPS are still unclear, which may have additional mechanisms that have not been detected with BPA. PMID:26751127

  2. Effects of single pesticides and binary pesticide mixtures on estrone production in H295R cells.

    PubMed

    Prutner, Wiebke; Nicken, Petra; Haunhorst, Eberhard; Hamscher, Gerd; Steinberg, Pablo

    2013-12-01

    The aim of the present study was to determine whether the human adrenocortical carcinoma cell line H295R can be used as an in vitro test system to investigate the effects of binary pesticide combinations on estrone production as biological endpoint. In the first step ten pesticides selected according to a tiered approach were tested individually. The anilinopyrimidines cyprodinil and pyrimethanil as well as the dicarboximides iprodione and procymidone increased estrone concentration, while the triazoles myclobutanil and tebuconazole as well as the strobilurins azoxystrobin and kresoxim-methyl decreased estrone concentration in the supernatant of H295R cells. The N-methylcarbamate methomyl did not show any effects, and the phthalimide captan reduced estrone concentration unspecifically due to its detrimental impact on cellular viability. When cyprodinil and pyrimethanil, which belong to the same chemical group and increase estrone production, were combined, in most of the cases the overall effect was solely determined by the most potent compound in the mixture (i.e., cyprodinil). When cyprodinil and procymidone, which belong to different chemical groups but increase estrone production, were combined, in most cases an additive effect was observed. When cyprodinil, which increased estrone production, was combined with either myclobutanil or azoxystrobin, which decreased estrone production, the overall effect of the mixture was in most cases either entirely determined by myclobutanil or at least partially modulated by azoxystrobin. In conclusion, H295R cells appear to be an adequate in vitro test system to study the effect of combining two pesticides affecting estrone production. PMID:23708528

  3. Effects of polar oil related hydrocarbons on steroidogenesis in vitro in H295R cells.

    PubMed

    Knag, Anne Christine; Verhaegen, Steven; Ropstad, Erik; Mayer, Ian; Meier, Sonnich

    2013-06-01

    Oil pollution from various sources, including exploration, production and transportation, is a growing global concern. Of particular concern is the environmental impact of produced water (PW), the main waste discharge from oil and gas platforms. In this study, we have investigated the potential of polar hydrocarbon pollutants to disrupt or modulate steroidogenesis in vitro, using a human adrenocortical carcinoma cell line, the H295R assay. Effects of two of the major groups of compounds found in the polar fraction of crude oil and PW; alkylphenols (C(2)- and C(3)-AP) and naphthenic acids (NAs), as well as the polar fraction of PW as a whole has been assessed. Endpoints include hormone (cortisol, estradiol, progesterone, testosterone) production at the functional level and key genes for steroidogenesis (17β-HSD1, 17β-HSD4, 3β-HSD2, ACTHR, CYP11A1, CYP11B1, CYP11B2, CYP17, CYP19, CYP21, DAX1, EPHX, HMGR, SF1, STAR) and metabolism (CYP1A) at the molecular level. All compounds induced the production of both estradiol and progesterone in exposed H295R cells, while the C(3)-AP and NAs decreased the production of testosterone. Exposure to C(2)-AP caused an up-regulation of DAX1 and EPHX, while exposure to NAs caused an up-regulation of ACTHR. All compounds caused an up-regulation of CYP1A1. The results indicated that these hydrocarbon pollutants, including PW, have the potential to disrupt the vitally important process of steroidogenesis. PMID:23561572

  4. Mechanistic Computational Model of Steroidgenesis in H295R Cells: Role of (Oxysterols and Cell Proliferation to Improve Predictability of Biochemical Response to Endocrine Active Chemical-Metyrapone

    EPA Science Inventory

    The human adrenocortical carcinoma cell line H295R is being used as an in vitro steroidogenesis screening assay to assess the impact of endocrine active chemicals (EACs) capable of altering steroid biosynthesis. To enhance the interpretation and quantitative application of measur...

  5. Computational Model of Steroidogenesis in Human H295R Cells to Predict Biochemical Response to Endocrine Active Chemicals: Model Development for Metyrapone

    EPA Science Inventory

    BACKGROUND: An in vitro steroidogenesis assay using the human adrenocortical carcinoma cells H295R is being evaluated as a possible toxicity screening approach to detect and assess the impact of endocrine active chemicals (EAC) capable of altering steroid biosynthesis. Interpreta...

  6. Orexin-stimulated MAP kinase cascades are activated through multiple G-protein signalling pathways in human H295R adrenocortical cells: diverse roles for orexins A and B.

    PubMed

    Ramanjaneya, Manjunath; Conner, Alex C; Chen, Jing; Kumar, Prashanth; Brown, James E P; Jöhren, Olaf; Lehnert, Hendrik; Stanfield, Peter R; Randeva, Harpal S

    2009-08-01

    Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly G(q)- and to a lesser extent G(s)-mediated; p38 activation even had a small G(i)-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules. PMID:19460850

  7. EVALUATION OF THE EFFECTS OF ENVIRONMENTAL COMPOUNDS ON STEROID HORMONE PRODUCTION IN H295R CELLS

    EPA Science Inventory

    H295R cells constitute a pluripotent cell line that has retained the enzymatic ability to produce steroids along the entire steroidogenic pathway, including C19 androgens and C18 estrogens. For this reason, they have been a valued research tool, and have been employed in an ever...

  8. Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: Hormone production

    SciTech Connect

    Hecker, Markus . E-mail: heckerm@msu.edu; Newsted, John L.; Murphy, Margaret B.; Higley, Eric B.; Jones, Paul D.; Wu, Rudolf; Giesy, John P.

    2006-11-15

    To identify and prioritize chemicals that may alter steroidogenesis, an in vitro screening assay based on measuring alterations in hormone production was developed using the H295R human adrenocortical carcinoma cell line. Previous studies indicated that this cell line was useful to screen for effects on gene expression of steroidogenic enzymes. This study extended that work to measure the integrated response on production of testosterone (T), estradiol (E2), and progesterone/pregnenolone (P) using an ELISA. Under optimized culture and experimental conditions, the basal release of P, T and E2 into the medium was 7.0 {+-} 1.2 ng/ml, 1.6 {+-} 0.4 ng/ml, and 0.51 {+-} 0.13 ng/ml, respectively. Model chemicals with different modes of action on steroidogenic systems were tested. Exposure to forskolin resulted in dose-dependent increases in all three hormones with the greatest relative increase being observed for E2. This differed from cells exposed to prochloraz or ketoconazole where P concentrations increased while T and E2 concentrations decreased in a dose-dependent manner. In cells exposed to fadrozole, E2 decreased in a dose-dependent manner while T and P only decreased at the greatest dose tested. Aminoglutethimide decreased P and E2 concentrations but increased T concentrations. Vinclozolin reduced both P and T but resulted in a slight increase in E2. The alteration in the patterns of hormone production in the H295R assay was consistent with the modes of action of the chemicals and was also consistent with observed effects of these chemicals in animal models. Based on these results, the H295R in vitro system has potential for high throughput screening to not only characterize the effects of chemicals on endocrine systems but also to prioritize chemicals for additional testing.

  9. Development of a combined method to assess the complex effect of atrazine on sex steroid synthesis in H295R cells.

    PubMed

    Háhn, Judit; Szoboszlay, Sándor; Krifaton, Csilla; Kovács, Krisztina J; Ferenczi, Szilamér; Kriszt, Balázs

    2016-07-01

    The aim of the study was to develop a rapid, cost-effective combined testing method to assess the indirect effect of compounds interfering with sex steroid synthesis and to determine complex effects of atrazine on estrogen and androgen synthesis in vitro on H295R human cell line. Steroidogenic assay was performed on H295R human adrenocortical carcinoma cell line. Instead of standard analytical methods, bioluminescence bioreporter assays (Saccharomyces cerevisiae BLYES and BLYAS) were used to measure estrogenic and androgenic effects of sex steroid hormones released by human cells in response to atrazine. Atrazine resulted in elevated estrogen production presumably due to its well documented inductive effect on aromatase on H295R cell line, detected by BLYES. Interestingly, results of BLYAS test showed concentration-dependent increase of androgen production in H295R cells. That indicates that atrazine can not only increase estrogen level via aromatase induction, but may interfere in androgen synthesis as well. The combined method allows us to assess the androgenic and estrogenic effect of sex steroids produced by human cells in increased or decreased quantity as a result of the different chemicals, without determining specific analytical measurement endpoints, by using the yeast based bioluminescent bioreporter test. PMID:27085065

  10. Corticosteroid production in H295R cells during exposure to 3 endocrine disrupters analyzed with LC-MS/MS.

    PubMed

    Winther, Christina S; Nielsen, Frederik K; Hansen, Martin; Styrishave, Bjarne

    2013-01-01

    The adrenocortical human cell line H295R is a valuable tool for screening endocrine disrupting compounds. In general, previous research focus has been on the production of the 2 sex steroids, 17β-estradiol and testosterone, and less attention has been paid to other important steroid end points in the steroidogenesis with a wide range of physiological functions, such as the glucocorticoids (corticosterone and cortisol). A newly developed and validated solid phase extraction (SPE) liquid chromatography-mass spectroscopy (LC-MS/MS) method was used to measure the production of cortisol and corticosterone in the H295R cell line. The method was applied by studying the effects of 2 model endocrine disrupters, ketoconazole and prochloraz, the pharmaceutical budesonide, and the inducer forskolin on the steroid production in this cell line. Dose-response curves were obtained for the correlation between hormone concentrations and the concentration of the individual disruptors. Exposing cells to ketoconazole resulted in a decrease in cortisol and corticosterone concentrations in a dose-dependent manner with EC₅₀ values of 0.24 and 0.40 μmol/L, respectively. The same applied for cells exposed to prochloraz with EC₅₀ values of 0.06 and 0.09 μmol/L for cortisol and corticosterone, respectively. Budesonide also inhibited glucocorticoid secretion. The EC₅₀ value for cortisol was 19.50 μmol/L, whereas the EC₅₀ value for corticosterone was 71.42 μmol/L. Forskolin induced the secretion of both cortisol (EC₅₀ = 4.09 μmol/L) and corticosterone (EC₅₀ = 0.28 μmol/L). The results obtained demonstrated the validity of the method. Based on these findings, quality criteria for the production of these steroids in this cell line were suggested. PMID:23616146

  11. Effect of Orexin-A on Cortisol Secretion in H295R Cells via p70S6K/4EBP1 Signaling Pathway

    PubMed Central

    Chang, Xiaocen; Guo, Lei

    2015-01-01

    Orexin-A is a neuropeptide that orchestrates diverse central and peripheral processes. It is now clear that orexin system plays a central role in the regulation of endocrine, paracrine, and neurocrine. It is involved in the regulation of growth hormone, adrenocorticotropic hormone, thyroid, mineralocorticoid, and cortisol secretion. These hormones may also serve as a kind of signal linking energy balance regulation, reproduction, stress response, and cardiovascular regulation. Many studies have demonstrated the ability of orexin-A to regulate adrenocortical cells through the MAPK (mitogen-activated protein kinases) pathway. The aim of our study is to investigate the effect of orexin-A on cortisol secretion via the protein 70 ribosomal protein S6 kinase-1 (p70S6K) and eukaryotic translation initiation factor 4E binding proteins (4EBP1) signaling pathway in adrenocortical cells. We reported the first evidence that orexin-A stimulated p70S6K and 4EBP1 in human H295R adrenocortical cells in a concentration and time-dependent manner. 10−6 M orexin-A treatment for 1 hour was the most potent. Our results also indicated that p70S6K and 4EBP1 kinases participated in controlling cortisol secretion via OX1 receptor in H295R cells, which implied important role of p70S6K and 4EBP1 kinases in regulating adrenal function induced by orexin-A. PMID:26064108

  12. Effects of fluorotelomer alcohol 8:2 FTOH on steroidogenesis in H295R cells: Targeting the cAMP signalling cascade

    SciTech Connect

    Liu Chunsheng; Zhang Xiaowei; Chang Hong; Jones, Paul; Wiseman, Steve; Naile, Jonathan; Hecker, Markus; Giesy, John P.; Zhou Bingsheng

    2010-09-15

    Previous studies have demonstrated that perfluorinated chemicals (PFCs) can affect reproduction by disruption of steroidogenesis in experimental animals. However, the underlying mechanism(s) of this disruption remain unknown. Here we investigated the effects and mechanisms of action of 1H, 1H, 2H, 2H-perfluoro-decan-1-ol (8:2 FTOH) on steroidogenesis using a human adrenocortical carcinoma cell line (H295R) as a model. H295R cells were exposed to 0, 7.4, 22.2 or 66.6 {mu}M 8:2 FTOH for 24 h and productions of progesterone, 17{alpha}-OH-progesterone, androstenedione, testosterone, deoxycorticosterone, corticosterone and cortisol were quantified by HPLC-MS/MS. With the exception of progesterone, 8:2 FTOH treatment significantly decreased production of all hormones in the high dose group. Exposure to 8:2 FTOH significantly down-regulated cAMP-dependent mRNA expression and protein abundance of several key steroidogenic enzymes, including StAR, CYP11A, CYP11B1, CYP11B2, CYP17 and CYP21. Furthermore, a dose-dependent decrease of cellular cAMP levels was observed in H295R cells exposed to 8:2 FTOH. The observed responses are consistent with reduced cellular cAMP levels. Exposure to 8:2 FTOH resulted in significantly less basal (+ GTP) and isoproterenol-stimulated adenylate cyclase activities, but affected neither total cellular ATP level nor basal (-GTP) or NaF-stimulated adenylate cyclase activities, suggesting that inhibition of steroidogenesis may be due to an alteration in membrane properties. Metabolites of 8:2 FTOH were not detected by HPLC-MS/MS, suggesting that 8:2 FTOH was not metabolized by H295R cells. Overall, the results show that 8:2 FTOH may inhibit steroidogenesis by disrupting the cAMP signalling cascade.

  13. Estimation of the Mechanism of Adrenal Action of Endocrine-Disrupting Compounds Using a Computational Model of Adrenal Steroidogenesis in NCI-H295R Cells

    PubMed Central

    Saito, Ryuta; Terasaki, Natsuko; Yamazaki, Makoto; Masutomi, Naoya; Tsutsui, Naohisa; Okamoto, Masahiro

    2016-01-01

    Adrenal toxicity is one of the major concerns in drug development. To quantitatively understand the effect of endocrine-active compounds on adrenal steroidogenesis and to assess the human adrenal toxicity of novel pharmaceutical drugs, we developed a mathematical model of steroidogenesis in human adrenocortical carcinoma NCI-H295R cells. The model includes cellular proliferation, intracellular cholesterol translocation, diffusional transport of steroids, and metabolic pathways of adrenal steroidogenesis, which serially involve steroidogenic proteins and enzymes such as StAR, CYP11A1, CYP17A1, HSD3B2, CYP21A2, CYP11B1, CYP11B2, HSD17B3, and CYP19A1. It was reconstructed in an experimental dynamics of cholesterol and 14 steroids from an in vitro steroidogenesis assay using NCI-H295R cells. Results of dynamic sensitivity analysis suggested that HSD3B2 plays the most important role in the metabolic balance of adrenal steroidogenesis. Based on differential metabolic profiling of 12 steroid hormones and 11 adrenal toxic compounds, we could estimate which steroidogenic enzymes were affected in this mathematical model. In terms of adrenal steroidogenic inhibitors, the predicted action sites were approximately matched to reported target enzymes. Thus, our computer-aided system based on systems biological approach may be useful to understand the mechanism of action of endocrine-active compounds and to assess the human adrenal toxicity of novel pharmaceutical drugs. PMID:27057163

  14. Enantioselective endocrine disrupting effects of omeprazole studied in the H295R cell assay and by molecular modeling.

    PubMed

    Sørensen, Amalie Møller; Hansen, Cecilie Hurup; Bonomo, Silvia; Olsen, Lars; Jørgensen, Flemming Steen; Weisser, Johan Juhl; Kretschmann, Andreas Christopher; Styrishave, Bjarne

    2016-08-01

    Enantiomers possess different pharmacokinetic and pharmacodynamic properties and this may not only influence the therapeutic effect of a drug but also its toxicological effects. In the present work we investigated the potential enantioselective endocrine disrupting effects of omeprazole (OME) and its two enantiomers on the human steroidogenesis using the H295R cell line. Differences in production of 16 steroid hormones were analyzed using LC-MS/MS. Additionally, to evaluate the differences in binding modes of these enantiomers, docking and molecular dynamics (MD) simulations of S-omeprazole (S-OME) and R-omeprazole (R-OME) in CYP17A1, CYP19A1 and CYP21A2 were carried out. Exposing H295R cells to OME and its enantiomers resulted in an increase of progesterone (PRO) and 17α-hydroxy-progesterone (OH-PRO) levels. At the same time, a decrease in the corticosteroid and androgen synthesis was observed, indicating inhibition of CYP21A2 and CYP17A1. In both cases, the effect of R-OME was smaller compared to that of the S-OME and a certain degree of enantioselectivity of CYP17A1 and CYP21A2 was suggested. Docking indicated that the N-containing rings of OME possibly could interact with the iron atom of the heme for S-OME in CYP17A1 and S- and R-OME in CYP21A2. However, density functional theory calculations suggest that the direct N-Fe interaction is weak. The study demonstrates enantioselective differences in the endocrine disrupting potential of chiral drugs such as omeprazole. These findings may have potential implications for drug safety and drug design. PMID:27002602

  15. Effects of selective serotonin reuptake inhibitors on three sex steroids in two versions of the aromatase enzyme inhibition assay and in the H295R cell assay.

    PubMed

    Jacobsen, Naja Wessel; Hansen, Cecilie Hurup; Nellemann, Christine; Styrishave, Bjarne; Halling-Sørensen, Bent

    2015-10-01

    Selective serotonin reuptake inhibitors are known to have a range of disorders that are often linked to the endocrine system e.g. hormonal imbalances, breast enlargement, sexual dysfunction, and menstrual cycle disorders. The mechanisms behind most of these disorders are not known in details. In this study we investigated whether the endocrine effect due to SSRI exposure could be detected in well adopted in vitro steroidogenesis assays, two versions of the aromatase enzyme inhibition assay and the H295R cell assay. The five drugs citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline, were shown to inhibit the aromatase enzyme in both types of aromatase assays. The IC50 values ranged from 3 to 600 μM. All five SSRIs, were further investigated in the H295R cell line. All compounds altered the steroid secretion from the cells, the lowest observed effect levels were 0.9 μM and 3.1 μM for sertraline and fluvoxamine, respectively. In general the H295R cell assay was more sensitive to SSRI exposure than the two aromatase assays, up to 20 times more sensitive. This indicates that the H295R cell line is a better tool for screening endocrine disrupting effects. Our findings show that the endocrine effects of SSRIs may, at least in part, be due to interference with the steroidogenesis. PMID:26162595

  16. Modulation of steroidogenic gene expression and hormone production of H295R cells by pharmaceuticals and other environmentally active compounds

    SciTech Connect

    Gracia, Tannia Hilscherova, Klara; Jones, Paul D.; Newsted, John L.; Higley, Eric B.; Zhang, Xiaowei; Hecker, Markus; Murphy, Margaret B.; Yu, Richard M.K.; Lam, Paul K.S.; Wu, Rudolf S.S.; Giesy, John P.

    2007-12-01

    The H295R cell bioassay was used to evaluate the potential endocrine disrupting effects of 18 of the most commonly used pharmaceuticals in the United States. Exposures for 48 h with single pharmaceuticals and binary mixtures were conducted; the expression of five steroidogenic genes, 3{beta}HSD2, CYP11{beta}1, CYP11{beta}2, CYP17 and CYP19, was quantified by Q-RT-PCR. Production of the steroid hormones estradiol (E2), testosterone (T) and progesterone (P) was also evaluated. Antibiotics were shown to modulate gene expression and hormone production. Amoxicillin up-regulated the expression of CYP11{beta}2 and CYP19 by more than 2-fold and induced estradiol production up to almost 3-fold. Erythromycin significantly increased CYP11{beta}2 expression and the production of P and E2 by 3.5- and 2.4-fold, respectively, while production of T was significantly decreased. The {beta}-blocker salbutamol caused the greatest induction of CYP17, more than 13-fold, and significantly decreased E2 production. The binary mixture of cyproterone and salbutamol significantly down-regulated expression of CYP19, while a mixture of ethynylestradiol and trenbolone, increased E2 production 3.7-fold. Estradiol production was significantly affected by changes in concentrations of trenbolone, cyproterone, and ethynylestradiol. Exposures with individual pharmaceuticals showed the possible secondary effects that drugs may exert on steroid production. Results from binary mixture exposures suggested the possible type of interactions that may occur between drugs and the joint effects product of such interactions. Dose-response results indicated that although two chemicals may share a common mechanism of action the concentration effects observed may be significantly different.

  17. Genomic and proteomic analysis of the inhibition of synthesis and secretion of aldosterone hormone induced by quinocetone in NCI-H295R cells.

    PubMed

    Wang, Xu; Bai, Yijie; Cheng, Guyue; Ihsan, Awais; Zhu, Feng; Wang, Yulian; Tao, Yanfei; Chen, Dongmei; Dai, Menghong; Liu, Zhengli; Yuan, Zonghui

    2016-03-28

    Quinoxaline 1,4-dioxides (QdNOs) are widely used as a kind of antibacterial growth promoter in animal husbandry. The adrenal cortex was found to be one of the main toxic targets of QdNOs, accompanied by a decreased aldosterone level. However, the way in which QdNOs decrease production of the hormone aldosterone is far from clear. To illustrate the mechanism by which QdNOs damage the adrenal cortex and decrease aldosterone hormone levels, the QdNOs were screened to choose the drug with most toxic effects on aldosterone production, and then to reveal the mechanism between the gene and protein profiles in human adrenocortical cells (NCI-H295R cells). The results found that quinocetone (QCT) showed the highest adrenal toxic effect among QdNOs. After exposing H295R cells to 10 and 20μM QCT for 24h, compared with blank cells, the gene and protein expression profiles obtained were analyzed by microarray and MALDI TOF/TOF mass spectrometry, respectively. The results of microarray analysis suggested that ABCG1 and SREBF1, which were involved in the cholesterol biosynthetic and metabolic processes, and CYP17A1, NR4A2 and G6PD, which were related to aldosterone biosynthesis, were important molecular targets. It has been speculated that PKC and ERK pathways might be involved in the reduction of aldosterone production caused by QCT, through enhanced mRNA expression of CYP17A1. Additionally, JNK and p38MAPK signal transduction pathways might participate in apoptosis induced by QCT. Twenty-nine and 32 protein spots were successfully identified when cells were treated with 10 and 20μM QCT, respectively. These identified proteins mainly included material synthesis and energy metabolism-related proteins, transcription/translation processing-related proteins, signal transduction proteins, cytoskeletal proteins, molecular chaperones, proteins related to response to stress, and transport proteins. Further investigations suggested that oxidative stress caused by QCT was exacerbated

  18. Screening Chemical Effects on Steroidogenesis in H295R Human Adrenocortical Carcinoma Cells (SOT)

    EPA Science Inventory

    Proper endocrine function requires steroid hormone biosynthesis and metabolism (steroidogenesis). Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. This study is the first to estab...

  19. Computational analysis of liquid chromatography-tandem mass spectrometric steroid profiling in NCI H295R cells following angiotensin II, forskolin and abiraterone treatment.

    PubMed

    Mangelis, Anastasios; Dieterich, Peter; Peitzsch, Mirko; Richter, Susan; Jühlen, Ramona; Hübner, Angela; Willenberg, Holger S; Deussen, Andreas; Lenders, Jacques W M; Eisenhofer, Graeme

    2016-01-01

    Adrenal steroid hormones, which regulate a plethora of physiological functions, are produced via tightly controlled pathways. Investigations of these pathways, based on experimental data, can be facilitated by computational modeling for calculations of metabolic rate alterations. We therefore used a model system, based on mass balance and mass reaction equations, to kinetically evaluate adrenal steroidogenesis in human adrenal cortex-derived NCI H295R cells. For this purpose a panel of 10 steroids was measured by liquid chromatographic-tandem mass spectrometry. Time-dependent changes in cell incubate concentrations of steroids - including cortisol, aldosterone, dehydroepiandrosterone and their precursors - were measured after incubation with angiotensin II, forskolin and abiraterone. Model parameters were estimated based on experimental data using weighted least square fitting. Time-dependent angiotensin II- and forskolin-induced changes were observed for incubate concentrations of precursor steroids with peaks that preceded maximal increases in aldosterone and cortisol. Inhibition of 17-alpha-hydroxylase/17,20-lyase with abiraterone resulted in increases in upstream precursor steroids and decreases in downstream products. Derived model parameters, including rate constants of enzymatic processes, appropriately quantified observed and expected changes in metabolic pathways at multiple conversion steps. Our data demonstrate limitations of single time point measurements and the importance of assessing pathway dynamics in studies of adrenal cortical cell line steroidogenesis. Our analysis provides a framework for evaluation of steroidogenesis in adrenal cortical cell culture systems and demonstrates that computational modeling-derived estimates of kinetic parameters are an effective tool for describing perturbations in associated metabolic pathways. PMID:26435452

  20. Effect of chronic exposure to two components of Tritan copolyester on Daphnia magna, Moina macrocopa, and Oryzias latipes, and potential mechanisms of endocrine disruption using H295R cells.

    PubMed

    Jang, Sol; Ji, Kyunghee

    2015-11-01

    Tritan copolyester is a novel plastic form from Eastman Company utilizing three main monomers, 1,4-cyclohexanedimethanol (CHDM), dimethyl terephthalate (DMT), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol. Despite Tritan has been widely applied for plastic bottles, the effects of long-term exposure to these compounds have seldom been investigated. We investigated chronic effects and endocrine disruption potential of CHDM and terephthalic acid (TPA), main mammalian metabolite formed from DMT, using crustacean Daphnia magna and Moina macrocopa, and freshwater fish (Oryzias latipes). The effects on sex hormone balance and the associated mechanisms were also investigated by use of H295R cells. In chronic toxicity test, D. magna showed significant decrease in reproduction (number of young per female) after exposure to 10 mg/L TPA. In early life stage exposure using O. latipes, significant decrease of juvenile survival and weight were observed in fish exposed to 10 mg/L and ≥1 mg/L CHDM, respectively. Expressions of vtg2 mRNA in fish exposed to CHDM and those of cyp19b, star, cyp17, and cyp19a mRNAs in fish exposed to TPA were significantly up-regulated. The results of H295R cell assay also showed that both chemicals at high concentrations could alter sex hormone production in steroidogenic pathway. The effective concentrations of the tested compounds were several orders of magnitude greater than the concentrations can be detected in ambient waters. Further in vivo and in vitro studies will be needed to investigate the effect of co-polymer on endocrine disruption. PMID:26289545

  1. Steroidomic Footprinting Based on Ultra-High Performance Liquid Chromatography Coupled with Qualitative and Quantitative High-Resolution Mass Spectrometry for the Evaluation of Endocrine Disrupting Chemicals in H295R Cells.

    PubMed

    Tonoli, David; Fürstenberger, Cornelia; Boccard, Julien; Hochstrasser, Denis; Jeanneret, Fabienne; Odermatt, Alex; Rudaz, Serge

    2015-05-18

    The screening of endocrine disrupting chemicals (EDCs) that may alter steroidogenesis represents a highly important field mainly due to the numerous pathologies, such as cancer, diabetes, obesity, osteoporosis, and infertility that have been related to impaired steroid-mediated regulation. The adrenal H295R cell model has been validated to study steroidogenesis by the Organization for Economic Co-operation and Development (OECD) guideline. However, this guideline focuses solely on testosterone and estradiol monitoring, hormones not typically produced by the adrenals, hence limiting possible in-depth mechanistic investigations. The present work proposes an untargeted steroidomic footprinting workflow based on ultra-high pressure liquid chromatography (UHPLC) coupled to high-resolution MS for the screening and mechanistic investigations of EDCs in H295R cell supernatants. A suspected EDC, triclocarban (TCC), used in detergents, cosmetics, and personal care products, was selected to demonstrate the efficiency of the reported methodology, allowing the simultaneous assessment of a steroidomic footprint and quantification of a selected subset of steroids in a single analysis. The effects of exposure to increasing TCC concentrations were assessed, and the selection of features with database matching followed by multivariate analysis has led to the selection of the most salient affected steroids. Using correlation analysis, 11 steroids were associated with a high, 18 with a medium, and 8 with a relatively low sensitivity behavior to TCC. Among the candidates, 13 identified steroids were simultaneously quantified, leading to the evaluation and localization of the disruption of steroidogenesis caused by TCC upstream of the formation of pregnenolone. The remaining candidates could be associated with a specific steroid class (progestogens and corticosteroids, or androgens) and represent a specific footprint of steroidogenesis disruption by TCC. This strategy was devised to be

  2. High risk of adrenal toxicity of N1-desoxy quinoxaline 1,4-dioxide derivatives and the protection of oligomeric proanthocyanidins (OPC) in the inhibition of the expression of aldosterone synthetase in H295R cells.

    PubMed

    Wang, Xu; Yang, Chunhui; Ihsan, Awais; Luo, Xun; Guo, Pu; Cheng, Guyue; Dai, Menghong; Chen, Dongmei; Liu, Zhenli; Yuan, Zonghui

    2016-02-01

    Quinoxaline 1,4-dioxide derivatives (QdNOs) with a wide range of biological activities are used in animal husbandry worldwide. It was found that QdNOs significantly inhibited the gene expression of CYP11B1 and CYP11B2, the key aldosterone synthases, and thus reduced aldosterone levels. However, whether the metabolites of QdNOs have potential adrenal toxicity and the role of oxidative stress in the adrenal toxicity of QdNOs remains unclear. The relatively new QdNOs, cyadox (CYA), mequindox (MEQ), quinocetone (QCT) and their metabolites, were selected for elucidation of their toxic mechanisms in H295R cells. Interestingly, the results showed that the main toxic metabolites of QCT, MEQ, and CYA were their N1-desoxy metabolites, which were more harmful than other metabolites and evoked dose and time-dependent cell damage on adrenal cells and inhibited aldosterone production. Gene and protein expression of CYP11B1 and CYP11B2 and mRNA expression of transcription factors, such as NURR1, NGFIB, CREB, SF-1, and ATF-1, were down regulated by N1-desoxy QdNOs. The natural inhibitors of oxidant stress, oligomeric proanthocyanidins (OPC), could upregulate the expression of diverse transcription factors, including CYP11B1 and CYP11B2, and elevated aldosterone levels to reduce adrenal toxicity. This study demonstrated for the first time that N1-desoxy QdNOs have the potential to be the major toxic metabolites in adrenal toxicity, which may shed new light on the adrenal toxicity of these fascinating compounds and help to provide a basic foundation for the formulation of safety controls for animal products and the design of new QdNOs with less harmful effects. PMID:26802905

  3. Differential Regulation of Human 3β-Hydroxysteroid Dehydrogenase Type 2 for Steroid Hormone Biosynthesis by Starvation and Cyclic Amp Stimulation: Studies in the Human Adrenal NCI-H295R Cell Model

    PubMed Central

    Hofer, Gaby; Mullis, Primus E.; Flück, Christa E.

    2013-01-01

    Human steroid biosynthesis depends on a specifically regulated cascade of enzymes including 3β-hydroxysteroid dehydrogenases (HSD3Bs). Type 2 HSD3B catalyzes the conversion of pregnenolone, 17α-hydroxypregnenolone and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone and androstenedione in the human adrenal cortex and the gonads but the exact regulation of this enzyme is unknown. Therefore, specific downregulation of HSD3B2 at adrenarche around age 6–8 years and characteristic upregulation of HSD3B2 in the ovaries of women suffering from the polycystic ovary syndrome remain unexplained prompting us to study the regulation of HSD3B2 in adrenal NCI-H295R cells. Our studies confirm that the HSD3B2 promoter is regulated by transcription factors GATA, Nur77 and SF1/LRH1 in concert and that the NBRE/Nur77 site is crucial for hormonal stimulation with cAMP. In fact, these three transcription factors together were able to transactivate the HSD3B2 promoter in placental JEG3 cells which normally do not express HSD3B2. By contrast, epigenetic mechanisms such as methylation and acetylation seem not involved in controlling HSD3B2 expression. Cyclic AMP was found to exert differential effects on HSD3B2 when comparing short (acute) versus long-term (chronic) stimulation. Short cAMP stimulation inhibited HSD3B2 activity directly possibly due to regulation at co-factor or substrate level or posttranslational modification of the protein. Long cAMP stimulation attenuated HSD3B2 inhibition and increased HSD3B2 expression through transcriptional regulation. Although PKA and MAPK pathways are obvious candidates for possibly transmitting the cAMP signal to HSD3B2, our studies using PKA and MEK1/2 inhibitors revealed no such downstream signaling of cAMP. However, both signaling pathways were clearly regulating HSD3B2 expression. PMID:23874725

  4. Effects of Type 1 Insulin-Like Growth Factor Receptor Silencing in a Human Adrenocortical Cell Line.

    PubMed

    Ribeiro, T C; Jorge, A A; Montenegro, L R; Almeida, M Q; Ferraz-de-Souza, B; Nishi, M Y; Mendonca, B B; Latronico, A C

    2016-07-01

    Type 1 insulin-like growth factor receptor (IGF-1R) is overexpressed in a variety of human cancers, including adrenocortical tumors. The aim of the work was to investigate the effects of IGF-1R downregulation in a human adrenocortical cell line by small interfering RNA (siRNA). The human adrenocortical tumor cell line NCI H295R was transfected with 2 specific IGF1R siRNAs (# 1 and # 2) and compared with untreated cells and a negative control siRNA. IGF1R expression was determined by quantitative reverse-transcription PCR (qRTPCR) and Western blot. The effects of IGF-1R downregulation on cell proliferation and apoptosis were assessed. IGF-1R levels were significantly decreased in cells treated with IGF-1R siRNA # 1 or # 2. Relative expression of IGF1R mRNA decreased approximately 50% and Western blot analysis revealed a 30% of reduction in IGF-1R protein. Downregulation of this gene resulted in 40% reduction in cell growth in vitro and 45% increase in apoptosis using siRNA # 2. These findings demonstrate that decreasing IGF-1R mRNA and protein expression in NCI H295R cells can partially inhibit adrenal tumor cell growth in vitro. Targeting IGF1R is a promising therapy for pediatric malignant adrenocortical tumor and can still be an option for adult adrenocortical cancer based on personalized genomic tumor profiling. PMID:27246621

  5. Small-Conductance Ca2+-Activated Potassium Channels Negatively Regulate Aldosterone Secretion in Human Adrenocortical Cells.

    PubMed

    Yang, Tingting; Zhang, Hai-Liang; Liang, Qingnan; Shi, Yingtang; Mei, Yan-Ai; Barrett, Paula Q; Hu, Changlong

    2016-09-01

    Aldosterone, which plays a key role in maintaining water and electrolyte balance, is produced by zona glomerulosa cells of the adrenal cortex. Autonomous overproduction of aldosterone from zona glomerulosa cells causes primary hyperaldosteronism. Recent clinical studies have highlighted the pathological role of the KCNJ5 potassium channel in primary hyperaldosteronism. Our objective was to determine whether small-conductance Ca(2+)-activated potassium (SK) channels may also regulate aldosterone secretion in human adrenocortical cells. We found that apamin, the prototypic inhibitor of SK channels, decreased membrane voltage, raised intracellular Ca(2+) and dose dependently increased aldosterone secretion from human adrenocortical H295R cells. By contrast, 1-Ethyl-2-benzimidazolinone, an agonist of SK channels, antagonized apamin's action and decreased aldosterone secretion. Commensurate with an increase in aldosterone production, apamin increased mRNA expression of steroidogenic acute regulatory protein and aldosterone synthase that control the early and late rate-limiting steps in aldosterone biosynthesis, respectively. In addition, apamin increased angiotensin II-stimulated aldosterone secretion, whereas 1-Ethyl-2-benzimidazolinone suppressed both angiotensin II- and high K(+)-stimulated production of aldosterone in H295R cells. These findings were supported by apamin-modulation of basal and angiotensin II-stimulated aldosterone secretion from acutely prepared slices of human adrenals. We conclude that SK channel activity negatively regulates aldosterone secretion in human adrenocortical cells. Genetic association studies are necessary to determine whether mutations in SK channel subtype 2 genes may also drive aldosterone excess in primary hyperaldosteronism. PMID:27432863

  6. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo

    PubMed Central

    Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-01-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  7. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-08-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  8. ATR-101 disrupts mitochondrial functions in adrenocortical carcinoma cells and in vivo.

    PubMed

    Cheng, Yunhui; Kerppola, Raili Emilia; Kerppola, Tom Klaus

    2016-04-01

    Adrenocortical carcinoma (ACC) generally has poor prognosis. Existing treatments provide limited benefit for most patients with locally advanced or metastatic tumors. We investigated the mechanisms for the cytotoxicity, xenograft suppression, and adrenalytic activity of ATR-101 (PD132301-02), a prospective agent for ACC treatment. Oral administration of ATR-101 inhibited the establishment and impeded the growth of ACC-derived H295R cell xenografts in mice. ATR-101 induced H295R cell apoptosis in culture and in xenografts. ATR-101 caused mitochondrial hyperpolarization, reactive oxygen release, and ATP depletion within hours after exposure, followed by cytochrome c release, caspase-3/7 activation, and membrane permeabilization. The increase in mitochondrial membrane potential occurred concurrently with the decrease in cellular ATP levels. When combined with ATR-101, lipophilic free radical scavengers suppressed the reactive oxygen release, and glycolytic precursors prevented the ATP depletion, abrogating ATR-101 cytotoxicity. ATR-101 directly inhibited F1F0-ATPase activity and suppressed ATP synthesis in mitochondrial fractions. ATR-101 administration to guinea pigs caused oxidized lipofuscin accumulation in thezona fasciculatalayer of the adrenal cortex, implicating reactive oxygen release in the adrenalytic effect of ATR-101. These results support the development of ATR-101 and other adrenalytic compounds for the treatment of ACC. PMID:26843528

  9. Adrenocortical endocrine disruption.

    PubMed

    Harvey, Philip W

    2016-01-01

    in vivo ACTH challenge test to prove adrenocortical competency, and the H295R cell line to examine molecular mechanisms of steroidogenic pathway toxicity, are discussed. Finally, because of the central role of the adrenal in the physiologically adaptive stress response, the distinguishing features of stress, compared with adrenocortical toxicity, are discussed with reference to the evidence required to claim that adrenal hypertrophy results from stress rather than adrenocortical enzyme inhibition which is a serious adverse toxicological finding. This article is part of a special issue entitled 'Endocrine disruptors and steroids'. PMID:25460300

  10. Knockdown of SF-1 and RNF31 Affects Components of Steroidogenesis, TGFβ, and Wnt/β-catenin Signaling in Adrenocortical Carcinoma Cells

    PubMed Central

    Ehrlund, Anna; Jonsson, Philip; Vedin, Lise-Lotte; Williams, Cecilia; Gustafsson, Jan-Åke; Treuter, Eckardt

    2012-01-01

    The orphan nuclear receptor Steroidogenic Factor-1 (SF-1, NR5A1) is a critical regulator of development and homeostasis of the adrenal cortex and gonads. We recently showed that a complex containing E3 ubiquitin ligase RNF31 and the known SF-1 corepressor DAX-1 (NR0B1) interacts with SF-1 on target promoters and represses transcription of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) genes. To further evaluate the role of SF-1 in the adrenal cortex and the involvement of RNF31 in SF-1-dependent pathways, we performed genome-wide gene-expression analysis of adrenocortical NCI-H295R cells where SF-1 or RNF31 had been knocked down using RNA interference. We find RNF31 to be deeply connected to cholesterol metabolism and steroid hormone synthesis, strengthening its role as an SF-1 coregulator. We also find intriguing evidence of negative crosstalk between SF-1 and both transforming growth factor (TGF) β and Wnt/β-catenin signaling. This crosstalk could be of importance for adrenogonadal development, maintenance of adrenocortical progenitor cells and the development of adrenocortical carcinoma. Finally, the SF-1 gene profile can be used to distinguish malignant from benign adrenocortical tumors, a finding that implicates SF-1 in the development of malignant adrenocortical carcinoma. PMID:22427816

  11. Cortisol Stimulates Secretion of Dehydroepiandrosterone in Human Adrenocortical Cells Through Inhibition of 3βHSD2

    PubMed Central

    Topor, Lisa Swartz; Asai, Masato; Dunn, James; Majzoub, Joseph A.

    2011-01-01

    Context: Initiating factors leading to production of adrenal androgens are poorly defined. Cortisol is present in high concentrations within the adrenal gland, and its production rises with growth during childhood. Objective: Our aim was to characterize the effect of cortisol and other glucocorticoids on androgen secretion from a human adrenocortical cell line and from nonadrenal cells transfected with CYP17A1 or HSD3B2. Design/Setting: This study was performed in cultured cells, at an academic medical center. Methods: The effects of cortisol upon steroid production in human adrenal NCI-H295R cells were measured by immunoassay, tandem mass spectrometry, and thin-layer chromatography. The effects of cortisol upon the activities of 17, 20 lyase and 3βHSD2 were measured in NCI-H295R cells and in transfected COS-7 cells. Results: Cortisol markedly and rapidly stimulated dehydroepiandrosterone (DHEA) in a dose-dependent manner at cortisol concentrations ≥50 μm. Cortisone and 11-deoxycortisol were also potent stimulators of DHEA secretion, whereas prednisolone and dexamethasone were not. Treatment with cortisol did not affect expression of CYP17A1 or HSD3B2 mRNAs. Stimulation of DHEA secretion by cortisol was associated with competitive inhibition of 3βHSD2 activity. Conclusions: Cortisol inhibits 3βHSD2 activity in adrenal cells and in COS-7 cells transfected with HSD3B2. Thus, it is possible that intraadrenal cortisol may participate in the regulation of adrenal DHEA secretion through inhibition of 3βHSD2. We hypothesize that a rise in intraadrenal cortisol during childhood growth may lead to inhibition of 3βHSD2 activity and contribute to the initiation of adrenarche. PMID:20943790

  12. Human Adrenocortical Carcinoma Cell Lines

    PubMed Central

    Wang, Tao; Rainey, William E.

    2011-01-01

    Summary The human adrenal cortex secretes mineralocorticoids, glucocorticoids and adrenal androgens. These steroids are produced from unique cell types located within the three distinct zones of the adrenal cortex. Disruption of adrenal steroid production results in a variety of diseases that can lead to hypertension, metabolic syndrome, infertility and androgen excess. The adrenal cortex is also a common site for the development of adenomas, and rarely the site for the development of carcinomas. The adenomas can lead to diseases associated with adrenal steroid excess, while the carcinomas are particularly aggressive and have a poor prognosis. In vitro cell culture models provide an important tool to examine molecular and cellular mechanisms controlling both the normal and pathologic function of the adrenal cortex. Herein we discuss the human adrenocortical cell lines and their use as model systems for adrenal studies. PMID:21924324

  13. QRFP induces aldosterone production via PKC and T-type calcium channel-mediated pathways in human adrenocortical cells: evidence for a novel role of GPR103.

    PubMed

    Ramanjaneya, Manjunath; Karteris, Emmanouil; Chen, Jing; Rucinski, Marcin; Ziolkowska, Agnieszka; Ahmed, Naima; Kagerer, Sonja; Jöhren, Olaf; Lehnert, Hendrik; Malendowicz, Ludwik K; Randeva, Harpal S

    2013-11-01

    Hormonal regulation of adrenal function occurs primarily through activation of GPCRs. GPCRs are central to many of the body's endocrine and neurotransmitter pathways. Recently, it was shown that activation of GPR103 by its ligand QRFP induced feeding, locomotor activity, and metabolic rate, and QRFP is bioactive in adipose tissue of obese individuals. Given that the adrenal gland is a pivotal organ for energy balance and homeostasis, we hypothesized that GPR103 and QRFP are involved in steroidogenic responses. Using qRT-PCR and immunohistochemistry, we mapped both GPR103 and QRFP in human fetal and adult adrenal gland as well as rat adrenals. Both were primarily localized in the adrenal cortex but not in the medulla. Activation of GPR103 in human adrenocortical H295R cells led to a decrease in forskolin-increased cAMP and an increase of intracellular Ca(2+) levels. In addition, treatment of H295R cells with QRFP induced aldosterone and cortisol secretion as measured by ELISA. These increases were accompanied by increased expression and activity of StAR, CYB11B1, and CYP11B2 as assessed by qRT-PCR and luciferase reporter assay, respectively. Using specific inhibitors, we also demonstrated that aldosterone induction involves MAPK, PKC, and/or T-type Ca(2+) channel-dependent pathways. These novel data demonstrate that QRFP induces adrenal steroidogenesis in vitro by regulating key steroidogenic enzymes involving MAPK/PKC and Ca(2+) signaling pathways. PMID:23964068

  14. Role of ALADIN in Human Adrenocortical Cells for Oxidative Stress Response and Steroidogenesis

    PubMed Central

    Jühlen, Ramona; Idkowiak, Jan; Taylor, Angela E.; Kind, Barbara; Arlt, Wiebke; Huebner, Angela; Koehler, Katrin

    2015-01-01

    Triple A syndrome is caused by mutations in AAAS encoding the protein ALADIN. We investigated the role of ALADIN in the human adrenocortical cell line NCI-H295R1 by either over-expression or down-regulation of ALADIN. Our findings indicate that AAAS knock-down induces a down-regulation of genes coding for type II microsomal cytochrome P450 hydroxylases CYP17A1 and CYP21A2 and their electron donor enzyme cytochrome P450 oxidoreductase, thereby decreasing biosynthesis of precursor metabolites required for glucocorticoid and androgen production. Furthermore we demonstrate that ALADIN deficiency leads to increased susceptibility to oxidative stress and alteration in redox homeostasis after paraquat treatment. Finally, we show significantly impaired nuclear import of DNA ligase 1, aprataxin and ferritin heavy chain 1 in ALADIN knock-down cells. We conclude that down-regulating ALADIN results in decreased oxidative stress response leading to alteration in steroidogenesis, highlighting our knock-down cell model as an important in-vitro tool for studying the adrenal phenotype in triple A syndrome. PMID:25867024

  15. Comparison of the Effects of PRKAR1A and PRKAR2B Depletion on Signaling Pathways, Cell Growth, and Cell Cycle Control of Adrenocortical Cells

    PubMed Central

    Basso, F.; Rocchetti, F.; Rodriguez, S.; Nesterova, M.; Cormier, F.; Stratakis, C.; Ragazzon, B.; Bertherat, J.; Rizk-Rabin, M.

    2016-01-01

    The cyclic AMP/protein kinase A signaling cascade is one of the main pathways involved in the pathogenesis of adrenocortical tumors. The PKA R1A and R2B proteins are the most abundant regulatory subunits in endocrine tissues. Inactivating mutations of PRKAR1A are associated with Carney complex and a subset of sporadic tumors and the abundance of R2B protein is low in a subset of secreting adrenocortical adenomas. We previously showed that PRKAR1A and PRKAR2B inactivation have anti-apoptotic effects on the adrenocortical carcinoma cell line H295R. The aim of this study was to compare the effects of PRKAR1A and PRKAR2B depletion on cell proliferation, apoptosis, cell signaling pathways, and cell cycle regulation. We found that PRKAR2B depletion is compensated by an upregulation in the abundance of R1A protein, whereas PRKAR1A depletion has no effect on the production of R2B. The depletion of either PRKAR1A or PRKAR2B promotes the expression of Bcl-xL and resistance to apoptosis; and is associated with a high percentage of cells in S and G2 phase, activates PKA and MEK/ERK pathways, and impairs the expression of IkB leading to activate the NF-κB pathway. Nonetheless, we observed differences in the regulation of cyclins. The depletion of PRKAR1A leads to the accumulation of cyclin D1 and p27kip, whereas the depletion of PRKAR2B promotes the accumulation of cyclin A, B, cdk1, cdc2, and p21Cip. In conclusion, although the depletion of PRKAR1A and PRKAR2B in adrenocortical cells has similar effects on cell proliferation and apoptosis; loss of these PKA subunits differentially affects cyclin expression. PMID:25268545

  16. Comparison of the effects of PRKAR1A and PRKAR2B depletion on signaling pathways, cell growth, and cell cycle control of adrenocortical cells.

    PubMed

    Basso, F; Rocchetti, F; Rodriguez, S; Nesterova, M; Cormier, F; Stratakis, C A; Ragazzon, B; Bertherat, J; Rizk-Rabin, M

    2014-11-01

    The cyclic AMP/protein kinase A signaling cascade is one of the main pathways involved in the pathogenesis of adrenocortical tumors. The PKA R1A and R2B proteins are the most abundant regulatory subunits in endocrine tissues. Inactivating mutations of PRKAR1A are associated with Carney complex and a subset of sporadic tumors and the abundance of R2B protein is low in a subset of secreting adrenocortical adenomas. We previously showed that PRKAR1A and PRKAR2B inactivation have anti-apoptotic effects on the adrenocortical carcinoma cell line H295R. The aim of this study was to compare the effects of PRKAR1A and PRKAR2B depletion on cell proliferation, apoptosis, cell signaling pathways, and cell cycle regulation. We found that PRKAR2B depletion is compensated by an upregulation of R1A protein, whereas PRKAR1A depletion has no effect on the production of R2B. The depletion of either PRKAR1A or PRKAR2B promotes the expression of Bcl-xL and resistance to apoptosis; and is associated with a high percentage of cells in S and G2 phase, activates PKA and MEK/ERK pathways, and impairs the expression of IkB leading to activate the NF-κB pathway. However, we observed differences in the regulation of cyclins. The depletion of PRKAR1A leads to the accumulation of cyclin D1 and p27kip, whereas the depletion of PRKAR2B promotes the accumulation of cyclin A, B, cdk1, cdc2, and p21Cip. In conclusion, although the depletion of PRKAR1A and PRKAR2B in adrenocortical cells has similar effects on cell proliferation and apoptosis; loss of these PKA subunits differentially affects cyclin expression. PMID:25268545

  17. Extramitochondrial OPA1 and adrenocortical function.

    PubMed

    Fülöp, László; Rajki, Anikó; Katona, Dávid; Szanda, Gergö; Spät, András

    2013-12-01

    We have previously described that silencing of the mitochondrial protein OPA1 enhances mitochondrial Ca(2+) signaling and aldosterone production in H295R adrenocortical cells. Since extramitochondrial OPA1 (emOPA1) was reported to facilitate cAMP-induced lipolysis, we hypothesized that emOPA1, via the enhanced hydrolysis of cholesterol esters, augments aldosterone production in H295R cells. A few OPA1 immunopositive spots were detected in ∼40% of the cells. In cell fractionation studies OPA1/COX IV (mitochondrial marker) ratio in the post-mitochondrial fractions was an order of magnitude higher than that in the mitochondrial fraction. The ratio of long to short OPA1 isoforms was lower in post-mitochondrial than in mitochondrial fractions. Knockdown of OPA1 failed to reduce db-cAMP-induced phosphorylation of hormone-sensitive lipase (HSL), Ca(2+) signaling and aldosterone secretion. In conclusion, OPA1 could be detected in the post-mitochondrial fractions, nevertheless, OPA1 did not interfere with the cAMP - PKA - HSL mediated activation of aldosterone secretion. PMID:23906536

  18. Estrogen related receptor α (ERRα) a promising target for the therapy of adrenocortical carcinoma (ACC)

    PubMed Central

    Chimento, Adele; Sirianni, Rosa; Malivindi, Rocco; Rago, Vittoria; Fiorillo, Marco; Domanico, Francesco; Campana, Carmela; Cappello, Anna Rita; Sotgia, Federica; Lisanti, Michael P.; Pezzi, Vincenzo

    2015-01-01

    The pathogenesis of the adrenocortical cancer (ACC) involves integration of molecular signals and the interplay of different downstream pathways (i.e. IGFII/IGF1R, β-catenin, Wnt, ESR1). This tumor is characterized by limited therapeutic options and unsuccessful treatments. A useful strategy to develop an effective therapy for ACC is to identify a common downstream target of these multiple pathways. A good candidate could be the transcription factor estrogen-related receptor alpha (ERRα) because of its ability to regulate energy metabolism, mitochondrial biogenesis and signalings related to cancer progression. In this study we tested the effect of ERRα inverse agonist, XCT790, on the proliferation of H295R adrenocortical cancer cell line. Results from in vitro and in vivo experiments showed that XCT790 reduced H295R cell growth. The inhibitory effect was associated with impaired cell cycle progression which was not followed by any apoptotic event. Instead, incomplete autophagy and cell death by a necrotic processes, as a consequence of the cell energy failure, induced by pharmacological reduction of ERRα was evidenced. Our results indicate that therapeutic strategies targeting key factors such as ERRα that control the activity and signaling of bioenergetics processes in high-energy demanding tumors could represent an innovative/alternative therapy for the treatment of ACC. PMID:26312764

  19. Estrogen related receptor α (ERRα) a promising target for the therapy of adrenocortical carcinoma (ACC).

    PubMed

    Casaburi, Ivan; Avena, Paola; De Luca, Arianna; Chimento, Adele; Sirianni, Rosa; Malivindi, Rocco; Rago, Vittoria; Fiorillo, Marco; Domanico, Francesco; Campana, Carmela; Cappello, Anna Rita; Sotgia, Federica; Lisanti, Michael P; Pezzi, Vincenzo

    2015-09-22

    The pathogenesis of the adrenocortical cancer (ACC) involves integration of molecular signals and the interplay of different downstream pathways (i.e. IGFII/IGF1R, β-catenin, Wnt, ESR1). This tumor is characterized by limited therapeutic options and unsuccessful treatments. A useful strategy to develop an effective therapy for ACC is to identify a common downstream target of these multiple pathways. A good candidate could be the transcription factor estrogen-related receptor alpha (ERRα) because of its ability to regulate energy metabolism, mitochondrial biogenesis and signalings related to cancer progression. In this study we tested the effect of ERRα inverse agonist, XCT790, on the proliferation of H295R adrenocortical cancer cell line. Results from in vitro and in vivo experiments showed that XCT790 reduced H295R cell growth. The inhibitory effect was associated with impaired cell cycle progression which was not followed by any apoptotic event. Instead, incomplete autophagy and cell death by a necrotic processes, as a consequence of the cell energy failure, induced by pharmacological reduction of ERRα was evidenced. Our results indicate that therapeutic strategies targeting key factors such as ERRα that control the activity and signaling of bioenergetics processes in high-energy demanding tumors could represent an innovative/alternative therapy for the treatment of ACC. PMID:26312764

  20. Combined transcriptome studies identify AFF3 as a mediator of the oncogenic effects of β-catenin in adrenocortical carcinoma

    PubMed Central

    Lefèvre, L; Omeiri, H; Drougat, L; Hantel, C; Giraud, M; Val, P; Rodriguez, S; Perlemoine, K; Blugeon, C; Beuschlein, F; de Reyniès, A; Rizk-Rabin, M; Bertherat, J; Ragazzon, B

    2015-01-01

    Adrenocortical cancer (ACC) is a very aggressive tumor, and genomics studies demonstrate that the most frequent alterations of driver genes in these cancers activate the Wnt/β-catenin signaling pathway. However, the adrenal-specific targets of oncogenic β-catenin-mediating tumorigenesis have not being established. A combined transcriptomic analysis from two series of human tumors and the human ACC cell line H295R harboring a spontaneous β-catenin activating mutation was done to identify the Wnt/β-catenin targets. Seven genes were consistently identified in the three studies. Among these genes, we found that AFF3 mediates the oncogenic effects of β-catenin in ACC. The Wnt response element site located at nucleotide position −1408 of the AFF3 transcriptional start sites (TSS) mediates the regulation by the Wnt/β-catenin signaling pathway. AFF3 silencing decreases cell proliferation and increases apoptosis in the ACC cell line H295R. AFF3 is located in nuclear speckles, which play an important role in RNA splicing. AFF3 overexpression in adrenocortical cells interferes with the organization and/or biogenesis of these nuclear speckles and alters the distribution of CDK9 and cyclin T1 such that they accumulate at the sites of AFF3/speckles. We demonstrate that AFF3 is a new target of Wnt/β-catenin pathway involved in ACC, acting on transcription and RNA splicing. PMID:26214578

  1. Serum and growth factor requirements for proliferation of human adrenocortical cells in culture: comparison with bovine adrenocortical cells.

    PubMed

    Hornsby, P J; Sturek, M; Harris, S E; Simonian, M H

    1983-11-01

    Although bovine adrenocortical cells proliferate readily in cell culture, proliferation of fetal or adult human adrenocortical cells has been observed to be limited and preparation of pure proliferating cultures of human adrenocortical cells has not been reported. The growth requirements of fetal human definitive zone adrenocortical cells in culture were compared to the established requirements of bovine adrenocortical cells. The medium used was 1:1 Ham's F12 and Dulbecco's modified Eagle's medium supplemented with transferrin and insulin. Earlier experiments showed that human cells had a greater proliferative response to horse serum than to fetal bovine serum, whereas the opposite was true for bovine cells. When plated on fibronectin-coated dishes and exposed to varying concentrations of horse serum in the presence of 100 ng/ml fibroblast growth factor (FGF), increasing cell growth was observed up to a serum concentration of 50%. When 50% fetal bovine serum was used instead of horse serum proliferation was less. In contrast, bovine adrenocortical cells showed a maximal proliferative response to either fetal bovine serum or horse serum at 10%. Human adrenocortical cells thus have a very high requirement for serum; 50% is the highest level that may be practically used, but the shape of the dose-response curve suggests that this concentration is still suboptimal. Growth was less in the absence of FGF. Epidermal growth factor can partially substitute for FGF. No response to 100 nM placental lactogen was observed. Less growth was observed when dishes were not coated with fibronectin. The factors present in horse serum that are evidently needed in high amounts by human cells are unknown. Despite this lack of knowledge, use of 50% horse serum enabled long-term growth of human adrenocortical cells that are pure by the criterion of retraction in response to ACTH. Nonadrenocortical cells do not show a retraction response. Such long-term cultures may be useful in studies of

  2. Adrenocortical Cells with Stem/Progenitor Cell Properties: Recent Advances

    PubMed Central

    Kim, Alex; Hammer, Gary D.

    2007-01-01

    The existence and location of undifferentiated cells with the capability of maintaining the homeostasis of the adrenal cortex have long been sought. These cells are thought to remain mostly quiescent with a potential to commit to self-renewal processes or terminal differentiation to homeostatically repopulate the organ. In addition, in response to physiologic stress, the undifferentiated cells undergo rapid proliferation to accommodate organismic need. Sufficient adrenocortical proliferative capacity lasting the lifespan of the host has been demonstrated through cell transplantation and enucleation experiments. Labeling experiments with tritium, BrdU, or trypan blue, as well as transgenic assays support the clonogenic identity and location of these undefined cells within the gland periphery. We define undifferentiated adrenocortical cells as cells devoid of steroidogenic gene expression, and differentiated cells as cells with steroidogenic capacity. In this review, we discuss historic developmental studies together with recent molecular examinations that aim to characterize such populations of cells. PMID:17240045

  3. Acid Ceramidase (ASAH1) Is a Global Regulator of Steroidogenic Capacity and Adrenocortical Gene Expression

    PubMed Central

    Lucki, Natasha C.; Bandyopadhyay, Sibali; Wang, Elaine; Merrill, Alfred H.

    2012-01-01

    In H295R human adrenocortical cells, ACTH rapidly activates ceramide (Cer) and sphingosine (SPH) turnover with a concomitant increase in SPH-1-phosphate secretion. These bioactive lipids modulate adrenocortical steroidogenesis, primarily by acting as second messengers in the protein kinase A/cAMP-dependent pathway. Acid ceramidase (ASAH1) directly regulates the intracellular balance of Cer, SPH, and SPH-1-phosphate by catalyzing the hydrolysis of Cer into SPH. ACTH/cAMP signaling stimulates ASAH1 transcription and activity, supporting a role for this enzyme in glucocorticoid production. Here, the role of ASAH1 in regulating steroidogenic capacity was examined using a tetracycline-inducible ASAH1 short hairpin RNA H295R human adrenocortical stable cell line. We show that ASAH1 suppression increases the transcription of multiple steroidogenic genes, including Cytochrome P450 monooxygenase (CYP)17A1, CYP11B1/2, CYP21A2, steroidogenic acute regulatory protein, hormone-sensitive lipase, 18-kDa translocator protein, and the melanocortin-2 receptor. Induced gene expression positively correlated with enhanced histone H3 acetylation at target promoters. Repression of ASAH1 expression also induced the expression of members of the nuclear receptor nuclear receptor subfamily 4 (NR4A) family while concomitantly suppressing the expression of dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1. ASAH1 knockdown altered the expression of genes involved in sphingolipid metabolism and changed the cellular amounts of distinct sphingolipid species. Finally, ASAH1 silencing increased basal and cAMP-dependent cortisol and dehydroepiandrosterone secretion, establishing ASAH1 as a pivotal regulator of steroidogenic capacity in the human adrenal cortex. PMID:22261821

  4. UNDERSTANDING THE EFFECTS OF ATRAZINE ON STEROIDOGENESIS IN THE HUMAN H295R AND RAT GRANULOSA CELLS

    EPA Science Inventory

    The effects of environmental chemicals on the catalytic activity of steroidogenic enzymes, including aromatase, have been well documented. However, specific effects of environmental chemicals on steroidogenesis and the physiological impact on local and systemic concentrations of ...

  5. Understanding the Effects of Atrazine on Steroidogenesis in rat granulosa and H295R adrenal cortical carcinoma cells

    EPA Science Inventory

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was introduced in the 1950s as a broad spectrum herbicide, and remains one of the most widely used herbicides in the United States. Several studies have suggested that atrazine modifies steroidogenesis and may disrupt r...

  6. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model

    PubMed Central

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology. PMID:26885453

  7. Improved clonal and nonclonal growth of human, rat and bovine adrenocortical cells in culture.

    PubMed

    McAllister, J M; Hornsby, P J

    1987-10-01

    This report describes the development of a culture system for long-term growth and cloning of human fetal adrenocortical cells. Optimal conditions for stimulating clonal growth were determined by testing the efficacy of horse serum (HS), fetal bovine serum (FBS), fibroblast growth factor (FGF), epidermal growth factor (EGF), fibronectin, and a combination of growth factors, UltroSer G, in stimulating growth from low density. Optimal conditions for clonal growth were achieved using fibronectin-coated dishes and DME/F12 medium with 10% FBS, 10% HS, 2% UltroSer G, and 100 ng/ml FGF or 100 pM EGF. Conditions for growth at clonal density were found to be optimal for growth of early passage, nonclonal cultures at higher densities. The improved growth conditions used for cloning were shown to allow continued long-term growth of nonclonal human adrenocortical cells without fibroblast overgrowth. All cells in cultures grown in HS, FBS, and UltroSer G had morphologic characteristics of adrenocortical cells, whereas cells grown in FBS only rapidly became overgrown with fibroblasts. Clonal and nonclonal early passage human adrenocortical cells had similar mitogenic responses to FGF and EGF. Whereas FGF, EGF, and UltroSer G showed similar stimulation of DNA synthesis and clonal growth in human adrenocortical cells and human adrenal gland fibroblasts, the tumor promoter 12-O-tetradecanoylphorbol-13-acetate stimulated growth only in adrenocortical cells and was strongly inhibitory to growth in fibroblasts. In both cell types, forskolin inhibited DNA synthesis. Human adrenocortical cell cultures were functional and synthesized cortisol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate. The improved growth conditions for clonal growth of human adrenocortical cells also provided optimal conditions for long-term growth of cultured rat adrenocortical cells and increased the cloning efficiency of cultured bovine adrenocortical cells. PMID:3667487

  8. Global gene expression response to telomerase in bovine adrenocortical cells

    SciTech Connect

    Perrault, Steven D.; Hornsby, Peter J.; Betts, Dean H. . E-mail: bettsd@uoguelph.ca

    2005-09-30

    The infinite proliferative capability of most immortalized cells is dependent upon the presence of the enzyme telomerase and its ability to maintain telomere length and structure. However, telomerase may be involved in a greater system than telomere length regulation, as recent evidence has shown it capable of increasing wound healing in vivo, and improving cellular proliferation rate and survival from apoptosis in vitro. Here, we describe the global gene expression response to ectopic telomerase expression in an in vitro bovine adrenocortical cell model. Telomerase-immortalized cells showed an increased ability for proliferation and survival in minimal essential medium above cells transgenic for GFP. cDNA microarray analyses revealed an altered cell state indicative of increased adrenocortical cell proliferation regulated by the IGF2 pathway and alterations in members of the TGF-B family. As well, we identified alterations in genes associated with development and wound healing that support a model that high telomerase expression induces a highly adaptable, progenitor-like state.

  9. Regulation of the adrenocortical stem cell niche: implications for disease

    PubMed Central

    Walczak, Elisabeth M.; Hammer, Gary D.

    2015-01-01

    Stem cells are endowed with the potential for self-renewal and multipotency. Pluripotent embryonic stem cells have an early role in the formation of the three germ layers (ectoderm, mesoderm and endoderm), whereas adult tissue stem cells and progenitor cells are critical mediators of organ homeostasis. The adrenal cortex is an exceptionally dynamic endocrine organ that is homeostatically maintained by paracrine and endocrine signals throughout postnatal life. In the past decade, much has been learned about the stem and progenitor cells of the adrenal cortex and the multiple roles that these cell populations have in normal development and homeostasis of the adrenal gland and in adrenal diseases. In this Review, we discuss the evidence for the presence of adrenocortical stem cells, as well as the various signalling molecules and transcriptional networks that are critical for the embryological establishment and postnatal maintenance of this vital population of cells. The implications of these pathways and cells in the pathophysiology of disease are also addressed. PMID:25287283

  10. Mechanism of adrenocortical toxicity induced by quinocetone and its bidesoxy-quinocetone metabolite in porcine adrenocortical cells in vitro.

    PubMed

    Wang, Xu; Wan, Dan; Ihsan, Awais; Liu, Qianying; Cheng, Guyue; Li, Juan; Liu, Zhenli; Yuan, Zonghui

    2015-10-01

    Quinocetone (QCT) is a new feeding antibacterial agent in the QdNOs family. The mechanism of its adrenal toxicity is far from clear. This study was conducted to estimate the adrenal cell damage induced by QCT and its bidesoxy-quinocetone (B-QCT) metabolite and to further investigate their mechanisms. Following doses of QCT increasing from 5 to 50 μM, cell apoptosis and necrosis, mitochondrial dysfunction and redox imbalance were observed in porcine adrenocortical cells. The mRNA levels of the six components of intermediary enzymes and the adrenal renin-angiotensin-aldosterone system (RAAS) displayed a dysregulation induced by QCT, indicating that QCT might influence aldosterone secretion not only through the upstream of the production but also through the downstream of the adrenal RAAS pathway. In contrast, B-QCT had few toxic effects on the cell apoptosis, mitochondrial dysfunction and redox imbalance. Moreover, LCMS-IT-TOF analysis showed that no desoxy metabolites of QCT were found in either cell lysate or supernatant samples. In conclusion, we reported on the cytotoxicity in porcine adrenocortical cells exposed to QCT via oxidative stress, which raised awareness that its toxic effects resulted from N→O groups, and its toxic mechanism might involve the interference of the steroid hormone biosynthesis pathway. PMID:26296292

  11. mTOR pathway is activated by PKA in adrenocortical cells and participates in vivo to apoptosis resistance in primary pigmented nodular adrenocortical disease (PPNAD).

    PubMed

    de Joussineau, Cyrille; Sahut-Barnola, Isabelle; Tissier, Frédérique; Dumontet, Typhanie; Drelon, Coralie; Batisse-Lignier, Marie; Tauveron, Igor; Pointud, Jean-Christophe; Lefrançois-Martinez, Anne-Marie; Stratakis, Constantine A; Bertherat, Jérôme; Val, Pierre; Martinez, Antoine

    2014-10-15

    Primary pigmented nodular adrenocortical disease (PPNAD) is associated with inactivating mutations of the PRKAR1A tumor suppressor gene that encodes the regulatory subunit R1α of the cAMP-dependent protein kinase (PKA). In human and mouse adrenocortical cells, these mutations lead to increased PKA activity, which results in increased resistance to apoptosis that contributes to the tumorigenic process. We used in vitro and in vivo models to investigate the possibility of a crosstalk between PKA and mammalian target of rapamycin (mTOR) pathways in adrenocortical cells and its possible involvement in apoptosis resistance. Impact of PKA signaling on activation of the mTOR pathway and apoptosis was measured in a mouse model of PPNAD (AdKO mice), in human and mouse adrenocortical cell lines in response to pharmacological inhibitors and in PPNAD tissues by immunohistochemistry. AdKO mice showed increased mTOR complex 1 (mTORC1) pathway activity. Inhibition of mTORC1 by rapamycin restored sensitivity of adrenocortical cells to apoptosis in AdKO but not in wild-type mice. In both cell lines and mouse adrenals, rapid phosphorylation of mTORC1 targets including BAD proapoptotic protein was observed in response to PKA activation. Accordingly, BAD hyperphosphorylation, which inhibits its proapoptotic activity, was increased in both AdKO mouse adrenals and human PPNAD tissues. In conclusion, mTORC1 pathway is activated by PKA signaling in human and mouse adrenocortical cells, leading to increased cell survival, which is correlated with BAD hyperphosphorylation. These alterations could be causative of tumor formation. PMID:24865460

  12. The Role of Oxysterols in a Computational Steroidogenesis Model of Human H295R Cells to Improve Predictability of Biochemical Responses to Endocrine Disruptors

    EPA Science Inventory

    Steroids, which have an important role in a wide range of physiological processes, are synthesized primarily in the gonads and adrenal glands through a series of enzyme mediated reactions. The activity of steroidogenic enzymes can be altered by a variety of endocrine disruptors (...

  13. Transcriptional changes in steroidogenesis by perfluoroalkyl acids (PFOA and PFOS) regulate the synthesis of sex hormones in H295R cells.

    PubMed

    Kang, Jae Soon; Choi, Jin-Soo; Park, June-Woo

    2016-07-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two of the most widely used perfluoroalkyl acids (PFAAs). Because of their strong persistence, they have become widely distributed throughout the environment and human bodies. PFOA and PFOS are suspected to disrupt the endocrine system based upon many in vivo studies, but the underlying mechanisms are currently unclear. In this study, we investigated the endocrine-related effects of PFOA and PFOS using in vitro estrogen receptor (ER) and androgen receptor (AR) transactivation assays and steroidogenesis assay. The results showed that PFOA and PFOS exhibited weak antagonistic ER transactivation but did not exhibit agonistic ER or AR transactivation. In the steroidogenesis assay, PFOA and PFOS induced 17β-estradiol (E2) level and reduced testosterone level, which would be caused by the induction of aromatase activity. The qPCR analysis of genes involved in steroidogenesis indicates that PFOA and PFOS associate with sex hormone synthesis by the transcriptional induction of two genes, cyp19 and 3β-hsd2. Moreover, the transcriptional induction of cyp11b2 by PFOS suggests that this chemical may underlie the disruption of several physiological functions related to aldosterone. The results of the current study suggest that PFOA and PFOS are potential endocrine disrupting chemicals (EDCs) and provide information for further studies on the molecular events that initiate the adverse endocrine effects. PMID:27139122

  14. Transcriptional regulation of human ferredoxin reductase through an intronic enhancer in steroidogenic cells.

    PubMed

    Imamichi, Yoshitaka; Mizutani, Tetsuya; Ju, Yunfeng; Matsumura, Takehiro; Kawabe, Shinya; Kanno, Masafumi; Yazawa, Takashi; Miyamoto, Kaoru

    2014-01-01

    Ferredoxin reductase (FDXR, also known as adrenodoxin reductase) is a mitochondrial flavoprotein that transfers electrons from NADPH to mitochondrial cytochrome P450 enzymes, mediating the function of an iron-sulfur cluster protein, ferredoxin. FDXR functions in various metabolic processes including steroidogenesis. It is well known that multiple steroidogenic enzymes are regulated by a transcription factor steroidogenic factor-1 (SF-1, also known as Ad4BP). Previously, we have shown that SF-1 transduction causes human mesenchymal stem cell differentiation into steroidogenic cells. Genome-wide analysis of differentiated cells, using a combination of DNA microarray and promoter tiling array analyses, showed that FDXR is a novel SF-1 target gene. In this study, the transcriptional regulatory mechanism of FDXR was examined in steroidogenic cells. A chromatin immunoprecipitation assay revealed that a novel SF-1 binding region was located within intron 2 of the human FDXR gene. Luciferase reporter assays showed that FDXR transcription was activated through the novel SF-1 binding site within intron 2. Endogenous SF-1 knockdown in human adrenocortical H295R and KGN cells decreased FDXR expression. In H295R cells, strong binding of two histone markers of active enhancers, histones H3K27ac and H3K4me2, were detected near the SF-1 binding site within intron 2. Furthermore, the binding of these histone markers was decreased concurrent with SF-1 knockdown in H295R cells. These results indicated that abundant FDXR expression in these steroidogenic cells was maintained through SF-1 binding to the intronic enhancer of the FDXR gene. PMID:24321386

  15. Adrenocortical Stem and Progenitor Cells: Unifying Model of Two Proposed Origins

    PubMed Central

    Wood, Michelle A.; Hammer, Gary D.

    2010-01-01

    The origins of our understanding of the cellular and molecular mechanisms by which signaling pathways and downstream transcription factors coordinate the specification of adrenocortical cells within the adrenal gland have arisen from studies on the role of Sf1 in steroidogenesis and adrenal development initiated 20 years ago in the laboratory of Dr. Keith Parker. Adrenocortical stem/progenitor cells have been predicted to be undifferentiated and quiescent cells that remain at the periphery of the cortex until needed to replenish the organ, at which time they undergo proliferation and terminal differentiation. Identification of these stem/progenitor cells has only recently been explored. Recent efforts have examined signaling molecules, including Wnt, Shh, and Dax1, which may coordinate intricate lineage and signaling relationships between the adrenal capsule (stem cell niche) and underlying cortex (progenitor cell pool) to maintain organ homeostasis in the adrenal gland. PMID:21094677

  16. Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes.

    PubMed Central

    Sanderson, J T; Letcher, R J; Heneweer, M; Giesy, J P; van den Berg, M

    2001-01-01

    We investigated a potential mechanism for the estrogenic properties of three chloro-s-triazine herbicides and six metabolites in vitro in several cell systems. We determined effects on human aromatase (CYP19), the enzyme that converts androgens to estrogens, in H295R (adrenocortical carcinoma), JEG-3 (placental choriocarcinoma), and MCF-7 (breast cancer) cells; we determined effects on estrogen receptor-mediated induction of vitellogenin in primary hepatocyte cultures of adult male carp (Cyprinus carpio). In addition to atrazine, simazine, and propazine, two metabolites--atrazine-desethyl and atrazine-desisopropyl--induced aromatase activity in H295R cells concentration-dependently (0.3-30 microM) and with potencies similar to those of the parent triazines. After a 24-hr exposure to 30 microM of the triazines, an apparent maximum induction of about 2- to 2.5-fold was achieved. The induction responses were confirmed by similar increases in CYP19 mRNA levels, determined by reverse-transcriptase polymerase chain reaction. In JEG-3 cells, where basal aromatase expression is about 15-fold greater than in H295R cells, the induction responses were similar but less pronounced; aromatase expression in MCF-7 cells was neither detectable nor inducible under our culture conditions. The fully dealkylated metabolite atrazine-desethyl-desisopropyl and the three hydroxylated metabolites (2-OH-atrazine-desethyl, -desisopropyl, and -desethyl-desisopropyl) did not induce aromatase activity. None of the triazine herbicides nor their metabolites induced vitellogenin production in male carp hepatocytes; nor did they antagonize the induction of vitellogenin by 100 nM (EC(50) 17beta-estradiol. These findings together with other reports indicate that the estrogenic effects associated with the triazine herbicides in vivo are not estrogen receptor-mediated, but may be explained partly by their ability to induce aromatase in vitro. PMID:11675267

  17. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus

    PubMed Central

    Wood, Michelle A.; Acharya, Asha; Finco, Isabella; Swonger, Jessica M.; Elston, Marlee J.; Tallquist, Michelle D.; Hammer, Gary D.

    2013-01-01

    The lineage relationships of fetal adrenal cells and adrenal capsular cells to the differentiated adrenal cortex are not fully understood. Existing data support a role for each cell type as a progenitor for cells of the adult cortex. This report reveals that subsets of capsular cells are descendants of fetal adrenocortical cells that once expressed Nr5a1. These fetal adrenocortical cell descendants within the adrenal capsule express Gli1, a known marker of progenitors of steroidogenic adrenal cells. The capsule is also populated by cells that express Tcf21, a known inhibitor of Nr5a1 gene expression. We demonstrate that Tcf21-expressing cells give rise to Nr5a1-expressing cells but only before capsular formation. After the capsule has formed, capsular Tcf21-expressing cells give rise only to non-steroidogenic stromal adrenocortical cells, which also express collagen 1a1, desmin and platelet-derived growth factor (alpha polypeptide) but not Nr5a1. These observations integrate prior observations that define two separate origins of adult adrenocortical steroidogenic cells (fetal adrenal cortex and/or the adrenal capsule). Thus, these observations predict a unique temporal and/or spatial role of adult cortical cells that arise directly from either fetal cortical cells or from fetal cortex-derived capsular cells. Last, the data uncover the mechanism by which two populations of fetal cells (fetal cortex derived Gli1-expressing cells and mesenchymal Tcf21-expressing mesenchymal cells) participate in the establishment of the homeostatic capsular progenitor cell niche of the adult cortex. PMID:24131628

  18. Adrenocortical carcinoma

    MedlinePlus

    ... JavaScript. Adrenocortical carcinoma is a cancer of the adrenal glands . Causes Adrenocortical carcinoma is most common in children ... tumor. Symptoms Symptoms of increased cortisol or other adrenal gland hormones: Fatty, rounded hump high on the back ...

  19. Toying with fate: Redirecting the differentiation of adrenocortical progenitor cells into gonadal-like tissue

    PubMed Central

    Röhrig, Theresa; Pihlajoki, Marjut; Ziegler, Ricarda; Cochran, Rebecca S.; Schrade, Anja; Schillebeeckx, Maximiliaan; Mitra, Robi D.; Heikinheimo, Markku; Wilson, David B.

    2014-01-01

    Cell fate decisions are integral to zonation and remodeling of the adrenal cortex. Animal models exhibiting ectopic differentiation of gonadal-like cells in the adrenal cortex can shed light on the molecular mechanisms regulating steroidogenic cell fate. In one such model, prepubertal gonadectomy (GDX) of mice triggers the formation of adrenocortical neoplasms that resemble luteinized ovarian stroma. Transcriptomic analysis and genome-wide DNA methylation mapping have identified genetic and epi-genetic markers of GDX-induced adrenocortical neoplasia. Members of the GATA transcription factor family have emerged as key regulators of cell fate in this model. Expression of Gata4 is pivotal for the accumulation of gonadal-like cells in the adrenal glands of gonadectomized mice, whereas expression of Gata6 limits the spontaneous and GDX-induced differentiation of gonadal-like cells in the adrenal cortex. Additionally, Gata6 is essential for proper development of the adrenal X-zone, a layer analogous to the fetal zone of the human adrenal cortex. The relevance of these observations to developmental signaling pathways in the adrenal cortex, to other animal models of altered adrenocortical cell fate, and to human diseases is discussed. PMID:25498963

  20. PTTG1 Over-expression in Adrenocortical Cancer is Associated with Poor Survival and Represents a Potential Therapeutic Target

    PubMed Central

    Demeure, Michael J.; Coan, Kathryn E.; Grant, Clive S.; Komorowski, Richard A.; Stephan, Elizabeth; Sinari, Shripad; Mount, David; Bussey, Kimberly J.

    2014-01-01

    Background Adrenocortical carcinoma (ACC) is associated with poor survival rates. The objective of the study was to analyze ACC gene expression profiling data for prognostic biomarkers and therapeutic targets. Methods 44 ACC and 4 normal adrenals were profiled on Affymetrix U133 Plus 2 expression microarrays. Pathway and transcriptional enrichment analysis was performed. Protein levels were determined by western blot. Drug efficacy was assessed against ACC cell lines. Previously published expression datasets were analyzed for validation. Results Pathway enrichment analysis identified marked dysregulation of cyclin-dependent kinases and mitosis. Over-expression of PTTG1, which encodes securin, a negative regulator of p53, was identified as a marker of poor survival. Median survival for patients with tumors expressing high PTTG1 levels (log2 ratio of PTTG1 to average beta-actin <-3.04 ) was 1.8 years compared to 9.0 years if tumors expressed lower levels of PTTG1 (P<0.0001). Analysis of a previously published data set confirmed the association of high PTTG1 expression with a poor prognosis. Treatment of two ACC cell lines with vorinostat decreased securin levels and inhibited cell growth (IC50s of 1.69 uM and 0.891 uM, for SW-13 and H295R, respectively). Conclusion Over-expression of PTTG1 is correlated with poor survival in ACC. PTTG1/securin is a prognostic biomarker and warrants investigation as a therapeutic target. PMID:24238056

  1. Ultrastructural Localization of Endogenous Exchange Factor for ARF6 in Adrenocortical Cells In Situ of Mice

    PubMed Central

    Chomphoo, Surang; Mothong, Wilaiwan; Sawatpanich, Tarinee; Kanla, Pipatphong; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2016-01-01

    EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP, and the resulting activated form of Arf6 is involved in the membrane dynamics and actin re-organization of cells. The present study was attempted to localize EFA6 type D (EFA6D) in mouse adrenocortical cells in situ whose steroid hormone secretion is generally considered not to depend on the vesicle-involved regulatory mechanism. In immunoblotting, an immunoreactive band with the same size as brain EFA6D was detected in homogenates of adrenal cortical tissues almost free of adrenal capsules and medulla. In immuno-light microscopy, EFA6D-immunoreactivity was positive in adrenocortical cells and it was often distinct along the plasmalemma, especially along portions of the cell columns facing the interstitium. In immuno-electron microscopy, the gold-labeling was more dense in the peripheral intracellular domains than the central domain of the immunopositive cells. The labeling was deposited on the plasma membranes in a discontinuous pattern and in cytoplasmic domains rich in filaments. It was also associated with some, but not all, of pleiomorphic vesicles and coated pits/vesicles. No labeling was seen in association with lipid droplets or smooth endoplasmic reticulum. The present finding is in support of the importance of EFA6D for activation of Arf6 in adrenocortical cells. PMID:27462133

  2. Ultrastructural Localization of Endogenous Exchange Factor for ARF6 in Adrenocortical Cells In Situ of Mice.

    PubMed

    Chomphoo, Surang; Mothong, Wilaiwan; Sawatpanich, Tarinee; Kanla, Pipatphong; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2016-06-28

    EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP, and the resulting activated form of Arf6 is involved in the membrane dynamics and actin re-organization of cells. The present study was attempted to localize EFA6 type D (EFA6D) in mouse adrenocortical cells in situ whose steroid hormone secretion is generally considered not to depend on the vesicle-involved regulatory mechanism. In immunoblotting, an immunoreactive band with the same size as brain EFA6D was detected in homogenates of adrenal cortical tissues almost free of adrenal capsules and medulla. In immuno-light microscopy, EFA6D-immunoreactivity was positive in adrenocortical cells and it was often distinct along the plasmalemma, especially along portions of the cell columns facing the interstitium. In immuno-electron microscopy, the gold-labeling was more dense in the peripheral intracellular domains than the central domain of the immunopositive cells. The labeling was deposited on the plasma membranes in a discontinuous pattern and in cytoplasmic domains rich in filaments. It was also associated with some, but not all, of pleiomorphic vesicles and coated pits/vesicles. No labeling was seen in association with lipid droplets or smooth endoplasmic reticulum. The present finding is in support of the importance of EFA6D for activation of Arf6 in adrenocortical cells. PMID:27462133

  3. High-density lipoprotein is a potential growth factor for adrenocortical cells

    SciTech Connect

    Murao, Koji . E-mail: mkoji@kms.ac.jp; Imachi, Hitomi; Cao, Wenming; Yu, Xiao; Li, Junhua; Yoshida, Kazuya; Ahmed, Rania A.M.; Matsumoto, Kensuke; Nishiuchi, Takamasa; Ishida, Toshihiko; Wong, Norman C.W.

    2006-05-26

    The entry of cholesterol contained within high-density lipoprotein (HDL) into adrenocortical cells is mediated by a human homologue of SR-BI, CD36, and LIMPII Analogous-1 (CLA-1) and thus augmenting their growth. To address the role of CLA-1, we created a mutant mCLA that lacked the C-terminal tail. HDL CE selective uptake by cells carrying the mCLA-1 receptor was fully active and equivalent to those transfected with full-length CLA-1 (fCLA-1). Expression of mCLA inhibited the proliferation of an adrenocortical cell line and the incorporation of [{sup 3}H]thymidine into the cells. This effect was sensitive to wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K). Our transcriptional studies revealed that the inhibitory action of mCLA required the transcriptional factor AP-1 and the effect of HDL on AP-1 activation was also abrogated by wortmannin. These findings raise the possibility that the inhibitors of the effects of HDL may be of therapeutic value for adrenocortical tumor.

  4. Biphasic hormonal responses to the adrenocorticolytic DDT metabolite 3-methylsulfonyl-DDE in human cells

    SciTech Connect

    Asp, Vendela; Ulleras, Erik; Lindstroem, Veronica; Bergstroem, Ulrika; Oskarsson, Agneta; Brandt, Ingvar

    2010-02-01

    The DDT metabolite 3-methylsulfonyl-DDE (3-MeSO{sub 2}-DDE) has been proposed as a lead compound for an improved adrenocortical carcinoma (ACC) treatment. ACC is a rare malignant disorder with poor prognosis, and the current pharmacological therapy o,p'-DDD (mitotane) has limited efficacy and causes severe adverse effects. 3-MeSO{sub 2}-DDE is bioactivated by cytochrome P450 (CYP) 11B1 in mice and causes formation of irreversibly bound protein adducts, reduced glucocorticoid secretion, and cell death in the adrenal cortex of several animal species. The present study was carried out to assess similarities and differences between mice and humans concerning the adrenocorticolytic effects of 3-MeSO{sub 2}-DDE. The results support previous indications that humans are sensitive to the adrenocorticolytic actions of 3-MeSO{sub 2}-DDE by demonstrating protein adduct formation and cytotoxicity in the human adrenocortical cell line H295R. However, neither the irreversible binding nor the cytotoxicity of 3-MeSO{sub 2}-DDE in H295R cells was inhibited by the CYP11B1 inhibitor etomidate. We also report biphasic responses to 3-MeSO{sub 2}-DDE in cortisol and aldosterone secretion as well as in mRNA levels of the steroidogenic genes StAR, CYP11B1 and CYP11B2. Hormone levels and mRNA levels were increased at lower concentrations of 3-MeSO{sub 2}-DDE, while higher concentrations decreased hormone levels. These biphasic responses were not observed with o,p'-DDD or with the precursor DDT metabolite p,p'-DDE. Based on these results, 3-MeSO{sub 2}-DDE remains a viable lead compound for drug design, although the adrenocorticolytic effects of 3-MeSO{sub 2}-DDE in human cells seem more complex than in murine cells.

  5. Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children

    PubMed Central

    Kroenke, Candyce H; Epel, Elissa; Adler, Nancy; Bush, Nicole R.; Obradović, Jelena; Lin, Jue; Blackburn, Elizabeth; Stamperdahl, Juliet Lise; Boyce, W. Thomas

    2011-01-01

    Objective To examine associations between autonomic nervous system and adrenocortical reactivity to laboratory stressors and buccal cell telomere length (BTL) in children. Methods The study sample comprised 78 five- and six-year-old children from a longitudinal cohort study of kindergarten social hierarchies, biological responses to adversity, and child health. Buccal cell samples and reactivity measures were collected in the spring of the kindergarten year. BTL was measured by realtime PCR, as the telomere-to-single copy gene (T/S) ratio. Parents provided demographic information; parents and teachers reported children’s internalizing and externalizing behavior problems. Components of children’s autonomic (heart rate (HR), respiratory sinus arrhythmia (RSA), pre-ejection period (PEP)) and adrenocortical (salivary cortisol) responses were monitored during standardized laboratory challenges. We examined relations between reactivity, internalizing and externalizing behavior, and BTL, adjusted for age, race, and gender. Results Heart rate and cortisol reactivity were inversely related to BTL, PEP was positively related to BTL, and RSA was unrelated. Internalizing behaviors were also inversely related to BTL (standardized β=−0.33, p=0.004). Split at the median of reactivity parameters, children with high sympathetic activation (decreasing PEP) and high parasympathetic withdrawal (decreasing RSA) did not differ with regard to BTL. However, children with both this profile and high cortisol reactivity (N=12) had significantly shorter BTL (0.80 vs. 1.00, χ2=7.6, p=0.006), compared with other children. Conclusions Autonomic and adrenocortical reactivity in combination were associated with shorter buccal cell telomere length in children. These data suggest that psychophysiological processes may influence, and that BTL may be a useful marker of, early biological aging. PMID:21873585

  6. Hormonal regulation of focal adhesions in bovine adrenocortical cells: induction of paxillin dephosphorylation by adrenocorticotropic hormone.

    PubMed Central

    Vilgrain, I; Chinn, A; Gaillard, I; Chambaz, E M; Feige, J J

    1998-01-01

    A study of bovine adrenocortical cell shape on adrenocorticotropic hormone (ACTH) challenge showed that the cells round up and develop arborized processes. This effect was found to be (1) specific for ACTH because angiotensin II and basic fibroblast growth factor have no effect; (2) mediated by a cAMP-dependent pathway because forskolin reproduces the effect of the hormone; (3) inhibited by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor, but unchanged by okadaic acid, a serine/threonine phosphatase inhibitor; and (4) correlated with a complete loss of focal adhesions. Biochemical studies of the focal-adhesion-associated proteins showed that pp125fak, vinculin (110 kDa) and paxillin (70 kDa) were detected in the Triton X-100-insoluble fraction from adrenocortical cells. During cell adhesion on fibronectin as substratum, two major phosphotyrosine-containing proteins of molecular masses 125 and 68 kDa were immunodetected in the same fraction. A dramatic decrease in the extent of tyrosine phosphorylation of these proteins was observed within 60 min after treatment with ACTH. No change in pp125fak tyrosine phosphorylation nor in Src activity was detected. In contrast, paxillin was found to be tyrosine-dephosphorylated in a time-dependent manner in ACTH-treated cells. Sodium orthovanadate completely prevented the effect of ACTH. These observations suggest a possible role for phosphotyrosine phosphatases in hormone-dependent cellular regulatory processes. PMID:9601084

  7. A Case of Cushing's Syndrome with Multiple Adrenocortical Adenomas Composed of Compact Cells and Clear Cells.

    PubMed

    Asakawa, Masahiro; Yoshimoto, Takanobu; Ota, Mitsutane; Numasawa, Mitsuyuki; Sasahara, Yuriko; Takeuchi, Takato; Nakano, Yujiro; Oohara, Norihiko; Murakami, Masanori; Bouchi, Ryotaro; Minami, Isao; Tsuchiya, Kyoichiro; Hashimoto, Koshi; Izumiyama, Hajime; Kawamura, Naoko; Kihara, Kazunori; Negi, Mariko; Akashi, Takumi; Eishi, Yoshinobu; Sasano, Hironobu; Ogawa, Yoshihiro

    2016-06-01

    A 58-year-old woman was referred to our hospital for Cushingoid features and diagnosed as adrenal Cushing's syndrome due to a right adrenocortical mass (60 × 55 mm). The mass was composed of three different tumors; the first one was homogeneously lipid-poor neoplasm measuring 20 × 13 mm located at the most dorsal region, the second one was heterogeneous and lipid-rich tumor containing multiple foci of calcification measuring 50 × 32 mm located at the central region, and the last one was heterogeneous harboring dilated and tortuous vessels and lipid-poor one measuring 35 × 18 mm at the most ventral region of the adrenal gland. A right adrenalectomy was subsequently performed by open surgery. Macroscopic and microscopic analyses revealed that all three tumors were adrenocortical adenomas; the first one represents a pigmented adrenocortical adenoma, the second one adrenocortical adenoma associated with degeneration, and the third one adrenocortical adenoma harboring extensive degeneration. Immunohistochemical analysis of the steroidogenic enzymes also revealed that all of the tumors had the capacity of synthesizing cortisol. This is a very rare case of Cushing's syndrome caused by multiple adrenocortical adenomas including a pigmented adenoma. Immunohistochemical analysis of steroidogenic enzymes contributed to understanding of steroidogenesis in each of these three different adrenocortical adenomas in this case. PMID:26961704

  8. Properties and requirements for production of a macrophage product which suppresses steroid production by adrenocortical cells.

    PubMed Central

    Mathison, J C; La Forest, A C; Ulevitch, R J

    1984-01-01

    Lipopolysaccharide-treated murine peritoneal exudate macrophages (PEM) release a factor or factors into the supernatant that suppress adrenocorticotropic hormone-induced steroidogenesis in explanted rabbit adrenocortical cells (J. C. Mathison et al., J. Immunol. 130:2757-2762, 1983). To determine the requirements for suppression, PEM supernatants (30 microliters) were added to explanted rabbit adrenocortical cells in a final volume of 120 microliters with 10 mU of adrenocorticotropic hormone per ml, and after 18 h at 37 degrees C, steroid concentrations were measured by a fluorometric assay. Supernatant from proteose peptone-elicited C3HeB/FeJ PEM (5 X 10(6) PEM per 3.5-cm well, 10 micrograms of Salmonella minnesota Re595 LPS per ml, 18 h) suppressed steroid production ca. 50%, and kinetic studies demonstrated that the appearance of suppressive activity in the supernatant was gradual over 4 to 18 h. Release of suppressive activity was not associated with decreased viability of the PEM (assessed by fluorescein diacetate staining and measurement of lactic dehydrogenase in the supernatant). Suppression was not observed when the PEM supernatant was diluted 10-fold before addition to the adrenocortical cells, whereas supernatant concentrated 20-fold (prepared with a 10,000-molecular-weight-cutoff filter) produced 75 to 80% suppression. The suppressive activity was stable at pH 4, pH 11, or 70 degrees C for 30 min but was inactivated at 100 degrees C (10 min). Suppressive activity was also induced in C3HeB/FeJ PEM by O111:B4 lipopolysaccharide or heat-killed Listeria monocytogenes. In contrast, PEM from C3H/HeJ mice did not produce detectable suppressive activity in response to Re595 lipopolysaccharide or heat-killed L. monocytogenes. Thus, these results provide additional support for the inducible, selective release of a macrophage product that could affect the host response to lipopolysaccharide by regulation of the adrenocortical response to adrenocorticotropic

  9. Effect of corticosteroid binding proteins on the steroidogenic activity of bovine adrenocortical cell suspensions.

    PubMed

    Basset, M; Rostaing-Metz, B; Chambaz, E M

    1982-07-01

    The possible role of steroid binding proteins in the hormonal secretion process of a steroidogenic tissue was examined using bovine adrenocortical cell suspensions, either under basal conditions or in the presence of half-maximally active concentration (1 x 10(-9) M) of synthetic adrenocorticotropic hormone (ACTH). Three types of plasma cortisol binding proteins were used, namely bovine serum albumine (BSA), purified transcortin (CBG) and purified anticortisol immunoglobulins (IgG). When added to the incubation medium, CBG (at 1 x 10(-10) to 2 x 10(-9) M cortisol binding sites) and anticortisol IgG (at 4.8 x 10(-10) to 3 x 10(-9) M cortisol binding sites) did not influence either the basal nor the ACTH-stimulated net cortisol production of the cell preparations. Whereas crystallized and delipidated BSA showed also no effect, crude commercial BSA preparation (Cohn fraction V) exhibited an ACTH-like cofactor effect which resulted in a marked increase in the net cortisol production by stimulated cells. These observations might be explained by the presence in crude BSA of lipoprotein-cholesterol complexes, possibly acting as an extracellular source of cholesterol available for corticosteroidogenesis. It may be concluded that specific high affinity cortisol binding systems present outside adrenocortical steroidogenic cells do not influence their secretory activity under short term in vitro condition. In addition, it can be stressed that use of ill defined protein preparations (e.g. crude BSA) may lead to artifactual observations in the study of the differentiated functions of isolated steroidogenic cells. PMID:6287106

  10. Effects of neuromedin-U on immature rat adrenocortical cells: in vitro and in vivo studies.

    PubMed

    Ziolkowska, Agnieszka; Macchi, Carlo; Trejter, Marcin; Rucinski, Marcin; Nowak, Magdalena; Nussdorfer, Gastone G; Malendowicz, Ludwik K

    2008-03-01

    Neuromedin U (NMU) is a brain-gut peptide, that in the peripheral organs and tissues acts via a G protein-coupled receptor, called NMUR1. Reverse transcription-polymerase chain reaction showed the expression of NMUR1 mRNA in either cortex and medulla or dispersed zona glomerulosa and zona fasciculata-reticularis cells of the immature rat adrenals. Accordingly, immunocytochemistry demonstrated the presence of NMUR1-like immunoreactivity in the cortex and medulla of immature adrenals. NMU8 administration to immature rats was found to raise aldosterone, but not corticosterone, plasma concentration, without altering adrenal growth. Conversely, the exposure to NMU8 markedly enhanced the proliferative activity of immature rat inner adrenocortical cells in primary in vitro culture, without significantly affecting their corticosterone secretion. Collectively, our findings suggest that adrenals of immature rats may be a target for circulating NMU. However, the physiological significance and relevance of the adrenal effects of NMU remain to be ascertained. PMID:18288377

  11. Adrenocortical hemorrhagic necrosis: the role of catecholamines and retrograde medullary-cell embolism

    SciTech Connect

    Szabo, S.; McComb, D.J.; Kovacs, K.; Huettner, I.

    1981-10-01

    We investigated the pathogenesis of adrenal necrosis using animal models of the disease (induced by administration of acrylonitrile, cysteamine, or pyrazole) and human cases. Results of electron-microscopic and histochemical time-response studies with rat models revealed an early, retrograde embolization of medullary cells and cell fragments in the cortical capillaries that showed prominent endothelial injury. The experimental adrenal lesions were prevented by surgical removal of the medulla one month before administration of adrenocorticolytic chemicals, or by the administration of the alpha-adrenergic antagonist phenoxybenzamine hydrochloride. Histochemical staining for medullary (argyrophil) granules in human cases of adrenal necrosis demonstrated tissue fragments that stained positively for silver in vascular cortical spaces in nine of ten autopsy specimens and in all four surgical cases we reviewed. Thus, catecholamines released from the adrenal medulla and from the retrograde medullary emboli in the cortex may have a role in the pathogenesis of adrenocortical necrosis.

  12. The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma

    PubMed Central

    Özata, Deniz M; Caramuta, Stefano; Velázquez-Fernández, David; Akçakaya, Pinar; Xie, Hong; Höög, Anders; Zedenius, Jan; Bäckdahl, Martin; Larsson, Catharina; Lui, Weng-Onn

    2011-01-01

    Adrenocortical carcinoma (ACC) is an aggressive tumor showing frequent metastatic spread and poor survival. Although recent genome-wide studies of ACC have contributed to our understanding of the disease, major challenges remain for both diagnostic and prognostic assessments. The aim of this study was to identify specific microRNAs (miRNAs) associated with malignancy and survival of ACC patients. miRNA expression profiles were determined in a series of ACC, adenoma, and normal cortices using microarray. A subset of miRNAs showed distinct expression patterns in the ACC compared with adrenal cortices and adenomas. Among others, miR-483-3p, miR-483-5p, miR-210, and miR-21 were found overexpressed, while miR-195, miR-497, and miR-1974 were underexpressed in ACC. Inhibition of miR-483-3p or miR-483-5p and overexpression of miR-195 or miR-497 reduced cell proliferation in human NCI-H295R ACC cells. In addition, downregulation of miR-483-3p, but not miR-483-5p, and increased expression of miR-195 or miR-497 led to significant induction of cell death. Protein expression of p53 upregulated modulator of apoptosis (PUMA), a potential target of miR-483-3p, was significantly decreased in ACC, and inversely correlated with miR-483-3p expression. In addition, high expression of miR-503, miR-1202, and miR-1275 were found significantly associated with shorter overall survival among patients with ACC (P values: 0.006, 0.005, and 0.042 respectively). In summary, we identified additional miRNAs associated with ACC, elucidated the functional role of four miRNAs in the pathogenesis of ACC cells, demonstrated the potential involvement of the pro-apoptotic factor PUMA (a miR-483-3p target) in adrenocortical tumors, and found novel miRNAs associated with survival in ACC. PMID:21859927

  13. Chloroquine alleviates etoposide-induced centrosome amplification by inhibiting CDK2 in adrenocortical tumor cells

    PubMed Central

    Chen, T-Y; Syu, J-S; Lin, T-C; Cheng, H-l; Lu, F-l; Wang, C-Y

    2015-01-01

    The antitumor drug etoposide (ETO) is widely used in treating several cancers, including adrenocortical tumor (ACT). However, when used at sublethal doses, tumor cells still survive and are more susceptible to the recurring tumor due to centrosome amplification. Here, we checked the effect of sublethal dose of ETO in ACT cells. Sublethal dose of ETO treatment did not induce cell death but arrested the ACT cells in G2/M phase. This resulted in centrosome amplification and aberrant mitotic spindle formation leading to genomic instability and cellular senescence. Under such conditions, Chk2, cyclin A/CDK2 and ERK1/2 were aberrantly activated. Pharmacological inactivation of Chk2, CDK2 or ERK1/2 or depletion of CDK2 or Chk2 inhibited the centrosome amplification in ETO-treated ACT cells. In addition, autophagy was activated by ETO and was required for ACT cell survival. Chloroquine, the autophagy inhibitor, reduced ACT cell growth and inhibited ETO-induced centrosome amplification. Chloroquine alleviated CDK2 and ERK, but not Chk2, activation and thus inhibited centrosome amplification in either ETO- or hydroxyurea-treated ACT cells. In addition, chloroquine also inhibited centrosome amplification in osteosarcoma U2OS cell lines when treated with ETO or hydroxyurea. In summary, we have demonstrated that chloroquine inhibited ACT cell growth and alleviated DNA damage-induced centrosome amplification by inhibiting CDK2 and ERK activity, thus preventing genomic instability and recurrence of ACT. PMID:26690546

  14. The effect of pioglitazone on aldosterone and cortisol production in HAC15 human adrenocortical carcinoma cells

    PubMed Central

    Pan, Zhi-qiang; Xie, Ding; Choudhary, Vivek; Seremwe, Mutsa; Tsai, Ying-Ying; Olala, Lawrence; Chen, Xunsheng; Bollag, Wendy B.

    2014-01-01

    Pioglitazone belongs to the class of drugs called thiazolidinediones (TZDs), which are widely used as insulin sensitizers in the treatment of diabetes. A major side effect of TZDs is fluid retention. The steroid hormone aldosterone also promotes sodium and fluid retention; however, the effect of pioglitazone on aldosterone production is controversial. We analyzed the effect of pioglitazone alone and in combination with angiotensin II (AngII) on the late rate-limiting step of adrenocortical steroidogenesis in human adrenocortical carcinoma HAC15 cells. Treatment with pioglitazone for 24hr significantly increased the expression of CYP11B2 and enhanced AngII-induced CYP11B2 expression. Despite the observed changes in mRNA levels, pioglitazone significantly inhibited AngII-induced aldosterone production and CYP11B2 protein levels. On the other hand, pioglitazone stimulated the expression of the unfolded protein response (UPR) marker DDIT3, with this effect occurring at early times and inhibitable by the PPARγ antagonist GW9962. The levels of DDIT3 (CHOP) and phospho-eIF2α (Ser51), a UPR-induced event that inhibits protein translation, were also increased. Thus, pioglitazone promotes CYP11B2 expression but nevertheless inhibits aldosterone production in AngII-treated HAC15 cells, likely by blocking global protein translation initiation through DDIT3 and phospho-eIF2α. In contrast, pioglitazone promoted AngII-induced CYP11B1 expression and cortisol production. Since cortisol enhances lipolysis, this result suggests the possibility that PPARs, activated by products of fatty acid oxidation, stimulate cortisol secretion to promote utilization of fatty acids during fasting. In turn, the ability of pioglitazone to stimulate cortisol production could potentially underlie the effects of this drug on fluid retention. PMID:25038520

  15. The effect of pioglitazone on aldosterone and cortisol production in HAC15 human adrenocortical carcinoma cells.

    PubMed

    Pan, Zhi-qiang; Xie, Ding; Choudhary, Vivek; Seremwe, Mutsa; Tsai, Ying-Ying; Olala, Lawrence; Chen, Xunsheng; Bollag, Wendy B

    2014-08-25

    Pioglitazone belongs to the class of drugs called thiazolidinediones (TZDs), which are widely used as insulin sensitizers in the treatment of diabetes. A major side effect of TZDs is fluid retention. The steroid hormone aldosterone also promotes sodium and fluid retention; however, the effect of pioglitazone on aldosterone production is controversial. We analyzed the effect of pioglitazone alone and in combination with angiotensin II (AngII) on the late rate-limiting step of adrenocortical steroidogenesis in human adrenocortical carcinoma HAC15 cells. Treatment with pioglitazone for 24 h significantly increased the expression of CYP11B2 and enhanced AngII-induced CYP11B2 expression. Despite the observed changes in mRNA levels, pioglitazone significantly inhibited AngII-induced aldosterone production and CYP11B2 protein levels. On the other hand, pioglitazone stimulated the expression of the unfolded protein response (UPR) marker DDIT3, with this effect occurring at early times and inhibitable by the PPARγ antagonist GW9962. The levels of DDIT3 (CHOP) and phospho-eIF2α (Ser51), a UPR-induced event that inhibits protein translation, were also increased. Thus, pioglitazone promotes CYP11B2 expression but nevertheless inhibits aldosterone production in AngII-treated HAC15 cells, likely by blocking global protein translation initiation through DDIT3 and phospho-eIF2α. In contrast, pioglitazone promoted AngII-induced CYP11B1 expression and cortisol production. Since cortisol enhances lipolysis, this result suggests the possibility that PPARs, activated by products of fatty acid oxidation, stimulate cortisol secretion to promote utilization of fatty acids during fasting. In turn, the ability of pioglitazone to stimulate cortisol production could potentially underlie the effects of this drug on fluid retention. PMID:25038520

  16. Different expression of protein kinase A (PKA) regulatory subunits in cortisol-secreting adrenocortical tumors: Relationship with cell proliferation

    SciTech Connect

    Mantovani, G.; Lania, A.G.; Bondioni, S.; Peverelli, E.; Pedroni, C.; Ferrero, S.; Pellegrini, C.; Vicentini, L.; Arnaldi, G.; Bosari, S.; Beck-Peccoz, P.; Spada, A.

    2008-01-01

    The four regulatory subunits (R1A, R1B, R2A, R2B) of protein kinase A (PKA) are differentially expressed in several cancer cell lines and exert distinct roles in growth control. Mutations of the R1A gene have been found in patients with Carney complex and in a minority of sporadic primary pigmented nodular adrenocortical disease (PPNAD). The aim of this study was to evaluate the expression of PKA regulatory subunits in non-PPNAD adrenocortical tumors causing ACTH-independent Cushing's syndrome and to test the impact of differential expression of these subunits on cell growth. Immunohistochemistry demonstrated a defective expression of R2B in all cortisol-secreting adenomas (n = 16) compared with the normal counterpart, while both R1A and R2A were expressed at high levels in the same tissues. Conversely, carcinomas (n = 5) showed high levels of all subunits. Sequencing of R1A and R2B genes revealed a wild type sequence in all tissues. The effect of R1/R2 ratio on proliferation was assessed in mouse adrenocortical Y-1 cells. The R2-selective cAMP analogue 8-Cl-cAMP dose-dependently inhibited Y-1 cell proliferation and induced apoptosis, while the R1-selective cAMP analogue 8-HA-cAMP stimulated cell proliferation. Finally, R2B gene silencing induced up-regulation of R1A protein, associated with an increase in cell proliferation. In conclusion, we propose that a high R1/R2 ratio favors the proliferation of well differentiated and hormone producing adrenocortical cells, while unbalanced expression of these subunits is not required for malignant transformation.

  17. Expression of the spexin gene in the rat adrenal gland and evidences suggesting that spexin inhibits adrenocortical cell proliferation.

    PubMed

    Rucinski, Marcin; Porzionato, Andrea; Ziolkowska, Agnieszka; Szyszka, Marta; Macchi, Veronica; De Caro, Raffaele; Malendowicz, Ludwik K

    2010-04-01

    Spexin (SPX, also called NPQ) is a recently identified, highly conserved peptide which is processed and secreted. We analysed the SPX gene and its protein product in the rat adrenal gland to ascertain whether SPX is involved in the regulation of corticosteroid secretion of and growth of adrenocortical cells. In adult rat adrenal glands the highest levels of SPX mRNA were present in the glomerulosa (ZG) and fasciculate/reticularis (ZF/R) zones. High SPX gene expression levels were found in freshly isolated adult rat ZG and ZF/R cells. In cultured adrenocortical cells the levels of SPX mRNA were lower than in freshly isolated cells. SPX mRNA expression levels were found to be 2-3 times higher during days 90-540 of postnatal development than found during days 2-45. Prolonged ACTH administration lowered and dexamethasone increased adrenal SPX mRNA levels in vivo. Adrenal enucleation produced a significant linear increase in SPX mRNA levels, with the highest value occurring at day 8 after surgery, with control values taken on day 30 after enucleation. Immunohistochemistry revealed SPX-like immunoreactivity in the entire cortex of the adult male rat and in enucleation-induced regenerating cortex. A concentration of 10-6M SPX peptide stimulated basal aldosterone secretion by freshly isolated ZG. In prolonged exposure of adrenocortical cell primary cultures to SPX (10-6M) resulted in a small increase in corticosterone secretion and a notable decrease in BrdU incorporation. The results suggest the direct involvement of SPX in the regulation of adrenocortical cell proliferation; however, the mechanism of action remains unknown. PMID:20045034

  18. Differential regulation of glucocorticoid synthesis in murine intestinal epithelial versus adrenocortical cell lines.

    PubMed

    Mueller, Matthias; Atanasov, Atanas; Cima, Igor; Corazza, Nadia; Schoonjans, Kristina; Brunner, Thomas

    2007-03-01

    Glucocorticoids are steroid hormones with important functions in development, immune regulation, and glucose metabolism. The adrenal glands are the predominant source of glucocorticoids; however, there is increasing evidence for extraadrenal glucocorticoid synthesis in thymus, brain, skin, and vascular endothelium. We recently identified intestinal epithelial cells as an important source of glucocorticoids, which regulate the activation of local intestinal immune cells. The molecular regulation of intestinal glucocorticoid synthesis is currently unexplored. In this study we investigated the transcriptional regulation of the steroidogenic enzymes P450 side-chain cleavage enzyme and 11beta-hydroxylase, and the production of corticosterone in the murine intestinal epithelial cell line mICcl2 and compared it with that in the adrenocortical cell line Y1. Surprisingly, we observed a reciprocal stimulation pattern in these two cell lines. Elevation of intracellular cAMP induced the expression of steroidogenic enzymes in Y1 cells, whereas it inhibited steroidogenesis in mICcl2 cells. In contrast, phorbol ester induced steroidogenic enzymes in intestinal epithelial cells, which was synergistically enhanced upon transfection of cells with the nuclear receptors steroidogenic factor-1 (NR5A1) and liver receptor homolog-1 (NR5A2). Finally, we observed that basal and liver receptor homolog-1/phorbol ester-induced expression of steroidogenic enzymes in mICcl2 cells was inhibited by the antagonistic nuclear receptor small heterodimer partner. We conclude that the molecular basis of glucocorticoid synthesis in intestinal epithelial cells is distinct from that in adrenal cells, most likely representing an adaptation to the local environment and different requirements. PMID:17170096

  19. Adrenocortical Carcinoma

    PubMed Central

    Kim, Alex C.; Sabolch, Aaron; Raymond, Victoria M.; Kandathil, Asha; Caoili, Elaine M.; Jolly, Shruti; Miller, Barbra S.; Giordano, Thomas J.

    2014-01-01

    Adrenocortical carcinoma (ACC) is a rare endocrine malignancy, often with an unfavorable prognosis. Here we summarize the knowledge about diagnosis, epidemiology, pathophysiology, and therapy of ACC. Over recent years, multidisciplinary clinics have formed and the first international treatment trials have been conducted. This review focuses on evidence gained from recent basic science and clinical research and provides perspectives from the experience of a large multidisciplinary clinic dedicated to the care of patients with ACC. PMID:24423978

  20. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Simon, Anne; Maletz, Sibylle X.; Hollert, Henner; Schäffer, Andreas; Maes, Hanna M.

    2014-08-01

    To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban.

  1. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation

    PubMed Central

    2014-01-01

    To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban. PMID:25170332

  2. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation.

    PubMed

    Simon, Anne; Maletz, Sibylle X; Hollert, Henner; Schäffer, Andreas; Maes, Hanna M

    2014-01-01

    To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban. PMID:25170332

  3. Molecular pathways of human adrenocortical carcinoma - translating cell signalling knowledge into diagnostic and treatment options.

    PubMed

    Szyszka, Paulina; Grossman, Ashley B; Diaz-Cano, Salvador; Sworczak, Krzysztof; Dworakowska, Dorota

    2016-01-01

    Adrenocortical carcinoma is associated with a low cure rate and a high recurrence rate. The prognosis is poor, and at diagnosis 30-40% of cases are already metastatic. The current therapeutic options (surgical resection, followed by adjuvant mitotane treatment +/- chemotherapy) are limited, and the results remain unsatisfactory. Key molecular events that contribute to formation of adrenocortical cancer are IGF2 overexpression, TP53-inactivating mutations, and constitutive activation of the Wnt/b-catenin signalling pathway via activating mutations of the b-catenin gene. The underlying genetic causes of inherited tumour syndromes have provided insights into molecular pathogenesis. The increased occurrence of adrenocortical tumours in Li-Fraumeni and Beckwith-Wiedemann syndromes, and Carney complex, has highlighted the roles of specific susceptibility genes: TP53, IGF2, and PRKAR1A, respectively. Further studies have confirmed that these genes are also involved in sporadic tumour cases. Crucially, transcriptome-wide studies have determined the differences between malignant and benign adrenocortical tumours, providing potential diagnostic tools. In conclusion, enhancing our understanding of the molecular events of adrenocortical tumourigenesis, especially with regard to the signalling pathways that may be disrupted, will greatly contribute to improving a range of available diagnostic, prognostic, and treatment approaches. (Endokrynol Pol 2016; 67 (4): 427-440). PMID:27387247

  4. Adrenocortical carcinoma.

    PubMed

    Baudin, Eric

    2015-06-01

    Recent developments in the treatment of adrenocortical carcinoma (ACC) include diagnostic and prognostic risk stratification algorithms, increasing evidence of the impact of historical therapies on overall survival, and emerging targets from integrated epigenomic and genomic analyses. Advances include proper clinical and molecular characterization of all patients with ACC, standardization of proliferative index analyses, referral of these patients to large cancer referral centers at the time of first surgery, and development of new trials in patients with well-characterized ACC. Networking and progress in the molecular characterization of ACC constitute the basis for significant future therapeutic breakthroughs. PMID:26038209

  5. Combined steroidogenic characters of fetal adrenal and Leydig cells in childhood adrenocortical carcinoma.

    PubMed

    Fujisawa, Yasuko; Sakaguchi, Kimiyoshi; Ono, Hiroyuki; Yamaguchi, Rie; Kato, Fumiko; Kagami, Masayo; Fukami, Maki; Ogata, Tsutomu

    2016-05-01

    Although childhood adrenocortical carcinomas (c-ACCs) with a TP53 mutation are known to produce androgens, detailed steroidogenic characters have not been clarified. Here, we examined steroid metabolite profiles and expression patterns of steroidogenic genes in a c-ACC removed from the left adrenal position of a 2-year-old Brazilian boy with precocious puberty, using an atrophic left adrenal gland removed at the time of tumorectomy as a control. The c-ACC produced not only abundant dehydroepiandrosterone-sulfate but also a large amount of testosterone via the Δ5 pathway with Δ5-androstenediol rather than Δ4-androstenedione as the primary intermediate metabolite. Furthermore, the c-ACC was associated with elevated expressions of CYP11A1, CYP17A1, POR, HSD17B3, and SULT2A1, a low but similar expression of CYB5A, and reduced expressions of AKR1C3 (HSD17B5) and HSD3B2. Notably, a Leydig cell marker INSL3 was expressed at a low but detectable level in the c-ACC. Furthermore, molecular studies revealed a maternally inherited heterozygous germline TP53 mutation, and several post-zygotic genetic aberrations in the c-ACC including loss of paternally derived chromosome 17 with a wildtype TP53 and loss of maternally inherited chromosome 11 and resultant marked hyperexpression of paternally expressed growth promoting gene IGF2 and drastic hypoexpression of maternally expressed growth suppressing gene CDKN1C. These results imply the presence of combined steroidogenic properties of fetal adrenal and Leydig cells in this patient's c-ACC with a germline TP53 mutation and several postzygotic carcinogenic events. PMID:26940356

  6. Production of platelet-activating factor is a component of the angiotensin II-protein kinase C activation pathway in bovine adrenocortical cells.

    PubMed

    Pelosin, J M; Keramidas, M; Chambaz, E M

    1991-08-15

    Lyso-platelet-activating factor (lyso-PAF): acetyl-CoA acetyltransferase (EC 2.3.1.67) enzyme activity was characterized for the first time in bovine adrenocortical tissue. It was found to be associated with the microsomal membrane fraction, in which it exhibited a specific activity of 0.4 nmol/min per mg of protein and catalytic properties similar to those described in other cell types. The adrenocortical acetyltransferase activity was increased by 2-3-fold on incubation of the preparation with purified protein kinase C (PKC) under phosphorylating condition. This activation was optimal after 5 min of incubation and paralleled an increase in PKC-catalysed 32P incorporation into microsomal proteins. Both acetyltransferase activation and protein phosphorylation were dependent on the presence of Ca2+ and phospholipids, and were blocked in the presence of the potent PKC inhibitor H-7. In the intact adrenocortical cell, angiotensin II and a potent phorbol ester (phorbol 12-myristate 13-acetate) were able to rapidly induce an increase in the biosynthesis of PAF, which was mostly released into the extracellular medium. These data suggest that bovine adrenocortical lyso-PAF acetyltransferase may be regulated by a PKC-dependent activation pathway, whereas no evidence for an additional adrenocorticotropin/cyclic AMP-dependent stimulation process was obtained in this cell type. Bovine adrenocortical cell membrane preparations were shown to possess high-affinity PAF-binding sites (Kd approximately 0.5 nM). Altogether, these observations suggest that PAF production and release may play a role in the autocrine or paracrine control of adrenocortical cell activation. PMID:1883337

  7. Adrenocorticotrophic hormone stimulates phosphotyrosine phosphatase SHP2 in bovine adrenocortical cells: phosphorylation and activation by cAMP-dependent protein kinase.

    PubMed Central

    Rocchi, S; Gaillard, I; van Obberghen, E; Chambaz, E M; Vilgrain, I

    2000-01-01

    During activation of adrenocortical cells by adrenocorticotrophic hormone (ACTH), tyrosine dephosphorylation of paxillin is stimulated and this correlates with protrusion of filopodial structures and a decreased number of focal adhesions. These effects are inhibited by Na(3)VO(4), a phosphotyrosine phosphatase inhibitor [Vilgrain, Chinn, Gaillard, Chambaz and Feige (1998) Biochem. J. 332, 533-540]. However, the tyrosine phosphatases involved in these processes remain to be identified. In this study, we provide evidence that the Src homology domain (SH)2-containing phosphotyrosine phosphatase (SHP)2, but not SHP1, is expressed in adrenocortical cells and is phosphorylated upon ACTH challenge. ACTH (10(-8) M) treatment of (32)P-labelled adrenocortical cells resulted in an increase in phosphorylated SHP2. By probing SHP2-containing immunoprecipitates with an antibody to phosphoserine we found that SHP2 was phosphorylated on serine in ACTH-treated cells in a dose- and time-dependent manner. Furthermore, using an in vitro kinase assay, we showed that SHP2 was a target for cAMP-dependent protein kinase (PKA). Serine was identified as the only target amino acid phosphorylated in SHP2. Phosphorylation of SHP2 by PKA resulted in a dramatic stimulation of phosphatase activity measured either with insulin receptor substrate-1 or with the synthetic peptide [(32)P]poly(Glu/Tyr) as substrate. In an in-gel assay of SHP2-containing immunoprecipitates, phosphorylated in vitro by PKA or isolated from adrenocortical cells treated with 10 nM ACTH, a pronounced activation of SHP2 activity was shown. These observations clearly support the idea that a PKA-mediated signal transduction pathway contributes to SHP2 regulation in adrenocortical cells and point to SHP2 as a possible mediator of the effects of ACTH. PMID:11085942

  8. Regulation of corticotropin receptor number and messenger RNA in cultured human adrenocortical cells by corticotropin and angiotensin II.

    PubMed Central

    Lebrethon, M C; Naville, D; Begeot, M; Saez, J M

    1994-01-01

    The regulation of ACTH receptor binding sites and mRNA by ACTH and angiotensin II (A-II) was studied using cultured human adrenal fasciculata reticularis cells (HAC). These cells expressed two major ACTH receptor transcripts of 1.8 and 3.4 kb and three minor ones of 4, 7, and 11 kb. ACTH increased the levels of all these transcripts in a time- and dose-dependent manner. At a maximal concentration of 10(-8) M, ACTH enhanced 21- and 4-fold the level of ACTH receptor mRNA and the number of receptors per cell, respectively. Pretreatment of HAC with A-II produced a dose-dependent enhancement of ACTH receptor mRNA that was associated with an increase of both ACTH receptor number and responsiveness to this hormone. The effects of A-II were completely blocked by an AT1 receptor subtype antagonist but not by an AT2 antagonist. The effects of ACTH together with A-II on ACTH receptor mRNA were greater than those induced by each hormone alone. These results show that ACTH receptor number and mRNA are positively regulated by the two main hormones (ACTH and A-II) which, in vivo, regulate adrenocortical functions. In addition, they also show that HAC are a target for A-II. Thus, regulation of ACTH receptors may be one mechanism by which ACTH and A-II regulate adrenocortical functions under both normal and pathological conditions. Images PMID:8163681

  9. Adrenocortical Stem and Progenitor Cells—Implications for Adrenocortical Carcinoma

    PubMed Central

    Simon, Derek P.; Hammer, Gary D.

    2012-01-01

    The continuous centripetal repopulation of the adrenal cortex is consistent with a population of cells endowed with the stem/progenitor cell properties of self-renewal and pluripotency. The adrenocortical capsule and underlying undifferentiated cortical cells are emerging as critical components of the stem/progenitor cell niche. Recent genetic analysis has identified various signaling pathways including Sonic Hedgehog (Shh) and Wnt as crucial mediators of adrenocortical lineage and organ homeostasis. Shh expression is restricted to the peripheral cortical cells that express a paucity of steroidogenic genes but give rise to the underlying differentiated cells of the cortex. Wnt/β-catenin signaling maintains the undifferentiated state and adrenal fate of adrenocortical stem/progenitor cells, in part through induction of its target genes Dax1 and inhibin-α, respectively. The pathogenesis of ACC, a rare yet highly aggressive cancer with an extremely poor prognosis, is slowly emerging from studies of the stem/progenitor cells of the adrenal cortex coupled with the genetics of familial syndromes in which ACC occurs. The frequent observation of constitutive activation of Wnt signaling due to loss-of-function mutations in the tumor suppressor gene APC or gain-of-function mutation in β-catenin in both adenomas and carcinomas, suggests perhaps that the Wnt pathway serves an early or initiating insult in the oncogenic process. Loss of p53 might be predicted to cooperate with additional genetic insults such as IGF2 as both are the most common genetic abnormalities in malignant versus benign adrenocortical neoplasms. It is unclear whether other factors such as Pod1 and Pref1, which are implicated in stem/progenitor cell biology in the adrenal and/or other organs, are also implicated in the etiology of adrenocortical carcinoma. The rarity and heterogeneous presentation of ACC makes it difficult to identify the cellular origin and the molecular progression to cancer. A more

  10. Inhibition of the Tcf/beta-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis

    PubMed Central

    Leal, Letícia F.; Bueno, Ana Carolina; Gomes, Débora C.; Abduch, Rafael; de Castro, Margaret; Antonini, Sonir R.

    2015-01-01

    Background To date, there is no effective therapy for patients with advanced/metastatic adrenocortical cancer (ACC). The activation of the Wnt/beta-catenin signaling is frequent in ACC and this pathway is a promising therapeutic target. Aim To investigate the effects of the inhibition of the Wnt/beta-catenin in ACC cells. Methods Adrenal (NCI-H295 and Y1) and non-adrenal (HeLa) cell lines were treated with PNU-74654 (5–200 μM) for 24–96 h to assess cell viability (MTS-based assay), apoptosis (Annexin V), expression/localization of beta-catenin (qPCR, immunofluorescence, immunocytochemistry and western blot), expression of beta-catenin target genes (qPCR and western blot), and adrenal steroidogenesis (radioimmunoassay, qPCR and western blot). Results In NCI-H295 cells, PNU-74654 significantly decreased cell proliferation 96 h after treatment, increased early and late apoptosis, decreased nuclear beta-catenin accumulation, impaired CTNNB1/beta-catenin expression and increased beta-catenin target genes 48 h after treatment. No effects were observed on HeLa cells. In NCI-H295 cells, PNU-74654 decreased cortisol, testosterone and androstenedione secretion 24 and 48 h after treatment. Additionally, in NCI-H295 cells, PNU-74654 decreased SF1 and CYP21A2 mRNA expression as well as the protein levels of STAR and aldosterone synthase 48 h after treatment. In Y1 cells, PNU-74654 impaired corticosterone secretion 24 h after treatment but did not decrease cell viability. Conclusions Blocking the Tcf/beta-catenin complex inhibits the Wnt/beta-catenin signaling in adrenocortical tumor cells triggering increased apoptosis, decreased cell viability and impairment of adrenal steroidogenesis. These promising findings pave the way for further experiments inhibiting the Wnt/beta-catenin pathway in pre-clinical models of ACC. The inhibition of this pathway may become a promising adjuvant therapy for patients with ACC. PMID:26515592

  11. POD-1/TCF21 Reduces SHP Expression, Affecting LRH-1 Regulation and Cell Cycle Balance in Adrenocortical and Hepatocarcinoma Tumor Cells

    PubMed Central

    França, Monica Malheiros; Ferraz-de-Souza, Bruno; Lerario, Antonio Marcondes; Fragoso, Maria Candida Barisson Villares; Lotfi, Claudimara Ferini Pacicco

    2015-01-01

    POD-1/TCF21 may play a crucial role in adrenal and gonadal homeostasis and represses Sf-1/SF-1 expression in adrenocortical tumor cells. SF-1 and LRH-1 are members of the Fzt-F1 subfamily of nuclear receptors. LRH-1 is involved in several biological processes, and both LRH-1 and its repressor SHP are involved in many types of cancer. In order to assess whether POD-1 can regulate LRH-1 via the same mechanism that regulates SF-1, we analyzed the endogenous mRNA levels of POD-1, SHP, and LRH-1 in hepatocarcinoma and adrenocortical tumor cells using qRT-PCR. Hereafter, these tumor cells were transiently transfected with pCMVMycPod-1, and the effect of POD-1 overexpression on E-box elements in the LRH-1 and SHP promoter region were analyzed by ChIP assay. Also, Cyclin E1 protein expression was analyzed to detect cell cycle progression. We found that POD-1 overexpression significantly decreased SHP/SHP mRNA and protein levels through POD-1 binding to the E-box sequence in the SHP promoter. Decreased SHP expression affected LRH-1 regulation and increased Cyclin E1. These findings show that POD-1/TCF21 regulates SF-1 and LRH-1 by distinct mechanisms, contributing to the understanding of POD-1 involvement and its mechanisms of action in adrenal and liver tumorigenesis, which could lead to the discovery of relevant biomarkers. PMID:26421305

  12. Origin and Molecular Pathology of Adrenocortical Neoplasms

    PubMed Central

    Bielinska, M.; Parviainen, H.; Kiiveri, S.; Heikinheimo, M.; Wilson, D.B.

    2008-01-01

    Neoplastic adrenocortical lesions are common in humans and several species of domestic animals. Although there are unanswered questions about the origin and evolution of adrenocortical neoplasms, analysis of human tumor specimens and animal models indicates that adrenocortical tumorigenesis involves both genetic and epigenetic alterations. Chromosomal changes accumulate during tumor progression, and aberrant telomere function is one of the key mechanisms underlying chromosome instability during this process. Epigenetic changes serve to expand the size of the uncommitted adrenal progenitor population, modulate their phenotypic plasticity (i.e., responsiveness to extracellular signals), and increase the likelihood of subsequent genetic alterations. Analyses of heritable and spontaneous types of human adrenocortical tumors have documented alterations in either cell surface receptors or their downstream effectors that impact neoplastic transformation. Many of the mutations associated with benign human adrenocortical tumors result in dysregulated cyclic AMP signaling, whereas key factors/signaling pathways associated with adrenocortical carcinomas include dysregulated expression of the IGF2 gene cluster, activation of the Wnt/β-catenin pathway, and inactivation of the p53 tumor suppressor. A better understanding of the factors and signaling pathways involved in adrenal tumorigenesis is necessary to develop targeted pharmacologic and genetic therapies. PMID:19261630

  13. Species-specific sensitivity to selenium-induced impairment of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis)

    SciTech Connect

    Miller, L.L. Hontela, A.

    2011-06-01

    Species differences in physiological and biochemical attributes exist even among closely related species and may underlie species-specific sensitivity to toxicants. Rainbow trout (RT) are more sensitive than brook trout (BT) to the teratogenic effects of selenium (Se), but it is not known whether all tissues exhibit this pattern of vulnerability. In this study, primary cultures of RT and BT adrenocortical cells were exposed to selenite (Na{sub 2}SO{sub 3}) and selenomethionine (Se-Met) to compare cell viability and ACTH-stimulated cortisol secretion in the two fish species. Cortisol, the primary stress hormone in fish, facilitates maintenance of homeostasis when fish are exposed to stressors, including toxicants. Cell viability was not affected by Se, but selenite impaired cortisol secretion, while Se-Met did not (RT and BT EC{sub 50} > 2000 mg/L). RT cells were more sensitive (EC{sub 50} = 8.7 mg/L) to selenite than BT cells (EC{sub 50} = 90.4 mg/L). To identify the targets where Se disrupts cortisol synthesis, selenite-impaired RT and BT cells were stimulated with ACTH, dbcAMP, OH-cholesterol, and pregnenolone. Selenite acted at different steps in the cortisol biosynthesis pathway in RT and BT cells, confirming a species-specific toxicity mechanism. To test the hypothesis that oxidative stress mediates Se-induced toxicity, selenite-impaired RT cells were exposed to NAC, BSO and antioxidants (DETCA, ATA, Vit A, and Vit E). Inhibition of SOD by DETCA enhanced selenite-induced cortisol impairment, indicating that oxidative stress plays a role in Se toxicity; however, modifying GSH content of the cells did not have an effect. The results of this study, with two closely related salmonids, provided additional evidence for species-specific differences in sensitivity to Se which should be considered when setting thresholds and water quality guidelines. - Research Highlights: > We investigated species-specific sensitivity to Se in trout adrenocortical cells. > Selenite

  14. Enucleation-induced rat adrenal gland regeneration: expression profile of selected genes involved in control of adrenocortical cell proliferation.

    PubMed

    Tyczewska, Marianna; Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Trejter, Marcin; Hochol-Molenda, Anna; Nowak, Krzysztof W; Malendowicz, Ludwik K

    2014-01-01

    Enucleation-induced adrenal regeneration is a highly controlled process; however, only some elements involved in this process have been recognized. Therefore, we performed studies on regenerating rat adrenals. Microarray RNA analysis and QPCR revealed that enucleation resulted in a rapid elevation of expression of genes involved in response to wounding, defense response, and in immunological processes. Factors encoded by these genes obscure possible priming effects of various cytokines on initiation of regeneration. In regenerating adrenals we identified over 100 up- or downregulated genes involved in adrenocortical cell proliferation. The changes were most significant at days 2-3 after enucleation and their number decreased during regeneration. For example, expression analysis revealed a notable upregulation of the growth arrest gene, Gadd45, only 24 hours after surgery while expression of cyclin B1 and Cdk1 genes was notably elevated between days 1-8 of regeneration. These changes were accompanied by changes in expression levels of numerous growth factors and immediate-early transcription factors genes. Despite notable differences in mechanisms of adrenal and liver regeneration, in regenerating adrenals we identified genes, the expression of which is well recognized in regenerating liver. Thus, it seems legitimate to suggest that, in the rat, the general model of liver and adrenal regeneration demonstrate some degree of similarity. PMID:25431590

  15. Enucleation-Induced Rat Adrenal Gland Regeneration: Expression Profile of Selected Genes Involved in Control of Adrenocortical Cell Proliferation

    PubMed Central

    Tyczewska, Marianna; Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Trejter, Marcin; Hochol-Molenda, Anna; Nowak, Krzysztof W.; Malendowicz, Ludwik K.

    2014-01-01

    Enucleation-induced adrenal regeneration is a highly controlled process; however, only some elements involved in this process have been recognized. Therefore, we performed studies on regenerating rat adrenals. Microarray RNA analysis and QPCR revealed that enucleation resulted in a rapid elevation of expression of genes involved in response to wounding, defense response, and in immunological processes. Factors encoded by these genes obscure possible priming effects of various cytokines on initiation of regeneration. In regenerating adrenals we identified over 100 up- or downregulated genes involved in adrenocortical cell proliferation. The changes were most significant at days 2-3 after enucleation and their number decreased during regeneration. For example, expression analysis revealed a notable upregulation of the growth arrest gene, Gadd45, only 24 hours after surgery while expression of cyclin B1 and Cdk1 genes was notably elevated between days 1–8 of regeneration. These changes were accompanied by changes in expression levels of numerous growth factors and immediate-early transcription factors genes. Despite notable differences in mechanisms of adrenal and liver regeneration, in regenerating adrenals we identified genes, the expression of which is well recognized in regenerating liver. Thus, it seems legitimate to suggest that, in the rat, the general model of liver and adrenal regeneration demonstrate some degree of similarity. PMID:25431590

  16. Stages of Adrenocortical Carcinoma

    MedlinePlus

    ... of Childhood Treatment for more information.) Having certain genetic conditions increases the risk of adrenocortical carcinoma. Anything ... can be a sign of disease. CT scan (CAT scan) : A procedure that makes a series of ...

  17. Galanin stimulates cortisol secretion from human adrenocortical cells through the activation of galanin receptor subtype 1 coupled to the adenylate cyclase-dependent signaling cascade.

    PubMed

    Belloni, Anna S; Malendowicz, Ludwik K; Rucinski, Marcin; Guidolin, Diego; Nussdorfer, Gastone G

    2007-12-01

    Previous studies showed that galanin receptors are expressed in the rat adrenal, and galanin modulates glucocorticoid secretion in this species. Hence, we investigated the expression of the various galanin receptor subtypes (GAL-R1, GAL-R2 and GAL-R3) in the human adrenocortical cells, and the possible involvement of galanin in the control of cortisol secretion. Reverse transcription-polymerase chain reaction detected the expression of GAL-R1 (but not GAL-R2 and GAL-R3) in the inner zones of the human adrenal cortex. The galanin concentration dependently enhanced basal, but not ACTH-stimulated secretion of cortisol from dispersed inner adrenocortical cells (maximal effective concentration, 10(-8) M). The cortisol response to 10(-8) M galanin was abrogated by GAL-R1 immunoneutralization, and unaffected by GAL-R2 or GAL-R3 immunoneutralization. Galanin (10(-8) M) and ACTH (10(-9) M) enhanced cyclic-AMP production from dispersed cells, and the response was suppressed by the adenylate cyclase inhibitor SQ-22536 (10(-4) M). Galanin did not affect inositol triphosphate release, which, in contrast, was raised by angiotensin-II (10(-8) M). SQ-22536 and the protein kinase (PK)A inhibitor H-89 (10(-5) M) abolished the cortisol response to 10(-8) M galanin, while the phospholipase C inhibitor U-73122 and the PKC inhibitor calphostin-C were ineffective. Preincubation with pertussis toxin (Ptx) (0.5 microg/ml) partially inhibited the cortisol response to galanin. We conclude that galanin stimulates cortisol secretion from human inner adrenocortical cells, acting through GAL-R1 coupled to the adenylate cyclase/PKA-dependent signaling cascade via a Ptx-sensitive Galpha protein. PMID:17982695

  18. Curcumin inhibits bTREK-1 K+ channels and stimulates cortisol secretion from adrenocortical cells

    PubMed Central

    Enyeart, Judith A.; Liu, Haiyan; Enyeart, John J.

    2008-01-01

    Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K+ channels that set the resting membrane potential. Inhibition of these channels by adrenocorticotropic hormone (ACTH) is coupled to membrane depolarization and cortisol secretion. Curcumin, a phytochemical with medicinal properties extracted from the spice turmeric, was found to modulate both bTREK-1 K+ currents and cortisol secretion from AZF cells. In whole-cell patch clamp experiments, curcumin inhibited bTREK-1 with an IC50 of 0.93μM by a mechanism that was voltage-independent. bTREK-1 inhibition by curcumin occurred through interaction with an external binding site and was independent of ATP hydrolysis. Curcumin produced a concentration-dependent increase in cortisol secretion that persisted for up to 24 h. At a maximally effective concentration of 50 μM, curcumin increased secretion as much as10-fold. These results demonstrate that curcumin potently inhibits bTREK-1 K+ channels and stimulates cortisol secretion from bovine AZF cells. The inhibition of bTREK-1 by curcumin may be linked to cortisol secretion through membrane depolarization. Since TREK-1 is widely expressed in a variety of cells, it is likely that some of the biological actions of curcumin, including its therapeutic effects, may be mediated through inhibition of these K+ channels. PMID:18406348

  19. [Importance of proliferative potential (as the ratio of a proliferative cells number and duration of mitosis) in diagnoses of malignant degree and prognosis of adrenocortical cancer].

    PubMed

    Raĭkhlin, N T; Bukaeva, I A; Filimoniuk, A V; Smirnova, E A; Probatova, N A; Pavlovskaia, A I; Shabanov, M A; Ponomareva, M V

    2011-01-01

    The aim of research has been the estimation of a proliferative potential as simultaneous detection of a proliferative cells number (Ki-67 index) and duration of mitosis (nucleolar argyrophilic protein expression--B23/nucleophosmin and C23/nucleolin) at patients with adrenocortical cancer. In according to lifetime of patients after operation 2 groups had been sorted out. The first one included patients surviving 56.12 months, the second one--9.25 months. We've found out that different aspects of tumor diagnosis as well distinction of benignant or malignant tumor growth, a malignant degree of tumors, a prognostic criteria of illness, survival of patients etc. must be characterized by total research both a proliferative cells fraction (Ki-67 index) and a rate of mitosis (expressions of B23/nucleophosmin and C23/nucleolin). PMID:22288173

  20. Animal models of adrenocortical tumorigenesis

    PubMed Central

    Beuschlein, Felix; Galac, Sara; Wilson, David B.

    2011-01-01

    Over the past decade, research on human adrenocortical neoplasia has been dominated by gene expression profiling of tumor specimens and by analysis of genetic disorders associated with a predisposition to these tumors. Although these studies have identified key genes and associated signaling pathways that are dysregulated in adrenocortical neoplasms, the molecular events accounting for the frequent occurrence of benign tumors and low rate of malignant transformation remain unknown. Moreover, the prognosis for patients with adrenocortical carcinoma remains poor, so new medical treatments are needed. Naturally occurring and genetically engineered animal models afford a means to investigate adrenocortical tumorigenesis and to develop novel therapeutics. This comparative review highlights adrenocortical tumor models useful for either mechanistic studies or preclinical testing. Three model species – mouse, ferret, and dog – are reviewed, and their relevance to adrenocortical tumors in humans is discussed. PMID:22100615

  1. Activation of the SCPx promoter in mouse adrenocortical Y1 cells

    SciTech Connect

    Lopez, Dayami; Niesen, Melissa; Bedi, Mohini; Hale, David; McLean, Mark P. . E-mail: mmclean@health.usf.edu

    2007-06-01

    Sterol carrier protein X (SCPx) is a peroxisomal protein with both lipid transfer and thiolase activity. Treatment of mouse adrenal Y1 cells with cAMP for 24 h caused a significant induction of SCPx mRNA levels. Reporter gene studies demonstrated that treatment with cAMP and SF-1 was able to activate the SCPx promoter. Sequence analysis revealed the presence of three putative steroidogenic factor-1 (SF-1) binding motifs (designated SFB1, SFB2, and SFB3) and one CRE. Only SFB1 and SFB3 were able to bind recombinant SF-1 protein in electrophoretic mobility shift assays. The CRE was able to form a DNA/protein complex in the presence of Y1 nuclear extracts. Mutational analysis studies demonstrated that SFB3 is required for full activation of the SCPx promoter by cAMP treatment. Regulation of the SCPx gene by SF-1 and cAMP is similar to the regulatory mechanisms observed for other steroidogenic genes.

  2. Role of EPAC in cAMP-Mediated Actions in Adrenocortical Cells

    PubMed Central

    Lewis, Aurélia E.; Aesoy, Reidun; Bakke, Marit

    2016-01-01

    Adrenocorticotropic hormone regulates adrenal steroidogenesis mainly via the intracellular signaling molecule cAMP. The effects of cAMP are principally relayed by activating protein kinase A (PKA) and the more recently discovered exchange proteins directly activated by cAMP 1 and 2 (EPAC1 and EPAC2). While the intracellular roles of PKA have been extensively studied in steroidogenic tissues, those of EPACs are only emerging. EPAC1 and EPAC2 are encoded by the genes RAPGEF3 and RAPGEF4, respectively. Whereas EPAC1 is ubiquitously expressed, the expression of EPAC2 is more restricted, and typically found in endocrine tissues. Alternative promoter usage of RAPGEF4 gives rise to three different isoforms of EPAC2 that vary in their N-termini (EPAC2A, EPAC2B, and EPAC2C) and that exhibit distinct expression patterns. EPAC2A is expressed in the brain and pancreas, EPAC2B in steroidogenic cells of the adrenal gland and testis, and EPAC2C has until now only been found in the liver. In this review, we discuss current knowledge on EPAC expression and function with focus on the known roles of EPAC in adrenal gland physiology. PMID:27379015

  3. Role of EPAC in cAMP-Mediated Actions in Adrenocortical Cells.

    PubMed

    Lewis, Aurélia E; Aesoy, Reidun; Bakke, Marit

    2016-01-01

    Adrenocorticotropic hormone regulates adrenal steroidogenesis mainly via the intracellular signaling molecule cAMP. The effects of cAMP are principally relayed by activating protein kinase A (PKA) and the more recently discovered exchange proteins directly activated by cAMP 1 and 2 (EPAC1 and EPAC2). While the intracellular roles of PKA have been extensively studied in steroidogenic tissues, those of EPACs are only emerging. EPAC1 and EPAC2 are encoded by the genes RAPGEF3 and RAPGEF4, respectively. Whereas EPAC1 is ubiquitously expressed, the expression of EPAC2 is more restricted, and typically found in endocrine tissues. Alternative promoter usage of RAPGEF4 gives rise to three different isoforms of EPAC2 that vary in their N-termini (EPAC2A, EPAC2B, and EPAC2C) and that exhibit distinct expression patterns. EPAC2A is expressed in the brain and pancreas, EPAC2B in steroidogenic cells of the adrenal gland and testis, and EPAC2C has until now only been found in the liver. In this review, we discuss current knowledge on EPAC expression and function with focus on the known roles of EPAC in adrenal gland physiology. PMID:27379015

  4. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model.

    PubMed

    van Duursen, Majorie B M; Smeets, Evelien E J W; Rijk, Jeroen C W; Nijmeijer, Sandra M; van den Berg, Martin

    2013-06-01

    Breast cancer treatment by the aromatase inhibitor Letrozole (LET) or Selective Estrogen Receptor Modulator Tamoxifen (TAM) can result in the onset of menopausal symptoms. Women often try to relieve these symptoms by taking menopausal supplements containing high levels of phytoestrogens. However, little is known about the potential interaction between these supplements and breast cancer treatment, especially aromatase inhibitors. In this study, interaction of phytoestrogens with the estrogen receptor alpha and TAM action was determined in an ER-reporter gene assay (BG1Luc4E2 cells) and human breast epithelial tumor cells (MCF-7). Potential interactions with aromatase activity and LET were determined in human adrenocorticocarcinoma H295R cells. We also used the previously described H295R/MCF-7 co-culture model to study interactions with steroidogenesis and tumor cell proliferation. In this model, genistein (GEN), 8-prenylnaringenin (8PN) and four commercially available menopausal supplements all induced ER-dependent tumor cell proliferation, which could not be prevented by physiologically relevant LET and 4OH-TAM concentrations. Differences in relative effect potencies between the H295R/MCF-7 co-culture model and ER-activation in BG1Luc4E2 cells, were due to the effects of the phytoestrogens on steroidogenesis. All tested supplements and GEN induced aromatase activity, while 8PN was a strong aromatase inhibitor. Steroidogenic profiles upon GEN and 8PN exposure indicated a strong inhibitory effect on steroidogenesis in H295R cells and H295R/MCF-7 co-cultures. Based on our in vitro data we suggest that menopausal supplement intake during breast cancer treatment should better be avoided, at least until more certainty regarding the safety of supplemental use in breast cancer patients can be provided. PMID:23541764

  5. Alterations of Phosphodiesterases in Adrenocortical Tumors.

    PubMed

    Hannah-Shmouni, Fady; Faucz, Fabio R; Stratakis, Constantine A

    2016-01-01

    Alterations in the cyclic (c)AMP-dependent signaling pathway have been implicated in the majority of benign adrenocortical tumors (ACTs) causing Cushing syndrome (CS). Phosphodiesterases (PDEs) are enzymes that regulate cyclic nucleotide levels, including cyclic adenosine monophosphate (cAMP). Inactivating mutations and other functional variants in PDE11A and PDE8B, two cAMP-binding PDEs, predispose to ACTs. The involvement of these two genes in ACTs was initially revealed by a genome-wide association study in patients with micronodular bilateral adrenocortical hyperplasia. Thereafter, PDE11A or PDE8B genetic variants have been found in other ACTs, including macronodular adrenocortical hyperplasias and cortisol-producing adenomas. In addition, downregulation of PDE11A expression and inactivating variants of the gene have been found in hereditary and sporadic testicular germ cell tumors, as well as in prostatic cancer. PDEs confer an increased risk of ACT formation probably through, primarily, their action on cAMP levels, but other actions might be possible. In this report, we review what is known to date about PDE11A and PDE8B and their involvement in the predisposition to ACTs. PMID:27625633

  6. Alterations of Phosphodiesterases in Adrenocortical Tumors

    PubMed Central

    Hannah-Shmouni, Fady; Faucz, Fabio R.; Stratakis, Constantine A.

    2016-01-01

    Alterations in the cyclic (c)AMP-dependent signaling pathway have been implicated in the majority of benign adrenocortical tumors (ACTs) causing Cushing syndrome (CS). Phosphodiesterases (PDEs) are enzymes that regulate cyclic nucleotide levels, including cyclic adenosine monophosphate (cAMP). Inactivating mutations and other functional variants in PDE11A and PDE8B, two cAMP-binding PDEs, predispose to ACTs. The involvement of these two genes in ACTs was initially revealed by a genome-wide association study in patients with micronodular bilateral adrenocortical hyperplasia. Thereafter, PDE11A or PDE8B genetic variants have been found in other ACTs, including macronodular adrenocortical hyperplasias and cortisol-producing adenomas. In addition, downregulation of PDE11A expression and inactivating variants of the gene have been found in hereditary and sporadic testicular germ cell tumors, as well as in prostatic cancer. PDEs confer an increased risk of ACT formation probably through, primarily, their action on cAMP levels, but other actions might be possible. In this report, we review what is known to date about PDE11A and PDE8B and their involvement in the predisposition to ACTs.

  7. Treatment Option Overview (Adrenocortical Carcinoma)

    MedlinePlus

    ... of Childhood Treatment for more information.) Having certain genetic conditions increases the risk of adrenocortical carcinoma. Anything ... can be a sign of disease. CT scan (CAT scan) : A procedure that makes a series of ...

  8. Adrenocortical involution in rats during oestrus synchronisation with medroxyprogesterone.

    PubMed

    Fell, B F; Campbell, R M; Dinsdale, D

    1977-05-01

    Daily treatment of female rats with medroxyprogesterone acetate in aqueous suspension resulted in adrenocortical atrophy. The doses given were those used for oestrus synchronisation. Intramuscular injections of 2-0 mg medroxyprogesterone acetate were used to investigate the atrophic process. Adrenocortical involution was associated with extensive single cell deletion (apoptosis). It is suggested that theses changes were due to suppression of pituitary ACTH secretion. The cytological changes support the concept that single cell death plays an important role in organ remodelling. Biochemical determinations of DNA, RNA, protein and dry matter, and histological examination, did not reveal significant changes in the liver. PMID:560035

  9. Mitotane Inhibits Sterol-O-Acyl Transferase 1 Triggering Lipid-Mediated Endoplasmic Reticulum Stress and Apoptosis in Adrenocortical Carcinoma Cells.

    PubMed

    Sbiera, Silviu; Leich, Ellen; Liebisch, Gerhard; Sbiera, Iuliu; Schirbel, Andreas; Wiemer, Laura; Matysik, Silke; Eckhardt, Carolin; Gardill, Felix; Gehl, Annemarie; Kendl, Sabine; Weigand, Isabel; Bala, Margarita; Ronchi, Cristina L; Deutschbein, Timo; Schmitz, Gerd; Rosenwald, Andreas; Allolio, Bruno; Fassnacht, Martin; Kroiss, Matthias

    2015-11-01

    Adrenocortical carcinoma (ACC) is a rare malignancy that harbors a dismal prognosis in advanced stages. Mitotane is approved as an orphan drug for treatment of ACC and counteracts tumor growth and steroid hormone production. Despite serious adverse effects, mitotane has been clinically used for decades. Elucidation of its unknown molecular mechanism of action seems essential to develop better ACC therapies. Here, we set out to identify the molecular target of mitotane and altered downstream mechanisms by combining expression genomics and mass spectrometry technology in the NCI-H295 ACC model cell line. Pathway analyses of expression genomics data demonstrated activation of endoplasmic reticulum (ER) stress and profound alteration of lipid-related genes caused by mitotane treatment. ER stress marker CHOP was strongly induced and the two upstream ER stress signalling events XBP1-mRNA splicing and eukaryotic initiation factor 2 A (eIF2α) phosphorylation were activated by mitotane in NCI-H295 cells but to a much lesser extent in four nonsteroidogenic cell lines. Lipid mass spectrometry revealed mitotane-induced increase of free cholesterol, oxysterols, and fatty acids specifically in NCI-H295 cells as cause of ER stress. We demonstrate that mitotane is an inhibitor of sterol-O-acyl-transferase 1 (SOAT1) leading to accumulation of these toxic lipids. In ACC tissue samples we show variable SOAT1 expression correlating with the response to mitotane treatment. In conclusion, mitotane confers adrenal-specific cytotoxicity and down-regulates steroidogenesis by inhibition of SOAT1 leading to lipid-induced ER stress. Targeting of cancer-specific lipid metabolism opens new avenues for treatment of ACC and potentially other types of cancer. PMID:26305886

  10. Expression of prepro-ghrelin and related receptor genes in the rat adrenal gland and evidences that ghrelin exerts a potent stimulating effect on corticosterone secretion by cultured rat adrenocortical cells.

    PubMed

    Rucinski, Marcin; Ziolkowska, Agnieszka; Tyczewska, Marianna; Malendowicz, Ludwik K

    2009-08-01

    The orexigenic peptide ghrelin (GHREL) and obestatin (OBS) originate from the same peptide precursor, preproghrelin (ppGHREL). Apart from orexigenic effect, GHREL also regulates neuroendocrine function. We investigated GHREL and OBS effects on corticosterone secretion by freshly isolated and cultured rat adrenocortical cells. Classic RT-PCR revealed the presence of ppGHREL, GHS-R1a, GPR39v1 and GPR39v2 and GOAT4 (ghrelin O-acyl transferase) mRNAs in rat adrenals and cultured for 4 days rat adrenocortical cells. Expression of ppGHREL, GHS-R1a, and GOAT genes was notably higher in the cortex than in medulla. High expression level of GOAT gene was found in the zona glomerulosa, while expression level of both GPR39v1 and GPR39v2 genes was similar in adrenal cortical zones and in medulla. In freshly isolated cells neither GHREL nor OBS had an effect on corticosteroid output. Prolonged exposure of cultured cells to GHREL resulted in a potent, comparable to ACTH, stimulating effect of GHREL on corticosterone secretion. Prolonged exposure to OBS was ineffective. Neither GHREL nor OBS had any effect on proliferation of studied cells, while ACTH notably lowered it. GHREL down regulated GHS-R1a gene expression while both ACTH and GHREL stimulated expression level of GPR39v1 gene. Expression of CYP11A1 gene was notably stimulated and that of StAR gene remained unaffected by ACTH or GHREL. Thus, our study is the first to demonstrate direct stimulating effect of GHREL on corticosterone output by cultured rat adrenocortical cells. This stimulating action differs from that evoked by ACTH and is not dependent on the presence of functional ACTH receptor. PMID:19416745

  11. Cerebellin and des-cerebellin exert ACTH-like effects on corticosterone secretion and the intracellular signaling pathway gene expression in cultured rat adrenocortical cells--DNA microarray and QPCR studies.

    PubMed

    Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Malendowicz, Ludwik K

    2009-04-01

    Precerebellins (Cbln) belong to the C1q/TNF superfamily of secreted proteins which have diverse functions. They are abundantly expressed in the cerebellum, however, three of them are also expressed in the rat adrenal gland. All members of the Cbln family form homomeric and heteromeric complexes with each other in vitro and it was suggested that such complexes play a crucial role in normal development of the cerebellum. The aim of our study was to investigate whether Cbln1-derived peptides, cerebellin (CER) and des-Ser1-cerebellin (desCER) are involved in regulating biological functions of rat adrenocortical cells. In the primary culture of rat adrenocortical cells, 24 h exposure to CER or desCER notably stimulated corticosterone output and inhibited proliferative activity and similar effects were evoked by ACTH. To study gene transcript regulation by CER, desCER and ACTH, we applied Oligo GEArray DNA Microarray: Rat Signal Transduction Pathway Finder. In relation to the control culture, 13 of the 113 transcripts present on the array were differentially expressed. These transcripts were either up- or down-regulated by ACTH and/or CER or desCER treatment. Validation of DNA Microarray data by QPCR revealed that only 5 of 13 genes studied were differentially expressed. Of those genes, Fos and Icam1 were up-regulated and Egr1 was down-regulated by ACTH, CER and desCER. The remaining two genes, Fasn (insulin signaling pathway) and Hspb1 (HSP27) (stress signaling pathway), were regulated only by CER and desCER, but not by ACTH. Thus, both CER and desCER have effects similar to and different from corticotrophin on the intracellular signaling pathway gene expression in cultured rat adrenocortical cells. PMID:19288031

  12. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  13. Integrated genome-wide analysis of genomic changes and gene regulation in human adrenocortical tissue samples

    PubMed Central

    Gara, Sudheer Kumar; Wang, Yonghong; Patel, Dhaval; Liu-Chittenden, Yi; Jain, Meenu; Boufraqech, Myriem; Zhang, Lisa; Meltzer, Paul S.; Kebebew, Electron

    2015-01-01

    To gain insight into the pathogenesis of adrenocortical carcinoma (ACC) and whether there is progression from normal-to-adenoma-to-carcinoma, we performed genome-wide gene expression, gene methylation, microRNA expression and comparative genomic hybridization (CGH) analysis in human adrenocortical tissue (normal, adrenocortical adenomas and ACC) samples. A pairwise comparison of normal, adrenocortical adenomas and ACC gene expression profiles with more than four-fold expression differences and an adjusted P-value < 0.05 revealed no major differences in normal versus adrenocortical adenoma whereas there are 808 and 1085, respectively, dysregulated genes between ACC versus adrenocortical adenoma and ACC versus normal. The majority of the dysregulated genes in ACC were downregulated. By integrating the CGH, gene methylation and expression profiles of potential miRNAs with the gene expression of dysregulated genes, we found that there are higher alterations in ACC versus normal compared to ACC versus adrenocortical adenoma. Importantly, we identified several novel molecular pathways that are associated with dysregulated genes and further experimentally validated that oncostatin m signaling induces caspase 3 dependent apoptosis and suppresses cell proliferation. Finally, we propose that there is higher number of genomic changes from normal-to-adenoma-to-carcinoma and identified oncostatin m signaling as a plausible druggable pathway for therapeutics. PMID:26446994

  14. Hepatocyte Growth Factor/cMET Pathway Activation Enhances Cancer Hallmarks in Adrenocortical Carcinoma.

    PubMed

    Phan, Liem M; Fuentes-Mattei, Enrique; Wu, Weixin; Velazquez-Torres, Guermarie; Sircar, Kanishka; Wood, Christopher G; Hai, Tao; Jimenez, Camilo; Cote, Gilbert J; Ozsari, Levent; Hofmann, Marie-Claude; Zheng, Siyuan; Verhaak, Roeland; Pagliaro, Lance; Cortez, Maria Angelica; Lee, Mong-Hong; Yeung, Sai-Ching J; Habra, Mouhammed Amir

    2015-10-01

    Adrenocortical carcinoma is a rare malignancy with poor prognosis and limited response to chemotherapy. Hepatocyte growth factor (HGF) and its receptor cMET augment cancer growth and resistance to chemotherapy, but their role in adrenocortical carcinoma has not been examined. In this study, we investigated the association between HGF/cMET expression and cancer hallmarks of adrenocortical carcinoma. Transcriptomic and immunohistochemical analyses indicated that increased HGF/cMET expression in human adrenocortical carcinoma samples was positively associated with cancer-related biologic processes, including proliferation and angiogenesis, and negatively correlated with apoptosis. Accordingly, treatment of adrenocortical carcinoma cells with exogenous HGF resulted in increased cell proliferation in vitro and in vivo while short hairpin RNA-mediated knockdown or pharmacologic inhibition of cMET suppressed cell proliferation and tumor growth. Moreover, exposure of cells to mitotane, cisplatin, or radiation rapidly induced pro-cMET expression and was associated with an enrichment of genes (e.g., CYP450 family) related to therapy resistance, further implicating cMET in the anticancer drug response. Together, these data suggest an important role for HGF/cMET signaling in adrenocortical carcinoma growth and resistance to commonly used treatments. Targeting cMET, alone or in combination with other drugs, could provide a breakthrough in the management of this aggressive cancer. PMID:26282167

  15. Isolation of rat adrenocortical mitochondria

    SciTech Connect

    Solinas, Paola; Fujioka, Hisashi; Tandler, Bernard; Hoppel, Charles L.

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A method for isolation of adrenocortical mitochondria from the adrenal gland of rats is described. Black-Right-Pointing-Pointer The purified isolated mitochondria show excellent morphological integrity. Black-Right-Pointing-Pointer The properties of oxidative phosphorylation are excellent. Black-Right-Pointing-Pointer The method increases the opportunity of direct analysis of adrenal mitochondria from small animals. -- Abstract: This report describes a relatively simple and reliable method for isolating adrenocortical mitochondria from rats in good, reasonably pure yield. These organelles, which heretofore have been unobtainable in isolated form from small laboratory animals, are now readily accessible. A high degree of mitochondrial purity is shown by the electron micrographs, as well as the structural integrity of each mitochondrion. That these organelles have retained their functional integrity is shown by their high respiratory control ratios. In general, the biochemical performance of these adrenal cortical mitochondria closely mirrors that of typical hepatic or cardiac mitochondria.

  16. Cholesterol and steroid synthesizing smooth endoplasmic reticulum of adrenocortical cells contains high levels of translocation apparatus proteins.

    PubMed

    Black, V H; Sanjay, A; van Leyen, K; Möeller, I; Lauring, B; Kreibich, G

    2002-11-01

    Steroid-secreting cells possess abundant smooth endoplasmic reticulum whose membranes contain many enzymes involved in sterol and steroid synthesis. In this study we demonstrate that adrenal smooth microsomal subfractions enriched in these membranes also possess high levels of proteins belonging to the translocation apparatus, proteins previously assumed to be confined to morphologically identifiable rough endoplasmic reticulum (RER). We further demonstrate that these smooth microsomal subfractions are capable of effecting the functions of these protein complexes: co-translational translocation, signal peptide cleavage and N-glycosylation of newly synthesized polypeptides. We hypothesize that these elements participate in regulating the levels of ER-targeted membrane proteins involved in cholesterol and steroid metabolism in a sterol-dependent and hormonally-regulated manner. PMID:12530645

  17. Adrenocortical tumors and insulin resistance: What is the first step?

    PubMed

    Altieri, Barbara; Tirabassi, Giacomo; Casa, Silvia Della; Ronchi, Cristina L; Balercia, Giancarlo; Orio, Francesco; Pontecorvi, Alfredo; Colao, Annamaria; Muscogiuri, Giovanna

    2016-06-15

    The pathogenetic mechanisms underlying the onset of adrenocortical tumors (ACTs) are still largely unknown. Recently, more attention has been paid to the role of insulin and insulin-like growth factor (IGF) system on general tumor development and progression. Increased levels of insulin, IGF-1 and IGF-2 are associated with tumor cell growth and increased risk of cancer promotion and progression in patients with type 2 diabetes. Insulin resistance and compensatory hyperinsulinemia may play a role in adrenal tumor growth through the activation of insulin and IGF-1 receptors. Interestingly, apparently non-functioning ACTs are often associated with a high prevalence of insulin resistance and metabolic syndrome. However, it is unclear if ACT develops from a primary insulin resistance and compensatory hyperinsulinemia or if insulin resistance is only secondary to the slight cortisol hypersecretion by ACT. The aim of this review is to summarize the current evidence regarding the relationship between hyperinsulinemia and adrenocortical tumors. PMID:26637955

  18. Pathogenesis of benign adrenocortical tumors.

    PubMed

    Vezzosi, Delphine; Bertherat, Jérôme; Groussin, Lionel

    2010-12-01

    Most adrenocortical tumors (ACT) are benign unilateral adrenocortical adenomas, often discovered incidentally. Exceptionally, ACT are bilateral. However bilateral ACT have been very helpful to progress in the pathophysiology of ACT. Although most ACT are of sporadic origin, they may also be part of syndromic and/or hereditary disorders. The identification of the genetics of familial diseases associated with benign ACT has been helpful to define somatic alterations in sporadic ACT: for example, identification of PRKAR1A mutations in Carney complex or alterations of the Wnt/β-catenin pathway in Familial Adenomatous Polyposis Coli. Components of the cAMP signaling pathway-for example, adrenocorticotropic-hormone receptors and other membrane receptors, Gs protein, phosphodiesterases and protein kinase A-can be altered to various degrees in benign cortisol-secreting ACT. These progress have been important for the understanding of the pathogenesis of benign ACT, but already have profound implications for clinical management, for example in unraveling the genetic origin of disease in some patients with ACT. They also have therapeutic consequences, and should help to develop new therapeutic options. PMID:21115158

  19. Treatment Options by Stage (Adrenocortical Carcinoma)

    MedlinePlus

    ... of Childhood Treatment for more information.) Having certain genetic conditions increases the risk of adrenocortical carcinoma. Anything ... can be a sign of disease. CT scan (CAT scan) : A procedure that makes a series of ...

  20. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model

    SciTech Connect

    Duursen, Majorie B.M. van; Smeets, Evelien E.J.W.; Rijk, Jeroen C.W.; Nijmeijer, Sandra M.; Berg, Martin van den

    2013-06-01

    Breast cancer treatment by the aromatase inhibitor Letrozole (LET) or Selective Estrogen Receptor Modulator Tamoxifen (TAM) can result in the onset of menopausal symptoms. Women often try to relieve these symptoms by taking menopausal supplements containing high levels of phytoestrogens. However, little is known about the potential interaction between these supplements and breast cancer treatment, especially aromatase inhibitors. In this study, interaction of phytoestrogens with the estrogen receptor alpha and TAM action was determined in an ER-reporter gene assay (BG1Luc4E2 cells) and human breast epithelial tumor cells (MCF-7). Potential interactions with aromatase activity and LET were determined in human adrenocorticocarcinoma H295R cells. We also used the previously described H295R/MCF-7 co-culture model to study interactions with steroidogenesis and tumor cell proliferation. In this model, genistein (GEN), 8-prenylnaringenin (8PN) and four commercially available menopausal supplements all induced ER-dependent tumor cell proliferation, which could not be prevented by physiologically relevant LET and 4OH-TAM concentrations. Differences in relative effect potencies between the H295R/MCF-7 co-culture model and ER-activation in BG1Luc4E2 cells, were due to the effects of the phytoestrogens on steroidogenesis. All tested supplements and GEN induced aromatase activity, while 8PN was a strong aromatase inhibitor. Steroidogenic profiles upon GEN and 8PN exposure indicated a strong inhibitory effect on steroidogenesis in H295R cells and H295R/MCF-7 co-cultures. Based on our in vitro data we suggest that menopausal supplement intake during breast cancer treatment should better be avoided, at least until more certainty regarding the safety of supplemental use in breast cancer patients can be provided. - Highlights: • Supplements containing phytoestrogens are commonly used by women with breast cancer. • Phytoestrogens alter steroidogenesis in a co-culture breast

  1. Advanced diagnostic approaches and current medical management of insulinomas and adrenocortical disease in ferrets (Mustela putorius furo).

    PubMed

    Chen, Sue

    2010-09-01

    Endocrine neoplasia is the most common tumor type in domestic ferrets, especially in middle-aged to older ferrets. Islet cell tumors and adrenocortical tumors constitute the major types of endocrine neoplasms. Insulinoma is a tumor that produces and releases excessive amounts of insulin. Evaluation of fasted blood glucose levels provides a quick diagnostic assessment for the detection of insulinomas. Use of glucocorticoids, diazoxide, and diet modification are some of the medical treatment options for insulinomas. Adrenocortical neoplasia in ferrets usually overproduces one or more sex hormones. Sex hormones which can result in progressive alopecia, vulvar swelling in females, and prostagomegaly in males. Abdominal ultrasonography and sex hormone assays can be used to diagnose adrenocortical neoplasms. Drugs such as leuprolide acetate, deslorelin acetate, and the hormone melatonin can be used to treat adrenocortical neoplasms in ferrets when surgery is not an option. PMID:20682429

  2. Retinoic acid receptor beta and angiopoietin-like protein 1 are involved in the regulation of human androgen biosynthesis

    PubMed Central

    Udhane, Sameer S.; Pandey, Amit V.; Hofer, Gaby; Mullis, Primus E.; Flück, Christa E.

    2015-01-01

    Androgens are essential for sexual development and reproduction. However, androgen regulation in health and disease is poorly understood. We showed that human adrenocortical H295R cells grown under starvation conditions acquire a hyperandrogenic steroid profile with changes in steroid metabolizing enzymes HSD3B2 and CYP17A1 essential for androgen production. Here we studied the regulatory mechanisms underlying androgen production in starved H295R cells. Microarray expression profiling of normal versus starved H295R cells revealed fourteen differentially expressed genes; HSD3B2, HSD3B1, CYP21A2, RARB, ASS1, CFI, ASCL1 and ENC1 play a role in steroid and energy metabolism and ANGPTL1, PLK2, DUSP6, DUSP10 and FREM2 are involved in signal transduction. We discovered two new gene networks around RARB and ANGPTL1, and show how they regulate androgen biosynthesis. Transcription factor RARB stimulated the promoters of genes involved in androgen production (StAR, CYP17A1 and HSD3B2) and enhanced androstenedione production. For HSD3B2 regulation RARB worked in cooperation with Nur77. Secretory protein ANGPTL1 modulated CYP17A1 and DUSP6 expression by inducing ERK1/2 phosphorylation. By contrast, our studies revealed no evidence for hormones or cell cycle involvement in regulating androgen biosynthesis. In summary, these studies establish a firm role for RARB and ANGPTL1 in the regulation of androgen production in H295R cells. PMID:25970467

  3. A Rare Case of Functioning Adrenocortical Oncocytoma Presenting as Cushing Syndrome

    PubMed Central

    Tartaglia, Nicola; Cianci, Pasquale; Altamura, Amedeo; Lizzi, Vincenzo; Vovola, Fernanda; Fersini, Alberto; Ambrosi, Antonio; Neri, Vincenzo

    2016-01-01

    Functioning adrenocortical oncocytoma is very rare neoplasm. It is usually nonfunctional and benign and incidentally detected. Generally, these tumors originate in the kidneys, thyroid, parathyroid, and salivary or pituitary glands; they have also been reported in other sites including choroid plexus, respiratory tract, and larynx. Histologically, they are characterized by cells with eosinophilic granular cytoplasm and numerous packed mitochondria. We reported a case of a 44-year-old female who presented with Cushing syndrome for hypersecretion of cortisol due to adrenocortical oncocytoma. Magnetic resonance of abdomen revealed a right adrenal mass. Laparoscopic adrenalectomy was performed and the tumor was pathologically confirmed as benign adrenocortical oncocytoma. After surgical treatment, Cushing's syndrome resolved. PMID:26989553

  4. A Rare Case of Functioning Adrenocortical Oncocytoma Presenting as Cushing Syndrome.

    PubMed

    Tartaglia, Nicola; Cianci, Pasquale; Altamura, Amedeo; Lizzi, Vincenzo; Vovola, Fernanda; Fersini, Alberto; Ambrosi, Antonio; Neri, Vincenzo

    2016-01-01

    Functioning adrenocortical oncocytoma is very rare neoplasm. It is usually nonfunctional and benign and incidentally detected. Generally, these tumors originate in the kidneys, thyroid, parathyroid, and salivary or pituitary glands; they have also been reported in other sites including choroid plexus, respiratory tract, and larynx. Histologically, they are characterized by cells with eosinophilic granular cytoplasm and numerous packed mitochondria. We reported a case of a 44-year-old female who presented with Cushing syndrome for hypersecretion of cortisol due to adrenocortical oncocytoma. Magnetic resonance of abdomen revealed a right adrenal mass. Laparoscopic adrenalectomy was performed and the tumor was pathologically confirmed as benign adrenocortical oncocytoma. After surgical treatment, Cushing's syndrome resolved. PMID:26989553

  5. Familial predisposition to adrenocortical tumors: clinical and biological features and management strategies.

    PubMed

    Ribeiro, Raul C; Pinto, Emilia M; Zambetti, Gerard P

    2010-06-01

    The incidence of adrenocortical tumors (ACTs) is increased in several familial cancer syndromes resulting from abnormalities in genes that encode transcription factors implicated in cell proliferation, differentiation, senescence, apoptosis, and genomic instability. These include P53, MEN1, APC, and PRKAR1A. Adenomas are the most common ACTs, but adrenocortical carcinomas occur rarely as well. The clinical manifestations of ACTs, which result from increased secretion of adrenocortical hormones, are similar in the familial and sporadic forms of the disease. However, their management may differ because of unique aspects of the constitutional syndromes. The analysis of gene expression profiles of ACTs in these constitutional syndromes have contributed to our understanding of adrenal tumorigenesis and revealed new molecular diagnostic and prognostic markers and candidate genes for targeted therapies. This chapter summarizes the clinical and biological features, pathogenesis, and management strategies for ACTs that develop in patients with familial cancer syndrome. PMID:20833338

  6. Steroidogenic acute regulatory protein gene expression, steroid-hormone secretion and proliferative activity of adrenocortical cells in the presence of proteasome inhibitors: in vivo studies on the regenerating rat adrenal cortex.

    PubMed

    Rucinski, Marcin; Tortorella, Cinzia; Ziolkowska, Agnieszka; Nowak, Magdalena; Nussdorfer, Gastone G; Malendowicz, Ludwik K

    2008-05-01

    Previous studies have shown that proteasome inhibitors promote the accumulation of steroidogenic acute regulatory protein (StAR) in cultured rat adrenocortical cells. Unexpectedly, this response was associated with a moderate lowering in the corticosterone secretion and proliferation rate of cultured cells. Hence, we studied the effects of proteasome inhibitors MG115 and MG132 on the secretion and proliferative activity of the regenerating adrenal cortex in rats 5 days after surgery. Animals were given two subcutaneous injections of 0.15 or 1.5 nmol/100 g of inhibitors 24 and 12 h before decapitation. Real-time PCR and Western blotting showed that StAR expression, both mRNA and protein, was markedly lower in regenerating adrenals than in the intact gland of sham-operated rats. Neither MG115 nor MG132 affected StAR expression in regenerating gland. Inhibitors induced a slight decrease in the plasma concentrations of aldosterone and corticosterone, but did not significantly alter metaphase index of the regenerating adrenal cortex. Our findings provide the first evidence that down-regulation of StAR occurs during the early stages of adrenal regeneration. Moreover, this suggests that the steroidogenic pathway is more sensitive to proteasome inhibitors than that regulating proliferative activity of regenerating adrenal cortex in the rat. PMID:18425351

  7. Protein kinase A alterations in adrenocortical tumors.

    PubMed

    Espiard, S; Ragazzon, B; Bertherat, J

    2014-11-01

    Stimulation of the cAMP pathway by adrenocorticotropin (ACTH) is essential for adrenal cortex maintenance, glucocorticoid and adrenal androgens synthesis, and secretion. Various molecular and cellular alterations of the cAMP pathway have been observed in endocrine tumors. Protein kinase A (PKA) is a central key component of the cAMP pathway. Molecular alterations of PKA subunits have been observed in adrenocortical tumors. PKA molecular defects can be germline in hereditary disorders or somatic in sporadic tumors. Heterozygous germline inactivating mutations of the PKA regulatory subunit RIα gene (PRKAR1A) can be observed in patients with ACTH-independent Cushing's syndrome (CS) due to primary pigmented nodular adrenocortical disease (PPNAD). PRKAR1A is considered as a tumor suppressor gene. Interestingly, these mutations can also be observed as somatic alterations in sporadic cortisol-secreting adrenocortical adenomas. Germline gene duplication of the catalytic subunits Cα (PRKACA) has been observed in patients with PPNAD. Furthermore, exome sequencing revealed recently activating somatic mutations of PRKACA in about 40% of cortisol-secreting adrenocortical adenomas. In vitro and in vivo functional studies help in the progress to understand the mechanisms of adrenocortical tumors development due to PKA regulatory subunits alterations. All these alterations are observed in benign oversecreting tumors and are mimicking in some way cAMP pathway constitutive activation. On the long term, unraveling these alterations will open new strategies of pharmacological treatment targeting the cAMP pathway in adrenal tumors and cortisol-secretion disorders. PMID:25105543

  8. ENDOCRINE TUMOURS: The genomics of adrenocortical tumors.

    PubMed

    Faillot, Simon; Assie, Guillaume

    2016-06-01

    The last decade witnessed the emergence of genomics, a set of high-throughput molecular measurements in biological samples. These pan-genomic and agnostic approaches have revolutionized the molecular biology and genetics of malignant and benign tumors. These techniques have been applied successfully to adrenocortical tumors. Exome sequencing identified new major drivers in all tumor types, including KCNJ5, ATP1A1, ATP2B3 and CACNA1D mutations in aldosterone-producing adenomas (APA), PRKACA mutations in cortisol-producing adenomas (CPA), ARMC5 mutations in primary bilateral macronodular adrenocortical hyperplasia (PBMAH) and ZNRF3 mutations in adrenocortical carcinomas (ACC). Moreover, the various genomic approaches - including exome sequencing, transcriptome, miRNome, genome and methylome - converge into a single molecular classification of adrenocortical tumors. Especially for ACC, two main molecular groups have emerged, showing major differences in outcomes. These ACC groups differ by their gene expression profiles, but also by recurrent mutations and specific DNA hypermethylation patterns in the subgroup of poor outcome. The clinical impact of these findings is just starting. The main altered signaling pathways now become therapeutic targets. The molecular groups of diseases individualize robust subtypes within diseases such as APA, CPA, PBMAH and ACC. A revised nosology of adrenocortical tumors should impact the clinical research. Obvious consequences also include genetic counseling for the new genetic diseases such as ARMC5 mutations in PBMAH, and a better prognostication of ACC based on targeted measurements of a few discriminant molecular alterations. Identifying the main molecular groups of adrenocortical tumors by extensively gathering the molecular variations is a significant step forward towards precision medicine. PMID:26739091

  9. CACNA1H(M1549V) Mutant Calcium Channel Causes Autonomous Aldosterone Production in HAC15 Cells and Is Inhibited by Mibefradil.

    PubMed

    Reimer, Esther N; Walenda, Gudrun; Seidel, Eric; Scholl, Ute I

    2016-08-01

    We recently demonstrated that a recurrent gain-of-function mutation in a T-type calcium channel, CACNA1H(M1549V), causes a novel Mendelian disorder featuring early-onset primary aldosteronism and hypertension. This variant was found independently in five families. CACNA1H(M1549V) leads to impaired channel inactivation and activation at more hyperpolarized potentials, inferred to cause increased calcium entry. We here aimed to study the effect of this variant on aldosterone production. We heterologously expressed empty vector, CACNA1H(WT) and CACNA1H(M1549V) in the aldosterone-producing adrenocortical cancer cell line H295R and its subclone HAC15. Transfection rates, expression levels, and subcellular distribution of the channel were similar between CACNA1H(WT) and CACNA1H(M1549V). We measured aldosterone production by an ELISA and CYP11B2 (aldosterone synthase) expression by real-time PCR. In unstimulated cells, transfection of CACNA1H(WT) led to a 2-fold increase in aldosterone levels compared with vector-transfected cells. Expression of CACNA1H(M1549V) caused a 7-fold increase in aldosterone levels. Treatment with angiotensin II or increased extracellular potassium levels further stimulated aldosterone production in both CACNA1H(WT)- and CACNA1H(M1549V)-transfected cells. Similar results were obtained for CYP11B2 expression. Inhibition of CACNA1H channels with the T-type calcium channel blocker Mibefradil completely abrogated the effects of CACNA1H(WT) and CACNA1H(M1549V) on CYP11B2 expression. These results directly link CACNA1H(M1549V) to increased aldosterone production. They suggest that calcium channel blockers may be beneficial in the treatment of a subset of patients with primary aldosteronism. Such blockers could target CACNA1H or both CACNA1H and the L-type calcium channel CACNA1D that is also expressed in the adrenal gland and mutated in patients with primary aldosteronism. PMID:27258646

  10. Intrarenal Adrenocortical Adenoma Treated by Robotic Partial Nephrectomy with Adrenalectomy

    PubMed Central

    Sulek, Jay; Smith, Steven C.; Hampton, Lance J.

    2016-01-01

    Abstract Background: We present an intrarenal adrenocortical adenoma discovered incidentally after robot-assisted partial nephrectomy and total adrenalectomy for a suspicious renal mass. Current literature describes the rare occurrence of an adrenocortical adenoma arising from a renal–adrenal fusion. This case represents an uncommon, benign pathology that should be considered in the differential diagnosis of an enhancing renal mass. Case Presentation: The patient is a 62-year-old female found to have an enhancing mass at the anterolateral aspect of the upper pole of the right kidney concerning for renal-cell carcinoma. CT imaging was performed to work up a cause for hyperparathyroidism. During robot-assisted partial nephrectomy, the lesion was found to be partially adherent to the lateral limb of the right adrenal gland. Microscopic evaluation with Melan-A staining showed the mass to be of adrenal origin with benign features and lack of capsulation, indicating an adrenal adenoma arising from intrarenal ectopic adrenal rests. Conclusion: An intrarenal adrenal adenoma arising from ectopic adrenal tissue is a unique pathology that represents a benign differential diagnosis in the evaluation of an enhancing renal mass. However, it cannot be differentiated from renal-cell carcinoma based on cross-sectional imaging alone and requires postoperative pathologic assessment to confirm the diagnosis. PMID:27579413

  11. Novel markers of gonadectomy-induced adrenocortical neoplasia in the mouse and ferret

    PubMed Central

    Schillebeeckx, Maximiliaan; Pihlajoki, Marjut; Gretzinger, Elisabeth; Yang, Wei; Thol, Franziska; Hiller, Theresa; Löbs, Ann-Kathrin; Röhrig, Theresa; Schrade, Anja; Cochran, Rebecca; Jay, Patrick Y.; Heikinheimo, Markku; Mitra, Robi D.; Wilson, David B.

    2014-01-01

    Gonadectomy (GDX) induces sex steroid-producing adrenocortical tumors in certain mouse strains and in the domestic ferret. Transcriptome analysis and DNA methylation mapping were used to identify novel genetic and epigenetic markers of GDX-induced adrenocortical neoplasia in female DBA/2J mice. Markers were validated using a combination of laser capture microdissection, quantitative RT-PCR, in situ hybridization, and immunohistochemistry. Microarray expression profiling of whole adrenal mRNA from ovariectomized vs. intact mice demonstrated selective upregulation of gonadal-like genes including Spinlw1 and Insl3 in GDX-induced adrenocortical tumors of the mouse. A complementary candidate gene approach identified Foxl2 as another gonadal-like marker expressed in GDX-induced neoplasms of the mouse and ferret. That both “male-specific” (Spinlw1) and “female-specific” (Foxl2) markers were identified is noteworthy and implies that the neoplasms exhibit mixed characteristics of male and female gonadal somatic cells. Genome-wide methylation analysis showed that two genes with hypomethylated promoters, Igfbp6 and Foxs1, are upregulated in GDX-induced adrenocortical neoplasms. These new genetic and epigenetic markers may prove useful for studies of steroidogenic cell development and for diagnostic testing. PMID:25289806

  12. Adrenocortical suppression in cats given megestrol acetate.

    PubMed

    Chastain, C B; Graham, C L; Nichols, C E

    1981-12-01

    Megestrol acetate was given orally to 8 cats at a dose of 2.5 mg every other day for 2 weeks and to 8 cats at a dose of 5.0 mg every day for 2 weeks. Four cats were designated nontreated controls. Pre-ACTH-stimulated plasma concentrations of cortisol (hydrocortisone) and ACTH-stimulated cortisol and tolerance to large-dose glucose infusion (IV) were determined on each of the 20 cats given megestrol acetate. Cats were restrained with acepromazine maleate and ketamine hydrochloride during blood sample collection and large-dose glucose infusion. Adrenocortical function and tolerance to large-dose glucose infusion were reevaluated for 4 weeks--after 1st and 2nd weeks of megestrol acetate treatment of the treated groups, and after 1st and 2nd weeks when treatment was stopped (ie, experiment weeks 3 and 4). Each week a cat from the control group and 2 cats from the 2 treated groups were selected to determine the changes occurring during the experiment for that week; after collection of plasma samples, each week's 5 selected cats were euthanatized and necropsied. Significant impairment of adrenocortical function and alteration of adrenocortical morphology occurred with both treated groups. The most severe adrenocortical alterations occurred in the cats 1 week after megestrol acetate was no longer given (ie, experiment week 3). Megestrol acetate-induced adrenocortical suppression contributed to the death of 1 cat. It was concluded that if stress occurs to cats on treatment or soon after treatment with megestrol acetate, glucocorticoids should be supplemented. The effects of megestrol acetate on glucose tolerance were overshadowed by the unforeseen intolerance caused by chemical restraint with acepromazine maleate and ketamine hydrochloride. PMID:6280517

  13. 2D-DIGE proteomic analysis identifies new potential therapeutic targets for adrenocortical carcinoma

    PubMed Central

    Armignacco, Roberta; Ercolino, Tonino; Canu, Letizia; Baroni, Gianna; Nesi, Gabriella; Galli, Andrea; Mannelli, Massimo; Luconi, Michaela

    2015-01-01

    Adrenocortical carcinoma (ACC) is a rare aggressive tumor with poor prognosis when metastatic at diagnosis. The tumor biology is still mostly unclear, justifying the limited specificity and efficacy of the anti-cancer drugs currently available. This study reports the first proteomic analysis of ACC by using two-dimensional-differential-in-gel-electrophoresis (2D-DIGE) to evaluate a differential protein expression profile between adrenocortical carcinoma and normal adrenal. Mass spectrometry, associated with 2D-DIGE analysis of carcinomas and normal adrenals, identified 22 proteins in 27 differentially expressed 2D spots, mostly overexpressed in ACC. Gene ontology analysis revealed that most of the proteins concurs towards a metabolic shift, called the Warburg effect, in adrenocortical cancer. The differential expression was validated by Western blot for Aldehyde-dehydrogenase-6-A1,Transferrin, Fascin-1,Lamin A/C,Adenylate-cyclase-associated-protein-1 and Ferredoxin-reductase. Moreover, immunohistochemistry performed on paraffin-embedded ACC and normal adrenal specimens confirmed marked positive staining for all 6 proteins diffusely expressed by neoplastic cells, compared with normal adrenal cortex. In conclusion, our preliminary findings reveal a different proteomic profile in adrenocortical carcinoma compared with normal adrenal cortex characterized by overexpression of mainly metabolic enzymes, thus suggesting the Warburg effect also occurs in ACC. These proteins may represent promising novel ACC biomarkers and potential therapeutic targets if validated in larger cohorts of patients. PMID:25691058

  14. Giant adrenal pseudocyst harbouring adrenocortical cancer

    PubMed Central

    Wilkinson, Michael; Fanning, Deirdre Mary; Moloney, James; Flood, Hugh

    2011-01-01

    The authors report a very rare case of adreno-cortical carcinoma arising in a giant adrenal pseudocyst. A 64-year-old woman presented to the emergency department with a 6 week history of progressively worsening severe left abdominal pain, anorexia, anergia and constipation. On examination, she was cachectic with tenderness over the left abdomen and flank. Medical history was significant for gastritis and anaemia. During her investigation, a well-defined para-renal 12×6 centimetre multi-loculated cyst, of uncertain origin was identified on CT. Ultrasound-guided biopsy was not diagnostic. MRI showed the cyst to be likely adrenal in origin. Serum and urinary catecholamines were unremarkable. At laparotomy an unresectable large, tense, fixed, cystic mass was seen to occupy the left side of the abdomen. The cyst was de-roofed. Pathology showed a high-grade poorly differentiated adreno-cortical carcinoma with a pseudo-capsule. She died 2 months postoperatively. PMID:22679267

  15. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  16. Celecoxib reduces glucocorticoids in vitro and in a mouse model with adrenocortical hyperplasia.

    PubMed

    Liu, Sisi; Saloustros, Emmanouil; Berthon, Annabel; Starost, Matthew F; Sahut-Barnola, Isabelle; Salpea, Paraskevi; Szarek, Eva; Faucz, Fabio R; Martinez, Antoine; Stratakis, Constantine A

    2016-01-01

    Primary pigmented nodular adrenocortical disease (PPNAD), whether in the context of Carney complex (CNC) or isolated, leads to ACTH-independent Cushing's syndrome (CS). CNC and PPNAD are caused typically by inactivating mutations of PRKAR1A, a gene coding for the type 1a regulatory subunit (R1α) of cAMP-dependent protein kinase (PKA). Mice lacking Prkar1a, specifically in the adrenal cortex (AdKO) developed CS caused by bilateral adrenal hyperplasia (BAH), which is formed from the abnormal proliferation of fetal-like adrenocortical cells. Celecoxib is a cyclooxygenase 2 (COX2) inhibitor. In bone, Prkar1a inhibition is associated with COX2 activation and prostaglandin E2 (PGE2) production that, in turn, activates proliferation of bone stromal cells. We hypothesized that COX2 inhibition may have an effect in PPNAD. In vitro treatment of human cell lines, including one from a patient with PPNAD, with celecoxib resulted in decreased cell viability. We then treated AdKO and control mice with 1500 mg/kg celecoxib or vehicle. Celecoxib treatment led to decreased PGE2 and corticosterone levels, reduced proliferation and increased apoptosis of adrenocortical cells, and decreased steroidogenic gene expression. We conclude that, in vitro and in vivo, celecoxib led to decreased steroidogenesis. In a mouse model of PPNAD, celecoxib caused histological changes that, at least in part, reversed BAH and this was associated with a reduction of corticosterone levels. PMID:26438728

  17. Celecoxib reduces glucocorticoids in vitro and in a mouse model with adrenocortical hyperplasia

    PubMed Central

    Liu, Sisi; Saloustros, Emmanouil; Berthon, Annabel; Starost, Matthew F.; Sahut-Barnola, Isabelle; Salpea, Paraskevi; Szarek, Eva; Faucz, Fabio R.; Martinez, Antoine; Stratakis, Constantine A.

    2015-01-01

    Primary pigmented nodular adrenocortical disease (PPNAD), whether in the context of Carney complex (CNC) or isolated, leads to adrenocorticotropin hormone (ACTH) - independent Cushing’s syndrome (CS). CNC and PPNAD are caused typically by inactivating mutations of PRKAR1A, a gene coding for the type 1a regulatory subunit (R1α) of cAMP–dependent protein kinase (PKA). Mice lacking Prkar1a, specifically in the adrenal cortex (AdKO) developed CS caused by bilateral adrenal hyperplasia (BAH), which is formed from the abnormal proliferation of fetal-like adrenocortical cells. Celecoxib is a cyclooxygenase-2 (COX2) inhibitor. In bone, Prkar1a inhibition is associated with COX2 activation and prostaglandin E2 (PGE2) production that, in turn, activates proliferation of bone stromal cells. We hypothesized that COX2 inhibition may have an effect in PPNAD. In vitro treatment of human cell lines, including one from a patient with PPNAD, with Celecoxib resulted in decreased cell viability. We then treated AdKO and control mice with 1,500 mg/kg Celecoxib or vehicle. Celecoxib treatment led to decreased PGE2 and corticosterone levels, reduced proliferation and increased apoptosis of adrenocortical cells, and decreased steroidogenic gene expression. We conclude that, in vitro and in vivo, Celecoxib led to decreased steroidogenesis. In a mouse model of PPNAD, Celecoxib caused histological changes that reversed, at least in part, BAH and this was associated with a reduction of corticosterone levels. PMID:26438728

  18. Ultrastructure of the adrenocortical homologue in dexamethasone-treated eels.

    PubMed Central

    Bhattacharyya, T K; Butler, D G

    1980-01-01

    The ultrastructural modifications of the adrenocortical homologue (AH) in the North American eel (Anguilla rostrata) were studied following a 10 day treatment with dexamethasone (20 mg/day). The principal changes were: disorganization of smooth endoplasmic reticlum, regression and fragmentation of the Golgi apparatus, and a lowering of matrix density in the mitochondria. Steroid treatment also induced the appearance of numerous cytoplasmic inclusions: (a) lamellated bodies with electron-lucent cores; (b) membranous whorls isolating cytoplasmic regions containing smooth endoplasmic reticulum and mitochondria and (c) complex aggregates showing whorls of membranes, residues of cytoplasmic organelles, and dense matrix. The non-accumulation of lipid droplets in repressed AH cells was noteworthy. These subcellular changes indicate endogenous cellular autophagy in the AH as a result of steroid-induced suppression of ACTH production by the pituitary. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:7400039

  19. Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma.

    PubMed

    Zheng, Siyuan; Cherniack, Andrew D; Dewal, Ninad; Moffitt, Richard A; Danilova, Ludmila; Murray, Bradley A; Lerario, Antonio M; Else, Tobias; Knijnenburg, Theo A; Ciriello, Giovanni; Kim, Seungchan; Assie, Guillaume; Morozova, Olena; Akbani, Rehan; Shih, Juliann; Hoadley, Katherine A; Choueiri, Toni K; Waldmann, Jens; Mete, Ozgur; Robertson, A Gordon; Wu, Hsin-Ta; Raphael, Benjamin J; Shao, Lina; Meyerson, Matthew; Demeure, Michael J; Beuschlein, Felix; Gill, Anthony J; Sidhu, Stan B; Almeida, Madson Q; Fragoso, Maria C B V; Cope, Leslie M; Kebebew, Electron; Habra, Mouhammed A; Whitsett, Timothy G; Bussey, Kimberly J; Rainey, William E; Asa, Sylvia L; Bertherat, Jérôme; Fassnacht, Martin; Wheeler, David A; Hammer, Gary D; Giordano, Thomas J; Verhaak, Roel G W

    2016-05-01

    We describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers. PMID:27165744

  20. Neuromedin-U stimulates enucleation-induced adrenocortical regeneration in the rat.

    PubMed

    Trejter, Marcin; Neri, Giuliano; Rucinski, Marcin; Majchrzak, Mariola; Nussdorfer, Gastone G; Malendowicz, Ludwik K

    2008-06-01

    Neuromedin-U (NMU) is a brain-gut peptide, which has been previously found to stimulate hypothalamic-pituitary-adrenal axis in the rat. Enucleation-induced adrenal regeneration in rats with contralateral adrenalectomy is a well-established model of adrenal growth, that not only depends on the compensatory ACTH hypersecretion, but is also modulated by several regulatory peptides. Hence, we investigated whether NMU may be included in this group of bioactive molecules. Reverse transcription-polymerase chain reaction and immunocytochemistry showed that regenerating rat adrenocortical cells at days 5 and 8 after surgery express the NMU receptor NMUR1 as mRNA and protein. NMU8 administration to rats bearing regenerating adrenals markedly raised the plasma concentration of corticosterone and notably enhanced proliferative activity of adrenocortical cells. ACTH blood level was unchanged at day 5 and significantly decreased at day 8. The conclusion is drawn that NMU stimulates regeneration of rat adrenal cortex, via a mechanism independent of pituitary ACTH and involving the activation of NMUR1 located on adrenocortical cells. PMID:18506360

  1. Laparoscopic Adrenalectomy for Large Adrenocortical Carcinoma

    PubMed Central

    al Qadhi, Hani; al Wahaibi, Khalifa; Rizvi, Syed G.

    2015-01-01

    Background: Adrenocortical cancer (ACC) is a rare disease that is difficult to treat. Laparoscopic adrenalectomy (LA) is performed, even for large adrenocortical carcinomas. However, the oncological effectiveness of LA remains unclear. This review presents the current knowledge of the feasibility and oncological effectiveness of laparoscopic surgery for ACC, with an analysis of data for outcomes and other parameters. Database: A systematic review of the literature was performed by searching the PubMed and Medline databases for all relevant articles in English, published between January 1992 and August 2014 on LA for adrenocortical carcinoma. Discussion: The search resulted in retrieval of 29 studies, of which 10 addressed the outcome of LA versus open adrenalectomy (OA) and included 844 patients eligible for this review. Among these, 206 patients had undergone LA approaches, and 638 patients had undergone OA. Among the 10 studies that compared the outcomes obtained with LA and OA for ACC, 5 noted no statistically significant difference between the 2 groups in the oncological outcomes of recurrence and disease-free survival, whereas the remaining 5 reported inferior outcomes in the LA group. Using a paired t test for statistical analysis, except for tumor size, we found no significant difference in local recurrence, peritoneal carcinomatosis, positive resection margin, and time to recurrence between the LA and OA groups. The overall mean tumor size in patients undergoing LA and OA was 7.1 and 11.2 cm, respectively (P = .0003), and the mean overall recurrence was 61.5 and 57.9%, respectively. The outcome of LA is believed to depend to a large extent on the size and stage of the lesion (I and II being favorable) and the surgical expertise in the center where the patient undergoes the operation. However, the present review shows no difference in the outcome between the 2 approaches across all stages. A poor outcome is likely to result from inadequate surgery

  2. Adrenocortical function in cane toads from different environments.

    PubMed

    Hernández, Sandra E; Sernia, Conrad; Bradley, Adrian J

    2016-05-01

    The adrenocortical function of cane toads (Rhinella marina) exposed to different experimental procedures, as well as captured from different environments, was assessed by challenging the hypothalamic-pituitary-adrenal (HPA) axis. It was found that restriction stress as well as cannulation increased plasma corticosterone (B) levels for up to 12h. A single dose of dexamethasone (DEX 2mg/kg) significantly reduced B levels demonstrating its potential for use in the evaluation of the HPA axis in amphibia. We also demonstrate that 0.05 IU/g BW (im) of synthetic adrenocorticotropic hormone (ACTH) significantly increased plasma B levels in cane toads. Changes in size area of the cortical cells were positively associated with total levels of B after ACTH administration. We also found differences in adrenal activity between populations. This was assessed by a DEX-ACTH test. The animals captured from the field and maintained in captivity for one year at the animal house (AH) present the highest levels of total and free B after ACTH administration. We also found that animals from the front line of dispersion in Western Australia (WA) present the weakest adrenal response to a DEX-ACTH test. The animals categorized as long established in Queensland Australia (QL), and native in Mexico (MX), do not shown a marked difference in the HPA activity. Finally we found that in response to ACTH administration, females reach significantly higher levels of plasma B than males. For the first time the adrenocortical response in cane toads exposed to different experimental procedures, as well as from different populations was assessed systematically. PMID:26877241

  3. Low DICER1 expression is associated with poor clinical outcome in adrenocortical carcinoma

    PubMed Central

    de Sousa, Gabriela Resende Vieira; Ribeiro, Tamaya C.; Faria, Andre M.; Mariani, Beatriz M.P.; Lerario, Antonio M.; Zerbini, Maria Claudia N.; Soares, Iberê C.; Wakamatsu, Alda; Alves, Venancio A.F.; Mendonca, Berenice B.; Fragoso, Maria Candida B.V.; Latronico, Ana Claudia; Almeida, Madson Q.

    2015-01-01

    Low DICER1 expression was associated with poor outcome in several cancers. Recently, hot-spot DICER1 mutations were found in ovarian tumors, and TARBP2 truncating mutations in tumor cell lines with microsatellite instability. In this study, we assessed DICER1 e TRBP protein expression in 154 adult adrenocortical tumors (75 adenomas and 79 carcinomas). Expression of DICER1 and TARBP2 gene was assessed in a subgroup of 61 tumors. Additionally, we investigated mutations in metal biding sites located at the RNase IIIb domain of DICER1 and in the exon 5 of TARBP2 in 61 tumors. A strong DICER1 expression was demonstrated in 32% of adenomas and in 51% of carcinomas (p = 0.028). Similarly, DICER1 gene overexpression was more frequent in carcinomas (60%) than in adenomas (23%, p = 0.006). But, among adrenocortical carcinomas, a weak DICER1 expression was significantly more frequent in metastatic than in non-metastatic adrenocortical carcinomas (66% vs. 31%; p = 0.002). Additionally, a weak DICER1 expression was significantly correlated with a reduced overall (p = 0.004) and disease-free (p = 0.005) survival. In the multivariate analysis, a weak DICER1 expression (p = 0.048) remained as independent predictor of recurrence. Regarding TARBP2 gene, its protein and gene expression did not correlate with histopathological and clinical parameters. No variant was identified in hot spot areas of DICER1 and TARBP2. In conclusion, a weak DICER1 protein expression was associated with reduced disease-free and overall survival and was a predictor of recurrence in adrenocortical carcinomas. PMID:26087193

  4. Oxidative stress and adrenocortical insufficiency

    PubMed Central

    Prasad, R; Kowalczyk, J C; Meimaridou, E; Storr, H L; Metherell, L A

    2014-01-01

    Maintenance of redox balance is essential for normal cellular functions. Any perturbation in this balance due to increased reactive oxygen species (ROS) leads to oxidative stress and may lead to cell dysfunction/damage/death. Mitochondria are responsible for the majority of cellular ROS production secondary to electron leakage as a consequence of respiration. Furthermore, electron leakage by the cytochrome P450 enzymes may render steroidogenic tissues acutely vulnerable to redox imbalance. The adrenal cortex, in particular, is well supplied with both enzymatic (glutathione peroxidases and peroxiredoxins) and non-enzymatic (vitamins A, C and E) antioxidants to cope with this increased production of ROS due to steroidogenesis. Nonetheless oxidative stress is implicated in several potentially lethal adrenal disorders including X-linked adrenoleukodystrophy, triple A syndrome and most recently familial glucocorticoid deficiency. The finding of mutations in antioxidant defence genes in the latter two conditions highlights how disturbances in redox homeostasis may have an effect on adrenal steroidogenesis. PMID:24623797

  5. Morphological changes in the pituitary-adrenocortical axis in natives of La Paz

    NASA Astrophysics Data System (ADS)

    Gosney, John; Heath, Donald; Williams, David; Rios-Dalenz, Jaime

    1991-03-01

    Increased activity of the hypothalamic-pituitary-adrenocortical axis is part of the response to the stress of initial exposure to hypoxia, but there is evidence to suggest that it persists after homeostatic stability has been regained and acclimatization achieved. The adrenal glands of five lifelong residents of La Paz, Bolivia, who had lived at altitudes in the range 3600 3800 m, were significantly larger than those in age-matched controls from sea level (15.3g vs 10.4g; P<0.001) and appeared hyperplastic. The pituitary glands of the highlanders were not significantly different in size from those of the controls (0.67 g vs 0.51 g), but contained larger populations of corticotrophs expressed in terms of the total cell population of their anterior lobes (25.6% vs 19.4%; P<0.001). In conjunction with other studies of this endocrine axis in man and animals exposed to a hypoxic environment, these data suggest that greater amounts of adrenocorticotrophic hormone (ACTH) are required to maintain normal adrenocortical function under such circumstances, probably as a result of hypoxic inhibition of adrenocortical sensitivity to stimulation. Physiological hyperplasia of the adrenal cortex may be common in people living at high altitude.

  6. Regulation of aldosterone secretion by Cav1.3

    PubMed Central

    Xie, Catherine B.; Haris Shaikh, Lalarukh; Garg, Sumedha; Tanriver, Gizem; Teo, Ada E. D.; Zhou, Junhua; Maniero, Carmela; Zhao, Wanfeng; Kang, Soosung; Silverman, Richard B.; Azizan, Elena A. B.; Brown, Morris J.

    2016-01-01

    Aldosterone-producing adenomas (APAs) vary in phenotype and genotype. Zona glomerulosa (ZG)-like APAs frequently have mutations of an L-type calcium channel (LTCC) CaV1.3. Using a novel antagonist of CaV1.3, compound 8, we investigated the role of CaV1.3 on steroidogenesis in the human adrenocortical cell line, H295R, and in primary human adrenal cells. This investigational drug was compared with the common antihypertensive drug nifedipine, which has 4.5-fold selectivity for the vascular LTCC, CaV1.2, over CaV1.3. In H295R cells transfected with wild-type or mutant CaV1.3 channels, the latter produced more aldosterone than wild-type, which was ameliorated by 100 μM of compound 8. In primary adrenal and non-transfected H295R cells, compound 8 decreased aldosterone production similar to high concentration of nifedipine (100 μM). Selective CaV1.3 blockade may offer a novel way of treating primary hyperaldosteronism, which avoids the vascular side effects of CaV1.2-blockade, and provides targeted treatment for ZG-like APAs with mutations of CaV1.3. PMID:27098837

  7. Regulation of aldosterone secretion by Cav1.3.

    PubMed

    Xie, Catherine B; Haris Shaikh, Lalarukh; Garg, Sumedha; Tanriver, Gizem; Teo, Ada E D; Zhou, Junhua; Maniero, Carmela; Zhao, Wanfeng; Kang, Soosung; Silverman, Richard B; Azizan, Elena A B; Brown, Morris J

    2016-01-01

    Aldosterone-producing adenomas (APAs) vary in phenotype and genotype. Zona glomerulosa (ZG)-like APAs frequently have mutations of an L-type calcium channel (LTCC) CaV1.3. Using a novel antagonist of CaV1.3, compound 8, we investigated the role of CaV1.3 on steroidogenesis in the human adrenocortical cell line, H295R, and in primary human adrenal cells. This investigational drug was compared with the common antihypertensive drug nifedipine, which has 4.5-fold selectivity for the vascular LTCC, CaV1.2, over CaV1.3. In H295R cells transfected with wild-type or mutant CaV1.3 channels, the latter produced more aldosterone than wild-type, which was ameliorated by 100 μM of compound 8. In primary adrenal and non-transfected H295R cells, compound 8 decreased aldosterone production similar to high concentration of nifedipine (100 μM). Selective CaV1.3 blockade may offer a novel way of treating primary hyperaldosteronism, which avoids the vascular side effects of CaV1.2-blockade, and provides targeted treatment for ZG-like APAs with mutations of CaV1.3. PMID:27098837

  8. Paracrine control of steroidogenesis by serotonin in adrenocortical neoplasms.

    PubMed

    Lefebvre, H; Duparc, C; Prévost, G; Zennaro, M C; Bertherat, J; Louiset, E

    2015-06-15

    Serotonin (5-hydroxytryptamine; 5-HT) is able to activate the hypothalamo-pituitary-adrenal axis via multiple actions at different levels. In the human adrenal gland, 5-HT, released by subcapsular mast cells, stimulates corticosteroid production through a paracrine mode of communication which involves 5-HT receptor type 4 (5-HT4) primarily located in zona glomerulosa. As a result, 5-HT is much more efficient to stimulate aldosterone secretion than cortisol release in vitro and administration of 5-HT4 receptor agonists to healthy individuals is followed by an increase in plasma aldosterone levels without any change in plasma cortisol concentrations. Interestingly, adrenocortical hyperplasias and tumors responsible for corticosteroid hypersecretion exhibit various cellular and molecular defects which tend to reinforce the intraadrenal serotonergic tone. These pathophysiological mechanisms, which are summarized in the present review, include an increase in adrenal 5-HT production and overexpression of 5-HT receptors in adrenal neoplastic tissues. Altogether, these data support the concept of adrenal serotonergic paracrinopathy and suggest that 5-HT and its receptors may constitute valuable targets for pharmacological treatments of primary adrenal diseases. PMID:25433205

  9. Network analysis reveals potential markers for pediatric adrenocortical carcinoma

    PubMed Central

    Kulshrestha, Anurag; Suman, Shikha; Ranjan, Rakesh

    2016-01-01

    Pediatric adrenocortical carcinoma (ACC) is a rare malignancy with a poor outcome. Molecular mechanisms of pediatric ACC oncogenesis and advancement are not well understood. Accurate and timely diagnosis of the disease requires identification of new markers for pediatric ACC. Differentially expressed genes (DEGs) were identified from the gene expression profile of pediatric ACC and obtained from Gene Expression Omnibus. Gene Ontology functional and pathway enrichment analysis was implemented to recognize the functions of DEGs. A protein–protein interaction (PPI) and gene–gene functional interaction (GGI) network of DEGs was constructed. Hub gene detection and enrichment analysis of functional modules were performed. Furthermore, a gene regulatory network incorporating DEGs–microRNAs–transcription factors was constructed and analyzed. A total of 431 DEGs including 228 upregulated and 203 downregulated DEGs were screened. These genes were largely involved in cell cycle, steroid biosynthesis, and p53 signaling pathways. Upregulated genes, CDK1, CCNB1, CDC20, and BUB1B, were identified as the common hubs of PPI and GGI networks. All the four common hub genes were also part of modules of the PPI network. Moreover, all the four genes were also present in the largest module of GGI network. A gene regulatory network consisting of 82 microRNAs and 100 transcription factors was also constructed. CDK1, CCNB1, CDC20, and BUB1B may serve as potential biomarker of pediatric ACC and as potential targets for therapeutic approach, although experimental studies are required to authenticate our findings. PMID:27555782

  10. Ghrelin and obestatin inhibit enucleation-induced adrenocortical proliferation in the rat.

    PubMed

    Rucinski, Marcin; Trejter, Marcin; Ziolkowska, Agnieszka; Tyczewska, Marianna; Malendowicz, Ludwik K

    2010-05-01

    Studies involving the role of ghrelin (GHREL) in regulating the proliferative activity of various cell types have obtained variable results depending primarily on the experimental model applied. It was recently reported that neither GHREL nor obestatin (OBS) affected the proliferative activity of cultured rat adrenocortical cells. In view of the conflicting results, we investigated the effects of GHREL and OBS on the proliferative activity of rat adrenocortical cells in a model of bilateral enucleation-induced adrenocortical regeneration in the rat. Rats were sacrificed 5 or 8 days after surgery. Twenty-four hours before being sacrificed, the appropriate groups were infused with 3 nmol GHREL or OBS/100 g. The mitotic index was assessed using the stachmokinetic method with vincristine. In comparison with intact rats, expression levels of ppGHREL, BAX, JUN-B and JUN-C genes were notably higher in regenerating adrenals, and neither GHREL nor OBS infusion affected these levels. Expression levels of the GHS-R, GPR39v2 and FOS genes were affected neither by adrenal enucleation nor GHREL or OBS infusion. Expression of only two studied genes, GPR39v1 and EGR1, was regulated by OBS. In the regenerating adrenal glands, GPR39v1 and EGR1 mRNA levels were higher than the levels in intact animals. GHREL infusion had no effect while OBS infusion notably stimulated GPR39v1 mRNA levels in the regenerating adrenal gland and evoked an opposite effect on EGR1 mRNA. OBS administration resulted in a potent decrease in the mitotic index of the studied cells, an effect found at both days 5 and 8 of the experiment. GHREL exerted a similar effect only at day 5 of adrenocortical regeneration. Neither GHREL nor OBS had an effect on blood aldosterone concentrations. GHREL infusion lowered plasma corticosterone concentration at day 5 but not 8 of the experiment, while OBS administration was ineffective. Thus, this study is the first to demonstrate that, in vivo, both GHREL and OBS inhibit the

  11. [Diagnostic benefits of adrenocortical scintigraphy in hepatic adrenal rest tumor].

    PubMed

    Ishida, Kosuke; Horii, Rika; Yamashita, Tatsuya; Arai, Kuniaki; Yamashita, Taro; Kagaya, Takashi; Sakai, Yoshio; Mizukoshi, Eishiro; Honda, Masao; Kaneko, Shuichi

    2014-10-01

    An 81-year-old female was referred to our hospital for the examination of an S7 liver tumor. The tumor was suspected to be a hepatic adrenal rest tumor (HART) based on ultrasonography, dynamic CT, Gd-EOB-DTPA-enhanced MRI, and CT during abdominal angiography. After various hormonal tests, the tumor was confirmed as hormonally non-functional. The diagnosis of HART was confirmed based on (131)I-adosterol accumulation in the tumor by adrenocortical scintigraphy. The resected tumor was histologically compatible with HART, and it may have been able to produce cortisol based on the immunohistochemical findings of various adrenocortical hormone metabolic enzymes. Adrenocortical scintigraphy may thus be useful in diagnosing HART. PMID:25283230

  12. Pitfalls in the management of acute adrenocortical insufficiency: discussion paper.

    PubMed Central

    Waise, A; Young, R J

    1989-01-01

    In patients with acute adrenocortical insufficiency prompt recognition and treatment may be life-saving. Treatment should be initiated immediately before confirmation of the diagnosis. As shown by these case reports, junior staff on acute medical and surgical services, to whom these patients usually first present, may not appreciate that (a) hyponatraemia and hyperkalaemia, in the absence of renal failure, should immediately suggest the diagnosis of adrenal insufficiency and (b) treatment should precede confirmation of the diagnosis. Attempts to correct hyperkalaemia due to adrenocortical insufficiency with insulin and infusions of dextrose is inappropriate and potentially dangerous but seems to be a not unusual mistake. PMID:2614769

  13. Chronic effects of mercuric chloride ingestion on rat adrenocortical function

    SciTech Connect

    Agrawal, R.; Chansouria, J.P.N. )

    1989-09-01

    Mercurial contamination of environment has increased. Mercury accumulates in various organs and adversely affects their functions. Some of the most prominent toxic effects of inorganic mercury compounds include neurotoxicity, hepatotoxicity and nephrotoxicity. Besides this, mercury has also been reported to affect various endocrine glands like pituitary, thyroid, gonadal and adrenal glands. There have been no reports on the toxic effects of chronic oral administration of varying doses of mercuric chloride on adrenocortical function in albino rats. The present work was undertaken to study the adrenocortical response to chronic oral administration of mercuric chloride of varying dose and duration in albino rats.

  14. A clinical and immunological study of adrenocortical insufficiency (Addison's disease)

    PubMed Central

    Irvine, W. J.; Stewart, A. G.; Scarth, Laura

    1967-01-01

    Fifty-one patients with adrenocortical insufficiency were subdivided into three groups according to the nature of their adrenal disease; twelve patients with idiopathic, twenty-three patients with probable idiopathic and sixteen patients with tuberculous adrenal insufficiency. The importance of objective confirmation of a clinical diagnosis of adrenal insufficiency is stressed and the difficulties of classification of many patients with adult onset adrenal insufficiency are discussed. Idiopathic and probable idiopathic adrenal insufficiency had a sex ratio that was predominantly female (2·5:1) with a mean age of onset of 33 years. Antibodies to adrenal cortex were detected by the methods of immunofluorescence and complement fixation. They were detected in the serum of 80% (20:25) of the females with idiopathic or probable idiopathic adrenal insufficiency and in only 10% (1:10) of the males. The titre of the adrenal antibody was low (≤32) as tested either by immunofluorescence or complement fixation. The serum of only one patient with tuberculous adrenal insufficiency reacted with adrenal tissue in the complement fixation test but the immunofluorescence method showed that this serum reacted with the vascular endothelium and not the secretory cells. No correlation was observed between the duration of the clinical illness and the presence, or absence, or titre of the adrenal antibody. Adrenal antibody was not detected in the sera of fifty-one control subjects matched for age and sex. Four of sixty-nine patients with lymphadenoid goitre, one out of ninety-three patients with diabetes mellitus and none of 230 patients with thyrotoxicosis, primary hypothyroidism or pernicious anaemia had antibody in the serum specific for adrenocortical secretory cells. There is a clinical and immunological overlap between idiopathic adrenal insufficiency and other diseases associated with autoimmune phenomena— thyroid disease, atrophic gastritis and hypoparathyroidism. It is

  15. Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors

    PubMed Central

    Longatto-Filho, Adhemar; Faria, André M.; Fragoso, Maria C. B. V.; Lovisolo, Silvana M.; Lerário, Antonio M.; Almeida, Madson Q.

    2015-01-01

    Adrenocortical carcinomas (ACCs) are complex neoplasias that may present unexpected clinical behavior, being imperative to identify new biological markers that can predict patient prognosis and provide new therapeutic options. The main aim of the present study was to evaluate the prognostic value of metabolism-related key proteins in adrenocortical carcinoma. The immunohistochemical expression of MCT1, MCT2, MCT4, CD147, CD44, GLUT1 and CAIX was evaluated in a series of 154 adult patients with adrenocortical neoplasia and associated with patients' clinicopathological parameters. A significant increase in was found for membranous expression of MCT4, GLUT1 and CAIX in carcinomas, when compared to adenomas. Importantly MCT1, GLUT1 and CAIX expressions were significantly associated with poor prognostic variables, including high nuclear grade, high mitotic index, advanced tumor staging, presence of metastasis, as well as shorter overall and disease free survival. In opposition, MCT2 membranous expression was associated with favorable prognostic parameters. Importantly, cytoplasmic expression of CD147 was identified as an independent predictor of longer overall survival and cytoplasmic expression of CAIX as an independent predictor of longer disease-free survival. We provide evidence for a metabolic reprogramming in adrenocortical malignant tumors towards the hyperglycolytic and acid-resistant phenotype, which was associated with poor prognosis. PMID:26587828

  16. The Role of gsp Mutations on the Development of Adrenocortical Tumors and Adrenal Hyperplasia

    PubMed Central

    Villares Fragoso, Maria Candida Barisson; Wanichi, Ingrid Quevedo; Cavalcante, Isadora Pontes; Mariani, Beatriz Marinho de Paula

    2016-01-01

    Somatic GNAS point mutations, commonly known as gsp mutations, are involved in the pathogenesis of McCune–Albright syndrome (MAS) and have also been described in autonomous hormone-producing tumors, such as somatotropinoma, corticotrophoma, thyroid cancer, ovarian and testicular Leydig cell tumors, and primary macronodular adrenocortical hyperplasia (PMAH) (1–3). The involvement of gsp mutations in adrenal tumors was first described by Lyons et al. Since then, several studies have detected the presence of gsp mutations in adrenal tumors, but none of them could explain its presence along or the mechanism that leads to tumor formation and hormone hypersecretion. As a result, the molecular pathogenesis of the majority of sporadic adrenocortical tumors remains unclear (3). PMAH has also been reported with gsp somatic mutations in a few cases. Fragoso et al. identified two distinct gsp somatic mutations affecting arginine residues on codon 201 of GNAS in a few patients with PMAH who lacked any features or manifestations of MAS. Followed by this discovery, other studies have continued looking for gsp mutations based on strong prior evidence demonstrating that increased cAMP signaling is sufficient for cell proliferation and cortisol production (2, 4). With consideration for the previously reported findings, we conjecture that although somatic activating mutations in GNAS are a rare molecular event, these mutations could probably be sufficient to induce the development of macronodule hyperplasia and variable cortisol secretion. In this manuscript, we revised the presence of gsp mutations associated with adrenal cortical tumors and hyperplasia. PMID:27512387

  17. DNA Methylation Profiling Identifies Global Methylation Differences and Markers of Adrenocortical Tumors

    PubMed Central

    Rechache, Nesrin S.; Wang, Yonghong; Stevenson, Holly S.; Killian, J. Keith; Edelman, Daniel C.; Merino, Maria; Zhang, Lisa; Nilubol, Naris; Stratakis, Constantine A.; Meltzer, Paul S.

    2012-01-01

    Context: It is not known whether there are any DNA methylation alterations in adrenocortical tumors. Objective: The objective of the study was to determine the methylation profile of normal adrenal cortex and benign and malignant adrenocortical tumors. Methods: Genome-wide methylation status of CpG regions were determined in normal (n = 19), benign (n = 48), primary malignant (n = 8), and metastatic malignant (n = 12) adrenocortical tissue samples. An integrated analysis of genome-wide methylation and mRNA expression in benign vs. malignant adrenocortical tissue samples was also performed. Results: Methylation profiling revealed the following: 1) that methylation patterns were distinctly different and could distinguish normal, benign, primary malignant, and metastatic tissue samples; 2) that malignant samples have global hypomethylation; and 3) that the methylation of CpG regions are different in benign adrenocortical tumors by functional status. Normal compared with benign samples had the least amount of methylation differences, whereas normal compared with primary and metastatic adrenocortical carcinoma samples had the greatest variability in methylation (adjusted P ≤ 0.01). Of 215 down-regulated genes (≥2-fold, adjusted P ≤ 0.05) in malignant primary adrenocortical tumor samples, 52 of these genes were also hypermethylated. Conclusions: Malignant adrenocortical tumors are globally hypomethylated as compared with normal and benign tumors. Methylation profile differences may accurately distinguish between primary benign and malignant adrenocortical tumors. Several differentially methylated sites are associated with genes known to be dysregulated in malignant adrenocortical tumors. PMID:22472567

  18. Adrenocortical cancer (ACC) - literature overview and own experience.

    PubMed

    Dworakowska, Dorota; Drabarek, Agata; Wenzel, Ingrid; Babińska, Anna; Świątkowska-Stodulska, Renata; Sworczak, Krzysztof

    2014-01-01

    Adrenocortical carcinoma (ACC) is a malignant endocrine tumour. The rarity of the disease has stymied therapeutic development. Age distribution shows two peaks: the first and fifth decades of life, with children and women more frequently affected. Although 60-70% of ACCs are biochemically found to overproduce hormones, it is not clinically apparent in many cases. If present, endocrine symptoms include signs of hypercortisolaemia, virilisation or gynaecomastia. ACC carries a poor prognosis, and a cure can be achieved only by complete surgical resection. Mitotane is used both as an adjuvant treatment and also in non-operative patients. The role of radio- and chemotherapy is still controversial. The post-operative disease free survival is low and oscillates around 30% due to high tumour recurrence rate. The diagnosis is based on tumour histological assessment with the use of the Weiss score, however urinary steroid profiling (if available) can serve to differentiate between ACC and other adrenal tumours. Conventional prognostic markers in ACC include stage and grade of disease, and, as currently reported, the presence of hypercortisolaemia. Molecular analysis has had a significant impact on the understanding of the pathogenetic mechanism of ACC development and the evaluation of prognostic and predictive markers, among which alterations of the IGF system, the Wnt pathway, p53 and molecules involved in cancer cell invasion properties and angiogenesis seem to be very promising. We here summarise our own experience related to the management of ACC and present a literature overview. We have not aimed to include a detailed summary of the molecular alterations biology described in ACC, as this has already been addressed in other papers. PMID:25554619

  19. IGF2 and IGF1R in pediatric adrenocortical tumors: roles in metastasis and steroidogenesis.

    PubMed

    Peixoto Lira, Régia Caroline; Fedatto, Paola Fernanda; Marco Antonio, David Santos; Leal, Letícia Ferro; Martinelli, Carlos Eduardo; de Castro, Margaret; Tucci, Silvio; Neder, Luciano; Ramalho, Leandra; Seidinger, Ana Luiza; Cardinalli, Izilda; Mastellaro, Maria José; Yunes, José Andres; Brandalise, Silvia Regina; Tone, Luiz Gonzaga; Rauber Antonini, Sonir Roberto; Scrideli, Carlos Alberto

    2015-06-01

    Deregulation of the IGF system observed in human tumors indicates a role in malignant cell transformation and in tumor cell proliferation. Although overexpression of the IGF2 and IGF1R genes was described in adrenocortical tumors (ACTs), few studies reported their profiles in pediatric ACTs. In this study, the IGF2 and IGF1R expression was evaluated by RT-qPCR according to the patient's clinical/pathological features in 60 pediatric ACT samples, and IGF1R protein was investigated in 45 samples by immunohistochemistry (IHC). Whole transcriptome and functional assays were conducted after IGF1R inhibition with OSI-906 in NCI-H295A cell line. Significant IGF2 overexpression was found in tumor samples when compared with non-neoplastic samples (P<0.001), significantly higher levels of IGF1R in patients with relapse/metastasis (P=0.031) and moderate/strong IGF1R immunostaining in 62.2% of ACTs, but no other relationship with patient survival and clinical/pathological features was observed. OSI-906 treatment downregulated genes associated with MAPK activity, induced limited reduction of cell viability and increased the apoptosis rate. After 24h, the treatment also decreased the expression of genes related to the steroid biosynthetic process, the protein levels of the steroidogenic acute regulatory protein (STAR), and androgen secretion in cell medium, supporting the role of IGF1R in steroidogenesis of adrenocortical carcinoma cells. Our data showed that the IGF1R overexpression could be indicative of aggressive ACTs in children. However, in vitro treatments with high concentrations of OSI-906 (>1μM) showed limited reduction of cell viability, suggesting that OSI-906 alone could not be a suitable therapy to abolish carcinoma cell growth. PMID:27185872

  20. Combined Use of Etomidate and Dexmedetomidine Produces an Additive Effect in Inhibiting the Secretion of Human Adrenocortical Hormones

    PubMed Central

    Gu, Hongbin; Zhang, Mazhong; Cai, Meihua; Liu, Jinfen

    2015-01-01

    Background The direct effects of etomidate were investigated on the secretion of cortisol and its precursors by dispersed cells from the adrenal cortex of human of animals. Dexmedetomidine (DEX) is an anesthetic agent that may interfere with cortisol secretion via an unknown mechanism, such as involving inhibition of 11β-hydroxylase and the cholesterol side-chain cleavage enzyme system. The aim of this study was to determine whether dexmedetomidine (DEX) has a similar inhibitory effect on adrenocortical function, and whether combined use of etomidate (ETO) and DEX could produce a synergistic action in inhibiting the secretion of human adrenocortical hormones. Material/Methods Human adrenocortical cells were exposed to different concentrations of ETO and DEX. The dose-effect model between the ETO concentration and the mean secretion of cortisone (CORT) and aldosterone (ALDO) per hour was estimated. Results Hill’s equation well-described the dose-effect correlation between the ETO concentration and the amount of ALDO and CORT secretion. When the DEX concentration was introduced into the model by using E0 (basal secretion) as the covariate, the goodness of fit of the ETO-CORT dose-effect model was improved significantly and the objective function value was reduced by 4.55 points (P<0.05). The parameters of the final ETO-ALDO pharmacodynamics model were EC50=9.74, Emax=1.20, E0=1.33, and γ=18.5; the parameters of the final ETO-CORT pharmacodynamics model were EC50=9.49, Emax=8.16, E0=8.57, and γ=37.0. In the presence of DEX, E0 was 8.57–0.0247×(CDEX–4.6), and the other parameters remained unchanged. All parameters but γ were natural logarithm conversion values. Conclusions Combined use of DEX and ETO reduced ETO’s inhibitory E0 (basal secretion) of CORT from human adrenocortical cells in a dose-dependent manner, suggesting that combined use of ETO and DEX produced an additive effect in inhibiting the secretion of human adrenocortical hormones. PMID

  1. Combined Use of Etomidate and Dexmedetomidine Produces an Additive Effect in Inhibiting the Secretion of Human Adrenocortical Hormones.

    PubMed

    Gu, Hongbin; Zhang, Mazhong; Cai, Meihua; Liu, Jinfen

    2015-01-01

    BACKGROUND The direct effects of etomidate were investigated on the secretion of cortisol and its precursors by dispersed cells from the adrenal cortex of human of animals. Dexmedetomidine (DEX) is an anesthetic agent that may interfere with cortisol secretion via an unknown mechanism, such as involving inhibition of 11b-hydroxylase and the cholesterol side-chain cleavage enzyme system. The aim of this study was to determine whether dexmedetomidine (DEX) has a similar inhibitory effect on adrenocortical function, and whether combined use of etomidate (ETO) and DEX could produce a synergistic action in inhibiting the secretion of human adrenocortical hormones. MATERIAL AND METHODS Human adrenocortical cells were exposed to different concentrations of ETO and DEX. The dose-effect model between the ETO concentration and the mean secretion of cortisone (CORT) and aldosterone (ALDO) per hour was estimated. RESULTS Hill's equation well-described the dose-effect correlation between the ETO concentration and the amount of ALDO and CORT secretion. When the DEX concentration was introduced into the model by using E0 (basal secretion) as the covariate, the goodness of fit of the ETO-CORT dose-effect model was improved significantly and the objective function value was reduced by 4.55 points (P<0.05). The parameters of the final ETO-ALDO pharmacodynamics model were EC50=9.74, Emax=1.20, E0=1.33, and γ=18.5; the parameters of the final ETO-CORT pharmacodynamics model were EC50=9.49, Emax=8.16, E0=8.57, and γ=37.0. In the presence of DEX, E0 was 8.57-0.0247×(CDEX-4.6), and the other parameters remained unchanged. All parameters but γ were natural logarithm conversion values. CONCLUSIONS Combined use of DEX and ETO reduced ETO's inhibitory E0 (basal secretion) of CORT from human adrenocortical cells in a dose-dependent manner, suggesting that combined use of ETO and DEX produced an additive effect in inhibiting the secretion of human adrenocortical hormones. PMID:26568275

  2. Cortisol-secreting adrenocortical tumours in dogs and their relevance for human medicine.

    PubMed

    Galac, Sara

    2016-02-01

    Spontaneous cortisol-secreting adrenocortical tumours in pet dogs are an attractive animal model for their human counterparts. Adrenal morphology and function are similar in dogs and humans, and adrenocortical tumours have comparable clinical and pathological characteristics. Their relatively high incidence in pet dogs represents a potential source of adrenocortical tumour tissue to facilitate research. The molecular characteristics of canine cortisol-secreting adrenocortical tumours suggest that they will be useful for the study of angiogenesis, the cAMP/protein kinase A pathway, and the role of Steroidogenic Factor-1 in adrenal tumourigenesis. Pet dogs with spontaneous cortisol-secreting adrenocortical tumours may also be useful in clinical testing of new drugs and in investigating the molecular background of adrenocortical tumours. PMID:26123587

  3. Pubertal outcome in a female with virilizing adrenocortical carcinoma

    PubMed Central

    Breidbart, Emily; Cameo, Tamara; Garvin, James H.; Hibshoosh, Hanina

    2016-01-01

    Adrenocortical tumors are neoplasms that rarely occur in pediatric patients. Adrenocortical carcinoma (ACC) is even more uncommon, and is an aggressive malignancy with 5-year survival of 55% in a registry series. There is a lack of information on long-term endocrine outcome in survivors. We describe a 10-year follow-up in a patient who presented at 3 years 5 months with a 1-year history of axillary odor and 6 months’ history of pubic hair development with an increased clitoral size. Androgen levels were increased and a pelvic sonogram revealed a suprarenal mass of the left kidney. The tumor was successfully removed. At 6 years 11 months, androgen levels increased again. Workup for tumor recurrence was negative and the findings likely represented early adrenarche. The patient had menarche at an appropriate time and attained a height appropriate for her family. PMID:26812773

  4. Pubertal outcome in a female with virilizing adrenocortical carcinoma.

    PubMed

    Breidbart, Emily; Cameo, Tamara; Garvin, James H; Hibshoosh, Hanina; Oberfield, Sharon E

    2016-04-01

    Adrenocortical tumors are neoplasms that rarely occur in pediatric patients. Adrenocortical carcinoma (ACC) is even more uncommon, and is an aggressive malignancy with 5-year survival of 55% in a registry series. There is a lack of information on long-term endocrine outcome in survivors. We describe a 10-year follow-up in a patient who presented at 3 years 5 months with a 1-year history of axillary odor and 6 months' history of pubic hair development with an increased clitoral size. Androgen levels were increased and a pelvic sonogram revealed a suprarenal mass of the left kidney. The tumor was successfully removed. At 6 years 11 months, androgen levels increased again. Workup for tumor recurrence was negative and the findings likely represented early adrenarche. The patient had menarche at an appropriate time and attained a height appropriate for her family. PMID:26812773

  5. Plurihormonal Cosecretion by a Case of Adrenocortical Oncocytic Neoplasm.

    PubMed

    Corrales, J J; Robles-Lázaro, C; Sánchez-Marcos, A I; González-Sánchez, M C; Antúnez-Plaza, P; Miralles, J M

    2016-01-01

    Adrenocortical oncocytic neoplasms (oncocytomas) are extremely rare; only approximately 159 cases have been described so far. The majority are nonfunctional and benign. We describe an unusual case of a functional oncocytoma secreting an excess of glucocorticoids (cortisol) and androgens (androstenedione and DHEAS), a pattern of plurihormonal cosecretion previously not reported in men, presenting with endocrine manifestations of Cushing's syndrome. The neoplasm was considered to be of uncertain malignant potential (borderline) according to the Lin-Weiss-Bisceglia criteria. PMID:27413559

  6. Plurihormonal Cosecretion by a Case of Adrenocortical Oncocytic Neoplasm

    PubMed Central

    Corrales, J. J.; Robles-Lázaro, C.; Sánchez-Marcos, A. I.; González-Sánchez, M. C.; Antúnez-Plaza, P.; Miralles, J. M.

    2016-01-01

    Adrenocortical oncocytic neoplasms (oncocytomas) are extremely rare; only approximately 159 cases have been described so far. The majority are nonfunctional and benign. We describe an unusual case of a functional oncocytoma secreting an excess of glucocorticoids (cortisol) and androgens (androstenedione and DHEAS), a pattern of plurihormonal cosecretion previously not reported in men, presenting with endocrine manifestations of Cushing's syndrome. The neoplasm was considered to be of uncertain malignant potential (borderline) according to the Lin-Weiss-Bisceglia criteria. PMID:27413559

  7. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking?

    PubMed Central

    Leccia, Felicia; Batisse-Lignier, Marie; Sahut-Barnola, Isabelle; Val, Pierre; Lefrançois-Martinez, A-Marie; Martinez, Antoine

    2016-01-01

    Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely “functional,” i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing’s syndrome (hypercortisolism) or Conn’s syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases. PMID:27471492

  8. PRKACA: the catalytic subunit of protein kinase A and adrenocortical tumors.

    PubMed

    Berthon, Annabel S; Szarek, Eva; Stratakis, Constantine A

    2015-01-01

    Cyclic-AMP (cAMP)-dependent protein kinase (PKA) is the main effector of cAMP signaling in all tissues. Inactivating mutations of the PRKAR1A gene, coding for the type 1A regulatory subunit of PKA, are responsible for Carney complex and primary pigmented nodular adrenocortical disease (PPNAD). PRKAR1A inactivation and PKA dysregulation have been implicated in various types of adrenocortical pathologies associated with ACTH-independent Cushing syndrome (AICS) from PPNAD to adrenocortical adenomas and cancer, and other forms of bilateral adrenocortical hyperplasias (BAH). More recently, mutations of PRKACA, the gene coding for the catalytic subunit C alpha (Cα), were also identified in the pathogenesis of adrenocortical tumors. PRKACA copy number gain was found in the germline of several patients with cortisol-producing BAH, whereas the somatic Leu206Arg (c.617A>C) recurrent PRKACA mutation was found in as many as half of all adrenocortical adenomas associated with AICS. In vitro analysis demonstrated that this mutation led to constitutive Cα activity, unregulated by its main partners, the PKA regulatory subunits. In this review, we summarize the current understanding of the involvement of PRKACA in adrenocortical tumorigenesis, and our understanding of PKA's role in adrenocortical lesions. We also discuss potential therapeutic advances that can be made through targeting of PRKACA and the PKA pathway. PMID:26042218

  9. PKA catalytic subunit mutations in adrenocortical Cushing's adenoma impair association with the regulatory subunit.

    PubMed

    Calebiro, Davide; Hannawacker, Annette; Lyga, Sandra; Bathon, Kerstin; Zabel, Ulrike; Ronchi, Cristina; Beuschlein, Felix; Reincke, Martin; Lorenz, Kristina; Allolio, Bruno; Kisker, Caroline; Fassnacht, Martin; Lohse, Martin J

    2014-01-01

    We recently identified a high prevalence of mutations affecting the catalytic (Cα) subunit of protein kinase A (PKA) in cortisol-secreting adrenocortical adenomas. The two identified mutations (Leu206Arg and Leu199_Cys200insTrp) are associated with increased PKA catalytic activity, but the underlying mechanisms are highly controversial. Here we utilize a combination of biochemical and optical assays, including fluorescence resonance energy transfer in living cells, to analyze the consequences of the two mutations with respect to the formation of the PKA holoenzyme and its regulation by cAMP. Our results indicate that neither mutant can form a stable PKA complex, due to the location of the mutations at the interface between the catalytic and the regulatory subunits. We conclude that the two mutations cause high basal catalytic activity and lack of regulation by cAMP through interference of complex formation between the regulatory and the catalytic subunits of PKA. PMID:25477193

  10. DAX1 Overexpression in Pediatric Adrenocortical Tumors: A Synergic Role with SF1 in Tumorigenesis.

    PubMed

    de Sousa, G R V; Soares, I C; Faria, A M; Domingues, V B; Wakamatsu, A; Lerario, A M; Alves, V A F; Zerbini, M C N; Mendonca, B B; Fragoso, M C B V; Latronico, A C; Almeida, M Q

    2015-08-01

    DAX1 transcription factor is a key determinant of adrenogonadal development, acting as a repressor of SF1 targets in steroidogenesis. It was recently demonstrated that DAX1 regulates pluripotency and differentiation in murine embryonic stem cells. In this study, we investigated DAX1 expression in adrenocortical tumors (ACTs) and correlated it with SF1 expression and clinical parameters. DAX1 and SF1 protein expression were assessed in 104 ACTs from 34 children (25 clinically benign and 9 malignant) and 70 adults (40 adenomas and 30 carcinomas). DAX1 gene expression was studied in 49 ACTs by quantitative real-time PCR. A strong DAX1 protein expression was demonstrated in 74% (25 out of 34) and 24% (17 out of 70) of pediatric and adult ACTs, respectively (χ(2)=10.1, p=0.002). In the pediatric group, ACTs with a strong DAX1 expression were diagnosed at earlier ages than ACTs with weak expression [median 1.2 (range, 0.5-4.5) vs. 2.2 (0.9-9.4), p=0.038]. DAX1 expression was not associated with functional status in ACTs. Interestingly, a positive correlation was observed between DAX1 and SF1 protein expression in both pediatric and adult ACTs (r=0.55 for each group separately; p<0.0001). In addition, DAX1 gene expression was significantly correlated with SF1 gene expression (p<0.0001, r=0.54). In conclusion, DAX1 strong protein expression was more frequent in pediatric than in adult ACTs. Additionally, DAX1 and SF1 expression positively correlated in ACTs, suggesting that these transcription factors might cooperate in adrenocortical tumorigenesis. PMID:25985323

  11. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    NASA Technical Reports Server (NTRS)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  12. Exposure to an Extremely-Low-Frequency Magnetic Field Stimulates Adrenal Steroidogenesis via Inhibition of Phosphodiesterase Activity in a Mouse Adrenal Cell Line

    PubMed Central

    Kitaoka, Kazuyoshi; Kawata, Shiyori; Yoshida, Tomohiro; Kadoriku, Fumiya; Kitamura, Mitsuo

    2016-01-01

    Extremely low-frequency magnetic fields (ELF-MFs) are generated by power lines and household electrical devices. In the last several decades, some evidence has shown an association between ELF-MF exposure and depression and/or anxiety in epidemiological and animal studies. The mechanism underlying ELF-MF-induced depression is considered to involve adrenal steroidogenesis, which is triggered by ELF-MF exposure. However, how ELF-MFs stimulate adrenal steroidogenesis is controversial. In the current study, we investigated the effect of ELF-MF exposure on the mouse adrenal cortex-derived Y-1 cell line and the human adrenal cortex-derived H295R cell line to clarify whether the ELF-MF stimulates adrenal steroidogenesis directly. ELF-MF exposure was found to significantly stimulate adrenal steroidogenesis (p < 0.01–0.05) and the expression of adrenal steroid synthetic enzymes (p < 0.05) in Y-1 cells, but the effect was weak in H295R cells. Y-1 cells exposed to an ELF-MF showed significant decreases in phosphodiesterase activity (p < 0.05) and intracellular Ca2+ concentration (p < 0.01) and significant increases in intracellular cyclic adenosine monophosphate (cAMP) concentration (p < 0.001–0.05) and cAMP response element-binding protein phosphorylation (p < 0.05). The increase in cAMP was not inhibited by treatment with NF449, an inhibitor of the Gs alpha subunit of G protein. Our results suggest that ELF-MF exposure stimulates adrenal steroidogenesis via an increase in intracellular cAMP caused by the inhibition of phosphodiesterase activity in Y-1 cells. The same mechanism may trigger the increase in adrenal steroid secretion in mice observed in our previous study. PMID:27100201

  13. Postnatal foraging demands alter adrenocortical activity and psychosocial development.

    PubMed

    Lyons, D M; Kim, S; Schatzberg, A F; Levine, S

    1998-05-01

    Mother squirrel monkeys stop carrying infants at earlier ages in high-demand (HD) conditions where food is difficult to find relative to low-demand (LD) conditions. To characterize these transitions in psychosocial development, from 10- to 21-weeks postpartum we collected measures of behavior, adrenocortical activity, and social transactions coded for initiator (mother or infant), goal (make-contact or break-contact), and outcome (success or failure). Make-contact attempts were most often initiated by HD infants, but mothers often opposed these attempts and less than 50% were successful. Break-contact attempts were most often initiated by LD infants, but mothers often opposed these attempts and fewer LD than HD infant break-contact attempts were successful. Plasma levels of cortisol were significantly higher in HD than LD mothers, but differences in adrenocortical activity were less consistent in their infants. HD and LD infants also spent similar amounts of time nursing on their mothers and feeding on solid foods. By rescheduling some transitions in development (carry-->self-transport), and not others (nursing-->self-feeding), mothers may have partially protected infants from the immediate impact of an otherwise stressful foraging task. PMID:9589217

  14. Bilateral Adrenocortical Masses Producing Aldosterone and Cortisol Independently.

    PubMed

    Lee, Seung Eun; Kim, Jae Hyeon; Lee, You Bin; Seok, Hyeri; Shin, In Seub; Eun, Yeong Hee; Kim, Jung Han; Oh, Young Lyun

    2015-12-01

    A 31-year-old woman was referred to our hospital with symptoms of hypertension and bilateral adrenocortical masses with no feature of Cushing syndrome. The serum aldosterone/renin ratio was elevated and the saline loading test showed no suppression of the plasma aldosterone level, consistent with a diagnosis of primary hyperaldosteronism. Overnight and low-dose dexamethasone suppression tests showed no suppression of serum cortisol, indicating a secondary diagnosis of subclinical Cushing syndrome. Adrenal vein sampling during the low-dose dexamethasone suppression test demonstrated excess secretion of cortisol from the left adrenal mass. A partial right adrenalectomy was performed, resulting in normalization of blood pressure, hypokalemia, and high aldosterone level, implying that the right adrenal mass was the main cause of the hyperaldosteronism. A total adrenalectomy for the left adrenal mass was later performed, resulting in a normalization of cortisol level. The final diagnosis was bilateral adrenocortical adenomas, which were secreting aldosterone and cortisol independently. This case is the first report of a concurrent cortisol-producing left adrenal adenoma and an aldosterone-producing right adrenal adenoma in Korea, as demonstrated by adrenal vein sampling and sequential removal of adrenal masses. PMID:26248855

  15. Bilateral Adrenocortical Masses Producing Aldosterone and Cortisol Independently

    PubMed Central

    Lee, Seung-Eun; Lee, You-Bin; Seok, Hyeri; Shin, In Seub; Eun, Yeong Hee; Kim, Jung-Han; Oh, Young Lyun

    2015-01-01

    A 31-year-old woman was referred to our hospital with symptoms of hypertension and bilateral adrenocortical masses with no feature of Cushing syndrome. The serum aldosterone/renin ratio was elevated and the saline loading test showed no suppression of the plasma aldosterone level, consistent with a diagnosis of primary hyperaldosteronism. Overnight and low-dose dexamethasone suppression tests showed no suppression of serum cortisol, indicating a secondary diagnosis of subclinical Cushing syndrome. Adrenal vein sampling during the low-dose dexamethasone suppression test demonstrated excess secretion of cortisol from the left adrenal mass. A partial right adrenalectomy was performed, resulting in normalization of blood pressure, hypokalemia, and high aldosterone level, implying that the right adrenal mass was the main cause of the hyperaldosteronism. A total adrenalectomy for the left adrenal mass was later performed, resulting in a normalization of cortisol level. The final diagnosis was bilateral adrenocortical adenomas, which were secreting aldosterone and cortisol independently. This case is the first report of a concurrent cortisol-producing left adrenal adenoma and an aldosterone-producing right adrenal adenoma in Korea, as demonstrated by adrenal vein sampling and sequential removal of adrenal masses. PMID:26248855

  16. microRNA-7 as a tumor suppressor and novel therapeutic for adrenocortical carcinoma

    PubMed Central

    Gill, Anthony J.; Weiss, Jocelyn; Mugridge, Nancy; Kim, Edward; Feeney, Alex L.; Ip, Julian C.; Reid, Glen; Clarke, Stephen; Soon, Patsy S.H.; Robinson, Bruce G.; Brahmbhatt, Himanshu; MacDiarmid, Jennifer A.; Sidhu, Stan B.

    2015-01-01

    Adrenocortical carcinoma (ACC) has a poor prognosis with significant unmet clinical need due to late diagnosis, high rates of recurrence/metastasis and poor response to conventional treatment. Replacing tumor suppressor microRNAs (miRNAs) offer a novel therapy, however systemic delivery remains challenging. A number of miRNAs have been described to be under-expressed in ACC however it is not known if they form a part of ACC pathogenesis. Here we report that microRNA-7–5p (miR-7) reduces cell proliferation in vitro and induces G1 cell cycle arrest. Systemic miR-7 administration in a targeted, clinically safe delivery vesicle (EGFREDVTM nanocells) reduces ACC xenograft growth originating from both ACC cell lines and primary ACC cells. Mechanistically, miR-7 targets Raf-1 proto-oncogene serine/threonine kinase (RAF1) and mechanistic target of rapamycin (MTOR). Additionally, miR-7 therapy in vivo leads to inhibition of cyclin dependent kinase 1 (CDK1). In patient ACC samples, CDK1 is overexpressed and miR-7 expression inversely related. In summary, miR-7 inhibits multiple oncogenic pathways and reduces ACC growth when systemically delivered using EDVTM nanoparticles. This data is the first study in ACC investigating the possibility of miRNAs replacement as a novel therapy. PMID:26452132

  17. An endocrinologist's view on relative adrenocortical insufficiency in rheumatoid arthritis.

    PubMed

    Imrich, Richard; Vlcek, Miroslav; Aldag, Jean C; Kerlik, Jana; Radikova, Zofia; Rovensky, Jozef; Vigas, Milan; Masi, Alfonse T

    2010-04-01

    The concept of relative adrenal insufficiency (RAI) has been originally introduced to describe a situation in which critically ill patients, without any prior risk or evidence for adrenal insufficiency, have total serum cortisol levels inadequate for the severity of patients' illness. The concept provided a framework for other disease states, in which higher than normal adrenal function could be expected, such as in chronic inflammation. An intense research in RAI field highlighted some new methodological aspects that significantly improved assessment of adrenal function in chronic illness. Measurement of salivary cortisol may provide additional information on locally available cortisol in target tissues. Low levels of dehydroepiandrosterone (DHEAS) for given age and gender were confirmed as a simple and reliable indicator of decreased adrenal function, even in subjects with normal baseline cortisol or normal corticotropin-stimulated cortisol response. Combined lower DHEAS and lower baseline cortisol levels could be an example of hypocompetence of adrenocortical function, yet clinically not apparent. PMID:20398019

  18. Virilizing adrenocortical carcinoma advancing to central precocious puberty after surgery.

    PubMed

    Kim, Min Sun; Yang, Eu Jeen; Cho, Dong Hyu; Hwang, Pyung Han; Lee, Dae-Yeol

    2015-05-01

    Adrenocortical carcinoma (ACC) in pediatric and adolescent patients is rare, and it is associated with various clinical symptoms. We introduce the case of an 8-year-old boy with ACC who presented with peripheral precocious puberty at his first visit. He displayed penis enlargement with pubic hair and facial acne. His serum adrenal androgen levels were elevated, and abdominal computed tomography revealed a right suprarenal mass. After complete surgical resection, the histological diagnosis was ACC. Two months after surgical removal of the mass, he subsequently developed central precocious puberty. He was treated with a gonadotropin-releasing hormone agonist to delay further pubertal progression. In patients with functioning ACC and surgical removal, clinical follow-up and hormonal marker examination for the secondary effects of excessive hormone secretion may be a useful option at least every 2 or 3 months after surgery. PMID:26019766

  19. Pathway Implications of Aberrant Global Methylation in Adrenocortical Cancer

    PubMed Central

    Legendre, Christophe R.; Demeure, Michael J.; Whitsett, Timothy G.; Gooden, Gerald C.; Bussey, Kimberly J.; Jung, Sungwon; Waibhav, Tembe; Kim, Seungchan; Salhia, Bodour

    2016-01-01

    Context Adrenocortical carcinomas (ACC) are a rare tumor type with a poor five-year survival rate and limited treatment options. Objective Understanding of the molecular pathogenesis of this disease has been aided by genomic analyses highlighting alterations in TP53, WNT, and IGF signaling pathways. Further elucidation is needed to reveal therapeutically actionable targets in ACC. Design In this study, global DNA methylation levels were assessed by the Infinium HumanMethylation450 BeadChip Array on 18 ACC tumors and 6 normal adrenal tissues. A new, non-linear correlation approach, the discretization method, assessed the relationship between DNA methylation/gene expression across ACC tumors. Results This correlation analysis revealed epigenetic regulation of genes known to modulate TP53, WNT, and IGF signaling, as well as silencing of the tumor suppressor MARCKS, previously unreported in ACC. Conclusions DNA methylation may regulate genes known to play a role in ACC pathogenesis as well as known tumor suppressors. PMID:26963385

  20. Methylation of IGF2 regulatory regions to diagnose adrenocortical carcinomas.

    PubMed

    Creemers, S G; van Koetsveld, P M; van Kemenade, F J; Papathomas, T G; Franssen, G J H; Dogan, F; Eekhoff, E M W; van der Valk, P; de Herder, W W; Janssen, J A M J L; Feelders, R A; Hofland, L J

    2016-09-01

    Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. Discrimination of ACCs from adrenocortical adenomas (ACAs) is challenging on both imaging and histopathological grounds. High IGF2 expression is associated with malignancy, but shows large variability. In this study, we investigate whether specific methylation patterns of IGF2 regulatory regions could serve as a valuable biomarker in distinguishing ACCs from ACAs. Pyrosequencing was used to analyse methylation percentages in DMR0, DMR2, imprinting control region (ICR) (consisting of CTCF3 and CTCF6) and the H19 promoter. Expression of IGF2 and H19 mRNA was assessed by real-time quantitative PCR. Analyses were performed in 24 ACCs, 14 ACAs and 11 normal adrenals. Using receiver operating characteristic (ROC) analysis, we evaluated which regions showed the best predictive value for diagnosis of ACC and determined the diagnostic accuracy of these regions. In ACCs, the DMR0, CTCF3, CTCF6 and the H19 promoter were positively correlated with IGF2 mRNA expression (P<0.05). Methylation in the most discriminating regions distinguished ACCs from ACAs with a sensitivity of 96%, specificity of 100% and an area under the curve (AUC) of 0.997±0.005. Our findings were validated in an independent cohort of 9 ACCs and 13 ACAs, resulting in a sensitivity of 89% and a specificity of 92%. Thus, methylation patterns of IGF2 regulatory regions can discriminate ACCs from ACAs with high diagnostic accuracy. This proposed test may become the first objective diagnostic tool to assess malignancy in adrenal tumours and facilitate the choice of therapeutic strategies in this group of patients. PMID:27535174

  1. Suppression of adrenal βarrestin1-dependent aldosterone production by ARBs: head-to-head comparison

    PubMed Central

    Dabul, Samalia; Bathgate-Siryk, Ashley; Valero, Thairy Reyes; Jafferjee, Malika; Sturchler, Emmanuel; McDonald, Patricia; Koch, Walter J.; Lymperopoulos, Anastasios

    2015-01-01

    The known angiotensin II (AngII) physiological effect of aldosterone synthesis and secretion is mediated by either Gq/11 proteins or βarrestin1 (βarr1), both of which can couple to its type 1 receptors (AT1Rs), present in adrenocortical zona glomerulosa (AZG) cell membranes. In the present study, we examined the relative potencies of all the currently used in the clinic AT1R antagonist drugs (angiotensin receptor blockers, ARBs, or sartans) at preventing activation of these two signaling mediators (G proteins and βarrs) at the AngII-bound AT1R and, consequently, at suppression of aldosterone in vitro. All ARBs were found to be potent inhibitors of G protein activation at the AT1R. However, candesartan and valsartan were the most potent at blocking AngII-induced βarr activation at this receptor, among the tetrazolo-biphenyl-methyl derivatives, translating into excellent efficacies at aldosterone suppression in H295R cells. Conversely, irbesartan and losartan were largely G protein-selective inhibitors at the AT1R, with very low potency towards βarr inhibition. As a result, they were very weak suppressors of βarr1-dependent aldosterone production in H295R cells. These findings provide important pharmacological insights into the drug class of ARBs and medicinal chemistry insights for future drug development in the field of AngII antagonism. PMID:25631300

  2. Chloroquine enhances the efficacy of cisplatin by suppressing autophagy in human adrenocortical carcinoma treatment

    PubMed Central

    Qin, Liang; Xu, Tianyuan; Xia, Leilei; Wang, Xianjin; Zhang, Xiang; Zhang, Xiaohua; Zhu, Zhaowei; Zhong, Shan; Wang, Chuandong; Shen, Zhoujun

    2016-01-01

    Background It has been demonstrated that chloroquine (CQ) enhances the efficacy of chemotherapy. However, little is known about whether CQ could enhance the efficacy of cisplatin (DDP) in the treatment of adrenocortical carcinoma (ACC). In this study, we explore the efficacy and mechanism by which CQ affects DDP sensitivity in human ACC in vitro and in vivo. Methods The autophagic gene Beclin-1 expression was detected by immunohistochemistry, and the protein levels were analyzed using immunoblotting assays of ACC tissues and normal adrenal cortex tissues. The ACC SW13 cells were treated with DDP and/or CQ. The cell viability assay was performed using the MTT method. Qualitative autophagy detection was performed by monodansylcadaverine staining of autophagic vacuoles. Annexin V-fluorescein isothiocyanate/propidium iodide double staining was used to count cell apoptosis by flow cytometry. The autophagy-related protein (Beclin-1, LC3, and p62) and apoptosis relative protein (Bax and Bcl-2) levels were evaluated with Western blot analysis. Furthermore, a murine model of nude BALB/c mice bearing SW13 cell xenografts was established to evaluate the efficacy of concomitant therapy. Results The expression of the autophagic gene Beclin-1 was significantly downregulated in ACC tissues compared to normal adrenal cortex tissues. The Beclin-1 protein level in ACC tissues was lower than that in normal adrenal cortex tissues (P<0.05). In vitro concomitant therapy (DDP and CQ) was more effective in restraining SW13 cell proliferation. DDP could promote cell apoptosis and induce autophagy in SW13 cells. Concomitant therapy further promoted cell apoptosis by inhibiting autophagy. In vivo, we found that concomitant therapy was more potent than DDP monotherapy in inhibiting the growth of xenografted tumors and prolonging the survival of tumor-bearing mice. Conclusion The antitumor ability of DDP was related to autophagy activity, and the concomitant therapy (DDP and CQ) could be an

  3. Reciprocal influences among adrenocortical activation, psychosocial processes, and the behavioral adjustment of clinic-referred children.

    PubMed

    Granger, D A; Weisz, J R; McCracken, J T; Ikeda, S C; Douglas, P

    1996-12-01

    The reciprocal effects among cognitive-behavioral, environmental, and biological influences on clinic-referred children's (N = 64; 34 boys; M age 12.71 years) short-term psychological and psychiatric adjustment were studied. At clinic intake and 6 months later, standardized measures of adjustment and control-related beliefs were assessed. Before and after conflict-oriented parent-child interaction tasks the children's saliva was sampled. Adrenocortical responses (i.e., increases in salivary cortisol) to the social conflict task predicted children's internalizing problem behaviors and anxiety disorders at follow-up. Consistently high adrenocortical reactivity at intake and follow-up was associated with deflated social competence over the 6-month period. Also, specific patterns of discontinuity in children's internalizing behavior problems predicted individual differences in their subsequent adrenocortical responsiveness. Specifically, rising behavior problem levels across time predicted higher and declining behavior problem levels predicted lower adrenocortical reactivity at follow-up. Findings are among the first to suggest links among internalizing behavior problems, adrenocortical responsiveness to social challenge, and clinic-referred children's short-term cognitive-behavioral and emotional adjustment. PMID:9071780

  4. Androgen receptor-mediated regulation of adrenocortical activity in the sand rat, Psammomys obesus.

    PubMed

    Benmouloud, Abdelouafi; Amirat, Zaina; Khammar, Farida; Patchev, Alexandre V; Exbrayat, Jean M; Almeida, Osborne F X

    2014-12-01

    The wild sand rat, Psammomys obesus, displays seasonal variations in adrenocortical activity that parallel those of testicular activity, indicating functional cross-talk between the hypothalamo-pituitary-adrenal and hypothalamo-pituitary-gonadal axes. In the present study, we examined androgen receptor (AR)-mediated actions of testicular steroids in the regulation of adrenocortical function in the sand rat. Specifically, we examined the expression of AR in the adrenal cortex, as well as adrenal apoptosis in male sand rats that had been surgically castrated or castrated and supplemented with testosterone; biochemical indices of adrenocortical function and hormone profiles were also measured. Orchiectomy was followed by an increase in adrenocorticotropic hormone secretion from the anterior pituitary and subsequently, increased adrenocortical activity; the latter was evidenced by orchiectomy-induced increases in the adrenal content of cholesterol and lipids as well as adrenal hypertrophy (seen as an elevation of the RNA/DNA ratio). Further, androgen deprivation respectively up- and downregulated the incidence of apoptosis within the glucocorticoid-producing zona fasciculata and sex steroid-producing zona reticularis. Interestingly, orchiectomy resulted in increased expression of AR in the zona fasciculata. All of the orchiectomy-induced cellular and biochemical responses were reversible after testosterone substitution therapy. Together, these data suggest that adrenocortical activity in the sand rat is seasonally modulated by testicular androgens that act through AR located in the adrenal cortex itself. PMID:25179180

  5. Partial KCNQ1OT1 hypomethylation: A disguised familial Beckwith-Wiedemann syndrome as a sporadic adrenocortical tumor.

    PubMed

    H'mida Ben-Brahim, Dorra; Hammami, Sabeur; Haddaji Mastouri, Marwa; Trabelsi, Saoussen; Chourabi, Maroua; Sassi, Sihem; Mougou, Soumaya; Gribaa, Moez; Zakhama, Abdelfattah; Guédiche, Mohamed Neji; Saad, Ali

    2015-03-01

    Beckwith-Wiedemann syndrome has a wide spectrum of complications such as embryonal tumors, namely adrenocortical tumor. Tumor predisposition is one of the most challenging manifestations of this syndrome. A 45-day old female with a family history of adrenocortical tumor presented with adrenocortical tumor. The case raised suspicion of a hereditary Beckwith-Wiedemann syndrome, therefore molecular analysis was undertaken. The results revealed partial KCNQ1OT1 hypomethylation in the infant's blood DNA which was associated with a complete loss of methylation in the infant's adrenocortical tumor tissue. It is unique for familial Beckwith-Wiedemann syndrome caused by KCNQ1OT1 partial hypomethylation to manifest solely through adrenocortical tumor. Incomplete penetrance and specific tissue mosaicism could provide explanations to this novel hereditary Beckwith-Wiedemann syndrome presentation. PMID:26937341

  6. Brain Metastasis in Patients With Adrenocortical Carcinoma: A Clinical Series

    PubMed Central

    Tageja, Nishant; Rosenberg, Avi; Mahalingam, Sowmya; Quezado, Martha; Velarde, Margarita; Edgerly, Maureen; Fojo, Tito

    2015-01-01

    Introduction: Adrenocortical carcinoma (ACC) is a heterogeneous and rare disease. At presentation or at the time of a recurrence, the disease commonly spreads to the liver, lungs, lymph nodes, and bones. The brain has only rarely been reported as a site of metastases. Objective: The aims of this report were to describe the clinical characteristics of patients with ACC who developed brain metastasis and were evaluated at the National Cancer Institute. Methods: We describe the history and clinical presentation of six patients with ACC and metastatic disease in the brain. Images of the six patients and pathology slides were reviewed when available. Results: The median age at the time of the diagnosis of ACC was 42 years. The median time from the initial diagnosis until the presentation of brain metastasis was 43 months. As a group the patients had previously received multiples lines of chemotherapy (median of three), and they presented with one to three metastatic brain lesions. Four patients underwent metastasectomy, one had radiosurgery, and one had both modalities. Two patients are still alive, three died, between 2 and 14 months after the diagnosis of brain metastases, and one was lost to follow-up. Conclusion: Patients with advanced ACC can rarely present with metastasis to the brain, most often long after the initial diagnosis. Timely diagnosis of brain metastasis with appropriate intervention after discussion in a multidisciplinary meeting can improve the prognosis in this particular scenario. PMID:25412413

  7. Familial Adrenocortical Carcinoma in Association With Lynch Syndrome

    PubMed Central

    Challis, Benjamin G.; Kandasamy, Narayanan; Powlson, Andrew S.; Koulouri, Olympia; Annamalai, Anand Kumar; Happerfield, Lisa; Marker, Alison J.; Arends, Mark J.; Nik-Zainal, Serena

    2016-01-01

    Context: Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Although the majority of childhood ACC arises in the context of inherited cancer susceptibility syndromes, it remains less clear whether a hereditary tumor predisposition exists for the development of ACC in adults. Here, we report the first occurrence of familial ACC in a kindred with Lynch syndrome resulting from a pathogenic germline MSH2 mutation. Case: A 54-year-old female with a history of ovarian and colorectal malignancy was found to have an ACC. A detailed family history revealed her mother had died of ACC and her sister had previously been diagnosed with endometrial and colorectal cancers. A unifying diagnosis of Lynch syndrome was considered, and immunohistochemical analyses demonstrated loss of MSH2 and MSH6 expression in both AACs (proband and her mother) and in the endometrial carcinoma of her sister. Subsequent genetic screening confirmed the presence of a germline MSH2 mutation (resulting in deletions of exons 1–3) in the proband and her sister. Conclusion: Our findings provide strong support for the recent proposal that ACC should be considered a Lynch syndrome-associated tumor and included in the Amsterdam II clinical diagnostic criteria. We also suggest that screening for ACC should be considered in cancer surveillance strategies directed at individuals with germline mutations in DNA mismatch repair genes. PMID:27144940

  8. [Comparative clinical analysis of histological systems of adrenocortical tumors diagnosis].

    PubMed

    Bokhyan, V Yu; Stilidi, I S; Pavlovskaya, A I

    2015-01-01

    Differential diagnosis of adrenocortical cancer (ACC) and cortical adenoma presents certain difficulties since there is no specific histological criterion allowing to distinguish tumors of the adrenal cortex with malignant clinical course. Currently there are offered several systems, and the most widely spread have the index Weiss (IW) and the modified index Weiss (MIW). The accuracy of one or another of the proposed systems remains a matter of debate. There was analyzed own experience on the use of IW and MIW in the diagnosis of 91 cases of the ACC and 13 cases of cortex adenomas of the size at least 5 cm. For the diagnosis of large adenomas sensitivity IW was 77%, MIW--100%. For the diagnosis of metastatic and non-metastatic ACC--100% and 97%, 100% and 86%, respectively (p > 0.05). In multivariate analysis of life expectancy of patients the definition of IW and MIW had a prognostic significance. MIW was less subjective, more simple and convenient to be used and it showed a great informative value at the reclassification of certain "adenomas" into ACC. However to use it on their own, without IW, was impractical as MIW had wider gray area and did not reach the threshold value in some cases of ACC. For the diagnosis of tumors of the adrenal cortex IW remains a standard; when a value was equal of 2 or in cases of doubt it was necessary to calculate MIW as well. PMID:26995980

  9. Temperature and adrenocortical responses in rhesus monkeys exposed to microwaves

    SciTech Connect

    Lotz, W.G.; Podgorski, R.P.

    1982-12-01

    To determine if the endocrine response to microwave exposure was similar in a primate to that reported for other animals, rectal temperature and plasma levels of cortisol, thyroxine (T4), and growth hormone (GH) were measured in rhesus monkeys exposed to 1.29-GHz microwave radiation. Exposures were carried out under far-field conditions with the monkey restrained in a chair. Incident power densities of 0, 20, 28, and 38 mW/sq cm were used, with corresponding specific absorption rates of 0, 2.1, 3.0, and 4.1 W/kg. Blood samples were taken hourly via an indwelling jugular venous catheter over a 24-h period before, during, and after an 8-h exposure. Rectal temperature increased an average of 0.5, 0.7, and 1.7 C for the three intensities used. No changes in T4 or GH were observed. Cortisol levels were increased during exposure to 38 mW/sq cm. It was concluded that the temperature and adrenocortical responses to microwave exposure of the rhesus monkey are similar to the corresponding responses of other animals.

  10. The role of mothers’ and fathers’ adrenocortical reactivity in spillover between interparental conflict and parenting practices

    PubMed Central

    Sturge-Apple, Melissa L.; Davies, Patrick T.; Cicchetti, Dante; Cummings, E. Mark

    2010-01-01

    Guided by the affective spillover hypothesis, the present study examined the mediational role of parental adrenocortical reactivity to interparental conflict in explaining associations between interparental conflict and subsequent changes in mothers’ and fathers’ parenting practices over a 2 year period in a sample of 202 parents and their six year old children. Results of autoregressive, path models indicated that marital withdrawal was associated with increases in adrenocortical reactivity to conflict for mothers but not fathers. Furthermore, elevated adrenocortical reactivity in turn predicted greater psychologically controlling parenting practices and inconsistent discipline over time for mothers, but was not associated with changes in maternal warmth. Implications for clinicians and therapists working with maritally distressed parents and families are discussed. PMID:19364215

  11. Adrenocortical Tumors and Hyperplasias in Childhood - Etiology, Genetics, Clinical Presentation and Therapy

    PubMed Central

    Sutter, Jennifer A.; Grimberg, Adda

    2007-01-01

    Adrenocortical tumors are rare in children and are associated with a poor prognosis when malignant. The fund of knowledge regarding etiology, presentation and clinical outcomes remains limited. Evaluation of genetic disorders associated with the development of adrenocortical disorders has allowed researchers to identify a number of mutations that may be involved in tumorigenesis, including alterations in the GNAS1, PRKAR1A, TP53 and IGF2 genes. Clinical presentation in children is associated most commonly with young age, female gender and symptoms of virilization. Most children have localized disease at presentation which may be associated with a better prognosis when compared to adults. Surgical resection remains the only potentially curative treatment and mitotane, the most frequently used chemotherapeutic agent, has a poor response rate and is highly toxic. Broader participation in multi-center research, such as the International Pediatric Adrenocortical Tumor Registry, is needed to collect sufficient data to better guide our clinical management. PMID:17021581

  12. Adrenocortical Oncocytic Carcinoma: A Case Report and Review of the Histopathologic Diagnostic Criteria.

    PubMed

    Arik, Deniz; Canaz, Funda; Dündar, Emine

    2016-01-01

    Oncocytic tumors are rare in the adrenal gland. The histopathological diagnosis of adrenocortical carcinoma is difficult due to the lack of precise diagnostic criteria for malignancy. A 44-year-old man was admitted to our hospital with left flank pain. Radiologically an adrenal mass was detected. After the excision and histopathologic evaluation of the mass, a diagnosis of adrenocortical oncocytic carcinoma was made. At least one of the features of more than 5 mitoses in 50 high power fields, atypical mitotic figures or venous invasion is required for the diagnosis of malignancy in adrenocortical tumors. It has been suggested that tumors that have more than one of the minor criteria of large size ( > 10 cm or > 200 gr), necrosis, capsular or sinusoidal invasion, should be evaluated as having uncertain malignant potential. PMID:27562395

  13. Interparental Aggression and Adolescent Adjustment: The Role of Emotional Insecurity and Adrenocortical Activity

    PubMed Central

    Bergman, Kathleen N.; Cummings, E. Mark; Davies, Patrick T.

    2013-01-01

    Adolescents exposed to interparental aggression are at increased risk for developing adjustment problems. The present study explored intervening variables in these pathways in a community sample that included 266 adolescents between 12 and 16 years old (M = 13.82; 52.5% boys, 47.5% girls). A moderated mediation model examined the moderating role of adrenocortical reactivity on the meditational capacity of their emotional insecurity in this context. Information from multiple reporters and adolescents’ adrenocortical response to conflict were obtained during laboratory sessions attended by mothers, fathers and their adolescent child. A direct relationship was found between marital aggression and adolescents’ internalizing behavior problems. Adolescents’ emotional insecurity mediated the relationship between marital aggression and adolescents’ depression and anxiety. Adrenocortical reactivity moderated the pathway between emotional insecurity and adolescent adjustment. The implications for further understanding the psychological and physiological effects of adolescents’ exposure to interparental aggression and violence are discussed. PMID:25360061

  14. Helsinki score-a novel model for prediction of metastases in adrenocortical carcinomas.

    PubMed

    Pennanen, Mirkka; Heiskanen, Ilkka; Sane, Timo; Remes, Satu; Mustonen, Harri; Haglund, Caj; Arola, Johanna

    2015-03-01

    Histopathologic diagnosis of adrenocortical tumors is based on adverse features that indicate malignant potential. Proliferation index has served as a supplemental tool in assessing the malignant potential of adrenocortical tumors. None of the current histologic classification systems can sufficiently accurately predict tumors' metastatic potential. We studied 177 consecutive adult patients with primary adrenocortical tumors operated on at Helsinki University Central Hospital between 1990 and 2003, all patients with a minimum follow-up of 5 years. We determined for each tumor the Weiss score and the Weiss revisited score by Aubert. Proliferation index was measured by computer-assisted image analysis. Each of the 9 Weiss criteria and the proliferation index were then used to establish a scoring system to predict the metastatic potential of adrenocortical tumors. Use of stepwise regression analysis led us to propose a calculation: 3 × mitotic rate (>5/50 high-power fields) + 5 × presence of necrosis + proliferation index in the most proliferative area of the tumor. Using a cutoff value of 8.5, the new scoring system was able to diagnose metastatic adrenocortical carcinoma with 100% sensitivity (confidence interval [CI], 76.8%-100%) and 99.4% specificity (CI, 96.6%-100%). The corresponding sensitivity of the Weiss system was 100% (CI, 76.8%-100%), and specificity, 90.2% (CI, 84.6%-94.3%), with sensitivity of the Weiss revisited system at 100% (CI, 76.8%-100%) and specificity at 96.9% (CI, 93.0%-99.0%). The new Helsinki score thus was accurate in predicting the metastatic potential of adrenocortical tumors. PMID:25582500

  15. The cAMP pathway and the control of adrenocortical development and growth

    PubMed Central

    de Joussineau, Cyrille; Sahut-Barnola, Isabelle; Levy, Isaac; Saloustros, Emmanouil; Val, Pierre; Stratakis, Constantine A.; Martinez, Antoine

    2013-01-01

    In the last 10 years, extensive studies showed that the cAMP pathway is deregulated in patients suffering from adrenocortical tumours, and particularly in primary pigmented nodular adrenocortical disease (PPNAD). Here we describe how evidence arising from the analysis of patients’ data, mouse models and in vitro experiments, have shed light on the cAMP pathway as a central player in adrenal physiopathology. We also show how novel data generated from mouse models may point to new targets for potential therapies. PMID:22019902

  16. Adrenocortical neoplasia: evolving concepts in tumorigenesis with an emphasis on adrenal cortical carcinoma variants.

    PubMed

    de Krijger, Ronald R; Papathomas, Thomas G

    2012-01-01

    Adrenocortical carcinoma (ACC) is a rare, heterogeneous malignancy with a poor prognosis. According to WHO classification 2004, ACC variants include oncocytic ACCs, myxoid ACCs and ACCs with sarcomatous areas. Herein, we provide a comprehensive review of these rare subtypes of adrenocortical malignancy and emphasize their clinicopathological features with the aim of elucidating aspects of diagnostic categorization, differential diagnostics and biological behavior. The issue of current terminology, applied to biphasic tumors with pleomorphic, sarcomatous or sarcomatoid elements arising in adrenal cortex, is also discussed. We additionally present emerging evidence concerning the adrenal cortical tumorigenesis and the putative adenoma-carcinoma sequence as well. PMID:22086150

  17. Laser capture microdissection–reduced representation bisulfite sequencing (LCM-RRBS) maps changes in DNA methylation associated with gonadectomy-induced adrenocortical neoplasia in the mouse

    PubMed Central

    Schillebeeckx, Maximiliaan; Schrade, Anja; Löbs, Ann-Kathrin; Pihlajoki, Marjut; Wilson, David B.; Mitra, Robi D.

    2013-01-01

    DNA methylation is a mechanism for long-term transcriptional regulation and is required for normal cellular differentiation. Failure to properly establish or maintain DNA methylation patterns leads to cell dysfunction and diseases such as cancer. Identifying DNA methylation signatures in complex tissues can be challenging owing to inaccurate cell enrichment methods and low DNA yields. We have developed a technique called laser capture microdissection-reduced representation bisulfite sequencing (LCM-RRBS) for the multiplexed interrogation of the DNA methylation status of cytosine–guanine dinucleotide islands and promoters. LCM-RRBS accurately and reproducibly profiles genome-wide methylation of DNA extracted from microdissected fresh frozen or formalin-fixed paraffin-embedded tissue samples. To demonstrate the utility of LCM-RRBS, we characterized changes in DNA methylation associated with gonadectomy-induced adrenocortical neoplasia in the mouse. Compared with adjacent normal tissue, the adrenocortical tumors showed reproducible gains and losses of DNA methylation at genes involved in cell differentiation and organ development. LCM-RRBS is a rapid, cost-effective, and sensitive technique for analyzing DNA methylation in heterogeneous tissues and will facilitate the investigation of DNA methylation in cancer and organ development. PMID:23589626

  18. Regulation of the hypothalamic-pituitary-adrenocortical stress response

    PubMed Central

    Herman, James P.; McKlveen, Jessica M.; Ghosal, Sriparna; Kopp, Brittany; Wulsin, Aynara; Makinson, Ryan; Scheimann, Jessie; Myers, Brent

    2016-01-01

    The hypothalamo-pituitary-adrenocortical (HPA axis) is required for stress adaptation. Activation of the HPA axis causes secretion of glucocorticoids, which act on multiple organ systems to redirect energy resources to meet real or anticipated demand. The HPA stress response is driven primarily by neural mechanisms, invoking corticotrophin releasing hormone (CRH) release from hypothalamic paraventricular nucleus (PVN) neurons. Pathways activating CRH release are stressor dependent: reactive responses to homeostatic disruption frequently involve direct noradrenergic or peptidergic drive of PVN neurons by sensory relays, whereas anticipatory responses use oligosynaptic pathways originating in upstream limbic structures. Anticipatory responses are driven largely by disinhibition, mediated by trans-synaptic silencing of tonic PVN inhibition via GABAergic neurons in the amygdala. Stress responses are inhibited by negative feedback mechanisms, whereby glucocorticoids act to diminish drive (brainstem), promote trans-synaptic inhibition by limbic structures (e.g, hippocampus). Glucocorticoids also act at the PVN to rapidly inhibit CRH neuronal activity via membrane glucocorticoid receptors. Chronic stress-induced activation of the HPA axis takes many forms (chronic basal hypersecretion, sensitized stress responses, even adrenal exhaustion), with manifestation dependent upon factors such as stressor chronicity, intensity, frequency and modality. Neural mechanisms driving chronic stress responses can be distinct from those controlling acute reactions, including recruitment of novel limbic, hypothalamic and brainstem circuits. Importantly, an individual’s response to acute or chronic stress is determined by numerous factors, including genetics, early life experience, environmental conditions, sex and age. The context in which stressors occur will determine whether an individual’s acute or chronic stress responses are adaptive or maladaptive (pathological). PMID:27065163

  19. Steroidogenic enzyme profile in an androgen-secreting adrenocortical oncocytoma associated with hirsustism

    PubMed Central

    Tetsi Nomigni, Milène; Ouzounian, Sophie; Benoit, Alice; Vadrot, Jacqueline; Tissier, Frédérique; Renouf, Sylvie; Lefebvre, Hervé; Christin-Maitre, Sophie; Louiset, Estelle

    2015-01-01

    Hirsutism induced by hyperandrogenism can be associated with polycystic ovary syndrome, 21-hydroxylase (OH) deficiency or androgen-secreting tumors, including ovarian and adrenal tumors. Adrenal androgen-secreting tumors are frequently malignant. Adrenal oncocytomas represent rare causes of hyperandrogenism. The aim of the study was to investigate steroidogenic enzyme expression and steroid secretion in an androgen-secreting adrenal oncocytoma in a young woman presenting with hirsutism. Hyperandrogenism was diagnosed on the basis of elevated plasma Δ4-androstenedione and testosterone levels. Pelvic ultrasound was normal, CT scanning revealed a right adrenal mass. Androgens were assessed in adrenal and ovarian vein samples and proved a right adrenal origin. Adrenalectomy normalized androgen levels and the adrenal tumor was diagnosed as an oncocytoma. Real time-PCR, immunohistochemistry and cell culture studies were performed on tumor explants to investigate the steroid secretion profile. Among enzymes required for cortisol synthesis, 17α-OH and 3β-hydroxysteroid dehydrogenase 2 (3β-HSD2) were highly expressed whereas 21-OH and 11β-OH were weakly produced at the mRNA and/or protein levels. Enzymes involved in testosterone production, 17β-HSD5 and 17β-HSD3, were also detected. ACTH receptor was present in the tissue. Cortisol, Δ4-androstenedione and testosterone secretions by cultured cells were increased by ACTH. These results provide the first demonstration, to our knowledge, of abnormal expression profile of steroidogenic enzymes in an adrenocortical oncocytoma. Our results also indicate that Δ4-androstenedione hypersecretion resulted from high 17α-OH and 3β-HSD2 expression in combination with low expression of 21-OH and 11β-OH. Testosterone production was ascribed to occurrence of 17β-HSD5 and 17β-HSD3. Finally, our results indicate that androgen secretion was stimulated by ACTH. PMID:26034121

  20. The Effects of Morning Naps, Car Trips, and Maternal Separation on Adrenocortical Activity in Human Infants.

    ERIC Educational Resources Information Center

    Larson, Mary C.; And Others

    1991-01-01

    Three studies examined adrenocortical activity in infants. Morning naps were associated with decreases in salivary cortisol. Riding for 40 minutes in a car lowered salivary cortisol concentrations. Thirty minutes of maternal separation in the laboratory resulted in higher salivary cortisol concentrations than did 30 minutes of play with the mother…

  1. Maternal-child adrenocortical attunement in early childhood: continuity and change.

    PubMed

    Hibel, Leah C; Granger, Douglas A; Blair, Clancy; Finegood, Eric D

    2015-01-01

    This study evaluated continuity and change in maternal-child hypothalamic-pituitary-adrenal axis attunement in early childhood. Participants were drawn from a prospective study of 1,292 mother-child dyads, which were racially diverse, predominantly low-income, and non-urban. Child focused stress tasks designed to elicit anger, fear, and frustration were administered during early infancy, later infancy, and toddlerhood. Mothers' and children's saliva samples (later assayed for cortisol) were collected before and after the tasks. The strength of mother-child adrenocortical attunement was conserved across infancy and toddlerhood. The magnitude of maternal-child adrenocortical attunement decreased in response to the child-focused stress tasks. Maternal sensitivity and the child's task-related emotional reactivity moderated adrenocortical attunement across the task, with greater maternal sensitivity during a free-play, and lower levels of child emotional reactivity during the stress tasks, stabilizing attunement from pre- to post-task levels. The findings advance our understanding of individual differences in the social regulation of adrenocortical activity in early childhood. PMID:25417896

  2. Open adrenalectomy for medium sized adrenocortical tumour: How I do it?

    PubMed Central

    Sameh, Wael M.; Kotb, Ahmed Fouad

    2015-01-01

    Introduction: The aim of our work was to report our experience in managing cases with medium-sized adrenocortical carcinoma by the high retroperitoneal extra pleural approach. Methods: During the past 2 years, 10 patients with suspected adrenocortical carcinoma were managed by our technique: the high supra 10th rib, retroperitoneal extra pleural approach. We included cases with 5 to 10 cm adrenal masses, suspected as adrenocortical carcinoma. Results: The mean patient age was 38 years (range: 26–44), the median tumour volume was 7 cm (range: 5–8). Of the 10 patients, 7 were female. Of the patients, 6 had right- and 4 had left-sided tumours. Intraoperatively, all cases had proper surgical removal, with no apparent residual tumour tissue. No single patient required a chest tube or developed respiratory problems. There were no major vascular injuries during surgery. We did not compare our findings to the standard lateral or subcostal approaches, as in our institution we adopt this high lateral approach for medium-sized tumours, while managing larger tumours with transperitoneal subcostal approach and smaller tumours laparoscopically. Conclusion: The high supra 10th lateral retroperitoneal, extra pleural approach is a safe, doable technique, allowing easy access to medium-sized suprarenal tumours and its vasculature, for cases suspected to be adrenocortical carcinoma. PMID:26029297

  3. The Relations between Bullying Exposures in Middle Childhood, Anxiety, and Adrenocortical Activity

    ERIC Educational Resources Information Center

    Carney, JoLynn V.; Hazler, Richard J.; Oh, Insoo; Hibel, Leah C.; Granger, Douglas A.

    2010-01-01

    This exploratory study investigated how exposure to bullying at school in middle childhood is associated with student anxiety levels and adrenocortical activity at a time preceding lunch when anxiety about potential bullying would potentially be higher. Ninety-one sixth-grade students (55 female and 36 male) reported being exposed one or more…

  4. Evening Activities as a Potential Confound in Research on the Adrenocortical System in Children

    ERIC Educational Resources Information Center

    Kertes, Darlene A.; Gunnar, Megan R.

    2004-01-01

    The relation among children's evening activities, behavioral characteristics, and activity of the hypothalamic-pituitary-adrenocortical axis was assessed in normally developing children ages 7 to 10 years. Salivary cortisol at bedtime was compared on evenings when children had structured activities outside of the home with unstructured evenings at…

  5. Carney complex presenting with a unilateral adrenocortical nodule: a case report

    PubMed Central

    2014-01-01

    Introduction Carney complex is an autosomal dominant syndrome with multiple neoplasms in different sites, including myxomas, endocrine tumors and lentigines lesions. To the best of our knowledge, this is the first report of Carney complex presenting with a unilateral adrenal adenoma associated with a pituitary incidentaloma. Case presentation A 27-year-old Iranian woman was referred to our endocrinology clinic with amenorrhea and hirsutism, further confirming a diagnosis of adrenocorticotropic hormone-independent Cushing’s syndrome. The cause was believed to be a right adrenocortical adenoma based on a computed tomography scan. Our patient underwent a right laparoscopic adrenalectomy and pathological examination revealed pigmented micronodular adrenal hyperplasia. Pituitary magnetic resonance imaging also documented a microadenoma that was considered to be an incidentaloma based on normal pituitary function tests. Recurrence of hypercortisolism led to a left laparoscopic adrenalectomy, providing further evidence for the diagnosis of primary pigmented nodular adrenocortical disease. Carney complex was established in light of her history of cardiac myxomas. Conclusion We present what we believe to be the first case of Carney complex presenting with a unilateral adrenocortical adenoma in association with a pituitary incidentaloma. Although primary pigmented nodular adrenocortical disease is rare as a component of Carney complex, it should be considered in the differential diagnosis of Cushing's syndrome. Rarely, adrenal and pituitary imaging can be misleading. PMID:24499519

  6. Emotional and Adrenocortical Regulation in Early Adolescence: Prediction by Attachment Security and Disorganization in Infancy

    ERIC Educational Resources Information Center

    Spangler, Gottfried; Zimmermann, Peter

    2014-01-01

    The aim of the present study was to examine differences in emotion expression and emotion regulation in emotion-eliciting situations in early adolescence from a bio-psycho-social perspective, specifically investigating the influence of early mother-infant attachment and attachment disorganization on behavioural and adrenocortical responses. The…

  7. Metastatic congenital adrenocortical carcinoma: a case report with tumor remission at 3 1/2 years.

    PubMed

    Godil, M A; Atlas, M P; Parker, R I; Priebe, C J; Zerah, M M; Kane, P; Tsung, J; Wilson, T A

    2000-11-01

    We describe a case of metastasizing congenital adrenocortical carcinoma and a follow-up of 3 1/2 yr. Treatment with surgery and mitotane was associated with multiple complications. The patient was in remission at 3 1/2 yr. Because of the rarity of this condition, we discuss step-by-step problems encountered during management. PMID:11095414

  8. Effects of prolonged ACTH-stimulation on adrenocortical cholesterol reserve and apolipoprotein E concentration in young and aged Fischer 344 male rats.

    PubMed

    Cheng, B; Chou, S C; Abraham, S; Kowal, J

    1998-09-01

    Changes in the morphology of rat adrenal cortex with age include increased accumulations of lipid droplets and lipofuscin granules. Because glandular concentrations of cholesteryl esters (CE) and apolipoprotein (apo) E are also increased in parallel, the utilization or metabolism of lipid-droplet stored CE for steroidogenesis might be altered in aging cells. To explore this possibility, adrenocortical cholesterol storage and utilization were studied in 3-6 months-old (mo) (Y) rats and 20-23 mo (O) Fischer 344 male rats. Both groups received either adrenocorticotropin (ACTH1-39, Acthar gel) or gelatin alone daily for seven consecutive days. We found that: (a) the CE concentration in O rats, but not Y animals, was diminished by ACTH. The depleted CE in stimulated-O rats was replenished within five days post stimulation. Failure to deplete CE in stimulated-Y rats was not associated with an insufficient dose of the hormone, since stimulation of Y animals with higher doses of ACTH actually increased the CE concentration. In contrast, adrenocortical free cholesterol concentration remained constant during stimulation regardless of age. (b) The depleted CE in stimulated-O rats was principally comprised of cholesteryl adrenate, cholesteryl arachidonate and cholesteryl cervonate. The accumulated CE in stimulated-Y animals was primarily comprised of cholesteryl adrenate, cholesteryl arachidonate and cholesteryl oleate. (c) Whereas in stimulated-Y rats adrenal apoE concentration declined, the concentration in stimulated O animals was well maintained. (d) In vitro, adrenal homogenate or cytosolic fraction from stimulated-O rats displayed a higher capacity to hydrolyze exogenous CE than its Y counterpart. However, cholesterol esterification with external fatty acid substrates in adrenal homogenate or microsomal fraction was comparable in the two age-groups. Our findings revealed altered adrenocortical cholesterol reserve in O rats to cope with prolonged ACTH-stimulation. Changes

  9. Primary pigmented nodular adrenocortical disease: the original 4 cases revisited after 30 years for follow-up, new investigations, and molecular genetic findings.

    PubMed

    Carney, J Aidan; Libé, Rossella; Bertherat, Jérôme; Young, William F

    2014-09-01

    The original 4 patients with Cushing syndrome who underwent bilateral adrenalectomy for primary pigmented nodular adrenocortical disease were followed up for an average of 31 years to determine whether they or any of their primary relatives had developed Carney complex or its components. None had. Three of the patients were alive and well; the fourth had died of an unrelated condition. All the adrenal glands contained multiple small, black or brown cortical nodules, up to 4 mm in diameter. The extracapsular extension of the micronodules was limited to the immediate pericapsular adipose tissue and was not considered evidence of low-grade malignancy. Immunocytochemically, the nodules were positive for synaptophysin, inhibin-A, and melan A and negative for vimentin and CD56. Ki-67 antibody stained the cytoplasm of cells in the micronodules but not that of the atrophic cortical cells. The 4 patients had the PRKAR1A deletion that has been associated with the isolated form of primary pigmented nodular adrenocortical disease. PMID:24805858

  10. Molecular Profiling of Refractory Adrenocortical Cancers and Predictive Biomarkers to Therapy

    PubMed Central

    Millis, Sherri Z.; Ejadi, Samuel; Demeure, Michael J.

    2015-01-01

    PURPOSE Current first-line chemotherapy for patients with metastatic adrenocortical cancer (ACC) includes doxorubicin, etoposide, cisplatin, and mitotane with a reported response rate of only 23.2%. New therapeutic leads for patients with refractory tumors are needed; there is no standard second-line treatment. METHODS Samples from 135 ACC tumors were analyzed by immunohistochemistry, in situ hybridization (FISH or CISH), and/or gene sequencing at a single commercial reference laboratory (Caris Life Sciences) to identify markers associated with drug sensitivity and resistance. RESULTS Overexpression of proteins related to demonstrated chemotherapy sensitivity or resistance included topoisomerase 1, progesterone receptor, and topoisomerase 2-alpha in 46%, 63%, and 42% of cases, respectively. Loss of excision repair cross-complementary group 1 (ERCC1), phosophatase and tensin homolog, O(6)-methylguanine-methyltransferase, and ribonucleotide reductase M1 (RRM1) was identified in 56%, 59%, 71%, and 58% of cases, respectively. Other aberrations included overexpression of programmed death-ligand 1 or programmed cell death protein 1 tumor-infiltrating lymphocytes in >40% of cases. In all, 35% of cases had a mutation in the canonical Wnt signaling pathway (either CTNNB1 or APC) and 48% had a mutation in TP53. No other genomic alterations were identified. CONCLUSION Biomarker alterations in ACC may be used to direct therapies, including recommendations for and potential resistance of some patients to traditional chemotherapies, which may explain the low response rate in the unselected population. Limited outcomes data support the use of mitotane and platinum therapies for patients with low levels of the proteins RRM1 and ERCC1. PMID:26715866

  11. 5th International ACC Symposium: Classification of Adrenocortical Cancers from Pathology to Integrated Genomics: Real Advances or Lost in Translation?

    PubMed

    de Krijger, Ronald E; Bertherat, Jérôme

    2016-02-01

    For the clinician, despite its rarity, adrenocortical cancer is a heterogeneous tumor both in term of steroid excess and tumor evolution. For patient management, it is crucial to have an accurate vision of this heterogeneity, in order to use a correct tumor classification. Pathology is the best way to classify operated adrenocortical tumors: to recognize their adrenocortical nature and to differentiate benign from malignant tumors. Among malignant tumors pathology also aims at prognosis assessment. Although progress has being made for prognosis assessment, there is still a need for improvement. Recent studies have established the value of Ki67 for adrenocortical cancer (ACC) prognostication, aiming also at standardization to reduce variability. The use of genomics to study adrenocortical tumors gives a very new insight in their pathogenesis and molecular classification. Genomics studies of ACC give now a clear description of the mRNA (transcriptome) and miRNA expression profile, as well as chromosomal and methylation alterations. Exome sequencing also established firmly the list of the main ACC driver genes. Interestingly, genomics study of ACC also revealed subtypes of malignant tumors with different pattern of molecular alterations, associated with different outcome. This leads to a new vision of adrenocortical tumors classification based on molecular analysis. Interestingly, these molecular classifications meet also the results of pathological analysis. This opens new perspectives on the development and use of various molecular tools to classify, along with pathological analysis, ACC, and guides patient management at the area of precision medicine. PMID:26676358

  12. A genetic and molecular update on adrenocortical causes of Cushing syndrome.

    PubMed

    Lodish, Maya; Stratakis, Constantine A

    2016-05-01

    Primary adrenal Cushing syndrome is the result of cortisol hypersecretion mainly by adenomas and, rarely, by bilateral micronodular or macronodular adrenocortical hyperplasia. cAMP-dependent protein kinase A (PKA) signalling is the major activator of cortisol secretion in the adrenal cortex. Many adenomas and hyperplasias associated with primary hypercortisolism carry somatic or germline mutations in genes that encode constituents of the cAMP-PKA pathway. In this Review, we discuss Cushing syndrome and its linkage to dysregulated cAMP-PKA signalling, with a focus on genetic findings in the past few years. In addition, we discuss the presence of germline inactivating mutations in ARMC5 in patients with primary bilateral macronodular adrenocortical hyperplasia. This finding has implications for genetic counselling of affected patients; hitherto, most patients with this form of adrenal hyperplasia and Cushing syndrome were thought to have a sporadic and not a familial disorder. PMID:26965378

  13. Familial cytomegalic adrenocortical hypoplasia: an X-linked syndrome of pubertal failure.

    PubMed Central

    Hay, I D; Smail, P J; Forsyth, C C

    1981-01-01

    Five boys with familial cytomegalic adrenocortical hypoplasia have been followed up for an average of 19 years. Despite treatment with replacement corticosteroids, all 5 failed to show a spontaneous onset of puberty and, when assessed at ages 13 to 19 years, all had both sexual infantilism and skeletal immaturity. Hypogonadism was confirmed by low levels of plasma testosterone, and pituitary reserve of gonadotrophin was shown to be inadequate by testing with gonadotrophin-releasing hormone. Two boys, both with adequate testosterone output on human chorionic gonadotrophin stimulation, were given gonadotrophin therapy, whereas the other 3 were treated with parenterally administered testosterone. With treatment, all 5 patients showed advances in pubertal staging. Although the mechanism of the hypogonadotropism remains unclear, the association of hypogonadotrophic hypogonadism with familial cytomegalic adrenocortical hypoplasia appears to be a constant one and may be considered as a treatable inherited syndrome of pubertal failure. PMID:7197507

  14. A Case of Oncocytic Adrenocortical Neoplasm of Borderline (Uncertain) Malignant Potential

    PubMed Central

    Brown, Linda G; Denning, Krista L; Pacioles, Toni

    2016-01-01

    Oncocytic neoplasms are tumors composed predominantly or exclusively of oncocytes (large polygonal cells with granular eosinophilic cytoplasm due to abnormal mitochondrial accumulation). These tumors are frequently reported in the thyroid, kidneys, and salivary glands. However, they are distinctly rare in the adrenal cortex. Oncocytic adrenocortical neoplasms (OAN) are classified regarding their biological behavior by their histological features according to the Lin-Weiss-Bisceglia system (LWB). Here, we report a case of OAN of borderline or uncertain malignant potential (BMP) with subsequently identified papillary thyroid carcinoma (PTC). A 34-year-old female with a nine-month history of fatigue presented with chest pain. A right adrenal mass was incidentally found while ruling out pulmonary embolism. A CT-guided adrenal biopsy, although not routinely indicated, was performed and interpreted as malignant with no definitive origin. Hormonal workup was unremarkable. PET-scan showed hypermetabolic adrenal mass with peak standardized uptake value of 15, suspicious of malignancy. A hypermetabolic thyroid nodule was also identified, but there was no evidence of metastatic disease. The patient underwent adrenalectomy, and the initial pathology report was interpreted as atypical pink cell tumor. A second pathology report from another laboratory favored OAN based on the morphology and immunohistochemical staining. While the histologic criteria of malignancy were not met, the large tumor size makes it compatible with BMP according to LWB criteria. A follow-up thyroid ultrasound revealed a complex thyroid nodule. A total thyroidectomy was performed, and pathology was consistent with PTC. Of interest, PTC frequently shows an increase in mitochondrial content, which is characteristic of oncocytic tumors. This case illustrates that OAN, although rare, should be considered in the differential diagnosis of adrenal masses. When OAN is identified, it should be classified

  15. A Case of Oncocytic Adrenocortical Neoplasm of Borderline (Uncertain) Malignant Potential.

    PubMed

    Shenouda, Mina; Brown, Linda G; Denning, Krista L; Pacioles, Toni

    2016-01-01

    Oncocytic neoplasms are tumors composed predominantly or exclusively of oncocytes (large polygonal cells with granular eosinophilic cytoplasm due to abnormal mitochondrial accumulation). These tumors are frequently reported in the thyroid, kidneys, and salivary glands. However, they are distinctly rare in the adrenal cortex. Oncocytic adrenocortical neoplasms (OAN) are classified regarding their biological behavior by their histological features according to the Lin-Weiss-Bisceglia system (LWB). Here, we report a case of OAN of borderline or uncertain malignant potential (BMP) with subsequently identified papillary thyroid carcinoma (PTC). A 34-year-old female with a nine-month history of fatigue presented with chest pain. A right adrenal mass was incidentally found while ruling out pulmonary embolism. A CT-guided adrenal biopsy, although not routinely indicated, was performed and interpreted as malignant with no definitive origin. Hormonal workup was unremarkable. PET-scan showed hypermetabolic adrenal mass with peak standardized uptake value of 15, suspicious of malignancy. A hypermetabolic thyroid nodule was also identified, but there was no evidence of metastatic disease. The patient underwent adrenalectomy, and the initial pathology report was interpreted as atypical pink cell tumor. A second pathology report from another laboratory favored OAN based on the morphology and immunohistochemical staining. While the histologic criteria of malignancy were not met, the large tumor size makes it compatible with BMP according to LWB criteria. A follow-up thyroid ultrasound revealed a complex thyroid nodule. A total thyroidectomy was performed, and pathology was consistent with PTC. Of interest, PTC frequently shows an increase in mitochondrial content, which is characteristic of oncocytic tumors. This case illustrates that OAN, although rare, should be considered in the differential diagnosis of adrenal masses. When OAN is identified, it should be classified

  16. Classification and surgical treatment for 180 cases of adrenocortical hyperplastic disease

    PubMed Central

    Zhang, Yushi; Li, Hanzhong

    2015-01-01

    Objective: To review and discuss the diagnostic and surgical therapeutic methods of adrenocortical hyperplastic disease. Methods: A retrospective analysis was done to 180 adrenocortical hyperplasia patients (74 males, 109 females, aged 6~76 (average 40.1). Studies were done to the relationship between patients’ clinical characteristics, biochemical, endocrinological and imaging examination results, the therapeutic effects. Results: Among all 180 cases, there are 107 Cushing disease (CD), 19 ectopic adrenocorticotropin adrenal hyperplasia (EAAH), 28 adrenocorticotropin independent macronodular adrenal hyperplasia (AIMAH), 4 primary pigmented nodular adrenocortical hyperplasia (PPNAH), and 28 Idiopathic Hyperaldosteronism (IHA). Twenty-four-hour urinary free cortisol (24 h UFC) excretion of CD, EAAH, AIMAH and PPNAH patients were 95.2~535.7 µg (average 287.6 µg), 24.8~808.2 µg (average 307.9 µg), 102.5~3127.0 µg (average 852.5 µg), and 243.8~1124.6 µg (average 564.3 µg). Both low and high-dose dexamethasone suppression tests (DDST) were not suppressed in AIMAH, PPNAH and EAAH groups, but HDDST was suppressed in CD group. CT thin scanning results of 180 patients all showed enlargements in the affected side adrenal gland. Unilateral adrenalectomies were performed in 102 hypercortisolism cases. Local lesion excisions were done to 21 IHA patients. 57 patients had surgeries in both sides of the adrenal glands (39 bilateral total adrenalectomies, 16 total adrenalectomy in one side andsubtotal adrenalectomy in the other, 2 bilateral subtotal adrenalectomies). 106 (59%) patients were followed up for 4~158 (average 32) months. Conclusion: Unilateral adrenalectomy was the first choice for operable adrenocortical hyperplasia patients. The operation mode for the other adrenal gland should be based on the type of hyperplasia and clinical observation. PMID:26770569

  17. Paediatric Nonfunctioning Adrenocortical Carcinoma with Extension up to Right-Side Heart: Cardiac Surgery Approach

    PubMed Central

    Quarti, Andrea; Surace, Chiara; Pozzi, Marco

    2016-01-01

    Adrenocortical carcinoma is a rare malignancy. Due to late diagnosis and no adequate effective adjuvant treatment, prognosis remains poor. Only approximately 30% of these malignancies are confined to the adrenal gland when they are diagnosed, as these tumors tend to be found years after their genesis. Cardiac involvement of adrenal carcinoma is very rare. We report a rare case of a 7-year-old female with right adrenal cortical carcinoma, involving the right-side heart. PMID:27493811

  18. EFFECT OF BILATERAL OOPHORECTOMY ON ADRENOCORTICAL FUNCTION IN WOMEN WITH POLYCYSTIC OVARY SYNDROME (PCOS)

    PubMed Central

    Azziz, Ricardo; Chang, Wendy Y.; Stanczyk, Frank Z.; Woods, Keslie

    2012-01-01

    Objective To determine the impact of ovary-secreted products on adrenocortical function in women with PCOS by studying the adrenocortical response to acute adrenocorticotropic-stimulating hormone (ACTH) stimulation before and after bilateral oophorectomy. Design Prospective study. Setting Tertiary care medical center Participants Fourteen women with PCOS scheduled for bilateral oophorectomy for benign indications, on transdermal estradiol (E2) postoperatively. Interventions Physical exam, blood sampling before and after oophorectomy, measurement of hormone levels. Basal (Steroid0), maximum stimulated (Steroid60), and net increment (ΔSteroid) levels of androstenedione (A4), dehydroepiandrosterone (DHEA), and cortisol (F) before and after ACTH-1–24 stimulation were assessed. Main Outcome Measures Pre- and post-operative basal and ACTH(1–24)-stimulated hormonal levels. Results Total testosterone, free testosterone, and estrone levels decreased, and FSH levels increased significantly following oophorectomy. No significant differences in E2, DHEA sulfate (DHEAS) or sex hormone binding globulin levels were detected. Basal and ACTH-stimulated A4 levels decreased significantly following oophorectomy, and ΔA4 was significantly increased. No significant differences in DHEA0, DHEA60, or F0 levels were detected; F60 and ΔF levels tended to increase following oophorectomy, but the differencesdid not reach significance. Conclusions Ovarian factors do not appear to contribute significantly to the adrenocortical dysfunction of PCOS. PMID:23122827

  19. An unusual presentation of Carney complex with diffuse primary pigmented nodular adrenocortical disease on one adrenal gland and a nonpigmented adrenocortical adenoma and focal primary pigmented nodular adrenocortical disease on the other.

    PubMed

    Tung, Shih-Chen; Hwang, Daw-Yang; Yang, Joseph W; Chen, Wei-Jen; Lee, Chien-Te

    2012-01-01

    A 24-year-old female patient with cushingoid appearance was admitted in May 2000. The endocrine studies showed ACTH-independent Cushing's syndrome. A 2-day high-dose dexamethasone suppression test (HDDST) revealed paradoxical increase of 24 h urinary free cortisol (UFC). Abdominal computed tomography demonstrated a left adrenal nodule (3 x 2 cm in diameter). An adrenal scintigram with ¹³¹I-6β-iodomethyl-19-norcholesterol showed uptake of the isotope in the left adrenal gland and non-visualization in the right adrenal gland throughout the examination course. A retroperitoneoscopic left total adrenalectomy was performed in July 2000. The cut surface of the left adrenal was yellow-tan grossly. Microscopically, the left adrenal nodule contained a nonpigmented adrenocortical adenoma (NP) and another focal primary pigmented nodular adrenocortical disease (PPNAD, FP) mixed lesion. The immunohistochemical studies of CYP17 demonstrate positive in NP and FP of the left adrenal gland. Very low baseline morning plasma cortisol (0.97 μg/dL) and subnormal ACTH (8.16 pg/mL) levels were measured 1.5 months after left adrenalectomy. Right adrenal gland recovered its function 6 months after left adrenalectomy. Plasma cortisol could be suppressed to 3.47 μg/dL by overnight low-dose dexamethasone suppression test 65 months after left adrenalectomy. Cushingoid features still did not appear 122 months after left adrenalectomy. In May 2011, this patient was readmitted due to cushingoid characteristics. Paradoxical rise of 24-h UFC to 2-day HDDST was demonstrated. Ultrasonography of thyroid showed bilateral thyroid cysts. Subtotal right adrenalectomy about 80% of right adrenal was performed. Diffuse PPNAD of the right adrenal was proved pathologically. Immunohischemical stain for CYP17 is positive in the right adrenal gland but weaker positive than that in the left adrenal gland. The genetic study of the peripheral blood, left adrenocortical nodule, and right PPNAD all showed p.R16X

  20. Genetic p53 deficiency partially rescues the adrenocortical dysplasia (acd) phenotype at the expense of increased tumorigenesis

    PubMed Central

    Else, Tobias; Trovato, Alessia; Kim, Alex C.; Wu, Yipin; Ferguson, David O.; Kuick, Rork D.; Lucas, Peter C.; Hammer, Gary D.

    2009-01-01

    Summary Telomere dysfunction and shortening induce chromosomal instability and tumorigenesis. In this study, we analyze the adrenocortical dysplasia (acd) mouse, harboring a mutation in Tpp1/Acd. Additional loss of p53 dramatically rescues the acd phenotype in an organ-specific manner, including skin hyperpigmentation and adrenal morphology, but not germ cell atrophy. Survival to weaning age is significantly increased in Acdacd/acd p53−/− mice. On the contrary p53−/− and p53+/− mice with the Acdacd/acd genotype show a decreased tumor free survival compared to Acd+/+ mice. Tumors from Acdacd/acd p53+/− mice show a striking switch from the classical spectrum of p53−/− mice towards carcinomas. The acd mouse model provides further support for an in vivo role of telomere deprotection in tumorigenesis. Significance Critically shortened dysfunctional telomeres of the Terc−/− mice have been shown to impact tissue development and maintenance and lead to the occurrence of a pro-cancer genome. The present study examines the contribution of telomere shortening vs. telomere deprotection to the development of genetic instability and cancer. By studying the acd mouse, we show that telomere deprotection without significant telomere shortening is sufficient to induce tumor formation in the context of p53 absence. It also raises the possibility that telomere deprotection contributes to the high prevalence of carcinomas in humans. PMID:19477426

  1. ACTH-independent macronodular adrenocortical hyperplasia reveals prevalent aberrant in vivo and in vitro responses to hormonal stimuli and coupling of arginine-vasopressin type 1a receptor to 11β-hydroxylase

    PubMed Central

    2013-01-01

    Background Adrenal Cushing’s syndrome caused by ACTH-independent macronodular adrenocortical hyperplasia (AIMAH) can be accompanied by aberrant responses to hormonal stimuli. We investigated the prevalence of adrenocortical reactions to these stimuli in a large cohort of AIMAH patients, both in vivo and in vitro. Methods In vivo cortisol responses to hormonal stimuli were studied in 35 patients with ACTH-independent bilateral adrenal enlargement and (sub-)clinical hypercortisolism. In vitro, the effects of these stimuli on cortisol secretion and steroidogenic enzyme mRNA expression were evaluated in cultured AIMAH and other adrenocortical cells. Arginine-vasopressin (AVP) receptor mRNA levels were determined in the adrenal tissues. Results Positive serum cortisol responses to stimuli were detected in 27/35 AIMAH patients tested, with multiple responses within individual patients occurring for up to four stimuli. AVP and metoclopramide were the most prevalent hormonal stimuli triggering positive responses in vivo. Catecholamines induced short-term cortisol production more often in AIMAH cultures compared to other adrenal cells. Short- and long-term incubation with AVP increased cortisol secretion in cultures of AIMAH cells. AVP also increased steroidogenic enzyme mRNA expression, among which an aberrant induction of CYP11B1. AVP type 1a receptor was the only AVPR expressed and levels were high in the AIMAH tissues. AVPR1A expression was related to the AVP-induced stimulation of CYP11B1. Conclusions Multiple hormonal signals can simultaneously induce hypercortisolism in AIMAH. AVP is the most prevalent eutopic signal and expression of its type 1a receptor was aberrantly linked to CYP11B1 expression. PMID:24034279

  2. Molecular Imaging in the Management of Adrenocortical Cancer: A Systematic Review.

    PubMed

    Wong, Ka Kit; Miller, Barbra S; Viglianti, Benjamin L; Dwamena, Ben A; Gauger, Paul G; Cook, Gary J; Colletti, Patrick M; Rubello, Domenico; Gross, Milton D

    2016-08-01

    Adrenocortical cancer (ACC) is an uncommon primary neoplasm of the adrenal cortex with dismal prognosis. It often presents with symptoms and signs of adrenal cortical hormone hypersecretion and abdominal mass effect or is incidentally detected as an adrenal mass on imaging performed for other indications. Endocrine evaluation, comprehensive staging, and meticulous resection are crucial to ensure the best possible outcome. Despite extensive initial surgical resection, local and distant metastases are not uncommon with disappointing 5-year survival, although progress is being made at high-volume centers. Accurate restaging of recurrent disease is important to guide further management. Mitotane, external beam radiation and chemotherapy, and newer anticancer systemic treatments are used as adjunctives for inoperable disease and distant metastases. Contrast-enhanced CT and MRI are first-line imaging modalities for evaluation of ACC to characterize adrenal masses and to determine tumor resectability. Emerging literature supports F-FDG PET/CT use to determine the malignant potential of adrenal masses. In patients with a diagnosis of ACC, FDG PET/CT is sensitive for detecting metastatic disease, and its tumor accumulation has been correlated to pathology, Weiss scores, and prognosis. Metomidate, labeled with C for PET or with I for SPECT/CT, allows characterization of an adrenal mass as being of adrenocortical origin with high specificity. Taking advantage of its adrenocortical avidity, metomidate has been labeled with I for radionuclide therapy in a subset of ACC. In this review, we describe how nuclear medicine imaging, and specifically PET, can assist surgical management of ACC. PMID:26825212

  3. microRNAs as Potential Biomarkers in Adrenocortical Cancer: Progress and Challenges

    PubMed Central

    Cherradi, Nadia

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare malignancy with poor prognosis and limited therapeutic options. Over the last decade, pan-genomic analyses of genetic and epigenetic alterations and genome-wide expression profile studies allowed major advances in the understanding of the molecular genetics of ACC. Besides the well-known dysfunctional molecular pathways in adrenocortical tumors, such as the IGF2 pathway, the Wnt pathway, and TP53, high-throughput technologies enabled a more comprehensive genomic characterization of adrenocortical cancer. Integration of expression profile data with exome sequencing, SNP array analysis, methylation, and microRNA (miRNA) profiling led to the identification of subgroups of malignant tumors with distinct molecular alterations and clinical outcomes. miRNAs post-transcriptionally silence their target gene expression either by degrading mRNA or by inhibiting translation. Although our knowledge of the contribution of deregulated miRNAs to the pathogenesis of ACC is still in its infancy, recent studies support their relevance in gene expression alterations in these tumors. Some miRNAs have been shown to carry potential diagnostic and prognostic values, while others may be good candidates for therapeutic interventions. With the emergence of disease-specific blood-borne miRNAs signatures, analyses of small cohorts of patients with ACC suggest that circulating miRNAs represent promising non-invasive biomarkers of malignancy or recurrence. However, some technical challenges still remain, and most of the miRNAs reported in the literature have not yet been validated in sufficiently powered and longitudinal studies. In this review, we discuss the current knowledge regarding the deregulation of tumor-associated and circulating miRNAs in ACC patients, while emphasizing their potential significance in pathogenic pathways in light of recent insights into the role of miRNAs in shaping the tumor microenvironment. PMID:26834703

  4. The reticulin algorithm for adrenocortical tumor diagnosis: a multicentric validation study on 245 unpublished cases.

    PubMed

    Duregon, Eleonora; Fassina, Ambrogio; Volante, Marco; Nesi, Gabriella; Santi, Raffaella; Gatti, Gaia; Cappellesso, Rocco; Dalino Ciaramella, Paolo; Ventura, Laura; Gambacorta, Marcello; Dei Tos, Angelo Paolo; Loli, Paola; Mannelli, Massimo; Mantero, Franco; Berruti, Alfredo; Terzolo, Massimo; Papotti, Mauro

    2013-09-01

    The pathologic diagnosis of adrenocortical carcinoma (ACC) still needs to be improved, because the renowned Weiss Score (WS) system has a poor reproducibility of some parameters and is difficult to apply in borderline cases and in ACC variants. The "reticulin algorithm" (RA) defines malignancy through an altered reticulin framework associated with 1 of the 3 following parameter: necrosis, high mitotic rate, and vascular invasion. This study aimed at validating the interobserver reproducibility of reticulin stain evaluation in an unpublished series of 245 adrenocortical tumors (61 adenomas and 184 carcinomas) from 5 Italian centers, classified according to the WS. Eight pathologists reviewed all reticulin-stained slides. After training, a second round of evaluation on discordant cases was performed 10 weeks later. The RA reclassified 67 cases (27%) as adenomas, including 44 with no reticulin alterations and 23 with an altered reticulin framework but lacking the subsequent parameters of the triad. The other 178 cases (73%) were carcinomas according to the above-mentioned criteria. A complete (8/8 pathologists) interobserver agreement was reached in 75% of cases (κ=0.702), irrespective of case derivation, pathologists' experience, and histologic variants, and was further improved when only those cases with high WS and clinically malignant behavior were considered. After the training, the overall agreement increased to 86%. We conclude that reticulin staining is a reliable technique and an easy-to-interpret system in adrenocortical tumors; moreover, it has a high interobserver reproducibility, which supports the notion of using such a method in the proposed 2-step RA approach for ACC diagnosis. PMID:23774167

  5. Adrenocortical response to open-field test in rats with anterodorsal thalami nuclei lesion.

    PubMed

    Suárez, M; Perassi, N; Dal Zotto, S

    1996-01-01

    The influence of limbic anterodorsal thalami nuclei (ADTN) on adrenocortical activity and on emotional reactivity were investigated in male and female rats. The emotional reactivity was evaluated by means of the open-field test and the corticoadrenal function by means of plasma and adrenal corticosterone concentration. The results demonstrate that ADTN lesion does not affect the behavioural patterns in the open-field test on the 29th and 30th day after lesion nor adrenal response when animals are exposed to a novel situation. PMID:8724884

  6. Characterizing adrenocortical activity in zoo-housed southern three-banded armadillos (Tolypeutes matacus).

    PubMed

    Howell-Stephens, Jennifer A; Brown, Joel S; Bernier, David; Mulkerin, Diane; Santymire, Rachel M

    2012-08-01

    Improving the husbandry in the southern three-banded armadillo (Tolypeutes matacus) through gaining knowledge of its stress physiology is imperative to maintaining a healthy, zoo-housed population. Our objectives were to: 1) validate the use of fecal hormone analysis for monitoring adrenocortical activity using both an adrenocorticotropic hormone (ACTH) challenge and biological events; and 2) characterize longitudinal adrenocortical activity in male and female southern three-banded armadillos. An ACTH injection was given intra-muscularly to one male (4IU/kg; 5.6IU total) and one female (5.5IU/kg; 8IU total) southern three-banded armadillo. Fecal samples were collected 1 day pre- and continued 5 days post-ACTH to capture the physiological response measured by elevated fecal glucocorticoid metabolites (FGM) to validate these techniques. Additionally, natural and routine events, including pairing individuals for breeding and veterinary procedures/handling, were used to biologically validate these techniques. To characterize adrenocortical activity, fecal samples (∼3025 total; n=275/animal/yr) were collected from 11 (5 males; 6 females) southern three-banded armadillos 5-7 times a week for 1 year at Lincoln Park Zoo (Chicago, IL). A cortisol enzyme immunoassay was used for FGM analysis. The ACTH challenge in the male resulted in a twofold increase of FGM (1123.2±36.2 ng/g dry feces) above baseline (675.7±10.0 ng/g dry feces) at approximately 54-94h post- injection. The female exhibited a twofold increase (1635.4 ng/g dry feces) over baseline FGMs (608.5±12.3 ng/g dry feces) approximately 30h post-injection. Reproductive behaviors and veterinary procedures resulted in elevated FGM concentrations from all individuals except for one male. The longitudinal characterization demonstrated that sex and season did not influence (P<0.05) FGM concentrations. Individuals were highly variable with mean FGM concentration of 2010.1±862.4 ng/g dry feces (range, 816.3-7889.1 ng

  7. Adrenocortical tumor with precocious puberty in a 2-month-old girl.

    PubMed

    Marret, Jean-Baptiste; Raffoul, Lara; Ribault, Virginie; Ravasse, Philippe; Rod, Julien

    2015-10-01

    Adrenocortical tumor is a rare childhood tumor with a median age at onset of 3.2 years. Virilization is the most common sign. Laparotomy is the reference treatment and has a favorable course. The diagnosis of adrenal tumor can be difficult. The main parameters of malignant tumors are size and metastasis. Analysis of TP53 mutation can facilitate final diagnosis. We report a case of virilizing adrenal tumor that developed in a 2-month-old girl, and which was treated with laparoscopic adrenalectomy. PMID:26508188

  8. Comparison of the methods for measuring the Ki-67 labeling index in adrenocortical carcinoma: manual versus digital image analysis.

    PubMed

    Yamazaki, Yuto; Nakamura, Yasuhiro; Shibahara, Yukiko; Konosu-Fukaya, Sachiko; Sato, Naomi; Kubota-Nakayama, Fumie; Oki, Yutaka; Baba, Satoshi; Midorikawa, Sanae; Morimoto, Ryo; Satoh, Fumitoshi; Sasano, Hironobu

    2016-07-01

    Adrenocortical carcinoma (ACC) is a rare, highly malignant neoplasm harboring marked histologic heterogeneity. The Ki-67 labeling index (LI) is one of the most effective diagnostic and prognostic markers in ACC. However, its assessment has by no means been standardized. Therefore, in this study, we analyzed the Ki-67 LI in 18 ACC cases both by seven pathologists using microscopes (MA; manual analysis) and with digital image analysis (DIA) and also compared the Ki-67 LI obtained by selecting "hot spots" and formulating the "average" reading of the whole tumor specimen. In addition, we performed statistical analysis of the association between Ki-67 LI and the clinical and pathologic features of individual cases. The DIA was significantly correlated with MA in hot spots but not in the average fields. The Ki-67 LI in hot spots was significantly and consistently higher than that in average areas by both MA and DIA, indicating intratumoral heterogeneity. The Ki-67 LI was significantly correlated with the Weiss criteria (eosinophilic cytoplasm, nuclear atypia, atypical mitoses, and sinusoidal invasion) by any mode of evaluation. The clinical outcome was significantly better in the patients with a Ki-67 < 10% than in those with a Ki-67 > 10% by MA in hot spots. The Ki-67 LI in hot spots measured by MA best reflected the clinical and pathologic features of ACC. Employment of DIA to obtain the Ki-67 LI in ACC requires further improvement, including correction of its overestimation of the value by counting non-tumorous cells and nuclear segmentation in areas of high cell density. PMID:26980031

  9. 5th International ACC Symposium: The New Genetics of Benign Adrenocortical Neoplasia: Hyperplasias, Adenomas, and Their Implications for Progression into Cancer.

    PubMed

    Kirschner, Lawrence S; Stratakis, Constantine A

    2016-02-01

    Genetic tools for the analysis of human tumors have developed rapidly over the past 20 years. Adrenocortical neoplasms have been subject to multiple analyses using these new genetic tools. Analysis of adrenocortical carcinomas (ACCs) has been complicated by the fact that these tumors tend to exhibit multiple somatic abnormalities, so that identifying driver mutations is complex task. In contrast, benign adrenocortical neoplasms have proven to be a fertile ground for the identification of the genetic causes of adrenocortical adenomas, as well as a variety of adrenocortical hyperplasia. Analysis of cortisol-producing adrenocortical adenomas has revealed alterations leading to enhanced signaling through the cAMP-dependent protein kinase (PKA) pathway. In contrast, macronodular cortisol-producing neoplasias have been shown to result from mutations in the ARMC5 gene, whose function is not yet quite so clear. In contrast, adrenal tumors resulting in excess production of the blood pressure hormone aldosterone almost always result from abnormalities of calcium handling, both in single adenomas and in bilateral hyperplasias. In both cases, there is elevation of a signaling pathway responsible both for hormone secretion and for gland growth and maintenance, thus confirming the linkage of these two output of cellular physiology. The connection between the benign hyperplasia observed in these states and adrenocortical carcinogenesis is not nearly as clear, although genetic studies are beginning to elucidate the relationship between benign and malignant tumors of this gland. PMID:26684645

  10. Environmental enrichment affects adrenocortical stress responses in the endangered black-footed ferret

    USGS Publications Warehouse

    Poessel, S.A.; Biggins, D.E.; Santymire, R.M.; Livieri, T.M.; Crooks, K.R.; Angeloni, L.

    2011-01-01

    Potential stressors of wildlife living in captivity, such as artificial living conditions and frequent human contact, may lead to a higher occurrence of disease and reduced reproductive function. One successful method used by wildlife managers to improve general well-being is the provision of environmental enrichment, which is the practice of providing animals under managed care with environmental stimuli. The black-footed ferret (Mustela nigripes) is a highly-endangered carnivore species that was rescued from extinction by removal of the last remaining individuals from the wild to begin an ex situ breeding program. Our goal was to examine the effect of environmental enrichment on adrenocortical activity in ferrets by monitoring fecal glucocorticoid metabolites (FGM). Results demonstrated that enrichment lowered FGM in juvenile male ferrets, while increasing it in adult females; enrichment had no effect on FGM in juvenile females and adult males. These results correspond with our findings that juvenile males interacted more with the enrichment items than did adult females. However, we did not detect an impact of FGM on the incidence of disease or on the ability of ferrets to become reproductive during the following breeding season. We conclude that an environmental enrichment program could benefit captive juvenile male ferrets by reducing adrenocortical activity. ?? 2011 Elsevier Inc.