Science.gov

Sample records for h2o-3h exchange reaction

  1. The structure of {[Co(pht)(bpy)(H2O)]3H2O}n (pht is phthalate and bpy is 4,4'-bipyridine) and the role of solvent water clusters in structure stability.

    PubMed

    Harvey, Miguel Angel; Suarez, Sebastin; Doctorovich, Fabio; Cukiernik, Fabio D; Baggio, Ricardo

    2014-05-01

    The Co(II) cation in poly[[aqua(?-benzene-1,2-dicarboxylato-?(3)O(1),O(2):O(1))(?-4,4'-bipyridine-?(2)N:N')cobalt(II)] trihydrate], {[Co(C8H4O4)(C10H8N2)(H2O)]3H2O}n, is octahedrally coordinated by two N atoms of two 4,4'-bipyridine ligands, three O atoms from phthalate anions and a fourth O atom from a coordinated water molecule. The packing consists of planes of coordination polymers linked by hydrogen bonds mediated by three solvent water molecules; the linkage is achieved by the water molecules forming intricate oligomeric clusters which also involve the O atoms of the phthalate ligands. PMID:24816009

  2. Multidimentional Normal Mode Calculations for the OH Vibrational Spectra of (H_2O)_3^+, (H_2O)_3^+Ar, H^+(H_2O)_3, and H^+(H_2O)_3Ar

    NASA Astrophysics Data System (ADS)

    Li, Ying-Cheng; Chuang, Hsiao-Han; Tan, Jake Acedera; Takahashi, Kaito; Kuo, Jer-Lai

    2014-06-01

    Recent experimental observations of (H_2O)_3^+, (H_2O)_3^+Ar, H^+(H_2O)_3, and H^+(H_2O)_3Ar clusters in the region 1400-3800 wn show that the OH stretching vibration has distinct characteristics. Multidimensional normal mode calculations were carried out for OH stretching vibrations in the 1200-4000 wn photon energy range. The potential energy and dipole surfaces were evaluated by using first-principles methods. By comparing the calculated frequencies and intensities of OH stretching vibration with experimental spectra, we found that the assignment of OH strecthing of H_3O^+ moiety and free OH strectching vibration have resonable agreement with experimental data. Jeffrey M. Headrick, Eric G. Diken, Richard S. Walters, Nathan I. Hammer, Richard A. Christie, Jun Cui, Evgeniy M. Myshakin, Michael A. Duncan, Mark A. Johnson, Kenneth D. Jordan, Science, 2005, 17, 1765. Kenta Mizuse, Jer-Lai Kuo and Asuka Fujii, Chem. Sci., 2011, 2, 868 Kenta Mizuse and Asuka Fujii, J. Phys. Chem. A, 2013, 117, 929.

  3. Multinucleon exchange in quasifission reactions

    NASA Astrophysics Data System (ADS)

    Ayik, S.; Yilmaz, B.; Yilmaz, O.

    2015-12-01

    The nucleon exchange mechanism is investigated in the central collisions of 40Ca+238U and 48Ca+238U systems near the quasifission regime in the framework of the stochastic mean-field (SMF) approach. Sufficiently below the fusion barrier, a dinuclear structure in the collisions is maintained to a large extent. Consequently, it is possible to describe nucleon exchange as a diffusion process familiar from deep-inelastic collisions. Diffusion coefficients for proton and neutron exchange are determined from the microscopic basis of the SMF approach in the semiclassical framework. Calculations show that after a fast charge equilibration the system drifts toward symmetry over a very long interaction time. Large dispersions of proton and neutron distributions of the produced fragments indicate that the diffusion mechanism may help to populate heavy transuranium elements near the quasifission regime in these collisions.

  4. Nucleon exchange in damped nuclear reactions

    SciTech Connect

    Randrup, J.

    1986-04-01

    Starting from the general context of one-body nuclear dynamics, the nucleon-exchange mechanism in damped nuclear reactions is discussed. Some of its characteristic effects on various dinuclear observables are highlighted and a few recent advances are described.

  5. Individual Differences in Reactions to Inequitable Exchanges.

    ERIC Educational Resources Information Center

    Ellis, Barbara B.; Penner, Louis A.

    1983-01-01

    Investigates the role of sociopathic tendencies in reactions to inequitable exchanges in 273 males and females classified as high or low in sociopathy. Subjects read narratives of inequitable exchanges and assumed the role of the exploiter and the role of the victim in each. (Author/RH)

  6. Strangeness exchange reactions and hypernuclei

    SciTech Connect

    Dover, C.B.

    1982-01-01

    Recent progress in the spectroscopy of ..lambda.. and ..sigma.. hypernuclei is reviewed. Prospects for the production of doubly strange hypernuclei at a future kaon factory are assessed. It is suggested that the (K/sup -/,K/sup +/) reaction on a nuclear target may afford an optimal way of producing the H dibaryon, a stable six quark object with J/sup ..pi../ = O/sup +/, S = -2.

  7. PEP Carboxykinase Exchange Reaction in Photosynthetic Bacteria 1

    PubMed Central

    Cooper, T. G.; Benedict, C. R.

    1968-01-01

    This paper describes some new characteristics of the phosphoenolpyruvate carboxykinase CO2-oxaloacetate exchange reaction in purified preparations of Rhodospirillum rubrum. The enzymatic activity has been purified 169-fold. Nucleotide diphosphates substitute for nucleotide triphosphates in the exchange reaction. Nucleotide diphosphates will not support the synthesis of phosphoenolpyruvate from oxaloacetate. This reaction differs significantly from the CO2-oxaloacetate exchange reaction in higher plants and animals. PMID:5661493

  8. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    ERIC Educational Resources Information Center

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  9. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    ERIC Educational Resources Information Center

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77

  10. Phospholipid exchange reactions within the liver cell

    PubMed Central

    McMurray, W. C.; Dawson, R. M. C.

    1969-01-01

    1. Isolated rat liver mitochondria do not synthesize labelled phosphatidylcholine from CDP-[14C]choline or any phospholipid other than phosphatidic acid from [32P]phosphate. The minimal labelling of phosphatidylcholine and other phosphoglycerides can be attributed to microsomal contamination. However, when mitochondria and microsomes are incubated together with [32P]phosphate, the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine of the reisolated mitochondria become labelled, suggesting a transfer of phospholipids between the two fractions. 2. When liver microsomes or mitochondria containing labelled phosphatidylcholine are independently incubated with the opposite un-labelled fraction, there is a substantial and rapid exchange of the phospholipid between the two membranes. Exchange of phosphatidylinositol also occurs rapidly, whereas phosphatidylethanolamine and phosphatidic acid exchange only slowly. There is no corresponding transfer of marker enzymes. The transfer of phosphatidylcholine does not occur at 0, and there is no requirement for added substrate, ATP or Mg2+, but the omission of a heat-labile supernatant fraction markedly decreases the exchange. 3. After intravenous injection of [32P]phosphate, short-period labelling experiments of the individual phospholipids of rat liver microsomes and mitochondria in vivo give no evidence for a similar exchange process. However, the incubation of isolated microsomes and mitochondria with [32P]phosphate also fails on reisolation of the fractions to demonstrate a precursorproduct relationship between the individual phospholipids of the two membranes. 4. The intraperitoneal injection of [32P]phosphate results in a far greater proportion of the dose entering the liver than does intravenous administration. After intraperitoneal administration of [32P]phosphate the specific radioactivities of the individual phospholipids are in the order microsomes > outer mitochondrial membrane > inner mitochondrial membrane. 5. The incorporation of 32P into cardiolipin is very slow both in vivo and in vitro. After labelling in vivo the radioactivity in the cardiolipin persists compared with that of the other phospholipids, whose specific radioactivities in the microsomes and mitochondrial fragments decay at a similar rate to that of the acid-soluble phosphate pool. 6. The possibility of phospholipid exchange processes occurring in the liver cell in vivo is discussed, and it is suggested that only a small but highly labelled part of the endoplasmic-reticulum lipoprotein pool is involved in the transfer. PMID:4304512

  11. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals

    PubMed Central

    2015-01-01

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn2+ and Cd2+) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu2–xSe) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core–shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu+ ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu2–xSe samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature. PMID:26140622

  12. Carbonyl-Olefin Exchange Reaction and Related Chemistry

    NASA Astrophysics Data System (ADS)

    Jossifov, Christo; Kalinova, Radostina

    A new carboncarbon double bond forming reaction (carbonyl olefin exchange reaction) mediated by transition metal catalytic systems has been discovered. The catalytic systems used (transition metal halides or oxohalides alone or in combination with Lewis acids) are active only in the case when the two reacting groups are in one molecules and are conjugated. In addition these systems accelerate other reactions which run simultaneously with the carbonyl olefin metathesis rendering a detailed investigation of the process very complicated.

  13. Heat exchanger development at Reaction Engines Ltd.

    NASA Astrophysics Data System (ADS)

    Varvill, Richard

    2010-05-01

    The SABRE engine for SKYLON has a sophisticated thermodynamic cycle with heat transfer between the fluid streams. The intake airflow is cooled in an efficient counterflow precooler, consisting of many thousand small bore thin wall tubes. Precooler manufacturing technology has been under investigation at REL for a number of years with the result that flightweight matrix modules can now be produced. A major difficulty with cooling the airflow to sub-zero temperatures at low altitude is the problem of frost formation. Frost control technology has been developed which enables steady state operation. The helium loop requires a top cycle heat exchanger (HX3) to deliver a constant inlet temperature to the main turbine. This is constructed in silicon carbide and the feasibility of manufacturing various matrix geometries has been investigated along with suitable joining techniques. A demonstration precooler will be made to run in front of a Viper jet engine at REL's B9 test facility in 2011. This precooler will incorporate full frost control and be built from full size SABRE engine modules. The facility will incorporate a high pressure helium loop that rejects the absorbed heat to a bath of liquid nitrogen.

  14. Radioactive iodine exchange reaction of HIPDM: kinetics and mechanism

    SciTech Connect

    Lui, B.; Chang, J.; Sun, J.S.; Billings, J.; Steves, A.; Ackerhalt, R.; Molnar, M.; Kung, H.F.

    1987-03-01

    In conjunction with single photon emission computed tomography (SPECT), iodine-123 (/sup 123/I)-labeled N,N,N'-trimethyl-(2-hydroxy-3-methyl-5-iodobenzyl)-1,3-propanediamine (HIPDM) has been used clinically as a regional cerebral perfusion imaging agent. The (/sup 123/I)HIPDM can be prepared by a simple aqueous exchange reaction in a kit form. We synthesized unlabeled HIPDM by condensation of 2-hydroxy-3-methyl-5-iodobezaldehyde and N,N,N'-trimethyl-1,3-propanediamine, followed by a sodium borohydride reduction reaction. The kinetics of the radioactive iodine exchange reaction for the preparation of (/sup 123/I)HIDM is controlled by the pH, the temperature, and the presence of reductant (sodium bisulfite), and oxidant (sodium iodate). The reaction is a second order iodine-iodine exchange with an activation energy of 30.6 kcal/mole. The mechanism of this reaction probably involves the formation of an active 1+ or iodine free radical, which is sensitive to the presence of a reductant, such as sodium bisulfite.

  15. Radioactive iodine exchange reaction of HIPDM: kinetics and mechanism.

    PubMed

    Lui, B; Chang, J; Sun, J S; Billings, J; Steves, A; Ackerhalt, R; Molnar, M; Kung, H F

    1987-03-01

    In conjunction with single photon emission computed tomography (SPECT), iodine-123 (123I)-labeled N,N,N'-trimethyl-[2-hydroxy-3-methyl-5-iodobenzyl]-1,3-propanediamine (HIPDM) has been used clinically as a regional cerebral perfusion imaging agent. The [123I]HIPDM can be prepared by a simple aqueous exchange reaction in a kit form. We synthesized unlabeled HIPDM by condensation of 2-hydroxy-3-methyl-5-iodobezaldehyde and N,N,N'-trimethyl-1,3-propanediamine, followed by a sodium borohydride reduction reaction. The kinetics of the radioactive iodine exchange reaction for the preparation of [123I]HIDM is controlled by the pH, the temperature, and the presence of reductant (sodium bisulfite), and oxidant (sodium iodate). The reaction is a second order iodine-iodine exchange with an activation energy of 30.6 kcal/mole. The mechanism of this reaction probably involves the formation of an active 1+ or iodine free radical, which is sensitive to the presence of a reductant, such as sodium bisulfite. PMID:3819852

  16. Carbonyl-Olefin Exchange Reaction: Present State and Outlook

    NASA Astrophysics Data System (ADS)

    Kalinova, Radostina; Jossifov, Christo

    The carbonyl-olefin exchange reaction (COER) is a new reaction between carbonyl group and olefin double bond, which has a formal similarity with the olefin metathesis (OM) - one carbon atom in the latter is replaced with an oxygen atom. Till now the new reaction is performed successfully only when the two functional groups (carbonyl group and olefin double bond) are in one molecule and are conjugated. The ?, ?-unsaturated carbonyl compounds (substituted propenones) are the compounds with such a structure. They polymerize giving substituted polyacetylenes. The chain propagation step of this polymerization is in fact the COER. The question arises: is it possible the COER to take place when the two functional groups are not in one molecule and are not conjugated, and could this reaction became an alternative of the existing carbonyl olefination reactions?

  17. Cross-ligation and exchange reactions catalyzed by hairpin ribozymes.

    PubMed Central

    Komatsu, Y; Koizumi, M; Sekiguchi, A; Ohtsuka, E

    1993-01-01

    The negative strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) contains a hairpin catalytic domain that shows self-cleavage and self-ligation activities in the presence of magnesium ions. We describe here that the minimal catalytic domain can catalyze a cross-ligation reaction between two kinds of substrates in trans. The cross-ligated product increased when the reaction temperature was decreased during the reaction from 37 degrees C to 4 degrees C. A two-stranded hairpin ribozyme, divided into two fragments between G45 and U46 in a hairpin loop, showed higher ligation activity than the nondivided ribozyme. The two stranded ribozyme also catalyzed an exchange reaction of the 3'-portion of the cleavage site. Images PMID:8441626

  18. Charge exchange reactions and solar neutrino detection in 81Br

    NASA Astrophysics Data System (ADS)

    Liu, K. F.; Gabbard, F.

    1983-01-01

    The feasibility of 81Br as the detector of the solar neutrino flux hinges upon the knowledge of the Gamow-Teller matrix element from the ground state of 81Br to the 52- state at 0.457 MeV in 81Kr. The possibility of obtaining this matrix element is discussed in terms of the (p, n) and (3He, t) charge exchange reactions. NUCLEAR REACTIONS 81Br(p, n)81Kr and 81Br(3He, t)81Kr Gamow-Teller transitions; solar neutrino detection.

  19. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  20. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  1. EXFOR SYSTEMS MANUAL NUCLEAR REACTION DATA EXCHANGE FORMAT.

    SciTech Connect

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    EXFOR is an exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. This document has been written for use by the members of the Network and includes matters of procedure and protocol, as well as detailed rules for the compilation of data. Users may prefer to consult EXFOR Basics' for a brief description of the format.

  2. Selenocysteine in Thiol/Disulfide-Like Exchange Reactions

    PubMed Central

    Marino, Stefano M.

    2013-01-01

    Abstract Significance: Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. Recent Advances: The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. Critical Issues: We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. Future Directions: It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec. Antioxid. Redox Signal. 18, 1675–1689. PMID:23121622

  3. EXFOR systems manual: Nuclear reaction data exchange format

    SciTech Connect

    McLane, V.

    1996-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Centers Network. In addition to storing the data and its bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine).

  4. Thermoneutral isotope exchange reactions of cations in the gas phase

    SciTech Connect

    Ausloos, P.; Lias, S.G.

    1981-07-01

    Rate constants have been measured for reactions of the type AD/sub 2//sup +/ + MH ..-->.. MD + ADH/sup +/, where AD/sub 2//sup +/ is CD/sub 3/CND/sup +/, CD/sub 3/CDOD/sup +/, (CD/sub 3/COCD/sub 3/)D/sup +/, or (C/sub 2/D/sub 5/)/sub 2/OD/sup +/ and the MH molecules are alcohols, acids, mercaptans, H/sub 2/S, AsH/sub 3/, PH/sub 3/, or aromatic molecules. Rate constants are also presented for the reactions Ar/sub H/D/sup +/ + D/sub 2/O ..-->.. Ar/sub d/D/sup +/ + HDO, where Ar/sub H/D/sup +/ is a deuteronated aromatic molecule and Ar/sub D/D/sup +/ is the same species with a D atom incorporated on the ring. In all but two cases, the competing deuteron transfer is sufficiently endothermic that it cannot be observed under the conditions of the ICR experiments at 320 to 420 K. The efficiencies of the isotope exchange reactions are interpreted in terms of estimated potential surface cross sections for the reactions AD/sub 2//sup +/ + MH ..-->.. (AD/sub 2//sup +/MH) ..-->.. (ADMHD/sup +/) ..-->.. (ADH/sup +/MD) ..-->.. ADH/sup +/ + MD. When the formation of the (ADMHD/sup +/) complex is estimated to be thermoneutral or slightly endothermic, the isotope exchange process is inefficient (probability of a reactive collision < 0.1) or does not occur. The most efficient isotope exchange reactions are observed for those systems for which it is estimated that the transformation (AD/sub 2//sup +/MH) ..-->.. (ADMHD/sup +/) is exothermic. For most of the systems, trends in reaction efficiency appear to be related to factors such as dipole moments of reactant species (or for aromatic compounds, the electron-donating or -withdrawing properties of ring substituents) which influence the relative orientation of the two reactant species in the complex.

  5. Meson-exchange calculation of the ?N --> ?N reaction

    NASA Astrophysics Data System (ADS)

    Lee, T.-S. H.; Pearce, B. C.

    1991-08-01

    Within the hamiltonian model of Nozawa, Blankleider and Lee, the meson exchange ?N model developed by Pearce and Jennings is used to calculate the effects of the ?N final-state interaction on the ?N ? ?N reaction. It is found that the results for charged pion production processes are comparable to that of earlier calculations using separable ?N models. The main improvement is a much better description of the neutral pion production process from threshold to about 400 MeV incident photon energy.

  6. Charge-exchange reactions with a radioactive triton beam

    SciTech Connect

    Jaenecke, J.

    1998-12-21

    A high-resolution (t, {sup 3}He) test experiment has been performed recently by making use of a secondary triton beam produced by fragmentation of {alpha}-particles. The purpose of this charge-exchange experiment was to achieve good energy resolution in an (n,p)-type reaction at intermediate bombarding energies. The experiment was carried out with the K1200 cyclotron at the National Superconducting Cyclotron Laboratory using the A1200 beam-analysis system and the S800 magnetic spectrometer. The beam-analysis system was used to transport the energy-dispersed radioactive triton beam from the production target to the target position, and the magnetic spectrometer was used to focus the dispersion-matched {sup 3}He particles from the (t, {sup 3}He) reaction at 0 degree sign onto the focal plane of the spectrometer. An energy resolution of 200-250 keV was achieved.

  7. Population of 13Be in a nucleon exchange reaction

    NASA Astrophysics Data System (ADS)

    Marks, B. R.; DeYoung, P. A.; Smith, J. K.; Baumann, T.; Brown, J.; Frank, N.; Hinnefeld, J.; Hoffman, M.; Jones, M. D.; Kohley, Z.; Kuchera, A. N.; Luther, B.; Spyrou, A.; Stephenson, S.; Sullivan, C.; Thoennessen, M.; Viscariello, N.; Williams, S. J.

    2015-11-01

    The neutron-unbound nucleus 13Be was populated with a nucleon exchange reaction from a 71 MeV/u secondary 13B beam. The decay-energy spectrum was reconstructed using invariant mass spectroscopy based on 12Be fragments in coincidence with neutrons. The data could be described with an s -wave resonance at Er=0.73 (9 ) MeV with a width of Γr=1.98 (34 ) MeV and a d -wave resonance at Er=2.56 (13 ) MeV with a width of Γr=2.29 (73 ) MeV . The observed spectral shape is consistent with previous one-proton removal reaction measurements from 14B .

  8. Mechanism of the Exchange Reaction in HRAS from Multiscale Modeling

    PubMed Central

    Kapoor, Abhijeet; Travesset, Alex

    2014-01-01

    HRAS regulates cell growth promoting signaling processes by cycling between active (GTP-bound) and inactive (GDP-bound) states. Understanding the transition mechanism is central for the design of small molecules to inhibit the formation of RAS-driven tumors. Using a multiscale approach involving coarse-grained (CG) simulations, all-atom classical molecular dynamics (CMD; total of 3.02 s), and steered molecular dynamics (SMD) in combination with Principal Component Analysis (PCA), we identified the structural features that determine the nucleotide (GDP) exchange reaction. We show that weakening the coupling between the SwitchI (residues 2540) and SwitchII (residues 5975) accelerates the opening of SwitchI; however, an open conformation of SwitchI is unstable in the absence of guanine nucleotide exchange factors (GEFs) and rises up towards the bound nucleotide to close the nucleotide pocket. Both I21 and Y32, play a crucial role in SwitchI transition. We show that an open SwitchI conformation is not necessary for GDP destabilization but is required for GDP/Mg escape from the HRAS. Further, we present the first simulation study showing displacement of GDP/Mg away from the nucleotide pocket. Both SwitchI and SwitchII, delays the escape of displaced GDP/Mg in the absence of GEF. Based on these results, a model for the mechanism of GEF in accelerating the exchange process is hypothesized. PMID:25272152

  9. Alloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions

    PubMed Central

    2014-01-01

    We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide–sulfide (CZSeS), copper tin selenide–sulfide (CTSeS), and copper zinc tin selenide–sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide–sulfide (Cu2–xSeyS1–y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2–xSeyS1–y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV–vis–NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps. PMID:25050455

  10. Alloyed copper chalcogenide nanoplatelets via partial cation exchange reactions.

    PubMed

    Lesnyak, Vladimir; George, Chandramohan; Genovese, Alessandro; Prato, Mirko; Casu, Alberto; Ayyappan, S; Scarpellini, Alice; Manna, Liberato

    2014-08-26

    We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide-sulfide (CZSeS), copper tin selenide-sulfide (CTSeS), and copper zinc tin selenide-sulfide (CZTSeS) nanoplatelets (NPLs) (?20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide-sulfide (Cu2-xSeyS1-y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2-xSeyS1-y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV-vis-NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps. PMID:25050455

  11. Charge-exchange reaction by Reggeon exchange and W{sup +}W{sup −}-fusion

    SciTech Connect

    Schicker, R.

    2015-04-10

    Charge-exchange reactions at high energies are examined. The existing cross section data on the Reggeon induced reaction pp → n + Δ{sup ++} taken at the ZGS and ISR accelerators are extrapolated to the energies of the RHIC and LHC colliders. The interest in the charge-exchange reaction induced by W{sup ±}-fusion is presented, and the corresponding QCD-background is examined.

  12. Geometric Phase Appears in the Ultracold Hydrogen Exchange Reaction.

    PubMed

    Kendrick, B K; Hazra, Jisha; Balakrishnan, N

    2015-10-01

    Quantum reactive scattering calculations for the hydrogen exchange reaction H+H_{2}(v=4,j=0)?H+H_{2}(v^{'},?j^{'}) and its isotopic analogues are reported for ultracold collision energies. Because of the unique properties associated with ultracold collisions, it is shown that the geometric phase effectively controls the reactivity. The rotationally resolved rate coefficients computed with and without the geometric phase are shown to differ by up to 4 orders of magnitude. The effect is also significant in the vibrationally resolved and total rate coefficients. The dynamical origin of the effect is discussed and the large geometric phase effect reported here might be exploited to control the reactivity through the application of external fields or by the selection of a particular nuclear spin state. PMID:26550721

  13. Geometric Phase Appears in the Ultracold Hydrogen Exchange Reaction

    NASA Astrophysics Data System (ADS)

    Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.

    2015-10-01

    Quantum reactive scattering calculations for the hydrogen exchange reaction H +H2 (v =4 ,j =0 )?H +H2 (v', j') and its isotopic analogues are reported for ultracold collision energies. Because of the unique properties associated with ultracold collisions, it is shown that the geometric phase effectively controls the reactivity. The rotationally resolved rate coefficients computed with and without the geometric phase are shown to differ by up to 4 orders of magnitude. The effect is also significant in the vibrationally resolved and total rate coefficients. The dynamical origin of the effect is discussed and the large geometric phase effect reported here might be exploited to control the reactivity through the application of external fields or by the selection of a particular nuclear spin state.

  14. Spin-Isospin responses via charge exchange reactions of RI beams at SHARAQ

    SciTech Connect

    Shimoura, Susumu

    2012-11-12

    Nuclear spectroscopy via direct reactions of RI beams is discussed focusing on characteristics of charge-exchange reactions of RI beams. Recent experiments using the SHARAQ spectrometer at the RIBF are presented, where isovector spin monopole and spin-non-flip monopole responses are studied by charge exchange reaction of RI beams. Some experimental plans and perspectives are also presented.

  15. Satellite Capture via Binary Exchange Reactions: Application to Triton

    NASA Astrophysics Data System (ADS)

    Agnor, C.; Hamilton, D. P.

    2005-12-01

    The recent observational discovery of satellites orbiting asteroids and Kuiper belt objects has revealed a whole new constituency of solar system objects. Binaries appear to be ubiquitous among the minor planets, representing about 16% of near-Earth asteroids (Margot et al.~2002), at least 2% of asteroids in the main belt (Merline et al.~2002), and a growing number of Kuiper belt objects (currently estimated at about 14%, Noll 2005). Given the existence and prevalence of binaries, 3-body encounters between a binary pair and a third body become an inevitable and frequent occurrence in the dynamical evolution of the solar system. While 3-body encounters have been studied extensively in the context of stellar clusters, their significance in the context of solar system dynamics is only beginning to be examined and appreciated (Funato et al.~2004). We are examining how exchange reactions during planet-binary encounters (i.e.~an encounter in which one member of a binary is expelled and its place taken by the planet) represent a new pathway for the capture of planetary satellites. This new capture mechanism may be relevant to origin and evolution of several small body populations in the solar system (e.g.~the icy and irregular satellites of the giant planets). Using numerical integrations of 3-body encounters and analytic arguments we have developed a simple model to describe this purely gravitational mode of satellite capture. Capture via exchange reaction requires gravitational disruption of the binary and retention of one member by the planet. In general, we have found that exchange capture is efficient when binaries approach the planet to a distance less than the appropriate Roche radius of the system and with sufficiently low encounter velocities. As a first application of this capture mechanism, we have explored the possibility that Neptune's massive retrograde satellite Triton was captured during a gravitational encounter between Neptune and a binary composed of Triton and a third body. We have found that Triton's capture can be realized from a variety of binaries, including ones in which Triton is the more massive member and those resembling the Pluto-Charon pair (i.e.~mass ratio mPluto/mCharon = 8 and semi-major axis to primary radius ratio a_B/RPluto = 17.3). We will discuss the encounter dynamics required for capture via this mechanism, relate them to the dynamical environment of Neptune's accretion and putative migration and discuss the conditions in which this mode of satellite capture is favored over others suggested for Triton (e.g.~collisional capture, Goldreich et al.~1989, gas drag capture, McKinnon and Leith 1994).

  16. Surface characterization of chromia for chlorine/fluorine exchange reactions.

    PubMed

    Unveren, Ercan; Kemnitz, Erhard; Lippitz, Andreas; Unger, Wolfgang E S

    2005-02-10

    The dismutation of CCl(2)F(2) was used to probe the effect of halogenation of chromia by Cl/F exchange reactions to find out the difference between the halogenated inactive and active catalysts. The heterogeneous reactions were performed in a continuous flow Ni reactor and also under simulated reaction conditions in a reactor where after the reaction X-ray photoelectron spectroscopy (XPS) and X-ray excited Auger electron spectroscopy (XAES) analyses are possible without air exposure of the catalyst, i.e., under so-called "in situ" conditions. The Cr(III) 2p XP spectra, which revealed multiplet splitting features and satellite emission, were used for chemical analysis by using a simple evaluation procedure which neglects this inherent complexity. Chemical analysis was also applied by using chemical state plots for Cr 3s in order to cross-check Cr 2p related results. Both ex and in situ XPS show that as soon as Cr(2)O(3) is exposed to CCl(2)F(2) at 390 degrees C fluorination as well as chlorination takes place at the catalyst surface. When the XPS surface composition reaches approximately 4 at. % fluorination and 6 at. % chlorination, maximum catalytic activity was obtained. Application of longer reaction times did not change significantly the obtained surface composition of the activated chromia. The fluorination and chlorination of chromia was further investigated by various HF and HCl treatments. The activated chromia samples and the Cr(2)O(3), Cr(OH)(3), CrF(2)OH, CrF(3) x H(2)O, alpha-CrF(3), beta-CrF(3), and CrCl(3) reference samples with well-known chemical structures were also characterized by X-ray absorption near edge structure (XANES), time-of-flight secondary ion mass spectroscopy (TOF-SIMS), pyridine-FTIR, wet chemical (F and Cl) analysis, X-ray powder diffraction (XRD), and surface area (BET) analysis. The results suggest that the formation of chromium oxide chloride fluoride species, e.g., chromium oxide halides, at the surface is sufficient to provide catalytic activity. The presence of any CrF(3) and/or CrCl(3) phases on the activated chromia samples was not found. PMID:16851173

  17. The formation of Kuiper-belt binaries through exchange reactions.

    PubMed

    Funato, Yoko; Makino, Junichiro; Hut, Piet; Kokubo, Eiichiro; Kinoshita, Daisuke

    2004-02-01

    Recent observations have revealed that an unexpectedly high fraction--a few per cent--of the trans-Neptunian objects (TNOs) that inhabit the Kuiper belt are binaries. The components have roughly equal masses, with very eccentric orbits that are wider than a hundred times the radius of the primary. Standard theories of binary asteroid formation tend to produce close binaries with circular orbits, so two models have been proposed to explain the unique characteristics of the TNOs. Both models, however, require extreme assumptions regarding the size distribution of the TNOs. Here we report a mechanism that is capable of producing binary TNOs with the observed properties during the early stages of their formation and growth. The only required assumption is that the TNOs were initially formed through gravitational instabilities in the protoplanetary dust disk. The basis of the mechanism is an exchange reaction in which a binary whose primary component is much more massive than the secondary interacts with a third body, whose mass is comparable to that of the primary. The low-mass secondary component is ejected and replaced by the third body in a wide but eccentric orbit. PMID:14765188

  18. Oxygen exchange reaction kinetics for cerium(IV) oxide at 1000 °C

    SciTech Connect

    Whiting, Christofer E. Douglas, John M.; Cremeans, Bethany M.; Barklay, Chadwick D.; Kramer, Daniel P.

    2014-10-15

    Bulk oxygen exchange rate kinetics on CeO{sub 2} at 1000 °C were observed to have a first order dependence on the fraction of reaction remaining and to be independent of oxygen partial pressure, total pressure, particle size, and specific surface area. This suggests that the exchange reaction is dominated by an internal chemical reaction that is occurring throughout the bulk of the material, and not at the material surface. Oxygen exchange rates were limited by this internal chemical reaction for all CeO{sub 2} powders studied (15 nm to −325 mesh), and had a rate constant of 1.19×10{sup −2} s{sup −1} with a time to completion of 617 s. These results are similar to the exchange rates observed previously on PuO{sub 2}, suggesting that oxygen exchange on PuO{sub 2} may also be dominated by an internal chemical reaction under similar conditions. This work will help guide future experiments on {sup 238}PuO{sub 2} oxygen exchange reactions. - Graphical abstract: Oxygen exchange kinetics on CeO{sub 2} at 1000 °C are independent of a wide range of experimental conditions and exhibit first-order chemical reaction kinetics. - Highlights: • Stable oxygen exchange rates obtained on a variety of CeO{sub 2} powders at 1000 °C. • Exchange rates are independent of atmospheric composition and specific surface area. • Exchange rates are limited by an internal chemical reaction, not a surface reaction. • CeO{sub 2} exchange rates appear similar to the rates observed on PuO{sub 2} at 1000 °C.

  19. Relative mobility of 1-H atoms of carbohydrates in heterogeneous isotope exchange reactions

    SciTech Connect

    Akulov, G.P.; Snetkova, E.V.; Kayumov, V.G.; Kaminskii, Yu.L.

    1988-05-01

    The method of competitive reactions was used to determine the relative mobilities of the 1-H atoms of carbohydrates in reactions of heterogeneous isotope exchange, using various reference standards, catalysts, and buffer systems. On the basis of the results obtained, the investigated carbohydrates are ranged in a series of decreasing mobility of the hydrogen atoms exchanged in heterogeneous isotope exchange reactions. It was demonstrated that the mobility of the 1-H atoms is related to the concentration of the acyclic forms of the carbohydrates.

  20. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump.

    PubMed

    Dong, Liang; Xie, Yun; Du, Liang; Li, Weiyi; Tan, Zhaoyi

    2015-04-28

    The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium-hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T-H exchange mechanism and the hyrogenation-dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation-dehydrogenation exchange mechanism, the T-H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with OH and COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T-H isotope exchange can be determined by the hydrogenation of T2 or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products. PMID:25625628

  1. New results on hypercharge exchange reactions from LASS

    SciTech Connect

    Aston, D.; Bienz, T.; Dunwoodie, W.; Johnson, W.B.; Kunz, P.; Kwon, Y.; Leigh, D.W.G.S.; Levinson, L.; Ratcliff, B.N.; Rensing, P.; Schultz, D.; Shapiro, S.; Sinervo, P.K.; Tarnopolsky, G.; Toge, N.; Waite, A.; Williams, S. ); Awaji, N.; Fujii, K.; Hayashii, H.; Iwata, S.; Kajikawa, R.; Matsui, T.; Miyamoto, A.; Ozaki, H.; Pak, C.O.; Shimomura, T.; Sugiyama, A.; Suzuk

    1990-11-01

    New results from a number of final states ({eta}{pi}{sup {minus}}{pi}{sup +},{bar K}*K*,{phi}{phi}) produced by hypercharge exchange in LASS by an 11 GeV/cK{sup {minus}} beam are described, and compared with results from other hadroproduction modes and from G/{psi} decay.

  2. Dynamic/Thermochemical Balance Drives Unusual Alkyl/F Exchange Reactions in Siloxides and Analogs.

    PubMed

    Correra, Thiago C; Fernandes, André S; Riveros, José M

    2016-03-17

    A recent report has shown that siloxides can undergo an unusual Me/F exchange reaction promoted by NF3 in the gas phase ( Angew. Chem. Int. Ed. 2012 , 51 , 8632 - 8635 ). A more extensive study of this kind of exchange has been carried out using mass spectrometry techniques (FT-ICR), DFT calculations, natural bond orbital (NBO) analysis, and Born-Oppenheimer molecular dynamics simulations (BOMD), using NF3, SO2F2, and CF4 as fluorine donors and evaluating the effect of replacing the Si center by Ge and C. This comprehensive approach shows that NF3 is crucial for the exchange reaction, as SO2F2 forms SO3F(-) via a pentacoordinated channel whereas no reaction is observed for CF4. The uniqueness of NF3 is caused by favorable thermochemical consideration and by dynamic effects that preclude the formation of the ubiquitous Si-F pentacoordinated species. Me3GeO(-) was shown to be as reactive as siloxides toward NF3, whereas C analogs showed no reactions under our experimental conditions. The exchange reaction was also shown to take place for triethylsiloxides. These exchange reactions are examples of reaction systems that avoid the lower energy pathway and are driven by dynamic effects that cannot be explained by the potential energy surface. PMID:26911457

  3. Kinetics of the high temperature oxygen exchange reaction on 238PuO2 powder

    NASA Astrophysics Data System (ADS)

    Whiting, Christofer E.; Du, Miting; Felker, L. Kevin; Wham, Robert M.; Barklay, Chadwick D.; Kramer, Daniel P.

    2015-12-01

    Oxygen exchange reactions performed on PuO2 suggest the reaction is influenced by at least three mechanisms: an internal chemical reaction, surface mobility of active species/defects, and surface exchange of gaseous oxygen with lattice oxygen. Activation energies for the surface mobility and internal chemical reaction are presented. Determining which mechanism is dominant appears to be a complex function including at least specific surface area and temperature. Thermal exposure may also impact the oxygen exchange reaction by causing reductions in the specific surface area of PuO2. Previous CeO2 surrogate studies exhibit similar behavior, confirming that CeO2 is a good qualitative surrogate for PuO2, in regards to the oxygen exchange reaction. Comparison of results presented here with previous work on the PuO2 oxygen exchange reaction allows complexities in the previous work to be explained. These explanations allowed new conclusions to be drawn, many of which confirm the conclusions presented here.

  4. Quantum resonance effects in exchange, photodissociation, and recombination reactions

    SciTech Connect

    Pack, R.; Kendrick, B.; Kress, J.; Walker, R.; Hayes, E.; Lagana, A.; Parker, G.; Butcher, E.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project studied quantum resonance effects on chemical reactions. The authors accurate reactive scattering calculations showed that quantum resonance phenomena dominate most chemical reactions and are essential to any real understanding of reactivity. It was found that, as long-lived metastable states of the colliding system, resonances can decay to reactants, products, or a mixture of both. Only the latter contribute to reaction. Conditions under which resonances can be neglected or treated statistically were studied. Important implications about the mechanism of recombination reactions were discovered, and some remarkable effects of geometric phases on the symmetries and energies of resonances were also discovered. Calculations were completed for the reaction H + O{sub 2} {yields} OH + O, which is the rate limiting step in the combustion of all hydrocarbons and the single most important reaction in all of combustion chemistry.

  5. Invited Parallel Talk: Forward pion-nucleon charge exchange reaction and Regge constraints

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Sibirtsev, A.; Krewald, S.; Hanhart, C.; Haidenbauer, J.; Meiner, U.-G.

    2009-12-01

    We present our recent study of pion-nucleon charge exchange amplitudes above 2 GeV. We analyze the forward pion-nucleon charge exchange reaction data in a Regge model and compare the resulting amplitudes with those from the Karlsruhe-Helsinki and George-Washington-University partial-wave analyses. We explore possible high-energy constraints for theoretical baryon resonance analyses in the energy region above 2 GeV. Our results show that for the pion-nucleon charge exchange reaction, the appropriate energy region for matching meson-nucleon dynamics to diffractive scattering should be around 3 GeV for the helicity flip amplitude.

  6. Electron and energy transfer as probes of interparticle ion-exchange reactions in zeolite Y

    SciTech Connect

    Brigham, E.S.; Snowden, P.T.; Kim, Y.I.; Mallouk, T.E. )

    1993-08-19

    Photoinduced electron transfer and energy transfer reactions of tris(2,2[prime]-bipyridyl)ruthenium(II) (Ru(bpy)[sub 3][sup 2+]) with methylviologen (MV[sup 2+]) and tris(2,2[prime]-bipyridyl)osmium(II) (Os(bpy)[sub 3][sup 2+]) ion-exchanged onto/into separate zeolite Y particles were studied by emission spectroscopy. The kinetics of interparticle exchange were probed by observing the quenching of the MLCT excited state of-Ru(bpy)[sub 3][sup 2+] by mobile MV[sup 2+] or OS(bpy)[sub 3][sup 2+] ions. The exchange reactions occur on time scales of seconds to hours, depending on the ionic strength of the surrounding medium. The time-dependent luminescence data were fitted to a dispersed kinetics model, from which average rate constants for the exchange reactions could be extracted. Time constants for interparticle exchange of MV[sup 2+] and Os(bpy)[sub 3][sup 2+] ions, in the range 10[sup 3]-10[sup 5] s at electrolyte concentrations of 0.1-3 mM, are significantly longer than the time scales (10[sup [minus]7]-10[sup 1] s) of most electrochemical and photochemical intrazeolitic reactions involving these and similar electroactive ions. These results argue for reaction mechanisms that invoke intrazeolite electron transfer, rather than exchange of electroactive ions followed by solution-phase electron transfer, in these systems. 25 refs., 6 figs., 1 tab.

  7. Sequential Anion and Cation Exchange Reactions for Complete Material Transformations of Nanoparticles with Morphological Retention.

    PubMed

    Hodges, James M; Kletetschka, Karel; Fenton, Julie L; Read, Carlos G; Schaak, Raymond E

    2015-07-20

    Ion exchange reactions of colloidal nanocrystals provide access to complex products that are synthetically challenging using traditional hot-injection methods. However, such reactions typically achieve only partial material transformations by employing either cation or anion exchange processes. It is now shown that anion and cation exchange reactions can be coupled together and applied sequentially in one integrated pathway that leads to complete material transformations of nanocrystal templates. Although the product nanocrystals do not contain any of the original constituent elements, the original morphology is retained, thereby fully decoupling morphology and composition control. The sequential anion/cation exchange process was applied to pseudo-spherical CdO nanocrystals and ZnO tetrapods, producing fully transformed and shape-controlled nanocrystals of copper and silver sulfides and selenides. Furthermore, hollow core-shell tetrapod ZnS@CdS heterostructures were readily accessible. PMID:26110653

  8. Selenium and sulfur in exchange reactions: a comparative study.

    PubMed

    Steinmann, Daniel; Nauser, Thomas; Koppenol, Willem H

    2010-10-01

    Cysteamine reduces selenocystamine to form hemiselenocystamine and then cystamine. The rate constants are k(1) = 1.3 10(5) M(-1) s(-1); k(-1) = 2.6 10(7) M(-1) s(-1); k(2) = 11 M(-1) s(-1); and k(-2) = 1.4 10(3) M(-1) s(-1), respectively. Rate constants for reactions of cysteine/selenocystine are similar. Reaction rates of selenium as a nucleophile and as an electrophile are 2-3 and 4 orders of magnitude higher, respectively, than those of sulfur. Sulfides and selenides are comparable as leaving groups. PMID:20806911

  9. Double FLP-Alkyne Exchange Reactions: A Facile Route to Te/B Heterocycles.

    PubMed

    Tsao, Fu An; Cao, Levy; Grimme, Stefan; Stephan, Douglas W

    2015-10-21

    1-Bora-4-tellurocyclohexa-2,5-diene undergoes sequential [4 + 2] cycloadditions/alkyne-elimination reactions to incorporate 2 equiv of terminal alkyne with the loss of diarylalkyne, affording access to a series of 11 new tellurium-boron heterocycles. These alkyne exchange reactions proceed regioselectively and can tolerate a variety of functional groups, thus providing the potential for further derivatization. The mechanism of the exchange reaction is confirmed by a DFT study to involve the interaction of the Te and B with the alkyne in a frustrated Lewis pair fashion in the transition states. PMID:26447492

  10. Proton exchange in acid-base complexes induced by reaction coordinates with heavy atom motions

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-06-01

    We extend previous work on nitric acid-ammonia and nitric acid-alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid-strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are <400 cm-1. This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm-1. Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  11. Why Seemingly Trivial Events Sometimes Evoke Strong Emotional Reactions: The Role of Social Exchange Rule Violations

    PubMed Central

    Leary, Mark R.; Diebels, Kate J.; Jongman-Sereno, Katrina P.; Fernandez, Xuan Duong

    2015-01-01

    ABSTRACT People sometimes display strong emotional reactions to events that appear disproportionate to the tangible magnitude of the event. Although previous work has addressed the role that perceived disrespect and unfairness have on such reactions, this study examined the role of perceived social exchange rule violations more broadly. Participants (N = 179) rated the effects of another person’s behavior on important personal outcomes, the degree to which the other person had violated fundamental rules of social exchange, and their reactions to the event. Results showed that perceptions of social exchange rule violations accounted for more variance in participants’ reactions than the tangible consequences of the event. The findings support the hypothesis that responses that appear disproportionate to the seriousness of the eliciting event are often fueled by perceived rule violations that may not be obvious to others. PMID:26331429

  12. Excitation of ? and N* resonances in isobaric charge-exchange reactions of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Vidaa, I.; Benlliure, J.; Geissel, H.; Lenske, H.; Scheidenberger, C.; Vargas, J.

    2016-01-01

    We present a model for the study of the excitation of ?(1232) and N*(1440) resonances in isobaric charge-exchange (AZ, A(Z 1)) reactions of heavy nuclei. Quasi-elastic and inelastic elementary processes contributing to the double differential cross sections of the reactions are described in terms of the exchange of virtual pions. The inelastic channel includes processes where the resonances are excited both in the target and in the projectile nucleus. We present results for reactions of 112Sn and 124Sn on different targets. Our results confirm that the position of the ? peak is insensitive to targets with mass number A ? 12, and show that the origin of the ? peak shift towards low excitation energies, with respect to its position in reactions with a proton target, can be easily explained in terms of the superposition of the different excitation mechanisms contributing to the reaction.

  13. EXFOR BASICS A SHORT GUIDE TO THE NEUTRON REACTION DATA EXCHANGE FORMAT.

    SciTech Connect

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear reaction data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information is also compiled. The status (e.g., the source of the data) and history (e.g., date of last update) of the data set is also included. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear reaction data centers. It was originally conceived for the exchange of neutron data and was developed through discussions among personnel from centers situated in Saclay, Vienna, Livermore and Brookhaven. It was accepted as the official exchange format of the neutron data centers at Saclay, Vienna, Brookhaven and Obninsk, at a meeting held in November 1969.3 As a result of two meetings held in 1975 and 1976 and attended by several charged-particle data centers, the format was further developed and adapted to cover all nuclear reaction data. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The EXFOR format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in a format: l that is machine-readable (for checking and indicating possible errors); l that can be read by personnel (for passing judgment on and correcting errors). The data presently included in the EXFOR exchange file include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle-induced reaction data, a selected compilation of photon-induced reaction data.

  14. EXFOR BASICS A SHORT GUIDE TO THE NEUTRON REACTION DATA EXCHANGE FORMAT.

    SciTech Connect

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear reaction data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information is also compiled. The status (e.g., the source of the data) and history (e.g., date of last update) of the data set is also included. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear reaction data centers. It was originally conceived for the exchange of neutron data and was developed through discussions among personnel from centers situated in Saclay, Vienna, Livermore and Brookhaven. It was accepted as the official exchange format of the neutron data centers at Saclay, Vienna, Brookhaven and Obninsk, at a meeting held in November 1969. As a result of two meetings held in 1975 and 1976 and attended by several charged-particle data centers, the format was further developed and adapted to cover all nuclear reaction data. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The EXFOR format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in a format: that is machine-readable (for checking and indicating possible errors); that can be read by personnel (for passing judgment on and correcting errors). The data presently included in the EXFOR exchange file include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle-induced reaction data, a selected compilation of photon-induced reaction data.

  15. Formation of pseudomorphic nanocages from Cu2O nanocrystals through anion exchange reactions.

    PubMed

    Wu, Hsin-Lun; Sato, Ryota; Yamaguchi, Atsushi; Kimura, Masato; Haruta, Mitsutaka; Kurata, Hiroki; Teranishi, Toshiharu

    2016-03-18

    The crystal structure of ionic nanocrystals (NCs) is usually controlled through reaction temperature, according to their phase diagram. We show that when ionic NCs with different shapes, but identical crystal structures, were subjected to anion exchange reactions under ambient conditions, pseudomorphic products with different crystal systems were obtained. The shape-dependent anionic framework (surface anion sublattice and stacking pattern) of Cu2O NCs determined the crystal system of anion-exchanged products of CuxS nanocages. This method enabled us to convert a body-centered cubic lattice into either a face-centered cubic or a hexagonally close-packed lattice to form crystallographically unusual, multiply twinned structures. Subsequent cation exchange reactions produced CdS nanocages while preserving the multiply-twinned structures. A high-temperature stable phase such as wurtzite ZnS was also obtained with this method at ambient conditions. PMID:26989249

  16. A molecular dynamics study of bond exchange reactions in covalent adaptable networks.

    PubMed

    Yang, Hua; Yu, Kai; Mu, Xiaoming; Shi, Xinghua; Wei, Yujie; Guo, Yafang; Qi, H Jerry

    2015-08-21

    Covalent adaptable networks are polymers that can alter the arrangement of network connections by bond exchange reactions where an active unit attaches to an existing bond then kicks off its pre-existing peer to form a new bond. When the polymer is stretched, bond exchange reactions lead to stress relaxation and plastic deformation, or the so-called reforming. In addition, two pieces of polymers can be rejoined together without introducing additional monomers or chemicals on the interface, enabling welding and reprocessing. Although covalent adaptable networks have been researched extensively in the past, knowledge about the macromolecular level network alternations is limited. In this study, molecular dynamics simulations are used to investigate the macromolecular details of bond exchange reactions in a recently reported epoxy system. An algorithm for bond exchange reactions is first developed and applied to study a crosslinking network formed by epoxy resin DGEBA with the crosslinking agent tricarballylic acid. The trace of the active units is tracked to show the migration of these units within the network. Network properties, such as the distance between two neighboring crosslink sites, the chain angle, and the initial modulus, are examined after each iteration of the bond exchange reactions to provide detailed information about how material behaviors and macromolecular structure evolve. Stress relaxation simulations are also conducted. It is found that even though bond exchange reactions change the macroscopic shape of the network, microscopic network characteristic features, such as the distance between two neighboring crosslink sites and the chain angle, relax back to the unstretched isotropic state. Comparison with a recent scaling theory also shows good agreement. PMID:26166382

  17. Arrhenius' law in turbulent media and an equivalent tunnel effect. [in binary exchange chemical reactions

    NASA Technical Reports Server (NTRS)

    Tsuge, S.; Sagara, K.

    1978-01-01

    The indeterminacy inherent to the formal extension of Arrhenius' law to reactions in turbulent flows is shown to be surmountable in the case of a binary exchange reaction with a sufficiently high activation energy. A preliminary calculation predicts that the turbulent reaction rate is invariant in the Arrhenius form except for an equivalently lowered activation energy. This is a reflection of turbulence-augmented molecular vigor, and causes an appreciable increase in the reaction rate. A similarity to the tunnel effect in quantum mechanics is indicated. The anomaly associated with the mild ignition of oxy-hydrogen mixtures is discussed in this light.

  18. Reaction chemistry and ligand exchange at cadmium selenide nanocrystal surfaces

    SciTech Connect

    Owen, Jonathan; Park, Jungwon; Trudeau, Paul-Emile; Alivisatos, A. Paul

    2008-12-02

    Chemical modification of nanocrystal surfaces is fundamentally important to their assembly, their implementation in biology and medicine, and greatly impacts their electrical and optical properties. However, it remains a major challenge owing to a lack of analytical tools to directly determine nanoparticle surface structure. Early nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) studies of CdSe nanocrystals prepared in tri-n-octylphosphine oxide (1) and tri-n-octylphosphine (2), suggested these coordinating solvents are datively bound to the particle surface. However, assigning the broad NMR resonances of surface-bound ligands is complicated by significant concentrations of phosphorus-containing impurities in commercial sources of 1, and XPS provides only limited information about the nature of the phosphorus containing molecules in the sample. More recent reports have shown the surface ligands of CdSe nanocrystals prepared in technical grade 1, and in the presence of alkylphosphonic acids, include phosphonic and phosphinic acids. These studies do not, however, distinguish whether these ligands are bound datively, as neutral, L-type ligands, or by X-type interaction of an anionic phosphonate/phosphinate moiety with a surface Cd{sup 2+} ion. Answering this question would help clarify why ligand exchange with such particles does not proceed generally as expected based on a L-type ligand model. By using reagents with reactive silicon-chalcogen and silicon-chlorine bonds to cleave the ligands from the nanocrystal surface, we show that our CdSe and CdSe/ZnS core-shell nanocrystal surfaces are likely terminated by X-type binding of alkylphosphonate ligands to a layer of Cd{sup 2+}/Zn{sup 2+} ions, rather than by dative interactions. Further, we provide spectroscopic evidence that 1 and 2 are not coordinated to our purified nanocrystals.

  19. Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics

    SciTech Connect

    Jiang, Bin; Guo, Hua

    2013-12-14

    Dynamics of the title reaction is investigated on an ab initio based potential energy surface using a full-dimensional quantum wave packet method within the centrifugal sudden approximation. It is shown that the reaction between H and HCN leads to both the hydrogen exchange and hydrogen abstraction channels. The exchange channel has a lower threshold and larger cross section than the abstraction channel. It also has more oscillations due apparently to quantum resonances. Both channels are affected by long-lived resonances supported by potential wells. Comparison with experimental cross sections indicates underestimation of the abstraction barrier height.

  20. Halogen Exchange Reaction of Aliphatic Fluorine Compounds with Organic Halides as Halogen Source.

    PubMed

    Mizukami, Yuki; Song, Zhiyi; Takahashi, Tamotsu

    2015-12-18

    The halogen exchange reaction of aliphatic fluorine compounds with organic halides as the halogen source was achieved. Treatment of alkyl fluorides (primary, secondary, or tertiary fluorides) with a catalytic amount of titanocene dihalides, trialkyl aluminum, and polyhalomethanes (chloro or bromo methanes) as the halogen source gave the corresponding alkyl halides in excellent yields under mild conditions. In the case of a fluorine/iodine exchange, no titanocene catalyst is needed. Only C-F bonds are selectively activated under these conditions, whereas alkyl chlorides, bromides, and iodides are tolerant to these reactions. PMID:26629792

  1. High pressure ESR studies of electron self-exchange reactions of organic radicals in solution.

    PubMed

    Rasmussen, Kenneth; Hussain, Tajamal; Landgraf, Stephan; Grampp, Gnter

    2012-01-12

    Simple electron self-exchange reactions are often used to study the role of the reaction medium on a chemical process, commonly implying the use of various solvents with different physical properties. In principle, similar studies may be conducted using a single solvent, changing its physical properties by application of elevated pressures, but so far only little information is available on pressure dependent exchange reactions. In this work, we have used a recently constructed high pressure apparatus for use with electron spin resonance (ESR) spectroscopy to investigate simple electron self-exchange reactions involving 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) and tetracyanoethylene (TCNE) and their respective radical anions as well as TMPPD and its radical cation in three different solvents. The self-exchange was observed by ESR line broadening experiments, yielding rate constants and volumes of activation. The experimental results were compared to theoretical calculations based on Marcus theory and taking into account solvent dynamic effects. The use of elevated pressures has enabled the study of solvent effects without commonly encountered problems like solubility issues or chemical reactions between solvent and solute which sometimes limit the range of useable solvents. PMID:22133086

  2. Charge exchange and chemical reactions with trapped Th{sup 3+}

    SciTech Connect

    Churchill, L. R.; DePalatis, M. V.; Chapman, M. S.

    2011-01-15

    We have measured the reaction rates of trapped, buffer gas cooled Th{sup 3+} and various gases and have analyzed the reaction products using trapped ion mass spectrometry techniques. Ion trap lifetimes are usually limited by reactions with background molecules, and the high electron affinity of multiply charged ions such as Th{sup 3+} make them more prone to loss. Our results show that reactions of Th{sup 3+} with carbon dioxide, methane, and oxygen all occur near the classical Langevin rate, while reaction rates with argon, hydrogen, and nitrogen are orders of magnitude lower. Reactions of Th{sup 3+} with oxygen and methane proceed primarily via charge exchange, while simultaneous charge exchange and chemical reaction occurs between Th{sup 3+} and carbon dioxide. Loss rates of Th{sup 3+} in helium are consistent with reaction with impurities in the gas. Reaction rates of Th{sup 3+} with nitrogen and argon depend on the internal electronic configuration of the Th{sup 3+}.

  3. Energetics and Control of Ultracold Isotope-Exchange Reactions between Heteronuclear Dimers in External Fields

    NASA Astrophysics Data System (ADS)

    Tomza, Michał

    2015-08-01

    We show that isotope-exchange reactions between ground-state alkali-metal, alkaline-earth-metal, and lanthanide heteronuclear dimers consisting of two isotopes of the same atom are exothermic with an energy change in the range of 1-8000 MHz, thus resulting in cold or ultracold products. For these chemical reactions, there are only one rovibrational and at most several hyperfine possible product states. The number and energetics of open and closed reactive channels can be controlled by the laser and magnetic fields. We suggest a laser-induced isotope- and state-selective Stark shift control to tune the exothermic isotope-exchange reactions to become endothermic, thus providing the ground for testing models of the chemical reactivity. The present proposal opens the way for studying the state-to-state dynamics of ultracold chemical reactions beyond the universal limit with a meaningful control over the quantum states of both reactants and products.

  4. Energetics and Control of Ultracold Isotope-Exchange Reactions between Heteronuclear Dimers in External Fields.

    PubMed

    Tomza, Michał

    2015-08-01

    We show that isotope-exchange reactions between ground-state alkali-metal, alkaline-earth-metal, and lanthanide heteronuclear dimers consisting of two isotopes of the same atom are exothermic with an energy change in the range of 1-8000 MHz, thus resulting in cold or ultracold products. For these chemical reactions, there are only one rovibrational and at most several hyperfine possible product states. The number and energetics of open and closed reactive channels can be controlled by the laser and magnetic fields. We suggest a laser-induced isotope- and state-selective Stark shift control to tune the exothermic isotope-exchange reactions to become endothermic, thus providing the ground for testing models of the chemical reactivity. The present proposal opens the way for studying the state-to-state dynamics of ultracold chemical reactions beyond the universal limit with a meaningful control over the quantum states of both reactants and products. PMID:26296115

  5. Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Dubey, Rajendra R.

    1993-01-01

    Charge-exchange reactions for scattering to the continuum are considered in a high-energy multiple scattering model. Calculations for (p,n) and (He-3,H-3) reactions are made and compared with experimental results for C-12, O-16, and Al-27 targets. Coherent effects are shown to lead to an important role for inelastic multiple scattering terms when light projectiles are considered.

  6. Analytical solutions for flow in porous media with multicomponent cation exchange reactions

    NASA Astrophysics Data System (ADS)

    Venkatraman, Ashwin; Hesse, Marc A.; Lake, Larry W.; Johns, Russell T.

    2014-07-01

    Multicomponent cation exchange reactions have important applications in groundwater remediation, disposal of nuclear wastes as well as enhanced oil recovery. The hyperbolic theory of conservation laws can be used to explain the nature of displacements observed during flow with cation exchange reactions between flowing aqueous phase and stationary solid phase. Analytical solutions have been developed to predict the effluent profiles for a particular case of heterovalent cations (Na+, Ca2+ and Mg2+) and an anion (Cl-) for any combination of constant injection and constant initial composition using this theory. We assume local equilibrium, neglect dispersion and model the displacement as a Riemann problem using mass action laws, the charge conservation equation and the cation exchange capacity equation. The theoretical predictions have been compared with experimental data available at two scalesthe laboratory scale and the field scale. The theory agrees well with the experimental data at both scales. Analytical theory predictions show good agreement with numerical model, developed using finite differences.

  7. Incorporation of monomethylethanolamine into phosphatidylcholine by way of an exchange reaction followed by methylation

    SciTech Connect

    Moore, T.S. Jr. )

    1989-04-01

    Recent evidence by Datko and Mudd indicates that phosphatidylcholine (PC) may be synthesized by methylation of phosphatidylmonomethyl-ethanolamine (PMME), but perhaps not by utilization of phosphatidylethanolamine (PE) as a source of PMME. They provided evidence that a CDP derivative of monomethylethanolamine (MME) might be the source of the headgroup. Another possibility is incorporation of MME by an exchange reaction. We tested this by incubating MME with ER from castor bean endosperm and radiolabeled S- adenosylmethionine under conditions which would allow incorporation of the headgroup and methylation to PC. Under these conditions the reaction proceeded, with radiolabel appearing in both PC and phosphatidyldimethylethanolamine. Neither ethanolamine nor L-serine, both of which are known to undergo exchange reactions, yielded PC under the same conditions.

  8. Adenosine triphosphate-pyrophosphate isotopic exchange reaction: a tool for determination of tryptophan

    SciTech Connect

    Trezeguet, V.; Labouesse, B.

    1986-05-01

    Quantitative determination of tryptophan at the picomole level is described, using the ATP-(/sup 32/P)PPi isotopic exchange reaction catalyzed by tryptophanyl-tRNA synthetase. Sensitivity limits of 500 fmol were obtained. The presence of other amino acids at a 1000-fold excess over tryptophan did not interfere significantly with the quantitative determination of tryptophan. The specificity of the reaction was checked using five tryptophan analogs. These analogs did not prevent the determination of tryptophan when present in the same concentration range as tryptophan. When sensitive determination of a single amino acid is needed, the ATP-(/sup 32/P)PPi exchange reaction catalyzed by aminoacyl-tRNA synthetases is suggested as a general method and as an alternative to HPLC procedures.

  9. Competition between charge exchange and chemical reaction - The D2/+/ + H system

    NASA Technical Reports Server (NTRS)

    Preston, R. K.; Cross, R. J., Jr.

    1973-01-01

    Study of the special features of molecular charge exchange and its competition with chemical reaction in the case of the D2(+) + H system. The trajectory surface hopping (TSH) model proposed by Tully and Preston (1971) is used to study this competition for a number of reactions involving the above system. The diatomics-in-molecules zero-overlap approximation is used to calculate the three adiabatic surfaces - one triplet and two singlet - which are needed to describe this system. One of the significant results of this study is that the chemical reaction and charge exchange are strongly coupled. It is also found that the number of trajectories passing into the chemical regions of the three surfaces depends very strongly on the surface crossings.-

  10. Analysis of the galactosyltransferase reaction by positional isotope exchange and secondary deuterium isotope effects

    SciTech Connect

    Kim, S.C.; Singh, A.N.; Raushel, F.M.

    1988-11-15

    The mechanism of the galactosyltransferase-catalyzed reaction was probed using positional isotope exchange, alpha-secondary deuterium isotope effects, and inhibition studies with potential transition state analogs. Incubation of (beta-18O2, alpha beta-18O)UDP-galactose and alpha-lactalbumin with galactosyltransferase from bovine milk did not result in any positional isotope exchange. The addition of 4-deoxy-4-fluoroglucose as a dead-end inhibitor did not induce any detectable positional isotope exchange. alpha-Secondary deuterium isotope effects of 1.21 +/- 0.04 on Vmax and 1.05 +/- 0.04 on Vmax/KM were observed for (1-2H)-UDP-galactose. D-Glucono-1,5-lactone, D-galactono-1,4-lactone, D-galactono-1,5-lactone, nojirimycin, and deoxynojirimycin, did not inhibit the galactosyl transfer reaction at concentrations less than 1.0 mM. The magnitude of the secondary deuterium isotope effect supports a mechanism in which the anomeric carbon of the galactosyl moiety has substantial sp2 character in the transition state. Therefore, the cleavage of the bond between the galactose and UDP moieties in the transition state has proceeded to a much greater extent than the formation of the bond between the galactose and the incoming glucose. The lack of a positional isotope exchange reaction indicates that the beta-phosphoryl group of the UDP is not free to rotate in the absence of an acceptor substrate.

  11. Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Vieweg, Michael; Oswald, Sascha E.; Fleckenstein, Jan H.

    2015-04-01

    Hyporheic exchange transports solutes into the subsurface where they can undergo biogeochemical transformations, affecting fluvial water quality and ecology. A three-dimensional numerical model of a natural in-stream gravel bar (20 m × 6 m) is presented. Multiple steady state streamflow is simulated with a computational fluid dynamics code that is sequentially coupled to a reactive transport groundwater model via the hydraulic head distribution at the streambed. Ambient groundwater flow is considered by scenarios of neutral, gaining, and losing conditions. The transformation of oxygen, nitrate, and dissolved organic carbon by aerobic respiration and denitrification in the hyporheic zone are modeled, as is the denitrification of groundwater-borne nitrate when mixed with stream-sourced carbon. In contrast to fully submerged structures, hyporheic exchange flux decreases with increasing stream discharge, due to decreasing hydraulic head gradients across the partially submerged structure. Hyporheic residence time distributions are skewed in the log-space with medians of up to 8 h and shift to symmetric distributions with increasing level of submergence. Solute turnover is mainly controlled by residence times and the extent of the hyporheic exchange flow, which defines the potential reaction area. Although streamflow is the primary driver of hyporheic exchange, its impact on hyporheic exchange flux, residence times, and solute turnover is small, as these quantities exponentially decrease under losing and gaining conditions. Hence, highest reaction potential exists under neutral conditions, when the capacity for denitrification in the partially submerged structure can be orders of magnitude higher than in fully submerged structures.

  12. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  13. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions.

    PubMed

    Akkerman, Quinten A; D'Innocenzo, Valerio; Accornero, Sara; Scarpellini, Alice; Petrozza, Annamaria; Prato, Mirko; Manna, Liberato

    2015-08-19

    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl(-) or I(-) ions and reinsertion of Br(-) ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles. PMID:26214734

  14. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions

    PubMed Central

    2015-01-01

    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl or I ions and reinsertion of Br ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles. PMID:26214734

  15. Density functional investigation of the water exchange reaction on the gibbsite surface.

    PubMed

    Qian, Zhaosheng; Feng, Hui; Jin, Xiaoyan; Yang, Wenjing; Wang, Yingjie; Bi, Shuping

    2009-12-15

    The water exchange reactions on the gibbsite surface have been investigated by density functional calculations (B3LYP/6-31G(d) level) combining the supermolecular model and PCM model in this paper, and the water exchange rate constants on the gibbsite surface have also been predicted. In the proposed reaction pathways, the clusters Al6(OH)18(H2O)6(0) and Al6(OH)12(H2O)12(6+) are used as the models of gibbsite surface and protonated gibbsite surface respectively to examine the effect of protonation of gibbsite surface on the water exchange rate constants. The activation energy barriers DeltaE(s) not equal to (aq) for Al6(OH)18(H2O)6(0) and Al6(OH)12(H2O)12(6+) are 28.6 and 27.2 kJ*mol-1, respectively. The reaction energies DeltaE(s) (aq) for Al6(OH)18(H2O)6(0) and Al6(OH)12(H2O)12(6+) are 2.9 and 14.4 kJ mol-1, respectively, indicating that hexacoordinate aluminum in the gibbsite surface is more stable. The log k(TST) for Al6(OH)18(H2O)6(0) and Al6(OH)12(H2O)12(6+) are 6.5 and 7.5 respectively, and the log k(ex) calculated by the given transmission coefficient for Al6(OH)18-(H2O)6(0) and Al6(OH)12(H2O)12(6+) are 2.4 and 3.4 respectively, indicating that the protonation of gibbsite surface promotes the water exchange reaction of gibbsite surface and accelerates the dissolution rate of gibbsite. The relationship between the calculated free energy and experimental rate constants was explored, and according to this relationship, the log k(ex) for Al6(OH)18(H2O)6(0) and Al6(OH)12(H2O)12(6+) are 2.5 and 3.1 respectively, close to the corresponding values calculated by the given transmission coefficient. The water exchange rate constant of gibbsite surface is close to those of K-MAl(12)(M = Al, Ga, and Ge) polyoxocations, but deviates from that of Al(H2O)6(3+), implying that the same reactions with similar structure have similar water exchange rate constants. PMID:20000521

  16. Sn cation valency dependence in cation exchange reactions involving Cu(2-x)Se nanocrystals.

    PubMed

    De Trizio, Luca; Li, Hongbo; Casu, Alberto; Genovese, Alessandro; Sathya, Ayyappan; Messina, Gabriele C; Manna, Liberato

    2014-11-19

    We studied cation exchange reactions in colloidal Cu(2-x)Se nanocrystals (NCs) involving the replacement of Cu(+) cations with either Sn(2+) or Sn(4+) cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu(2-x)Se NCs remains cubic regardless of the degree of copper deficiency (that is, "x") in the NC lattice. Also, Sn(4+) ions are comparable in size to the Cu(+) ions, while Sn(2+) ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn(4+) cations are used, alloyed Cu(2-4y)Sn(y)Se NCs (with y ? 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu(+) cations with Sn(4+) cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn(2+) cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu(2-x)Se/SnSe heterostructures, with no Cu-Sn-Se alloys. PMID:25340627

  17. Sn Cation Valency Dependence in Cation Exchange Reactions Involving Cu2-xSe Nanocrystals

    PubMed Central

    2014-01-01

    We studied cation exchange reactions in colloidal Cu2-xSe nanocrystals (NCs) involving the replacement of Cu+ cations with either Sn2+ or Sn4+ cations. This is a model system in several aspects: first, the +2 and +4 oxidation states for tin are relatively stable; in addition, the phase of the Cu2-xSe NCs remains cubic regardless of the degree of copper deficiency (that is, “x”) in the NC lattice. Also, Sn4+ ions are comparable in size to the Cu+ ions, while Sn2+ ones are much larger. We show here that the valency of the entering Sn ions dictates the structure and composition not only of the final products but also of the intermediate steps of the exchange. When Sn4+ cations are used, alloyed Cu2–4ySnySe NCs (with y ≤ 0.33) are formed as intermediates, with almost no distortion of the anion framework, apart from a small contraction. In this exchange reaction the final stoichiometry of the NCs cannot go beyond Cu0.66Sn0.33Se (that is Cu2SnSe3), as any further replacement of Cu+ cations with Sn4+ cations would require a drastic reorganization of the anion framework, which is not possible at the reaction conditions of the experiments. When instead Sn2+ cations are employed, SnSe NCs are formed, mostly in the orthorhombic phase, with significant, albeit not drastic, distortion of the anion framework. Intermediate steps in this exchange reaction are represented by Janus-type Cu2-xSe/SnSe heterostructures, with no Cu–Sn–Se alloys. PMID:25340627

  18. Modeling dune-induced hyporheic exchange and nutrient reactions in stream sediments

    NASA Astrophysics Data System (ADS)

    Bardini, L.; Boano, F.; Cardenas, M. B.; Revelli, R.; Ridolfi, L.

    2012-04-01

    The exchange of water across the streambed plays an important role in the ecology of fluvial environments, since it assures the connections of surface and subsurface waters, which have very different peculiarities. Water-borne chemicals are also involved in the process: they enter the sediments with the water and they are transformed into oxidized or reduced substances by biogeochemical reactions, mediated by the hyporheic microbiota. In particular, organic substances can be used as electron donors in a series of redox reactions, with different electron acceptors, e.g., oxygen and nitrate. Nitrification and other secondary reactions also occur as soon as water enters the streambed. These pore-scale transformations concur to affect subsurface solute concentrations and, consequently, the chemistry of upwelling water and the quality of the stream environment. The exchange with the hyporheic zone occurs in response to variations in bed topography, with a very wide range of spatial and temporal scales. For instance, small-scale exchanges are mainly induced by river bed forms, like ripples and dunes, while large-scale exchanges depend on larger geomorphological features. In this work we focus on small-scale exchange induced by the presence of dunes on the streambed, investigating the interplay of hydrological and biogeochemical processes and their effects on solute spatial distribution in the sediments. We numerically simulate the turbulent water flow and the pressure distribution on the streambed and then we evaluate the coupled flow field and biogeochemical reactions in the hyporheic zone in steady-state conditions. Four representative reactive compounds are taken into account: dissolved organic carbon (DOC), oxygen (O2), nitrate (NO3-) and ammonium (NH4+). Sensitivity analyses are also performed to analyze the influence of hydrological and chemical properties of the system on solute reaction rates. The results demonstrate that the stream water quality can strongly affect the reactive behavior of the sediments. For instance, the DOC availability has shown to be a discriminating factor for determining a net nitrate production or consumption at the bed surface. Stream velocity and sediment permeability have also displayed a direct influence on the chemical zonation, by affecting the transport efficiency and the reaction rates. This study represents an initial step for a better understanding of the complex interactions between hydrodynamical and biogeochemical processes in the hyporheic zone.

  19. Assessment of the Handy-Cohen optimized exchange density functional for organic reactions

    NASA Astrophysics Data System (ADS)

    Baker, Jon; Pulay, Peter

    2002-07-01

    We have investigated the performance of the new optimized exchange functional (OPTX) developed by Handy and Cohen [Mol. Phys. 99, 403 (2001)] for predicting geometries, heats of reaction, and barrier heights for twelve organic reactions (six closed-shell and six radical). OPTX has been used in conjunction with, among others, the well-known Lee-Yang-Parr (LYP) correlational functional to form two new functionals, OLYP and O3LYP. These are similar to the well-established BLYP and B3LYP functionals, respectively, with OPTX replacing the standard Becke exchange functional, B88. Our results strongly support claims made by their developers that OLYP is superior to BLYP, and essentially renders it obsolete. The computed OLYP heats of reaction, barrier heights, and even molecular geometries (with larger basis sets), are comparable with, if not better than, the corresponding B3LYP values. The O3LYP functional is overall better than B3LYP, albeit not by much. Both OLYP and O3LYP are among the best functionals currently available; the performance of OLYP in particular is noteworthy given that this functional includes no exact exchange.

  20. Hydrogen Isotope Exchange of Chlorinated Ethylenes in Aqueous Solution: Possibly a Termolecular Liquid Phase Reaction.

    PubMed

    Gabričević, Mario; Lente, Gábor; Fábián, István

    2015-12-24

    This work reports an experimental study of the hydrogen/deuterium exchange in the basic aqueous solutions of trichloroethylene, trans-1,2-dichloroethylene, and cis-1,2-dichloroethylene using (1)H NMR as a monitoring method. 1,1-Dichlorethylene was also investigated but found not to exchange hydrogen isotopes with water. The kinetics of isotope exchange features two different pathways, the first is first order with respect to hydroxide ion, whereas the second is second order. The first pathway is interpreted as a straightforward bimolecular reaction between chloroethylene and hydroxide ion, which leads to the deprotonation of chloroethylene. The second pathway involves a transition state with the association of one molecule of the chloroethylene and two hydroxide ions. It is shown that the second pathway could involve the formation of a precursor complex composed of one chloroethylene molecule and one hydroxide ion, but a direct termolecular elementary reaction is also feasible, which is shown by deriving a theoretical highest limit for the rate constants of termolecular reactions in solution. PMID:26618984

  1. EXFOR basics: A short guide to the nuclear reaction data exchange format

    SciTech Connect

    McLane, V.

    1996-07-01

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear data between the Nuclear Reaction Data Centers. In addition to storing the data and its` bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear data compilation centers. This format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center`s own sphere of responsibility. The exchange format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine). The data presently included in the EXFOR exchange include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle induced reaction data, a selected compilation of photon-induced reaction data.

  2. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    SciTech Connect

    Vrakking, M.J.J.

    1992-11-01

    The hydrogen exchange reaction H + H[sub 2] [yields] H[sub 2] + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a 'perfect experiment', measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H[sub 2] reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H[sub 2] molecules. DH molecules formed in the D + H[sub 2] reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10[sup 3] molecules/cc. This thesis does not contain experimental results for the D + H[sub 2] reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  3. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    SciTech Connect

    Vrakking, M.J.J.

    1992-11-01

    The hydrogen exchange reaction H + H{sub 2} {yields} H{sub 2} + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a `perfect experiment`, measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H{sub 2} reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H{sub 2} molecules. DH molecules formed in the D + H{sub 2} reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10{sup 3} molecules/cc. This thesis does not contain experimental results for the D + H{sub 2} reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  4. Double-regge exchange limit for the γp→ K⁺K⁻p reaction

    SciTech Connect

    Shi, M.; Danilkin, I. V.; Fernández-Ramírez, C.; Mathieu, V.; Pennington, M. R.; Schott, D.; Szczepaniak, A. P.

    2015-02-01

    We apply the generalized Veneziano model (B₅ model) in the double-Regge exchange limit to the γp→K⁺K⁻p reaction. Four different cases defined by the possible combinations of the signature factors of leading Regge exchanges ((K*,a₂/f₂), (K*,ρ/ω), (K*₂,a₂/f₂), and (K*₂,ρ/ω)) have been simulated through the Monte Carlo method. Suitable event candidates for the double-Regge exchange high-energy limit were selected employing Van Hove plots as a better alternative to kinematical cuts in the K⁺K⁻p Dalitz plot. In this way we predict and analyze the double-Regge contribution to the K⁺K⁻p Dalitz plot, which constitutes one of the major backgrounds in the search for strangeonia, hybrids and exotics using γp→K⁺K⁻p reaction. We expect that data currently under analysis, and that to come in the future, will allow verification of the double-Regge behavior and a better assessment of this component of the amplitude.

  5. Double-regge exchange limit for the γp→ K⁺K⁻p reaction

    DOE PAGESBeta

    Shi, M.; Danilkin, I. V.; Fernández-Ramírez, C.; Mathieu, V.; Pennington, M. R.; Schott, D.; Szczepaniak, A. P.

    2015-02-01

    We apply the generalized Veneziano model (B₅ model) in the double-Regge exchange limit to the γp→K⁺K⁻p reaction. Four different cases defined by the possible combinations of the signature factors of leading Regge exchanges ((K*,a₂/f₂), (K*,ρ/ω), (K*₂,a₂/f₂), and (K*₂,ρ/ω)) have been simulated through the Monte Carlo method. Suitable event candidates for the double-Regge exchange high-energy limit were selected employing Van Hove plots as a better alternative to kinematical cuts in the K⁺K⁻p Dalitz plot. In this way we predict and analyze the double-Regge contribution to the K⁺K⁻p Dalitz plot, which constitutes one of the major backgrounds in the search for strangeonia,more » hybrids and exotics using γp→K⁺K⁻p reaction. We expect that data currently under analysis, and that to come in the future, will allow verification of the double-Regge behavior and a better assessment of this component of the amplitude.« less

  6. EXFOR systems manual: Nuclear reaction data exchange format. Revision 97/1

    SciTech Connect

    McLane, V.

    1997-07-01

    This document describes EXFOR, the exchange format designed to allow transmission of nuclear reaction data between the members of the Nuclear Data Center Network. In addition to storing the data and its` bibliographic information, experimental information, including source of uncertainties, is also compiled. The status and history of the data set is also included, e.g., the source of the data, any updates which have been made, and correlations to other data sets. EXFOR is designed for flexibility rather than optimization of data processing in order to meet the diverse needs of the nuclear reaction data centers. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center`s own sphere of responsibility. The exchange format, as outlined, is designed to allow a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in an easily machine-readable format (for checking and indicating possible errors) and a format that can be read by personnel (for passing judgment on and correcting any errors indicated by the machine).

  7. Double-regge exchange limit for the ?p? K?K?p reaction

    SciTech Connect

    Shi, M.; Danilkin, I. V.; Fernndez-Ramrez, C.; Mathieu, V.; Pennington, M. R.; Schott, D.; Szczepaniak, A. P.

    2015-02-01

    We apply the generalized Veneziano model (B? model) in the double-Regge exchange limit to the ?p?K?K?p reaction. Four different cases defined by the possible combinations of the signature factors of leading Regge exchanges ((K*,a?/f?), (K*,?/?), (K*?,a?/f?), and (K*?,?/?)) have been simulated through the Monte Carlo method. Suitable event candidates for the double-Regge exchange high-energy limit were selected employing Van Hove plots as a better alternative to kinematical cuts in the K?K?p Dalitz plot. In this way we predict and analyze the double-Regge contribution to the K?K?p Dalitz plot, which constitutes one of the major backgrounds in the search for strangeonia, hybrids and exotics using ?p?K?K?p reaction. We expect that data currently under analysis, and that to come in the future, will allow verification of the double-Regge behavior and a better assessment of this component of the amplitude.

  8. Detection of the strand exchange reaction using DNAzyme and Thermotoga maritima recombinase A.

    PubMed

    Jo, Hunho; Lee, Seonghwan; Min, Kyoungin; Ban, Changill

    2012-02-01

    We have designed multiple detection systems for the DNA strand exchange process. Thermostable Thermotoga maritima recombinase A (TmRecA), a core protein in homologous recombination, and DNAzyme, a catalytic DNA that can cleave a specific DNA sequence, are introduced in this work. In a colorimetric method, gold nanoparticles (AuNPs) modified with complementary DNAs (cDNAs) were assembled by annealing. Aggregated AuNPs were then separated irreversibly by TmRecA and DNAzyme, leading to a distinct color change in the particles from purple to red. For the case of fluorometric detection, fluorescein isothiocyanate (FITC)-labeled DNA as a fluorophore and black hole quencher 1 (BHQ1)-labeled DNA as a quencher were used; successful strand exchange was clearly detected by variations in fluorescence intensity. In addition, alterations in the impedance of a gold electrode with immobilized DNA were employed to monitor the regular exchange of DNA strands. All three methods provided sufficient evidence of efficient strand exchange reactions and have great potential for applications in the monitoring of recombination, discovery of new DNAzymes, detection of DNAzymes, and measurement of other protein activities. PMID:22178915

  9. Experimental and theoretical investigation of proton exchange reaction between protic ionic liquid diethylmethylammonium trifluoromethanesulfonate and H2O

    NASA Astrophysics Data System (ADS)

    Mori, Kazuki; Kobayashi, Takanori; Sakakibara, Kazuhisa; Ueda, Kazuyoshi

    2012-11-01

    We investigated the possibility of proton exchange reaction between protic ionic liquid of diethylmethylammonium trifluoromethanesulfonate ([dema][TfOH]) and H2O by using NMR spectroscopy and theoretical calculation. NMR spectroscopy experiment showed that the proton exchange between [dema][TfOH] and H2O in a 1:1 M ratio occurred at room temperature. From the theoretical calculation, we found two reaction pathways for proton exchange between [dema][TfOH] and H2O. Both pathways have stepwise reaction with two transition states. After finishing the reaction along these pathways, the same complex structures of [dema][TfOH] and H2O are again formed, respectively. But the proton is exchanged between [dema][TfOH] and H2O.

  10. Controlling plasmonic "hot spots" in nanoparticle assemblies using ligand place-exchange reactions

    NASA Astrophysics Data System (ADS)

    Bao, Lanlan

    This thesis describes the 1) selective attachment of Au nanoparticles (NPs) to the edges of Au nanoplates via ligand place-exchange reactions, 2) preparation of coupled Au nanoplates via ligand place-exchange reactions, 3) attachment of Au NPs to Au nanorods via ligand place-exchange reactions, 4) study of the dynamics of ligand place-exchange reactions on Au nanoplates, 5) study of the changes in the optical properties of Au nanoplates upon attachment of Au NPs by observing the shift in the localized surface plasmon resonance (LSPR) band, and 6) study of the surface-enhanced Raman spectroscopy (SERS) enhancement of analyte molecules located in the "hot-spots" of coupled Au nanoplate-Au NP structures. We regio-selectively attached 20 nm Au NPs to Au nanoplates by first assembling hexanethiol (HT) onto Au nanoplates, then exchanging HT with 4-aminothiophenol (4-ATP) using different reaction times, and finally electrostatically attaching the negatively-charged Au NPs to the positively-charged 4-ATP ligands bound to the Au nanoplates. We prepared nanoplate-NP assemblies with 100% of the NPs attached to vertex sites or 100% attached to vertex and edge sites using 1 h and 2 h exchange times, respectively. The location and number of bound Au NPs to the nanoplates as a function of exchange time provided information about the mechanism of the ligand place-exchange reaction on the Au nanoplate surface. Ligand place-exchange starts from the vertex sites, then proceeds at the edge sites and finally occurs at smooth terrace sites for longer times. Direct exchange at terraces is possible but the data suggests it occurs mostly through lateral migration of the 4-ATP ligands from vertex/edge sites to the terrace. The data also suggests that phase segregation of 4-ATP ligands and HT ligands occurs on the terrace sites for longer times. The ligand place-exchange strategy also leads to interesting coupled Au nanoplate-Au nanoplate and Au nanorod-Au NP assemblies. The optical properties of the Au nanoplate-Au NP assemblies were studied by monitoring the shift in the LSPR band of the Au nanoplates upon attachment of Au NPs and by measuring the SERS enhancement of the 4-ATP linker. The LSPR band red shifted about 1 nm upon attachment of each Au NP at the vertex and edge sites. The estimated shift is about 0.1 to 0.6 nm per Au NP for those attached to the terraces sites, where the shift is larger for Au NPs attached to outer terrace sites close to the edge and smaller for the inner terrace sites. Au nanoplate-Au NP assemblies with 100% of the NPs attached on the vertex sites of the nanoplates showed the largest enhancement relative to the Au nanoplates. The intensity was similar to the assemblies with many more NPs, but relatively fewer at the vertex/edge sites, indicating that the "hottest spot" for enhancement is located in the interparticle junction between the vertex of the nanoplate and the attached NP. The relative enhancement of the Au nanoplate-Au NP couple relative to the Au nanoplate alone was about 11 on a per Au NP basis. Fundamentally, the results suggest that a small number of "hottest spots" in the laser beam area dominate the Raman enhancement signal and practically, the nanoplate-NP coupling approach controllably at the vertex/edge sites can be very useful for amplifying the detection of analyte down to the single molecule level. This research provides a simple approach for the preparation of various nanostructure assemblies with high accuracy and reproducibility. At the same time, it can potentially be used to control the location of analyte for LSPR and SERS sensing. Another important contribution of this study is the direct evidence for the mechanism and kinetics of the ligand place-exchange reaction on the nanoplate surfaces, which can be useful for controlling NP attachment to other structures as well.

  11. Upper bounds to the impact parameter and cross section for atom-diatom exchange reactions

    NASA Astrophysics Data System (ADS)

    Chesnavich, Walter J.

    1982-09-01

    We establish upper bounds to the impact parameter and cross section for any A+BC exchange reaction in which the reagents are in a given initial state. The approach we take is to use the centrifugal forces generated in a collision to place a bound on the values of the total angular momentum for which reaction can occur. The bounds on the impact parameter and cross section then follow directly from the restrictions imposed by energy and angular momentum conservation. Our approach is related to theories based on the properties of periodic trajectories in that the system configuration which determines the angular momentum bound is also that of a quasibound ABC rigid rotor periodic trajectory. The equation which defines the configuration of this trajectory is similar in form to a generating function recently derived by Child and Pollak. Furthermore, an analysis of the symmetric stretch periodic trajectories in the H+H2 reaction suggests that the rigid rotor trajectory is the maximum angular momentum member of a family of periodic trajectories which exist at energies below and above the dissociation threshold. Our approach is also related to variational transition state theory. However, rather than vary the location of a diving surface, we keep the surface fixed in the reagents' region of the system phase space and vary instead its boundary. We compare the bounds we place on the impact parameter and cross section to the quasiclassical trajectory data of Karplus, Porter, and Sharma for the H+H2 exchange reaction and to that of Persky for the reactions of Cl with H2, D2, and HD. The cross section ratios show a near-linear dependence on the fraction of the total system energy which is partitioned initially into relative translational energy of the reagents, whereas the impact parameter ratios smoothly increase from ˜0.2 near threshold to a maximum of ˜0.9.

  12. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0??? nuclear matrix element determination

    NASA Astrophysics Data System (ADS)

    Agodi, C.; Cappuzzello, F.; Bonanno, D. L.; Bongiovanni, D. G.; Branchina, V.; Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Cuttone, G.; Foti, A.; Finocchiaro, P.; Greco, V.; Lanzalone, G.; Lo Presti, D.; Longhitano, F.; Muoio, A.; Pandola, L.; Rifuggiato, D.; Tudisco, S.

    2015-10-01

    In the NUMEN Project it is proposed an innovative technique to access the nuclear matrix elements entering in the expression of the life-time of the neutrinoless double beta decay, using relevant cross sections of double charge exchange reactions. A key aspect is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN Laboratori Nazionali del Sud (LNS) K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  13. Barrier Height for the Exchange Reaction F + HF → FH + F

    PubMed Central

    O'Neil, Stephen V.; Schaefer, Henry F.; Bender, Charles F.

    1974-01-01

    There exists a body of conflicting data as to the existence or nonexistence of FHF, ClHCl, BrHBr, and IHI as chemically bound molecular species. Ab initio quantum mechanical electronic structure calculations are presented which predict linear symmetric FHF to be unstable. The barrier height for the F + HF exchange reaction is suggested to be no less than 18 kcal/mol, much larger than expected either intuitively or on the basis of certain experiments on related systems. The expected reliability of the calculations is based upon comparable results for diatomic molecules and the F + H2 and H + F2 potential energy surfaces. PMID:16592128

  14. Weak interaction processes in supernovae: New probes using charge exchange reaction at intermediate energies

    NASA Astrophysics Data System (ADS)

    Frekers, Dieter

    2005-04-01

    Spin-isospin-flip excitations in nuclei at vanishing momentum transfer are generally referred to as Gamov-Teller (GT) transitions. They are being studied because the simplicity of the excitation makes them an ideal probe for testing nuclear structure models. In astrophysics, GT transitions provide an important input for model calculations and element formation during the explosive phase of a massive star at the end of its life-time. GT transitions in the β- direction (also referred to as isospin lowering T< transitions) have extensively been studied through (p,n) and (3He,t) charge-exchange reactions [B.D. Anderson et al., Phys. Rev. C 36 (1987) 2195, B.D. Anderson et al., Phys. Rev. C 43 (1991) 50, J. Rapaport et al., Phys. Rev. C 24 (1981) 335, H. Akimune et al., Nucl. Phys. A 569 (1994) 245c, Y. Fujita et al., Phys. Lett. B 365 (1996) 29]. The generally good resolution allows easy extraction of the GT distribution and the total B(GT-) strength in the final nucleus. On the other hand, determination of B(GT+) strength through a charge-exchange reaction in the T> direction were mostly done with secondary neutron beams, and as such, they come with significant experimental difficulties. TRIUMF has pioneered this field in the late 80's and early 90's with a rich and highly successful (n,p) program using a several hundred MeV neutron beam from a 7Li(p,n)7Be reaction [R. Helmer, Can. J. Phys. 65 (1987) 588]. In this paper we present the (d,2He) reaction at intermediate energies as another and potentially even more powerful tool for charge-exchange reactions in the T>, resp. β+ direction. The key issue here will be the high resolution of order 100 keV, which provides new and sometimes unexpected insight into nuclear structure phenomena. This program has been launched at the AGOR Superconducting Cyclotron Facility at the KVI Groningen. By now, it covers a wide field of physics questions ranging from few-body physics, the structure of halo-nuclei, to questions pertaining to the dynamics of supernova explosions and nuclear synthesis, and more recently to the measurements of (ββ) decay matrix elements and the determination of half-lives of (ββ) decaying nuclei.

  15. Time-Resolved Structural Analysis of Cation Exchange Reactions in Birnessite Using Synchrotron XRD

    NASA Astrophysics Data System (ADS)

    Lopano, C. L.; Heaney, P. J.; Post, J. E.; Hanson, J. C.; Lee, Y.; Komarneni, S.

    2002-12-01

    Birnessite ((Na,Ca,Mn2+) Mn7O142.8H2O) is a layered Mn-oxide with a 7.2 spacing between the Mn octahedral sheets. Since birnessite is an abundant phase in soils, desert varnishes, and ocean nodules, it plays a significant role in soil and groundwater chemistry. Experiments by Golden et al. (1986,1987) have demonstrated that Na-buserite (hydrated birnessite) readily exchanges Na+ for a variety of other cations, including K+, Mg2+, Ca2+, Ba2+, Ni2+, and Sr2+. In light of its high cation exchange capacity, birnessite is industrially important for ion and molecular sieves and cathodic materials. In addition, birnessite serves as a precursor in the synthesis of todorokite, which has a 3x3 tunnel structure and is used as an octahedral sieve. We monitored cation-exchange reactions in birnessite by time-resolved X-ray powder diffraction with a simple flow-through cell at the National Synchrotron Light Source. The flow-through cell was developed by Lee and Parise at SUNY-Stony Brook, and this work represents its first application to Mn oxides. A series of synthetic Na-birnessite samples were saturated with chloride solutions containing dissolved K+, Mg2+, and Ba2+, ranging from 0.1M to 0.001M. Powder X-ray diffraction patterns were collected every ~ 3 minutes. The synchrotron experiments revealed that complete cation exchange occurs within three hours, and significant modifications of the arrangements of interlayer cations and water molecules accompany the exchange. Specifically, the replacement of Na by Mg resulted in the continuous growth of a discrete buserite-like phase with a 10 layer spacing, while replacement of Na by K and Ba retained the 7 spacing. K replacement of Na resulted in gradually decreasing peak intensity and peak merging. The Ba exchange yielded an abrupt decrease in diffraction intensities followed by a more gradual lattice change over the last 2 hours. Rietveld analysis led to the first determination of the structure of Ba-birnessite in space group C-1. With a final chi-squared parameter of 1.540, the refined lattice parameters were a = 5.178(2), b = 2.850(3), c = 7.320(5), ? = 89.512(1), ? = 102.989(6), and ? = 89.893(6). However, the lattice parameters of the fully exchanged Ba-birnessite indicate that Ba substitution causes the unit cell to be more monoclinic.

  16. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    PubMed

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%). PMID:24617079

  17. Independent control of the shape and composition of ionic nanocrystals through sequential cation exchange reactions

    SciTech Connect

    Luther, Joseph Matthew; Zheng, Haimei; Sadtler, Bryce; Alivisatos, A. Paul

    2009-07-06

    Size- and shape-controlled nanocrystal growth is intensely researched for applications including electro-optic, catalytic, and medical devices. Chemical transformations such as cation exchange overcome the limitation of traditional colloidal synthesis, where the nanocrystal shape often reflects the inherent symmetry of the underlying lattice. Here we show that nanocrystals, with established synthetic protocols for high monodispersity, can be templates for independent composition control. Specifically, controlled interconversion between wurtzite CdS, chalcocite Cu2S, and rock salt PbS occurs while preserving the anisotropic dimensions unique to the as-synthesized materials. Sequential exchange reactions between the three sulfide compositions are driven by the disparate solubilites of the metal ion exchange pair in specific coordinating molecules. Starting with CdS, highly anisotropic PbS nanorods are created, which serve as an important material for studying strong 2-dimensional quantum confinement, as well as for optoelectronic applications. Furthermore, interesting nanoheterostructures of CdS|PbS are obtained by precise control over ion insertion and removal.

  18. O2 activation by binuclear Cu sites: Noncoupled versus exchange coupled reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Solomon, Edward I.

    2004-09-01

    Binuclear Cu proteins play vital roles in O2 binding and activation in biology and can be classified into coupled and noncoupled binuclear sites based on the magnetic interaction between the two Cu centers. Coupled binuclear Cu proteins include hemocyanin, tyrosinase, and catechol oxidase. These proteins have two Cu centers strongly magnetically coupled through direct bridging ligands that provide a mechanism for the 2-electron reduction of O2 to a µ-2:2 side-on peroxide bridged species. This side-on bridged peroxo-CuII2 species is activated for electrophilic attack on the phenolic ring of substrates. Noncoupled binuclear Cu proteins include peptidylglycine -hydroxylating monooxygenase and dopamine -monooxygenase. These proteins have binuclear Cu active sites that are distant, that exhibit no exchange interaction, and that activate O2 at a single Cu center to generate a reactive CuII/O2 species for H-atom abstraction from the C-H bond of substrates. O2 intermediates in the coupled binuclear Cu enzymes can be trapped and studied spectroscopically. Possible intermediates in noncoupled binuclear Cu proteins can be defined through correlation to mononuclear CuII/O2 model complexes. The different intermediates in these two classes of binuclear Cu proteins exhibit different reactivities that correlate with their different electronic structures and exchange coupling interactions between the binuclear Cu centers. These studies provide insight into the role of exchange coupling between the Cu centers in their reaction mechanisms.

  19. TraML--a standard format for exchange of selected reaction monitoring transition lists.

    PubMed

    Deutsch, Eric W; Chambers, Matthew; Neumann, Steffen; Levander, Fredrik; Binz, Pierre-Alain; Shofstahl, Jim; Campbell, David S; Mendoza, Luis; Ovelleiro, David; Helsens, Kenny; Martens, Lennart; Aebersold, Ruedi; Moritz, Robert L; Brusniak, Mi-Youn

    2012-04-01

    Targeted proteomics via selected reaction monitoring is a powerful mass spectrometric technique affording higher dynamic range, increased specificity and lower limits of detection than other shotgun mass spectrometry methods when applied to proteome analyses. However, it involves selective measurement of predetermined analytes, which requires more preparation in the form of selecting appropriate signatures for the proteins and peptides that are to be targeted. There is a growing number of software programs and resources for selecting optimal transitions and the instrument settings used for the detection and quantification of the targeted peptides, but the exchange of this information is hindered by a lack of a standard format. We have developed a new standardized format, called TraML, for encoding transition lists and associated metadata. In addition to introducing the TraML format, we demonstrate several implementations across the community, and provide semantic validators, extensive documentation, and multiple example instances to demonstrate correctly written documents. Widespread use of TraML will facilitate the exchange of transitions, reduce time spent handling incompatible list formats, increase the reusability of previously optimized transitions, and thus accelerate the widespread adoption of targeted proteomics via selected reaction monitoring. PMID:22159873

  20. TraMLA Standard Format for Exchange of Selected Reaction Monitoring Transition Lists*

    PubMed Central

    Deutsch, Eric W.; Chambers, Matthew; Neumann, Steffen; Levander, Fredrik; Binz, Pierre-Alain; Shofstahl, Jim; Campbell, David S.; Mendoza, Luis; Ovelleiro, David; Helsens, Kenny; Martens, Lennart; Aebersold, Ruedi; Moritz, Robert L.; Brusniak, Mi-Youn

    2012-01-01

    Targeted proteomics via selected reaction monitoring is a powerful mass spectrometric technique affording higher dynamic range, increased specificity and lower limits of detection than other shotgun mass spectrometry methods when applied to proteome analyses. However, it involves selective measurement of predetermined analytes, which requires more preparation in the form of selecting appropriate signatures for the proteins and peptides that are to be targeted. There is a growing number of software programs and resources for selecting optimal transitions and the instrument settings used for the detection and quantification of the targeted peptides, but the exchange of this information is hindered by a lack of a standard format. We have developed a new standardized format, called TraML, for encoding transition lists and associated metadata. In addition to introducing the TraML format, we demonstrate several implementations across the community, and provide semantic validators, extensive documentation, and multiple example instances to demonstrate correctly written documents. Widespread use of TraML will facilitate the exchange of transitions, reduce time spent handling incompatible list formats, increase the reusability of previously optimized transitions, and thus accelerate the widespread adoption of targeted proteomics via selected reaction monitoring. PMID:22159873

  1. A Survey of Place-exchange Reaction for the Preparation of Water-Soluble Gold Nanoparticles

    PubMed Central

    Brias, Raymond P.; Maetani, Micah; Barchi, Joseph J.

    2013-01-01

    Water-soluble gold nanoparticles (AuNPs) have gained considerable attention because they offer a myriad of potential applications, especially in the fields of biology and medicine. One method to prepare such gold nanoparticles is through the well-known Murray place-exchange reaction. In this method, precursor gold nanoparticles, bearing labile ligands and with very good size distribution, are synthesized first, and then reacted with a large excess of the desired ligand. We report a comparison of the reactivity of several known precursor gold nanoparticles (citrate-stabilized, pentanethiol-stabilized, tetraoctylammonium bromide-stabilized, and 4-dimethylaminopyridine-stabilized) to several biologically relevant ligands, including amino acids, peptides, and carbohydrates. We found that citrate-stabilized and 4-dimethylaminopyridine-stabilized gold nanoparticles have broader reactivities than the other precursors studied. Citrate-stabilized gold nanoparticles are more versatile precursors because they can be prepared in a wide range of sizes and are very stable. The hydrophobic pentane-stabilized gold nanoparticles made them inert toward highly water-soluble ligands. Tetraoctylammonium bromide-stabilized gold nanoparticles exhibited selective reactivity, especially for small, unhindered and amphiphilic ligands. Depending on the desired ligand and size of AuNPs, a judicious selection of the available precursors can be made for use in place-exchange reactions. In preparing water-soluble AuNPs with biologically relevant ligands, the nature of the incoming ligand and the size of the AuNP should be taken into account in order to choose the most suitable place-exchange procedure. PMID:23149107

  2. A model theoretical study on ligand exchange reactions of CooA.

    PubMed

    Ishida, Toshimasa; Aono, Shigetoshi

    2013-04-28

    Rr-CooA is a CO-sensor heme protein, where binding of CO with the heme group stimulates a transcriptional activator activity of CooA. In this process, the heme undergoes a series of ligand exchanges. In the ferric form, the heme has Cys75 and Pro2 as the axial ligands. In the reduced ferrous form, the heme has His77 instead of Cys75 as an axial ligand with Pro2. Only in the reduced form, CooA can bind CO that replaces Pro2. Model calculations are carried out to elucidate the ligand exchange reactions of CooA. The coordinated proline is found to be the neutral, protonated form. The ligand exchange of cysteine for histidine is reproduced by a relatively small model. This exchange would be mainly due to difference in stability of the non-bonding sulfur p-orbital in Cys75 between the ferric and ferrous states. The selectivity of gas molecules among CO, NO, and O2 in the proteins is explained by the relative stability of products for Rr-CooA. This is also the case for Ch-CooA, where the amino group of the N-terminus and a histidine are coordinated to the iron ion both in the ferric and ferrous states. The ability to bind the gas molecules is a little stronger in Rr-CooA than in Ch-CooA. In the ferric form of Rr-CooA, heme is deformed to a ruffled form whereas heme is planar in the ferrous form, which leads to a red-shifted Q-band in the former. PMID:23511331

  3. Substituent effects on the vibronic coupling for the phenoxyl/phenol self-exchange reaction.

    PubMed

    Ludlow, Michelle K; Skone, Jonathan H; Hammes-Schiffer, Sharon

    2008-01-17

    The impact of substituents on the vibronic coupling for the phenoxyl/phenol self-exchange reaction, which occurs by a proton-coupled electron transfer mechanism, is investigated. The vibronic couplings are calculated with a grid-based nonadiabatic method and a nuclear-electronic orbital nonorthogonal configuration interaction method. The quantitative agreement between these two methods for the unsubstituted phenoxyl/phenol system and the qualitative agreement in the predicted trends for the substituted phenoxyl/phenol systems provides a level of validation for both methods. Analysis of the results indicates that electron-donating groups enhance the vibronic coupling, while electron-withdrawing groups attenuate the vibronic coupling. Thus, if all other aspects of the reaction are the same, then electron-donating groups will increase the rate, while electron-withdrawing groups will decrease the rate. Correlations between the vibronic coupling and physical properties of the phenol are also analyzed. Negative Hammett constants correspond to higher vibronic couplings, while positive Hammett constants correspond to similar or slightly lower vibronic couplings relative to the unsubstituted phenoxyl/phenol system. In addition, lower bond dissociation enthalpies, ionization potentials, and redox potentials, as well as higher pKa values, tend to correspond to higher vibronic couplings relative to the unsubstituted phenoxyl/phenol system. The observed trends enable the prediction of the impact of general substituents on the vibronic coupling, and hence the rate, for the phenoxyl/phenol self-exchange reaction. The fundamental physical insights obtained from these studies are applicable to other proton-coupled electron transfer systems. PMID:17939710

  4. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  5. Reprint of: A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-08-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)?A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O?B(aq)+H+ with a chemical reaction rate ?A. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(?0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  6. A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-01-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)?A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O?B(aq)+H+ with a chemical reaction rate ?A. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(?0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  7. [Correction of Metabolic Processes in Rats during Chronic Endotoxicosis using Isotope (D/H) Exchange Reactions].

    PubMed

    Dzhimak, S S; Basov, A A; Fedulova, L V; Didikin, A S; Bikov, I M; Arcybasheva, O M; Naumov, G N; Baryshev, M G

    2015-01-01

    The effect of isotope exchange reactions (deuterium/protium, D/H) on morphofunctional indices and the state of the antioxidant blood system in rats was studied under physiological conditions and during experimental chronic endotoxicosis of hepatorenal genesis. It was demonstrated that introduction of water with a decreased content of deuterium in the food rations of rats results in a decrease in its concentration in the blood plasma by 32-36% (to 98-106 ppm) and in lyophilized liver, kidney, and heart tissues by 13-17% (to 123-128 ppm). It was noted that it is accompanied by correction of metabolic processes, an increase in the functional activity of nonspecific protection system, and an increase in the body weight growth by the 42nd day in the group of animals that passed (for 14 days) the stage of preliminary adaptation with a change in the D/H ratio in the organism. PMID:26638240

  8. Pion nucleus single charge exchange reactions above the. delta. (1232) resonance

    SciTech Connect

    Rokni, S.H.

    1987-06-01

    Forward-angle differential cross sections for the (..pi../sup +/, ..pi../sup 0/) reaction leading to the Isobaric Analog State in the residual nuclei at 300, 425, 500 and 550 MeV have been measured. Targets ranged in mass from /sup 7/Li to /sup 208/Pb. A description of the experimental setup and the analysis is presented. The 0/sup 0/ cross sections are found to rise markedly between 300 and 425 MeV, contrary to the extrapolation from the lower energy data and to the behavior of the free pion-nucleon single charge exchange process. The angular distributions are sharply forward peaked. Systematics of the data indicate increased volume penetration with increasing pion beam energy. The cross sections are compared with the results of Glauber model calculations indicating the significance of higher order processes even at these energies. 67 refs., 40 figs., 22 tabs.

  9. Charge-exchange reactions from the standpoint of the parton model

    NASA Astrophysics Data System (ADS)

    Nekrasov, M. L.

    2015-11-01

    Using simple arguments, we show that charge-exchange reactions at high energies go through the hard scattering of fast quarks. On this basis we describe π-p→ M0n and K-p→ M0Λ, M0=π0,η,η', in a combined approach which defines hard contributions in the parton model and soft ones in Regge phenomenology. The disappearance of a dip according to recent GAMS- 4π data in the differential cross-section K-p→ηΛ at \\vert t\\vert≈ 0.4-0.5 (GeV/c)2 at transition to relatively high momenta, is explained as a manifestation of a mode change of summation of hard contributions from coherent to incoherent. Other manifestations of the mentioned mode change are discussed. Constraints on the η- η{^' mixing and gluonium admixture in η{^' are obtained.

  10. Isotope exchange reaction between tritiated water and hydrogen on SiC

    NASA Astrophysics Data System (ADS)

    Katayama, K.; Nishikawa, M.; Takeishi, T.

    2003-11-01

    SiC has been considered as a primary candidate material for a first wall component in future fusion reactor because it has been claimed that SiC has excellent high-temperature properties, good chemical stability and low activation. However, the behavior of tritium on SiC has not been discussed yet. In this study, tritium trapping capacity on the surface of SiC was experimentally obtained at the temperature range of 25-800 C in consideration of tritium trapping to the experimental system. The capacity, which was independent of the water vapor pressure in the gas phase and the temperature, was determined as about 10 6 Bq/cm 2. The isotope exchange reaction rate between tritiated water in a gas phase and hydrogen on the surface was quantified at the temperature of 25, 500 and 700 C in consideration of the behavior of tritium trapping at change of experimental condition by the numerical curve fitting method applying the serial reactor model. The reaction rate was observed to be constant as 3.48 10 -5 m/s. Additionally tritium release behavior from the surface of SiC in water vapor atmosphere was predicted and compared with that for graphite and stainless steel.

  11. Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers

    SciTech Connect

    Maloszewski, P. ); Zuber, A. )

    1991-08-01

    The parallel fissure model coupled with the equation of diffusion into the matrix and with exchange reaction equations has been used to derive a simple formula for estimating the influence of matrix porosity and reaction parameters on the determination of radiocarbon ages in fissured carbonate rocks. Examples of evidently too great radiocarbon ages in carbonate formations, which are not explainable by models for the initial {sup 14}C corrections, can easily be explained by this formula. Parameters obtained for a chalk formation from a known multitracer experiment combined with a pumping test suggest a possibility of {sup 14}C ages more than three orders of magnitude greater than the ages which would be observed if the radiocarbon transport took place only in the mobile water in the fissures. It is shown that contrary to the solute movement on a small scale and with a variable input, the large-scale movement, characteristic for the {sup 14}C dating, does not necessarily require the knowledge of kinetic parameters, because they may be replaced by the distribution coefficient. Discordant tritium and {sup 14}C concentrations are commonly interpreted as a proof of mixing either in the aquifer or at the discharge site. For fissured carbonate formations, however, an alternative explanation is given by the derived model showing a considerable delay of {sup 14}C with respect to nonsorbable tracers.

  12. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition

    PubMed Central

    Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.

    2014-01-01

    Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661

  13. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition.

    PubMed

    Niinemets, lo; Fares, Silvano; Harley, Peter; Jardine, Kolby J

    2014-08-01

    Biogenic volatile organic compound (BVOC) emissions are widely modelled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighbouring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles, and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that because of the reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends upon compound reactivity, physicochemical characteristics, as well as upon their participation in leaf metabolism. We argue that future models should be based upon the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661

  14. Neutrino and antineutrino charge-exchange reactions on {sup 12}C

    SciTech Connect

    Samana, A. R.; Krmpotic, F.; Paar, N.; Bertulani, C. A.

    2011-02-15

    We extend the formalism of weak interaction processes, obtaining new expressions for the transition rates, which greatly facilitate numerical calculations, for both neutrino-nucleus reactions and muon capture. Explicit violation of the conserved vector current hypothesis by the Coulomb field, as well as development of a sum-rule approach for inclusive cross sections, has been worked out. We have done a thorough study of exclusive (ground-state) properties of {sup 12}B and {sup 12}N within the projected quasiparticle random phase approximation (PQRPA). Good agreement with experimental data achieved in this way put into evidence the limitations of the standard RPA and QRPA models, which come from the inability of the RPA to open the p{sub 3/2} shell and from the nonconservation of the number of particles in the QRPA. The inclusive neutrino/antineutrino ({nu}/{nu}-tilde) reactions {sup 12}C({nu},e{sup -}){sup 12}N and {sup 12}C({nu}-tilde,e{sup +}){sup 12}B are calculated within both the PQRPA and the relativistic QRPA. It is found that (i) the magnitudes of the resulting cross sections are close to the sum-rule limit at low energy, but significantly smaller than this limit at high energies, for both {nu} and {nu}-tilde; (ii) they increase steadily when the size of the configuration space is augmented, particularly for {nu}/{nu}-tilde energies >200 MeV; and (iii) they converge for sufficiently large configuration space and final-state spin. The quasi-elastic {sup 12}C({nu},{mu}{sup -}){sup 12}N cross section recently measured in the MiniBooNE experiment is briefly discussed. We study the decomposition of the inclusive cross section based on the degree of forbiddenness of different multipoles. A few words are dedicated to the {nu}/{nu}-tilde-{sup 12}C charge-exchange reactions related to astrophysical applications.

  15. Reversible dissociation and ligand-glutathione exchange reaction in binuclear cationic tetranitrosyl iron complex with penicillamine.

    PubMed

    Syrtsova, Lidia; Sanina, Natalia; Lyssenko, Konstantin; Kabachkov, Evgeniy; Psikha, Boris; Shkondina, Natal'ja; Pokidova, Olesia; Kotelnikov, Alexander; Aldoshin, Sergey

    2014-01-01

    This paper describes a comparative study of the decomposition of two nitrosyl iron complexes (NICs) with penicillamine thiolic ligands [Fe2(SC5H11NO2)2(NO)4]SO4 5H2O (I) and glutathione- (GSH-) ligands [Fe2(SC10H17N3O6)2(NO)4]SO4 2H2O (II), which spontaneously evolve to NO in aqueous medium. NO formation was measured by a sensor electrode and by spectrophotometric methods by measuring the formation of a hemoglobin- (Hb-) NO complex. The NO evolution reaction rate from (I)??k 1 = (4.6 0.1)10(-3)?s(-1) and the elimination rate constant of the penicillamine ligand k 2 = (1.8 0.2)10(-3)?s(-1) at 25C in 0.05?M phosphate buffer, ?pH 7.0, was calculated using kinetic modeling based on the experimental data. Both reactions are reversible. Spectrophotometry and mass-spectrometry methods have firmly shown that the penicillamine ligand is exchanged for GS(-) during decomposition of 1.510(-4)?M (I) in the presence of 10(-3)?M GSH, with 76% yield in 24?h. As has been established, such behaviour is caused by the resistance of (II) to decomposition due to the higher affinity of iron to GSH in the complex. The discovered reaction may impede S-glutathionylation of the essential enzyme systems in the presence of (I) and is important for metabolism of NIC, connected with its antitumor activity. PMID:24790592

  16. Reversible Dissociation and Ligand-Glutathione Exchange Reaction in Binuclear Cationic Tetranitrosyl Iron Complex with Penicillamine

    PubMed Central

    Syrtsova, Lidia; Sanina, Natalia; Lyssenko, Konstantin; Kabachkov, Evgeniy; Psikha, Boris; Shkondina, Natal'ja; Pokidova, Olesia; Kotelnikov, Alexander; Aldoshin, Sergey

    2014-01-01

    This paper describes a comparative study of the decomposition of two nitrosyl iron complexes (NICs) with penicillamine thiolic ligands [Fe2(SC5H11NO2)2(NO)4]SO45H2O (I) and glutathione- (GSH-) ligands [Fe2(SC10H17N3O6)2(NO)4]SO42H2O (II), which spontaneously evolve to NO in aqueous medium. NO formation was measured by a sensor electrode and by spectrophotometric methods by measuring the formation of a hemoglobin- (Hb-) NO complex. The NO evolution reaction rate from (I)??k1 = (4.6 0.1)10?3?s?1 and the elimination rate constant of the penicillamine ligand k2 = (1.8 0.2)10?3?s?1 at 25C in 0.05?M phosphate buffer, ?pH 7.0, was calculated using kinetic modeling based on the experimental data. Both reactions are reversible. Spectrophotometry and mass-spectrometry methods have firmly shown that the penicillamine ligand is exchanged for GS? during decomposition of 1.510?4?M (I) in the presence of 10?3?M GSH, with 76% yield in 24?h. As has been established, such behaviour is caused by the resistance of (II) to decomposition due to the higher affinity of iron to GSH in the complex. The discovered reaction may impede S-glutathionylation of the essential enzyme systems in the presence of (I) and is important for metabolism of NIC, connected with its antitumor activity. PMID:24790592

  17. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    USGS Publications Warehouse

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  18. D/H Exchange Reactions in Salts Extracted from LEW 85320

    NASA Astrophysics Data System (ADS)

    Socki, R. A.; Romanek, C. S.; Gibson, E. K., Jr.

    1993-07-01

    Understanding the effects of terrestrial weathering on meteorites has been shown to be critical in distinguishing primary chemical and isotopic features from secondary alterations [1]. To further constrain weathering effects we report here the D/H composition of water thermally extracted from three distinct generations of efflorescence (,98, ,99, and ,102) occurring on the Antarctic H-5 chondrite LEW85320. To better understand the hydrogen isotope exchange systematics of these precipitates, an experiment was performed to characterize the rate of isotope exchange between a synthetic analog to the predominant weathering product, nesquehonite (Mg(HCO3)(OH).2H2O), found on the exterior of LEW85320 [2], and water. Synthetic nesquehonite, produced following the procedure of Ming and Franklin [3], a dehydrated CaSO4 standard, and deuterium-spiked water (deltaD = +701 permil SMOW) were placed together in a closed box and allowed to exchange hydrogen isotopes at constant temperature and humidity (30 degrees +- 2 degrees C and 75% +- 5%). Samples of each solid phase were taken initially and at 1, 3, 20, and 30 days. These samples along with three generations of efflorescence on LEW85320 (,98, ,99, and ,102) were weighed and loaded into separate high-purity, prebaked, 9-mm (O.D) quartz tubes. After degassing for two hours under high vacuum, samples were heated to 625 degrees C for 4 hr while all condensable gases were collected in a trap immersed in liquid nitrogen. CO2 was separated from water by exchanging the LN2 trap with a dry ice/alcohol mixture. All evolved water was frozen into a tube containing Zn turnings, which was then heated to 450 degrees C for 30 min, producing hydrogen gas for isotopic analysis. Results of our exchange experiment show that the CaSO4 standard quickly assumes the deltaD composition of the water (from -29 permil to +581 permil in 30 days). On the other hand, nesquehonite becomes only slightly enriched in deltaD (from -29 permil to +51 permil). Mass balance calculations reveal that absorption of the spiked water is stoichiometric with respect to the formation of CaSO4.2H2O, while within limits of sampling error no net change of weight was observed for the nesquehonite. Assuming that the change in deltaDnesq. is due entirely to exchange (i.e., no absorption), mass balance constraints dictate that less than 5 wt% of water exchanged. These data suggest that nesquehonite retains its original deltaD composition even under conditions of relatively high temperature and humidity. Hydrogen isotope data of water extracted from three generations of nesquehonite on LEW85320 are plotted as a function of the theoretical delta18O composition of water in equilibrium with the carbonate at 0 degrees C (where delta18Onesq. is derived by phosphoric acid digestion of the carbonate, assuming a calcite-CO2 fractionation factor of 1.01012). Our data plot very near the meteoric water line indicating formation from slightly enriched Antarctic meltwater. Water extracted from generations II (,99), salts consisting mostly of hydromagnesite (Mg5(CO3)4(OH)2.4H2O) (Gooding, 1993, personal communication), and III (,102), with mineralogy as yet unknown, is enriched in D (deltaD = -55 and -75 permil, respectively) and plot above the meteoric water line. Both generations precipitated in the Houston curatorial facility. Data suggest either that hydrogen isotopes have exchanged at least partially with local (i.e., Houston) water, or that the exchange reactions differ between structural sites within or among the various generations of efflorescent salts. Hydrogen isotopes extracted from hydrous weathering products can reveal information about the environment of crystal growth. However, hydrogen isotope exchange systematics could be complicated if water within the crystal structure of the mineral is located in multiple sites. Furthermore, these results could have profound implications for curation and long-term storage strategies in curatorial facilities. References: [1] Socki R. A. et al., (1991) Meteoritics, 26, 396-397. [2] Gooding J. L. e

  19. Photochemical Synthesis and Ligand Exchange Reactions of Ru(CO)[subscript 4] (Eta[superscript 2]-Alkene) Compounds

    ERIC Educational Resources Information Center

    Cooke, Jason; Berry, David E.; Fawkes, Kelli L.

    2007-01-01

    The photochemical synthesis and subsequent ligand exchange reactions of Ru(CO)[subscript 4] (eta[superscript2]-alkene) compounds has provided a novel experiment for upper-level inorganic chemistry laboratory courses. The experiment is designed to provide a system in which the changing electronic properties of the alkene ligands could be easily

  20. One- and two-dimensional chemical exchange nuclear magnetic resonance studies of the creatine kinase catalyzed reaction

    SciTech Connect

    Gober, J.R.

    1988-01-01

    The equilibrium chemical exchange dynamics of the creatine kinase enzyme system were studied by one- and two-dimensional {sup 31}P NMR techniques. Pseudo-first-order reaction rate constants were measured by the saturation transfer method under an array of experimental conditions of pH and temperature. Quantitative one-dimensional spectra were collected under the same conditions in order to calculate the forward and reverse reaction rates, the K{sub eq}, the hydrogen ion stoichiometry, and the standard thermodynamic functions. The pure absorption mode in four quadrant two-dimensional chemical exchange experiment was employed so that the complete kinetic matrix showing all of the chemical exchange process could be realized.

  1. Presolvated Electron Reaction with Methylacetoacetate: Electron Localization, Proton-Deuteron Exchange, and H-atom Abstraction

    PubMed Central

    Petrovici, Alex; Adhikary, Amitava; Kumar, Anil; Sevilla, Michael D.

    2015-01-01

    Radiation-produced electrons initiate various reaction processes that are important to radiation damage to biomolecules. In this work, the site of attachment of the prehydrated electrons with methylacetoacetate (MAA, CH3-CO-CH2-CO-OCH3) at 77 K and subsequent reactions of the anion radical (CH3-CO?-CH2-CO-OCH3) in the temperature range (77 to ca. 170 K) have been investigated in homogeneous H2O and D2O aqueous glasses by electron spin resonance (ESR) spectroscopy. At 77 K, the prehydrated electron attaches to MAA forming the anion radical in which the electron is delocalized over the two carbonyl groups. This species readily protonates to produce the protonated electron adduct radical CH3-C()OH-CH2-CO-OCH3. The ESR spectrum of CH3-C()OH-CH2-CO-OCH3 in H2O shows line components due to proton hyperfine couplings of the methyl and methylene groups. Whereas, the ESR spectrum of CH3-C()OH-CH2-CO-OCH3 in D2O glass shows only the line components due to proton hyperfine couplings of CH3 group. This is expected since the methylen protons in MAA are readily exchangeable in D2O. On stepwise annealing to higher temperatures (ca. 150 to 170 K), CH3-C()OH-CH2-CO-OCH3 undergoes bimolecular H-atom abstraction from MAA to form the more stable radical, CH3-CO-CH-CO-OCH3. Theoretical calculations using density functional theory (DFT) support the radical assignments. PMID:25255751

  2. Exchange repulsive potential adaptable for electronic structure changes during chemical reactions

    NASA Astrophysics Data System (ADS)

    Yokogawa, D.

    2015-04-01

    Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as the main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.

  3. Exchange repulsive potential adaptable for electronic structure changes during chemical reactions

    SciTech Connect

    Yokogawa, D.

    2015-04-28

    Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as the main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.

  4. Surface enhanced exchange reactions of hydrogen isotopes with water and fomblin oil

    SciTech Connect

    Borysow, J.; Eckart, M.; Fink, M.

    2008-07-15

    Maintaining isotopic purity of tritium is one of the major tasks in several new large facilities such as ITER (International Thermonuclear Experimental Reactor), KATRIN (Karlsruhe Tritium Experiment) and NEXTEX (Texas Neutrino Mass Experiment). Working with multiple isotopes and isotopomers is always accompanied by isotope exchanges, which are accelerated by catalysts. These are provided by surfaces of various materials, which are used in the recycling systems. Here new results are reported of the solubility of hydrogen in Fomblin oil and kinetics for reactions between D{sub 2}O, HDO, H{sub 2}O and D{sub 2}, HD and H{sub 2} taking place at the surface of a stainless steel (SS304) vessel at pressures of about 350 Pa. The kinetics of hydrogen isotopes were measured by Raman spectrometer. The water isotopomers were monitored by mass spectrometry. The solubility of hydrogen in Fomblin oil was determined at several H{sub 2} pressures using NMR spectroscopy. The results can be extended to lower pressures using Henry's law. (authors)

  5. Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells.

    PubMed

    Raghuveer, Vadari; Manthiram, Arumugam; Bard, Allen J

    2005-12-01

    The catalytic activity of carbon supported Pd-Co-Mo for the oxygen reduction reaction (ORR) in a single cell proton exchange membrane fuel cell (PEMFC) has been investigated at 60 degrees C and compared with data from commercial Pt catalyst and our previously reported Pd-Co-Au and Pd-Ti catalysts. The Pd-Co-Mo catalyst with a Pd:Co:Mo atomic ratio of 70:20:10 exhibits slightly higher catalytic activity like the Pd-Co-Au catalyst than the commercial Pt catalyst, but with excellent chemical stability unlike the Pd-Co-Au catalyst. The Pd-Co-Mo catalyst also exhibits better tolerance to methanol poisoning than Pt. Investigation of the catalytic activity of the Pd-Co-Mo system with varying composition and heat treatment temperature reveals that a Pd:Co:Mo atomic ratio of 70:20:10 with a heat treatment temperature of 500 degrees C exhibits the highest catalytic activity. Although the degree of alloying increases with increasing temperature from 500 to 900 degrees C as indicated by the X-ray diffraction data, the catalytic activity decreases due to an increase in particle size and a decrease in surface area. PMID:16853984

  6. Heavy-ion double charge exchange reactions: A tool toward 0 νββ nuclear matrix elements

    NASA Astrophysics Data System (ADS)

    Cappuzzello, F.; Cavallaro, M.; Agodi, C.; Bondì, M.; Carbone, D.; Cunsolo, A.; Foti, A.

    2015-11-01

    The knowledge of the nuclear matrix elements for the neutrinoless double beta decay is fundamental for neutrino physics. In this paper, an innovative technique to extract information on the nuclear matrix elements by measuring the cross section of a double charge exchange nuclear reaction is proposed. The basic point is that the initial- and final-state wave functions in the two processes are the same and the transition operators are similar. The double charge exchange cross sections can be factorized in a nuclear structure term containing the matrix elements and a nuclear reaction factor. First pioneering experimental results for the 40Ca(18O,18Ne)40Ar reaction at 270 MeV incident energy show that such cross section factorization reasonably holds for the crucial 0+ → 0+ transition to 40Args, at least at very forward angles.

  7. An investigation of one- versus two-dimensional semiclassical transition state theory for H atom abstraction and exchange reactions

    NASA Astrophysics Data System (ADS)

    Greene, Samuel M.; Shan, Xiao; Clary, David C.

    2016-02-01

    We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.

  8. HupUV proteins of Rhodobacter capsulatus can bind H2: evidence from the H-D exchange reaction.

    PubMed Central

    Vignais, P M; Dimon, B; Zorin, N A; Colbeau, A; Elsen, S

    1997-01-01

    The H-D exchange reaction has been measured with the D2-H2O system, for Rhodobacter capsulatus JP91, which lacks the hupSL-encoded hydrogenase, and R. capsulatus BSE16, which lacks the HupUV proteins. The hupUV gene products, expressed from plasmid pAC206, are shown to catalyze an H-D exchange reaction distinguishable from the H-D exchange due to the membrane-bound, hupSL-encoded hydrogenase. In the presence of O2, the uptake hydrogenase of BSE16 cells catalyzed a rapid uptake and oxidation of H2, D2, and HD present in the system, and its activity (H-D exchange, H2 evolution in presence of reduced methyl viologen [MV+]) depended on the external pH, while the H-D exchange due to HupUV remained insensitive to external pH and O2. These data suggest that the HupSL dimer is periplasmically oriented, while the HupUV proteins are in the cytoplasmic compartment. PMID:8982013

  9. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application.

    PubMed

    Xia, Xinhui; Zhu, Changrong; Luo, Jingshan; Zeng, Zhiyuan; Guan, Cao; Ng, Chin Fan; Zhang, Hua; Fan, Hong Jin

    2014-02-26

    Metal sulfides are an emerging class of high-performance electrode materials for solar cells and electrochemical energy storage devices. Here, a facile and powerful method based on anion exchange reactions is reported to achieve metal sulfide nanoarrays through a topotactical transformation from their metal oxide and hydroxide preforms. Demonstrations are made to CoS and NiS nanowires, nanowalls, and core-branch nanotrees on carbon cloth and nickel foam substrates. The sulfide nanoarrays exhibit superior redox reactivity for electrochemical energy storage. The self-supported CoS nanowire arrays are tested as the pseudo-capacitor cathode, which demonstrate enhanced high-rate specific capacities and better cycle life as compared to the powder counterparts. The outstanding electrochemical properties of the sulfide nanoarrays are a consequence of the preservation of the nanoarray architecture and rigid connection with the current collector after the anion exchange reactions. PMID:24809111

  10. Synthesis of N=127 isotones through (p,n) charge-exchange reactions induced by relativistic {sup 208}Pb projectiles

    SciTech Connect

    Morales, A. I.; Benlliure, J.; Alvarez-Pol, H.; Casarejos, E.; Dragosavac, D.; Perez-Loureiro, D.; Verma, S.; Agramunt, J.; Molina, F.; Rubio, B.; Algora, A.; Alkhomashi, N.; Farrelly, G.; Gelletly, W.; Pietri, S.; Podolyak, Z.; Regan, P. H.; Steer, S. J.; Boutachkov, P.; Caceres, L. S.

    2011-07-15

    The production cross sections of four N=127 isotones ({sup 207}Hg, {sup 206}Au, {sup 205}Pt, and {sup 204}Ir) have been measured using (p,n) charge-exchange reactions, induced in collisions of a {sup 208}Pb primary beam at 1 A GeV with a Be target. These data allow one to investigate the use of a reaction mechanism to extend the limits of the chart of nuclides toward the important r-process nuclei in the region of the third peak of elemental abundance distribution.

  11. Meson-exchange calculation of the d(. gamma. ,p)n reaction in the GeV energy region

    SciTech Connect

    Lee, T.S.H.

    1991-01-01

    We show that a meson-exchange model of the d({gamma},p) reaction can be constructed to reproduce the energy-dependence of the existing data for the differential cross section at 90{degree}. The prediction of the model in the GeV energy region is found to be radically different from the QCD prediction by Brodsky and Hiller. The results will be compared with the new data presented in a companion paper. 12 refs., 4 figs.

  12. Kinetic and Mechanistic Studies of the Deuterium Exchange in Classical Keto-Enol Tautomeric Equilibrium Reactions

    ERIC Educational Resources Information Center

    Nichols, Michael A.; Waner, Mark J.

    2010-01-01

    An extension of the classic keto-enol tautomerization of beta-dicarbonyl compounds into a kinetic analysis of deuterium exchange is presented. It is shown that acetylacetone and ethyl acetoacetate undergo nearly complete deuterium exchange of the alpha-methylene carbon when dissolved in methanol-d[subscript 4]. The extent of deuteration may be

  13. The loss rates of O{sup +} in the inner magnetosphere caused by both magnetic field line curvature scattering and charge exchange reactions

    SciTech Connect

    Ji, Y.; Shen, C.

    2014-03-15

    With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O{sup +} (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O{sup +} to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O{sup +} are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.

  14. Quantal Study of the Exchange Reaction for N + N2 using an ab initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Partridge, Harry; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The N + N2 exchange rate is calculated using a time-dependent quantum dynamics method on a newly determined ab initio potential energy surface (PES) for the ground A" state. This ab initio PES shows a double barrier feature in the interaction region with the barrier height at 47.2 kcal/mol, and a shallow well between these two barriers, with the minimum at 43.7 kcal/mol. A quantum dynamics wave packet calculation has been carried out using the fitted PES to compute the cumulative reaction probability for the exchange reaction of N + N2(J=O). The J - K shift method is then employed to obtain the rate constant for this reaction. The calculated rate constant is compared with experimental data and a recent quasi-classical calculation using a LEPS PES. Significant differences are found between the present and quasiclassical results. The present rate calculation is the first accurate 3D quantal dynamics study for N + N2 reaction system and the ab initio PES reported here is the first such surface for N3.

  15. Functionalized Mesoporous Silica via an Aminosilane Surfactant Ion Exchange Reaction: Controlled Scaffold Design and Nitric Oxide Release

    PubMed Central

    2015-01-01

    Nitric oxide-releasing mesoporous silica nanoparticles (MSNs) were prepared using an aminosilane-template surfactant ion exchange reaction. Initially, bare silica particles were synthesized under basic conditions in the presence of cetyltrimethylammonium bromide (CTAB). These particles were functionalized with nitric oxide (NO) donor precursors (i.e., secondary amines) via the addition of aminosilane directly to the particle sol and a commensurate ion exchange reaction between the cationic aminosilanes and CTAB. N-Diazeniumdiolate NO donors were formed at the secondary amines to yield NO-releasing MSNs. Tuning of the ion exchange-based MSN modification approach allowed for the preparation of monodisperse particles ranging from 30 to 1100 nm. Regardless of size, the MSNs stored appreciable levels of NO (0.4–1.5 μmol mg–1) with tunable NO release durations (1–33 h) dependent on the aminosilane modification. Independent control of NO release properties and particle size was achieved, demonstrating the flexibility of this novel MSN synthesis over conventional co-condensation and surface grafting strategies. PMID:26717238

  16. Inclusive measurement of (p,. pi. /sup -/xn) double charge exchange reactions on bismuth from threshold to 800 MeV

    SciTech Connect

    Dombsky, M.; D'Auria, J.M.; Kelson, I.; Yavin, A.I.; Ward, T.E.; Clark, J.L.; Ruth, T.; Sheffer, G.

    1985-07-01

    The energy dependence of the total angle-integrated cross section for the production of astatine isotopes from (p,..pi../sup -/xn) double charge exchange reactions on bismuth (/sup 209/Bi) was measured from 120 to 800 MeV using activation and radiochemical techniques. Chemical yields were estimated by direct radioassaying of /sup 211/At activity in thin (approx.1 mg/cm/sup 2/), irradiated bismuth targets. Calculations of the contributions of secondary (two-step) reactions to these measured astatine yields were performed, based partially upon the observed /sup 211/At activity although even at the highest energies, the contribution to products lighter than /sup 207/At was negligible. These data for products with as many as seven neutrons removed from the doubly coherent product (/sup 210/At) display nearly Gaussian shapes for the mass distributions of the astatine residues, with the maximum occurring for about /sup 204/At. The most probable momentum transfer deduced from these distributions for the initial ..pi../sup -/ production step was 335 MeV/c. The observed excitation functions display a behavior similar to that observed for the yield of /sup 210/Po from a (p,..pi../sup 0/) reaction on /sup 209/Bi, but radically different from that observed for inclusive ..pi../sup -/ reactions on a heavy nucleus. These data are discussed in terms of recent theoretical approaches to negative pion production from bismuth. In addition, a simple, schematic model is developed to treat the rapidly decreasing percentage of the total inclusive ..pi../sup -/ emission which is observed for this double charge exchange reaction. This model reflects the opacity of a nucleus to a source of internal energetic protons.

  17. Viologen (2+/1+) and viologen(1+/0) electron-self-exchange reactions in a redox polymer

    SciTech Connect

    Dalton, E.F.; Murray, R.W. )

    1991-08-08

    An analysis is given of the electron-self-exchange reactions responsible for the steady-state redox conductivity of thin films of the electropolymerized monomer N,N{prime}-bis(3-pyrrol-1-yl-propyl)-4,4{prime}-bipyridinium tetrafluoroborate, sandwiched between two electrodes. Concentration-gradient-driven electron self-exchange in the liquid-acetonitrile-bathed viologen(2+/1+) mixed-valent state of this polymer, k{sub ex} = 8 {times} 10{sup 3} M{sup {minus}1}s{sup {minus}1}, is much slower than that for the viologen (1+/0) mixed-valent state, k{sub ek} = 1.6 {times} 10{sup 5} M{sup {minus}1} s{sup {minus}1}, which has a smaller activation barrier. Neither self-exchange reaction responds to use of alternative counteranions except that both rates decrease in polymer containing tosylate counterions. The rate constant found for the electrical-gradient-driven viologen (1+/0) electron self-exchange, k{sub ex} = 1.1 {times} 10{sup 5} M{sup {minus}1} s{sup {minus}1}, observed in dry, N{sub 2}-bathed polymer where ClO{sub 4}{sup {minus}} counterion mobility is quenched, is nearly the same as the acetonitrile-bathed value. The rate constants appear to be dominated by characteristics of the polymer phase rather than the bathing environment of the polymer. Estimates are made of the counteranion diffusivity in acetonitrile-bathed films and of how it effects transient electron transport measurements.

  18. Cu3-xP Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions

    PubMed Central

    2015-01-01

    Synthesis approaches to colloidal Cu3P nanocrystals (NCs) have been recently developed, and their optical absorption features in the near-infrared (NIR) have been interpreted as arising from a localized surface plasmon resonance (LSPR). Our pump–probe measurements on platelet-shaped Cu3-xP NCs corroborate the plasmonic character of this absorption. In accordance with studies on crystal structure analysis of Cu3P dating back to the 1970s, our density functional calculations indicate that this material is substoichiometric in copper, since the energy of formation of Cu vacancies in certain crystallographic sites is negative, that is, they are thermodynamically favored. Also, thermoelectric measurements point to a p-type behavior of the majority carriers from films of Cu3-xP NCs. It is likely that both the LSPR and the p-type character of our Cu3-xP NCs arise from the presence of a large number of Cu vacancies in such NCs. Motivated by the presence of Cu vacancies that facilitate the ion diffusion, we have additionally exploited Cu3-xP NCs as a starting material on which to probe cation exchange reactions. We demonstrate here that Cu3-xP NCs can be easily cation-exchanged to hexagonal wurtzite InP NCs, with preservation of the anion framework (the anion framework in Cu3-xP is very close to that of wurtzite InP). Intermediate steps in this reaction are represented by Cu3-xP/InP heterostructures, as a consequence of the fact that the exchange between Cu+ and In3+ ions starts from the peripheral corners of each NC and gradually evolves toward the center. The feasibility of this transformation makes Cu3-xP NCs an interesting material platform from which to access other metal phosphides by cation exchange. PMID:25960605

  19. Theoretical investigation of exchange and recombination reactions in O({sup 3}P)+NO({sup 2}{pi}) collisions

    SciTech Connect

    Ivanov, M. V.; Zhu, H.; Schinke, R.

    2007-02-07

    We present a detailed dynamical study of the kinetics of O({sup 3}P)+NO({sup 2}{pi}) collisions including O atom exchange reactions and the recombination of NO{sub 2}. The classical trajectory calculations are performed on the lowest {sup 2}A{sup '} and {sup 2}A{sup ''} potential energy surfaces, which were calculated by ab initio methods. The calculated room temperature exchange reaction rate coefficient, k{sup ex}, is in very good agreement with the measured one. The high-pressure recombination rate coefficient, which is given by the formation rate coefficient and to a good approximation equals 2k{sup ex}, overestimates the experimental data by merely 20%. The pressure dependence of the recombination rate, k{sup r}, is described within the strong-collision model by assigning a stabilization probability to each individual trajectory. The measured falloff curve is well reproduced over five orders of magnitude by a single parameter, i.e., the strong-collision stabilization frequency. The calculations also yield the correct temperature dependence, k{sup r}{proportional_to}T{sup -1.5}, of the low-pressure recombination rate coefficient. The dependence of the rate coefficients on the oxygen isotopes are investigated by incorporating the difference of the zero-point energies between the reactant and product NO radicals, {delta}{sub ZPE}, into the potential energy surface. Similar isotope effects as for ozone are predicted for both the exchange reaction and the recombination. Finally, we estimate that the chaperon mechanism is not important for the recombination of NO{sub 2}, which is in accord with the overall T{sup -1.4} dependence of the measured recombination rate even in the low temperature range.

  20. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    SciTech Connect

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.; Chan, A.A.; England, A.C.; Hendel, H.W.; Medley, S.S.; Nieschmidt, E.; Roquemore, A.L.; Scott, S.D.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and /sup 3/He ions, respectively. When the plasma was compressed, the d(d,n)/sup 3/He fusion reaction rate increased a factor of five, and the /sup 3/He(d,p)/sup 4/He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling.

  1. Charge exchange dp → (pp)n reaction study at 1.75 A GeV/c by the STRELA spectrometer

    NASA Astrophysics Data System (ADS)

    Basilev, S. N.; Bushuev, Yu. P.; Glagolev, V. V.; Dolgiy, S. A.; Kirillov, D. A.; Kostyaeva, N. V.; Kovalenko, A. D.; Livanov, A. N.; Manyakov, P. K.; Martinská, G.; Mušinský, J.; Piskunov, N. M.; Povtoreiko, A. A.; Rukoyatkin, P. A.; Shindin, R. A.; Sitnik, I. M.; Slepnev, V. M.; Slepnev, I. V.; Urbán, J.

    2016-02-01

    The differential cross sections of the charge exchange reaction dp → (pp)n has been measured at 1.75 GeV/c momentum per nucleon for small transferred momenta using the one arm magnetic spectrometer STRELA at the Nuclotron accelerator. The ratio of the differential cross section of the charge exchange reaction dp → (pp)n to that of the np → pn elementary process is discussed in order to estimate the spin-dependent part of the np → pn charge exchange amplitude on the basis of dp → (pp)n data. The np → pn amplitude turned out to be predominantly spin-dependent.

  2. Exchange reactions catalyzed by group-transferring enzymes oppose the quantitation and the unravelling of the identify of the pentose pathway.

    PubMed

    Flanigan, I; Collins, J G; Arora, K K; MacLeod, J K; Williams, J F

    1993-04-01

    1. The distributions and rates of transfer of carbon isotopes from a selection of specifically labelled ketosugar-phosphate substrates by exchange reactions catalyzed by the pentose and photosynthetic carbon-reduction-pathway group-transferring enzymes transketolase, transaldolase and aldolase have been measured using 13C-NMR spectroscopy. 2. The rates of these exchange reactions were 5, 4 and 1.5 mumol min-1 mg-1 for transketolase exchange, transaldolase exchange and aldolase exchange, respectively. 3. A comparison of the exchange capacities contributed by the activities of these enzymes in three in vitro liver preparations with the maximum non-oxidative pentose pathway flux rates of the preparations shows that transketolase and aldolase exchanges exceeded flux by 9-19 times in liver cytosol and acetone powder enzyme preparations and by 5 times in hepatocytes. Transaldolase was less effective in the comparison of exchange versus flux rates: transaldolase exchange exceeded flux by 1.6 and 5 in catalysis by liver cytosol and acetone powder preparations, respectively, but was only 0.6 times the flux in hepatocytes. 4. Values of group enzyme exchange and pathway flux rates in the above three preparations are important because of the feature role of liver and of these particular preparations in the establishment, elucidation and measurement of a proposed reaction scheme for the fat-cell-type pentose pathway in biochemistry. 5. It is the claim of this paper that the excess of exchange rate activity (particularly transketolase exchange) over pathway flux will overturn attempts to unravel, using isotopically labelled sugar substrates, the identity, reaction sequence and quantitative contribution of the pentose pathway to glucose metabolism. 6. The transketolase exchange reactions relative to the pentose pathway flux rates in normal, regenerating and foetal liver, Morris hepatomas, mammary carcinoma, melanoma, colonic epithelium, spinach chloroplasts and epididymal fat tissue show that transketolase exchange may exceed flux in these tissues by factors ranging over 5-600 times. 7. The confusion of pentose pathway theory by the effects of transketolase exchange action is illustrated by the 13C-NMR spectrum of the hexose 6-phosphate products of ribose 5-phosphate dissimilation, formed after 30 min of liver enzyme action, and shows 13C-labelling in carbons 1 and 3 of glucose 6-phosphate with ratios which range over 2.1-6.4 rather than the mandatory value of 2 which is imposed by the theoretical mechanism of the pathway. PMID:8477719

  3. Reduced-Dimensionality Semiclassical Transition State Theory: Application to Hydrogen Atom Abstraction and Exchange Reactions of Hydrocarbons.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2015-12-17

    Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems. PMID:26090556

  4. Evidence for enhanced oxygen surface exchange reaction in nanostructured Gd2O3-doped CeO2 films

    NASA Astrophysics Data System (ADS)

    Develos-Bagarinao, Katherine; Kishimoto, Haruo; Yamaji, Katsuhiko; Horita, Teruhisa; Yokokawa, Harumi

    2015-05-01

    The effect of microstructure of Gd2O3-doped CeO2 (GDC) films on oxygen surface exchange and diffusion is reported. Epitaxial GDC (10 mol% Gd) films up to 1 ?m in thickness are prepared using pulsed laser deposition on (100) yttria-stabilized zirconia single-crystal substrates and subjected to high-temperature annealing at 1300 C in air to induce microstructural modifications. Characterization using atomic force microscopy and transmission electron microscopy reveals granular morphologies comprised of densely packed columnar nanostructures for the as-grown GDC films; however, significant microstructural reconstruction of the entire GDC layer occurs after high-temperature annealing. 18O isotope exchange depth profiling with dynamic secondary ion mass spectroscopy is employed to evaluate the oxygen surface exchange coefficient k* and the diffusion coefficient D* at T = 600 C. The as-grown GDC exhibits up to 10 times higher k* than the annealed film. The strong differences in oxygen surface reaction are correlated to the observed film properties including surface microstructure and cerium oxidation state as evaluated using electron energy loss spectroscopy in scanning transmission electron microscopy.

  5. Evidence for enhanced oxygen surface exchange reaction in nanostructured Gd2O3-doped CeO2 films.

    PubMed

    Develos-Bagarinao, Katherine; Kishimoto, Haruo; Yamaji, Katsuhiko; Horita, Teruhisa; Yokokawa, Harumi

    2015-05-29

    The effect of microstructure of Gd?O?-doped CeO? (GDC) films on oxygen surface exchange and diffusion is reported. Epitaxial GDC (10 mol% Gd) films up to 1 ?m in thickness are prepared using pulsed laser deposition on (100) yttria-stabilized zirconia single-crystal substrates and subjected to high-temperature annealing at 1300 C in air to induce microstructural modifications. Characterization using atomic force microscopy and transmission electron microscopy reveals granular morphologies comprised of densely packed columnar nanostructures for the as-grown GDC films; however, significant microstructural reconstruction of the entire GDC layer occurs after high-temperature annealing. (18)O isotope exchange depth profiling with dynamic secondary ion mass spectroscopy is employed to evaluate the oxygen surface exchange coefficient k* and the diffusion coefficient D* at T = 600 C. The as-grown GDC exhibits up to 10 times higher k* than the annealed film. The strong differences in oxygen surface reaction are correlated to the observed film properties including surface microstructure and cerium oxidation state as evaluated using electron energy loss spectroscopy in scanning transmission electron microscopy. PMID:25930178

  6. Chiral modification of copper exchanged zeolite-Y with cinchonidine and its application in the asymmetric Henry reaction.

    PubMed

    Deka, Jogesh; Satyanarayana, L; Karunakar, G V; Bhattacharyya, Pradip Kr; Bania, Kusum K

    2015-12-28

    Chirally modified Cu(2+) exchanged zeolite-Y was synthesized by direct adsorption of cinchonidine under ambient conditions. The chirally modified materials were characterized using various spectrochemical and physicochemical techniques viz. BET, FTIR, MAS ((1)H and (13)C NMR), XPS, SEM, cyclic voltammetry and PXRD. Characteristic peaks of cinchonidine observed in the supported materials confirmed the adsorption of cinchonidine and its coordination with the Cu(2+) active site on copper exchanged zeolite-Y. (13)C SSNMR and XPS analysis however confirmed for the half encapsulation process, only the quinoline ring of cinchonidine gets coordinated to the internal metal sites via the N atom while the quinuclidine moiety extends out of the host surface. Cinchonidine supported Cu(2+)-Y zeolites were found to exhibit good catalytic performance in the asymmetric Henry reaction. (1)H SSNMR studies also confirmed the protonation of the N atom of the quinuclidine ring during the course of the Henry reaction. Heterogeneous chiral catalysts were effective for up to two consecutive cycles. Leaching of cinchonidine after the second cycle was found to have a negative result in the catalytic performance. PMID:26579982

  7. Theoretical investigation of the thermodynamic structures and kinetic water-exchange reactions of aqueous Al(III)-salicylate complexes

    NASA Astrophysics Data System (ADS)

    Shi, Wenjing; Jin, Xiaoyan; Dong, Shaonan; Bi, Shuping

    2013-11-01

    Density functional theory (DFT) calculations were performed on the structures and water-exchange reactions of aqueous Al(III)-salicylate complexes. Based on the four models (gas phase (GP); polarizable continuum model (PCM), which estimates the bulk solvent effect; supermolecule model (SM), which considers the explicit solvent effect, and supermolecule-polarizable continuum model (SM-PCM), which accounts for both types of solvent effects), we systematically conducted this study by examining three different properties of the complexes. (1) The microscopic properties of the aqueous Al(III)-salicylate complexes were studied by optimizing their various structures (including the possible 1:1 mono- and bidentate complexes, cis and trans isomers of the 1:2 bidentate complexes and 1:3 bidentate complexes) at the B3LYP/6-311+G(d, p) level. (2) The 27Al and 13C NMR chemical shifts were calculated using the GIAO method at the HF/6-311+G(d, p) level. The calculation results show that the values obtained with the SM-PCM models are in good agreement with the experimental data available in the literature, indicating that the models we employed are appropriate for Al(III)-salicylate complexes. (3) The water-exchange reactions of 1:1 mono- and bidentate Al(III)-salicylate complexes were simulated using supermolecule models at the B3LYP/6-311+G(d, p) level. The logarithm of the water-exchange rate constant (log kex) of the 1:1 bidentate complex predicted using the "log kex-dAl-OH2" correlation is 4.0, which is in good agreement with the experimental value of 3.7, whereas the calculated range of log kex of the 1:1 monodentate complexes is 1.3-1.9. By effectively combining the results for the thermodynamic static structures with the simulations of the kinetic water-exchange reactions, this work promotes further understanding of the configurations and formation mechanism of Al(III)-salicylate complexes.

  8. Room Temperature Cation Exchange Reaction in Nanocrystals for Ultrasensitive Speciation Analysis of Silver Ions and Silver Nanoparticles.

    PubMed

    Huang, Ke; Xu, Kailai; Tang, Jie; Yang, Lu; Zhou, Jingrong; Hou, Xiandeng; Zheng, Chengbin

    2015-07-01

    To evaluate the toxicity of silver nanoparticles (AgNPs) and Ag(+) and gain deep insight into the transformation of AgNPs in the environment or organisms, ultrasensitive analytical methods are needed for their speciation analysis. About 40-fold of Cd(2+) in CdTe ionic nanocrystals can be "bombarded-and-exploded" (exchanged) in less than 1 min simply by mixing the nanocrystals with Ag(+) solution at room temperature, while this cation exchange reaction did not occur when only silver nanoparticles were present. On the basis of this striking difference, an ultrasensitive method was developed for speciation analysis of Ag(+) and AgNPs in complex matrices. The released Cd(2+) was reduced to its volatile species by sodium tetrahydroborate, which was separated and swept to an inductively coupled plasma mass spectrometer (ICPMS) or an atomic fluorescence spectrometer (AFS) for the indirect but ultrasensitive detection of Ag(+). Owing to the remarkable signal amplification via the cation exchange reaction and the advantages of chemical vapor generation for sampling, the limit of detection was 0.0003 ?g L(-1) for Ag(+) by ICPMS, which was improved by 100-fold compared to the conventional method. Relative standard deviations are better than 2.5% at a concentration of 0.5 ?g L(-1) Ag(+) or AgNPs regardless of the detector. The proposed method retains several unique advantages, including ultrahigh sensitivity, speciation analysis, simplicity and being organic reagent-free, and has been successfully utilized for speciation analysis of Ag(+) and AgNPs in environmental water samples and paramecium cells. PMID:26017198

  9. Quantum dynamics of {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} exchange reactions

    SciTech Connect

    Rajagopala Rao, T.; Mahapatra, S.; Guillon, G.; Honvault, P.

    2015-05-07

    We present quantum dynamical investigations of {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} exchange reactions using a time-independent quantum mechanical method and an accurate global potential energy surface of ozone [Dawes et al., J. Chem. Phys. 135, 081102 (2011)]. Initial state-selected integral cross sections, rate constants, and Boltzmann averaged thermal rate constants are obtained and compared with earlier experimental and theoretical results. The computed thermal rate constants for the oxygen exchange reactions exhibit a negative temperature dependence, as found experimentally. They are in better agreement with the experiments than the previous studies on the same reactions.

  10. Ab initio study of the H + HONO reaction: Direct abstraction versus indirect exchange processes

    SciTech Connect

    Hsu, C.C.; Lin, M.C.; Mebel, A.M.; Melius, C.F.

    1997-01-02

    The mechanism of the H + HONO reaction (for which no experimental data are available) has been elucidated by ab initio molecular orbital calculations using modified G2 and BAC-MP4 methods. These results indicate that the reaction occurs predominantly by two indirect metathetical processes. One produces OH + HNO and H{sub 2}O + NO from the decomposition of vibrationally excited hydroxyl nitroxide, HN(O)OH, formed by H atom addition to the N atom of HONO. The other produces H{sub 2}O + NO from the decomposition of vibrationally excited dihydroxylamino radical, N(OH){sub 2}, formed by H atom addition to the terminal O atom. These indirect displacement processes are much more efficient than the commonly assumed, direct H-abstraction reaction producing H{sub 2} + NO{sub 2}. A transition-state theory calculation for the direct abstraction reaction and RRKM calculations for the two indirect displacement processes give rise to the following rate constants, in units of cm{sup 3} molecule{sup -1} s{sup -1} for the 300-3500 K temperature range under atmospheric conditions: k{sub H(2)} = 3.33 x 10{sup -16}T{sup 1.55} exp(-3328.5/T), k{sub OH} = 9.36 x 10{sup -14}T{sup 0.86} exp(-2500.8/T), k{sub H(2)O} = 1.35 x 10{sup -17}T{sup 1.89} exp-(-1935.7/T), where the rate constant for H{sub 2}O production represents the sum from both indirect displacement reactions. 32 refs., 3 figs., 7 tabs.

  11. Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning.

    PubMed

    Jang, Dong Myung; Park, Kidong; Kim, Duk Hwan; Park, Jeunghee; Shojaei, Fazel; Kang, Hong Seok; Ahn, Jae-Pyung; Lee, Jong Woon; Song, Jae Kyu

    2015-08-12

    In recent years, methylammonium lead halide (MAPbX3, where X = Cl, Br, and I) perovskites have attracted tremendous interest caused by their outstanding photovoltaic performance. Mixed halides have been frequently used as the active layer of solar cells, as a result of their superior physical properties as compared to those of traditionally used pure iodide. Herein, we report a remarkable finding of reversible halide-exchange reactions of MAPbX3, which facilitates the synthesis of a series of mixed halide perovskites. We synthesized MAPbBr3 plate-type nanocrystals (NCs) as a starting material by a novel solution reaction using octylamine as the capping ligand. The synthesis of MAPbBr(3-x)Clx and MAPbBr(3-x)Ix NCs was achieved by the halide exchange reaction of MAPbBr3 with MACl and MAI, respectively, in an isopropyl alcohol solution, demonstrating full-range band gap tuning over a wide range (1.6-3 eV). Moreover, photodetectors were fabricated using these composition-tuned NCs; a strong correlation was observed between the photocurrent and photoluminescence decay time. Among the two mixed halide perovskite series, those with I-rich composition (x = 2), where a sole tetragonal phase exists without the incorporation of a cubic phase, exhibited the highest photoconversion efficiency. To understand the composition-dependent photoconversion efficiency, first-principles density-functional theory calculations were carried out, which predicted many plausible configurations for cubic and tetragonal phase mixed halides. PMID:26161637

  12. Heavy-Ion Double-Charge Exchange Study via a 12C(18O,18Ne)12Be Reaction

    NASA Astrophysics Data System (ADS)

    Takaki, Motonobu; Matsubara, Hiroaki; Uesaka, Tomohiro; Aoi, Nori; Dozono, Masanori; Hashimoto, Takashi; Kawabata, Takahiro; Kawase, Shoichiro; Kisamori, Keiichi; Kubota, Yuki; Lee, Cheng Soo; Lee, Jenny; Maeda, Yukie; Michimasa, Shin'ichiro; Miki, Kenjiro; Ota, Shinsuke; Sasano, Masaki; Shimoura, Susumu; Suzuki, Tomokazu; Takahisa, Keiji; Tang, Tsz Leung; Tamii, Atsushi; Tokieda, Hiroshi; Yako, Kentaro; Yokoyama, Rin; Zenihiro, Juzo

    Heavy-ion double-charge exchange (HIDCX) reactions are a new promising spectroscopic tool for double spin-isospin flips excitation modes by taking an advantage of transferring isospin and/or spin quantum numbers by an amount of two to target nuclei. However, the data on HIDCX reactions is very scarce. A measurement of a (n,p)-type HIDCX reaction, 12C(18O,18Ne)12Be at 80 MeV/nucleon, was performed by employing the high-resolution spectrometer Grand Raiden at Research Center Nuclear Physics, Osaka University. The excitation energy spectrum of 12Be was obtained, and three clear peaks were observed at 0.0, 2.2, and 4.5 MeV, which are corresponding to ground and excited states of 12Be. The angular distributions of the cross sections for these peaks were obtained within the scattering angle range of 0.0-4.0 in the center of mass system. We found that the angular distributions have characteristic shapes according to their mulpolarities.

  13. One-pot approach to functional nucleosides possessing a fluorescent group using nucleobase-exchange reaction by thymidine phosphorylase.

    PubMed

    Hatano, Akihiko; Kurosu, Masayuki; Yonaha, Susumu; Okada, Munehiro; Uehara, Sanae

    2013-09-25

    Herein, we describe ?-selective coupling between a modified uracil and a deoxyribose to produce functionalized nucleosides catalyzed by thymidine phosphorylase derived from Escherichia coli. This enzyme mediates nucleobase-exchange reactions to convert unnatural nucleosides possessing a large functional group such as a fluorescent molecule, coumarin or pyrene, linked via an alkyl chain at the C5 position of uracil. 5-(Coumarin-7-oxyhex-5-yn)uracil (C4U) displayed 57.2% conversion at 40% DMSO concentration in 1.0 mM phosphate buffer pH 6.8 to transfer thymidine to an unnatural nucleoside with C4U as the base. In the case of using 5-(pyren-1-methyloxyhex-5-yn)uracil (P4U) as the substrate, TP also could catalyse the reaction to generate a product with a very large functional group at 50% DMSO concentration (21.6% conversion). We carried out docking simulations using MF myPrest for the modified uracil bound to the active site of TP. The uracil moiety of the substrate binds to the active site of TP, with the fluorescent moiety linked to the C5 position of the nucleobase located outside the surface of the enzyme. As a consequence, the bulky fluorescent moiety binding to uracil has little influence on the coupling reaction. PMID:24057401

  14. Mechanisms by which reactions catalyzed by chloroplast coupling factor 1 are inhibited: ATP synthesis and ATP-H2O oxygen exchange

    SciTech Connect

    Spencer, J.G.; Wimmer, M.J.

    1985-07-16

    The ATP-H2O back-exchange reaction catalyzed by membrane-bound chloroplast coupling factor 1 (CF1) in the light is known to be extensive; each reacting ATP molecule nearly equilibrates its gamma-PO2 oxygens with H2O before it dissociates from the enzyme. Pi, ASi, ADP, and GDP, alternate substrates of photophosphorylation, each inhibit the exchange reaction. At all concentrations of these substrate/inhibitor molecules tested, the high extent of exchange per molecule of ATP that reacts remains the same, while the number of ATP molecules experiencing exchange decreases. Thus, these inhibitors appear to act in a competitive-type manner, decreasing ATP turnover, as opposed to modulating the rate constants responsible for the partitioning of E X ATP during the exchange reaction. This is consistent with the identity of CF1 catalytic sites for ATP-H2O back-exchange and ATP synthesis. The extent of ATP-H2O forward oxygen exchange, which occurs during net ATP synthesis prior to product dissociation, is unaffected by uncouplers, whether catalyzed by native CF1 (ATPase latent) or the dithiothreitol/light-activated ATPase form.

  15. Ion exchange kinetics of cesium for various reaction designs using crystalline silicotitanate, UOP IONSIV IE-911

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hyun

    Through collaborative efforts at Texas A&M University and Sandia National Laboratories, a crystalline silicotitanate (CST), which shows extremely high selectivity for radioactive cesium removal in highly concentrated sodium solutions, was synthesized. The effect of hydrogen peroxide on a CST under cesium ion exchange conditions has been investigated. The experimental results with hydrogen peroxide showed that the distribution coefficient of cesium decreased and the tetragonal phase, the major component of CST, slowly dissolved at hydrogen peroxide concentrations greater than 1 M. A simple and novel experimental apparatus for a single-layer ion exchange column was developed to generate experimental data for estimation of the intraparticle effective diffusivity. A mathematical model is presented for estimation of effective diffusivities for a single-layer column of CST granules. The intraparticle effective diffusivity for Cs was estimated as a parameter in the analytical solution. By using the least square method, the effective diffusivities of 1.56 +/- 0.14 x 10-11 m2/s and 0.68 +/- 0.09 x 10-11 m2/s, respectively, were obtained. The difference in the two values was due to the different viscosities of the solutions. A good fit of the experimental data was obtained which supports the use of the homogeneous model for this system. A counter-current ion exchange (CCIX) process was designed to treat nuclear waste at the Savannah River Site. A numerical method based on the orthogonal collocation method was used to simulate the concentration profile of cesium in the CCIX loaded with CST granules. To maximize cesium loading onto the CST and minimize the volume of CST, two design cases of a moving bed, where the fresh CST is pulsed into the column at certain periods or at certain concentration of cesium, were investigated. Simulation results showed that cesium removal behavior in the pilot-scale test of CCIX experiment, where the column length is 22 ft and the CST is pulsed 1 ft in every 24 hours, was well predicted by using the values of the effective diffusivities of 1.0 to 6.0 x 10 -11 m2/s.

  16. Replica exchange reactive molecular dynamics simulations of initial reactions in zeolite synthesis.

    PubMed

    Jing, Zhifeng; Xin, Liang; Sun, Huai

    2015-10-14

    Molecular simulation is a promising tool for the study of zeolite formation. However, sufficient sampling remains a grand challenge for the practical use of molecular simulation for this purpose. Here, we investigate the initial stage of zeolite synthesis under realistic conditions by using the replica-exchange method and the ReaxFF reactive force field. After a total simulation time of 480 ns, both energetic and structural properties approach convergence. Analyses of data collected at 600 K show that the inorganic structure directing agent NaOH promotes the aggregation of silicate, the formation of branched Si atoms and the formation of 5-membered rings. With the trajectories collected simultaneously at different temperatures, the effect of temperature is discussed. PMID:26365615

  17. Studies on the reaction of the 5'-phosphorimidazolide of adenosine with Cu(II)-exchanged hectorite

    NASA Astrophysics Data System (ADS)

    Porter, T. L.; Whitehorse, R.; Eastman, M. P.; Bain, E. D.

    1999-10-01

    The role of clay minerals in the prebiotic synthesis of nucleotide oligomers has received considerable attention in recent years. Scanning force microscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry are used to identify oligomers of adenylic acid formed on the clay mineral Cu(II)-exchanged hectorite in simulated prebiotic cycling experiments. Electron-spin resonance and x-ray diffraction data indicate that the monomer (5'-phosphorimidazolide of adenosine, or ImpA) penetrates into the intergallery regions of the mineral substrate, and complexes the gallery Cu(II) cations. It is postulated that polymerization of the monomer is initiated in the clay intergallery regions, producing oligomers of adenylic acid up to 8 units in length or more.

  18. Exploring the limits of ultrafast polymerase chain reaction using liquid for thermal heat exchange: A proof of principle

    NASA Astrophysics Data System (ADS)

    Maltezos, George; Johnston, Matthew; Taganov, Konstantin; Srichantaratsamee, Chutatip; Gorman, John; Baltimore, David; Chantratita, Wasun; Scherer, Axel

    2010-12-01

    Thermal ramp rate is a major limiting factor in using real-time polymerase chain reaction (PCR) for routine diagnostics. We explored the limits of speed by using liquid for thermal exchange rather than metal as in traditional devices, and by testing different polymerases. In a clinical setting, our system equaled or surpassed state-of-the-art devices for accuracy in amplifying DNA/RNA of avian influenza, cytomegalovirus, and human immunodeficiency virus. Using Thermococcus kodakaraensis polymerase and optimizing both electrical and chemical systems, we obtained an accurate, 35 cycle amplification of an 85-base pair fragment of E. coli O157:H7 Shiga toxin gene in as little as 94.1 s, a significant improvement over a typical 1 h PCR amplification.

  19. Determination of alkanolamines in cattails (Typha latifolia) utilizing electrospray ionization with selected reaction monitoring and ion-exchange chromatography.

    PubMed

    Peru, Kerry M; Headley, John V; Doucette, William J

    2004-01-01

    Selected reaction monitoring (SRM) with electrospray ionization was used as a specific detection technique for the analysis of alkanolamines in plant tissue extracts. Ion-exchange chromatography was used as the method of separation. Quantification was based on monitoring the loss of either H2O or 2(H2O) from the protonated molecule [M+H]+. The method provided increased selectivity for all analytes and better detection limits for three of the six analytes investigated compared with an earlier method using selected ion monitoring with liquid chromatography. Instrumental detection limits ranged from 6-300 pg injected for monoethanolamine (MEA), monoisopropanolamine (MIPA), diethanolamine (DEA), methyldiethanolamine (MDEA), diisopropanolamine (DIPA), and triethanolamine (TEA). Method robustness and selectivity were demonstrated by the determination of DIPA and a known transformation product MIPA in over 35 plant extract samples derived from a laboratory study of plant uptake mechanisms. PMID:15282789

  20. Simple ligand exchange reactions enabling excellent dispersibility and stability of magnetic nanoparticles in polar organic, aromatic, and protic solvents.

    PubMed

    Wang, Xinyu; Tilley, Richard D; Watkins, James J

    2014-02-18

    The use of magnetic nanoparticles (MNPs) in real-world applications is often limited by the lack of stable solutions of monodisperse NPs in appropriate solvents. We report a facile one-pot ligand exchange reaction that is fast, efficient, and thorough for the synthesis of hydrophilic MNPs that are readily dispersed in polar organic and protic solvents (polarity index = 3.9-7.2) including alcohols, THF, DMF, and DMSO for years without precipitation. We emphasize the rational selection of small-molecule ligands such as 4-hydroxybenzoic acid (HBA), 3-(4-hydroxyphenyl)propionic acid (HPP), and gallic acid (GAL) that provide strong bonding with the MNP (FePt and FeOx) surfaces, hydrophilic termini to match the polarity of target solvents, and offer the potential for hydrogen-bonding interactions to facilitate incorporation into polymers and other media. Areal ligand densities (?) calculated based on the NP core size from transmission electron microscopy (TEM) images, and the inorganic fractions of NPs derived from thermogravimetric analysis (TGA) indicated a significant (2-4 times) increase in the ligand coverage after the exchange reactions. Fourier transform infrared spectrometry (FTIR) and (1)H nuclear magnetic resonance (NMR) studies also confirmed anchoring of carboxyl groups on NP surfaces. In addition, we demonstrate a facile one-step in situ synthesis of FePt NPs with aromatic ligands for better dispersibility in solvents of intermediate polarity (polarity index = 1.0-3.5) such as toluene, chlorobenzene, and dichloromethane. The creation of stable dispersions of NPs in solvents across the polarity spectrum opens up new applications and new processing widows for creating NP composites in a variety of host materials. PMID:24460074

  1. Does Size Really Matter? The Steric Isotope Effect in a Supramolecular Host?Guest Exchange Reaction

    SciTech Connect

    Mugridge, Jeffrey; Bergman, Robert; Raymond, Kenneth

    2010-01-29

    Isotope effects (IEs), which arise from differences in zero point energies (ZPEs) between a parent and isotopically substituted bond, have been used extensively by chemists to probe molecular interactions and reactivity. Due to the anharmonicity of the C-H/D vibrational potential energy function and the lower ZPE of a C-D bond, the average C-D bond length is typically {approx}0.005 {angstrom} shorter than an equivalent C-H bond. It is this difference in size that is often invoked to explain the observation of secondary, inverse kinetic isotope effects (KIEs) in chemical processes which proceed through a sterically strained transition state. This so-called 'steric isotope effect' (SIE) has been observed in processes such as the racemization of ortho-substituted biphenyls[6] and phenanthrenes, ring flipping of cyclophanes, and more recently in the deslipping of rotaxanes, where substitution of the sterically less demanding deuterium for protium results in rate accelerations for these processes. Herein, we use deuterium substitution in a cationic guest molecule to probe the sensitivity limits of the guest exchange process from a highly-charged supramolecular host.

  2. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry.

    PubMed

    Dong, Jiajia; Krasnova, Larissa; Finn, M G; Sharpless, K Barry

    2014-09-01

    Aryl sulfonyl chlorides (e.g. Ts-Cl) are beloved of organic chemists as the most commonly used S(VI) electrophiles, and the parent sulfuryl chloride, O2 S(VI) Cl2 , has also been relied on to create sulfates and sulfamides. However, the desired halide substitution event is often defeated by destruction of the sulfur electrophile because the S(VI) Cl bond is exceedingly sensitive to reductive collapse yielding S(IV) species and Cl(-) . Fortunately, the use of sulfur(VI) fluorides (e.g., R-SO2 -F and SO2 F2 ) leaves only the substitution pathway open. As with most of click chemistry, many essential features of sulfur(VI) fluoride reactivity were discovered long ago in Germany.6a Surprisingly, this extraordinary work faded from view rather abruptly in the mid-20th century. Here we seek to revive it, along with John Hyatt's unnoticed 1979 full paper exposition on CH2 CH-SO2 -F, the most perfect Michael acceptor ever found.98 To this history we add several new observations, including that the otherwise very stable gas SO2 F2 has excellent reactivity under the right circumstances. We also show that proton or silicon centers can activate the exchange of SF bonds for SO bonds to make functional products, and that the sulfate connector is surprisingly stable toward hydrolysis. Applications of this controllable ligation chemistry to small molecules, polymers, and biomolecules are discussed. PMID:25112519

  3. Growth of ?-FeSi2 Layers on Si(100) Substrates by Exchange Reaction between Si and Molten Salts

    NASA Astrophysics Data System (ADS)

    Yoneyama, Tsuyoshi; Yoshikawa, Takeshi; Morita, Kazuki

    2007-08-01

    The growth of ?-FeSi2 layers on Si(100) substrates by a cation exchange reaction between Si and molten NaCl-KCl-FeCl2 salts, namely, 5Si(s)+2FeCl2(l)=2?-FeSi2(s)+SiCl4(g), has been investigated. A single-crystal Si(100) substrate was reacted with the molten salt at 1173 K for 1-64 h in Ar or He atmosphere. The grown layers were characterized by X-ray diffraction (XRD) measurement, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). When the FeCl2 concentration in molten salt was as low as 0.02 mol %, a ?-FeSi2 single layer was obtained, although the double layer of FeSi/?-FeSi2 formed with a higher FeCl2 concentration of 0.1-1.0 mol %. The ?-FeSi2 single layer grown at low FeCl2 concentration had a rough surface structure due to the decrease in driving force caused by the consumption of FeCl2 during the reaction. By annealing a flat double layer of FeSi/?-FeSi2 formed with a higher FeCl2 concentration where the driving force could be kept constant, a flat ?-FeSi2 single layer was obtained on the Si(100) substrate.

  4. Theoretical calculation of reorganization energy for electron self-exchange reaction by constrained density functional theory and constrained equilibrium thermodynamics.

    PubMed

    Ren, Hai-Sheng; Ming, Mei-Jun; Ma, Jian-Yi; Li, Xiang-Yuan

    2013-08-22

    Within the framework of constrained density functional theory (CDFT), the diabatic or charge localized states of electron transfer (ET) have been constructed. Based on the diabatic states, inner reorganization energy ?in has been directly calculated. For solvent reorganization energy ?s, a novel and reasonable nonequilibrium solvation model is established by introducing a constrained equilibrium manipulation, and a new expression of ?s has been formulated. It is found that ?s is actually the cost of maintaining the residual polarization, which equilibrates with the extra electric field. On the basis of diabatic states constructed by CDFT, a numerical algorithm using the new formulations with the dielectric polarizable continuum model (D-PCM) has been implemented. As typical test cases, self-exchange ET reactions between tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) and their corresponding ionic radicals in acetonitrile are investigated. The calculated reorganization energies ? are 7293 cm(-1) for TCNE/TCNE(-) and 5939 cm(-1) for TTF/TTF(+) reactions, agreeing well with available experimental results of 7250 cm(-1) and 5810 cm(-1), respectively. PMID:23895675

  5. Oxygen evolution reaction characteristics of synthetic nickel-cobalt-oxide electrodes for alkaline anion-exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Koo, Tae Woo; Park, ChanSu; Kim, Yang Do; Lee, Dooyong; Park, Sungkyun; Lee, Jae Ho; Choi, Sung Mook; Choi, Chul Young

    2015-11-01

    A polymer electrolyte membrane water electrolysis system can produce high-purity hydrogen gases in a highly efficient manner. However, the level of hydrogen gas production is still small. In addition, noble-metal catalysts for the reaction in acidic environments, as well as an additional drying step to remove water contained in the hydrogen, are required. Therefore, water electrolysis system with high efficiency and lower cost, an alkaline anion-exchange membrane system that can produce high-purity hydrogen without a noble-metal catalyst, is needed. Nano-size NiCo2O4 powders were prepared by using a sol-gel method to achieve an efficient and economical water electrolysis system. When the powder was calcined at 450 °C, the crystallinity and the cyclic voltammogram measurement showed the best values. In addition, the 15-wt.% polytetrafluoroethylene mixed NiCo2O4 powders exhibited the largest cyclic voltammetry active area and the highest oxygen evolution reaction activity with the appropriate stability.

  6. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide.

    PubMed

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C

    2016-01-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology. PMID:26880381

  7. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-02-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2–based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology.

  8. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    PubMed Central

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-01-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2–based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology. PMID:26880381

  9. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction.

    PubMed

    Narsimhan, Karthik; Michaelis, Vladimir K; Mathies, Guinevere; Gunther, William R; Griffin, Robert G; Román-Leshkov, Yuriy

    2015-02-11

    The selective low temperature oxidation of methane is an attractive yet challenging pathway to convert abundant natural gas into value added chemicals. Copper-exchanged ZSM-5 and mordenite (MOR) zeolites have received attention due to their ability to oxidize methane into methanol using molecular oxygen. In this work, the conversion of methane into acetic acid is demonstrated using Cu-MOR by coupling oxidation with carbonylation reactions. The carbonylation reaction, known to occur predominantly in the 8-membered ring (8MR) pockets of MOR, is used as a site-specific probe to gain insight into important mechanistic differences existing between Cu-MOR and Cu-ZSM-5 during methane oxidation. For the tandem reaction sequence, Cu-MOR generated drastically higher amounts of acetic acid when compared to Cu-ZSM-5 (22 vs 4 μmol/g). Preferential titration with sodium showed a direct correlation between the number of acid sites in the 8MR pockets in MOR and acetic acid yield, indicating that methoxy species present in the MOR side pockets undergo carbonylation. Coupled spectroscopic and reactivity measurements were used to identify the genesis of the oxidation sites and to validate the migration of methoxy species from the oxidation site to the carbonylation site. Our results indicate that the Cu(II)-O-Cu(II) sites previously associated with methane oxidation in both Cu-MOR and Cu-ZSM-5 are oxidation active but carbonylation inactive. In turn, combined UV-vis and EPR spectroscopic studies showed that a novel Cu(2+) site is formed at Cu/Al <0.2 in MOR. These sites oxidize methane and promote the migration of the product to a Brønsted acid site in the 8MR to undergo carbonylation. PMID:25562431

  10. Time dependent three-dimensional body frame quantal wave packet treatment of the H + H2 exchange reaction on the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface

    NASA Technical Reports Server (NTRS)

    Neuhauser, Daniel; Baer, Michael; Judson, Richard S.; Kouri, Donald J.

    1989-01-01

    The first successful application of the three-dimensional quantum body frame wave packet approach to reactive scattering is reported for the H + H2 exchange reaction on the LSTH potential surface. The method used is based on a procedure for calculating total reaction probabilities from wave packets. It is found that converged, vibrationally resolved reactive probabilities can be calculated with a grid that is not much larger than required for the pure inelastic calculation. Tabular results are presented for several energies.

  11. The structure of the Guanine Nucleotide Exchange Factor Rlf in complex with the small G-protein Ral identifies conformational intermediates of the exchange reaction and the basis for the selectivity.

    PubMed

    Popovic, Milica; Schouten, Arie; Rensen-de Leeuw, Marije; Rehmann, Holger

    2016-02-01

    CDC25 homology domain (CDC25-HD) containing Guanine Nucleotide Exchange Factors (GEFs) initiate signalling by small G-proteins of the Ras-family. Each GEF acts on a small subset of the G-proteins only, thus providing signalling selectivity. Rlf is a GEF with selectivity for the G-proteins RalA and RalB. Here the crystal structure of Rlf in complex with Ral is determined. The Rlf·Ral complex crystallised into two different crystal forms, which represent different steps of the exchange reaction. Thereby general insight in the CDC25-HD catalysed nucleotide exchange is obtained. In addition, the basis for the selectivity of the interaction is investigated. The exchange activity is monitored by the use of recombinant proteins. Selectivity determinants in the binding interface are identified and confirmed by a mutational study. PMID:26687416

  12. Cation exchange reactions controlling desorption of Sr-90(2+) from coarse-grained contaminated sediments at the Hanford site, Washington

    SciTech Connect

    McKinley, James P.; Zachara, John M.; Smith, Steven C.; Liu, Chongxuan

    2007-01-15

    Nuclear waste that bore 90Sr2+ was accidentally leaked into the vadose zone at the Hanford site, and was immobilized at relatively shallow depths in sediments containing little apparent clay or silt-sized components. Sr2+, 90Sr2+, Mg2+, and Ca2+ was desorbed and total inorganic carbon concentration was monitored during the equilibration of this sediment with varying concentrations of Na+, Ca2+. A cation exchange model previously developed for similar sediments was applied to these results as a predictor of final solution compositions. The model included binary exchange reactions for the four operant cations and an equilibrium dissolution/precipitation reaction for calcite. The model successfully predicted the desorption data. The contaminated sediment was also examined using digital autoradiography, a sensitive tool for imaging the distribution of radioactivity. The exchanger phase containing 90Sr was found to consist of smectite formed from weathering of mesostasis glass in basaltic lithic fragments. These clasts are a significant component of Hanford formation sands. The relatively small but significant cation exchange capacity of these sediments was thus a consequence of reaction with physically sequestered clays in sediment that contained essentially no fine-grained material. The nature of this exchange component explained the relatively slow (scale of days) evolution of desorption solutions. The experimental and model results indicated that there is little risk of migration of 90Sr2+ to the water table.

  13. Nanosized IrxRu1-xO2 electrocatalysts for oxygen evolution reaction in proton exchange membrane water electrolyzer

    NASA Astrophysics Data System (ADS)

    Hanh Pham, Hong; Nguyen, Ngoc Phong; Linh Do, Chi; Thang Le, Ba

    2015-01-01

    Normally in proton exchange membrane water electrolysis (PEMWE), the anode has the largest overpotential at typical operating current densities. By development of the electrocatalytic material used for the oxygen evolving electrode, great improvements in efficiency can be performed. In electrochemistry, rare metallic oxides RuO2 and IrO2 exhibit the best catalytic properties for the oxygen evolution reaction (OER) in acid electrolytes compared to other noble metals. RuO2 is the most active catalyst and IrO2 is the most stable catalyst. An oxide containing both elements is therefore expected to be a good catalyst for the OER. In this study IrxRu1-xO2 nanosized powder electrocatalysts for oxygen evolution reaction is synthesized by hydrolysis method. Cyclic voltammetry, anodic polarization and galvanostatic measurements were conducted in solution of 0.5 M H2SO4 to investigate electrocatalytic behavior and stability of the electrocatalyst. The mechanisms of the thermal decomposition process of RuCl3.nH2O and IrCl3.mH2O precursors to form oxide powders were studied by means of thermal gravity analysis (TGA). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used analysis for determination of the crystallographic structure, morphology and catalysts particle size. Based on the given results, the IrxRu1-xO2 (x = 0.5 0.7) compounds were found to be more active than pure IrO2 and more stable than pure RuO2.

  14. Gas-phase ion/molecule isotope-exchange reactions: methodology for counting hydrogen atoms in specific organic structural environments by chemical ionization mass spectrometry

    SciTech Connect

    Hunt, D.F.; Sethi, S.K.

    1980-11-05

    Ion/molecule reactions are described which facilitate exchange of hydrogens for deuteriums in a variety of different chemical environments. Aromatic hydrogens in alkylbenzenes, oxygenated benzenes, m-toluidine, m-phenylenediamine, thiophene, and several polycyclic aromatic hydrocarbons and metallocenes are exchanged under positive ion CI conditions by using either D/sub 2/O, EtOD, or ND/sub 3/ as the reagent gas. Aromatic hydrogens, benzylic hydrogens, and hydrogens on carbon adjacent to carbonyl groups suffer exchange under negative ion CI conditions in ND/sub 3/, D/sub 2/O, and EtOD, respectively. A possible mechanism for the exchange process is discussed. 1 figure, 2 tables.

  15. Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado front range

    USGS Publications Warehouse

    Miller, M.P.; McKnight, Diane M.; Cory, R.M.; Williams, M.W.; Runkel, R.L.

    2006-01-01

    The influence of hyporheic zone interactions on the redox state of fulvic acids and other redox active species was investigated in an alpine stream and adjacent wetland, which is a more reducing environment. A tracer injection experiment using bromide (Br-) was conducted in the stream system. Simulations with a transport model showed that rates of exchange between the stream and hyporheic zone were rapid (?? ??? 10-3 s -1). Parallel factor analysis of fluorescence spectra was used to quantify the redox state of dissolved fulvic acids. The rate coefficient for oxidation of reduced fulvic acids (?? = 6.5 ?? 10-3 s -1) in the stream indicates that electron-transfer reactions occur over short time scales. The rate coefficients for decay of ammonium (?? = 1.2 ?? 10-3 s-1) and production of nitrate (?? = -1.0 ?? 10-3 s-1) were opposite in sign but almost equal in magnitude. Our results suggest that fulvic acids are involved in rapid electron-transfer processes in and near the stream channel and may be important in determining ecological energy flow at the catchment scale. ?? 2006 American Chemical Society.

  16. tetra neutron system studied by exothermic double-charge exchange reaction 4He(8He, 8Be)4n

    NASA Astrophysics Data System (ADS)

    Kisamori, Keiichi; Sharaq06 Collaboration

    2014-09-01

    A possible existence of the tetra-neutron system as a resonance state is still an open and fascinating question, while theoretical papers using ab-initio calculation suggests that the bound tetra-neutron does not exist. We have performed a missing-mass spectroscopy of the 4n system via the exothermic double-charge exchange reaction 4He(8He,8Be)4n. The experiment was carried out at the RIBF at RIKEN using the SHARAQ spectrometer and the liquid He target system. Since the secondary beam, 8He at 190A MeV, has a large internal energy, it is possible to produce the 4n system in small momentum transfers of less than 20 MeV/c. In the present analysis, a new analytical framework to treat multi-particles under high beam rate condition (2 MHz) was developed for good statistics. At the SHARAQ spectrometer, 8Be can be identified by measuring the invariant mass of the coincident two-alpha particle with a good signal-to-noise ratio. About several tens of candidate events are obtained above the 4n threshold. We will show the preliminary result of missing-msss spectrum and discuss the shape of spectrum.

  17. Examination of the function of active site lysine 329 of ribulose-bisphosphate carboxylase/oxygenase as revealed by the proton exchange reaction

    SciTech Connect

    Hartman, F.C.; Lee, E.H.

    1989-07-15

    Diverse approaches that include site-directed mutagenesis have indicated a catalytic role of Lys-329 of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. To determine whether Lys-329 is required for the initial enolization of ribulose bisphosphate or for some subsequent step in the overall reaction pathway, the competence of position 329 mutant proteins (devoid of carboxylase activity) in catalyzing exchange of solvent protons with the C-3 proton of substrate has now been examined. Irrespective of the amino acid substitution for Lys-329, the mutant protein retains 2-6% of the wild-type activity in the proton exchange reaction. The complete stability of ribulose bisphosphate during the enolization catalyzed by mutant protein suggests that the major effect of Lys-329 is to facilitate the addition of gaseous substrates (CO2 or O2) to the enediol intermediate. The exchange reaction requires Mg2+, is CO2-dependent, and is inhibited by the transition-state analogue 2-carboxyarabinitol 1,5-bisphosphate. A mutant protein in which Lys-191, the site for carbamylation by CO2 in an obligatory activation step, is replaced by a cysteinyl residue totally lacks proton exchange activity. Barely detectable exchange activity (approximately 0.2% of wild-type) is displayed by the Lys-166----Cys mutant protein, consistent with the previously implicated role of Lys-166 in the deprotonation of ribulose bisphosphate. Retention of exchange activity by the Glu-48----Gln mutant protein, which is slightly active in overall carboxylation, demonstrates that active site Glu-48, like Lys-329, exerts its major effect at some step subsequent to the initial enolization.

  18. Carbamoyl-phosphate synthetase II of the mammalian CAD protein: kinetic mechanism and elucidation of reaction intermediates by positional isotope exchange

    SciTech Connect

    Meek, T.D.; Karsten, W.E.; DeBrosse, C.W.

    1987-05-05

    The kinetic mechanism of carbamoyl-phosphate synthetase II from Syrian hamster kidney cells has been determined at pH 7.2 and 37 degrees C. Initial velocity, product inhibition, and dead-end inhibition studies of both the biosynthetic and bicarbonate-dependent adenosinetriphosphatase (ATPase) reactions are consistent with a partially random sequential mechanism in which the ordered addition of MgATP, HCO/sub 3/-, and glutamine is followed by the ordered release of glutamate and Pi. Subsequently, the binding of a second MgATP is followed by the release of MgADP, which precedes the random release of carbamoyl phosphate and a second MgADP. Carbamoyl-phosphate synthetase II catalyzes beta gamma-bridge:beta-nonbridge positional oxygen exchange of (gamma-/sup 18/O)ATP in both the ATPase and biosynthetic reactions. Negligible exchange is observed in the strict absence of HCO3- (and glutamine or NH/sub 4/+). The ratio of moles of MgATP exchanged to moles of MgATP hydrolyzed (nu ex/nu cat) is 0.62 for the ATPase reaction, and it is 0.39 and 0.16 for the biosynthetic reaction in the presence of high levels of glutamine and NH/sub 4/+, respectively. The observed positional isotope exchange is suppressed but not eliminated at nearly saturating concentrations of either glutamine or NH/sub 4/+, suggesting that this residual exchange results from either the facile reversal of an E-MgADP-carboxyphosphate-Gln(NH/sub 4/+) complex or exchange within an E-MgADP-carbamoyl phosphate-MgADP complex, or both. In the /sup 31/P NMR spectra of the exchanged (gamma-/sup 18/O)ATP, the distribution patterns of /sup 16/O in the gamma-phosphorus resonances in all samples reflect an exchange mechanism in which a rotationally unhindered molecule of (/sup 18/O, /sup 16/O)Pi does not readily participate.

  19. A facile route to synthesize CdZnSe core–shell-like alloyed quantum dots via cation exchange reaction in aqueous system

    SciTech Connect

    Sheng, Yingzhuo; Wei, Jumeng; Liu, Bitao; Peng, Lingling

    2014-09-15

    Highlights: • Water-soluble CdZnSe alloyed QDs synthesized by cation exchange reaction. • The as-prepared CdZnSe QDs have fairly good luminescence properties. • The surface defects of obtained QDs were removed due to the alloyed structure. - Abstract: Water-soluble CdZnSe alloyed nanocrystals have been successfully prepared via “green” cation exchange reaction in aqueous system. The X-ray diffraction (XRD) patterns indicate that the as-prepared nanocrystals had high crystallinity and small particle size of 4–5 nm. The absorption spectra of CdZnSe show red shift of 100 nm from 375 to 475 nm. Moreover, the band-gap photoluminescent (PL) emission has a red shift of 50 nm from 430 to 480 nm with the increase of the reaction time. On the basis of the PL properties and transmission electron microscopy (TEM) images, one kind of core–shell-like structure model was proposed, which resulted from the different cation exchange reaction rates. This structure could greatly improve the luminescence properties by the removal of surface defect of quantum dots. This work would support potential applications in optoelectronic devices, and biomedical tags fields.

  20. Conformal Cu2S-coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties.

    PubMed

    Minguez-Bacho, Ignacio; Court, Marc; Fan, Hong Jin; Fichou, Denis

    2015-05-01

    Cuprous oxide Cu2O is a promising p-type semiconductor for photoelectrochemical (PEC) solar hydrogen generation because it has a suitable bandgap (Eg=2.0-2.2 eV) and a band alignment adapted to water reduction. In addition, metallic Cu is earth-abundant thus making Cu2O a low-cost material. However, the reduction potential of Cu2O into metallic Cu (0.47 V versus RHE) is lower than that of water which induces a severe instability under irradiation in a PEC cell. Therefore, our recent efforts focused on the growth of a protective overlayer on top of Cu2O in order to stabilize Cu2O when used as a photocathode in an aqueous electrolyte. Among potential protective materials cuprous sulphide Cu2S is another p-type semiconductor with a 1.2 eV bandgap and an appropriate energy level alignment with Cu2O that would allow electrons flowing to the interface. We present here an original and simple method aimed at protecting a compact layer (CL) or nanowires (NWs) of Cu2O with a Cu2S coating. Our method is based on the ions exchange reaction (IER) of O(2-) into S(2-) at the surface of Cu2O itself in a solution-containing Na2S as the sulphur source. The local surface IER implies the formation of a conformal and uniform coating independently on the starting Cu2O morphology, CLs or NWs. As expected, coating Cu2O photocathodes by a conformal Cu2S layer improves their stability and PEC performances. PMID:25865464

  1. Conformal Cu2S-coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Minguez-Bacho, Ignacio; Courté, Marc; Fan, Hong Jin; Fichou, Denis

    2015-05-01

    Cuprous oxide Cu2O is a promising p-type semiconductor for photoelectrochemical (PEC) solar hydrogen generation because it has a suitable bandgap (Eg = 2.0-2.2 eV) and a band alignment adapted to water reduction. In addition, metallic Cu is earth-abundant thus making Cu2O a low-cost material. However, the reduction potential of Cu2O into metallic Cu (0.47 V versus RHE) is lower than that of water which induces a severe instability under irradiation in a PEC cell. Therefore, our recent efforts focused on the growth of a protective overlayer on top of Cu2O in order to stabilize Cu2O when used as a photocathode in an aqueous electrolyte. Among potential protective materials cuprous sulphide Cu2S is another p-type semiconductor with a 1.2 eV bandgap and an appropriate energy level alignment with Cu2O that would allow electrons flowing to the interface. We present here an original and simple method aimed at protecting a compact layer (CL) or nanowires (NWs) of Cu2O with a Cu2S coating. Our method is based on the ions exchange reaction (IER) of O2- into S2- at the surface of Cu2O itself in a solution-containing Na2S as the sulphur source. The local surface IER implies the formation of a conformal and uniform coating independently on the starting Cu2O morphology, CLs or NWs. As expected, coating Cu2O photocathodes by a conformal Cu2S layer improves their stability and PEC performances.

  2. Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.

    2013-07-01

    The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.

  3. Single-Crystal to Single-Crystal Linker Substitution, Linker Place Exchange, and Transmetalation Reactions in Interpenetrated Pillared-Bilayer Zinc(II) Metal-Organic Frameworks.

    PubMed

    De, Dinesh; Neogi, Subhadip; Saudo, E Carolina; Bharadwaj, Parimal K

    2015-11-23

    A twofold interpenetrated pillared-bilayer framework, {[Zn3 (L)2 (L2 )(DMF)]?(18DMF)(6H2 O)}n (1), has been synthesized from the ligands tris(4'-carboxybiphenyl)amine (H3 L) and 1,2-bis(4-pyridyl)ethylene (L2 ). The structure contains [Zn3 (COO)6 ] secondary building units (SBUs), in which three Zn(II) ions are almost linear with carboxylate bridging. This framework undergoes reversible pillar linker substitution reactions at the terminal Zn(II) centers with three different dipyridyl linkers of different lengths to afford three daughter frameworks, 2-4. Frameworks 2-4 are interconvertible through reversible linker substitution reactions. Also, competitive linker-exchange experiments show preferential incorporation of linker L3 in the parent framework 1. The larger linker L5 does not undergo such substitution reactions and framework 5, which contains this linker, can be synthesized solvothermally as a twofold interpenetrated structure. Interestingly, when framework 5 is dipped in a solution of L3 in DMF, linker substitution takes place as before, but linker L5 now moves and diagonally binds two Zn(II) centers to afford 6 as a nonpenetrated single framework. This linker place exchange reaction is unprecedented. All of these reactions take place in a single-crystal to single-crystal (SC-SC) manner, and have been observed directly through X-ray crystallography. In addition, each 3D framework undergoes complete copper(II) transmetalation. PMID:26462612

  4. Stability order of caffeine co-crystals determined by co-crystal former exchange reaction and its application for the validation of in silico models.

    PubMed

    Mukaida, Makoto; Sugano, Kiyohiko; Terada, Katsuhide

    2015-01-01

    The purpose of the present study was to determine the thermodynamic stability orders of co-crystals by co-crystal former (CCF) exchange reactions. Caffeine (CA) was employed as a model drug. The CCF exchange reaction was performed by liquid-assisted grinding using ethanol. When oxalic acid (OX) was added to CA-citric acid co-crystal (CA-CI), CA-CI converted to CA-OX, suggesting that CA-OX is more stable than CA-CI. The stability orders of other co-crystals were determined in the same manner. The stability order of CA co-crystals was determined as CA-OX?CA-p-hydroxybenzoic acid (HY)>CA-CI>CA-malonic acid>CA-maleic acid. The stability order correlated with the difference in hydrogen bond energy estimated in silico, except for CA-HY. The ?-? stacking in CA-HY was suggested as a reason for this discrepancy. The CCF exchange reaction was demonstrated as a useful method to determine the stability order of co-crystals, which can be used for the validation of in silico parameters to predict co-crystal formation. PMID:25743190

  5. Photochemical C-H activation and ligand exchange reactions of CpRe(PPh{sub 3}){sub 2}H{sub 2}. Phosphine dissociation is not involved

    SciTech Connect

    Jones, W.D.; Rosini, G.P.; Maguire, J.A.

    1999-04-26

    The dihydride CpRe(PPh{sub 3}){sub 2}H{sub 2} (1) catalyzes H/D exchange between C{sub 6}D{sub 6} and other arenes or alkanes. Compound 1 also undergoes photochemical phosphine substitution with PMe{sub 3} to give CpRe(PPh{sub 3})(PMe{sub 3})H{sub 2} and then CpRe(PMe{sub 2}){sub 2}H{sub 2}. Mechanistic studies of these reactions are inconsistent with [CpRe(PPh{sub 3})H{sub 2}] as an intermediate. An alternative mechanism is presented proposing that the active species for H/D exchange is the 14-electron cyclic allyl intermediate [({eta}{sup 3}-C{sub 5}H{sub 7})Re(PPh{sub 3}){sub 2}] (E), in which both hydrides have migrated from the rhenium to the cyclopentadienyl ligand. This intermediate accounts for the fact that (1) deuterium does not exchange into the hydride ligands of complex 1 during the H/D exchange catalysis and (2) phosphine substitution occurs by an associative pathway. The precursor to intermediate E, [({eta}{sup 4}-C{sub 5}H{sub 6})Re(PPh{sub 3}){sub 2}H] (D), can undergo reversible orthometalation, allowing H/D exchange between the hydride ligands and the ortho phosphine positions. Evidence is presented to support this new mechanism as well as to rule out other feasible mechanisms.

  6. Ionic atmosphere effects on the energetics of thermal and optical electron-exchange reactions: Application to ferrocenium-ferrocene self exchange. Technical report

    SciTech Connect

    Kuznetsov, A.M.; Phelps, D.K.; Weaver, M.J.

    1990-05-01

    A treatment of ionic-atmosphere effects upon symmetrical electron-transfer reactions resulting from added electrolyte is outlined. Relationships are derived on the basis of the extended Debye-Huckel model for the increase in the activation free energy, associated with reorganization of the ionic atmosphere for homogeneous-phase reactions involving a pair of spherical reactants with varying internuclear distance R. Similar relationships apply to the energetics of symmetrical optical electron transfer, since the increase in the optical transition energy, should equal the corresponding ionic atmosphere reorganization energy, under the anticipated linear response conditions.

  7. Theoretical Study on the Noble Gas Exchange Reactions of Ng + HNBNg'(+) ? Ng' + HNBNg(+) (Ng, Ng' = He, Ne, Ar, Kr, and Xe).

    PubMed

    Tsai, Cheng-Cheng; Liu, Po-Chun; Hu, Wei-Ping

    2016-03-01

    High-level correlated electronic structure calculation and dual-level variational transition state theory with multidimensional tunneling calculation for rate constants have been performed on four noble gas exchange reactions [(1) He + HNBHe'(+) ? He' + HNBHe(+), (2) He + HNBNe(+) ? Ne + HNBHe(+), (3) Ne + HNBNe'(+) ? Ne' + HNBNe(+), and (4) Ar + HNBAr'(+) ? Ar' + HNBAr(+)] and on three (3)He isotopic analogues (He + HNB(3)He(+), (3)He + HNBHe(+), and (3)He + HNB(3)He(+)) of the first reaction. The classical barrier heights were predicted to be 8.9, 6.8, 5.7, and 5.5 kcal/mol for the four reactions, respectively. The tunneling effects were found to be important below 250 K for the He reactions and below 150 K for the Ne and Ar reactions. Kinetic helium isotope effects as large as 7.8 at 100 K were predicted for the (3)He + HNB(3)He(+) reaction. Additionally, the structures and energies of the Kr + HNBKr'(+) and Xe + HNBXe'(+) systems have also been studied. PMID:26651834

  8. Metal chalcogenide nanoparticle gel networks: Their formation mechanism and application for novel material generation and heavy metal water remediation via cation exchange reactions

    NASA Astrophysics Data System (ADS)

    Palhares, Leticia F.

    The dissertation research is focused on (1) uncovering the mechanism of metal chalcogenide nanoparticle gel formation; (2) extending the cation exchange reaction protocol to zinc sulfide gel networks, with the goal of accessing new aerogel chemistries and understanding the factors that drive the process; and (3) conducting a quantitative analysis of the ability of ZnS aerogels to remove heavy metal ions from aqueous solutions. The mechanism of metal chalcogenide nanoparticle gel formation was investigated using Raman spectroscopy and X-ray Photoelectron Spectroscopy to probe the chemical changes that occur during the gelation process. These techniques suggest that the bonding between the particles in the CdSe nanoparticle gels is due to the oxidation of surface selenide species, forming covalent Se--Se bonds. Treating the gel networks with a suitable reducing agent, such as a thiol, breaks the covalent bond and disperses the gel network. The addition of sodium borohydride, a "pure" reducing agent, also breaks down the gel network, strengthening the hypothesis that the reducing character of the thiols, not their ligation ability, is responsible for the gel network breakdown. UV-Vis spectroscopy, Transmission Electron Microscopy and Powder X-ray Diffraction were used to analyze the particles after successive gelation-dispersion cycles. The primary particle size decreases after repeated oxidation-reduction cycles, due to nanoparticle surface etching. This trend is observed for CdSe and CdS gel networks, allowing for the proposition that the oxidative-reductive mechanism responsible for the formation-dispersion of the gels is general, applying to other metal chalcogenide nanocrystals as well. The cation exchange reaction previously demonstrated for CdSe gels was extended to ZnS gel networks. The exchange occurs under mild reaction conditions (room temperature, methanol solvent) with exchanging ions of different size, charge and mobility (Ag+, Pb2+, Cd2+ , Cu2+). The overall reaction is kinetically controlled, since systems with similar solubility, and thus similar thermodynamic driving force (e.g. PbS and CdS) exchange at very different rates. A correlation exists between the speed of the reaction and the difference between the reduction potential of the incoming cation and that of Zn2+; the larger the difference, the faster the exchange. At the same time, the porosity of the aerogels and the surfactant-free surfaces hold great importance for the exchange reactions, allowing for exchange between cations of similar size and charge (i.e. Pb2+ for Zn2+), a phenomenon that was previously reported as impossible in ligand-capped metal chalcogenide nanoparticles. These observations allowed for a better understanding of the factors governing the cation exchange reaction in nanoscale metal chalcogenides. Quaternary ZnS-CuInS2 gels were obtained by cation exchange with Cu+ and In3+, but the pure CuInS2 phase was not obtained under the mild reaction conditions used, probably due to the very different mobility of the two exchanging cations. The kinetically fast cation exchange process and the propensity of the soft chalcogenide gel networks to bind heavy metal ions selectively, suggest that these materials could also be suitable for the removal of heavy metal ions from the environment. The dissertation research studied the capacity of ZnS aerogels to sequester heavy metal ions such as Pb2+ and Hg2+ from water. The materials are efficient in removing the heavy metal ions from aqueous solutions with a wide range of initial concentrations. For initial concentrations that mimic an environmental spill (i.e. 100 ppb Pb2+), the treatment with the aerogel affords a final concentration lower than the 15 ppm action level recommended by the EPA. Under thermodynamically forcing conditions, the water remediation capacity of the ZnS nanoparticle aerogels was determined to be 14.2 mmol Pb2+ / g ZnS aerogel, which is the highest value reported to date.

  9. Radiochemical study of the medium energy pion double charge exchange reactions: /sup 209/Bi(pi/sup +/pi/sup -/)/sup 209-x/At

    SciTech Connect

    Clark, J.L.

    1980-01-01

    Carrier-free radiochemical techniques have been used to measure cross sections for the double charge exchange reactions of the type /sup 209/Bi(pi/sup +/, pi/sup -/xn)/sup 209-x/At for 100, 180, and 300 MeV incident pions. The observed formation of astatine products with mass numbers ranging from 208 to 205 is interpreted as evidence of processes in which energy deposited in the initial double charge exchange interaction is subsequently dissipated through neutron evaporation. The excitation functions for these reactions are seen to rise rapidly with decreasing incident pion energy with the maximum results for this study at 100 MeV. The astatine production cross secions measured for these positive pion irradiations of thick bismuth targets must be corrected for secondary processes, particularly the pion induced production of fast alpha particles which can contribute to the total cross sections through reactions like /sup 209/Bi(alpha,xn)/sup 213-x/At. The importance of these secondary contributions was studied through a series of negative pion irradiations of bismuth in which secondary pathways furnish the only means of producing astatine. The failure of evaporation calculations to reproduce the astatine product mass yields observed in these secondary studies suggests that direct mechanisms for energetic complex particle formation are quite important. Values for the alpha decay branches of /sup 207/At, /sup 208/At, and /sup 209/At were determined through a study of the electron capture and alpha decay characteristics of chemically purified astatine fractions.

  10. Multivalency in the gas phase: H/D exchange reactions unravel the dynamic "rock 'n' roll" motion in dendrimer-dendrimer complexes.

    PubMed

    Qi, Zhenhui; Schlaich, Christoph; Schalley, Christoph A

    2013-10-25

    Noncovalent dendrimer-dendrimer complexes were successfully ionized by electrospray ionization of partly protonated amino-terminated polypropylene amine (POPAM) and POPAM dendrimers fully functionalized with benzo[21]crown-7 on all branches. Hydrogen/deuterium exchange (HDX) experiments conducted on dendrimer-dendrimer complexes in the high vacuum of a mass spectrometer give rise to a complete exchange of all labile NH hydrogen atoms. As crown ethers represent noncovalent protective groups against HDX reactions on the ammonium group to which they are coordinated, this result provides evidence for a very dynamic binding situation: each crown is mobile enough to move from one ammonium binding site to another. Schematically, one might compare this motion with two rock 'n' roll dancers that swirl around each other without completely losing all contact at any time. Although the multivalent attachment certainly increases the overall affinity, the "microdynamics" of individual site binding and dissociation remains fast. PMID:24105808

  11. Ab initio calculation of transition state normal mode properties and rate constants for the H(T)+CH4(CD4) abstraction and exchange reactions

    NASA Astrophysics Data System (ADS)

    Schatz, George C.; Walch, Stephen P.; Wagner, Albert F.

    1980-11-01

    We present ab initio (GVB-POL-CI) calculations for enough of the region about the abstraction and exchange saddle points for H(T)+CH4(CD4) to perform a full normal mode analysis of the transition states. The resulting normal mode frequencies are compared to four other published surfaces: an ab initio UHF-SCF calculation by Carsky and Zahradnik, a semiempirical surface by Raff, and two semiempirical surfaces by Kurylo, Hollinden, and Timmons. Significant quantitative and qualitative differences exist between the POL-CI results and those of the other surfaces. Transition state theory rate constants and vibrationally adiabatic reaction threshold energies were computed for all surfaces and compared to available experimental values. For abstraction, the POL-CI rates are in good agreement with experimental rates and in better agreement than are the rates of any of the other surfaces. For exchange, uncertainties in the experimental values and in the importance of vibrationally nonadiabatic effects cloud the comparison of theory to experiment. Tentative conclusions are that the POL-CI barrier is too low by several kcal. Unless vibrationaly nonadiabatic effects are severe, the POL-CI surface is still in better agreement with experiment than are the other surfaces. The rates for a simple 3-atom transition state theory model (where CH3 is treated as an atom) are compared to the rates for the full 6-atom model. The kinetic energy coupling of reaction coordinate modes to methyl group modes is identified as being of primary importance in determining the accuracy of the 3-atom model for this system. Substantial coupling in abstraction, but not exchange, causes the model to fail for abstraction but succeed for exchange.

  12. Modeling and experiment reveal an unexpected stereoelectronic effect on conformation and scalar couplings of alpha-aminoorganostannanes, with possible relevance to the tin-lithium exchange reaction.

    PubMed

    Santiago, Marcelina; Low, Eddy; Chambournier, Gilles; Gawley, Robert E

    2003-10-31

    The solution conformation of N-methyl-2-(tributylstannyl)piperidines has been determined through the use of vicinal 119Sn-13C coupling constants, revealing a conformational distortion caused by an unexpected stereoelectronic effect in some cases. Specifically, the "equatorial" conformer is distorted into a half-chair, in which the nitrogen lone pair eclipses the C-Sn bond. This distortion, which "costs" approximately 1 kcal/mol, correlates with a conformational dependence of geminal 119Sn-15N couplings and a possible correlation with reactivity in the tin-lithium exchange reaction. PMID:14575474

  13. Impact of transient stream flow on water exchange and reactions in the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.

    2015-04-01

    Groundwater-surface water exchange is an important process that can facilitate the degradation of critical substances like nitrogen-species and contaminants, supporting a healthy status of the aquatic ecosystem. In our study, we simulate water exchange, solute transport and reactions within a natural in-stream gravel bar using a coupled surface and subsurface numerical model. Stream water flow is simulated by computational fluid dynamics software that provides hydraulic head distributions at the streambed, which are used as an upper boundary condition for a groundwater model. In the groundwater model water exchange, solute transport, aerobic respiration and denitrification in the subsurface are simulated. Ambient groundwater flow is introduced by lateral upstream and downstream hydraulic head boundaries that generate neutral, losing or gaining stream conditions. Stream water transports dissolved oxygen, organic carbon (as the dominant electron donor) and nitrate into the subsurface, whereas an additional nitrate source exists in the ambient groundwater. Scenarios of stream flow events varying in duration and stream stage are simulated and compared with steady state scenarios with respect to water fluxes, residence times and the solute turn-over rates. Results show, that water exchange and solute turn-over rates highly depend on the interplay between event characteristics and ambient groundwater levels. For scenarios, where the stream flow event shifts the hydraulic system to a net-neutral hydraulic gradient between the average stream stage and the ambient groundwater level (minimal exchange between ground- and surface water), solute consumption is higher, compared to the steady losing or gaining case. In contrast, events that induce strong losing conditions lead to a lower potential of solute consumption.

  14. Positive-pion double-charge-exchange reaction: experiments on the isotopic pairs oxygen-16,18 and magnesium-24,26

    SciTech Connect

    Greene, S.J.

    1981-06-01

    The (..pi../sup +/,..pi../sup -/) double-charge-exchange (DCX) reaction has been performed on targets of T = 0,1 isospin (and isotopic) pairs /sup 16/ /sup 18/O and /sup 24/ /sup 26/Mg. Energy excitation functions of d sigma/d ..cap omega.., across the (3,3) ..pi..-N resonance, are presented for transitions to double-isobaric analog state (DIAS) and non-DIAS ground-state residual nuclei. Angular distributions in the region of 5/sup 0/ to 33/sup 0/ are presented for the DIAS from the T = 1 nuclei. The similarities and differences of DIAS and non-DIAS distributions are discussed in relation to reaction-mechanism and nuclear-structure effects. Also, a simple, two-amplitude model for the /sup 18/O excitation function, consistent with the data, is presented. The utility of DCX in nuclear mass measurements is discussed, with some examples.

  15. MAX phase - Alumina composites via exchange reaction in the Mn+1AlCn systems (M=Ti, V, Cr, Nb, or Ta)

    NASA Astrophysics Data System (ADS)

    Cuskelly, Dylan T.; Kisi, Erich H.; Sugo, Heber O.

    2016-01-01

    MAX phases have been produced for the first time via an exchange reaction between the M-element oxide and Al leading to an M-Al-C-Al2O3 composite in the V-Al-C, Cr-Al-C, Nb-Al-C and Ta-Al-C systems in addition to the previously known Ti-Al-C system. The reduction reaction was first investigated by forming the binary M-X carbide and then proven to be generic across all M-Al-C systems with the production of the M2AlC phase in each case. The work was extended to the other M3AlC2 and M4AlC3 phases in the respective systems, and was successful in 4 of the 5 cases with moderate yield.

  16. Synthesis and crystal structure of Mg0.5NbO2: An ion-exchange reaction with Mg2+ between trigonal [NbO2]- layers

    NASA Astrophysics Data System (ADS)

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro

    2013-01-01

    A new layered niobate, Mg0.5NbO2, was synthesized from LiNbO2 through a cation-exchange reaction with Mg2+ at 450-550 C. This is the first example of a topotactic reaction with an aliovalent cation between trigonal [NbO2]- layers. It is proposed to be isostructural with LiNbO2 (space group; P63/mmc) with lattice parameters of a=2.9052(6) , c=10.625(15) . The lattice parameters and formation energy of Mg0.5NbO2 crystallized in LiNbO2 form and other layered CaNb2O4 one were calculated by density functional theory.

  17. Tuned synthesis of two coordination polymers of Cd(ii) using substituted bent 3-pyridyl linker and succinate: structures and their applications in anion exchange and sorption properties.

    PubMed

    Maity, Dilip Kumar; Bhattacharya, Biswajit; Halder, Arijit; Ghoshal, Debajyoti

    2015-12-28

    Two new Cd(ii) coordination polymers, namely [Cd(3-bpdh)2(ClO4)2]n (1) and {[Cd(3-bpdh)(suc)(H2O)]3(H2O)}n (2), have been synthesized using a substituted bent N,N'-donor ligand 2,5-bis-(3-pyridyl)-3,4-diaza-2,4-hexadiene (3-bpdh) and aliphatic dicarboxylate disodium succinate (suc) with Cd(ii) perchlorate salts at room temperature by a slow diffusion technique for the exploration of our previous reported work. Both the structures were determined by single-crystal X-ray diffraction analysis and also by other physicochemical methods. Structure analysis revealed that complex 1 is a 1D chain structure containing coordinated perchlorate with a metal centre, and complex 2 shows a porous 3D framework with encapsulation of lattice water molecules into the void along the crystallographic a-axis. The PXRD study shows the bulk purity of both the complexes and TGA analysis of 2 exhibits that the structure is thermally stable up to 250 C. Complex 1 shows a nice anion exchange property with replacement of weakly coordinated perchlorate with the inclusion of new anions; and the anion exchanged solids were characterised by FT-IR, PXRD and photoluminescence properties. The desolvated framework of 2 exhibits sorption of CO2 and water vapor and surface adsorption of N2 corroborating with the nature of the pore environment present in 2. The photoluminescence study has been also done for both complexes in the solid state which exhibits ligand based emissions at room temperature. PMID:26586233

  18. New reactions and theory in organic photochemistry: The 1,3-vinyl migration and its relevance to exchange integral control*

    PubMed Central

    Zimmerman, Howard E.; Penn, John H.; Johnson, Mark R.

    1981-01-01

    The photochemistry of 1,1,4-triphenyl-1,4-pentadiene was investigated. Sensitized irradiation of this compound labeled at carbon 3 with 2H led to a degenerate rearrangement wherein the diphenylvinyl moiety migrated 1,3, thus affording diene with 2H substitution at carbon 5. In contrast, direct irradiation of the triphenyl pentadiene led to 1,3,3-triphenylbicyclo[2.1.0]pentane by a [2 + 2] cycloaddition. This multiplicity dependence of the photochemistry is understood on the basis of triplet reactants preferring a linearly conjugated diradical mechanism with a large exchange integral (K) and singlet reactants preferring an electrocyclic mechanism with a small exchange integral. PMID:16593003

  19. Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell.

    PubMed

    Aravind, S S Jyothirmayee; Ramaprabhu, Sundara

    2012-08-01

    Chemical and electrical synergies between graphite oxide and multiwalled carbon nanotube (MWNT) for processing graphene wrapped-MWNT hybrids has been realized by chemical vapor deposition without any chemical functionalization. Potential of the hybrid composites have been demonstrated by employing them as electrocatalyst supports in proton exchange membrane fuel cells. The defects present in the polyelectrolyte, which have been wrapped over highly dispersed MWNT, act as anchoring sites for the homogeneous deposition of platinum nanoparticles. Single-cell proton exchange membrane fuel cells show that the power density of the hybrid composite-based fuel cells is higher compared to the pure catalyst-support-based fuel cells, because of enhanced electrochemical reactivity and good surface area of the nanocomposites. PMID:22850438

  20. A reactant-coordinate-based wave packet method for full-dimensional state-to-state quantum dynamics of tetra-atomic reactions: Application to both the abstraction and exchange channels in the H + H2O reaction.

    PubMed

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2016-02-14

    An efficient and accurate wave packet method is proposed for the calculation of the state-to-state S-matrix elements in bimolecular reactions involving four atoms. This approach propagates an initial state specific wave packet in reactant Jacobi coordinates. The projection in product channels is carried out on projection planes, which have one less degree of freedom, by transforming both the time-dependent wave packet and final product states into a set of intermediate coordinates. This reactant-coordinate-based method is more efficient than product-coordinate-based methods because it typically requires a smaller number of basis functions or grid points and allows the determination of S-matrix elements for multiple product channels from a single propagation. This method is demonstrated in calculating the (Jtot = 0) state-to-state S-matrix elements for both the abstraction and exchange channels of the H + H2O reaction. PMID:26874479

  1. Two-dimensional free-energy surface on the exchange reaction of alkyl chloride/chloride using the QM/MM-MC method

    SciTech Connect

    Ohisa, M.; Yamataka, H.; Dupuis, Michel; Aida, Misako

    2007-12-05

    Two-dimensional free-energy surfaces are calculated for alkyl chloride/chloride exchange/inversion reactions: Cl- + RCl (R = Me and t-Bu) surrounded by one hundred H2O molecules as a model of solvent. The methodology of free-energy calculation by perturbation theory based on a mixed-Hamiltonian model (QM/MM) combined with Monte Carlo sampling of the solvent configurations was used to obtain the changes in solvation free energy. We devised a special procedure to analyze the two-dimensional free-energy surfaces to gain unique insight into the differences in the reaction mechanisms between the two systems. The inversion reaction path for R = t-Bu on the free-energy surface is found to proceed in an asynchronous way within a concerted framework via the ion-pair region. This is in contrast to the R = Me system that proceeds as a typical SN2 reaction. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  2. Indoor transient SOA formation from ozone + ?-pinene reactions: Impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis

    NASA Astrophysics Data System (ADS)

    Youssefi, Somayeh; Waring, Michael S.

    2015-07-01

    The ozonolysis of reactive organic gases (ROG), e.g. terpenes, generates secondary organic aerosol (SOA) indoors. The SOA formation strength of such reactions is parameterized by the aerosol mass fraction (AMF), a.k.a. SOA yield, which is the mass ratio of generated SOA to oxidized ROG. AMFs vary in magnitude both among and for individual ROGs. Here, we quantified dynamic SOA formation from the ozonolysis of ?-pinene with 'transient AMFs,' which describe SOA formation due to pulse emission of a ROG in an indoor space with air exchange, as is common when consumer products are intermittently used in ventilated buildings. We performed 19 experiments at low, moderate, and high (0.30, 0.52, and 0.94 h-1, respectively) air exchange rates (AER) at varying concentrations of initial reactants. Transient AMFs as a function of peak SOA concentrations ranged from 0.071 to 0.25, and they tended to increase as the AER and product of the initial reactant concentrations increased. Compared to our similar research on limonene ozonolysis (Youssefi and Waring, 2014), for which formation strength was driven by secondary ozone reactions, the AER impact for ?-pinene was opposite in direction and weaker, while the initial reactant product impact was in the same direction but stronger for ?-pinene than for limonene. Linear fits of AMFs for ?-pinene ozonolysis as a function of the AER and initial reactant concentrations are provided so that future indoor models can predict SOA formation strength.

  3. Uniformly microsized luminescent materials obtained through a solid state reaction of WO{sub 3} with Ln{sup 3+}-exchanged zeolite L at 700 C

    SciTech Connect

    Wang, Yige; Fang, Yi; Zhang, Wenjun; Zhang, Li; Chen, Yuhuan; Yu, Xiaoyan

    2013-06-01

    Graphical abstract: We have reported the modification of Ln3+/ZL microcrystals by the tungstate-oxygen species via a solid state reaction of WO{sub 3} and Ln{sup 3+}-exchanged zeolite L at 700 C. Highlights: ? Luminescent materials were obtained from zeolite L crystals. ? The materials show characteristic luminescence of Eu{sup 3+} and Tb{sup 3+} ions. ? The framework of zeolite L crystals has been kept during the annealing process. ? Energy transfer from tungstate-oxygen species to lanthanide was confirmed. - Abstract: In this work, we report the uniformly microsized luminescent materials prepared by a solid state reaction of WO{sub 3} and Ln{sup 3+}-exchanged zeolite L at 700 C. The obtained materials were investigated by SEM, XRD and photoluminescence spectroscopy. The influence of tungstate-oxygen species on the morphology and luminescence of the materials were discussed in detail. Energy transfer from the tungstate-oxygen species to Eu{sup 3+} and Tb{sup 3+} ions have been demonstrated by the photoluminescence spectra, implying the loading of tungstate-oxygen species into the nanochannels of the crystals and the close proximity of which to Eu{sup 3+} ions.

  4. Two-pion-exchange and other higher-order contributions to the pp{yields}pp{pi}{sup 0} reaction

    SciTech Connect

    Kim, Y.; Sato, T.; Myhrer, F.; Kubodera, K.

    2009-07-15

    Much effort has been invested on effective-field-theoretical studies of the near-threshold NN{yields}NN{pi} reactions and, in order to deal with the somewhat large three-momentum transfers involved, the momentum counting scheme (MCS) was proposed as an alternative to the usual Weinberg counting scheme. Given the fact that a quantitative explanation of the existing high-precision NN{yields}NN{pi} data requires a careful examination of higher chiral order contributions to the transition operator, we make a detailed numerical investigation of the convergence property of MCS for a pilot case of the pp{yields}pp{pi}{sup 0} reaction. Our study indicates that MCS is superior to the Weinberg scheme in identifying dominant higher order contributions to the NN{yields}NN{pi} reactions.

  5. Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: Dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130)

    NASA Astrophysics Data System (ADS)

    Wortmann, Ulrich G.; Chernyavsky, Boris; Bernasconi, Stefano M.; Brunner, Benjamin; Bttcher, Michael E.; Swart, Peter K.

    2007-09-01

    Microbially mediated sulfate reduction affects the isotopic composition of dissolved and solid sulfur species in marine sediments. Experiments and field data show that the ?18O composition is also modified in the presence of sulfate-reducing microorganisms. This has been attributed either to a kinetic isotope effect during the reduction of sulfate to sulfite, cell-internal exchange reactions between enzymatically-activated sulfate (APS), and/or sulfite with cytoplasmic water. The isotopic fingerprint of these processes may be further modified by the cell-external reoxidation of sulfide to elemental sulfur, and the subsequent disproportionation to sulfide and sulfate or by the oxidation of sulfite to sulfate. Here we report ?18O values from interstitial water samples of ODP Leg 182 (Site 1130) and provide the mathematical framework to describe the oxygen isotope fractionation of sulfate during microbial sulfate reduction. We show that a purely kinetic model is unable to explain our ?18O data, and that the data are well explained by a model using oxygen isotope exchange reactions. We propose that the oxygen isotope exchange occurs between APS and cytoplasmic water, and/or between sulfite and adenosine monophosphate (AMP) during APS formation. Model calculations show that cell external reoxidation of reduced sulfur species would require up to 3000 mol/m 3 of an oxidant at ODP Site 1130, which is incompatible with the sediment geochemical data. In addition, we show that the volumetric fluxes required to explain the observed ?18O data are on average 14 times higher than the volumetric sulfate reduction rates (SRR) obtained from inverse modeling of the porewater data. The ratio between the gross sulfate flux into the microbes and the net sulfate flux through the microbes is depth invariant, and independent of sulfide concentrations. This suggests that both fluxes are controlled by cell density and that cell-specific sulfate reduction rates remain constant with depth.

  6. The N2+O+ charge-exchange reaction and the dayglow N2+ emission

    NASA Astrophysics Data System (ADS)

    Broadfoot, A. L.; Stone, T.

    1999-08-01

    Dayglow spectra were recorded by the Arizona Airglow Experiment from the payload bay of the shuttle, STS-74. These spectra are used to reexamine the role of the prominent N2+ first negative emission from the dayglow thermosphere. Many reports of the N2+ emissions identify problems in validating the intensity of the emission. Also, an extended vibrational and rotational structure of the bands remains unexplained in the historical analysis. These anomalies appear to be due to the charge-exchange reaction, N2+O+(2D,2P)->N2++O, which is the dominant source of N2+ ions in the sunlit atmosphere at high altitudes. In the present work the N2+ emission was considered to originate from two separate ion sources. First are those emissions originating from ions produced by photoionization and electron bombardment; these emissions can be modeled. Second are the emissions originating from ions produced by the charge-exchange reaction; these emissions cannot be modeled. Synthetic emission profiles due to the first ion source were modeled and subtracted from the observed spectrum, leaving emission profiles resulting from the charge-exchange ion source. These residual vibrational and rotational profiles were analyzed to retrieve resonance scattering rates for these ions. These scattering rates can be used to estimate the N2+ first negative emission rate expected from the thermosphere with a model of the atmosphere. It is suggested that measurements of the N2+ emission rate can be used to determine the daytime concentration of the oxygen ion, O+(2D,2P). Although the present work appears to resolve the question of the extended vibrational and rotational band structure, it does not help the excess intensity problem significantly. It does point out that O+ must play an important role in intensity problems.

  7. A study of the interfacial resistive switching mechanism by proton exchange reactions on the SiOx layer.

    PubMed

    Zhou, Fei; Chang, Yao-Feng; Chen, Ying-Chen; Wu, Xiaohan; Zhang, Ye; Fowler, Burt; Lee, Jack C

    2015-12-23

    In this work, we investigated SiOx-based interfacial resistive switching in planar metal-insulator-metal structures using physical/chemical/electrical analyses. This work helps clarify the interfacial reaction process and mechanism in SiOx, and also shows the potential for high temperature operation in future nonvolatile memory applications. PMID:26659556

  8. /sup 31/P NMR saturation-transfer measurements in Saccharomyces cerevisiae: characterization of phosphate exchange reactions by iodoacetate and antimycin A inhibition

    SciTech Connect

    Campbell-Burk, S.L.; Jones, K.A.; Shulman, R.G.

    1987-11-17

    /sup 31/P nuclear magnetic resonance (NMR) saturation-transfer (ST) techniques have been used to measure steady-state flows through phosphate-adenosine 5'-triphosphate (ATP) exchange reactions in glucose-grown derepressed yeast. The results have revealed that the reactions catalyzed by glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase (GAPDH/PGK) and by the mitochondrial ATPase contribute to the observed ST. Contributions from these reactions were evaluated by performing ST studies under various metabolic conditions in the presence and absence of either iodoacetate, a specific inhibitor of GAPDH, or the respiratory chain inhibitor antimycin A. Intracellular phosphate (P/sub i/) longitudinal relaxation times were determined by performing inversion recovery experiments during steady-state ATP/sub lambda/ saturation and were used in combination with ST data to determine P/sub i/ consumption rates. /sup 13/C NMR and O/sub 2/ electrode measurements were also conducted to monitor changes in rates of glucose consumption and O/sub 2/ consumption, respectively, under the various metabolic conditions examined. The results suggest that GAPDH/PGK-catalyzed P/sub i/-ATP exchange is responsible for antimycin-resistant saturation transfer observed in anaerobic and aerobic glucose-fed yeast. Kinetics through GAPDH/PGK were found to depend on metabolic conditions. The coupled system appears to operate in a unidirectional manner during anaerobic glucose metabolism and bidirectionally when the cells are respiring on exogenously supplied ethanol. Additionally, mitochondrial ATPase activity appears to be responsible for the transfer observed in iodoacetate-treated aerobic cells supplied with either glucose or ethanol, with synthesis of ATP occurring unidirectionally.

  9. Weak-interaction strength from charge-exchange reactions versus {beta} decay in the A=40 isoquintet

    SciTech Connect

    Bhattacharya, M.; Goodman, C. D.; Garcia, A.

    2009-11-15

    We report a measurement of the Gamow-Teller (GT) strength distribution for {sup 40}Ar{yields}{sup 40}K using the 0 deg. (p,n) reaction. The measurement extends observed GT strength distribution in the A=40 system up to an excitation energy of {approx}8 MeV. In comparing our results with those from the {beta} decay of the isospin mirror nucleus {sup 40}Ti, we find that, within the excitation energy region probed by the {beta}-decay experiment, we observe a total GT strength that is in fair agreement with the {beta}-decay measurement. However, we find that the relative strength of the two strongest transitions differs by a factor of {approx}1.8 in comparing our results from (p,n) reactions with the {beta} decay of {sup 40}Ti. Using our results we present the neutrino-capture cross section for {sup 40}Ar.

  10. Preparation of carrier-free 7Be by ion-exchange following charged particle and photonuclear reactions.

    PubMed

    Ohtsuki, T; Fujikawa, S-I; Yuki, H

    2003-10-01

    Carrier-free 7Be has been produced by 7Li(p,n)7Be and 10B(gamma,p2n)7Be (as well as 11B(gamma,p3n)7Be) reactions using a cyclotron and electron linear accelerator, respectively. Radiochemical methods for purification of the carrier-free radioactive 7Be isotope from the irradiated lithium and boron compounds have been investigated. A simple separation scheme is proposed. PMID:14522228

  11. Theoretical studies of the alteration of spodumene, petalite, eucryptite and pollucite in granitic pegmatites: exchange reactions with alkali feldspars

    NASA Astrophysics Data System (ADS)

    Wood, Scott A.; Williams-Jones, Anthony E.

    1993-06-01

    The ratios Na/Li, K/Li, Na/Cs and K/Cs have been calculated for exchange equilibria among the Li and Cs silicates spodumene, petalite, eucryptite, and pollucite, and the alkali feldspars albite and K-feldspar plus quartz, in pure water and in chloride solutions at temperatures from 100 to 700C and pressures from 0.5 to 4 kbar, using available thermodynamic data for minerals and the modified HKF equation of state for aqueous species. For exchange equilibria between Li-bearing aluminosilicates and the alkali feldspars, the activities of the alkali metals in solution under most of the conditions investigated follow the order Li>Na>K, and Na/Li and K/Li decrease with decreasing temperature. For exchange equilibria between pollucite and the alkali feldspars the order is Na>K>Cs in solution; Na/Cs and K/Cs increase strongly with decreasing temperature. The absolute values of these alkali metal ratios are in good agreement with the few available experimental data. The effect of chloride ion pairing on the calculated ratios is slight and does not consistently improve agreement between theory and experiment. These results suggest that the alteration of eucryptite, petalite or spodumene to albite and/or K-feldspar should be a normal consequence of the closed system evolution of rare element pegmatites upon cooling, in agreement with the ubiquity of such phenomena world-wide. On the other hand, alteration of pollucite to albite or K-feldspar upon cooling is only likely to occur if external fluids, with very high Na/Cs and/or K/Cs ratios, gain access to the pegmatite. Owing to the heterogeneity of rare element pegmatites, the fluid need not be external to the entire pegmatite, but could be simply external to the particular zone containing pollucite. Fluids in equilibrium with typical subsolidus rare metal pegmatite assemblages will invariably have high Li contents, thus explaining the common occurrence of Li-metasomatic halos about pegmatites. These same fluids are predicted to have relatively low Cs contents, in apparent agreement with the lesser role of Cs relative to Li in metasomatic halos. However, preferential formation of complexes of the alkali metals with fluoride, borate or aluminosilicate components potentially could alter the calculated alkali metal behaviors.

  12. Influence of varying hydraulic conditions on hyporheic exchange and reactions in an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Maier, Uli; Fleckenstein, Jan H.

    2014-05-01

    In the hyporheic zone (HZ) important biogeochemical transformations occur with crucial impact on nutrient cycling in fluvial systems. Here we investigate the interplay between stream flow and HZ exchange of a natural in-stream gravel bar (ISGB), by using three-dimensional steady state simulations of a coupled surface and subsurface numerical model. Stream flow is simulated by the open source computational fluid dynamics (CFD) software OpenFOAM. It is sequentially coupled by the hydraulic head distribution to the top boundary of the groundwater model code MIN3P, simulating flow, solute transport, aerobic respiration (AR) and denitrification (DN) in the HZ. The modelling approach is validated to the stream rating curve and the subsurface travel times in the ISGB based on field measurements. Hydraulic conditions are varied by stream discharge, ranging from low discharge, sufficient to allow stream water flow through both stream channels surrounding the ISGB (0.1 m³/s), to conditions where the ISGB is completely submerged (5.0 m³/s). Ambient groundwater flow is assigned by constant head boundaries upstream and downstream of the ISGB. By varying stream discharge or ambient groundwater heads the general flow field of the ISGB can be adjusted from losing via neutral to gaining conditions. Reactive transport scenarios consider stream water as the primary source of dissolved oxygen and dissolved organic carbon. Furthermore, two nitrate sources originated from the stream water and ambient groundwater are included in the model. Results show that highest hyporheic exchange and longest residence times occur under neutral conditions, where the extent of the hyporheic flow cell is at a maximum. Hence, the stronger the system is gaining and losing, the smaller is the hyporheic exchange flux and the shorter are the residence times in the HZ of the ISGB. AR and DN efficiencies of the ISGB are lowest under gaining conditions because infiltrating solutes are restriced to the hyporheic flow cells and hence to small reactive areas. In contrast, under losing conditions stream solutes infiltrate deep into the HZ and overreach the extent of the hyporheic flow cells, resulting in large reactive areas with highest AR and DN efficiencies.

  13. Influence of particle collisions on the characteristics of H-like ion emission due to charge exchange reactions with fast atoms

    NASA Astrophysics Data System (ADS)

    Korotkov, A. A.

    1989-01-01

    The effective emission cross-sections of CVI (3434 A, 5291 A, 7717 A), NVII (3887 A, 5669 A, 7926 A), OVIII (2976 A, 4341 A, 6068 A) lines in charge-exchange reactions of nuclei with hydrogen atoms are calculated. The ground state and the first excited state of hydrogen are considered. The calculation takes into account the mixing of nl-levels due to collisions with plasma deuterons and electrons and Stark 1-mixing in the Lorentz field (V bar X B bar). Calculation of the effective cross-sections with allowance for the atomic beam density distribution in the plasma allows the determination of the line intensities. The influence of the fine structure and Zeeman splitting on the 2976 A OVII line profile is considered.

  14. Communication: Rigorous quantum dynamics of O + O{sub 2} exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients

    SciTech Connect

    Li, Yaqin; Sun, Zhigang E-mail: dawesr@mst.edu; Jiang, Bin; Guo, Hua E-mail: dawesr@mst.edu; Xie, Daiqian; Dawes, Richard E-mail: dawesr@mst.edu

    2014-08-28

    The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.

  15. Communication: Rigorous quantum dynamics of O + O2 exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients.

    PubMed

    Li, Yaqin; Sun, Zhigang; Jiang, Bin; Xie, Daiqian; Dawes, Richard; Guo, Hua

    2014-08-28

    The kinetics and dynamics of several O + O2 isotope exchange reactions have been investigated on a recently determined accurate global O3 potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged "reef" structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence. PMID:25172996

  16. Hydrogen bonding induced proton exchange reactions in dense D{sub 2}-NH{sub 3} and D{sub 2}-CH{sub 4} mixtures

    SciTech Connect

    Borstad, Gustav M.; Yoo, Choong-Shik

    2014-01-28

    We have investigated high-pressure behaviors of simple binary mixtures of NH{sub 3} and D{sub 2} to 50 GPa and CH{sub 4} and D{sub 2} to 30 GPa using confocal micro-Raman spectroscopy. The spectral data indicate strong proton exchange reactions occur in dense D{sub 2}-NH{sub 3} mixture, producing different isotopes of ammonia such as NH{sub 3}, NH{sub 2}D, NHD{sub 2}, and ND{sub 3}. In contrast, the proton exchange process in dense D{sub 2}-CH{sub 4} mixture is highly limited, and no vibration feature is apparent for deuterated methane. The vibrational modes of H{sub 2} isotopes in D{sub 2}-NH{sub 3} are blue shifted from those of pure H{sub 2} isotopes, whereas the modes of D{sub 2}-CH{sub 4} show overall agreement with those in pure D{sub 2} and CH{sub 4}. In turn, this result advocates the presence of strong repulsion and thereby internal pressure in D{sub 2}-NH{sub 3} mixture, which are absent in D{sub 2}-CH{sub 4}. In fact, the bond length of hydrogen molecules in D{sub 2}-NH{sub 3}, calculated from the present spectral data, is shorter than that observed in pure hydrogen supporting the enhanced intermolecular interaction in the mixture. Comparing the present spectral results with those previously observed in D{sub 2}-H{sub 2}O mixtures further suggests that the strength of repulsive interaction or the magnitude of internal pressure in the mixtures is proportional to the strength of hydrogen bonding in H{sub 2}O, NH{sub 3}, and CH{sub 4} in decreasing order. Hence, we suggest that the proton exchange is assisted by hydrogen bonding in these molecules.

  17. Preparation of Ag3PO4/Ni3(PO4)2 hetero-composites by cation exchange reaction and its enhancing photocatalytic performance.

    PubMed

    Wang, Yaning; Wang, Kang; Wang, Xitao

    2016-03-15

    Recently, Ag3PO4 has been shown to be a promising photocatalyst for the degradation of organic pollutants in wastewater. The hetero-composites between Ag3PO4 and other phosphate can help to enhance the dispersion of Ag3PO4 particles, improve the separation of photo-generated charges, and decrease the cost of photocatalyst. In this study, Ag3PO4/Ni3(PO4)2 hetero-composites were prepared by a cation exchange reaction for the first time using cheap Ni3(PO4)2 as starting materials, characterized with higher-magnification transmission electron microscopy (HRTEM), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR) and photo-luminescence (PL) technique, and tested in photocatalytic degradation of phenol in water under visible light. The results show that the Ag3PO4/Ni3(PO4)2 composites prepared by cation exchange reaction consist of well dispersive Ag3PO4 particles on the surface of Ni3(PO4)2, and the size of Ag3PO4 particles is 3-5nm, which is far smaller than that of pure Ag3PO4 and Ag3PO4/Ni3(PO4)2 composites prepared by coprecipitation method. The content of Ag3PO4 has significant influence on the photo absorption, photocurrent response and photocatalytic performance, and Ag3PO4/Ni3(PO4)2 composites with Ag3PO4 loading of 60wt.% display the highest photocatalytic activity for the degradation of phenol under visible light among these samples. The enhanced photocatalytic activity of Ag3PO4/Ni3(PO4)2 is related to the small particle size of Ag3PO4 and efficient separation of electron-hole pairs. PMID:26722799

  18. The orbital-based view on reaction dynamics: ligand exchange of Fe(CO)5 in solution

    NASA Astrophysics Data System (ADS)

    Fhlisch, Alexander

    2015-03-01

    Time resolved soft X-ray spectroscopy has proven recently, that it can beat the complexity of dynamics in materials and chemical processes by its high selectivity towards elemental, chemical, and magnetic properties. Changes in chemical bonding, in particular bond breaking and bond creation seem conceptually simple, but as a result of coherent wave packet motion it is difficult to catch the dynamic pathways in a multidimensional potential energy landscape. In this contribution we exploit the unique approach of femtosecond time resolved resonant inelastic X-ray scattering at LCLS to derive how ultrafast spin-crossover and ligation determines the pathways of ligand exchange of Ironpentacarbonyl (Fe(CO)5) in solution. As an outlook, it will be discussed, how non-linear X-ray processes can push time resolved soft X-ray spectroscopy in a new phase. In particular, stimulated Raman scattering and amplified spontaneous emission can overcome the weak scattering cross-sections of spontaneous processes, help to suppress sample damage and increase spectral resolution and excited state selectivity through the exploitation of Anti-Stokes Raman Scattering.

  19. Implications of weak Donnan potential in ion-exchange reactions. An alternate strategy for modeling sorption processes

    SciTech Connect

    Bhandari, V.M.

    1998-09-01

    Donnan potential generated during an ion-exchange process is conventionally believed to play an important role in partitioning co-ions in the resin and solution phases; most earlier studies implied near total exclusion of co-ions from the resin pores. The present work attempts to investigate implications of weak Donnan potential with specific reference to the sorption of acids on weak base resins. An alternate mathematical treatment has been proposed to describe the sorption behavior of any type of acid by assuming diffusion and sorption of single species, the composite acid molecule, in the resin pores. Fick`s law is then used to characterize the diffusion process. The proposed model is validated using data reported in the literature for the sorption of a strong monobasic acid (HCl) and also for a weak monobasic acid (HCOOH). The fit of the model is excellent, and the regressed values of the effective diffusion coefficient are shown to be reasonable and correct to the order of magnitude. The model is expected to offer a simpler and unified approach for modeling sorption behavior of different types of acids and will be more useful in problems of acid separation from mixtures.

  20. A facile route to violet- to orange-emitting CdxZn1-xSe alloy nanocrystals via cation exchange reaction

    NASA Astrophysics Data System (ADS)

    Zhong, Xinhua; Feng, Yaoyu; Zhang, Yuliang; Gu, Zhenyu; Zou, Lei

    2007-09-01

    The most advanced CdSe-based binary semiconductor system does not work well for emission in the short wavelength spectral region from 420 to 500 nm, which is of special interest for the preparation of nanocrystal-based blue LEDs and white light generation. CdxZn1-xSe alloy nanocrystals are proven to be an attractive alternative as their emission color can be tuned from the UV spectral region (ZnSe) to the red region (CdSe) by changing the composition of the Zn/Cd ratio in the alloy. Herein we report a facile and 'green' alloying approach for the preparation of highly luminescent CdxZn1-xSe nanocrystals via cation exchange reaction of the pre-prepared ZnSe nanocrystals with Cd2+ at intermediate temperatures. Through this new synthetic strategy, high-quality alloy QDs with different desired emission wavelengths or colors (ranging from 370 to 600 nm) can be made reproducibly and precisely by varying the predetermined amounts of the reaction precursors.

  1. Quantum Monte Carlo study of the classical barrier height for the H + H/sub 2/ exchange reaction: restricted versus unrestricted trial functions

    SciTech Connect

    Reynolds, P.J.; Barnett, R.N.; Lester, W.A. Jr.

    1984-01-01

    The fixed-node quantum Monte Carlo (QMC) method is used to obtain the classical barrier height for the H + H/sub 2/ exchange reaction. Using a spin-restricted, single-determinant trial function Psi/sub T/, it was found that the reaction barrier E/sub b/ is less than 9.69 +/- 0.25 kcal/mol. This mean value is below the calculated energy barrier obtained by Liu in the most extensive configuration interaction (CI) calculations on this system. Furthermore, the QMC saddle-point energy of -1.65903 +/- 0.00040 hartrees at the CI-determined geometry lies 0.00027 a.u. (0.17 kcal/mol) below Liu's best CI value. Finally, spin-restricted and spin-unrestricted single-determinant trial functions are contrasted. Although the variational energy (Psi/sub T/absolute value H Psi/sub T/) for an SCF Psi/sub T/ must be lower for the unrestricted case, this is not true generally for QMC. In fact, the authors show that if the unrestricted SCF Psi/sub T/ has the lower QMC energy, then there exists another spin-restricted, single-determinant Psi/sub T/ whose QMC energy is lower than the QMC energy of the spin restricted SCF Psi/sub T/. 14 references.

  2. Quantum Monte Carlo study of the classical barrier height for the H + H/sub 2/ exchange reaction: restricted VERSUS unrestricted trial functions

    SciTech Connect

    Reynolds, P.J.; Barnett, R.N.; Lester, W.A. Jr.

    1984-03-01

    The fixed-node quantum Monte Carlo (QMC) method is used to obtain the classical barrier height for the H + H/sub 2/ exchange reaction. With a spin-restricted, single determinant trial function psi/sub T/ the reaction barrier E/sub b/ is less than 9.69 +- 0.25 kcal/mole. This mean value is below the calculated energy barrier obtained by Liu in the most extensive CI calculations on this system. Furthermore, the QMC saddle point energy of -1.6590 +- 0.00040 hartrees at the CI-determined geometry lies 0.00027 a.u. (0.17 kcal/mole) below Liu's best CI value. Finally, spin-restricted and spin-unrestricted single determinant trial functions are contrasted. Although the variational energy for an SCF psi/sub T/ must be lower for the unrestricted case, this is not true generally for QMC. In fact, it is shown that if the unrestricted SCF psi/sub T/ has the lower QMC energy, then there exists another spin-restricted, single-determinant psi/sub T/ whose QMC energy is lower than the QMC energy of the spin-restricted SCF psi/sub T/.

  3. Development of a High-Speed Real-Time Polymerase Chain Reaction System Using a Circulating Water-Based Rapid Heat-Exchange

    NASA Astrophysics Data System (ADS)

    Hideyuki Terazono,; Hiroyuki Takei,; Akihiro Hattori,; Kenji Yasuda,

    2010-06-01

    Polymerase chain reaction (PCR) is a powerful technique to detect microorganisms, viruses, or cells by amplifying a single copy or a few copies of a fragment of a particular DNA sequence. To reduce acquisition time, it is necessary to decrease the temperature transition time between denaturation and extension. We have developed a simple rapid real-time microlitter-sample droplet PCR system accomplished by the rapid liquid-based heat-exchange of sample droplets by quick switching of two circulating hot waters of denaturation and extension, a microlitter-sized droplet and a thin-film aluminum chip. Using this system, rapid PCR amplification of a set of droplets lined up on an aluminum chip was conducted successfully as shown by the increase in fluorescence intensity, and was accomplished within 3.5 min in 40 cycles of 1 s denaturation and 3 s extension reaction, which is one magnitude faster than conventional fast PCR systems. This method allows the rapid detection of DNA fragments and has a possibility for measuring multiple samples simultaneously in a miniaturized microfluidic chip.

  4. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    PubMed

    Boros, Lszl G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gbor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption. PMID:26826644

  5. Evidence for Sequence Scrambling and Divergent H/D Exchange Reactions of Doubly-Charged Isobaric b-Type Fragment Ions

    NASA Astrophysics Data System (ADS)

    Zekavat, Behrooz; Miladi, Mahsan; Al-Fdeilat, Abdullah H.; Somogyi, Arpad; Solouki, Touradj

    2013-12-01

    To date, only a limited number of reports are available on structural variants of multiply-charged b-fragment ions. We report on observed bimodal gas-phase hydrogen/deuterium exchange (HDX) reaction kinetics and patterns for substance P b10 2+ that point to presence of isomeric structures. We also compare HDX reactions, post-ion mobility/collision-induced dissociation (post-IM/CID), and sustained off-resonance irradiation-collision induced dissociation (SORI-CID) of substance P b10 2+ and a cyclic peptide with an identical amino acid (AA) sequence order to substance P b10. The observed HDX patterns and reaction kinetics and SORI-CID pattern for the doubly charged head-to-tail cyclized peptide were different from either of the presumed isomers of substance P b10 2+, suggesting that b10 2+ may not exist exclusively as a head-to-tail cyclized structure. Ultra-high mass measurement accuracy was used to assign identities of the observed SORI-CID fragment ions of substance P b10 2+; over 30 % of the observed SORI-CID fragment ions from substance P b10 2+ had rearranged (scrambled) AA sequences. Moreover, post-IM/CID experiments revealed the presence of two conformer types for substance P b10 2+, whereas only one conformer type was observed for the head-to-tail cyclized peptide. We also show that AA sequence scrambling from CID of doubly-charged b-fragment ions is not unique to substance P b10 2+.

  6. Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry Valleys

    USGS Publications Warehouse

    Gooseff, M.N.; McKnight, Diane M.; Lyons, W.B.; Blum, A.E.

    2002-01-01

    In the McMurdo Dry Valleys, Antarctica, dilute glacial meltwater flows down well-established streambeds to closed basin lakes during the austral summer. During the 6-12 week flow season, a hyporheic zone develops in the saturated sediment adjacent to the streams. Longer Dry Valley streams have higher concentrations of major ions than shorter streams. The longitudinal increases in Si and K suggest that primary weathering contributes to the downstream solute increase. The hypothesis that weathering reactions in the hyporheic zone control stream chemistry was tested by modeling the downstream increase in solute concentration in von Guerard Stream in Taylor Valley. The average rates of solute supplied from these sources over the 5.2 km length of the stream were 6.1 ?? 10-9 mol Si L-1 m-1 and 3.7 ?? 10-9 mol K L-1 m-1, yielding annual dissolved Si loads of 0.02-1.30 tool Si m-2 of watershed land surface. Silicate minerals in streambed sediment were analyzed to determine the representative surface area of minerals in the hyporheic zone subject to primary weathering. Two strategies were evaluated to compute sediment surface area normalized weathering rates. The first applies a best linear fit to synoptic data in order to calculate a constant downstream solute concentration gradient, dC/dx (constant weathering rate contribution, CRC method); the second uses a transient storage model to simulate dC/dx, representing both hyporheic exchange and chemical weathering (hydrologic exchange, HE method). Geometric surface area normalized dissolution rates of the silicate minerals in the stream ranged from 0.6 ?? 10-12 mol Si m-2 s-1 to 4.5 ?? 10-12 mol Si m-2 s-1 and 0.4 ?? 10-12 mol K m-2 s-1 to 1.9 ?? 10-12 mol K m-2 s-1. These values are an order of magnitude lower than geometric surface area normalized weathering rates determined in laboratory studies and are an order of magnitude greater than geometric surface area normalized weathering rates determined in a warmer, wetter setting in temperate basins, despite the cold temperatures, lack of precipitation and lack of organic material. These results suggest that the continuous saturation and rapid flushing of the sediment due to hyporheic exchange facilitates weathering in Dry Valley streams.

  7. A "uniform" heterogeneous photocatalyst: integrated p-n type CuInS2/NaInS2 nanosheets by partial ion exchange reaction for efficient H2 evolution.

    PubMed

    Hu, Peng; Ngaw, Chee Keong; Tay, Yee Yan; Cao, Shaowen; Barber, James; Tan, Timothy Thatt Yang; Loo, Say Chye Joachim

    2015-06-01

    Single-crystalline-like P-N type CuInS2/NaInS2 heterogeneous nanosheets were synthesized by partial cation exchange reaction and show highly improved photocatalytic H2 evolution activity attributed to the increased efficiency of interfacial charge transfer. PMID:25959829

  8. Rapid direct conversion of Cu2-xSe to CuAgSe nanoplatelets via ion exchange reactions at room temperature

    NASA Astrophysics Data System (ADS)

    Moroz, N. A.; Olvera, A.; Willis, G. M.; Poudeu, P. F. P.

    2015-05-01

    The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 ?V K-1) to p-type (S = +200 ?V K-1) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance.The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 ?V K-1) to p-type (S = +200 ?V K-1) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01451d

  9. Real-time monitoring of in situ gas-phase H/D exchange reactions of cations by atmospheric pressure helium plasma ionization mass spectrometry (HePI-MS).

    PubMed

    Attygalle, Athula B; Gangam, Rekha; Pavlov, Julius

    2014-01-01

    An enclosed atmospheric-pressure helium-plasma ionization (HePI-MS) source avoids, or minimizes, undesired back-exchange reactions usually encountered during deuterium incorporation experiments under ambient-pressure open-source conditions. A simple adaptation of an ESI source provides an economical way of conducting gas phase hydrogen/deuterium (H/D) exchange reactions (HDX) in real time without the need for complicated hardware modifications. For example, the spectrum of [(2)H8]toluene recorded under exposed ambient conditions showed the base peak at m/z 96 due to fast leaching of ring hydrogens because of interactions with H2O vapor present in the open source. Such D/H exchanges are rapidly reversed if the deuterium-depleted [(2)H8]toluene is exposed to D2O vapor. In addition to the enumeration of labile protons, our procedure enables the identification of protonation sites in molecules unambiguously, by the number of H/D exchanges observed in real time. For example, molecules such as tetrahydrofuran and pyridine protonate at the heteroatom and consequently undergo only one H/D exchange, whereas ethylbenzene, which protonates at a ring position of the aromatic ring, undergoes six H/D exchanges. In addition, carbocations generated in situ by in-source fragmentation of precursor protonated species, such as benzyl alcohol, do not undergo any rapid H/D exchanges. Because radical cations, second-generation cations (ions formed by losing a small molecule from a precursor ion), or those formed by hydride abstraction do not undergo rapid H/D exchanges, our technique provides a way to distinguish these ions from protonated molecules. PMID:24325360

  10. X-ray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water.

    PubMed

    Palazon, Francisco; Akkerman, Quinten A; Prato, Mirko; Manna, Liberato

    2016-01-26

    Films of colloidal CsPbX3 (X = I, Br or Cl) nanocrystals, prepared by solution drop-casting or spin-coating on a silicon substrate, were exposed to a low flux of X-rays from an X-ray photoelectron spectrometer source, causing intermolecular C?C bonding of the organic ligands that coat the surface of the nanocrystals. This transformation of the ligand shell resulted in a greater stability of the film, which translated into the following features: (i) Insolubility of the exposed regions in organic solvents which caused instead complete dissolution of the unexposed regions. This enabled the fabrication of stable and strongly fluorescent patterns over millimeter scale areas. (ii) Inhibition of the irradiated regions toward halide anion exchange reactions, when the films were exposed either to halide anions in solution or to hydrohalic vapors. This feature was exploited to create patterned regions of different CsPbIxBryClz compositions, starting from a film with homogeneous CsPbX3 composition. (iii) Resistance of the films to degradation caused by exposure to air and moisture, which represents one of the major drawbacks for the integration of these materials in devices. (iv) Stability of the film in water and biological buffer, which can open interesting perspectives for applications of halide perovskite nanocrystals in aqueous environments. PMID:26617344

  11. Competing Noncovalent Host-guest Interactions and H/D Exchange: Reactions of Benzyloxycarbonyl-Proline Glycine Dipeptide Variants with ND3

    NASA Astrophysics Data System (ADS)

    Miladi, Mahsan; Olaitan, Abayomi D.; Zekavat, Behrooz; Solouki, Touradj

    2015-11-01

    A combination of density functional theory calculations, hydrogen/deuterium exchange (HDX) reactions, ion mobility-mass spectrometry, and isotope labeling tandem mass spectrometry was used to study gas-phase "host-guest" type interactions of a benzyloxycarbonyl (Z)-capped proline (P) glycine (G) model dipeptide (i.e., Z-PG) and its various structural analogues with ND3. It is shown that in a solvent-free environment, structural differences between protonated and alkali metal ion (Na+, K+, or Cs+)-complexed species of Z-PG affect ND3 adduct formation. Specifically, [Z-PG + H]+ and [Z-PG-OCH3 + H]+ formed gas-phase ND3 adducts ([Z-PG (or Z-PG-OCH3) + H + ND3]+) but no ND3 adducts were observed for [Z-PG + alkali metal]+ or [Z-PG + H - CO2]+. Experimentally measured and theoretically calculated collision cross sections (CCSs) of protonated and alkali metal ion-complexed Z-PG species showed similar trends that agreed with the observed structural differences from molecular modeling results. Moreover, results from theoretical ND3 affinity calculations were consistent with experimental HDX observations, indicating a more stable ND3 adduct for [Z-PG + H]+ compared to [Z-PG + alkali metal]+ species. Molecular modeling and experimental MS results for [Z-PG + H]+ and [Z-PG + alkali metal]+ suggest that optimized cation-π and hydrogen bonding interactions of carbonyl groups in final products are important for ND3 adduct formation.

  12. X-ray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water

    PubMed Central

    2015-01-01

    Films of colloidal CsPbX3 (X = I, Br or Cl) nanocrystals, prepared by solution drop-casting or spin-coating on a silicon substrate, were exposed to a low flux of X-rays from an X-ray photoelectron spectrometer source, causing intermolecular C=C bonding of the organic ligands that coat the surface of the nanocrystals. This transformation of the ligand shell resulted in a greater stability of the film, which translated into the following features: (i) Insolubility of the exposed regions in organic solvents which caused instead complete dissolution of the unexposed regions. This enabled the fabrication of stable and strongly fluorescent patterns over millimeter scale areas. (ii) Inhibition of the irradiated regions toward halide anion exchange reactions, when the films were exposed either to halide anions in solution or to hydrohalic vapors. This feature was exploited to create patterned regions of different CsPbIxBryClz compositions, starting from a film with homogeneous CsPbX3 composition. (iii) Resistance of the films to degradation caused by exposure to air and moisture, which represents one of the major drawbacks for the integration of these materials in devices. (iv) Stability of the film in water and biological buffer, which can open interesting perspectives for applications of halide perovskite nanocrystals in aqueous environments. PMID:26617344

  13. Non-innocent electrolyte effects on bimolecular pseudo-self-exchange reactions of ruthenium ammine complexes: Evidence for electron-transfer catalysis in H-bonded ternary assemblies

    NASA Astrophysics Data System (ADS)

    Curtis, Jeff Christian; Inagaki, Mayuko; Chun, Sam J.; Eskandari, Vahid; Luo, Xining; Pan, Zheng N.; Sankararaman, Uma; Pengra, Gina E.; Zhou, Jiahua; Hailey, Philip; Laurent, Jeanny; Utalan, Daniel

    2006-07-01

    The kinetics of bimolecular pseudo-self-exchange reactions such as that between pentaammine(pyridine)ruthenium(II) and pentaammine(3-fluoropyridine)ruthenium(III) shown below, (NH3)5RuII(py)+(NH3)5RuIII(3-Fpy)⇄kex(NH3)5RuIII(py)+(NH3)5RuII(3-Fpy) reveal a novel form of non-covalently mediated electron transfer over distance when salts of non-innocent electrolytes such as the conjugated dicarboxylic acid anions trans, trans-muconate 2- or terephthalate 2- are added to the solution. The kinetic accelerations are distinct from those seen with simple electrolytes such as KCl or CaCl 2, and are thus outside the realm of classical electrolyte effects described by the Debye-Huckel theory of ion atmospheres. Kinetic simulations are presented, and the rate acceleration is interpreted in the context of possible superexchange-type interactions taking place in hydrogen-bonded ternary (or higher) association complexes which create new kinetic pathways for electron transfer over distance in aqueous solution.

  14. Gram-level synthesis of core-shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Mingchuan; Wei, Lingli; Wang, Fanghui; Han, Kefei; Zhu, Hong

    2014-12-01

    Over the past decade, Pt based core-shell structured alloys have been studied extensively as oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs) because of their distinctive electrochemical performance and low Pt loading. In this paper, a facile route based on microwave-assisted polyol method and chemical dealloying process is proposed to synthesize carbon supported core-shell structured nanoparticles (NPs) in gram-level for ORR electrocatalysis in PEMFCs. The obtained samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). These physical characterization indicate that the final synthesized NPs are highly dispersed on the carbon support, and in a core-shell structure with CuPt alloy as the core and Pt as the shell. Electrochemical measurements, conducted by cyclic voltammetry (CV) and rotating disk electrode (RDE) tests, show the core-shell structured catalyst exhibit a 3 increase in mass activity and a 2 increase in specific activity over the commercial Pt/C catalyst, respectively. These results demonstrate that this route can be a reliable way to synthesize low-Pt catalyst in large-scale for PEMFCs.

  15. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Banham, Dustin; Ye, Siyu; Pei, Katie; Ozaki, Jun-ichi; Kishimoto, Takeaki; Imashiro, Yasuo

    2015-07-01

    A major hurdle to the widespread commercialization of proton exchange membrane fuel cells (PEMFCs) is the high loading of noble metal (Pt/Pt-alloy) catalyst at the cathode, which is necessary to facilitate the inherently sluggish oxygen reduction reaction (ORR). To eliminate the use of Pt/Pt-alloy catalysts at the cathode of PEMFCs and thus significantly reduce the cost, extensive research on non-precious metal catalysts (NPMCs) has been carried out over the past decade. Major advances in improving the ORR activity of NPMCs, particularly Fe- and Co-based NPMCs, have elevated these materials to a level at which they can start to be considered as potential alternatives to Pt/Pt-alloy catalysts. Unfortunately, the stability (performance loss following galvanostatic experiments) of these materials is currently unacceptably low and the durability (performance loss following voltage cycling) remains uncertain. The three primary mechanisms of instability are: (a) Leaching of the metal site, (b) Oxidative attack by H2O2, and (c) Protonation followed by possible anion adsorption of the active site. While (a) has largely been solved, further work is required to understand and prevent losses from (b) and/or (c). Thus, this review is focused on historical progress in (and possible future strategies for) improving the stability/durability of NPMCs.

  16. Missing-Mass Spectroscopy of the 4-Neutron System by Exothermic Double-Charge Exchange Reaction 4He(8He,8Be)4n

    NASA Astrophysics Data System (ADS)

    Kisamori, Keiichi; Shimoura, Susumu; Miya, Hiroyuki; Assie, Marlene; Baba, Hidetada; Baba, Tatsuo; Beaumel, Didier; Dozono, Masanori; Fujii, Toshihiko; Fukuda, Naoki; Go, Shintaro; Hammache, Fariouz; Ideguchi, Eiji; Inabe, Naohiro; Itoh, Masatoshi; Kameda, Daisuke; Kawase, Shoichiro; Kawabata, Takahiro; Kobayashi, Motoki; Kondo, Yosuke; Kubo, Toshiyuki; Kubota, Yuki; Kurata-Nishimura, Mizuki; Lee, CheongSoo; Maeda, Yukie; Matsubara, Hiroaki; Michimasa, Shin'ichiro; Miki, Kenjiro; Nishi, Takahiro; Noji, Shumpei; Ota, Shinsuke; Sakaguchi, Satoshi; Sakai, Hideyuki; Sasamoto, Yoshiko; Sasano, Masaki; Sato, Hiromi; Shimizu, Yohei; Stolz, Andreas; Suzuki, Hiroshi; Takaki, Motonobu; Takeda, Hiroyuki; Takeuchi, Satoshi; Tamii, Atsushi; Tang, Leung; Tokieda, Hiroshi; Tsumura, Miho; Uesaka, Tomohiro; Yako, Kentaro; Yanagisawa, Yoshiyuki; Yokoyama, Rin

    A possible existence of the tetra-neutron system as a resonance state is still an open and fascinating question, while theoretical papers using ab-initio calculation suggests that the bound tetra-neutron does not exist. We have performed a missing-mass spectroscopy of the 4n system via the exothermic double-charge exchange reaction 4He(8He,8Be)4n. The experiment was carried out at the RIBF at RIKEN using the SHARAQ spectrometer. Since the secondary beam, 8He at 190 A MeV, has a large internal energy, it is possible to produce the 4n system with small momentum transfers of less than 20 MeV/c. In the present analysis, a new analytical framework to treat multi-particles under high beam rate condition (2 MHz) was developed for good statistics. At the SHARAQ spectrometer, 8Be can be identified by measuring the invariant mass of the coincident two alpha particles with a good signal-to-noise ratio. About several tens of candidate events are obtained above the 4n threshold.

  17. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  18. Calculating geochemical reaction pathways--exploration of the inner-sphere water exchange mechanism in Al(H2O)6(3+)(aq) + nH2O with ab Initio calculations and molecular dynamics.

    PubMed

    Evans, R James; Rustad, James R; Casey, William H

    2008-05-01

    We have simulated exchange of inner-sphere and bulk water molecules for different sizes of Al3+(aq) clusters, Al(H2O)63+ + nH2O for n = 0, 1, 6, or 12, with ab initio and molecular dynamics simulations, in order to understand how robust the ab initio method is for identifying hydrolytic reaction pathways of particular importance to geochemistry. In contrast to many interfacial reactions, this particular elementary reaction is particularly simple and well-constrained by experiment. Nevertheless, we find that a rich array of parallel reaction pathways depend sensitively on the details of the solvation sphere and structure and that larger clusters are not necessarily better. Inner-sphere water exchange in Al3+(aq) may occur through two Langford-Gray dissociative pathways, one in which the incoming and outgoing waters are cis, the other in which they are trans to one another. A large majority of exchanges in the molecular dynamics simulations occurred via the trans mechanism, in contrast to the predictions of the ab initio method. In Al(H2O)63+ + H2O, the cis mechanism has a transition state of 84.3 kJ/mol, which is in good agreement with previous experimental and ab initio results, while the trans mechanism has only a saddle point with two negative frequencies, not a transition state, at 89.7 kJ/mol. In addition to the exchange mechanisms, dissociation pathways could be identified that were considerably lower in energy than experiment and varied considerably between 60 and 100 kJ/mol, depending on the particular geometry and cluster size, with no clear relation between the two. Ab initio calculations using large clusters with full second coordination spheres (n = 12) were unable to find dissociation or exchange transition states because the network of hydrogen bonds in the second coordination sphere was too rigid to accommodate the outgoing inner-sphere water. Our results indicate that caution should surround ab initio simulation of complicated dynamic processes such as hydrolysis, ion exchange, and interfacial reactions that involve several steps. Dynamic methods of simulation need to accompany static methods such as ab initio calculation, and it is best to consider simulated pathways as hypotheses to be tested experimentally rather than definitive properties of the reaction. PMID:18366199

  19. Competing noncovalent host-guest interactions and H/D exchange: reactions of benzyloxycarbonyl-proline glycine dipeptide variants with ND3.

    PubMed

    Miladi, Mahsan; Olaitan, Abayomi D; Zekavat, Behrooz; Solouki, Touradj

    2015-11-01

    A combination of density functional theory calculations, hydrogen/deuterium exchange (HDX) reactions, ion mobility-mass spectrometry, and isotope labeling tandem mass spectrometry was used to study gas-phase "host-guest" type interactions of a benzyloxycarbonyl (Z)-capped proline (P) glycine (G) model dipeptide (i.e., Z-PG) and its various structural analogues with ND3. It is shown that in a solvent-free environment, structural differences between protonated and alkali metal ion (Na(+), K(+), or Cs(+))-complexed species of Z-PG affect ND3 adduct formation. Specifically, [Z-PG + H](+) and [Z-PG-OCH3 + H](+) formed gas-phase ND3 adducts ([Z-PG (or Z-PG-OCH3) + H + ND3](+)) but no ND3 adducts were observed for [Z-PG + alkali metal](+) or [Z-PG + H - CO2](+). Experimentally measured and theoretically calculated collision cross sections (CCSs) of protonated and alkali metal ion-complexed Z-PG species showed similar trends that agreed with the observed structural differences from molecular modeling results. Moreover, results from theoretical ND3 affinity calculations were consistent with experimental HDX observations, indicating a more stable ND3 adduct for [Z-PG + H](+) compared to [Z-PG + alkali metal](+) species. Molecular modeling and experimental MS results for [Z-PG + H](+) and [Z-PG + alkali metal](+) suggest that optimized cation-? and hydrogen bonding interactions of carbonyl groups in final products are important for ND3 adduct formation. Graphical Abstract ?. PMID:26289383

  20. Microfluidic chemical reaction circuits

    SciTech Connect

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  1. Kinetic isotope effect of the (16)O + (36)O2 and (18)O + (32)O2 isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study.

    PubMed

    Sun, Zhigang; Yu, Dequan; Xie, Wenbo; Hou, Jiayi; Dawes, Richard; Guo, Hua

    2015-05-01

    The O + O2 isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the (18)O + (32)O2 and (16)O + (36)O2 reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the "reef" structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients. PMID:25956105

  2. Kinetic isotope effect of the 16O + 36O2 and 18O + 32O2 isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Yu, Dequan; Xie, Wenbo; Hou, Jiayi; Dawes, Richard; Guo, Hua

    2015-05-01

    The O + O2 isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the 18O + 32O2 and 16O + 36O2 reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the "reef" structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients.

  3. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  4. Investigation of hydrogen isotope exchange reaction rate in mixed gas (H{sub 2} and D{sub 2}) at pressure up to 200 MPa using Raman spectroscopy

    SciTech Connect

    Tikhonov, V.V.; Yukhimchuk, A.A.; Musyayev, R.K.; Gurkin, A.I.

    2015-03-15

    Raman spectroscopy is a relevant method for obtaining objective data on isotopic exchange rate in a gaseous mix of hydrogen isotopes, since it allows one to determine a gaseous mix composition in real time without sampling. We have developed a high-pressure fiber-optic probe to be used for obtaining protium Raman spectra under pressures up to 400 MPa and we have recorded spectral line broadening induced by molecule collisions starting from ∼ 40 MPa. Using this fiber-optic probe we have performed experiments to study isotopic exchange kinetics in a gaseous mix of hydrogen isotopes (protium-deuterium) at pressures up to 200 MPa. Preliminary results show that the dependence of the average isotopic exchange rate related to pressure take unexpected values at the very beginning of the time evolution. More work is required to understand this inconsistency.

  5. A theoretical study of the ligand-exchange reactions of Na+.X complexes (X=O,O2,N2,CO2 and H2O): implications for the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Daire, Sophia E.; Plane, John M. C.; Gamblin, Stuart D.; Soldn, Pavel; Lee, Edmond P. F.; Wright, Timothy G.

    2002-05-01

    High-level ab initio calculations are used to calculate the thermodynamics and kinetics of a number of ligand-exchange reactions involving Na+.X complexes (X=O,O2,N2,CO2 and H2O). The exchange reaction Na+.N2+O?Na+.O+N2 is examined in detail using RRKM theory, where the microcanonical rate coefficients are determined from inverse Laplace transformation of the Langevin collision frequencies. This shows that ligand-switching dominates over recombination (to form O.Na+.N2) up to pressures above 1000Torr. A model of the ion-molecule chemistry of sodium in the mesosphere/lower thermosphere region is then constructed by calculating the rate coefficients of these ligand-switching reactions using Langevin theory, constrained by detailed balancing. The model predicts vertical profiles of Na+, Na+.CO2 and Na+.H2O in very good agreement with the limited set of rocket-borne mass spectrometer measurements. The lifetime of Na+ against neutralisation to Na is shown to decrease exponentially from about 1 day at 110km to about 1min at 90km, which supports the theory that sporadic sodium layers form from Na+ in descending sporadic /E layers.

  6. Nucleophilic reactions at a vinylic center. XVI. Investigation of the nucleophilic exchange of fluorine in. beta. -fluoroacrylonitriles by the MINDO/3 method

    SciTech Connect

    Shainyan, B.A.

    1986-01-10

    The potential energy surfaces of the reactions of F/sup -/ with cis- and trans-..beta..-fluoroacrylonitriles were calculated by the MINDO/3 method. It was shown that three reaction paths can be realized in the system, i.e., attack by the nucleophile at the ..beta..-carbon atom, the elimination of a proton from the ..cap alpha.. position, and the elimination of a proton from the ..beta.. position. All three reaction paths are exothermic in the gas phase, and the elimination of the proton from the ..cap alpha.. position is 70 kJ/mole more favorable than from the ..beta.. position. Allowance for the effect of the medium in terms of an unconcerted solvation model modes not lead to the appearance of an activation barrier, in contrast to the reactions of anions with ethylene.

  7. Oxidation of CO by N/sub 2/O between 1076 and 1228 K: determination of the rate constant of the exchange reaction

    SciTech Connect

    Loirat, H.; Caralp, F.; Destriau, M.; Lesclaux, R.

    1987-12-17

    New measurements of the rate constant of the direct reaction of CO with N/sub 2/O are reported with the principal purpose of removing some of the remaining discrepancies on its value. Experiments were performed at lower temperatures (1076-1228 K) and lower pressure (approx. 15 Torr) than those prevailing in most of previous works, by using a static reactor. It is shown that, under these experimental conditions, the reaction proceeds essentially according to the direct reaction CO + N/sub 2/O ..-->.. CO/sub 2/ + N/sub 2/ (1). The previously proposed wet mechanism is not significant under our experimental conditions. It has to be taken into account, however, to describe the observed production and consumption of molecular oxygen. The Arrhenius expression derived from these experiments is k/sub 1/ = 10/sup 14.4 +/- 0.3 exp(-(46 +- 2) kcal mol/sup -1/RT) cm/sup 3/ mol/sup -1/ s/sup -1/. A detailed analysis of the results shows that the uncertainties in side reactions do not greatly influence the value of k/sub 1/. A critical discussion of the data reported in the literature is presented. In spite of remaining uncertainties in the reaction mechanism, the present results, obtained in a low-temperature range, show that the low activation energy values of reaction 1, reported in several works performed at higher temperatures, are highly unlikely

  8. Role of ion exchange reactions in the in situ leaching of uraninite by NH{sub 4}HCO{sub 3} -- (NH{sub 4}){sub 2}CO{sub 3} -- H{sub 2}O{sub 2}

    SciTech Connect

    Brantner, J.; Liddell, K.

    1996-10-01

    Ion exchange on clay mineral surfaces can alter the concentrations of solution species, the solubility of other minerals that share a common cation, and the porosity and permeability of the host formation. Equilibrium cation exchange reactions involving NH{sub 4}{sup +}, Na{sup +}, K{sup +}, H{sup +}, Ca{sup 2+}, and Mg{sup 2+} were incorporated in a mathematical model for the in situ leaching of UO{sub 2} by solutions of NH{sub 4}HCO{sub 3}, (NH{sub 4}){sub 2}CO{sub 3}, and H{sub 2}O{sub 2}. The clay surface was assumed to be in equilibrium with ground water initially; contact with leach solution resulted in displacement of the Na{sup +}, K{sup +}, H{sup +}, Ca{sup 2+}, and Mg{sup 2+} cations from the clay, often accompanied by precipitation of calcite and magnesite. Development of the ion exchange model is described and implications for successful in situ uranium recovery and ground water restoration are discussed.

  9. Synthesis and crystal structure of Mg{sub 0.5}NbO{sub 2}: An ion-exchange reaction with Mg{sup 2+} between trigonal [NbO{sub 2}]{sup -} layers

    SciTech Connect

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro

    2013-01-15

    A new layered niobate, Mg{sub 0.5}NbO{sub 2}, was synthesized from LiNbO{sub 2} through a cation-exchange reaction with Mg{sup 2+} at 450-550 Degree-Sign C. This is the first example of a topotactic reaction with an aliovalent cation between trigonal [NbO{sub 2}]{sup -} layers. It is proposed to be isostructural with LiNbO{sub 2} (space group; P6{sub 3}/mmc) with lattice parameters of a=2.9052(6) A, c=10.625(15) A. The lattice parameters and formation energy of Mg{sub 0.5}NbO{sub 2} crystallized in LiNbO{sub 2} form and other layered CaNb{sub 2}O{sub 4} one were calculated by density functional theory. - Graphical abstract: A new layered niobate, Mg{sub 0.5}NbO{sub 2}, was synthesized from LiNbO{sub 2} through a cation-exchange reaction with Mg{sup 2+} at 450-550 Degree-Sign C. It is isostructural with LiNbO{sub 2} with lattice parameters of a=2.9052(6) A, c=10.625(15) A. Mg{sup 2+} are described in spheres located between [NbO{sub 2}]{sup -} trigonal layers and its occupancy is 0.5. Highlights: Black-Right-Pointing-Pointer A new layered niobate, Mg{sub 0.5}NbO{sub 2}, was synthesized from LiNbO{sub 2}. Black-Right-Pointing-Pointer Cation-exchange reaction converted two monovalent Li{sup +} into one divalent Mg{sup 2+} at 450-550 Degree-Sign C. Black-Right-Pointing-Pointer Mg{sub 0.5}NbO{sub 2} was isostructural with LiNbO{sub 2} (space group; P6{sub 3}/mmc). Black-Right-Pointing-Pointer Its lattice parameters were a=2.9052(6) A and c=10.625(15) A. Black-Right-Pointing-Pointer Synthesized Mg{sub 0.5}NbO{sub 2} was calculated to be thermodynamically more favorable.

  10. An Easy Student Synthesis of a Substituted 1,3-Dioxane by Use of an Ion-Exchange Resin as Catalyst: Clean Illustration of the Prins Reaction.

    ERIC Educational Resources Information Center

    Delmas, Michael; And Others

    1982-01-01

    Background information and experimental procedures are provided for a Prins reaction (condensation of an aldehyde with an alkene). The preparation of 4-(4-hydroxy, 3-methoxy-phenyl) 5-methyl, 1,3-dioxane realized from isoeugenol (natural plant product, commercially available) can be completed in a three-hour laboratory period. (Author/JN)

  11. Coordination chemical studies on metalloenzymes. Kinetics and mechanism of the Zn(II) exchange reaction between chelating agent and apo-bovine carbonic anhydrase.

    PubMed

    Kidani, Y; Hirose, J; Koike, H

    1976-01-01

    The mechanism of removal of the zinc ion from bovine carbonic anhydrase [EC 4.2.1.1] (BCA) by a chelating agent was studied. It was shown that the removal of the zinc ion from BCA took place through the formation of a ternary complex involving the enzyme, chelating agent, and metal ions. The formation constant of the ternary complex (KEML) was 10(2) M-1. This value was lower than the formation constant assumed by Wilkins. The reaction of zinc-2, 6-pyridinedicarboxylate complex with the apoenzyme also took place through the formation of the ternary complex and the species which reacted with apo-BCA was a 1:1 complex of zinc and 2, 6-pyridine-dicarboxylate. The theoretical equilibrium equation derived from the reaction mechanism showed a good fit with observed equilibrium dialysis data. PMID:820693

  12. Isospin Dependence of Nucleon Exchange in 78,86Kr + 40,48Ca Reactions at E/A = 10 MeV

    NASA Astrophysics Data System (ADS)

    Henry, Eric; Schroder, Wolf-Udo; Toke, Jan; Quinlan, Michael; Singh, Hardev; Isodec Collaboration

    2011-10-01

    Preliminary results are presented of theoretical simulation calculations and experimental data obtained in the ISODEC experiment performed with the CHIMERA multi-detector array at LNS/Catania. One of the main objectives of this experiment measuring A, Z and energy of projectile and target remnants was to explore the isospin dependence of the flow of energy, mass and charge in damped nuclear reactions involving systems of very different initial isospin asymmetries. With a bombarding energy of E/A = 10 MeV the reaction systems approach the limits of an adiabatic nuclear response associated with a separation of relaxation time scales of macroscopic and microscopic degrees of freedom. However, non-equilibrium effects are expected to be still relatively weak, such that the effects of the driving forces underlying isospin relaxation are not masked by pre-equilibrium nuclear disintegration processes.

  13. Two-nucleon processes in pion-induced double charge exchange in {sup 4}He: A coincidence measurement of the {sup 4}He({pi}{sup +},{pi}{sup {minus}} {ital p})3{ital p} reaction

    SciTech Connect

    Pate, S.F.; Fong, W.; Harvey, M.T.; Matthews, J.L.; Park, H.T.; Vidos, L.L.; Zelevinsky, V.V.; Saunders, A.; Holcomb, M.D.; Kinney, E.R.; Kriss, B.J.; Gram, P.A.M.; Roberts, D.A.

    1995-05-10

    Inclusive measurements of pion double-charge-exchange in {sup 3}He[1] and {sup 4}He[2] in the {Delta}(1232) resonance region suggest the dominance of a two-step sequential single-charge-exchange mechanism involving quasi-free nucleons. To investigate this reaction mechanism, we have observed protons in coincidence with the outgoing pion in {pi}{sup +}+{sup 4}He{r_arrow}{pi}{sup {minus}}+4{ital p} at {ital T}{sub {pi}{sup +}}=240 MeV. Pions were detected in a magnetic spectrometer at {theta}{sub {pi}{sup {minus}}}=32{degree}, while protons were detected in a close-packed array of plastic scintillator telescopes covering {theta}{sub {ital p}}=67.5{degree}--157.5{degree} on the same side of the beam as the spectrometer, and {theta}{sub {ital p}}=22.5{degree}--157.5{degree} on the opposite side. We will present preliminary results for the distributions in energy and angle of the coincident protons. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. Cumulative reaction probabilities and transition state properties: A study of the H{sup +}+H{sub 2} and H{sup +}+D{sub 2} proton exchange reactions

    SciTech Connect

    Jambrina, P. G.; Aoiz, F. J.; Eyles, C. J.; Herrero, V. J.; Saez Rabanos, V.

    2009-05-14

    Cumulative reaction probabilities (CRPs) have been calculated by accurate (converged, close coupling) quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical QCT (SQCT) methods for the H{sup +}+H{sub 2} and H{sup +}+D{sub 2} reactions at collision energies up to 1.2 eV and total angular momentum J=0-4. A marked resonance structure is found in the QM CRP, most especially for the H{sub 3}{sup +} system and J=0. When the CRPs are resolved in their ortho and para contributions, a clear steplike structure is found associated with the opening of internal states of reactants and products. The comparison of the QCT results with those of the other methods evinces the occurrence of two transition states, one at the entrance and one at the exit. At low J values, except for the quantal resonance structure and the lack of quantization in the product channel, the agreement between QM and QCT is very good. The SQCT model, that reflects the steplike structure associated with the opening of initial and final states accurately, clearly tends to overestimate the value of the CRP as the collision energy increases. This effect seems more marked for the H{sup +}+D{sub 2} isotopic variant. For sufficiently high J values, the growth of the centrifugal barrier leads to an increase in the threshold of the CRP. At these high J values the discrepancy between SQCT and QCT becomes larger and is magnified with growing collision energy. The total CRPs calculated with the QCT and SQCT methods allowed the determination of the rate constant for the H{sup +}+D{sub 2} reaction. It was found that the rate, in agreement with experiment, decreases with temperature as expected for an endothermic reaction. In the range of temperatures between 200 and 500 K the differences between SQCT and QCT rate results are relatively minor. Although exact QM calculations are formidable for an exact determination of the k(T), it can be reliably expected that their value will lie between those given by the dynamical and statistical trajectory methods.

  15. High performance fluorine doped (Sn,Ru)O2 oxygen evolution reaction electro-catalysts for proton exchange membrane based water electrolysis

    NASA Astrophysics Data System (ADS)

    Kadakia, Karan; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Jampani, Prashanth; Park, Sung Kyoo; Chung, Sung Jae; Kumta, Prashant N.

    2014-01-01

    Identification of electro-catalysts containing non-noble metal or significantly reduced amounts of expensive noble metals (e.g. RuO2) is highly desirable. Development of such a catalyst with comparable electrochemical performance to the standard noble metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a pioneering breakthrough in hydrogen generation by water electrolysis. In line with these goals, by exploiting a two-pronged theoretical first principles and experimental approach herein we demonstrate that a nano-structured solid solution of SnO2:10 wt% F containing only 20 at.% RuO2 [e.g. (Sn0.80Ru0.20)O2:10F] displays a remarkably similar electrochemical activity and moreover, comparable or even much improved electrochemical stability and durability compared to pure the noble metal counterpart, RuO2. Density functional theory calculations have demonstrated direct dependence of the catalytic activity on the electronic structure peculiarities of the F-doped (Ru,Sn)O2 which corresponds well with the experimental results.

  16. Borate Exchanges of Lemna minor L. as Studied with the Help of the Enriched Stable Isotopes and of a (n,α) Nuclear Reaction 1

    PubMed Central

    Thellier, Michel; Duval, Yves; Demarty, Maurice

    1979-01-01

    Despite the lack of a convenient radioisotope of boron, it is possible to measure unidirectional fluxes of borate between cellular systems and their external medium. It was accomplished by using the two purified stable isotopes (10B and 11B), with 10B specifically detected by a (n,α) nuclear reaction. The method was applied to compartmental analysis of borate with intact plants of Lemna minor L. Four compartments were suggested. Three of them apparently correspond to the three classical ones: free space (including easily dissociable borate monoesters), cytoplasm, and vacuole. The fourth one was interpreted as corresponding to very stable borate diesters in the cell walls. The method allows the determination of the borate capacities of the various compartments and of the borate unidirectional fluxes between the different compartments, at borate flux equilibrium. Other physicochemical data (mono and diester mass action constants, turn over numbers) were evaluated. The results are consistent with what is known of pure substances. PMID:16660714

  17. Selective metal-ion extraction for multiple metal-ion liquid-liquid exchange reactions. Progress report, February 1, 1982-January 31, 1983

    SciTech Connect

    Tavlarides, L.L.

    1983-02-01

    Thermodynamic chemical equilibria models and chemical kinetics for the system copper-iron-acid sulfate solutions extracted by ..beta..-alkenyl-8-hydroxy quinoline in xylene are studied. Equilibrium extraction data were obtained for the iron-acid-sulfate ..beta..-alkenyl-8-hydroxy quinoline-xylene system. A preliminary model which includes the aqueous phase equilibria is being tested to model the data. Kinetic experiments have been completed on the above system for the forward reaction with the liquid jet recycle reactor. It has been determined that the iron-chelation complex is FeR/sub 3/ by the method of continuous variation. Kinetic models based on various mechanisms are being tested to describe the data. A one-liter two phase flow reactor system has been developed for the study of extraction efficiencies.

  18. Synthesis and characterization of alloy catalyst nanoparticles PtNi/C for oxygen reduction reaction in proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Linh Do, Chi; San Pham, Thy; Nguyen, Ngoc Phong; Tran, Viet Quan; Hanh Pham, Hong

    2015-01-01

    In this report, vulcan XC-72 supported PtNi alloy catalyst nanoparticles were synthesized by electroless deposition method using NaBH4 as a reduction agent. The properties of the synthesized Pt-Ni/C catalysts were investigated and evaluated. Transmission electron microscopy (TEM) results showed that PtNi alloy catalysts dispersed well on the carbon supports and their particle size was in the range of 4-8 nm. X-ray diffraction (XRD) analysis confirmed that the crystal lattice of Pt and PtNi alloy is face centered cubic. In the presence of Ni atom, an XRD pattern showed that structure of PtNi alloy crystal was contracted, which affected the catalysts properties. The activity of the catalyst was estimated by electrochemical methods including cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The electrochemical results indicated that the activity of PtNi/C alloy catalysts toward oxygen reduction reaction on cathode of PEMFC was higher in comparison with Pt/C catalysts.

  19. Nano PtCu binary and PtCuAg ternary alloy catalysts for oxygen reduction reaction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Yanmei; Zhang, Dongming

    2015-03-01

    In order to decrease the cost and enhance the performance of the cathode catalyst for PEMFC, carbon supported PtCu and PtCuAg alloys with differential Ag content are synthesized by a borohydride chemical reduction. The oxygen reduction reaction (ORR) activity are tested by cyclic voltammetry (CV)and linear sweep voltammograms (LSV) in 0.5 M H2SO4. By comparison with the ORR activities of PtCu/C and a series of PtCuAg/C catalysts with differential metal atomic ratios of Pt:Cu:Ag, the PtCuAg/C catalyst with the atomic ratio on 3:10:1 (marked as PtCuAg/C(3:10:1)) shows the best catalytic activity. For the 200th cycles, the limited current reaches to 3.85 mA cm-2 for PtCuAg/C(3:10:1) with Pt-loading of 9.29 μgPt cm-2. The CV curves of the PtCuAg/C catalysts show one more pair of redox peaks of Ag compared with PtCu/C catalyst, which is much different from Pt-M alloy catalysts reported in other literature. The TEM and XRD as well as XPS results indicate that the enhanced ORR activity is the result of the smaller particle size, the crystal distortion and the more exposure of Pt atoms with the introduction of Ag for PtCuAg/C(3:10:1) catalyst.

  20. Thermostability of endo-1,4-beta-xylanase II from Trichoderma reesei studied by electrospray ionization Fourier-transform ion cyclotron resonance MS, hydrogen/deuterium-exchange reactions and dynamic light scattering.

    PubMed Central

    Jänis, J; Rouvinen, J; Leisola, M; Turunen, O; Vainiotalo, P

    2001-01-01

    Endo-1,4-beta-xylanase II (XYNII) from Trichoderma reesei is a 21 kDa enzyme that catalyses the hydrolysis of xylan, the major plant hemicellulose. It has various applications in the paper, food and feed industries. Previous thermostability studies have revealed a significant decrease in enzymic activity of the protein at elevated temperatures in citrate buffer [Tenkanen, Puls and Poutanen (1992) Enzyme Microb. Technol. 14, 566-574]. Here, thermostability of XYNII was investigated using both conventional and nanoelectrospray ionization Fourier-transform ion cyclotron resonance MS and hydrogen/deuterium (H/D)-exchange reactions. In addition, dynamic light scattering (DLS) was used as a comparative method to observe possible changes in both tertiary and quaternary structures of the protein. We observed a significant irreversible conformational change and dimerization when the protein was exposed to heat. H/D exchange revealed two distinct monomeric protein populations in a narrow transition temperature region. The conformational change in both the water and buffered solutions occurred in the same temperature region where enzymic-activity loss had previously been observed. Approx. 10-30% of the protein was specifically dimerized when exposed to the heat treatment. However, adding methanol to the solution markedly lowered the transition temperature of conformational change as well as increased the dimerization up to 90%. DLS studies in water confirmed the change in conformation observed by electrospray ionization MS. We propose that the conformational change is responsible for the loss of enzymic activity at temperatures over 50 degrees C and that the functioning of the active site in the enzyme is unfeasible in a new, more labile solution conformation. PMID:11368772

  1. Test procedure for cation exchange chromatography

    SciTech Connect

    Cooper, T.D.

    1994-08-24

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction.

  2. The Dynamics of Multilateral Exchange

    NASA Astrophysics Data System (ADS)

    Hausken, Kjell; Moxnes, John F.

    The article formulates a dynamic mathematical model where arbitrarily many players produce, consume, exchange, loan, and deposit arbitrarily many goods over time to maximize utility. Consuming goods constitutes a benefit, and producing, exporting, and loaning away goods constitute a cost. Utilities are benefits minus costs, which depend on the exchange ratios and bargaining functions. Three-way exchange occurs when one player acquires, through exchange, one good from another player with the sole purpose of using this good to exchange against the desired good from a third player. Such a triple handshake is not merely a set of double handshakes since the player assigns no interest to the first good in his benefit function. Cognitive and organization costs increase dramatically for higher order exchanges. An exchange theory accounting for media of exchange follows from simple generalization of two-way exchange. The examples of r-way exchange are the triangle trade between Africa, the USA, and England in the 17th and 18th centuries, the hypothetical hypercycle involving RNAs as players and enzymes as goods, and reaction-diffusion processes. The emergence of exchange, and the role of trading agents are discussed. We simulate an example where two-way exchange gives zero production and zero utility, while three-way exchange causes considerable production and positive utility. Maximum utility for each player is reached when exchanges of the same order as the number of players in society are allowed. The article merges micro theory and macro theory within the social, natural, and physical sciences.

  3. DFT studies of the methyl exchange reaction between Cp2M-CH3 or Cp*2M-CH3 (Cp = C5H5, Cp* = C5Me5, M = Y, Sc, Ln) and CH4. Does M ionic radius control the reaction?

    PubMed

    Barros, Noemi; Eisenstein, Odile; Maron, Laurent

    2006-07-01

    The activation energies for the methyl exchange reactions between Cp2M-CH3 and H-CH3 have been calculated for M = Sc, Y and representative metals of the lanthanide family (La, Ce, Sm, Ho, Yb and Lu) with DFT(B3PW91) calculations with large-core pseudopotentials for M. The sigma-bond metathesis reactions are calculated to have lower activation energies for early lanthanides than for late lanthanides and any of group 3 metals. The relative activation barriers are analyzed using the NBO charge distributions in the reactant and in the transition states. It is shown that the methane needs to be polarized in the transition state as H((+delta))-CH3((-delta)) by the reactant, because this sigma-bond metathesis is best viewed as heterolytic cleavage of methane, leading to a proton transfer between two methyl groups in the field of an electropositive M metal. Early lanthanides, which are involved in strongly ionic metal-ligands bonds are thus associated with the lowest activation energies. The ionic radius and the steric effects influence the relative rates of reaction for the complexes of Sc, Y and Lu. In agreement with earlier works of Sherer et al., the experimental reactivity trends found by Tilley are reproduced best with Cp*2M-CH3 (Cp* = C5Me5) rather than Cp2M-CH3 (Cp = C5H5) because the steric bulk of C5Me5 deactivates most the complex where the metal has the smallest ionic radius (Sc). While the steric effects and the influence of the metal ionic radius cannot be neglected, these factors are not the only ones involved in determining the activation barriers of the sigma-bond metathesis reaction. PMID:16786063

  4. Structure and Properties of Precursor/Successor Complex and Transition State of the FeCl(2+)/Fe(2+) Electron Self-Exchange Reaction via the Inner-Sphere Pathway.

    PubMed

    Rotzinger, François P

    2015-11-01

    The electron self-exchange reaction FeCl(OH2)5(2+) + Fe(OH2)6(2+) → Fe(OH2)6(2+) + FeCl(OH2)5(2+), proceeding via the inner-sphere pathway, was investigated with quantum chemical methods. Geometry and vibrational frequencies of the precursor/successor complex, (H2O)5Fe(III)ClFe(II)(OH2)5(4+)/(H2O)5Fe(II)ClFe(III)(OH2)5(4+) (P/S), and the transition state, (H2O)5FeClFe(OH2)5(4+⧧) (TS), were computed with the LC-BOP functional and CPCM hydration. Bent and linear structures were computed for the TS and P/S. The electronic coupling matrix element (Hab) and the electronic energies were calculated with multistate extended general multiconfiguration quasi-degenerate second-order perturbation theory (XGMC-QDPT2) and spin-orbit configuration interaction (SO-CI). Since the Fe···Fe distance changes considerably along the electron transfer step, the transformation P → TS → S, equations based on the hypothesis of a fixed donor-acceptor distance cannot be applied. Hence, the rate constant for the electron transfer step (ket) was calculated as described previously (Rotzinger, F. P. Inorg. Chem. 2014, 53, 9923). ket is very fast, ∼9.4 × 10(8)-6.6 × 10(9) s(-1) at 0 °C. The experimental rate constant of the title reaction (k) is much slower and controlled by the formation of the precursor complex. The substitution of a water ligand by FeCl(OH2)5(2+) at Fe(OH2)6(2+) is rate-determining. PMID:26479082

  5. Gas exchange

    MedlinePLUS Videos and Cool Tools

    ... into a left and right bronchus within the lungs and further divides into smaller and smaller branches ... exchange is the delivery of oxygen from the lungs to the bloodstream, and the elimination of carbon ...

  6. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  7. Heat exchanger

    SciTech Connect

    Mantegazza, M.; Bellemo, L.

    1993-07-20

    A heat exchange apparatus is described for cooling and recovering moisture from a gas, comprising, a first fluid circuit including an inlet section and an outlet section in which the gas to be cooled is conveyed, a second fluid circuit through which a refrigeration medium is conveyed, the inlet section of the first fluid circuit initially being disposed adjacent the second outlet section thereof so as to be in heat exchange relationship therewith, the inlet section thereafter extending adjacent the second fluid circuit so as to be in heat exchange relationship therewith, heat conducting fins extending between and connecting the inlet section of the first fluid circuit to the outlet section thereof and for connecting the inlet section of the first fluid section to the second fluid circuit, and a mass of particulate material placed between the fins, whereby the gas is initially cooled in heat exchange relationship with gas in the second section of the first fluid circuit and is thereafter further cooled by being in heat exchange relationship with the refrigeration medium.

  8. Heat exchanger

    SciTech Connect

    Drury, C.R.

    1988-02-02

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections.

  9. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  10. Heat exchanger

    DOEpatents

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  11. Media Exchange.

    ERIC Educational Resources Information Center

    Friedstein, Harriet G., Ed.

    1983-01-01

    Reviews filmstrip/cassette recording materials titled "Reaction Rates: Molecules in Motion." Also reviews six college-level textbooks, addressing major strengths/weaknesses of texts under consideration with regard to their specific usefulness to high school chemistry teachers. (JN)

  12. Heat exchanger

    NASA Technical Reports Server (NTRS)

    Holmes, R. F.; Keller, E. E. (inventors)

    1976-01-01

    An improved lightweight heat exchanger particularly suited for use in systems having low volume flow, high longitudinal gradient and high effectiveness requirements is described. The heat exchanger is characterized by a shell of an annular configuration, an endless plate of minimal thickness and of a substantially uniformly convoluted configuration disposed within the annular shell for defining a plurality of endless, juxtaposed passages, each having a low Reynold's number and being of an annular configuration. A pair of manifolds disposed 180 deg apart is mounted on the shell in communication with the passages through which counterflowing fluids are simultaneously introduced and extracted from the passageways for achieving a continuous transfer of heat through the convoluted plate.

  13. Synthesis, characterization, and H/D exchange of μ-hydride-containing [FeFe]-hydrogenase subsite models formed by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 (TDT = SCH2SCH2S) with protic acids.

    PubMed

    Song, Li-Cheng; Zhu, An-Guo; Guo, Yuan-Qiang

    2016-03-15

    As [FeFe]-hydrogenase models, the first thiodithiolate (TDT) ligand-containing μ-hydride complexes [(μ-TDT)Fe2(CO)4(PMe3)2(μ-H)](+)Y(-) (, Y = Cl, ClO4, PF6, BF4, CF3CO2, CF3SO3) have been prepared by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 () with the corresponding HY acids. While the protonation reactions are monitored by in situ(1)H and (31)P{(1)H} NMR spectroscopy to show the isomer type and stability of , the structures of the isolated are characterized by elemental analysis, spectroscopy and for some of them by X-ray crystallography. Although the H/D exchange of μ-hydride complex (Y = CF3SO3) with D2 or D2O has been proved not to occur under the studied conditions, the H/D exchange of with DCl gives the μ-deuterium complex [(μ-TDT)Fe2(CO)4(PMe3)2(μ-D)](+)[CF3SO3](-) () in a nearly quantitative yield. To our knowledge, is the first crystallographically characterized μ-deuterium-containing butterfly [2Fe2S] complex produced by H/D exchange reaction. PMID:26777138

  14. Kinetic isotope effect of the {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study

    SciTech Connect

    Sun, Zhigang Yu, Dequan; Xie, Wenbo; Hou, Jiayi; Dawes, Richard; Guo, Hua

    2015-05-07

    The O + O{sub 2} isotope exchange reactions play an important role in determining the oxygen isotopic composition of a number of trace gases in the atmosphere, and their temperature dependence and kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin and mechanism of these and other unusual oxygen KIEs important in the atmosphere. This work reports a quantum dynamics study of the title reactions on the newly constructed Dawes-Lolur-Li-Jiang-Guo (DLLJG) potential energy surface (PES). The thermal reaction rate coefficients of both the {sup 18}O + {sup 32}O{sub 2} and {sup 16}O + {sup 36}O{sub 2} reactions obtained using the DLLJG PES exhibit a clear negative temperature dependence, in sharp contrast with the positive temperature dependence obtained using the earlier modified Siebert-Schinke-Bittererova (mSSB) PES. In addition, the calculated KIE shows an improved agreement with the experiment. These results strongly support the absence of the “reef” structure in the entrance/exit channels of the DLLJG PES, which is present in the mSSB PES. The quantum dynamics results on both PESs attribute the marked KIE to strong near-threshold reactive resonances, presumably stemming from the mass differences and/or zero point energy difference between the diatomic reactant and product. The accurate characterization of the reactivity for these near-thermoneutral reactions immediately above the reaction threshold is important for correct characterization of the thermal reaction rate coefficients.

  15. Heat exchanger

    DOEpatents

    Brackenbury, P.J.

    1983-12-08

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  16. Heat exchanger

    SciTech Connect

    Saperstein, Z.P.; Awe, R.C.; Costello, N.F.; Larrabee, S.R.

    1986-10-07

    A heat exchanger is described which consists of: spaced generally parallel header and tank constructions; each of the header and tank constructions having elongated, spaced, tube receiving holes in a header surface thereof; the holes in one header surface being aligned with and facing corresponding holes in the other header surface; and elongated open ended, flattened tubes extending between and into the header and tank constructions through aligned ones of the holes; the portions of each header surface between the holes including exteriorly convex domes defined by compound curves to thereby provide increased resistance to deformation as a result of force exerted by a pressurized fluid within the header and tank construction.

  17. Heat exchanger

    DOEpatents

    Brackenbury, Phillip J. (Richland, WA)

    1986-01-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  18. Allelic Exchange.

    PubMed

    Lehman, McKenzie K; Bose, Jeffrey L; Bayles, Kenneth W

    2016-01-01

    Methods used to understand the function of a gene/protein are one of the hallmarks of modern molecular genetics. The ability to genetically manipulate bacteria has become a fundamental tool in studying these organisms and while basic cloning has become a routine task in molecular biology laboratories, generating directed mutations can be a daunting task. This chapter describes the method of allelic exchange in Staphylococcus aureus using temperature-sensitive plasmids that have successfully produced a variety of chromosomal mutations, including in-frame deletions, insertion of antibiotic-resistance cassettes, and even single-nucleotide point mutations. PMID:25646609

  19. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  20. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A. (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  1. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  2. Educator Exchange Resource Guide.

    ERIC Educational Resources Information Center

    Garza, Cris; Rodriguez, Victor

    This resource guide was developed for teachers and administrators interested in participating in intercultural and international exchange programs or starting an exchange program. An analysis of an exchange program's critical elements discusses exchange activities; orientation sessions; duration of exchange; criteria for participation; travel,

  3. Crystal structure of the external aldimine of Citrobacter freundii methionine ?-lyase with glycine provides insight in mechanisms of two stages of physiological reaction and isotope exchange of ?- and ?-protons of competitive inhibitors.

    PubMed

    Revtovich, Svetlana V; Faleev, Nicolai G; Morozova, Elena A; Anufrieva, Natalya V; Nikulin, Alexey D; Demidkina, Tatyana V

    2014-06-01

    The three-dimensional structure of the external aldimine of Citrobacter freundii methionine ?-lyase with competitive inhibitor glycine has been determined at 2.45 ? resolution. It revealed subtle conformational changes providing effective binding of the inhibitor and facilitating labilization of C?-protons of the external aldimine. The structure shows that 1, 3-prototropic shift of C?-proton to C4'-atom of the cofactor may proceed with participation of active site Lys210 residue whose location is favorable for performing this transformation by a concerted mechanism. The observed stereoselectivity of isotopic exchange of enantiotopic C?-protons of glycine may be explained on the basis of external aldimine structure. The exchange of C?-pro-(R)-proton of the external aldimine might proceed in the course of the concerted transfer of the proton from C?-atom of glycine to C4'-atom of the cofactor. The exchange of C?-pro-(S)-proton may be performed with participation of Tyr113 residue which should be present in its basic form. The isotopic exchange of ?-protons, which is observed for amino acids bearing longer side groups, may be effected by two catalytic groups: Lys210 in its basic form, and Tyr113 acting as a general acid. PMID:24463191

  4. Pion exchange at high energies

    SciTech Connect

    Jones, L.M.

    1980-07-01

    The state of Regge pion exchange calculations for high-energy reactions is reviewed. Experimental evidence is summarized to show that (i) the pion trajectory has a slope similar to that of other trajectories; (ii) the pion exchange contribution can dominate contributions of higher trajectories up to quite a large energy; (iii) many two-body cross sections with large pion contributions can be fit only by models which allow for kinematical conspiracy at t=0. The theory of kinematic conspiracy is reviewed for two-body amplitudes, and calculations of the conspiring pion--Pomeron cut discussed. The author then summarizes recent work on pion exchange in Reggeized Deck models for multiparticle final states, with emphasis on the predictions of various models (with and without resonances) for phases of the partial wave amplitudes.

  5. Thiol-disulfide exchange yields multivalent dendrimers of melamine.

    PubMed

    Umali, Alona P; Simanek, Eric E

    2003-04-17

    [reaction: see text] Thiol-disulfide exchange can be used to prepare multivalent conjugates of a small molecule or octapeptide displayed on dendrimers based on melamine. Exchange of four or eight thiopyridyl groups by captopril occurs at room temperature in methanol almost quantitatively. Exchange using the peptide requires higher temperatures and guanidinium chloride in DMF. While exchange on the tetravalent scaffold with four peptides is almost quantitative, sterics retard formation of the octavalent conjugate: the hexavalent conjugate forms readily. PMID:12688730

  6. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L. (Annandale, VA)

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  7. Handbook on heat exchangers

    NASA Astrophysics Data System (ADS)

    Bazhan, Pavel I.; Kanevets, Georgii E.; Seliverstov, Vladimir M.

    Essential data on heat exchange equipment used in ship, locomotive, automotive, and aircraft powerplants are presented in a systematic manner. The data cover the principal types and technical and performance characteristics of heat exchangers, fundamentals of the theory of heat exchange, calculation of heat transfer coefficients for different types of heat exchange apparatus, optimization of heat exchangers, computer-aided design of heat exchange equipment, testing techniques, and test result processing.

  8. Reaction theory

    NASA Astrophysics Data System (ADS)

    Typel, Stefan

    2016-01-01

    Reactions with atomic nuclei play a pivotal role in the experimental study of nuclei. They are a tool in order to obtain crucial information on nuclear structure of nuclei, in particular for unstable nuclei far off the valley of stability. Besides the investigation of nuclear properties, nuclear reactions can be used as indirect methods to extract cross sections of astrophysical interest that cannot be measured directly in the laboratory. After an overview over the variety of nuclear reactions and their major characteristics, the basic formalism of reaction theory is introduced and essential concepts are presented in order to describe direct reactions. The main challenges in the future development of reaction theory are addressed.

  9. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R. (Idaho Falls, ID)

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  10. Developing an exchange strategy.

    PubMed

    Cohen, Andrew S; Kim, Charles; O'Riordan, Jason; Pizzo, James J

    2014-01-01

    Developing a health insurance exchange strategy begins with: Understanding how both the public and private exchanges work. Conducting a thorough analysis to quantify how exchanges will affect the organization's current and future patient populations and revenue base. Determining when to participate in the exchanges, keeping in mind current market position as well as competitors' actions. PMID:24511779

  11. Reciprocity theory of homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  12. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  13. Formaldehyde reactions in dark clouds

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Federman, S. R.

    1992-01-01

    The low-pressure reactions of formaldehyde (H2CO) with D(+), D2(+), D3(+), and He(+) are studied by the ion-cyclotron resonance technique. These reactions are potential loss processes for formaldehyde in cores of dark interstellar clouds. The deuterated reactants represent direct analogs for protons. Rate coefficients and branching ratios of product channels have been measured. Charge transfer is observed to be the dominant reaction of H2CO with D(+), D2(+), and He(+) ions. Only the D3(+) reaction exhibits a proton-transfer channel. All reactions proceed at rate coefficients near the collision limit. Proton-deuteron exchange reactions are found to be inefficient processes in the formaldehyde system.

  14. Efficiency of exchange schemes in replica exchange

    NASA Astrophysics Data System (ADS)

    Lingenheil, Martin; Denschlag, Robert; Mathias, Gerald; Tavan, Paul

    2009-08-01

    In replica exchange simulations a fast diffusion of the replicas through the temperature space maximizes the efficiency of the statistical sampling. Here, we compare the diffusion speed as measured by the round trip rates for four exchange algorithms. We find different efficiency profiles with optimal average acceptance probabilities ranging from 8% to 41%. The best performance is determined by benchmark simulations for the most widely used algorithm, which alternately tries to exchange all even and all odd replica pairs. By analytical mathematics we show that the excellent performance of this exchange scheme is due to the high diffusivity of the underlying random walk.

  15. Concerted hydrogen atom exchange between three HF molecules

    NASA Technical Reports Server (NTRS)

    Komornicki, Andrew; Dixon, David A.; Taylor, Peter R.

    1992-01-01

    The termolecular reaction involving concerted hydrogen-atom exchange between three HF molecules was investigated with particular attention given to the effects of correlation at the various stationary points along the reaction. Using large segmented Gaussian basis sets to locate the (HF)3 stationary points at the SCF level, the geometries of the stable hydrogen-bonded trimer, which is of C(3h) symmetry, were located, together with the transition state for hydrogen exchange, which is of D(3h) symmetry. Then, using a large atomic natural orbital basis and correlating all valence electrons, the energetics of the exchange reaction were evaluated at the correlated level.

  16. New [LNiII2]+ complexes incorporating 2-formyl or 2,6-diformyl-4-methyl phenol as inhibitors of the hydrolysis of the ligand L3-: Ni...Ni ferromagnetic coupling and S=2 ground states.

    PubMed

    Paital, Alok Ranjan; Wong, Wing Tak; Arom, Guillem; Ray, Debashis

    2007-07-01

    Reaction of the dinucleating ligand H3L (2-(2'-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) with Ni(NO3)(2).6H2O produces the dimer of monomers [Ni(HL1)]2(NO3)(2).4H2O (1.4H2O) following the hydrolysis of H3L. If the reaction occurs in the presence of 2-formylphenol (Hfp) or 2,6-diformyl-4-methylphenol (Hdfp), this hydrolysis is prevented by incorporation of these co-ligands into the structure and stabilization of the new complexes [Ni2L(fp)(H2O)].3H2O (2.3H2O) and [Ni2L(dfp)].4.5H2O (3.4.5H2O), respectively. Complexes 2 and 3 may be considered to be structural models of the active site of urease, where coordination of the carbonyl ligand mimics binding of urea. In complex 2, coordination of terminal water reproduces the binding of this substrate of the enzyme to the active site. In both dinuclear complexes, the NiII ions are coupled ferromagnetically to yield S=2 ground states, whereas complex 1 exhibits weak intradimer antiferromagnetic exchange through hydrogen bonds. The magnetic data can be modeled by using the Van Vleck equation, incorporating intermolecular interactions, or by diagonalization of a spin Hamiltonian that includes single-ion anisotropy. PMID:17569529

  17. The Television News Exchange

    ERIC Educational Resources Information Center

    Boni, Vittorio; And Others

    1975-01-01

    A special issue with extensive coverage of The Television News Exchange. Contributing authors from all over the world give their perspectives on the current status and future prospects of The Television News Exchange. (HB)

  18. Indiana Health Information Exchange

    Cancer.gov

    The Indiana Health Information Exchange is comprised of various Indiana health care institutions, established to help improve patient safety and is recognized as a best practice for health information exchange.

  19. Sizing plate heat exchangers

    SciTech Connect

    Kerner, J. )

    1993-11-01

    Since their commercial debut in the 1930s, plate heat exchangers have found widespread use in the chemical process industries (CPI). Today, more than two dozen firms market this space-saving and highly efficient type of heat exchanger. One reason for the popularity of plate heat exchangers is that their overall heat-transfer coefficient (U) is superior to that of shell-and-tube heat exchangers [1,2,3,4]. In clean water-to-water service, for example, a shell-and-tube heat exchanger has a U value of 350 Btu/ft[sup 2]-h-F, much lower than the 1,000 of a plate design at the same pressure drop. However, the plate heat exchanger's much higher U values also mean that fouling factors have a much greater effect on calculations of exchanger surface area. The right fouling factor is the key to specifying plate heat exchanger areas correctly.

  20. Developing an exchange mindset.

    PubMed

    Thackeray, Rosemary

    2010-09-01

    Exchange is a fundamental concept that underlies all social marketing efforts. In a successful exchange, both parties receive something of value and the benefits that they desire in return for a price. The purpose of this article is to describe how practitioners can develop an "exchange mindset." A practitioner's answer to five basic questions will enable him or her to see the exchange through the eyes of the customer and increase the likelihood of creating a successful exchange that will benefit both parties involved and result in positive behavior change. PMID:20817631

  1. Reaction product imaging

    SciTech Connect

    Chandler, D.W.

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  2. Bifunctional anion-exchange resins with improved selectivity and exchange kinetics

    DOEpatents

    Alexandratos, Spiro D.; Brown, Gilbert M.; Bonnesen, Peter V.; Moyer, Bruce A.

    2000-01-01

    Disclosed herein are a class of anion exchange resins containing two different exchange sites with improved selectivity and sorptive capability for chemical species in solution, such as heptavalent technetium (as pertechnetate anion, TcO.sub.4.sup.-). The resins are prepared by first reacting haloalkylated crosslinked copolymer beads with a large tertiary amine in a solvent in which the resin beads can swell, followed by reaction with a second, smaller, tertiary amine to more fully complete the functionalization of the resin. The resins have enhanced selectivity, capacity, and exchange kinetics.

  3. Lipid exchange between membranes.

    PubMed Central

    Jähnig, F

    1984-01-01

    The exchange of lipid molecules between vesicle bilayers in water and a monolayer forming at the water surface was investigated theoretically within the framework of thermodynamics. The total number of exchanged molecules was found to depend on the bilayer curvature as expressed by the vesicle radius and on the boundary condition for exchange, i.e., whether during exchange the radius or the packing density of the vesicles remains constant. The boundary condition is determined by the rate of flip-flop within the bilayer relative to the rate of exchange between bi- and monolayer. If flip-flop is fast, exchange is independent of the vesicle radius; if flip-flop is slow, exchange increases with the vesicle radius. Available experimental results agree with the detailed form of this dependence. When the theory was extended to exchange between two bilayers of different curvature, the direction of exchange was also determined by the curvatures and the boundary conditions for exchange. Due to the dependence of the boundary conditions on flip-flop and, consequently, on membrane fluidity, exchange between membranes may partially be regulated by membrane fluidity. PMID:6518251

  4. Drug Reactions

    MedlinePLUS

    Most of the time, medicines make our lives better. They reduce aches and pains, fight infections, and control problems such as high blood pressure or diabetes. But medicines can also cause unwanted reactions. One problem is ...

  5. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    NASA Astrophysics Data System (ADS)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  6. Exclusive Reactions

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.

    1997-02-01

    After some introductory remarks a brief review of the status of exclusive reactions and of color transparency is given. Special emphasis is given to the ?y transition form factor, which appears to be the first exclusive reaction where the hard scattering perturbative QCD picture seems to work well. Deeply virtual Compton scattering, which may become an exciting source of new information on partonic spin and angular momentum structure, is also briefly reviewed.

  7. Catalytic mechanism of human UDP-glucose 6-dehydrogenase: in situ proton NMR studies reveal that the C-5 hydrogen of UDP-glucose is not exchanged with bulk water during the enzymatic reaction.

    PubMed

    Eixelsberger, Thomas; Brecker, Lothar; Nidetzky, Bernd

    2012-07-15

    Human UDP-glucose 6-dehydrogenase (hUGDH) catalyzes the biosynthetic oxidation of UDP-glucose into UDP-glucuronic acid. The catalytic reaction proceeds in two NAD(+)-dependent steps via covalent thiohemiacetal and thioester enzyme intermediates. Formation of the thiohemiacetal adduct occurs through attack of Cys(276) on C-6 of the UDP-gluco-hexodialdose produced in the first oxidation step. Because previous studies of the related enzyme from bovine liver had suggested loss of the C-5 hydrogen from UDP-gluco-hexodialdose due to keto-enol tautomerism, we examined incorporation of solvent deuterium into product(s) of UDP-glucose oxidation by hUGDH. We used wild-type enzyme and a slow-reacting Glu(161)?Gln mutant that accumulates the thioester adduct at steady state. In situ proton NMR measurements showed that UDP-glucuronic acid was the sole detectable product of both enzymatic transformations. The product contained no deuterium at C-5 within the detection limit (?2%). The results are consistent with the proposed mechanistic idea for hUGDH that incipient UDP-gluco-hexodialdose is immediately trapped by thiohemiacetal adduct formation. PMID:22525098

  8. Preparation of Pt-Co nanoparticles by galvanostatic pulse electrochemical codeposition on in situ electrochemical reduced graphene nanoplates based carbon paper electrode for oxygen reduction reaction in proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Yaldagard, Maryam; Seghatoleslami, Naser; Jahanshahi, Mohsen

    2014-10-01

    Nanocomposite films of Pt-Co nanoparticles deposited on graphene nanoplate based gas diffusion layer electrode are fabricated via an electrochemical route involving a series of electrochemical process. Pt-Co nanoparticles of 11.37 nm in average size are prepared by galvanostatic codeposition in 0.5 M NaCl at PH of 2.5 at 300 mA cm-2 on the surface of in situ reduced graphene nanoplates on carbon paper. The topographical features, structure, morphology and composition of the prepared film samples are characterized by Atomic Force microscopy, Raman Spectroscopy, FTIR analysis, X-ray Diffraction, FESEM and EDS. At the same time, the catalytic activities of prepared electrodes for the oxygen reduction reaction are evaluated through cyclic voltammetry, linear sweep voltammetry and chronoamperometry and electrochemical impedance spectroscopy measurements. Raman spectroscopy measurements confirmed the graphitic structure of the produced graphene nanoplates. The nanoparticles in the film were observed to be uniform spherical objects and well distributed. Catalytic properties of Pt-Co/GNP/GDL electrode were compared with Pt/C/GDL using half cell polarization measurements based on both mass activity and specific activity. The as prepared Pt-Co/GNP/GDL electrode exhibits high catalytic activity for the ORR, which may be attributed to structural changes caused by alloying and the high specific surface area of graphene nanoplates catalyst support. The mass activity peak current is found to be as high as 728.25 mA mgPt-1.

  9. Method for conducting exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  10. Method for conducting exothermic reactions

    DOEpatents

    Smith, L. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-01-05

    A liquid phase process for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  11. Nonsurvivable momentum exchange system

    NASA Technical Reports Server (NTRS)

    Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)

    2007-01-01

    A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.

  12. Emittance Exchange Results

    SciTech Connect

    Fliller III,R.; Koeth, T.

    2009-05-04

    The promise of next-generation light sources depends on the availability of ultra-low emittance electron sources. One method of producing low transverse emittance beams is to generate a low longitudinal emittance beam and exchange it with a large transverse emittance. Experiments are underway at Fermilab's A0 Photoinjector and ANL's Argonne Wakefield Accelerator using the exchange scheme of Kim and Sessler. The experiment at the A0 Photoinjector exchanges a large longitudinal emittance with a small transverse emittance. AWA expects to exchange a large transverse emittance with a small longitudinal emittance. In this paper we discuss recent results at A0 and AWA and future plans for these experiments.

  13. Emittance exchange results

    SciTech Connect

    Fliller, R.P., III; Koeth, T.; /Rutgers U., Piscataway

    2009-09-01

    The promise of next-generation light sources depends on the availability of ultra-low emittance electron sources. One method of producing low transverse emittance beams is to generate a low longitudinal emittance beam and exchange it with a large transverse emittance. Experiments are underway at Fermilab's A0 Photoinjector and ANL's Argonne Wakefield Accelerator using the exchange scheme of Kim and Sessler. The experiment at the A0 Photoinjector exchanges a large longitudinal emittance with a small transverse emittance. AWA expects to exchange a large transverse emittance with a small longitudinal emittance. In this paper we discuss recent results at A0 and AWA and future plans for these experiments.

  14. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1991-07-08

    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchanger. DSI completed a heat exchanger stress analysis of the ten-module heat exchanger bank; and, performed a shell-side flow inhomogeneity analysis of the three-module heat exchanger bank. The company produced 50 tubestrips using an in-house CNC milling machine and began pressing them onto tube arrays. DSI revised some of the tooling required to encapsulate a tube array and press tubestrips into the array to improve some of the prototype tooling. 2 refs., 4 figs.

  15. Electrical and magnetic properties of ion-exchangeable layered ruthenates

    SciTech Connect

    Sugimoto, Wataru . E-mail: wsugi@shinshu-u.ac.jp; Omoto, Masashi; Yokoshima, Katsunori; Murakami, Yasushi; Takasu, Yoshio

    2004-12-01

    An ion-exchangeable ruthenate with a layered structure, K{sub 0.2}RuO{sub 2.1}, was prepared by solid-state reactions. The interlayer cation was exchanged with H{sup +}, C{sub 2}H{sub 5}NH{sub 3}{sup +}, and ((C{sub 4}H{sub 9}){sub 4}N{sup +}) through proton-exchange, ion-exchange, and guest-exchange reactions. The electrical and magnetic properties of the products were characterized by DC resistivity and susceptibility measurements. Layered K{sub 0.2}RuO{sub 2.1} exhibited metallic conduction between 300 and 13K. The products exhibited similar magnetic behavior despite the differences in the type of interlayer cation, suggesting that the ruthenate sheet in the protonated form and the intercalation compounds possesses metallic nature.

  16. Chemical Reactions in DSMC

    SciTech Connect

    Bird, G. A.

    2011-05-20

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  17. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    EPA Science Inventory

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  18. Double charge exchange on Te isotopes in the generalized seniority scheme

    SciTech Connect

    Wu, H.C.; Ginocchio, J.N.; Dieperink, A.E.; Scholten, O.

    1996-09-01

    The pion double-charge-exchange reactions on the Te isotopes are discussed in the generalized seniority scheme. The elementary process of charge exchange is described in a double scattering process within the plane wave limit. The transition rates are calculated for double-isobaric-analog state as well as for ground-state reactions. {copyright} {ital 1996 The American Physical Society.}

  19. Reaction of silicon ion (/sup 2/P) with silane (SiH/sub 4/, SiD/sub 4/). Heats of formation of SiH/sub n/, SiH/sub n//sup +/ (n = 1, 2, 3), and SiH/sub n//sup +/ (n = 0, 1, 2, 3). Remarkable isotope exchange reaction involving four hydrogen shifts

    SciTech Connect

    Boo, B.H.; Armentrout, P.B.

    1987-06-10

    The reaction of ground-state silicon ion with silane is investigated by using a guided ion beam tandem mass spectrometer. Reaction cross sections of all possible fragments, Si/sub m/H/sub n//sup +/ (m = 1, 2; n = 0, 1, 2, 3), as a function of relative kinetic energy are determined. All thermal energies, the major product is Si/sub 2/H/sub 2//sup +/. One remarkable reaction, the interchange of the projectile silicon ion with the target silicon atom, is observed at near zero kinetic energy. Labeling experiments employing /sup 30/Si/sup +/ for the beam or SiD/sub 4/ for the reactant indicate the intermediacy of the disilicon hydrides for the formation of the observed products. From the endothermicities of several reactions, the 298 K heats of formation for several ionic and neutral silicon hydrides are derived: ..delta..H/sub f//sup 0/(SiH) = 90.0 +/- 1.7, ..delta..H/sub f//sup 0/(SiH/sub 2/) = 69.0 +/- 2, ..delta..H/sub f//sup 0/(SiH/sub 3/) = 48.5 +/- 1.6, ..delta..H/sub f//sup 0/(SiH/sub 2//sup +/) = 276.1 +/- 1.7, ..delta..H/sub f//sup 0/(SiH/sub 3//sup +/) = 237.1 +/- 2, ..delta..H/sub f//sup 0/(Si/sub 2//sup +/) less than or equal to 328.0 +/- 2, ..delta..H/sub f//sup 0/(Si/sub 2/H/sup +/) less than or equal to 304.4 +/- 1.6, ..delta..H/sub f//sup 0/(Si/sub 2/H/sub 2/) less than or equal to 268.0 +/- 2.6, ..delta..H/sub f//sup 0/(Si/sub 2/H/sub 3//sup +/) = 266 +/- 2, all in kcal/mol. From an evaluation of these and other experiments, values of ..delta..H/sub f//sup 0/(SiH/sub 2//sup +/) and ..delta..H/sub f//sup 0/(SiH/sub 2/) of 278.0 +/- 1.4 and 68.5 +/- 1.5 kcal/mol, respectively, are recommended.

  20. Higher Education Exchange, 2008

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2008-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.

  1. Faculty Exchange Programs.

    ERIC Educational Resources Information Center

    Terrell, Roland

    After examining the foundation of Florida Junior College's (FJC's) Faculty Exchange Program, which involved gaining administrative support and making necessary contacts with other colleges, this descriptive report goes on to recount the experiences of the first three sets of instructors to be exchanged. First, the report describes the selection of

  2. Higher Education Exchange, 2012

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2012-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.

  3. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  4. Higher Education Exchange, 2005

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2005-01-01

    The "Higher Education Exchange" is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  5. Higher Education Exchange, 2010

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2010-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  6. Higher Education Exchange, 2004

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2004-01-01

    The Higher Education Exchange is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the Higher Education Exchange publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  7. Higher Education Exchange, 2011

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2011-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  8. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  9. Building Relationships through Exchange

    ERIC Educational Resources Information Center

    Primavera, Angi; Hall, Ellen

    2011-01-01

    From the moment of birth, children form and develop relationships with others in their world based on exchange. Children recognize that engaging in such encounters offers them the opportunity to enter into a relationship with another individual and to nurture that relationship through the exchange of messages and gifts, items and ideas. At Boulder

  10. Controlled optical properties of water-soluble CdTe nanocrystals via anion exchange.

    PubMed

    Li, Jing; Jia, Jianguang; Lin, Yuan; Zhou, Xiaowen

    2016-02-01

    We report a study on anion exchange reaction of CdTe nanocrystals with S(2-) in aqueous solution under ambient condition. We found that the optical properties of CdTe nanocrystals can be well tuned by controlling the reaction conditions, in which the reaction temperature is crucially important. At low reaction temperature, the product nanocrystals showed blue-shifts in both absorption and PL spectra, while the photoluminescence quantum yield (PLQY) was significantly enhanced. When anion exchanges were carried out at higher reaction temperature, on the other hand, obvious red shifts in absorption and PL spectra accompanied by a fast increase followed by gradual decrease in PLQY were observed. On variation of S(2-) concentration, it was found that the overall kinetics of Te(2-) for S(2-) exchanges depends also on [S(2-)] when anion exchanges were performed at higher temperature. A possible mechanism for anion exchanges in CdTe NCs was proposed. PMID:26520812

  11. Process for operating equilibrium controlled reactions

    DOEpatents

    Nataraj, Shankar (Allentown, PA); Carvill, Brian Thomas (Orefield, PA); Hufton, Jeffrey Raymond (Fogelsville, PA); Mayorga, Steven Gerard (Allentown, PA); Gaffney, Thomas Richard (Allentown, PA); Brzozowski, Jeffrey Richard (Bethlehem, PA)

    2001-01-01

    A cyclic process for operating an equilibrium controlled reaction in a plurality of reactors containing an admixture of an adsorbent and a reaction catalyst suitable for performing the desired reaction which is operated in a predetermined timed sequence wherein the heating and cooling requirements in a moving reaction mass transfer zone within each reactor are provided by indirect heat exchange with a fluid capable of phase change at temperatures maintained in each reactor during sorpreaction, depressurization, purging and pressurization steps during each process cycle.

  12. Systematics of pion double charge exchange

    SciTech Connect

    Gilman, R.A.

    1985-10-01

    Differential cross sections have been measured for pion-induced double-charge-exchange (DCX) reactions leading to double-isobaric-analog states (DIAS) and low-lying nonanalog states in the residual nuclei. A description of the experimental details and data analysis is presented. The experimentally observed systematics of reactions leading to DIAS, to nonanalog ground states, and to low-lying 2 states are described. Lowest-order optical-model calculations of DIAS DCX are compared to the data. Efforts to understand the anomalies by invoking additional reaction-mechanism amplitudes and a higher-order optical potential are described. Calculations of nonanalog DCX reactions leading to J/sup / = 0 states were performed within a distorted-wave impulse-approximation framework. The sensitivities of these calculations to input parameters are discussed. 58 refs., 41 figs., 16 tabs.

  13. Heat and mass exchanger

    DOEpatents

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  14. Heat and mass exchanger

    DOEpatents

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  15. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  16. Cryptographic Securities Exchanges

    NASA Astrophysics Data System (ADS)

    Thorpe, Christopher; Parkes, David C.

    While transparency in financial markets should enhance liquidity, its exploitation by unethical and parasitic traders discourages others from fully embracing disclosure of their own information. Traders exploit both the private information in upstairs markets used to trade large orders outside traditional exchanges and the public information present in exchanges' quoted limit order books. Using homomorphic cryptographic protocols, market designers can create "partially transparent" markets in which every matched trade is provably correct and only beneficial information is revealed. In a cryptographic securities exchange, market operators can hide information to prevent its exploitation, and still prove facts about the hidden information such as bid/ask spread or market depth.

  17. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1991-10-16

    This progress report is for the September--October 1991 quarter. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  18. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  19. 75 FR 34186 - Self-Regulatory Organizations; BATS Exchange, Inc.; EDGA Exchange, Inc.; EDGX Exchange, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ...; New York Stock Exchange LLC; NYSE Amex LLC; NYSE Arca, Inc.; The NASDAQ Stock Market LLC; Chicago Stock Exchange, Inc.; National Stock Exchange, Inc.; Chicago Board Options Exchange, Incorporated; Order... (``ISE''),\\1\\ New York Stock Exchange LLC (``NYSE''), NYSE Amex LLC (``NYSEAmex''), NYSE Arca,...

  20. 76 FR 25774 - Determination of Foreign Exchange Swaps and Foreign Exchange Forwards Under the Commodity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... Determination of Foreign Exchange Swaps and Foreign Exchange Forwards Under the Commodity Exchange Act AGENCY... written determination exempting foreign exchange swaps, foreign exchange forwards, or both, from the... both foreign exchange swaps and foreign exchange forwards from the definition of......

  1. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  2. Understanding heat exchanger systems

    SciTech Connect

    Hughes, B.

    1997-04-01

    Many of the complaints heard about steam heat exchangers--water hammer, corrosion, and freezing--often are not caused by the unit itself but, rather, are problems within the system. Diagnosing and overcoming problems in existing systems or designing new ones properly requires a thorough understanding not only of the heat exchanger, but all of the components that make up the overall system. Many types of heat exchangers are available today (shell-and-tube, plate-and-frame, coil, tank heaters, and plate coils). The same basic principles and similar controls apply to all. Although the examples in this article consider the shell-and-tube style, the concepts apply to all types of steam heat exchangers.

  3. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1992-07-01

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with 'conventional' microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  4. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1990-12-01

    Doty Scientific (DSI) believes their microtube-strip heat exchanger will contribute significantly to the following: (1) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (2) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (3) high-efficiency cryogenic gas separation schemes for CO2 removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98 percent and relative pressure drops below 0.1 percent with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8 to 10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means.

  5. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1992-07-09

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with conventional'' microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  6. Proton channels and exchangers in cancer.

    PubMed

    Spugnini, Enrico Pierluigi; Sonveaux, Pierre; Stock, Christian; Perez-Sayans, Mario; De Milito, Angelo; Avnet, Sofia; Garcìa, Abel Garcìa; Harguindey, Salvador; Fais, Stefano

    2015-10-01

    Although cancer is characterized by an intratumoral genetic heterogeneity, a totally deranged pH control is a common feature of most cancer histotypes. Major determinants of aberrant pH gradient in cancer are proton exchangers and transporters, including V-ATPase, Na+/H+ exchanger (NHE), monocarboxylate transporters (MCTs) and carbonic anhydrases (CAs). Thanks to the activity of these proton transporters and exchangers, cancer becomes isolated and/or protected not only from the body reaction against the growing tumor, but also from the vast majority of drugs that when protonated into the acidic tumor microenvironment do not enter into cancer cells. Proton transporters and exchangers represent a key feature tumor cells use to survive in the very hostile microenvironmental conditions that they create and maintain. Detoxifying mechanisms may thus represent both a key survival option and a selection outcome for cells that behave as unicellular microorganisms rather than belonging to an organ, compartment or body. It is, in fact, typical of malignant tumors that, after a clinically measurable yet transient initial response to a therapy, resistant tumor clones emerge and proliferate, thus bursting a more malignant behavior and rapid tumor progression. This review critically presents the background of a novel and efficient approach that aims to fight cancer through blocking or inhibiting well characterized proton exchangers and transporters active in human cancer cells. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. PMID:25449995

  7. A degradable polydopamine coating based on disulfide-exchange reaction

    NASA Astrophysics Data System (ADS)

    Hong, Daewha; Lee, Hojae; Kim, Beom Jin; Park, Taegyun; Choi, Ji Yu; Park, Matthew; Lee, Juno; Cho, Hyeoncheol; Hong, Seok-Pyo; Yang, Sung Ho; Jung, Sun Ho; Ko, Sung-Bo; Choi, Insung S.

    2015-11-01

    Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies.Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies. Electronic supplementary information (ESI) available: Synthesis, characterization, and other additional details. See DOI: 10.1039/c5nr06460k

  8. A degradable polydopamine coating based on disulfide-exchange reaction.

    PubMed

    Hong, Daewha; Lee, Hojae; Kim, Beom Jin; Park, Taegyun; Choi, Ji Yu; Park, Matthew; Lee, Juno; Cho, Hyeoncheol; Hong, Seok-Pyo; Yang, Sung Ho; Jung, Sun Ho; Ko, Sung-Bo; Choi, Insung S

    2015-12-21

    Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies. PMID:26572596

  9. Systematics in pion double charge exchange

    NASA Astrophysics Data System (ADS)

    Greene, S. J.; Braithwaite, W. J.; Holtkamp, D. B.; Cottingame, W. B.; Moore, C. F.; Burleson, G. R.; Blanpied, G. S.; Viescas, A. J.; Daw, G. H.; Morris, C. L.; Thiessen, H. A.

    1982-02-01

    The initial results of a systematic investigation into pion-double-charge-exchange reactions are reported. Data consisting of angular distributions and excitation functions have been measured in an effort to determine the reaction mechanism and understand its implications for nuclear physics. Cross sections are presented for (?+,?-) reactions on 9Be 12,13C, 16,18O, 24,26Mg, 32S, and 209Bi. Surprising systematics of the reaction as functions of pion scattering angle and energy, as well as target mass and isospin, are revealed. The data are discussed in terms of two reaction models, one involving a higher-order optical potential and the other involving multiple reaction amplitudes. NUCLEAR REACTIONS 9Be, 12,13C, 16,18O, 24,26Mg, 32S, 209Bi (?+,?-), E=100-300 MeV, ?=5-33 measured ?(E?,A), double analog and nonanalog transitions; discuss second-order optical model, deduce two-amplitude model.

  10. Vacuum powered heat exchanger

    SciTech Connect

    Ruffolo, R.F.

    1986-06-24

    In an internal combustion engine including an oil lubrication system, a liquid cooling system, and an improved air intake system is described. The improved air intake system comprises: a housing including a first opening in one end, which opening is open to the atmosphere and a second opening comprising an air outlet opening in the other end open to the air intake manifold of the engine, a heat exchanger positioned in the first opening. The heat exchanger consists of a series of coils positioned in the flow path of the atmospheric air as it enters the housing, the heat exchanger being fluidly connected to either the engine lubrication system or the cooling system to provide a warm heat source for the incoming air to the housing, acceleration means positioned in the housing downstream of the heat exchanger, the acceleration means comprising a honeycomb structure positioned across the air intake flow path. The honey-comb structure includes a multitude of honey combed mini-venturi cells through which the heated air flows in an accelerated mode, a removable air filter positioned between the heat exchanger and the acceleration means and a single opening provided in the housing through which the air filter can be passed and removed, and additional openings in the housing positioned downstream of the heat exchanger and upstream of the air filter, the additional openings including removable flaps for opening and closing the openings to control the temperature of the air flowing through the housing.

  11. Radial flow heat exchanger

    DOEpatents

    Valenzuela, Javier (Hanover, NH)

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  12. Computing in mammalian cells with nucleic acid strand exchange

    NASA Astrophysics Data System (ADS)

    Groves, Benjamin; Chen, Yuan-Jyue; Zurla, Chiara; Pochekailov, Sergii; Kirschman, Jonathan L.; Santangelo, Philip J.; Seelig, Georg

    2016-03-01

    DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacement and exchange reactions to mammalian cells and report DNA circuitry that can directly interact with a native mRNA. We began by optimizing the cellular performance of fluorescent reporters based on four-way strand exchange reactions and identified robust design principles by systematically varying the molecular structure, chemistry and delivery method. Next, we developed and tested AND and OR logic gates based on four-way strand exchange, demonstrating the feasibility of multi-input logic. Finally, we established that functional siRNA could be activated through strand exchange, and used native mRNA as programmable scaffolds for co-localizing gates and visualizing their operation with subcellular resolution.

  13. Downhole heat exchangers

    SciTech Connect

    Culver, G.; Lund, J.W.

    1999-09-01

    The downhole heat exchanger (DHE) eliminates the problem of disposal of geothermal fluid, since only heat is taken from the well. The exchanger consists of a system of pipes or tubes suspended in the well through which clean secondary water is pumped or allowed to circulate by natural convection. These systems offer substantial economic savings over surface heat exchangers where a single-well system is adequate (typically less than 0.8 MWt, with well depths up to about 500 ft) and may be economical under certain conditions at well depths to 1500 ft. Several designs have proven successful; but, the most popular are a simple hairpin loop or multiple loops of iron pipe (similar to the tubes in a U-tube and shell exchanger) extending to near the well bottom. An experimental design consisting of multiple small tubes with headers at each end suspended just below the water surface appears to offer economic and heating capacity advantages. The paper describes design and construction details and New Zealand`s experience with downhole heat exchangers.

  14. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-02-28

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein.

  15. Understand spiral heat exchangers

    SciTech Connect

    Bailey, K.M.

    1994-05-01

    Shell-and-tube heat exchangers are standard in most chemical process industries (CPI) applications. However, they do have limitations related to thermal efficiency, mechanical design, and maintenance requirements that will not allow the standard straight-tube fixed-tubesheet shell-and-tube (S and T) heat exchanger to work properly in certain applications. It is in these problem areas that spiral heat exchangers (SHEs) have been used successfully worldwide for over 60 years. The SHE can be a viable alternative to the complex and often expensive shell-and-tube heat exchanger. The SHEs' unique spiral countercurrent monochannel design gives them exceptionally high heat-transfer rates and low fouling tendencies. The mechanical configuration of the SHE also allows full access to all heat-transfer surfaces for simplified inspection, maintenance, and cleaning. This article describes how SHEs operate, discusses their advantages in terms of thermal efficiency, fouling, mechanical design, and maintenance characteristics, and provides guidance on choosing between spiral and tubular exchangers.

  16. Heterophase ligand exchange and metal transfer between monolayer protected clusters.

    PubMed

    Song, Yang; Huang, Tao; Murray, Royce W

    2003-09-24

    This paper describes reactions in which ligands are exchanged and metals are transferred between monolayer-protected metal clusters (MPCs) that are in different phases (heterophase exchange) or are in the same phase. For example, contact of toluene solutions of alkanethiolate-coated gold MPCs with aqueous solutions of tiopronin-coated gold MPCs yields toluene-phase MPCs that have some tiopronin ligands and aqueous-phase MPCs that have some alkanethiolate ligands. In a second example, heterophase transfer reactions occur between toluene solutions of alkanethiolate-coated gold MPCs and aqueous solutions of tiopronin-coated silver MPCs, in which tiopronin ligands are transferred to the former and gold metal to the latter phase. These ligand and metal exchange reactions are inhibited when conducted under N(2). The results implicate participation of an oxidized form of Au (such as a Au(I) thiolate, Au(I)-SR) as both a ligand and metal carrier in the exchange reactions. Au(I)-SR is demonstrated to be an exchange catalyst. PMID:13129374

  17. Equilibrious Strand Exchange Promoted by DNA Conformational Switching

    NASA Astrophysics Data System (ADS)

    Wu, Zhiguo; Xie, Xiao; Li, Puzhen; Zhao, Jiayi; Huang, Lili; Zhou, Xiang

    2013-01-01

    Most of DNA strand exchange reactions in vitro are based on toehold strategy which is generally nonequilibrium, and intracellular strand exchange mediated by proteins shows little sequence specificity. Herein, a new strand exchange promoted by equilibrious DNA conformational switching is verified. Duplexes containing c-myc sequence which is potentially converted into G-quadruplex are designed in this strategy. The dynamic equilibrium between duplex and G4-DNA is response to the specific exchange of homologous single-stranded DNA (ssDNA). The SER is enzyme free and sequence specific. No ATP is needed and the displaced ssDNAs are identical to the homologous ssDNAs. The SER products and exchange kenetics are analyzed by PAGE and the RecA mediated SER is performed as the contrast. This SER is a new feature of G4-DNAs and a novel strategy to utilize the dynamic equilibrium of DNA conformations.

  18. Equilibrious Strand Exchange Promoted by DNA Conformational Switching

    PubMed Central

    Wu, Zhiguo; Xie, Xiao; Li, Puzhen; Zhao, Jiayi; Huang, Lili; Zhou, Xiang

    2013-01-01

    Most of DNA strand exchange reactions in vitro are based on toehold strategy which is generally nonequilibrium, and intracellular strand exchange mediated by proteins shows little sequence specificity. Herein, a new strand exchange promoted by equilibrious DNA conformational switching is verified. Duplexes containing c-myc sequence which is potentially converted into G-quadruplex are designed in this strategy. The dynamic equilibrium between duplex and G4-DNA is response to the specific exchange of homologous single-stranded DNA (ssDNA). The SER is enzyme free and sequence specific. No ATP is needed and the displaced ssDNAs are identical to the homologous ssDNAs. The SER products and exchange kenetics are analyzed by PAGE and the RecA mediated SER is performed as the contrast. This SER is a new feature of G4-DNAs and a novel strategy to utilize the dynamic equilibrium of DNA conformations. PMID:23350029

  19. Heat exchanger for fuel cell power plant reformer

    DOEpatents

    Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  20. Microscopic theory of cation exchange in CdSe nanocrystals.

    PubMed

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag. PMID:25375732

  1. Water exchange dynamics around H3O+ and OH- ions

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Dang, Liem X.

    2015-05-01

    In this letter, we report the first computer simulation of the dynamics of water exchanging between the first and second solvation shells of H3O+. Employing different rate theories for chemical reactions such as the transition state theory, the Grote-Hynes theory, the reactive flux method, and the Impey-Madden-McDonald method, we calculate the solvent exchange rates from molecular dynamics simulations that account for explicit polarization effects. In addition, we also study water exchanges around OH- and find that the corresponding time scale is much smaller than that for H3O+.

  2. Energy absorber for sodium-heated heat exchanger

    DOEpatents

    Essebaggers, J.

    1975-12-01

    A heat exchanger is described in which water-carrying tubes are heated by liquid sodium and in which the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes is minimized. An energy absorbing chamber contains a compressible gas and is connected to the body of flowing sodium by a channel so that, in the event of a sodium-water reaction, products of the reaction will partially fill the energy absorbing chamber to attenuate the rise in pressure within the heat exchanger.

  3. Microgravity condensing heat exchanger

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  4. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  5. Determination of the cation-exchange capacity of muscovite mica

    SciTech Connect

    Osman, M.A.; Suter, U.W.

    2000-04-01

    High cation-exchange capacity (CEC) muscovite mica with a homoionic surface was prepared by replacing the Li{sup +} surface ions of partially delaminated Li-mica with K{sup +}. The CEC of this K-mica was determined by exchanging its surface cations with Cs{sup +}, NH{sub 4}{sup +}, methylene blue (MB{sup +}), and copper triethylenetetramine [Cu(trien){sup 2+}]. The kinetics of these exchange reactions were studied and showed large differences depending on their relative affinities to mica. The NH{sub 4}{sup +}/K{sup +} exchange was slow, while the Cs{sup +} and Cu(trien){sup 2+}/K{sup +} exchange was fast. The MB{sup +}/K{sup +} exchange was quite slow and was not completed even after 99 h. Insufficient reaction time is one of the main reasons for the contradictory results reported in the literature for the CEC of aluminosilicates obtained by different methods. The CEC of mica can be photometrically measured by exchanging its surface cations with Cu(trien){sup 2+}.

  6. Polyneutrons as agents for cold nuclear reactions

    SciTech Connect

    Fisher, J.C. )

    1992-12-01

    In this paper new nuclear reactions are described where polyneutrons exchange neutron pairs with charged nuclides, liberating substantial energy with only minor production of neutrons and tritium. It is postulated that polyneutrons are bound in a totally paired collective phase analogous to the Bardeen-Cooper-Schrieffer superconducting phase, that massive precursor hydrogen nuclides are bound in the same collective phase, and the polyneutrons are generated from precursor hydrogen by reaction with neutrons. The concentration and disposition of precursor hydrogen, of lithium, and of neutron-moderating and neutron-absorbing materials in the reactor environment emerge as key variables in cold nuclear reaction processes.

  7. Alert Exchange Process Protocol

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2015-01-01

    The National Aeronautics and Space Administration of the United States of America (NASA), and the European Space Agency (ESA), and the Japanese Aerospace Exploration Agency (JAXA), acknowledging that NASA, ESA and JAXA have a mutual interest in exchanging Alerts and Alert Status Lists to enhance the information base for each system participant while fortifying the general level of cooperation between the policy agreement subscribers, and each Party will exchange Alert listings on regular basis and detailed Alert information on a need to know basis to the extent permitted by law.

  8. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  9. Heat exchanger panel

    NASA Technical Reports Server (NTRS)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)

    2005-01-01

    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  10. Heat exchanger support

    SciTech Connect

    McDonald, D.K.; Weitzel, P.S.

    1988-09-13

    This patent describes a support structure for in-bed heat exchanger tubes of a fluidzed bed boiler having wall means defining a fluidized bed region and a freeboard region above the fluidized bed region, the wall means including tubular means disposed near a transition zone between the fluidized bed and freeboard regions, the structure comprising support tubes having opposite ends extending respectively through the wall means and over the tubular means for support thereby, each support tube having at least one upright portion disposed in the fluidized bed region, and at least one heat exchanger tube being supportingly secured to the upright portion.

  11. Nuclear reactor exchanger

    SciTech Connect

    Doublet, P.; Jullien, G.

    1983-03-22

    Nuclear reactor exchanger which assures the transfer of heat between two streams of coolant sodium. It includes an outlet connector which channels coolant sodium leaving a bundle of exchanger tubes traversed on the inside by the sodium and immersed externally in coolant sodium, and an inner tubular jacket forming a surface of revolution about a vertical axis and an outer tubular jacket. The wall of the inner jacket has a folded portion distinguished by at least one flank in the form of a crown.

  12. Deuterium Exchange in the Systems of H2O+/H2O and H3O+/H2O

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Sen, A. D.

    1995-01-01

    Using tandem mass spectrometry various water ion interactions were observed. These reactions consisted of a series of charge transfer, proton transfer, and isotopic exchange steps. The experimental data sets consist of variations of ion abundances over a neutral pressure range. An expected sequence of isotopic exchange reactions is given along with differential equation solutions & reaction rate data.

  13. Gas exchange measurements in natural systems

    SciTech Connect

    Broecker, W.S.; Peng, T.H.

    1983-01-01

    Direct knowledge of the rates of gas exchange in lakes and the ocean is based almost entirely on measurements of the isotopes /sup 14/C, /sup 222/Rn and /sup 3/He. The distribution of natural radiocarbon has yielded the average rate of CO/sub 2/ exchange for the ocean and for several closed basin lakes. That of bomb produced radiocarbon has been used in the same systems. The /sup 222/Rn to /sup 226/Ra ratio in open ocean surface water has been used to give local short term gas exchange rates. The radon method generally cannot be used in lakes, rivers, estuaries or shelf areas because of the input of radon from sediments. A few attempts have been made to use the excess /sup 3/He produced by decay of bomb produced tritium in lakes to give gas transfer rates. The uncertainty in the molecular diffusivity of helium and in the diffusivity dependence of the rate of gas transfer holds back the application of this method. A few attempts have been made to enrich the surface waters of small lakes with /sup 226/Ra and /sup 3/H in order to allow the use of the /sup 222/Rn and /sup 3/He methods. While these studies give broadly concordant results, many questions remain unanswered. The wind velocity dependence of gas exchange rate has yet to be established in field studies. The dependence of gas exchange rate on molecular diffusivity also remains in limbo. Finally, the degree of enhancement of CO/sub 2/ exchange through chemical reactions has been only partially explored. 49 references, 2 figures, 2 tables.

  14. Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.

    2003-01-01

    Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.

  15. Anion-exchange mechanisms in bacteria.

    PubMed Central

    Maloney, P C; Ambudkar, S V; Anatharam, V; Sonna, L A; Varadhachary, A

    1990-01-01

    This article discusses the physiological, biochemical, and molecular properties of bacterial anion-exchange reactions, with a particular focus on a family of phosphate (Pi)-linked antiporters that accept as their primary substrates sugar phosphates such as glucose 6-phosphate (G6P), mannose 6-phosphate, or glycerol 3-phosphate. Pi-linked antiporters may be found in both gram-positive and gram-negative cells. As their name suggests, these exchange proteins accept both inorganic and organic phosphates, but the two classes of substrate interact very differently with the protein. Thus, Pi is always accepted with a relatively low affinity, and when it participates in exchange, it is always taken as the monovalent anion. By contrast, when the high-affinity organic phosphates are used, these same systems fail to discriminate between monovalent and divalent forms. Tests of heterologous exchange (e.g., Pi: G6P) indicate that these proteins have a bifunctional active site that accepts a pair of negative charges, whether as two monovalent anions or as a single divalent anion. For this reason, exchange stoichiometry moves between limits of 2:1 and 2:2, according to the ratio of mono- and divalent substrates at either membrane surface. Since G6P has a pK2 within the physiological range (pK of 6.1), this predicts a novel reaction sequence in vivo because internal pH is more alkaline than external pH. Accordingly, one expects an asymmetric exchange as two monovalent G6P anions from the relatively acidic exterior move against a single divalent G6P from the alkaline interior. In this way an otherwise futile self-exchange of G6P can be biased towards a net inward flux driven (indirectly) by the pH gradient. Despite the biochemical complexity exhibited by Pi-linked antiporters, they resemble all other secondary carriers at a molecular level and show a likely topology in which two sets of six transmembrane alpha-helices are connected by a central hydrophilic loop. Speculations on the derivation of this common form suggest a limited number of structural models to accommodate such proteins. Three such models are presented. PMID:2181257

  16. Operationally efficient reaction controls system

    NASA Astrophysics Data System (ADS)

    Fanciullo, Thomas J.; Judd, D. C.

    1993-06-01

    The development of the first flight demonstration of a reaction controls system utilizing O2/H2 propellants is reported. The pressure fed system uses four 500 lbf thrusters and a regulated propellant supply; composite overwrapped propellant tanks and mechanical regulators are used in conjunction with thruster modules containing all the electronics. The discussion covers a general description of the O2/H2 system and its main components, including thrusters, heat exchangers, electronic regulators, gas generators, and turbopump; controls and health monitoring; and systems performance and operations.

  17. Dynamics and extent of ligand exchange depend on electronic charge of metal nanoparticles.

    PubMed

    Song, Yang; Murray, Royce W

    2002-06-19

    Both the rate and extent of ligand place exchange reactions between the hexanethiolate monolayer of Au(140) monolayer protected clusters (C6 MPCs) and dissolved 6-mercapto-1-hexanol thiol (HOC6SH) increase with increasing positive electronic charge on the Au cluster core. The rate constant of the ligand place exchange, taken at the early stage of the exchange, is increased by ca. 2-fold for reaction of +3 charged Au(140) cores as compared to neutral ones. The initially exchanged ligands are thought to reside mainly on edge and vertex sites of the Au(140) core, where the lability of the slightly more ionic Au[bond]S bonds there becomes further enhanced by removing electrons from the core. The reactions slow markedly after 35-50% of the original ligands have been replaced, continuing at a much slower pace for some time to reach an apparent reaction equilibrium. On +2 charged Au(140) cores, 85% of the C6 ligands have been exchanged with HOC(6)H(12)SH after 20 h. The slower phase of the reaction includes exchange of thiolate ligands on terrace lattice sites most of which--owing to the small sizes of the nanoparticle's Au(111) faces--are no more than one Au atom row removed from the nanoparticle edge sites. This slower exchange, the extent of which is also enhanced by positively charging the core, occurs either by intramolecular place exchange with edge sites that subsequently place-exchange with solution thiol or by direct place-exchange with solution thiol. Acid-base studies show that thiolate is more reactive in place exchange reactions than the corresponding thiol. PMID:12059234

  18. Nature's Heat Exchangers.

    ERIC Educational Resources Information Center

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  19. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1991-04-02

    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchangers. The team has begun a heat exchanger stress analysis, however they have been concentrating the bulk of their analytical energies on a CFD model to determine the location and magnitude of shell-side flow maldistribution which decreases heat exchanger effectiveness. DSI received 120 fineblanked tubestrips from Southern Fineblanking (SFB) for manufacturing process development. Both SFB and NIST provided inspection reports of the tubestrips. DSI completed the tooling required to encapsulate a tube array and press tubestrips on the array. Pressing the tubestrips on tube arrays showed design deficiencies both in the tubestrip design and the tooling design. DSI has a number of revisions in process to correct these deficiencies. The research effort has identified a more economical fusible alloy for encapsulating the tube array, and determined the parameters required to successfully encapsulate the tube array with the new alloy. A more compact MTS heat exchanger bank was designed. 1 ref., 4 figs.

  20. Higher Education Exchange, 2009

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2009-01-01

    This volume begins with an essay by Noelle McAfee, a contributor who is familiar to readers of Higher Education Exchange (HEX). She reiterates Kettering's president David Mathews' argument regarding the disconnect between higher education's sense of engagement and the public's sense of engagement, and suggests a way around the epistemological

  1. Higher Education Exchange 2006

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2006-01-01

    Contributors to this issue of the Higher Education Exchange debate the issues around knowledge production, discuss the acquisition of deliberative skills for democracy, and examine how higher education prepares, or does not prepare, students for citizenship roles. Articles include: (1) "Foreword" (Deborah Witte); (2) "Knowledge, Judgment and

  2. Chimney heat exchanger

    SciTech Connect

    Whiteley, I.C.

    1981-09-01

    A heat exchanger for installation on the top of a chimney of a building includes a housing having a lower end receiving the top of the chimney and an upper end with openings permitting the escape of effluent from the chimney and a heat exchanger assembly disposed in the housing including a central chamber and a spirally arranged duct network defining an effluent spiral path between the top of the chimney and the central chamber and a fresh air spiral path between an inlet disposed at the lower end of the housing and the central chamber, the effluent and fresh air spiral paths being in heat exchange relationship such that air passing through the fresh air spiral path is heated by hot effluent gases passing upward through the chimney and the effluent spiral path for use in heating the building. A pollution trap can be disposed in the central chamber of the heat exchanger assembly for removing pollutants from the effluent, the pollution trap including a rotating cage carrying pumice stones for absorbing pollutants from the effluent with the surface of the pumice gradually ground off to reveal fresh stone as the cage rotates.

  3. Visiting Scholar Exchange Reports.

    ERIC Educational Resources Information Center

    Rubin, Kyna, Ed.

    1986-01-01

    Provides reports of four United States scholars who visited China as part of the Visiting Scholar Exchange Program. The titles of the reports are (1) "China Journey: A Political Scientist's Look at Yan'an," (2) "The Social Consequences of Land Reclamation in Chinese Coastal Ecosystems," (3) "Anthropology Lectures in South China," and (4) "The Use…

  4. Research Exchange, 2002.

    ERIC Educational Resources Information Center

    Research Exchange, 2002

    2002-01-01

    These three issues of the "Research Exchange" focus on how better to conduct disability research and disseminate research results. The first issue examines the topic of human subject/human research participant protection, with a focus on research funded through the National Institute on Disability and Rehabilitation Research (NIDRR). It provides

  5. Visiting Scholar Exchange Reports.

    ERIC Educational Resources Information Center

    Rubin, Kyna, Ed.

    1986-01-01

    Provides reports of four United States scholars who visited China as part of the Visiting Scholar Exchange Program. The titles of the reports are (1) "China Journey: A Political Scientist's Look at Yan'an," (2) "The Social Consequences of Land Reclamation in Chinese Coastal Ecosystems," (3) "Anthropology Lectures in South China," and (4) "The Use

  6. Currency Exchange Rates.

    ERIC Educational Resources Information Center

    Siler, Carl R.

    This curriculum unit of the Muncie (Indiana) Southside High School is to simulate the dynamics of foreign currency exchange rates from the perspectives of: (1) a major U.S. corporation, ABB Power T & D Company, Inc., of Muncie, Indiana, a manufacturer of large power transformers for the domestic and foreign markets; and (2) individual consumers…

  7. Higher Education Exchange

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2009-01-01

    This volume begins with an essay by Noelle McAfee, a contributor who is familiar to readers of Higher Education Exchange (HEX). She reiterates Mathews' argument regarding the disconnect between higher education's sense of engagement and the public's sense of engagement, and suggests a way around the epistemological conundrum of "knowledge produced…

  8. Higher Education Exchange, 2014

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2014-01-01

    Research shows that not only does higher education not see the public; when the public, in turn, looks at higher education, it sees mostly malaise, inefficiencies, expense, and unfulfilled promises. Yet, the contributors to this issue of the "Higher Education Exchange" tell of bright spots in higher education where experiments in working

  9. Technology Performance Exchange

    SciTech Connect

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  10. Chemical exchange program analysis.

    SciTech Connect

    Waffelaert, Pascale

    2007-09-01

    As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

  11. Electron self-exchange in hemoglobins revealed by deutero-hemin substitution.

    PubMed

    Athwal, Navjot Singh; Alagurajan, Jagannathan; Sturms, Ryan; Fulton, D Bruce; Andreotti, Amy H; Hargrove, Mark S

    2015-09-01

    Hemoglobins (phytoglobins) from rice plants (nsHb1) and from the cyanobacterium Synechocystis (PCC 6803) (SynHb) can reduce hydroxylamine with two electrons to form ammonium. The reaction requires intermolecular electron transfer between protein molecules, and rapid electron self-exchange might play a role in distinguishing these hemoglobins from others with slower reaction rates, such as myoglobin. A relatively rapid electron self-exchange rate constant has been measured for SynHb by NMR, but the rate constant for myoglobin is equivocal and a value for nsHb1 has not yet been measured. Here we report electron self-exchange rate constants for nsHb1 and Mb as a test of their role in hydroxylamine reduction. These proteins are not suitable for analysis by NMR ZZ exchange, so a method was developed that uses cross-reactions between each hemoglobin and its deutero-hemin substituted counterpart. The resulting electron transfer is between identical proteins with low driving forces and thus closely approximates true electron self-exchange. The reactions can be monitored spectrally due to the distinct spectra of the prosthetic groups, and from this electron self-exchange rate constants of 880 (SynHb), 2900 (nsHb1), and 0.05M(-1)s(-1) (Mb) have been measured for each hemoglobin. Calculations of cross-reactions using these values accurately predict hydroxylamine reduction rates for each protein, suggesting that electron self-exchange plays an important role in the reaction. PMID:26141377

  12. Counterflow Regolith Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  13. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  14. Exam Question Exchange.

    ERIC Educational Resources Information Center

    Alexander, John J.

    1980-01-01

    Provides exam questions and solutions for a problem in amplification sequence of reactions, and a problem in applying group theory techniques and making spectral assignments and structural determination by qualitative arguments in the bonding in metal complexes. (CS)

  15. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    PubMed

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. PMID:25863634

  16. Oxygen-exchange Pathways in Aluminum Polyoxocations

    SciTech Connect

    Rustad, James R.; Loring, J. S.; Casey, William H.

    2004-07-15

    Using molecular dynamics simulations and electronic structure methods, we postulate a mechanism to explain the complicated reactivity trends that are observed for oxygen isotope exchange reactions between sites in aluminum polyoxocations of the E-Keggin type and bulk solution. Experimentally, the molecules have four nonequivalent oxygens that differ considerably in reactivity both within a molecule, and between molecules in the series: Al13, GaAl12, and GeAl12 [MO4Al12(OH)24(H2O)12 n*(aq); with M=Al(III) for Al13, n=7; M=Ga(III) for GaAl12, n=7; M=Ge(IV) for GeAl12, n=8]. We find that a partly dissociated, metastable intermediate molecule of expanded volume is necessary for exchange of both sets of u2-OH and that the steady-state concentration of this intermediate reflects the bond strengths between the central metal and the u4-O. Thus the central metal exerts extraordinary control over reactions at hydroxyl bridges, although these are three bonds away. This mechanism not only explains the reactivity trends for oxygen isotope exchange in u2-OH and u-OH2 sites in the E-Keggin aluminum molecules, but also explains the observation that the reactivities of minerals tend to reflect the presence of highly coordinated oxygens, such as the u4-O in boehmite, a-, and y-Al2O3 and their Fe(III) analogs. The partial dissociation of these highly coordinated oxygens, coupled with simultaneous activation and displacement of neighboring metal centers, may be a fundamental process by which metals atoms undergo ligand exchanges at mineral surfaces.

  17. Fe atom exchange between aqueous Fe2+ and magnetite.

    PubMed

    Gorski, Christopher A; Handler, Robert M; Beard, Brian L; Pasakarnis, Timothy; Johnson, Clark M; Scherer, Michelle M

    2012-11-20

    The reaction between magnetite and aqueous Fe(2+) has been extensively studied due to its role in contaminant reduction, trace-metal sequestration, and microbial respiration. Previous work has demonstrated that the reaction of Fe(2+) with magnetite (Fe(3)O(4)) results in the structural incorporation of Fe(2+) and an increase in the bulk Fe(2+) content of magnetite. It is unclear, however, whether significant Fe atom exchange occurs between magnetite and aqueous Fe(2+), as has been observed for other Fe oxides. Here, we measured the extent of Fe atom exchange between aqueous Fe(2+) and magnetite by reacting isotopically "normal" magnetite with (57)Fe-enriched aqueous Fe(2+). The extent of Fe atom exchange between magnetite and aqueous Fe(2+) was significant (54-71%), and went well beyond the amount of Fe atoms found at the near surface. Mössbauer spectroscopy of magnetite reacted with (56)Fe(2+) indicate that no preferential exchange of octahedral or tetrahedral sites occurred. Exchange experiments conducted with Co-ferrite (Co(2+)Fe(2)(3+)O(4)) showed little impact of Co substitution on the rate or extent of atom exchange. Bulk electron conduction, as previously invoked to explain Fe atom exchange in goethite, is a possible mechanism, but if it is occurring, conduction does not appear to be the rate-limiting step. The lack of significant impact of Co substitution on the kinetics of Fe atom exchange, and the relatively high diffusion coefficients reported for magnetite suggest that for magnetite, unlike goethite, Fe atom diffusion is a plausible mechanism to explain the rapid rates of Fe atom exchange in magnetite. PMID:22577839

  18. Charge Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Dennerl, Konrad

    2010-12-01

    Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.

  19. Polymethylmethacrylate open tubular ion exchange columns: nondestructive measurement of very small ion exchange capacities.

    PubMed

    Zhang, Min; Yang, Bingcheng; Dasgupta, Purnendu K

    2013-08-20

    We describe an approach to prepare an open tubular ion exchange (OTIE) column by coating a monolayer of anion exchange nanoparticle to a 16-20 ?m bore polymethylmethacrylate (PMMA) capillary. The latex nanoparticle was electrostatically attached to carboxylate groups on the inner wall of capillary, pretreated with strong base for hydrolyzing the ester. Several approaches to nondestructively measure ion exchange capacities (IEC) of the columns were examined: (a) adsorption-desorption of an intensely fluorescent ion, e.g. fluorescein, and off-line fluorometry, (b) loading a weakly retained ion (e.g., IO3(-)), frontal displacement by a strongly bound ion (e.g., Cl(-)), and online optical or conductometric boundary detection, and (c) similar to the above except displacement being accompanied by reaction (e.g., acid-base titration). To our knowledge, this is the first time on-column titration has been used to measure capacities. By using different pH displacer solutions, we demonstrate for the first time the possibility of pKa-differentiated ion exchange capacity measurements. The cation exchange capacity of bare PMMA capillaries was on the order of 1 pequiv/mm(2) with little dependence on time and temperature of hydrolysis conditions. After AS18 latex coating, the strong base anion exchange capacity was on the order of 10 pequiv/mm(2), very close to what would be estimated on the basis of monolayer coverage of the surface by individual latex particles. The latex used contained a significant, additional amount of weak base character, about the same as the strong base ion exchange capacity. PMID:23875750

  20. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  1. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip (Naperville, IL); Alexandratos, Spiro D. (Knoxville, TN); Gatrone, Ralph C. (Naperville, IL); Chiarizia, Ronato (Oak Park, IL)

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  2. Lipid Exchange by Ultracentrifugation.

    PubMed

    Drachmann, Nikolaj Dring; Olesen, Claus

    2016-01-01

    Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipid species with varying aliphatic chain lengths and saturation, and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization of the protein in the presence of a target lipid of interest. PMID:26695050

  3. Serial replica exchange.

    PubMed

    Hagen, Morten; Kim, Byungchan; Liu, Pu; Friesner, Richard A; Berne, B J

    2007-02-15

    Parallel tempering (or the replica exchange method (REM)) is a powerful method for speeding up the sampling of conformational states of systems with rough energy landscapes, like proteins, where stable conformational states can be separated by large energy barriers. The usual implementation of the REM is performed on local computer clusters (or parallel processors) where the different replicas must be run synchronously. Here, we present serial replica exchange (SREM), a method that is equivalent to the standard REM in terms of efficiency yet runs asynchronously on a distributed network of computers. A second advantage is the method's greatly enhanced fault tolerance, which enables the study of biological systems on worldwide distributed computing environments, such as Folding@Home. For proof of concept, we apply the SREM to a single alanine dipeptide molecule in explicit water. We show that the SREM reproduces the thermodynamic and structural properties determined by the REM. PMID:17249714

  4. Serial Replica Exchange

    PubMed Central

    Hagen, Morten; Kim, Byungchan; Liu, Pu; Friesner, Richard A.; Berne, B. J.

    2009-01-01

    Parallel tempering (or the replica exchange method (REM)) is a powerful method for speeding up the sampling of conformational states of systems with rough energy landscapes, like proteins, where stable conformational states can be separated by large energy barriers. The usual implementation of the REM is performed on local computer clusters (or parallel processors) where the different replicas must be run synchronously. Here, we present serial replica exchange (SREM), a method that is equivalent to the standard REM in terms of efficiency yet runs asynchronously on a distributed network of computers. A second advantage is the methods greatly enhanced fault tolerance, which enables the study of biological systems on worldwide distributed computing environments, such as Folding@Home.1 For proof of concept, we apply the SREM to a single alanine dipeptide molecule in explicit water. We show that the SREM reproduces the thermodynamic and structural properties determined by the REM. PMID:17249714

  5. Thermoelectric heat exchange element

    DOEpatents

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  6. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  7. Heat exchange apparatus

    SciTech Connect

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  8. Mechanics of an educational exchange.

    PubMed

    Pearce, C; Korda, E

    2000-08-01

    Rural general practitioners occasionally exchange practices internationally. The process of exchanging is a complicated one, which involves multiple bureaucarcies. Exchanging is not for the anxious or impatient. We exchanged with a family physician in Canada and had to arrange registration, provider numbers and immigration for our Canadian colleague, as well as for ourselves in Canada. In addition, there are many personal details (cars, house, etc.) that must also be sorted out. PMID:11894288

  9. Interference effects in pion double charge exchange

    NASA Astrophysics Data System (ADS)

    Greene, S. J.; Holtkamp, D. B.; Cottingame, W. B.; Moore, C. Fred; Burleson, G. R.; Morris, C. L.; Thiessen, H. A.; Fortune, H. T.

    1982-02-01

    Pion double charge exchange (?+,?-) has been measured using targets of 16O and 18O from 80 to 292 MeV at a laboratory angle of 5. The magnitude and energy dependence of the cross section for the double-analog transition is qualitatively described in terms of a direct double-analog amplitude and a two-step nonanalog amplitude. NUCLEAR REACTIONS 16O(?+,?-)16Ne(g.s.) and 18O(?+,?-)18Ne(g.s.) ?=5, E?=80 to 292 MeV, deduced two amplitude explanation for cross-section variation.

  10. ION-EXCHANGE PROCESSES AND MECHANISMS IN GLASSES

    EPA Science Inventory

    Recent performance assessment calculations of a disposal system at Hanford, Washington for low activity waste glass show that a Na ion-exchange reaction can effectively increase the radionuclide release rate by over a factor of 1000 and so is a major factor that currently limits ...

  11. Dynamic Covalent Chemistry of Nucleophilic Substitution Component Exchange of Quaternary Ammonium Salts.

    PubMed

    Kulchat, Sirinan; Lehn, Jean-Marie

    2015-11-01

    Dynamic covalent libraries (DCLs) of quaternary ammonium cations were set up by reversible nucleophilic substitution (S(N)2' and S(N)2) exchange reactions of ammonium salts and tertiary amines. The reactions were conducted at 60?C to generate thermodynamically and kinetically controlled mixtures of quaternary ammonium compounds and tertiary amines, and were accelerated by using iodide as a nucleophilic catalyst. Microwave irradiation was used to assist the exchange reaction between the pyridinium salts and pyridine derivatives. Finally, experiments towards the generation of dynamic ionic liquids were performed. The results of this study pave the way for the extension of dynamic combinatorial chemistry to nucleophilic substitution reactions. PMID:26213320

  12. AGRICULTURAL EXCHANGE RATE DATA SHEET

    EPA Science Inventory

    The ERS data set contains annual and monthly data for exchange rates important to U.S. agriculture. It includes both nominal and real exchange rates for 80 countries (plus the European Union) as well as real trade-weighted exchange rate indexes for many commodities and aggregatio...

  13. Sorption of iron(III) from chromate solution by the aminocarboxylic ion exchanger ANKB-2

    SciTech Connect

    Stoyanova, O.F.; Izmailova, D.R.; Kurolap, N.S.; Uglyanskaya, V.A.

    1986-12-20

    The possibility of iron(III) sorption by the amphoteric ion exchanger ANKB-2 from chromate solution and its superiority over the cation exchanger KU-23 (10/60) have been demonstrated. By means of IR spectroscopy it has been shown that iron(III) sorption from chromate solution by ANKB-2 proceeds via both ionic and coordination reactions. The proportion of these kinds of reaction does not depend on the Cr(VI) content of the initial solution.

  14. Kinetic theory of oxygen isotopic exchange between minerals and water

    USGS Publications Warehouse

    Criss, R.E.; Gregory, R.T.; Taylor, H.P., Jr.

    1987-01-01

    Kinetic and mass conservation equations are used to describe oxygen isotopic exchange between minerals and water in "closed" and open hydrothermal systems. In cases where n coexisting mineral phases having different reaction rates are present, the exchange process is described by a system of n + 1 simultaneous differential equations consisting of n pseudo first-order rate equations and a conservation of mass equation. The simultaneous solutions to these equations generate curved exchange trajectories on ??-?? plots. Families of such trajectories generated under conditions allowing for different fluid mole fractions, different fluid isotopic compositions, or different fluid flow rates are connected by positive-sloped isochronous lines. These isochrons reproduce the effects observed in hydrothermally exchanged mineral pairs including 1) steep positive slopes, 2) common reversals in the measured fractionation factors (??), and 3) measured fractionations that are highly variable over short distances where no thermal gradient can be geologically demonstrated. ?? 1987.

  15. Isotope exchange between gaseous hydrogen and uranium hydride powder

    NASA Astrophysics Data System (ADS)

    Shugard, Andrew D.; Buffleben, George M.; Johnson, Terry A.; Robinson, David B.

    2014-04-01

    Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ?0.7 ?m diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible.

  16. Emittance and Phase Space Exchange

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2011-08-19

    Alternative chicane-type beam lines are proposed for exact emittance exchange between horizontal phase space (x; x{prime}) and longitudinal phase space (z; {delta}). Methods to achieve exact phase space exchanges, i.e. mapping x to z, x{prime} to {delta}, z to x and {delta} to x{prime} are suggested. Methods to mitigate the thick-lens effect of the transverse cavity on emittance exchange are discussed. Some applications of the phase space exchanger and the feasibility of an emittance exchange experiment with the proposed chicane-type beam line at SLAC are discussed.

  17. Lightweight Long Life Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moore, E. K.

    1976-01-01

    A shuttle orbiter flight configuration aluminum heat exchanger was designed, fabricated, and tested. The heat exchanger utilized aluminum clad titanium composite parting sheets for protection against parting sheet pin hole corrosion. The heat exchanger, which is fully interchangeable with the shuttle condensing heat exchanger, includes slurpers (a means for removing condensed water from the downstream face of the heat exchanger), and both the core air passes and slurpers were hydrophilic coated to enhance wettability. The test program included performance tests which demonstrated the adequacy of the design and confirmed the predicted weight savings.

  18. Catalysis of Photochemical Reactions.

    ERIC Educational Resources Information Center

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  19. Origins of Linear Partitioning in Binary Solutions: the Exchange Coefficient

    NASA Astrophysics Data System (ADS)

    Morse, S. A.

    2006-05-01

    Linear partitioning occurs when, as often in petrologic systems and perhaps always in azeotropes, a straight- line relationship occurs when the partition coefficient D = X1S/X1L is plotted against the solid composition X2S and runs from an intercept value KD at pure (2) to 1.0 at pure (1). The equation is then D = KD*X2S + X1S (Morse 1997, JGeol 105:471; 2000 GCA, 64:2309). The notation KD was taken from its long-standing familiarity in binary solutions (Roeder & Emslie 1970, CMP 29:275) and described as the exchange coefficient (Beattie et al. 1993 GCA 57:1605). But the binary loop is not in itself an exchange equilibrium; it is a transfer equilibrium marching to a different drummer, and that causes a problem (Kretz 2005, CanMin 43:1349). In at least three ways, the binary loop qualifies as an exchange reaction and justifies calling the intercept KD. To the experimentalist this issue never arises. In a perfect liquidus experiment, an infinitesimal mass of liquid is indeed transferred to the crystal. A second bulk composition is then made, and at the new liquidus a second mass transfer occurs. The ensemble of all such perfect partitioning experiments in sufficient number then completely delineates the binary loop without any continuous transfer at changing T having taken place. The partitionings are therefore truly independent of the path. Moreover, each equilibrium pair defines a common tangent in G-X space whose intercept at pure (2) unarguably gives the value of the common chemical potential, a partial Gibbs energy. But where is the exchange reaction? The real experimentalist makes no perfect experiments, and neither does nature. In reality, the barrier to nucleation (particularly formidable in the case of plagioclase) dictates that the crystals nucleate only at some supercooling. They therefore have some composition between the initial solidus and the liquid lying at the bulk composition (BC). Over time the two phases may drift apart by diffusion, the crystal going to the solidus and the liquid going to the liquidus, with evolution of latent heat and a gain in T. The parting of the two compositions is a true exchange reaction, revealed by kinetics. An isothermal exchange reaction occurs in the petrologically important adcumulus growth (Wager et al. 1960, JPet. 1:73; Walker et al. 1985, EOS 66:362). In this process, a porous cumulate becomes solidified by the expulsion of low-melting components in the pore liquid to an infinite reservoir (the main magma) with the concomitant return of refractory components to the crystals, a perfect open-system exchange process involving the complete transit of the local bulk composition from that of the liquid to that of the crystals. Ideally, the exchange operates on a constant G-X tangent and constant chemical potential with constant D and T but with extraction of latent heat to the surroundings. Here again the Gibbs function is described by KD. In metamorphic systems, for a bulk composition between biotite and garnet in the AFM projection, the two phases are in true Fe-Mg exchange as a function of T, following the usual association of KD with T. But when the BC encounters the 3-phase triangle Bi-Gt-Sill, the reaction becomes a transfer reaction, still, however, responding to the linear partitioning principle (Morse 2000). Here the transfer reaction is a limiting case of an exchange reaction. In linear partitioning, the exchange coefficient is a constant anchor for all T, and only D tracks the temperature. The big surprise, of course, is that KD is, in this limiting case, an isothermal function, with consequences explored elsewhere (Morse, 2000).

  20. Compact heat exchangers

    SciTech Connect

    1999-11-01

    This report aims to increase the market penetration of compact heat exchangers (CHEs) in industry by detailing current experience of their use. CHEs are characterized by having a comparatively large amount of surface area in a given volume, compared to traditional heat exchangers, in particular the shell-and-tube type. The most basic CHEs have volumes of less than 50% of that of a comparable shell-and-tube heat exchanger, for a given duty. Some new designs can, under appropriate process conditions, have only 5% of the volume of traditional equivalents. An essential component of many of these compact concepts is heat (and mass) transfer enhancement. This report also details some of the main enhancement methods which are used in the implementation of compact systems. CHEs are of interest for a number of reasons. As well as being, in general, highly efficient, allowing greater amounts of energy to be recovered between process streams, they are more versatile in terms of the number of process streams that can be handled. Some CHEs can handle only two streams. Others can handle four or more with ease. That, coupled with the availability of units to cater for most operating temperatures and pressures, makes them of interest to operators of complex thermal processing plants. Of even greater long-term importance to the process industries is the ability to use CHE manufacturing technology to integrate effective heat transfer with other unit operations, such as reactors, in one unit. This radical approach to process plant design has fostered many exciting concepts for combined unit operations, some of which are discussed in this report. Topics covered are: types of CHE; (2) the role of heat transfer enhancement; (3) benefits and perceived limitations of CHEs; (4) costs; (5) fouling; (6) specification, installation and operating procedures; (7) the new opportunities; and (8) conclusions.

  1. Exam Question Exchange.

    ERIC Educational Resources Information Center

    Alexander, John J., Ed.

    1978-01-01

    Two exam questions are presented. One suitable for advanced undergraduate or beginning graduate courses in organic chemistry, is on equivalent expressions for the description of several pericyclic reactions. The second, for general chemistry students, asks for an estimation of the rate of decay of a million-year-old Uranium-238 sample. (BB)

  2. Process for the exchange of crystalline zeolites

    SciTech Connect

    Lim, J.; Brady, M.; Humphries, A.

    1984-07-10

    This invention relates to exchanging the sodium contained in a crystalline zeolite by partially removing sodium by exchange with another cation, partially drying the exchanged zeolite and re-exchanging the dried zeolite.

  3. Substituent effects on the exchange dynamics of ligands on 1.6 nm diameter gold nanoparticles.

    PubMed

    Donkers, Robert L; Song, Yang; Murray, Royce W

    2004-05-25

    The kinetics of exchange ofphenylethanethiolate ligands (PhC2S) of monolayer-protected clusters (MPCs, average formula Au140(PhC2S)53) by para-substituted arylthiols (p-X-ArSH) are described. 1H NMR measurements of thiol concentrations show that the exchange reaction is initially rapid and gradually slows almost to a standstill. The most labile ligands, exchanging at the shortest reaction times, are thought to be those at defect sites (edges, vertexes) on the nanoparticle core surface. The pseudo-first-order rate constants derived from the first 10% of the exchange reaction profile vary linearly with in-coming arylthiol concentration, meaning that the labile ligands exchange in a second-order process, which is consistent with ligand exchange being an associative process. A linear Hammett relationship with slope p = 0.44 demonstrates a substituent effect in the ligand place exchange reaction, in which the bimolecular rate constants increase for ligands with electron-withdrawing substituents (1.4 x 10-2 and 3.8 x 10(-3) M(-1) s(-1) for X = NO2 and 4-OH, respectively). This is interpreted as the more polar Au-S bonds at the defect sites favoring bonding with more electron deficient sulfur moieties. At longer reaction times, where ligands exchange on nondefect (terrace) as well as defect sites, the extent of ligand exchange is higher for thiols with more electron-donating substituents. The difference between short-time kinetics and longer-time pseudoequilibria is rationalized based on differences in Au-S bonding at defect vs nondefect MPC core sites. The study adds substance to the mechanisms of exchange of protecting ligands on nanoparticles. The scope and limitations of 1H NMR spectroscopy for determining rate data are also discussed. PMID:15969185

  4. Heat exchanger-accumulator

    DOEpatents

    Ecker, Amir L. (Dallas, TX)

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  5. Leprosy type 1 reaction (formerly reversal reaction).

    PubMed

    Naafs, Bernard; van Hees, Colette L M

    2016-01-01

    Nerve damage leading to impairment and permanent disability is the major problem in the course of a leprosy infection. Most of the damage occurs during two types of leprosy reactions, type 1 reaction (T1R) and type 2 reaction (T2R). Timely and adequate treatment may prevent this damage. Particular T1R reactions, however, are often diagnosed too late and are even missed. Clinical symptoms and warning signs are therefore covered, as are the immunology and pathophysiology of nerve damage. The differences between upgrading and downgrading, old terms but still relevant, are explained. Methods to detect reactions and to monitor their treatment are given. Triggering factors, the mechanisms of the reactions, including autoimmunity, and the presence of physical compression are discussed. Treatment over the years is placed in its context, and based on this information a treatment schedule is recommended. PMID:26773622

  6. The Glyoxal Clock Reaction

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D.

    2007-01-01

    Research on the glyoxal clock reaction has led to adaptation of the clock reaction to a general chemistry experiment. This particular reaction is just one of many that used formaldehyde in the past. The kinetics of the glyoxal clock makes the reaction suitable as a general chemistry lab using a Calculator Based Laboratory (CBL) or a LabPro. The…

  7. The Glyoxal Clock Reaction

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D.

    2007-01-01

    Research on the glyoxal clock reaction has led to adaptation of the clock reaction to a general chemistry experiment. This particular reaction is just one of many that used formaldehyde in the past. The kinetics of the glyoxal clock makes the reaction suitable as a general chemistry lab using a Calculator Based Laboratory (CBL) or a LabPro. The

  8. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    SciTech Connect

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-12-18

    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  9. Concerted hydrogen atom exchange between three HF molecules

    NASA Technical Reports Server (NTRS)

    Komornicki, Andrew; Dixon, David A.; Taylor, Peter R.

    1992-01-01

    We have investigated the termolecular reaction involving concerted hydrogen exchange between three HF molecules, with particular emphasis on the effects of correlation at the various stationary points along the reaction. Using an extended basis, we have located the geometries of the stable hydrogen-bonded trimer, which is of C(sub 3h) symmetry, and the transition state for hydrogen exchange, which is of D(sub 3h) symmetry. The energies of the exchange reation were then evaluated at the correlated level, using a large atomic natural orbital basis and correlating all valence electrons. Several correlation treatments were used, namely, configration interaction with single and double excitations, coupled-pair functional, and coupled-cluster methods. We are thus able to measure the effect of accounting for size-extensivity. Zero-point corrections to the correlated level energetics were determined using analytic second derivative techniques at the SCF level. Our best calculations, which include the effects of connected triple excitations in the coupled-cluster procedure, indicate that the trimer is bound by 9 +/- 1 kcal/mol relative to three separate monomers, in excellent agreement with previous estimates. The barrier to concerted hydrogen exchange is 15 kcal/mol above the trimer, or only 4.7 kcal/mol above three separated monomers. Thus the barrier to hydrogen exchange between HF molecules via this termolecular process is very low.

  10. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-12-31

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  11. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  12. Monogroove liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Brown, Richard F. (Inventor); Edelstein, Fred (Inventor)

    1990-01-01

    A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).

  13. The International Power Exchange

    SciTech Connect

    1994-12-31

    The International Power Exchange (IPEX) is an on-line bulletin board enabling utilities and other subscibers to advertise Wholesale Power. Bulk Transmission and Emission Allowances for sale or purchase. IPEX was created in response of the electric utility industry for a 24-hour per day, 7-day per week, computer-based communication system. The system provides instant access to market prices allowing a subscriber to increase their span of of knowledge when needing to buy or sell energy. The IPEX database provides information for trend analysis and other market research activities. IPEX was designed for investor-owned utilities, generation and transmission cooperatives, municipal organizations, and independent power producers. Capabilities and procedures for using the IPEX are discussion in some detail.

  14. Cross-Shelf Exchange.

    PubMed

    Brink, K H

    2016-01-01

    Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress. PMID:26747520

  15. Hybrid Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  16. Cross-Shelf Exchange

    NASA Astrophysics Data System (ADS)

    Brink, K. H.

    2016-01-01

    Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress.

  17. South Atlantic interbasin exchange

    NASA Technical Reports Server (NTRS)

    Rintoul, Stephen Rich

    1991-01-01

    The exchange of mass and heat between the South Atlantic and the neighboring ocean basins was estimated using hydrographic data and inverse methods, in order to gain information on the links between the deep-water formation processes occurring within the Atlantic and the global thermohaline circulation. Results demonstrate that the global thermohaline cell associated with the formation and export of North Atlantic deep water (NADW) is closed primarily by a 'cold water path' in which deep water leaving the Atlantic ultimately returns as intermediate water entering the basin through Drake Passage. This conclusion conflicts with the suggestion by Gordon (1986) that the global thermohaline circulation associated with the formation of NADW is closed primarily by a 'warm water path', in which the export of NADW is compensated by an inflow of warm Indian Ocean thermocline water south of Africa.

  18. Flat plate heat exchangers

    SciTech Connect

    Berringer, R.T.

    1981-09-29

    A lightweight flat plate heat exchanger comprised of two or more essentially parallel flat plates which are formed and arranged to provide fluid flow passages between the plates. New combinations of plastic plates include the usage of transparent plastic foam and honeycomb structures. Improved shapes of flow passages include the usage of flow nozzles, flow diffusers, and jet pumps to increase fluid flow and heat transfer. The invention includes the usage of transparent plastic foam plates which are shaped to concentrate solar energy onto plastic tubes. Clear plastic tubes containing black heat transfer fluid are included. The invention includes the usage of spiral flow channels within plastic foam plates. Six different embodiments of the invention are included. Five of the embodiments could be used as efficient lightweight solar collectors.

  19. [Plasma exchange therapy].

    PubMed

    Mori, Masaaki

    2014-09-01

    By the Kawasaki disease, it is important that treatment is effective before the tenth day of illness when a coronary lesion can occur, and it is a well-known fact that early disappearance of inflammation leads directly to the onset restraint of the coronary lesions. Plasma exchange (PE) removes inflammatory cytokine and chemokines in the blood for Kawasaki disease directly and suppresses the inflammation early. The treatment result of the PE for the IVIG-resistant Kawasaki disease is so good, and if it could be started before particularly coronary lesion develops, we will expect an extremely big effect. In addition, when immunoglobulin therapy, steroid pulse therapy or neutrophilic elastase inhibitor therapy is invalid, we can perform PE therapy with the insurance applica- tion in Japan. PMID:25518418

  20. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (inventors)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  1. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  2. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  3. Exploiting the ion-exchange ability of titanate nanotubes in a model water softening process

    NASA Astrophysics Data System (ADS)

    Madarsz, Dniel; Szenti, Imre; Spi, Andrs; Halsz, Jnos; Kukovecz, kos; Knya, Zoltn

    2014-01-01

    Titanate nanotubes were utilized in Ca2+ and Mg2+ removal in a continuous ion-exchange unit. Three consecutive water softening-regeneration cycles were performed. The highest measured value of the total ion-exchange capacity was 1.2 mmol g-1 which decreased to 0.66 mmol g-1 in the third cycle. The capacity loss was due to the irreversible binding of Ca2+ ions to very strong adsorption sites, while the Mg2+/Na+ exchange was reversible. A relatively fast initial adsorption step and a subsequent slower concentration decrease were the two processes that governed the kinetics of the ion exchange reaction.

  4. Analysis of titanium/carbon steel heat exchanger fire

    SciTech Connect

    Prine, B.A. )

    1992-04-01

    In the past fifteen years two serious titanium fires have occurred at scrap dealer facilities. Both incidents involved the cutting of titanium/carbon steel heat exchangers by scrap metal dealers. This paper reviews the properties of titanium and carbon steel under extreme conditions and the oxy-acetylene cutting process relevant to its potential for initiating titanium fires. The probable modes of propagation involved in these specific incidents are considered. The formation of low melting eutectic mixtures and the Thermite reaction are both felt to contribute to the incident once initiated. Alternate methods of cutting titanium/carbon steel exchangers are discussed.

  5. Preserving local gauge invariance with t -channel Regge exchange

    NASA Astrophysics Data System (ADS)

    Haberzettl, Helmut; Wang, Xiao-Yun; He, Jun

    2015-11-01

    Considering single-meson photo- and electroproduction off a baryon, it is shown how to restore local gauge invariance that was broken by replacing standard Feynman-type meson exchange in the t channel by exchange of a Regge trajectory. This is achieved by constructing a contact current whose four-divergence cancels the gauge-invariance-violating contributions resulting from all states above the base state on the Regge trajectory. To illustrate the procedure, modifications necessary for the process ? +p ?K++?*0 are discussed in some detail. We also provide the general expression for the contact current for an arbitrary reaction.

  6. Preparation of an Ester-Containing Grignard Reagent by Halogen-Metal Exchange

    ERIC Educational Resources Information Center

    Snider, Barry B.

    2015-01-01

    In this experiment, students carry out a halogen-metal exchange reaction of methyl 2-iodobenzoate with isopropylmagnesium chloride in THF at 0°C to afford 2-carbomethoxyphenylmagnesium chloride, which is treated with "p"-methoxybenzaldehyde to give a lactone (phthalide) product. This reaction introduces students to the modern method of…

  7. Preparation of an Ester-Containing Grignard Reagent by Halogen-Metal Exchange

    ERIC Educational Resources Information Center

    Snider, Barry B.

    2015-01-01

    In this experiment, students carry out a halogen-metal exchange reaction of methyl 2-iodobenzoate with isopropylmagnesium chloride in THF at 0C to afford 2-carbomethoxyphenylmagnesium chloride, which is treated with "p"-methoxybenzaldehyde to give a lactone (phthalide) product. This reaction introduces students to the modern method of

  8. The rate of oxygen isotope exchange between nitrate and water

    NASA Astrophysics Data System (ADS)

    Kaneko, Masanori; Poulson, Simon R.

    2013-10-01

    The oxygen isotope exchange rate between nitrate and water was measured at a temperature of 50-80 C and pH -0.6 to 1.1. Oxygen isotope exchange is a first-order reaction, with the exchange rate being strongly affected by both reaction temperature and pH, with increased rates of isotope exchange at higher temperatures and lower pH values. The rate of oxygen isotope exchange under natural conditions is extremely slow, with an estimated half-life for isotope exchange of 5.5 109 years at 25 C and pH 7. The extremely slow rate of oxygen isotope exchange between nitrate and water under typical environmental conditions illustrates that nitrate-?18O signatures (and also nitrate ?17O and ?17O signatures) associated with various nitrate sources, as well as isotope compositions produced by biogeochemical processes, will be preserved. Hence, it is valid to use the value of nitrate-?18O to investigate the sources and biogeochemical behavior of nitrate, in a similar manner to the use of sulfate-?18O signatures to study the sources and biogeochemical behavior of sulfate. Equilibrium oxygen isotope fractionation factors have been determined, although quantification of the nitrate-water equilibrium fractionation factor is not possible due to the presence of nitrate as both protonated (i.e. HNO3) and unprotonated forms (i.e. NO3-) under the experimental conditions, and the difficulty in accurately calculating nitrate speciation in low pH, high ionic strength solutions.

  9. 77 FR 69694 - Determination of Foreign Exchange Swaps and Foreign Exchange Forwards Under the Commodity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... Determination of Foreign Exchange Swaps and Foreign Exchange Forwards Under the Commodity Exchange Act AGENCY... written determination that foreign exchange swaps, foreign exchange forwards, or both, should not be... exchange swaps and foreign exchange forwards from the definition of ``swap,'' in accordance......

  10. Myristate exchange on the Trypanosoma brucei variant surface glycoprotein.

    PubMed Central

    Buxbaum, L U; Milne, K G; Werbovetz, K A; Englund, P T

    1996-01-01

    The glycosyl-phosphatidylinositol (GPI) anchor of the Trypanosoma brucei variant surface glycoprotein (VSG) is unique in having exclusively myristate as its fatty acid component. We previously demonstrated that the myristate specificity is the result of two independent pathways. First, the newly synthesized free GPI, which is not myristoylated, undergoes fatty acid remodeling to replace both its fatty acids with myristate. Second, the myristoylated precursor, glycolipid A, undergoes a myristate exchange reaction, detected by the replacement of unlabeled myristate by [3H]myristate. Remodeling and exchange have different enzymatic properties and apparently occur in different subcellular compartments. We now demonstrate that the GPI anchor linked to VSG is the major substrate for myristate exchange. VSG can be efficiently labeled with [3H]myristate by exchange in the presence of cycloheximide, an inhibitor that prevents new VSG synthesis and thus anchor addition to protein. Not only is newly synthesized VSG subject to exchange, but mature VSG, possibly recycling from the cell surface, also undergoes myristate exchange. Images Fig. 1 Fig. 4 PMID:8577736

  11. Oxo-exchange of gas-phase uranyl, neptunyl, and plutonyl with water and methanol.

    PubMed

    Lucena, Ana F; Odoh, Samuel O; Zhao, Jing; Maralo, Joaquim; Schreckenbach, Georg; Gibson, John K

    2014-02-17

    A challenge in actinide chemistry is activation of the strong bonds in the actinyl ions, AnO2(+) and AnO2(2+), where An = U, Np, or Pu. Actinyl activation in oxo-exchange with water in solution is well established, but the exchange mechanisms are unknown. Gas-phase actinyl oxo-exchange is a means to probe these processes in detail for simple systems, which are amenable to computational modeling. Gas-phase exchange reactions of UO2(+), NpO2(+), PuO2(+), and UO2(2+) with water and methanol were studied by experiment and density functional theory (DFT); reported for the first time are experimental results for UO2(2+) and for methanol exchange, as well as exchange rate constants. Key findings are faster exchange of UO2(2+) versus UO2(+) and faster exchange with methanol versus water; faster exchange of UO2(+) versus PuO2(+) was quantified. Computed potential energy profiles (PEPs) are in accord with the observed kinetics, validating the utility of DFT to model these exchange processes. The seemingly enigmatic result of faster exchange for uranyl, which has the strongest oxo-bonds, may reflect reduced covalency in uranyl as compared with plutonyl. PMID:24484174

  12. Educators Exchange: A Program Evaluation.

    ERIC Educational Resources Information Center

    Armstrong, William B.

    The Educators Exchange Program (EEP) was established under a training and educational exchange agreement reached by California's San Diego Community College District (SDCCD) and the republic of Mexico. In the program, the District provided a 4-week technological training program to faculty at Centros de Capacitacion Tecnologica Industrial…

  13. The NESACS Exchange with Germany

    ERIC Educational Resources Information Center

    Hoffman, Morton Z.; Tanner, Ruth; Strem, Michael

    2007-01-01

    The Northeastern Section of the American Chemical Society (NESACS) is going to host visit to the representatives of the German Chemical Society (GDCh) at their annual exchange program this year. The delegation is expected to spotlight the ACS international effects, in addition to the advantages of the exchange between the two organizations.

  14. EXCHANGE. Volume 9-92

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  15. Exchange Rates and Old People.

    ERIC Educational Resources Information Center

    Dowd, James J.

    1980-01-01

    Extends earlier work on aging as a process of exchange by focusing on the issue of exchange rates and how they are negotiated. Access to power resources declines with age, placing the old person in the position of negotiating from weakness. (Author)

  16. Advances in heat exchanger design

    SciTech Connect

    Shah, R.K.; Pearson, J.T.

    1986-01-01

    This book presents the papers given at a conference on heat exchangers. Topics considered at the conference included an experimental verification of general correlations for single-phase turbulent flow in ribbed tubes, longitudinal laminar flow through isosceles triangular and rectangular rod bundles, and the design of helical-tube multi-start coil heat exchangers.

  17. Technology Performance Exchange (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    This fact sheet, 'The Technology Performance Exchange' will be presented at the ET Summit, held at the Pasadena Convention Center on October 15-17, 2012. The Technology Performance Exchange will be a centralized, Web-based portal for finding and sharing energy performance data for commercial building technologies.

  18. In situ NRA study of hydrogen isotope exchange in self-ion damaged tungsten exposed to neutral atoms

    NASA Astrophysics Data System (ADS)

    Markelj, S.; Zalonik, A.; Schwarz-Selinger, T.; Ogorodnikova, O. V.; Vavpeti?, P.; Pelicon, P.; ?ade, I.

    2016-02-01

    Isotope exchange was studied in-situ by Nuclear Reaction Analysis in the bulk of self-ion damaged tungsten at 600K. Both variations of isotope exchange of H by D and of D by H were measured. The deuterium isothermal desorption was also studied and evaluated in order to be able to resolve the self-desorption from the isotope exchange at 600K. The isotope exchange was also studied on the surface by Elastic Recoil Detection Analysis at 480K and 380K. The exchange mechanism was effective both on the surface and in the bulk of damaged tungsten. A simple model was introduced to describe the exchange efficiency on the surface and in the bulk obtaining the exchange cross sections on the surface and in bulk. In both cases an isotope effect was observed, where the exchange of H atoms by D atoms was more efficient than for the reverse sequence.

  19. The microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.; Hosford, G.; Spitzmesser, J.B. ); Jones, J.D. . School of Engineering Science)

    1991-01-01

    The advantages of designing heat exchangers in the laminar-flow regime are discussed from a theoretical standpoint. It is argued that laminar-flow designs have the advantages of reducing thermodynamic and hydrodynamic irreversibilities, and hence increasing system efficiency. More concretely, laminar-flow heat exchangers are free from the turbulence-induced vibration common in conventional heat exchangers, and can thus offer longer life and greater reliability. The problems of manufacturing heat exchangers suited to laminar flow are discussed. A method of manufacture is outlined that allows compact, modular design. Experience with this method of manufacture is described. Experimental results with a prototype heat exchanger bank are presented: these results show good agreement with theory at moderate levels of effectiveness (75--85%), but fall below predicted values at higher levels. It is argued that this discrepancy results from flow maldistribution. The problem of fouling and flow maldistribution are briefly discussed, and some possible applications are mentioned.

  20. Heat exchanger leakage problem location

    NASA Astrophysics Data System (ADS)

    Hej?k, Ji?; Jcha, Miroslav

    2012-04-01

    Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  1. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  2. Fault-Tolerant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  3. Excitation of giant resonances via direct reactions

    SciTech Connect

    Bertrand, F.E.

    1982-01-01

    Experimental measurements of electric giant multipole resonances are discussed. The parameters of the giant quadrupole resonance are now firmly established by an extensive set of measurements. The GQR is providing a significant influence in other areas of nuclear physics. The monopole resonance has now been established and its observation has provided the first direct measure of the nuclear compressibility. A strong case for the existence of a giant octupole resonance is now being made through a variety of hadron reactions. However, the supply of giant multipole resonances has not been exhausted. The newer techniques such as higher energy proton scattering, charge exchange reactions, heavy-ion scattering and pion reactions offer considerable hope for identifying new resonances during the next few years.

  4. Modular heat exchanger

    DOEpatents

    Giardina, Angelo R. [Marple Township, Delaware County, PA

    1981-03-03

    A shell and tube heat exchanger having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelpiped tube bundle moldules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending therethrough, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattice, each of which is situate d in a plane between the end support members. The intermediate support members constituting the several lattice extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates.

  5. Modular heat exchanger

    DOEpatents

    Giardina, A.R.

    1981-03-03

    A shell and tube heat exchanger is described having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelepiped tube bundle modules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending there through, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattices, each of which is situated in a plane between the end support members. The intermediate support members constituting the several lattices extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates. 12 figs.

  6. Energy-Exchange Project

    SciTech Connect

    Not Available

    1982-04-01

    The purpose of the study was to determine what energy savings can be achieved by coordinating the resources and requirements of two facilities, the 26th Ward Water Pollution Control Plant (WPCP) and a housing development named Starrett City with its own total energy system. It was determined that three energy exchange options were economically and technically feasible. These include: the transfer of digester gas produced at the 26th Ward to the boilers at the Starrett City's total energy plant (TEP); the transfer of hot water heated at the TEP to the 26th Ward for space and process heating; and the transfer of coal effluent waste water from the 26th Ward to the condenser cooling systems at the TEP. Technical information is presented to support the findings. The report addresses those tasks of the statement of work dedicated to data acquisition, analysis, and energy conservation strategies internal to the Starrett City TEP and the community it supplies as well as to the 26th Ward WPCP. (MCW)

  7. Microscale Thermite Reactions.

    ERIC Educational Resources Information Center

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  8. Anaphylaxis-Like Reactions

    MedlinePLUS

    ... Clinical Immunology View full profile Anaphylaxis: Anaphylaxis-Like Reactions When exposed to a foreign substance, some people ... the same as for anaphylaxis. More Anaphylaxis-Like Reactions Information Back to Anaphylaxis Reviewed on 7/12 ...

  9. Allergic reactions (image)

    MedlinePLUS

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  10. Classification of clock reactions.

    PubMed

    Horvth, Attila K; Nagypl, Istvn

    2015-02-23

    Autocatalytic systems are sometimes designated as clock reactions or reactions that exhibit clock behavior. To resolve the recent dispute over the term clock reaction, we describe a new approach to classify systems featuring clock behavior into three distinct groups: substrate-depletive clock reactions, autocatalysis-driven clock reactions, and systems that have pseudo clock behavior. Many of the well-known classical and recently discovered reactions can conveniently be put into these categories. We also provide a convincing argument for classifying some autocatalytic processes as clock reactions, but it does not necessarily mean that all autocatalytic processes should be classified as autocatalysis-driven clock reactions. This classification can be conveniently performed if the kinetic nature of the given system has been completely elucidated and understood. PMID:25425415

  11. Transport of divalent cations: cation exchange capacity of intact xylem vessels.

    PubMed

    Van de Geijn, S C; Petit, C M

    1979-12-01

    The cation exchange capacity of the intact xylem vessels in cut shoots of papyrus (Cyperus papyrus spec.) has been determined. The cation exchange capacity is independent of the cation concentration in the transpiration stream, and is equal for Ca and Co. The high value of the cation exchange capacity (0.6 to 1 x 10(-7) equivalents per square centimeter vessel wall surface) leads to the hypothesis that the porous structure of the vessel wall, and not only the inner vessel wall surface, acts as a cation exchanger.Differences between anion ([(32)P]phosphate, [(45)Ca]EDTA(2-), [(115)Cd(m)]-EDTA(2-)), and cation ([(45)Ca](2+), [(115)Cd(m)](2+)) movement are explained in terms of transport with the transpiration flux or by exchange reactions. The competition between exchange sites and natural or synthetic ligands for the divalent cations is discussed. PMID:16661112

  12. 36 CFR 254.14 - Exchange agreement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Exchange agreement. 254.14 Section 254.14 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LANDOWNERSHIP ADJUSTMENTS Land Exchanges 254.14 Exchange agreement. (a) The parties to a proposed exchange may enter into an exchange agreement subsequent...

  13. 76 FR 28358 - Retail Foreign Exchange Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Off-Exchange Retail Foreign Exchange Transactions and Intermediaries, 75 FR 55409 (Sept. 10, 2010... Act. Regulation of Off-Exchange Retail Foreign Exchange Transactions and Intermediaries, 75 FR 3281 (Jan. 20, 2010) (Proposed CFTC Retail Forex Rule). \\13\\ See Retail Foreign Exchange Transactions, 76...

  14. 76 FR 41676 - Retail Foreign Exchange Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Regulation of Off-Exchange Retail Foreign Exchange Transactions and Intermediaries, 75 FR 3282 (Jan. 20, 2010... Exchange Transactions, 76 FR 28358 (May 17, 2011); Retail Foreign Exchange Transactions, 76 FR 22633 (Apr... rules. See Retail Foreign Exchange Transactions, 76 FR 40779 (July 12, 2011) (``Final......

  15. 78 FR 42439 - Retail Foreign Exchange Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... Retail Foreign Exchange Transactions, Exchange Act Release No. 64874 (July 13, 2011), 76 FR 41676 (July... Foreign Exchange Transactions and Intermediaries, 75 FR 3282 (Jan. 20, 2010) (``CFTC Proposing Release... Foreign Exchange Transactions, Exchange Act Release No. 67405 (July 11, 2012), 77 FR 41671 (July 16,......

  16. Reaction cycle and thermodynamics in bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1992-01-01

    Light causes the all-trans to 13-cis isomerization of the retinal in bacteriorhodopsin; the thermal relaxation leading back to the initial state drives proton transport first via proton transfer between the retinal Schiff base and D85 and then between the Schiff base and D96. The reaction sequence and thermodynamics of this photocycle are described by measuring time-resolved absorption changes with a gated multichannel analyzer between 100 ns and 100 ms, at six temperatures between 5 degrees C and 30 degrees C. Analysis of the energetics of the chromophore reaction sequence is on the basis of a recently proposed model (Varo & Lanyi, Biochemistry 30, 5016-5022, 1991) which consists of a single cycle and many reversible reactions: BR -hv-->K<==>L<==>M1-->M2<==>N<==>O-->BR. The existence of the M1-->M2 reaction, which functions as the switch in the proton transfer, is confirmed by spectroscopic evidence. The calculated thermodynamic parameters indicate that the exchange of free energy between the protein and the protons is at the switch step. Further, a large entropy decrease at this reaction suggests a protein conformation change which will conserve delta G for driving the completion of the reaction cycle. The results provide insights to mechanism and energy coupling in this system, with possible relevance to the general question of how ion pumps function.

  17. Heat exchange assembly

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  18. Hear Exchange Assembly

    DOEpatents

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc (Princeton, NJ); Miller, Jeffrey (Rocky Hill, NJ); Tonon, Thomas S. (Princeton, NJ)

    2003-05-27

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  19. South Atlantic interbasin exchange

    NASA Astrophysics Data System (ADS)

    Rintoul, Stephen Rich

    1991-02-01

    Hydrographic data and inverse methods are used to estimate the exchange of mass and heat between the South Atlantic poleward of 32S and the neighboring ocean basins. The Antarctic Circumpolar Current (ACC) carries a surplus of intermediate water into the South Atlantic through Drake Passage, which is compensated by a surplus of deep and bottom water leaving the basin south of Africa. As a result, the ACC loses 0.250.18 1015 W of heat in crossing the Atlantic. At 32S the meridional flux of heat is 0.250.121015 W equatorward, consistent in sign but smaller in magnitude than other recent estimates. Attempts to force the system to carry a larger heat flux across 32S led to unreasonable circulations. The meridional heat flux is carried primarily by an overturning cell in which the export of 17106 m3 s-1 of North Atlantic Deep Water (NADW) is balanced by an equatorward return flow equally split between the surface layers, and the intermediate and bottom water. No input of warm Indian Ocean thermocline water is necessary to account for the equatorward heat flux across 32S; in fact, a large transfer of warm water from the Indian Ocean to the Atlantic is shown to be inconsistent with the present data set. Together these results demonstrate that the global thermohaline cell associated with the formation and export of NADW is closed primarily by a "cold water path," in which deep water leaving the Atlantic ultimately returns as intermediate water entering the basin through Drake Passage.

  20. Insoluble polyelectrolyte and ion-exchange hollow fiber impregnated therewith

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1977-01-01

    The number of quaternary sites and ion exchange capacity of a polyquaternary, cross linked, insoluble copolymer of a vinyl pyridine and a dihalo organic compound is increased by about 15-35% by reaction of the polymer with an amine followed by quaternization, if required. The polymer forms spontaneously in the presence of a substrate such as within the pores of a hollow fiber. The improved resin impregnated fiber may be utilized to remove ions from waste or process steams.

  1. Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger

    SciTech Connect

    Liao, Jun; Li, Hua; Zeng, Weizhong; Sauer, David B.; Belmares, Ricardo; Jiang, Youxing

    2012-06-19

    Sodium/calcium (Na{sup +}/Ca{sup 2+}) exchangers (NCX) are membrane transporters that play an essential role in maintaining the homeostasis of cytosolic Ca{sup 2+} for cell signaling. We demonstrated the Na{sup +}/Ca{sup 2+}-exchange function of an NCX from Methanococcus jannaschii (NCX{_}Mj) and report its 1.9 angstrom crystal structure in an outward-facing conformation. Containing 10 transmembrane helices, the two halves of NCX{_}Mj share a similar structure with opposite orientation. Four ion-binding sites cluster at the center of the protein: one specific for Ca{sup 2+} and three that likely bind Na{sup +}. Two passageways allow for Na{sup +} and Ca{sup 2+} access to the central ion-binding sites from the extracellular side. Based on the symmetry of NCX{_}Mj and its ability to catalyze bidirectional ion-exchange reactions, we propose a structure model for the inward-facing NCX{_}Mj.

  2. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  3. Heat exchanger using graphite foam

    DOEpatents

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  4. IAESTE Exchange Development and Participation

    NASA Astrophysics Data System (ADS)

    Ishita, Yusuke

    The International Association for the Exchange of Students for Technical Experience is an Association of National Committees representing academic, industrial and students interests. Participation in the IAESTE exchange is open to bona fide students attending courses at Universities, Institutes of Technology and similar Institutions of Higher Education. This Report contains the Activities of IAESTE with its history and the detail on the bilateral exchanges, study fields, training periods and other useful information. We also look to the future as we continue our journey to improve our Association in partnership with our Academics, Employers and Students.

  5. Heat exchanger with ceramic elements

    DOEpatents

    Corey, John A. (North Troy, NY)

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  6. Heat exchanger for electrothermal devices

    NASA Technical Reports Server (NTRS)

    Zavesky, Ralph J. (inventor); Sovey, James S. (inventor); Mirtich, Michael J. (inventor); Marinos, Charalampus (inventor); Penko, Paul F. (inventor)

    1986-01-01

    An improved electrothermal device is disclosed. An electrothermal thruster utilizes a generally cylindrical heat exchanger chamber to convert electricity to heat which raises the propellant temperature. A textured, high emissivity heat element radiatively transfers heat to the inner wall of this chamber that is ion beam morphologically controlled for high absorptivity. This, in turn, raises the temperature of a porous heat exchanger material in an annular chamber surrounding the cylindrical chamber. Propellant gas flows through the annular chamber and is heated by the heat exchanger material.

  7. Deuteration of pentacene in benzoic acid: Monitoring the reaction kinetics via low-temperature optical spectroscopy

    SciTech Connect

    Corval, A.; Casalegno, R.; Astilean, S.; Trommsdorff, H.P.

    1992-06-25

    In the deuteration of pentacene in benzoic acid, this reaction is monitored via low-temperature optical spectroscopy to observe the proton-deuterium rate of exchange between the solvent and solute molecules. Of the 14 pentacene protons, 6 have an exchange rate 2 orders of magnitude greater than the remaining 8. 20 refs., 3 figs.

  8. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity

    PubMed Central

    Deltre, Marc; McKey, Doyle B.; Hodkinson, Trevor R.

    2011-01-01

    The conservation of crop genetic resources requires understanding the different variablescultural, social, and economicthat impinge on crop diversity. In small-scale farming systems, seed exchanges represent a key mechanism in the dynamics of crop genetic diversity, and analyzing the rules that structure social networks of seed exchange between farmer communities can help decipher patterns of crop genetic diversity. Using a combination of ethnobotanical and molecular genetic approaches, we investigated the relationships between regional patterns of manioc genetic diversity in Gabon and local networks of seed exchange. Spatially explicit Bayesian clustering methods showed that geographical discontinuities of manioc genetic diversity mirror major ethnolinguistic boundaries, with a southern matrilineal domain characterized by high levels of varietal diversity and a northern patrilineal domain characterized by low varietal diversity. Borrowing concepts from anthropologykinship, bridewealth, and filiationwe analyzed the relationships between marriage exchanges and seed exchange networks in patrilineal and matrilineal societies. We demonstrate that, by defining marriage prohibitions, kinship systems structure social networks of exchange between farmer communities and influence the movement of seeds in metapopulations, shaping crop diversity at local and regional levels. PMID:22042843

  9. Nonlocal exchange correlation in screened-exchange densityfunctional methods

    SciTech Connect

    Lee, Byounghak; Wang, Lin-Wang; Spataru, Catalin D.; Louie,Steven G.

    2007-04-22

    We present a systematic study on the exchange-correlationeffects in screened-exchange local density functional method. Toinvestigate the effects of the screened-exchange potential in the bandgap correction, we have compared the exchange-correlation potential termin the sX-LDA formalism with the self-energy term in the GWapproximation. It is found that the band gap correction of the sX-LDAmethod primarily comes from the downshift of valence band states,resulting from the enhancement of bonding and the increase of ionizationenergy. The band gap correction in the GW method, on the contrary, comesin large part from the increase of theconduction band energies. We alsostudied the effects of the screened-exchange potential in the totalenergy by investigating the exchange-correlation hole in comparison withquantum Monte Carlo calculations. When the Thomas-Fermi screening isused, the sX-LDA method overestimates (underestimates) theexchange-correlation hole in short (long) range. From theexchange-correlation energy analysis we found that the LDA method yieldsbetter absolute total energy than sX-LDA method.

  10. 75 FR 51138 - Self-Regulatory Organizations; BATS Exchange, Inc.; Chicago Board Options Exchange, Incorporated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... Exchange Act Release Nos. 62251 (June 10, 2010), 75 FR 34183 (June 16, 2010); 62252 (June 10, 2010), 75 FR...; BATS Exchange, Inc.; Chicago Board Options Exchange, Incorporated; Chicago Stock Exchange, Inc.; EDGA... Securities Exchange LLC; NASDAQ OMX BX, Inc.; The NASDAQ Stock Market LLC; National Stock Exchange, Inc.;...

  11. Surface Exchange and Bulk Diffusivity of LSCF as SOFC Cathode: Electrical Conductivity Relaxation and Isotope Exchange Characterizations

    SciTech Connect

    Li, Yihong; Gerdes, Kirk; Horita, Teruhisa; Liu, Xingbo

    2013-05-05

    The oxygen diffusion coefficient (D) and surface exchange coefficient (k) of a typical SOFC cathode material, La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-δ} (LSCF) were characterized by both electrical conductivity relaxation (ECR) and oxygen isotope exchange (IE) methods. Conductivity relaxation experiments were conducted at 800°C for small step changes in partial pressure of oxygen (P{sub O{sub 2}} ), both decreasing and increasing, from 0.02 atm to 0.20 atm. The results revealed P{sub O{sub 2}} dependent hysteresis with the reduction process requiring more equilibration time than oxidation. Analysis of the experimental data indicated that the surface exchange coefficient is a function of the final oxygen partial pressure in an isothermal system. In addition, both forward and backward oxygen reduction reaction constants, which are vital for the fundamental understanding of SOFC cathode reaction mechanisms, are investigated based on the relationship between surface exchange coefficient and P{sub O{sub 2}} . The direct comparisons between the results from both ECR and IE were presented and the possible experimental errors in both methods were discussed.

  12. Deuterium isotopic exchangeability of resin and amber at low thermal stress under hydrous conditions

    NASA Astrophysics Data System (ADS)

    Gonzalez, G.; Tappert, R.; Wolfe, A. P.; Muehlenbachs, K.

    2012-04-01

    Hydrous deuterium-exchange experiments have shown that a significant fraction of the original D/H composition of bulk kerogens, bitumens and expelled oils may participate in isotopic exchange reactions during burial diagenesis. However, it is unknown to what extent plant-derived secondary metabolites, namely resins and their fossil counterpart amber, exchange hydrogen isotopes following their biosynthesis. This situation hinders the application of resin D/H measurements in paleoenvironmental reconstruction. Here, we assess explicitly hydrogen exchange in resins and ambers using a series of immersion experiments in deuterated (D-enriched) waters over a period of several months at several temperatures. We are especially interested in assessing whether significant H-isotopic exchange occurs between resins and meteoric waters during early thermal maturation and polymerization. At 90°C, equivalent to ~3km of burial in most diagenetic regimes, modern conifer and angiosperm resins have an average post-metabolic H exchange of 4.6%, compared to only 1.1% for mature, polymerized ambers. At 55°C the degree of exchange is considerably lower: 1.9% for resins and 0.6% for ambers. These results indicate that most D/H isotopic exchange occurs prior to polymerization reactions, thereby confirming that D/H measurements from amber constitute a potentially sensitive proxy for environmental change.

  13. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  14. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  15. Numerical simulation of heat exchanger

    SciTech Connect

    Sha, W.T.

    1985-01-01

    Accurate and detailed knowledge of the fluid flow field and thermal distribution inside a heat exchanger becomes invaluable as a large, efficient, and reliable unit is sought. This information is needed to provide proper evaluation of the thermal and structural performance characteristics of a heat exchanger. It is to be noted that an analytical prediction method, when properly validated, will greatly reduce the need for model testing, facilitate interpolating and extrapolating test data, aid in optimizing heat-exchanger design and performance, and provide scaling capability. Thus tremendous savings of cost and time are realized. With the advent of large digital computers and advances in the development of computational fluid mechanics, it has become possible to predict analytically, through numerical solution, the conservation equations of mass, momentum, and energy for both the shellside and tubeside fluids. The numerical modeling technique will be a valuable, cost-effective design tool for development of advanced heat exchangers.

  16. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  17. Definition of Magnetic Exchange Length

    SciTech Connect

    Abo, GS; Hong, YK; Park, J; Lee, J; Lee, W; Choi, BC

    2013-08-01

    The magnetostatic exchange length is an important parameter in magnetics as it measures the relative strength of exchange and self-magnetostatic energies. Its use can be found in areas of magnetics including micromagnetics, soft and hard magnetic materials, and information storage. The exchange length is of primary importance because it governs the width of the transition between magnetic domains. Unfortunately, there is some confusion in the literature between the magnetostatic exchange length and a similar distance concerning magnetization reversal mechanisms in particles known as the characteristic length. This confusion is aggravated by the common usage of two different systems of units, SI and cgs. This paper attempts to clarify the situation and recommends equations in both systems of units.

  18. Simultaneous Disulfide and Boronic Acid Ester Exchange in Dynamic Combinatorial Libraries

    PubMed Central

    Diemer, Sanna L.; Kristensen, Morten; Rasmussen, Brian; Beeren, Sophie R.; Pittelkow, Michael

    2015-01-01

    Dynamic combinatorial chemistry has emerged as a promising tool for the discovery of complex receptors in supramolecular chemistry. At the heart of dynamic combinatorial chemistry are the reversible reactions that enable the exchange of building blocks between library members in dynamic combinatorial libraries (DCLs) ensuring thermodynamic control over the system. If more than one reversible reaction operates in a single dynamic combinatorial library, the complexity of the system increases dramatically, and so does its possible applications. One can imagine two reversible reactions that operate simultaneously or two reversible reactions that operate independently. Both these scenarios have advantages and disadvantages. In this contribution, we show how disulfide exchange and boronic ester transesterification can function simultaneous in dynamic combinatorial libraries under appropriate conditions. We describe the detailed studies necessary to establish suitable reaction conditions and highlight the analytical techniques appropriate to study this type of system. PMID:26378519

  19. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A. (Aiken, SC); Workman, Rhonda Jackson (North Augusta, SC)

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  20. Ion exchange - Simulation and experiment

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Finn, John E.

    1991-01-01

    A FORTRAN program for simulating multicomponent adsorption by ion-exchange resins was adapted for use as both an ASPEN-callable module and as a free-standing simulator of the ion-exchange bed. Four polystyrene-divinylbenzene sulfonic acid resins have been characterized for three principal ions. It is concluded that a chelating resin appears appropriate as a heavy-metal trap. The same ASPEN-callable module is used to model this resin when Wilson parameters can be obtained.