These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Leptin affects adenylate cyclase activity in H9c2 cardiac cell line: effects of short- and long-term exposure  

Microsoft Academic Search

Leptin has been hypothesized to be a pathophysiologic link between obesity and cardiovascular diseases. Because the adenylate cyclase (AC) system is a main effector of ?-adrenergic receptors and leptin has been shown to modulate AC activity in other cell lines, a leptin impact on cardiac AC activity was hypothesized. Therefore, acute and chronic effects of leptin on a rat cardiac

Gennaro Illiano; Silvio Naviglio; Mario Pagano; Annamaria Spina; Emilio Chiosi; Michelangela Barbieri; Giuseppe Paolisso

2002-01-01

2

Cardioprotective Effect of Propofol against Oxygen Glucose Deprivation and Reperfusion Injury in H9c2 Cells  

PubMed Central

Background. The intravenous anesthetic propofol is reported to be a cardioprotective agent against ischemic-reperfusion injury in the heart. However, the regulatory mechanism still remains unclear. Methods. In this study, we used H9c2 cell line under condition of oxygen glucose deprivation (OGD) followed by reperfusion (OGD/R) to induce in vitro cardiomyocytes ischemia-reperfusion injury. Propofol (5, 10, and 20??M) was added to the cell cultures before and during the OGD/R phases to investigate the underlying mechanism. Results. Our data showed that OGD/R decreased cell viability, and increased lactate dehydrogenase leakage, and reactive oxygen species and malondialdehyde production in H9c2 cells, all of which were significantly reversed by propofol. Moreover, we found that propofol increased both the activities and protein expressions of superoxide dismutase and catalase. In addition, propofol increased FoxO1 expression in a dose-dependent manner and inhibited p-AMPK formation significantly. Conclusions. These results indicate that the propofol might exert its antioxidative effect through FoxO1 in H9c2 cells, and it has a potential therapeutic effect on cardiac disorders involved in oxidative stress.

Zhao, Dandan; Li, Qing; Huang, Qiuping; Li, Xuguang; Yin, Min; Wang, Zejian; Hong, Jiang

2015-01-01

3

H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation  

PubMed Central

Dysfunction of cardiac energy metabolism plays a critical role in many cardiac diseases, including heart failure, myocardial infarction and ischemia–reperfusion injury and organ transplantation. The characteristics of these diseases can be elucidated in vivo, though animal-free in vitro experiments, with primary adult or neonatal cardiomyocytes, the rat ventricular H9c2 cell line or the mouse atrial HL-1 cells, providing intriguing experimental alternatives. Currently, it is not clear how H9c2 and HL-1 cells mimic the responses of primary cardiomyocytes to hypoxia and oxidative stress. In the present study, we show that H9c2 cells are more similar to primary cardiomyocytes than HL-1 cells with regard to energy metabolism patterns, such as cellular ATP levels, bioenergetics, metabolism, function and morphology of mitochondria. In contrast to HL-1, H9c2 cells possess beta-tubulin II, a mitochondrial isoform of tubulin that plays an important role in mitochondrial function and regulation. We demonstrate that H9c2 cells are significantly more sensitive to hypoxia-reoxygenation injury in terms of loss of cell viability and mitochondrial respiration, whereas HL-1 cells were more resistant to hypoxia as evidenced by their relative stability. In comparison to HL-1 cells, H9c2 cells exhibit a higher phosphorylation (activation) state of AMP-activated protein kinase, but lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha levels, suggesting that each cell type is characterized by distinct regulation of mitochondrial biogenesis. Our results provide evidence that H9c2 cardiomyoblasts are more energetically similar to primary cardiomyocytes than are atrial HL-1 cells. H9c2 cells can be successfully used as an in vitro model to simulate cardiac ischemia–reperfusion injury. PMID:25450968

Kuznetsov, Andrey V.; Javadov, Sabzali; Sickinger, Stephan; Frotschnig, Sandra; Grimm, Michael

2015-01-01

4

Effect of Alcohol Administration on Mg2+ Homeostasis in H9C2 Cells  

PubMed Central

Alcoholic cardiomyopathy represents one of the main clinical complications in chronic alcoholics. This pathology contrasts the seemingly beneficial effect of small doses of alcohol on the cardiovascular system. Studies carried out in liver cells exposed acutely or chronically to varying doses of EtOH indicate that intrahepatic alcohol metabolism results in a major loss of cellular Mg2+. To investigate whether EtOH administration also induced Mg2+ extrusion in cardiac cells, H9C2 cells were exposed to varying doses of EtOH for short- or ling-term periods of time. The results indicate that H9C2 cells exposed to EtOH doses higher than 0.1% (v/v, or 15 mM) extruded Mg2+ into the extracellular medium on a time- and dose-dependent manner. Consistent with the involvement of cyP4502E1 in metabolizing EtOH, administration of chloro-methiazole (CMZ) as an inhibitor of the cytochrome prevented EtOH-induced Mg2+ loss to a large extent. EtOH-induced Mg2+ extrusion was also prevented by the administration of di-thio-treitol (DTT) and n-acetyl-cysteine (NAC), two agents that prevent the negative effects of ROS formation and free radicals generation associated with EtOH metabolism by cyP4502E1. Taken together, our data indicate that Mg2+ extrusion also occur in cardiac cells exposed to EtOH as a result of alcohol metabolism by cyP4502E1 and associated free radical formation. Interestingly, Mg2+ extrusion only occurs at doses of EtOH higher than 0.1% administered for an extended period of time. The significance of Mg2+ extrusion for the onset of alcoholic cardiomyopathy remains to be elucidated.

Nguyen, Huy; Romani, Andrea

2015-01-01

5

Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells  

SciTech Connect

Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

Zhao Yuqin; Xue Tao; Yang Xiaochun; Zhu Hong; Ding Xiaofei; Lou Liming [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 (China); Lu Wei [Department of Chemistry and Institute of Medicinal Chemistry, East China Normal University, Shanghai, 200062 (China); Yang Bo, E-mail: yang924@zju.edu.c [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 (China); He Qiaojun, E-mail: qiaojunhe@zju.edu.c [Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 (China); Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, 310058 (China)

2010-10-01

6

N-acetylcysteine amide decreases oxidative stress but not cell death induced by doxorubicin in H9c2 cardiomyocytes  

PubMed Central

Background While doxorubicin (DOX) is widely used in cancer chemotherapy, long-term severe cardiotoxicity limits its use. This is the first report of the chemoprotective efficacy of a relatively new thiol antioxidant, N-acetylcysteine amide (NACA), on DOX-induced cell death in cardiomyocytes. We hypothesized that NACA would protect H9c2 cardiomyocytes from DOX-induced toxicity by reducing oxidative stress. Accordingly, we determined the ability of NACA to mitigate the cytotoxicity of DOX in H9c2 cells and correlated these effects with the production of indicators of oxidative stress. Results DOX at 5 ?M induced cardiotoxicity while 1) increasing the generation of reactive oxygen species (ROS), 2) decreasing levels and activities of antioxidants and antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase) and 3) increasing lipid peroxidation. NACA at 750 ?M substantially reduced the levels of ROS and lipid peroxidation, as well as increased both GSH level and GSH/GSSG ratio. However, treating H9c2 cells with NACA did little to protect H9c2 cells from DOX-induced cell death. Conclusion Although NACA effectively reduced oxidative stress in DOX-treated H9c2 cells, it had minimal effects on DOX-induced cell death. NACA prevented oxidative stress by elevation of GSH and CYS, reduction of ROS and lipid peroxidation, and restoration of antioxidant enzyme activities. Further studies to identify oxidative stress-independent pathways that lead to DOX-induced cell death in H9c2 are warranted. PMID:19368719

Shi, Rong; Huang, Chuan-Chin; Aronstam, Robert S; Ercal, Nuran; Martin, Adam; Huang, Yue-Wern

2009-01-01

7

Early NADPH oxidase-2 activation is crucial in phenylephrine-induced hypertrophy of H9c2 cells  

PubMed Central

Reactive oxygen species (ROS) produced by different NADPH oxidases (NOX) play a role in cardiomyocyte hypertrophy induced by different stimuli, such as angiotensin II and pressure overload. However, the role of the specific NOX isoforms in phenylephrine (PE)-induced cardiomyocyte hypertrophy is unknown. Therefore we aimed to determine the involvement of the NOX isoforms NOX1, NOX2 and NOX4 in PE-induced cardiomyocyte hypertrophy. Hereto rat neonatal cardiomyoblasts (H9c2 cells) were incubated with 100 ?M PE to induce hypertrophy after 24 and 48 h as determined via cell and nuclear size measurements using digital imaging microscopy, electron microscopy and an automated cell counter. Digital-imaging microscopy further revealed that in contrast to NOX1 and NOX4, NOX2 expression increased significantly up to 4 h after PE stimulation, coinciding and co-localizing with ROS production in the cytoplasm as well as the nucleus. Furthermore, inhibition of NOX-mediated ROS production with apocynin, diphenylene iodonium (DPI) or NOX2 docking sequence (Nox2ds)-tat peptide during these first 4 h of PE stimulation significantly inhibited PE-induced hypertrophy of H9c2 cells, both after 24 and 48 h of PE stimulation. These data show that early NOX2-mediated ROS production is crucial in PE-induced hypertrophy of H9c2 cells. PMID:24794531

Hahn, Nynke E.; Musters, René J.P.; Fritz, Jan M.; Pagano, Patrick J.; Vonk, Alexander B.A.; Paulus, Walter J.; van Rossum, Albert C.; Meischl, Christof; Niessen, Hans W.M.; Krijnen, Paul A.J.

2015-01-01

8

Naringin protects against anoxia/reoxygenation-induced apoptosis in H9c2 cells via the Nrf2 signaling pathway.  

PubMed

Naringin (Nar) is a major and active flavanone glycoside derivative of several citrus species. The antioxidant properties of Nar have an important function in its cardioprotective effects in various models. However, the effects of Nar on Nrf2 activation and the expression of its downstream genes in myocardial cells are yet to be elucidated. This study was designed to investigate the protective effects of Nar against anoxia/reoxygenation (A/R)-induced injury in H9c2 cells and determine its effects on the activity of Nrf2 and the expression of phase II antioxidant enzymes. H9c2 cells were pretreated with Nar for 6 h before exposure to A/R. A/R treatment severely injured the H9c2 cells, which was accompanied by apoptosis. Nar also suppressed the A/R-induced mitochondrial membrane depolarization and caspase-3 activation. Nar pretreatment significantly reduced the apoptotic rate by enhancing the endogenous anti-oxidative activity of superoxide dismutase, glutathione peroxidase, and catalase, thereby inhibiting intracellular reactive oxygen species generation. Moreover, the presence of Nar alone in H9c2 cells increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, as well as consistently increased the protein levels of heme oxygenase (HO-1) and glutamate cysteine ligase (GCLC). Nar increased the phosphorylation of ERK1/2, PKC?, and AKT. However, the Nar-mediated Nrf2 activation and cardioprotection were abolished through the genetic silencing of Nrf2 by siRNA and partially inhibited by specific inhibitors of ERK1/2, PKC?, and AKT. Therefore, Nar provided cardioprotection by inducing the phosphorylation of ERK1/2, PKC?, and AKT, which subsequently activated Nrf2 and its downstream genes. PMID:25773745

Chen, R C; Sun, G B; Wang, J; Zhang, H J; Sun, X B

2015-04-01

9

Naringin inhibits ROS-activated MAPK pathway in high glucose-induced injuries in H9c2 cardiac cells.  

PubMed

Naringin, an active flavonoid isolated from citrus fruit extracts, exhibits biological and pharmacological properties, such as antioxidant activity and antidiabetic effect. Mitogen-activated protein kinase (MAPK) signalling pathway has been shown to participate in hyperglycaemia-induced injury. The present study tested the hypothesis that naringin protects against high glucose (HG)-induced injuries by inhibiting MAPK pathway in H9c2 cardiac cells. To examine this, the cells were treated with 35 mM glucose (HG) for 24 hr to establish a HG-induced cardiomyocyte injury model. The cells were pre-treated with 80 ?M naringin for 2 hr before exposure to HG. The findings of this study showed that exposure of H9c2 cells to HG for 24 hr markedly induced injuries, as evidenced by a decrease in cell viability, increases in apoptotic cells and reactive oxygen species (ROS) production, as well as dissipation of mitochondrial membrance potential (MMP). These injuries were significantly attenuated by the pre-treatment of cells with either naringin or SB203580 (a selective inhibitor of p38 MAPK) or U0126 (a selective inhibitor of extracellular signal regulated kinase 1/2, ERK1/2) or SP600125 (a selective inhibitor of c-jun N-termanal kinase, JNK) before exposure to HG, respectively. Furthermore, exposure of cells to HG increased the phosphorylation of p38 MAPK, ERK1/2 and JNK. The increased activation of MAPK pathway was ameliorated by pre-treatment with either naringin or N-acetyl-L-cysteine (NAC), a ROS scavenger, which also reduced HG-induced cytotoxicity and apoptosis, leading to increase in cell viability and decrease in apoptotic cells. In conclusion, our findings provide new evidence for the first time that naringin protects against HG-induced injuries by inhibiting the activation of MAPK (p38 MAPK, ERK1/2 and JNK) and oxidative stress in H9c2 cells. PMID:24118820

Chen, Jingfu; Guo, Runmin; Yan, Hai; Tian, Lihong; You, Qiong; Li, Shanghai; Huang, Ruina; Wu, Keng

2014-04-01

10

3,3'-Diindolylmethane attenuates cardiac H9c2 cell hypertrophy through 5'-adenosine monophosphate-activated protein kinase-?.  

PubMed

3,3'-Diindolylmethane (DIM) is the major product of the acid-catalyzed condensation of indole-3-carbinol (I3C), a component of extracts of Brassica food plants. Numerous studies have suggested that DIM has several beneficial biological activities, including elimination of free radicals, antioxidant and anti?angiogenic effects and activation of apoptosis of various tumor cells. In the present study, an in vitro model was established, using 1 µM angiotensin II (Ang II) in cultured rat cardiac H9c2 cells, to observe the effects of DIM on cardiac hypertrophy. Following 24 h stimulation with DIM (1, 5, and 10 µM) with or without Ang II, cells were characterized by immuno?uorescence to analyze cardiac ??actinin expression. Cardiomyocyte hypertrophy and molecular markers of cardiac hypertrophy were assessed by quantitative polymerase chain reaction. Atrial natriuretic peptide, brain natriuretic peptide and myosin heavy chain ? mRNA expression were induced by Ang II in H9c2 cells treated with the optimal concentration of DIM for 6, 12, and 24 h. The levels of phosphorylated and total proteins of the 5' AMP?activated protein kinase ? (AMPK?)/mitogen?activated protein kinase (MAPK)/mechanistic target of rapamycin (mTOR) signaling pathways in H9c2 cells treated with DIM for 0, 15, 30, and 60 min induced by Ang II were determined by western blot analysis. The results showed that DIM attenuated cellular hypertrophy in vitro, enhanced the phosphorylation of AMPK? and inhibited the MAPK?mTOR signaling pathway in response to hypertrophic stimuli. PMID:25816057

Zong, Jing; Wu, Qing-Qing; Zhou, Heng; Zhang, Jie-Yu; Yuan, Yuan; Bian, Zhou-Yan; Deng, Wei; Dai, Jia; Li, Fang-Fang; Xu, Man; Fang, Yi; Tang, Qi-Zhu

2015-07-01

11

Sinapic acid protects heart against ischemia/reperfusion injury and H9c2 cardiomyoblast cells against oxidative stress.  

PubMed

The present study was designed to evaluate antioxidant and cardioprotective potential of sinapic acid (SA) against ischemia/reperfusion (I/R) injury. Cardiac functional recovery after I/R was evaluated by percentage rate pressure product (%RPP) and percentage coronary flow (%CF). Myocardial injury was evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) staining and LDH enzyme leakage. Oxidative stress was estimated by lipid peroxidation level. eNOS protein expression in reperfused heart was assessed using Western blot method. Finally, in order to support the antioxidant effect of SA, in vitro protective potential of SA was assessed on H2O2-induced oxidative stress in H9c2 cardiomyoblast cells. The overall results demonstrated that I/R induced cardiac dysfunction, injury and oxidative stress was attenuated by SA treatment. Moreover, in vitro results also shown that, SA protects H9c2 cells from oxidative stress and modulates mitochondrial membrane permeability transition (MPT). In conclusion, coupled results from both in vivo and in vitro experiments have confirmed that SA with antioxidant role protects cardiac cells and its functions from I/R induced oxidative stress. PMID:25511706

Silambarasan, Thangarasu; Manivannan, Jeganathan; Priya, Mani Krishna; Suganya, Natarajan; Chatterjee, Suvro; Raja, Boobalan

2015-01-24

12

Cellular and molecular studies of the effects of a selective COX-2 inhibitor celecoxib in the cardiac cell line H9c2 and their correlation with death mechanisms  

PubMed Central

Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival. PMID:24519091

Sakane, K.K.; Monteiro, C.J.; Silva, W.; Silva, A.R.; Santos, P.M.; Lima, K.F.; Moraes, K.C.M.

2014-01-01

13

Palmitate induces ER stress and autophagy in H9c2 cells: implications for apoptosis and adiponectin resistance.  

PubMed

The association between obesity and heart failure is well documented and recent studies have indicated that understanding the physiological role of autophagy will be of great significance. Cardiomyocyte apoptosis is one component of cardiac remodeling which leads to heart failure and in this study we used palmitate-treated H9c2 cells as an in vitro model of lipotoxicity to investigate the role of autophagy in cell death. Temporal analysis revealed that palmitate (100??M) treatment induced a gradual increase of intracellular lipid accumulation as well as apoptotic cell death. Palmitate induced autophagic flux, determined via increased LC3-II formation and p62 degradation as well as by detecting reduced colocalization of GFP with RFP in cells overexpressing tandem fluorescent GFP/RFP-LC3. The increased level of autophagy indicated by these measures were confirmed using transmission electron microscopy (TEM). Upon inhibiting autophagy using bafilomycin we observed an increased level of palmitate-induced cell death assessed by Annexin V/PI staining, detection of active caspase-3 and MTT cell viability assay. Interestingly, using TEM and p-PERK or p-eIF2? detection we observed increased endoplasmic reticulum (ER) stress in response to palmitate. Autophagy was induced as an adaptive response against ER stress since it was sensitive to ER stress inhibition. Palmitate-induced ER stress also induced adiponectin resistance, assessed via AMPK phosphorylation, via reducing APPL1 expression. This effect was independent of palmitate-induced autophagy. In summary, our data indicate that palmitate induces autophagy subsequent to ER stress and that this confers a prosurvival effect against lipotoxicity-induced cell death. Palmitate-induced ER stress also led to adiponecin resistance. PMID:25164368

Park, Min; Sabetski, Anna; Kwan Chan, Yee; Turdi, Subat; Sweeney, Gary

2015-03-01

14

Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity.  

PubMed

Evidences suggest that apple peel has a wide range of polyphenols having antioxidant activity and its consumption has been linked with improved health benefits. Arsenic trioxide (ATO) is a very effective drug for the treatment of acute promyelocytic leukemia (APL) but it leads to cardiotoxicity mediated through alterations in various cardiac ion channels and by increasing the intracellular calcium level and reactive oxygen species (ROS). The aim of the present investigation was to study the effect of methanolic extract of apple peel (APME) and aqueous extract of apple peel (APAE) on ATO (5 ?M) induced toxicity in the H9c2 cardiac myoblast cell line. We estimated the cellular status of innate antioxidant enzymes, level of ROS, mitochondrial superoxide, glutathione and intracellular calcium with ATO and apple peel extracts. Prior to the cell line based study, we had evaluated the antioxidant potential of apple peel extract by 1,1-diphenyl-2-picrylhydrazyl (DPPH), total reducing power (TRP), superoxide anion and hydroxyl radical scavenging activity, in addition to quantifying total phenolic and flavonoid content. Both the extracts showed considerable antioxidant activity in cell-free chemical assays. In addition, both APME and APAE prevented the alteration in antioxidant status induced by ATO in H9c2 cells. Significant differential alterations had been observed in the activity of lactate dehydrogenase, superoxide dismutase, catalase, glutathione, glutathione peroxidase, thioredoxin reductase, xanthine oxidase, calcium overload and caspase 3 activity with ATO. The overall result revealed the protective property of polyphenol-rich apple peel extract against ATO induced cardiac toxicity via its antioxidant activity. PMID:24441683

Vineetha, Vadavanath Prabhakaran; Girija, Seetharaman; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

2014-03-01

15

Antiapoptotic effect of novel compound from Herba leonuri - leonurine (SCM-198): a mechanism through inhibition of mitochondria dysfunction in H9c2 cells.  

PubMed

Apoptosis of cardiomyocytes induced by oxidative stress play a critical role in cardiac dysfunction associated with ventricular remodeling and heart failure. We recently reported that leonurine attenuated hypoxia-induced cardiomyocyte damage. In this study, we investigated the mechanism of leonurine (originally from Herba leonuri but we synthesized it chemically it as also called SCM-198) (H?O?)-induced rat embryonic heart-derived H9c2 cells from apoptosis. Exposing H9c2 cells to H?O? significantly decreased cell viability, and this was attenuated by pretreatment with leonurine for 4 h in a concentration-dependent manner. Meanwhile, leonurine was found to reduce intracellular reactive oxygen species (ROS) generation in H?O?-stimulated cell. Moreover, H9c2 cells stimulated by H?O? was accompanied with apparent apoptotic characteristics, including fragmentation of DNA, apoptotic body formation, release of cytochrome c, translocation of Bax to mitochondria, loss of mitochondrial membrane potential (??(m)) and activation of caspase 3. Furthermore, H?O? also induced rapid and significant phosphorylation of the c-Jun-N-terminal kinase 1/2 (JNK1/2), which was inhibited SP600125 (a JNK1/2 inhibitor). All of these events were attenuated by leonurine pretreatment. Taken together, these results demonstrated that leonurine could protect H9c2 cells from H?O?-induced apoptosis via modulation of mitochondrial dysfunction associated with blocking the activation of JNK1/2. PMID:20874679

Liu, Xin Hua; Pan, Li Long; Gong, Qi Hai; Zhu, Yi Zhun

2010-12-01

16

Factors Released from Embryonic Stem Cells inhibit Apoptosis in H9c2 cells through P1-3kinase/Akt but not ERK pathway  

PubMed Central

We recently reported that embryonic stem cells-conditioned medium (ES-CM) contains antiapoptotic factors that inhibit apoptosis in the cardiac myoblast, H9c2 cells. However, the mechanisms of inhibited apoptosis remain elusive. In this report, we provide evidences for novel mechanisms involved in the inhibition of apoptosis provided by ES-CM. ES-CM from mouse ES cells was generated. Apoptosis was induced after exposure with H2O2 (400?m) in H9c2 cells followed by replacement with ES-CM or culture medium. H9c2 cells treated with H2O2 were exposed to ES-CM, and ES-CM+cell survival protein phosphatidyl-inositol 3-kinase (PI-3k/Akt) inhibitor, LY294002 or extracellular signal-regulated kinase (ERK1/2), PD98050. After 24 hours, H9c2 cells treated with ES-CM demonstrated significant increase in cell survival. ES-CM significantly inhibited (p<0.05) apoptosis determined by TUNEL staining, apoptotic ELISA and caspase-3 activity. Importantly, enhanced cell survival and inhibited apoptosis with ES-CM was abolished with LY294002. In contrast, PD98050 shows no effect on ES-CM increased cell survival. Furthermore, H2O2 induced apoptosis is associated with decreased levels of phosphorylated (p) Akt activity. Following treatment with ES-CM, we observed a decrease in apoptosis with an increase in pAkt, and increased activity was attenuated with Akt inhibitor, suggesting that the Akt pathway is involved in the decreased apoptosis and cell survival provided by ES-CM. In contrast, we observed no change in ES-CM decreased apoptosis or pERK with PD98050. In conclusion, we suggest that ES-CM inhibited apoposis and is mediatd by Akt but not ERK pathway. PMID:17545477

Singla, Dinender K.; Singla, Reetu D.; McDonald, Debbie E.

2008-01-01

17

Mipu1 Protects H9c2 Myogenic Cells from Hydrogen Peroxide-Induced Apoptosis through Inhibition of the Expression of the Death Receptor Fas  

PubMed Central

Mipu1 (myocardial ischemic preconditioning upregulated protein 1), a novel rat gene recently identified in our lab, was expressed abundantly and predominantly in the brain and heart and upregulated in myocardium during myocardial ischemia/reperfusion in rats. In our previous study we found that Mipu1 was an evolutionarily conserved zinc finger-containing transcription factor. However, whether Mipu1 confers myocardial protection remains unknown. In this study, H9c2 myogenic cells were treated with hydrogen peroxide (H2O2) to simulate oxidative stress during myocardial ischemia-reperfusion injury. The expression of Mipu1 at mRNA and protein levels was detected by RT-PCR and Western blotting analysis. To study the effect of Mipu1 on apoptosis and expression of Fas induced by H2O2, full-length Mipu1 cDNA and Mipu1-RNAi plasmids were transiently transfected into H9c2 myogenic cells, and flow cytometry was used to quantitate the percentage of apoptotic cells. The expression of Fas was analyzed by Western blotting assay. The DNA binding and transcription activities of Mipu1 to the Fas promoter were detected by chromatin immunoprecipitation and luciferase reporter assays. The results showed that exposure of H9c2 myogenic cells to H2O2 resulted in a dose- and time-dependent increase in Mipu1 mRNA and protein levels; Mipu1 over-expression inhibited H2O2-induced apoptosis and upregulation of Fas induced by H2O2 in H9c2 myogenic cells; and knockdown of Mipu1 by RNAi promoted apoptosis and upregulation of Fas induced by H2O2. The chromatin immunoprecipition and reporter assays showed the DNA binding and transcription suppressor activities of Mipu1 to Fas promoter region. These results indicate that Mipu1 protected H9c2 myogenic cells from H2O2-induced apoptosis through inhibiting the expression of Fas. PMID:25310648

Wang, Guiliang; Jiang, Lei; Song, Juan; Zhou, Shu-Feng; Zhang, Huali; Wang, Kangkai; Xiao, Xianzhong

2014-01-01

18

Mipu1 protects H9c2 myogenic cells from hydrogen peroxide-induced apoptosis through inhibition of the expression of the death receptor Fas.  

PubMed

Mipu1 (myocardial ischemic preconditioning upregulated protein 1), a novel rat gene recently identified in our lab, was expressed abundantly and predominantly in the brain and heart and upregulated in myocardium during myocardial ischemia/reperfusion in rats. In our previous study we found that Mipu1 was an evolutionarily conserved zinc finger-containing transcription factor. However, whether Mipu1 confers myocardial protection remains unknown. In this study, H9c2 myogenic cells were treated with hydrogen peroxide (H2O2) to simulate oxidative stress during myocardial ischemia-reperfusion injury. The expression of Mipu1 at mRNA and protein levels was detected by RT-PCR and Western blotting analysis. To study the effect of Mipu1 on apoptosis and expression of Fas induced by H2O2, full-length Mipu1 cDNA and Mipu1-RNAi plasmids were transiently transfected into H9c2 myogenic cells, and flow cytometry was used to quantitate the percentage of apoptotic cells. The expression of Fas was analyzed by Western blotting assay. The DNA binding and transcription activities of Mipu1 to the Fas promoter were detected by chromatin immunoprecipitation and luciferase reporter assays. The results showed that exposure of H9c2 myogenic cells to H2O2 resulted in a dose- and time-dependent increase in Mipu1 mRNA and protein levels; Mipu1 over-expression inhibited H2O2-induced apoptosis and upregulation of Fas induced by H2O2 in H9c2 myogenic cells; and knockdown of Mipu1 by RNAi promoted apoptosis and upregulation of Fas induced by H2O2. The chromatin immunoprecipition and reporter assays showed the DNA binding and transcription suppressor activities of Mipu1 to Fas promoter region. These results indicate that Mipu1 protected H9c2 myogenic cells from H2O2-induced apoptosis through inhibiting the expression of Fas. PMID:25310648

Wang, Guiliang; Jiang, Lei; Song, Juan; Zhou, Shu-Feng; Zhang, Huali; Wang, Kangkai; Xiao, Xianzhong

2014-01-01

19

Extracts of Artemisia ciniformis Protect Cytotoxicity Induced by Hydrogen Peroxide in H9c2 Cardiac Muscle Cells through the Inhibition of Reactive Oxygen Species  

PubMed Central

Objective. Artemisia ciniformis (Asteraceae) and A. biennis are two of 34 Artemisia species growing naturally in Iran. In this study we investigated whether different extracts of A. ciniformis and A. biennis have protective effect against hydrogen peroxide-induced cytotoxicity in rat cardiomyoblast cells (H9c2). Method. The dried and ground aerial parts of these two species were extracted successively using petroleum ether (40–60), dichloromethane, ethyl acetate (EA), ethanol (EtOH) and ethanol?:?water (1?:?1) by maceration method. To evaluate whether different extracts of A. ciniformis and A. biennis protect cardiomyoblast H9c2 cells from H2O2 cytotoxicity, we examined the direct cytotoxic effect of H2O2 on H9c2 cells in the presence and absence of different extracts. After then, cell viability was measured by MTT assay. Results. H2O2 induced cytotoxicity in a concentration dependent manner. The IC50 value was 62.5??M for 24?h exposure. However, pretreatment of cells with various concentrations of EA, EtOH, and EtOH/wt extract of A. ciniformis protected cells from H2O2-induced cytotoxicity. Moreover, pretreatment with EA, EtOH and EtOH/wt extracts of A. ciniformis lead to a decrease in the reactive oxygen species (ROS) generation. Taken together our observation indicated that nontoxic concentration of different extracts of A. ciniformis has protective effect on H2O2-induced cytotoxicity in H9c2 cells. PMID:24381586

Mojarrab, Mahdi; Jamshidi, Maryam; Ahmadi, Farahnaz; Alizadeh, Ellahe; Hosseinzadeh, Leila

2013-01-01

20

Protective Effect of Boerhaavia diffusa L. against Mitochondrial Dysfunction in Angiotensin II Induced Hypertrophy in H9c2 Cardiomyoblast Cells  

PubMed Central

Mitochondrial dysfunction plays a critical role in the development of cardiac hypertrophy and heart failure. So mitochondria are emerging as one of the important druggable targets in the management of cardiac hypertrophy and other associated complications. In the present study, effects of ethanolic extract of Boerhaavia diffusa (BDE), a green leafy vegetable against mitochondrial dysfunction in angiotensin II (Ang II) induced hypertrophy in H9c2 cardiomyoblasts was evaluated. H9c2 cells challenged with Ang II exhibited pathological hypertrophic responses and mitochondrial dysfunction which was evident from increment in cell volume (49.09±1.13%), protein content (55.17±1.19%), LDH leakage (58.74±1.87%), increased intracellular ROS production (26.25±0.91%), mitochondrial superoxide generation (65.06±2.27%), alteration in mitochondrial transmembrane potential (??m), opening of mitochondrial permeability transition pore (mPTP) and mitochondrial swelling. In addition, activities of mitochondrial respiratory chain complexes (I-IV), aconitase, NADPH oxidase, thioredoxin reductase, oxygen consumption rate and calcium homeostasis were evaluated. Treatment with BDE significantly prevented the generation of intracellular ROS and mitochondrial superoxide radicals and protected the mitochondria by preventing dissipation of ??m, opening of mPTP, mitochondrial swelling and enhanced the activities of respiratory chain complexes and oxygen consumption rate in H9c2 cells. Activities of aconitase and thioredoxin reductase which was lowered (33.77±0.68% & 45.81±0.71% respectively) due to hypertrophy, were increased in BDE treated cells (P?0.05). Moreover, BDE also reduced the intracellular calcium overload in Ang II treated cells. Overall results revealed the protective effects of B. diffusa against mitochondrial dysfunction in hypertrophy in H9c2 cells and the present findings may shed new light on the therapeutic potential of B. diffusa in addition to its nutraceutical potentials. PMID:24788441

Prathapan, Ayyappan; Vineetha, Vadavanath Prabhakaran; Raghu, Kozhiparambil Gopalan

2014-01-01

21

NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-?-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells  

SciTech Connect

TNF-? plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-? in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-?-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-? induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-?-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-?B (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47{sup phox}, p42, p38, JNK1, p65, or PYK2. Moreover, TNF-? markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-?-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-?B (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-?-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-?-stimulated MAPKs and NF-?B activation. Thus, in H9c2 cells, we are the first to show that TNF-?-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-?B cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-?-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-? on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNF-? induces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNF-? induces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNF-? induces MMP-9 expression via a NADPH oxidase/ROS-dependent NF-?B signaling. • TNF-? activates MAPK phosphorylation through NADPH oxidase/ROS generation.

Yang, Chuen-Mao, E-mail: chuenmao@mail.cgu.edu.tw [Department of Physiology and Pharmacology and Health Aging Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan (China); Heart Failure Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan (China); Lee, I-Ta [Department of Physiology and Pharmacology and Health Aging Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan (China); Department of Anesthetics, Chang Gung Memorial Hospital at Linkou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan (China); Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der [Department of Physiology and Pharmacology and Health Aging Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan (China)

2013-10-15

22

Resveratrol attenuates hypoxia/reoxygenation?induced Ca2+ overload by inhibiting the Wnt5a/Frizzled?2 pathway in rat H9c2 cells.  

PubMed

Resveratrol is able to protect myocardial cells from ischemia/reperfusion?induced injury. However, the mechanism has yet to be fully elucidated. In the present study, it is reported that resveratrol has a critical role in the control of Ca2+ overload, which is the primary underlying cause of ischemia/reperfusion injury. Hypoxia/reoxygenation (H/R) treatment decreased the cell viability and increased the apoptosis of H9c2 cells, whereas the caspase?3 and intracellular Ca2+ levels were greatly elevated compared with the control group. Treatment of H9c2 cells with resveratrol (5, 15 and 30 µM) reduced caspase?3 expression and cardiomyocyte apoptosis in a dose?dependent manner, and the intracellular Ca2+ overload was also significantly decreased. Furthermore, Frizzled?2 and Wnt5a belong to the non?canonical Wnt/Ca2+ pathway, which have been demonstrated to be responsible for Ca2+ overload, and were thus detected in the present study. The results indicated that both the mRNA and protein expression levels of Frizzled?2 and Wnt5a in H/R?induced H9c2 cells were markedly increased compared with the levels found in normal cells, and treatment with resveratrol (5, 15 and 30 µM) significantly reduced the expression of Frizzled?2 and Wnt5a compared with the H/R group. The results indicated that resveratrol protected myocardial cells from H/R injury by inhibiting the Ca2+ overload through suppression of the Wnt5a/Frizzled?2 pathway. PMID:25120137

Wu, Xiang; Zhou, Shanshan; Zhu, Ning; Wang, Xianbao; Jin, Wen; Song, Xudong; Chen, Aihua

2014-11-01

23

Recombinant adeno-associated virus serotype 9 with p65 ribozyme protects H9c2 cells from oxidative stress through inhibiting NF-?B signaling pathway  

PubMed Central

Background Oxidative stress is a major mechanism underlying the pathogenesis of cardiovascular disease. It can trigger inflammatory cascades which are primarily mediated via nuclear factor-?B (NF-?B). The NF-?B transcription factor family includes several subunits (p50, p52, p65, c-Rel, and Rel B) that respond to myocardial ischemia. It has been proved that persistent myocyte NF-?B p65 activation in heart failure exacerbates cardiac remodeling. Mechods A recombinant adeno-associated virus serotype 9 carrying enhanced green fluorescent protein and anti-NF-?B p65 ribozyme (AAV9-R65-CMV-eGFP) was constructed. The cells were assessed by MTT assay, Annexin V–propidium iodide dual staining to study apoptosis. The expression of P65 and P50 were assessed by Western blot to investigate the underlying molecular mechanisms. Results After stimulation with H2O2 for 6 h, H9c2 cells viability decreased significantly, a large fraction of cells underwent apoptosis. We observed a rescue of H9c2 cells from H2O2-induced apoptosis in pretreatment with AAV9-R65-CMV-eGFP. Moreover, AAV9-R65-CMV-eGFP decreased H2O2-induced P65 expression. Conclusions AAV9-R65-CMV-eGFP protects H9c2 cells from oxidative stress induced apoptosis through down-regulation of P65 expression. These observations indicate that AAV9-R65-CMV-eGFP has the potential to exert cardioprotective effects against oxidative stress, which might be of great importance to clinical efficacy for cardiovascular disease. PMID:25593580

SUN, Zhan; MA, Yi-Tong; CHEN, Bang-Dang; LIU, Fen

2014-01-01

24

TRPV1 Activation Exacerbates Hypoxia/Reoxygenation-Induced Apoptosis in H9C2 Cells via Calcium Overload and Mitochondrial Dysfunction  

PubMed Central

Transient potential receptor vanilloid 1 (TRPV1) channels, which are expressed on sensory neurons, elicit cardioprotective effects during ischemia reperfusion injury by stimulating the release of neuropeptides, namely calcitonin gene-related peptide (CGRP) and substance P (SP). Recent studies show that TRPV1 channels are also expressed on cardiomyocytes and can exacerbate air pollutant-induced apoptosis. However, whether these channels present on cardiomyocytes directly modulate cell death and survival pathways during hypoxia/reoxygenation (H/R) injury remains unclear. In the present study, we investigated the role of TRPV1 in H/R induced apoptosis of H9C2 cardiomyocytes. We demonstrated that TRPV1 was indeed expressed in H9C2 cells, and activated by H/R injury. Although neuropeptide release caused by TRPV1 activation on sensory neurons elicits a cardioprotective effect, we found that capsaicin (CAP; a TRPV1 agonist) treatment of H9C2 cells paradoxically enhanced the level of apoptosis by increasing intracellular calcium and mitochondrial superoxide levels, attenuating mitochondrial membrane potential, and inhibiting mitochondrial biogenesis (measured by the expression of ATP synthase ?). In contrast, treatment of cells with capsazepine (CPZ; a TRPV1 antagonist) or TRPV1 siRNA attenuated H/R induced-apoptosis. Furthermore, CAP and CPZ treatment revealed a similar effect on cell viability and mitochondrial superoxide production in primary cardiomyocytes. Finally, using both CGRP8–37 (a CGRP receptor antagonist) and RP67580 (a SP receptor antagonist) to exclude the confounding effects of neuropeptides, we confirmed aforementioned detrimental effects as TRPV1?/? mouse hearts exhibited improved cardiac function during ischemia/reperfusion. In summary, direct activation of TRPV1 in myocytes exacerbates H/R-induced apoptosis, likely through calcium overload and associated mitochondrial dysfunction. Our study provides a novel understanding of the role of myocyte TRPV1 channels in ischemia/reperfusion injury that sharply contrasts with its known extracardiac neuronal effects. PMID:25314299

Sun, Zewei; Han, Jie; Zhao, Wenting; Zhang, Yuanyuan; Wang, Shuai; Ye, Lifang; Liu, Tingting; Zheng, Liangrong

2014-01-01

25

TRPV1 activation exacerbates hypoxia/reoxygenation-induced apoptosis in H9C2 cells via calcium overload and mitochondrial dysfunction.  

PubMed

Transient potential receptor vanilloid 1 (TRPV1) channels, which are expressed on sensory neurons, elicit cardioprotective effects during ischemia reperfusion injury by stimulating the release of neuropeptides, namely calcitonin gene-related peptide (CGRP) and substance P (SP). Recent studies show that TRPV1 channels are also expressed on cardiomyocytes and can exacerbate air pollutant-induced apoptosis. However, whether these channels present on cardiomyocytes directly modulate cell death and survival pathways during hypoxia/reoxygenation (H/R) injury remains unclear. In the present study, we investigated the role of TRPV1 in H/R induced apoptosis of H9C2 cardiomyocytes. We demonstrated that TRPV1 was indeed expressed in H9C2 cells, and activated by H/R injury. Although neuropeptide release caused by TRPV1 activation on sensory neurons elicits a cardioprotective effect, we found that capsaicin (CAP; a TRPV1 agonist) treatment of H9C2 cells paradoxically enhanced the level of apoptosis by increasing intracellular calcium and mitochondrial superoxide levels, attenuating mitochondrial membrane potential, and inhibiting mitochondrial biogenesis (measured by the expression of ATP synthase ?). In contrast, treatment of cells with capsazepine (CPZ; a TRPV1 antagonist) or TRPV1 siRNA attenuated H/R induced-apoptosis. Furthermore, CAP and CPZ treatment revealed a similar effect on cell viability and mitochondrial superoxide production in primary cardiomyocytes. Finally, using both CGRP(8-37) (a CGRP receptor antagonist) and RP67580 (a SP receptor antagonist) to exclude the confounding effects of neuropeptides, we confirmed aforementioned detrimental effects as TRPV1(-/-) mouse hearts exhibited improved cardiac function during ischemia/reperfusion. In summary, direct activation of TRPV1 in myocytes exacerbates H/R-induced apoptosis, likely through calcium overload and associated mitochondrial dysfunction. Our study provides a novel understanding of the role of myocyte TRPV1 channels in ischemia/reperfusion injury that sharply contrasts with its known extracardiac neuronal effects. PMID:25314299

Sun, Zewei; Han, Jie; Zhao, Wenting; Zhang, Yuanyuan; Wang, Shuai; Ye, Lifang; Liu, Tingting; Zheng, Liangrong

2014-01-01

26

Dilong prevents the high-KCl cardioplegic solution administration-induced apoptosis in H9c2 cardiomyoblast cells mediated by MEK.  

PubMed

Infusion of high-KCl cardioplegic solution (High-KCS) is the most common method used to induce asystole before cardiac surgery. However, our previous study showed the High-KCS can cause the apoptosis of cardiomyocytes in patients who were administered High-KCS prior to undergoing coronary artery bypass graft (CABG) to treat coronary artery disease (CAD). Therefore, it is urgent today to find a complementary medicine to reduce this damage. Dilong (earthworm) has been used as a traditional medicine in China for several thousand years, and extract from the dilong has been empirically used in Asia for the treatment of vascular disorders. In this study, we applied dilong extract to reduce myocardial cell damage from High-KCS infusion and further investigated the mechanisms. H9c2 cardiomyoblast cells were cultured in serum-free medium for 4 h and then treated with dilong at 31.25, 62.5, 125, and 250 mg/mL for 24 h, which was then followed by High-KCS treatment for 3 h to detect the protective mechanisms of dilong behind cardiomyocyte apoptosis and cardiac fibrosis. Cells were harvested for MTT assay, TUNEL assay, and western blot analysis. We found that High-KCS-induced cardiomyocyte apoptosis, enhanced the protein level of pro-apoptotic Bad, released cytochrome c, and activated caspase-3 in H9c2 cells. The IGF-I/IGF-IR/ERK pathway involved in non-cardiomyocyte proliferation, and the expression/activation of uPA, Sp-1 and CTGF, which are implicated in the development of cardiac fibrosis were up-regulated, but the Akt for cardiomyocyte survival was greatly deactivated in postcardioplegic H9c2 cardiomyoblast cells. However, dilong was highly protective and totally reversed the apoptosis and cardiac fibrosis effects induced by High-KCS. Chemical inhibitors P38 (SB203580), JNK (SP600125), MEK (U0126), IGF-1 (AG1024), and PI3K (LY294002) were applied to investigate which is the mediator for dilong attenuated High-KCS stimulated caspase 3 activation. MEK (U0126) inhibitor completely blocked dilong inhibited caspase 3 activation in High-KCS treated H9c2 cells. The MEK siRNA was further applied to knockdown MEK to confirm our finding. We found dilong worked through MEK to inhibit caspase 3 activity induced by High-KCS in H9c2 cells. Furthermore, we used the pure component of dilong, Lumbrokinase, to block the High-KCS effect. Using the microscope to observe the cell viability, we found Lumbrokinase could reverse the High-KCS effect. Lumbrokinase could also reduce the protein levels of caspase 8, caspase 9, and caspase 3, and enhance the survival related proteins PI3K/Akt and Bcl2. These results demonstrate that dilong could be used as a potential agent to block the side effects caused by High-KCS in CABG surgery patients. PMID:25482676

Han, Chien-Kuo; Kuo, Wei-Wen; Shen, Chia-Yao; Chen, Tung-Sheng; Pai, Peiying; Tsai, Chang-Hai; Lo, Feng-Yueh; Ju, Da-Tong; Huang, Chih-Yang

2014-01-01

27

Inhibition of the mevalonate pathway ameliorates anoxia-induced down-regulation of FKBP12.6 and intracellular calcium handling dysfunction in H9c2 cells.  

PubMed

Statins have beneficial pleiotropic effects beyond lipid lowering on the cardiovascular system. These cardio-protective effects are mediated through inhibition of the intracellular mevalonate pathway, by decreasing isoprenoid intermediate synthesis and the subsequent post-translational modification of small GTPases, such as Ras, Rho, and Rac. Impaired intracellular calcium handling is considered an important pathophysiologic mechanism responsible for cardiac dysfunction. Our study aimed at investigating the influence of mevalonate pathway, including its downstream small GTPases (Ras, RhoA, and Rac1) on anoxia-mediated alterations of calcium handling in H9c2 cardiomyocytes. Cultured H9c2 cardiomyocytes were exposed to acute anoxia after pretreatment with different drugs that specifically antagonize five key components in the mevalonate pathway, including 3-hydroxy-3-methylglutaryl-CoA reductase, farnesyl pyrophosphate synthase, Rho-kinase, Rac1 and Ras farnesyltransferase. Thereafter, we evaluated the effects of the mevalonate pathway on anoxia-induced cell death, expression of the sarcoplasmic reticulum calcium release channel (ryanodine receptor 2) and its regulator FK506-binding protein 12.6, as well as functional calcium release from intracellular calcium stores. Our experiments confirmed the role of prenylated proteins in regulating cardiomyocyte dysfunction, especially via RhoA- and Ras-related signaling pathways. Furthermore, our data demonstrated that inhibition of the mevalonate pathway could ameliorate anoxia-mediated calcium handling dysfunction with the up-regulated expression of FK506-binding protein 12.6 and consequently provided evidence for FK506-binding protein 12.6 as a "stabilizer" of ryanodine receptor 2. PMID:25636197

Yang, Ying; Lu, Xue; Rong, Xiqing; Jiang, Wenbing; Lai, Dongwu; Ma, Yan; Zhou, Ke; Fu, Guosheng; Xu, Shiming

2015-03-01

28

Carotenoid compositions of coloured tomato cultivars and contribution to antioxidant activities and protection against H(2)O(2)-induced cell death in H9c2.  

PubMed

The carotenoid compositions, antioxidant activities and the potential cardio-protective role of 13 tomato cultivars with distinct colour were studied. Colour coordinates were evaluated by colorimeter and the carotenoid compositions were analysed by UPLC. Red tomatoes had the highest total carotenoid contents (TCC) and antioxidant activities, followed by purple, orange, pink and yellow ones. The TCC were 120.5-278.0 ?g/gDW, and the antioxidant activities were 21.32-40.07 ?molTE/gDW (PCL), 64.42-89.98% (DPPH) and 10.47-13.76 ?molTE/g DW (ORAC), respectively. The lipophilic extracts were also found to prevent cell death in a cell-based model system using cardiac H9c2 cells and H(2)O(2), via attenuation of the caspase-3 and matrix metalloproteinase-2 activities. The extracts of different tomatoes showed strong but different antioxidant activities. Roles of total and individual carotenoids in the antioxidant activities were studied and lycopene showed the highest correlation. Results of this study can be used to guide the development of new tomato cultivars and functional foods, and benefit the consumers. PMID:23122140

Li, Hongyan; Deng, Zeyuan; Liu, Ronghua; Loewen, Steven; Tsao, Rong

2013-01-15

29

Combination of Nigella sativa with Glycyrrhiza glabra and Zingiber officinale augments their protective effects on doxorubicin-induced toxicity in h9c2 cells  

PubMed Central

Objective(s): The use of doxorubicin (DOX) is limited by its dose-dependent cardio toxicity in which reactive Oxygen Species (ROS) play an important role in the pathological process. The aim of this study was to evaluate the protective effect of three medicinal plants, Nigella sativa (N), Glycyrrhiza glabra (G) and Zingiber officinale (Z), and their combination (NGZ), against DOX-induced apoptosis and death in H9c2 cells. Materials and Methods: The cells were incubated with different concentrations of each extract or NGZ for 4 hr which continued in the presence or absence of 5µM doxorubicin for 24 hr. Cell viability and the apoptotic rate were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) and propidium iodide (PI) staining assays, respectively. The level of ROS and lipid peroxidation were measured by fluorimetric methods. Results: Treatment with doxorubicin increased ROS generation, enhanced malondialdehyde (MDA) formation, and induced apoptosis. Co-treatment of the cells with each herb extract increased viability of cells dose-dependently with a maximum protection effect of about 30%, and their potencies were N>G>Z. The combination of the threshold dose of each extract (NGZ) produced a similar effect, which was increased dose-dependently to a maximum protection of 70%. These effects were correlated with the effects of NGZ on ROS and MDA. Conclusion: All of the extracts have some protective effects against DOX-induced toxicity in cardiomyocytes with similar efficacies, but with different potencies. However, NGZ produced much higher protective effect via reducing oxidative stress and inhibiting of apoptotic induction processes. Further investigations are needed to determine the effects of NGZ on DOX chemotherapy.

Hosseini, Azar; Shafiee-Nick, Reza; Mousavi, Seyed Hadi

2014-01-01

30

Proteome Modulation in H9c2 Cardiac Cells by microRNAs miR-378 and miR-378*  

PubMed Central

MicroRNAs are a novel class of powerful endogenous regulators of gene expression. MiR-378 and miR-378* are localized in the first intron of the Ppargc1b gene that codes the transcriptional co-activator PGC-1?. The latter regulates energy expenditure as well as mitochondrial biogenesis. The miR-378:miR-378* hairpin is highly expressed in cardiac cells. To better assess their role in cardiomyocytes, we identified miR-378 and miR-378* targets via a proteomic screen. We established H9c2 cellular models of overexpression of miR-378 and miR-378* and identified a total of 86 down-regulated proteins in the presence of either one of these miRs. Functional annotation clustering showed that miR-378 and miR-378* regulate related pathways in cardiomyocytes, including energy metabolism, notably glycolysis, cytoskeleton, notably actin filaments and muscle contraction. Using bioinformatics algorithms we found that 20 proteins were predicted as direct targets of the miRs. We validated eight of these targets by quantitative RT-PCR and luciferase reporter assay. We found that miR-378 targets lactate dehydrogenase A and impacts on cell proliferation and survival whereas miR-378* targets cytoskeleton proteins actin and vimentin. Proteins involved in endoplasmic reticulum stress response such as chaperone and/or calcium buffering proteins GRP78, PPIA (cyclophilin A), calumenin, and GMMPA involved in glycosylation are repressed by these miRs. Our results show that the miR-378/378* hairpin establishes a connection among energy metabolism, cytoskeleton remodeling, and endoplasmic reticulum function through post-transcriptional regulation of key proteins involved in theses pathways. PMID:24068033

Mallat, Youssef; Tritsch, Eva; Ladouce, Romain; Winter, Daniel Lorenz; Friguet, Bertrand; Li, Zhenlin; Mericskay, Mathias

2014-01-01

31

Tyrosol Prevents Ischemia/Reperfusion-Induced Cardiac Injury in H9c2 Cells: Involvement of ROS, Hsp70, JNK and ERK, and Apoptosis.  

PubMed

Ischemia-Reperfusion (I/R) injury causes ROS overproduction, creating oxidative stress, and can trigger myocyte death, resulting in heart failure. Tyrosol is an antioxidant abounded in diets and medicine. Our objective was to investigate the protective effect of tyrosol on I/R-caused mortality in H9c2 cardiomyocytes through its influence on ROS, Hsp70, ERK, JNK, Bcl-2, Bax and caspase-8. A simulated I/R model was used, myocytes loss was examined by MTT, and ROS levels were measured using DCFH-DA. Nuclear condensation and caspase-3 activity were assessed by DAPI staining and fluorometric assay. Phosphorylated ERK and JNK were determined by electrochemiluminescent ELISA, and Hsp70, Bcl-2, Bax and caspase-8 were examined by Western blotting. Results show that tyrosol salvaged myocyte loss, inhibited nuclear condensation and caspase-3 activity dose-dependently, indicating its protection against I/R-caused myocyte loss. Furthermore, tyrosol significantly inhibited ROS accumulation and activation of ERK and JNK, augmenting Hsp70 expression. Besides, tyrosol inhibited I/R-induced apoptosis, associated with retained anti-apoptotic Bcl-2 protein, and attenuated pro-apoptotic Bax protein, resulting in a preservation of Bcl-2/Bax ratio. Finally, tyrosol notably decreased cleaved caspase-8 levels. In conclusion, cytoprotection of tyrosol in I/R-caused myocyte mortality was involved with the mitigation of ROS, prohibition of the activation of ERK, JNK and caspase-8, and elevation of Hsp70 and Bcl-2/Bax ratio. PMID:25723850

Sun, Liwei; Fan, Hang; Yang, Lingguang; Shi, Lingling; Liu, Yujun

2015-01-01

32

Hydrogen gas protects against serum and glucose deprivation?induced myocardial injury in H9c2 cells through activation of the NF?E2?related factor 2/heme oxygenase 1 signaling pathway.  

PubMed

Ischemia or hypoxia?induced myocardial injury is closely associated with oxidative stress. Scavenging free radicals and/or enhancing endogenous antioxidative defense systems may be beneficial for the impediment of myocardial ischemic injury. Hydrogen (H2) gas, as a water? and lipid?soluble small molecule, is not only able to selectively eliminate hydroxyl (·OH) free radicals, but also to enhance endogenous antioxidative defense systems in rat lungs and arabidopsis plants. However, thus far, it has remained elusive whether H2 gas protects cardiomyocytes through enhancement of endogenous antioxidative defense systems. In the present study, the cardioprotective effect of H2 gas against ischemic or hypoxic injury was investigated, along with the underlying molecular mechanisms. H9c2 cardiomyoblasts (H9c2 cells) were treated in vitro with a chemical hypoxia inducer, cobalt chloride (CoCl2), to imitate hypoxia, or by serum and glucose deprivation (SGD) to imitate ischemia. Cell viability and intracellular ·OH free radicals were assessed. The role of an endogenous antioxidative defense system, the NF?E2?related factor 2 (Nrf2)/heme oxygenase 1 (HO?1) signaling pathway, was evaluated. The findings revealed that treatment with CoCl2 or SGD markedly reduced cell viability in H9c2 cells. H2 gas?rich medium protected against cell injury induced by SGD, but not that induced by CoCl2. When the cells were exposed to SGD, levels of intracellular ·OH free radicals were markedly increased; this was mitigated by H2 gas?rich medium. Exposure of the cells to SGD also resulted in significant increases in HO?1 expression and nuclear Nrf2 levels, and the HO?1 inhibitor ZnPP IX and the Nrf2 inhibitor brusatol aggravated SGD?induced cellular injury. H2 gas?rich medium enhanced SGD?induced upregulation of HO?1 and Nrf2, and the HO?1 or Nrf2 inhibition partially suppressed H2 gas?induced cardioprotection. Furthermore, following genetic silencing of Nrf2 by RNA interference, the effects of H2 gas on the induction of HO?1 and cardioprotection were markedly reduced. In conclusion, H2 gas protected cardiomyocytes from ischemia?induced myocardial injury through elimination of ·OH free radicals and also through activation of the Nrf2/HO?1 signaling pathway. PMID:24890947

Xie, Qiang; Li, Xue-Xiang; Zhang, Peng; Li, Jin-Cao; Cheng, Ying; Feng, Yan-Ling; Huang, Bing-Sheng; Zhuo, Yu-Feng; Xu, Guo-Hua

2014-08-01

33

Confinement of ?1- and ?2-adrenergic receptors in the plasma membrane of cardiomyocyte-like H9c2 cells is mediated by selective interactions with PDZ domain and A-kinase anchoring proteins but not caveolae  

PubMed Central

The sympathetic nervous system regulates cardiac output by activating adrenergic receptors (ARs) in cardiac myocytes. The predominant cardiac ARs, ?1- and ?2AR, are structurally similar but mediate distinct signaling responses. Scaffold protein–mediated compartmentalization of ARs into discrete, multiprotein complexes has been proposed to dictate differential signaling responses. To test the hypothesis that ?ARs integrate into complexes in live cells, we measured receptor diffusion and interactions by single-particle tracking. Unstimulated ?1- and ?2AR were highly confined in the membrane of H9c2 cardiomyocyte-like cells, indicating that receptors are tethered and presumably integrated into protein complexes. Selective disruption of interactions with postsynaptic density protein 95/disks large/zonula occludens-1 (PDZ)–domain proteins and A-kinase anchoring proteins (AKAPs) increased receptor diffusion, indicating that these scaffold proteins participate in receptor confinement. In contrast, modulation of interactions between the putative scaffold caveolae and ?2AR did not alter receptor dynamics, suggesting that these membrane domains are not involved in ?2AR confinement. For both ?1- and ?2AR, the receptor carboxy-terminus was uniquely responsible for scaffold interactions. Our data formally demonstrate that distinct and stable protein complexes containing ?1- or ?2AR are formed in the plasma membrane of cardiomyocyte-like cells and that selective PDZ and AKAP interactions are responsible for the integration of receptors into complexes. PMID:21680711

Valentine, Cathleen D.; Haggie, Peter M.

2011-01-01

34

Overexpression of ornithine decarboxylase increases myogenic potential of H9c2 rat myoblasts.  

PubMed

Myoblast differentiation into multinuclear myotubes implies the slow-down of their proliferative drive and the expression of myogenin, an early marker of myogenic differentiation. Natural polyamines-such as putrescine, spermidine and spermine-are low molecular weight organic polycations, well known as mediators involved in cell homeostasis. Many evidences in the literature point to their role in driving cellular differentiation processes. Here, we studied how polyamines may affect the differentiation of the myogenic cell line H9c2 into the muscle phenotype. Cell cultures were committed via a 7-day treatment with insulin which induced increase in the activity of ornithine decarboxylase, the first enzyme in the polyamine biosynthetic pathway, consistent with myogenic differentiation. To evaluate the role of polyamines in the differentiation process, cells were transfected with a plasmid overexpressing a stable ornithine decarboxylase, under control of a constitutive promoter. Overexpressing cells spontaneously differentiate into myotubes, without the need for induction with insulin; multinuclear myotubes and myogenin expression were apparent within 2 days of confluency of cultures. Polyamine depletion-by means of alpha-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase-abolished the differentiation process. These observations support the evidence that polyamines are a key step involved in differentiation of muscle cells. PMID:20013009

Govoni, Marco; Bonavita, Francesca; Shantz, Lisa M; Guarnieri, Carlo; Giordano, Emanuele

2010-02-01

35

Beneficial properties of selenium incorporated guar gum nanoparticles against ischemia/reperfusion in cardiomyoblasts (H9c2).  

PubMed

Nanotechnology for the treatment and diagnosis has been emerging recently as a potential area of research and development. In the present study, selenium incorporated guar gum nanoparticles have been prepared by nanoprecipitation and characterized by transmission electron microscopy and particle size analysis. The nanoparticles were screened for antioxidant potential (metal chelation, total reducing power and hydroxyl radical scavenging activity) and were evaluated against the cell line based cardiac ischemia/reperfusion model with special emphasis on oxidative stress and mitochondrial parameters. The cell based cardiac ischemia model was employed using H9c2 cell lines. Investigations revealed that there was a significant alteration (P ? 0.05) in the innate antioxidant status (glutathione?, glutathione peroxidase?, thioredoxin reductase?, superoxide dismutase?, catalase?, lipid peroxidation?, protein carbonyl?, xanthine oxidase? and caspase 3 activity?), mitochondrial functions (reactive oxygen species generation, membrane potential, and pore opening) and calcium homeostasis (calcium ATPase and intracellular calcium overload) during both ischemia and reperfusion. For comparative evaluation, selenium, guar gum and selenium incorporated guar gum nanoparticles were evaluated for their protective properties against ischemia/reperfusion. The study reveals that selenium incorporated guar gum nanoparticles were better at protecting the cells from ischemia/reperfusion compared to selenium and guar gum nanoparticles. The potent antioxidant capability shown by the sample in in vitro assays may be the biochemical basis of its better biological activity. Further, the nanodimensions of the particle may be the additional factor responsible for its better effect. PMID:25307064

Soumya, R S; Vineetha, V P; Salin Raj, P; Raghu, K G

2014-11-01

36

Protective effect of microRNA-30b on hypoxia/reoxygenation-induced apoptosis in H9C2 cardiomyocytes.  

PubMed

We examined the protective role of microRNA-30b (miR-30b) in ischemia-reperfusion (I/R)-induced injury in rat H9C2 cardiomyocytes. H9C2 cells were subjected to hypoxia-reoxygenation (H/R) treatment to simulate ischemia-reperfusion (I/R) injury. H9C2 cells were divided into: vehicle control (VC) group; scrambled inhibitors (INC) group; scrambled mimics (MNC) group; H/R+VC group; H/R+INC group; H/R+mimics group. H/R induced apoptosis was detected by flow cytometry and the pathways involved in miR-30b-mediated protection were examined by analyzing the expression of miR-30b, Bcl-2, Bax, Caspase-3, KRAS, p-AKT and total AKT in H9C2 cells. Overexpression of miR-30b mimic (H/R+mimics group) significantly increased Bcl-2 and Bcl-2/Bax levels and decreased Bax and Caspase-3 levels, compared with the H/R+VC group (all P<0.05). Consistent with this, the apoptosis rate was significantly decreased in the H/R+mimics group (P<0.05) compared with the H/R+VC group. Western blot analysis revealed that overexpression of miR-30b mimic resulted in significantly increase in AKT activation and decreased KRAS, compared to the H/R+VC group (both P<0.05). In conclusion, the H/R induced apoptosis decreased miR-30b expression, but over-expression of miR-30b inhibited H/R induced apoptosis. The observed miR-30b-mediated protection against H/R induced apoptosis involved the upregulation of Ras-PI3K-Akt pathway. PMID:25701595

Li, Tong; Sun, Ze-Lin; Xie, Qi Ying

2015-05-01

37

Expression of microRNA-122 contributes to apoptosis in H9C2 myocytes  

PubMed Central

The microRNAs (miRNAs) can post-transcriptionally regulate gene expression and heart development. The Pax-8 gene knockout mice have apparent heart abnormalities. This study investigated the role of miRNAs in regulation of cardiac apoptosis and development in the knockout mice. MicroRNA microarrays demonstrated differential expression of microRNAs between Pax-8?/? and Pax-8+/? mice, confirmed by real-time PCR. The miR-122 was up-regulated by 1.92 folds in Pax-8?/? mice. There were ventricular septum defects in Pax-8?/? mice, and increased numbers of apoptotic cells in the left ventricular wall and interventricular septum in Pax-8?/? mice. In H9C2 myocytes, treatment with miR-122 mimics or miR-122 inhibitor affects the expression of CCK-8 and activity of Caspase-3. The miR-122 is up-regulated in the myocytes of Pax-8?/? mice and may participate in the apoptotic gene expression and pathogenesis of heart development defect. PMID:22453009

Huang, Xiaoyan; Huang, Fang; Yang, Deye; Dong, Fengquan; Shi, Xiangxiang; Wang, Hongyu; Zhou, Xi; Wang, Suyun; Dai, Shengchuan

2012-01-01

38

Expression of microRNA-122 contributes to apoptosis in H9C2 myocytes.  

PubMed

The microRNAs (miRNAs) can post-transcriptionally regulate gene expression and heart development. The Pax-8 gene knockout mice have apparent heart abnormalities. This study investigated the role of miRNAs in regulation of cardiac apoptosis and development in the knockout mice. MicroRNA microarrays demonstrated differential expression of microRNAs between Pax-8(-/-) and Pax-8(+/-) mice, confirmed by real-time PCR. The miR-122 was up-regulated by 1.92 folds in Pax-8(-/-) mice. There were ventricular septum defects in Pax-8(-/-) mice, and increased numbers of apoptotic cells in the left ventricular wall and interventricular septum in Pax-8(-/-) mice. In H9C2 myocytes, treatment with miR-122 mimics or miR-122 inhibitor affects the expression of CCK-8 and activity of Caspase-3. The miR-122 is up-regulated in the myocytes of Pax-8(-/-) mice and may participate in the apoptotic gene expression and pathogenesis of heart development defect. PMID:22453009

Huang, Xiaoyan; Huang, Fang; Yang, Deye; Dong, Fengquan; Shi, Xiangxiang; Wang, Hongyu; Zhou, Xi; Wang, Suyun; Dai, Shengchuan

2012-11-01

39

Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes.  

PubMed

Oxidative stress plays a great role in the pathogenesis of heart failure (HF). Oxidative stress results in apoptosis, which can cause the damage of cardiomyocytes. Hydrogen sulfide (H2S), the third gasotransmitter, is a good reactive oxygen species (ROS) scavenger, which has protective effect against HF. Sirtuin-1 (SIRT1) is a highly conserved nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase that plays a critical role in promoting cell survival under oxidative stress. The purpose of this article is to investigate the interaction between H2S and SIRT1 under oxidative stress in H9c2 cardiomyocytes. Oxidative stress was induced by hydrogen peroxide (H2O2). Treatment with NaSH (25-100?µmol/L) dose-dependently increased the cell viability and improved the cell apoptosis induced by H2O2 in H9c2 cardiomyocytes. The protective effect of NaSH against the apoptosis could be attenuated by SIRT1 inhibitor Ex 527 (10?µmol/L). Treatment with NaSH (100?µmol/L) could increase the expression of SIRT1 in time dependent manner, which decreased by different concentration of H2O2. NaSH (100?µmol/L) increased the cellular ATP level and the expression of ATPase. These effects were attenuated by Ex 527 (10?µmol/L). After NaSH (100?µmol/L) treatment, the decrease in ROS production and the enhancement in SOD, GPx and GST expression were observed. Ex 527 (10?µmol/L) reversed these effects. In conclusion, for the first time, this article can identify antioxidative effects of H2S under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes. PMID:25461268

Wu, Dan; Hu, Qingxun; Liu, Xinhua; Pan, Lilong; Xiong, Qinghui; Zhu, Yi Zhun

2015-04-30

40

H9c2 cardiac myoblasts undergo apoptosis in a model of ischemia consisting of serum deprivation and hypoxia: inhibition by PMA  

Microsoft Academic Search

Cardiac myocytes undergo apoptosis under condition of ischemia. Little is known, however, about the molecular pathways that mediate this response. We show that serum deprivation and hypoxia, components of ischemia in vivo, resulted in apoptosis of rat ventricular myoblast cells H9c2. Hypoxia alone did not induce significant apoptosis for at least 48 h, but largely increased the proapoptotic action of

Francesca Bonavita; Claudio Stefanelli; Emanuele Giordano; Marta Columbaro; Annalisa Facchini; Francesca Bonafč; Claudio Marcello Caldarera; Carlo Guarnieri

2003-01-01

41

Adipocytokine, omentin inhibits doxorubicin-induced H9c2 cardiomyoblasts apoptosis through the inhibition of mitochondrial reactive oxygen species.  

PubMed

Omentin is a relatively novel adipocyte-derived cytokine mainly expressed in visceral adipose tissues. Blood omentin level decreases in the patients with obesity, hypertension, type 2 diabetes and atherosclerosis. We have previously demonstrated that omentin inhibits key pathological processes for hypertension development, including vascular inflammatory responses, contractile reactivity and structural remodeling. In addition, there are several reports demonstrating that omentin prevents cardiac hypertrophy and myocardial ischemic injury. Doxorubicin (DOX) is an effective anti-cancer drug with cardiotoxic side effect. Here we tested the hypothesis that omentin may prevent DOX-induced cardiac cytotoxicity. H9c2 rat cardiomyoblasts were treated with DOX in the absence or presence of omentin. Omentin (300 ng/ml, 3 h pretreatment) significantly inhibited DOX (1 ?M, 18 h)-induced decreases in living cell number as determined by a colorimetric cell counting assay. Omentin (300 ng/ml, 3 h) significantly inhibited DOX (1 ?M, 12 h)-induced cleaved caspase-3 expression as determined by Western blotting. Omentin (300 ng/ml, 3 h) significantly inhibited DOX (1 ?M, 6 h)-induced mitochondrial reactive oxygen species (ROS) production as determined by a MitoSOX Red fluorescent staining. In addition, a mitochondrial respiratory chain complex I inhibitor, rotenone (0.5 ?M, 3 h pretreatment), significantly inhibited DOX (1 ?M, 6-18 h)-induced decreases of living cell number, cleaved caspase-3 expression and mitochondrial ROS production. In summary, we for the first time demonstrate that omentin prevents DOX-induced H9c2 cells apoptosis through the inhibition of mitochondrial ROS production. These results indicate omentin as an attractive pharmaco-therapeautic target against DOX-induced cardiac side effect. PMID:25600813

Kazama, Kyosuke; Okada, Muneyoshi; Yamawaki, Hideyuki

2015-02-20

42

An embryonic heart cell line is susceptible to dengue virus infection.  

PubMed

Dengue virus (DENV) is the causative agent of dengue fever. In recent years, patients with more severe form of the disease with acute heart failure or progression to cardiogenic shock and death have been reported. However, the pathogenesis of myocardial lesions and susceptibility of cardiomyocytes to DENV infection have not been evaluated. Under this perspective, the susceptibility of the myoblast cell line H9c2, obtained from embryonic rat heart, to DENV infection was analyzed. Our findings indicate that H9c2 cells are susceptible to the infection with the four DENV serotypes. Moreover, virus translation/replication and viral production in this cell line is as efficient as in other susceptible cell lines, supporting the idea that DENV may target heart cells as evidenced by infection of H9c2 cells. This cell line may thus represent an excellent model for the study and characterization of cardiac physiopathology in DENV infection. PMID:25598317

Angel-Ambrocio, Antonio H; Soto-Acosta, Rubén; Tammineni, Eshwar R; Carrillo, Elba D; Bautista-Carbajal, Patricia; Hernández, Ascención; Sánchez, Jorge A; Del Angel, Rosa M

2015-02-16

43

Curcumin induces the apoptotic intrinsic pathway via upregulation of reactive oxygen species and JNKs in H9c2 cardiac myoblasts.  

PubMed

Curcumin derived from the rhizome of turmeric (Curcuma longa L.), is a well known coloring culinary agent, that has therapeutic properties against diverse pathologies such as cancer, atherosclerosis and heart failure. Given the salutary potential of curcumin, deciphering its mode of action particularly in cardiac cells, is of outstanding value. Accumulating evidence implicates curcumin in the regulation of multiple signaling pathways leading to cell survival or apoptosis. Therefore, the present study aimed at elucidating the molecular mechanisms triggered by curcumin in H9c2 cells. Curcumin was found to activate p38-mitogen-activated protein kinase (p38-MAPK) as well as c-jun NH2 terminal kinases (JNKs), in a dose- and time-dependent manner. We also observed curcumin to impair cell survival by promoting apoptosis, evidenced by chromatin condensation, poly(ADP-ribose) polymerase (PARP) and caspase-3 cleavage, as well as Bax translocation and cytochrome c release into the cytosol. Curcumin-induced apoptosis was ascribed to JNKs, since hindering their activity abolished PARP fragmentation. Furthermore, we identified curcumin to exert a pro-oxidative activity, with 2',7'-dichlorofluorescin diacetate (DCFH-DA) staining revealing up-regulation of reactive oxygen species (ROS) levels and anti-oxidants found to abrogate PARP cleavage. In conclusion, curcumin was found to stimulate the apoptotic cell death of H9c2 cells by upregulating ROS generation and triggering activation of JNKs. With reports underscoring the capacity of curcumin to perturb the cellular redox balance ensuring survival or enhancing apoptosis, determination of its mode of action appears to be critical. Future studies should assess the appropriate administration conditions of curcumin, so as to optimize its therapeutic potential against cardiovascular pathologies. PMID:24668280

Zikaki, Kyriaki; Aggeli, Ioanna-Katerina; Gaitanaki, Catherine; Beis, Isidoros

2014-06-01

44

Overexpression of ryanodine receptor type 1 enhances mitochondrial fragmentation and Ca2+-induced ATP production in cardiac H9c2 myoblasts.  

PubMed

Ca(+) influx to mitochondria is an important trigger for both mitochondrial dynamics and ATP generation in various cell types, including cardiac cells. Mitochondrial Ca(2+) influx is mainly mediated by the mitochondrial Ca(2+) uniporter (MCU). Growing evidence also indicates that mitochondrial Ca(2+) influx mechanisms are regulated not solely by MCU but also by multiple channels/transporters. We have previously reported that skeletal muscle-type ryanodine receptor (RyR) type 1 (RyR1), which expressed at the mitochondrial inner membrane, serves as an additional Ca(2+) uptake pathway in cardiomyocytes. However, it is still unclear which mitochondrial Ca(2+) influx mechanism is the dominant regulator of mitochondrial morphology/dynamics and energetics in cardiomyocytes. To investigate the role of mitochondrial RyR1 in the regulation of mitochondrial morphology/function in cardiac cells, RyR1 was transiently or stably overexpressed in cardiac H9c2 myoblasts. We found that overexpressed RyR1 was partially localized in mitochondria as observed using both immunoblots of mitochondrial fractionation and confocal microscopy, whereas RyR2, the main RyR isoform in the cardiac sarcoplasmic reticulum, did not show any expression at mitochondria. Interestingly, overexpression of RyR1 but not MCU or RyR2 resulted in mitochondrial fragmentation. These fragmented mitochondria showed bigger and sustained mitochondrial Ca(2+) transients compared with basal tubular mitochondria. In addition, RyR1-overexpressing cells had a higher mitochondrial ATP concentration under basal conditions and showed more ATP production in response to cytosolic Ca(2+) elevation compared with nontransfected cells as observed by a matrix-targeted ATP biosensor. These results indicate that RyR1 possesses a mitochondrial targeting/retention signal and modulates mitochondrial morphology and Ca(2+)-induced ATP production in cardiac H9c2 myoblasts. PMID:24124188

O-Uchi, Jin; Jhun, Bong Sook; Hurst, Stephen; Bisetto, Sara; Gross, Polina; Chen, Ming; Kettlewell, Sarah; Park, Jongsun; Oyamada, Hideto; Smith, Godfrey L; Murayama, Takashi; Sheu, Shey-Shing

2013-12-01

45

Icariin protects H9c2 cardiomyocytes from lipopolysaccharide?induced injury via inhibition of the reactive oxygen species?dependent c?Jun N?terminal kinases/nuclear factor-?B pathway.  

PubMed

The inflammatory response is involved in the pathogenesis of the most common forms of heart disease. Icariin has a number of pharmacological actions, including anti?inflammatory, anti?oxidative and anti?apoptotic effects. However, the role of icariin in cardiac inflammation has remained elusive. In the present study, H9c2 rat cardiomyocytes were stimulated by lipopolysaccharide (LPS) and treated with icariin. The results showed that icariin significantly reduced the increase in the mRNA expression of tumor necrosis factor ?, interleukin (IL)?1? and IL?6 that occurred in response to LPS. Furthermore, icariin regulated the expression of B-cell lymphoma 2 and B-cell lymphoma 2-associated X, and rescued H9c2 cells from apoptosis. Incubation with 2',7'?dichlorofluorescein diacetate demonstrated that icariin inhibited the production of intracellular reactive oxygen species (ROS). In addition, the phosphorylation of c?Jun N?terminal kinases (JNK), the degradation of inhibitor of ?B and the nuclear translocation of nuclear factor??B (NF??B) p65 in LPS?treated H9c2 cells were blocked by icariin treatment. These results suggested that icariin prevented cardiomyocytes from inflammatory response and apoptosis, and that this effect may be mediated by inhibition of the ROS?dependent JNK/NF??B pathway. PMID:25647547

Zhou, Heng; Yuan, Yuan; Liu, Yuan; Ni, Jian; Deng, Wei; Bian, Zhou-Yan; Dai, Jia; Tang, Qi-Zhu

2015-06-01

46

Knockdown of CkrL by shRNA deteriorates hypoxia/reoxygenation-induced H9C2 cardiomyocyte apoptosis and survival inhibition Via Bax and downregulation of P-Erk1/2.  

PubMed

Integrin ?1 subunit and its downstream molecule integrin-linked kinase and focal adhesion kinase have been confirmed to be essential to cell survival and inhibition of apoptosis and hypoxia/reoxygenation (H/R)-induced injuries in cardiomyocytes. However, it is still unclear whether CrkL [v-crk avian sarcoma virus CT-10 oncogene homolog (Crk)-like], which acts also as a component of the integrin pathway, could also affect H/R-induced injuries in the cardiomyocytes. The rat-derived H9C2 cardiomyocytes were infected with a CrkL small hairpin RNA interference recombinant lentivirus, which knockdowns the endogenous CrkL expression in the cardiomyocytes. Apoptosis, cell proliferation and survival were examined in the H9C2 cardiomyocytes treated with either H/R or not. Results showed that knockdown of CrkL could significantly increase apoptosis and inhibition of the cell proliferation and survival and deteriorate the previously mentioned injuries induced by H/R. In contrast, overexpression of human CrkL could relieve the exacerbation of the previously mentioned injuries induced by CrkL knockdown in the H9C2 cardiomyocytes via regulation of Bax and extracellular signal-regulated kinase1/2 (p-ERK1/2). In conclusion, these results confirmed that knockdown of CrkL could deteriorate H/R-induced apoptosis and cell survival inhibition in rat-derived H9C2 cardiomyocytes via Bax and downregulation of p-ERK1/2. It implies that CrkL could mitigate H/R-induced injuries in the cardiomyocytes. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25703803

Zhang, Zhi-Sheng; Yang, Dong-Yan; Fu, Yan-Bo; Zhang, Lei; Zhao, Qian-Ping; Li, Gang

2015-03-01

47

Phloretin ameliorates arsenic trioxide induced mitochondrial dysfunction in H9c2 cardiomyoblasts mediated via alterations in membrane permeability and ETC complexes.  

PubMed

Arsenic trioxide (ATO), though a very effective drug for the treatment of acute promyelocytic leukemia, leads to cardiotoxicity. As mitochondria are the center of attention of cardiac cell?s general metabolic status, it is primarily important to see the interaction of ATO with mitochondria. Studies related exclusively to the alterations in mitochondria and its associated functions caused by ATO are very limited. The present investigation aims to explore the effect of ATO on various components of electron transport chain, oxygen consumption, ATP production, mitochondrial superoxide generation, transmembrane potential, permeability pore opening, calcium homeostasis and apoptosis. Attempts were also made to see the efficacy of phloretin, a potent antioxidant flavonoid found majorly in apple peel on cardiotoxicity. The H9c2 cells exposed to ATO (5µM) exhibited increased oxidative stress with reduced innate antioxidant status, mitochondrial dysfunctions and apoptosis. It increased the intracellular calcium content, caused alterations in the activity of transcription factor Nrf2, xanthine oxidase, aconitase and caspase 3 compared to the control group. Phloretin at 2.5 and 5µM concentrations were able to protect the cells from ATO toxicity via protecting mitochondria through its antioxidant potential. The present investigation based on mitochondria reveals the probability of cardioprotective potential of phloretin for the cancer patients on ATO chemotherapy. PMID:25746422

Vineetha, Vadavanath Prabhakaran; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

2015-05-01

48

Inhibition of microRNA-101 attenuates hypoxia/reoxygenation?induced apoptosis through induction of autophagy in H9c2 cardiomyocytes.  

PubMed

Autophagy is a cellular self?catabolic process responsible for the degradation of proteins and organelles. Autophagy is able to promote cell survival in response to stress, and increased autophagy amongst cardiomyocytes has been identified in conditions of heart failure, starvation and ischemia/reperfusion. However, the detailed regulatory mechanisms underlying autophagy in heart disease have remained elusive. MicroRNAs (miRNAs) have been implicated in the regulation of autophagy in cells under stress. In the present study, the protective effect of miRNA (miR)?101 on hypoxia/reoxygenation (H/R)?induced cardiomyocyte apoptosis was investigated. It was revealed that H/R induced apoptosis in H9c2 cardiomyocytes, accompanied by a downregulation of miR?101 expression. Further investigation identified Ras?related protein Rab?5A (RAB5A) as a direct target of miR?101. RAB5A was previously reported to be involved in autophagy; therefore, the present study further focused on the role of miR?101 in the regulation of autophagy under H/R and found that the inhibition of miR?101 attenuated H/R?induced apoptosis, at least partially, via the induction of autophagy. In conclusion, the results of the present study revealed a beneficial effect of miR?101 inhibition on H/R?induced apoptosis in cardiomyocytes, indicating that miR?101 inhibition may present a potential therapeutic agent in the treatment or prevention of heart diseases. PMID:25606826

Wu, Dongkai; Jiang, Haihe; Chen, Shengxi; Zhang, Heng

2015-05-01

49

Cell lines.  

PubMed

We review the properties and uses of cell lines in Drosophila research, emphasizing the variety of lines, the large body of genomic and transcriptional data available for many of the lines, and the variety of ways the lines have been used to provide tools for and insights into the developmental, molecular, and cell biology of Drosophila and mammals. PMID:24434506

Cherbas, Lucy; Gong, Lei

2014-06-15

50

Estrogen receptor ? mediates the effects of notoginsenoside R1 on endotoxin-induced inflammatory and apoptotic responses in H9c2 cardiomyocytes.  

PubMed

Estrogen receptors (ERs) are important for preventing endotoxin?induced myocardial dysfunction. Therefore, plant?derived phytoestrogens, which target ERs may also affect endotoxin?induced toxicity in cardiomyocytes. Our previous study revealed that notoginsenoside?R1 (NG?R1), a predominant phytoestrogen from Panax notoginseng, protects against cardiac dysfunction. However, the effects of NG?R1 on cardiomyocytes and the precise cellular/molecular mechanisms underlying its action remain to be elucidated. In the present study, pretreatment with NG?R1 suppressed the lipopolysaccharide (LPS)?induced degradation of inhibitor of nuclear factor??B (NF??B) ?, the activation of NF??B and caspase?3, and the subsequent myocardial inflammatory and apoptotic responses in H9c2 cardiomyocytes. An increase in the mRNA and protein expression of ER? was also observed in the NG?R1?treated cardiomyocytes. However, the expression pattern of ER? remained unaltered. Furthermore, the cardioprotective properties of NG?R1 against LPS?induced apoptosis and the inflammatory response in cardiomyocytes were attenuated by ICI 182780, a non?selective ER? antagonist, and methyl?piperidino?pyrazole, a selective ER? antagonist. These findings suggested that NG?R1 reduced endotoxin?induced cardiomyocyte apoptosis and the inflammatory response via the activation of ER?. Therefore, NG?R1 exerted direct anti?inflammatory and anti?apoptotic effects on the cardiomyocytes, representing a potent agent for the treatment of myocardial inflammation during septic shock. PMID:25738436

Zhong, Lei; Zhou, Xing-Lu; Liu, Yan-Song; Wang, Yi-Min; Ma, Fei; Guo, Bao-Liang; Yan, Zhao-Qi; Zhang, Qing-Yuan

2015-07-01

51

Expression and modification of ARC (apoptosis repressor with a CARD domain) is distinctly regulated by oxidative stress in cancer cells.  

PubMed

Apoptosis repressor with a CARD domain (ARC), which has been shown to protect against oxidative stress-induced apoptosis, was initially found to be highly expressed in terminally differentiated tissues like heart and skeletal muscle. Recently, we and others have found that ARC is also expressed at high levels in multiple cancer tissues and cell lines. Here, we compared the regulation of ARC in response to oxidative stress between cancer cells and other types of cells. Similar to cardiomyocyte cell line H9c2 cells, cancer cells with reduced ARC expression were significantly more sensitive to oxidative stress. However, oxidative stress did not down-regulate ARC expression in cancer cells as it did in H9c2 cells. We further found that in H9c2 cells oxidative stress regulates ARC protein expression post-translationally through proteasome-mediated degradation. In cancer cell line HeLa, the majority of ARC exists in phosphorylated state in the absence of oxidative stress, whereas in H9c2 cells only marginal amount of ARC was phosphorylated under similar conditions. Our data suggest that the high level of ARC protein and the constitutive phosphorylation of ARC in cancer cells may play an important role in the protection of cancer cells against oxidative stress. PMID:18172857

Zhang, Yi-Qiang; Herman, Brian

2008-06-01

52

Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells  

NASA Technical Reports Server (NTRS)

The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

1989-01-01

53

Stable high level expression of a transfected human HSP70 gene protects a heart-derived muscle cell line against thermal stress.  

PubMed

Heat shock protein 70 (HSP70) has been shown to play a fundamental role in the induction of thermotolerance in many biological systems. Elevated synthesis of HSP70 in response to diverse stresses such as heat, anoxia, ischaemia, ethanol and heavy metals has been correlated with protection against subsequent more severe stress and cross-tolerance to differing stresses. In this respect, exposure of the mammalian heart to sublethal heat treatment or ischaemia has been shown to protect against subsequent myocardial ischaemia with concomitant elevation of HSP70. However, direct demonstration that HSP70 can alone confer thermotolerance has until recently been restricted to transfection of fibroblasts with an HSP70 gene, although preliminary data from others suggests that transfection of H9c2 myocytes with an HSP70 gene can confer tolerance to substrate-free hypoxia. The purpose of this study was, therefore, to test directly whether a myocyte cell line which retains certain features of cardiac cells (as opposed to non-myocyte cells) can be protected against lethal thermal stress by transfection with a single HSP70 gene. Rat heart-derived H9c2 cells were transfected either with a plasmid from which high level expression of a human HSP70 gene is driven by a strong, heterologous (human) beta-actin promoter (APr-HS70), or with an analogous control plasmid containing no HSP70 gene (pAPr-1 neo). Following selection with the neomycin analogue G418, several clones were isolated which either expressed no HSP70 (control: pAPr-1 neo-derived) or stably expressed high constitutive levels of an inducible isoform of HSP70 (HSP70i) (APr-HS70-derived) as determined by Western blotting with a specific monoclonal antibody to HSP70i.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8089850

Heads, R J; Latchman, D S; Yellon, D M

1994-06-01

54

CLO: The cell line ontology  

PubMed Central

Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

2014-01-01

55

Pediatric brain tumor cell lines.  

PubMed

Pediatric brain tumors as a group, including medulloblastomas, gliomas, and atypical teratoid rhabdoid tumors (ATRT) are the most common solid tumors in children and the leading cause of death from childhood cancer. Brain tumor-derived cell lines are critical for studying the biology of pediatric brain tumors and can be useful for initial screening of new therapies. Use of appropriate brain tumor cell lines for experiments is important, as results may differ depending on tumor properties, and can thus affect the conclusions and applicability of the model. Despite reports in the literature of over 60 pediatric brain tumor cell lines, the majority of published papers utilize only a small number of these cell lines. Here we list the approximately 60 currently-published pediatric brain tumor cell lines and summarize some of their central features as a resource for scientists seeking pediatric brain tumor cell lines for their research. PMID:25211508

Xu, Jingying; Margol, Ashley; Asgharzadeh, Shahab; Erdreich-Epstein, Anat

2015-02-01

56

Differential translocation of nuclear factor-kappaB in a cardiac muscle cell line under gravitational changes.  

PubMed

Microgravity (micro-g) environments have been shown to elicit dysregulation of specific genes in a wide assay of cell types. It is known that the activation of transcription factors and molecular signaling pathways influence various physiological outcomes associated with stress and adaptive responses. Nuclear factor-kappa B (NF-kappaB) is one of the most prevailing oxidation-sensitive transcription factors. It is hypothesized that simulated microgravity would activate NF-kappaB and its downstream transcriptional networks, thus suggesting a role for NF-kappaB in microgravity induced muscle atrophy. To investigate the activation of NF-kappaB in a rat cardiac cell line (H9c2) under micro-g, rotating wall vessel bioreactors were used to simulate micro-g conditions. Western blotting revealed that mean nuclear translocation of NF-kappaB p65 subunit was 69% for micro-g and 46% for unit-g dynamic control as compared with a 30 min TNF-alpha positive control (p<0.05, n=3). The results from western blots were confirmed by enzyme-linked immunosorbent assay, which showed 66% for micro-g and 45% for dynamic control as compared with positive control (p<0.05, n=3). These results show significant differential translocation of NF-kappaB p65 under simulated micro-g. These results may be expanded upon to explain physiological changes such as muscle atrophy and further identify the regulatory pathways and effector molecules activated under exposure to micro-g. PMID:19449973

Kwon, Ohwon; Tranter, Michael; Jones, W Keith; Sankovic, John M; Banerjee, Rupak K

2009-06-01

57

Automation of cell line development  

Microsoft Academic Search

An automated platform for development of high producing cell lines for biopharmaceutical production has been established in\\u000a order to increase throughput and reduce development costs. The concept is based on the Cello robotic system (The Automation\\u000a Partnership) and covers screening for colonies and expansion of static cultures. In this study, the glutamine synthetase expression\\u000a system (Lonza Biologics) for production of

Kristina Lindgren; Andréa Salmén; Mats Lundgren; Lovisa Bylund; Ĺsa Ebler; Eric Fäldt; Lina Sörvik; Christel Fenge; Ulrica Skoging-Nyberg

2009-01-01

58

Molluscan cells in culture: primary cell cultures and cell lines  

PubMed Central

In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

Yoshino, T. P.; Bickham, U.; Bayne, C. J.

2013-01-01

59

Natural killer cell lines in tumor immunotherapy.  

PubMed

Natural killer (NK) cells are considered to be critical players in anticancer immunity. However, cancers are able to develop mechanisms to escape NK cell attack or to induce defective NK cells. Current NK cell-based cancer immunotherapy is aimed at overcoming NK cell paralysis through several potential approaches, including activating autologous NK cells, expanding allogeneic NK cells, usage of stable allogeneic NK cell lines and genetically modifying fresh NK cells or NK cell lines. The stable allogeneic NK cell line approach is more practical for quality-control and large-scale production. Additionally, genetically modifying NK cell lines by increasing their expression of cytokines and engineering chimeric tumor antigen receptors could improve their specificity and cytotoxicity. In this review, NK cells in tumor immunotherapy are discussed, and a list of therapeutic NK cell lines currently undergoing preclinical and clinical trials of several kinds of tumors are reviewed. PMID:22460449

Cheng, Min; Zhang, Jian; Jiang, Wen; Chen, Yongyan; Tian, Zhigang

2012-03-01

60

Biology of Mutant KRAS Cell Lines  

Cancer.gov

Posted: September 22, 2014 Posted: September 22, 2014 Biology of Mutant KRAS Cell Lines Target Biology Group Many dozens of cell lines derived from human cancers contain mutant RAS genes, and these cell lines are a good proxy  to study cancer processes.

61

Development and characterization of insect cell lines  

Microsoft Academic Search

With the wide availability of insect cell culture media, it can generally be considered a routine process to develop new cell lines. Exceptions to this statement do exist, of course. Difficulties may arise when attempting to culture a specific cell type. For example, while there are a few cell lines from insect fat body and at least one from the

Dwight E. Lynn

1996-01-01

62

Cell line: 2004-2014.  

PubMed

2014 marks Cell's 40th anniversary, and over the year we have looked back at how discoveries of the last four decades have molded our understanding of biology. The final decade of the Cell Line features a selection of the exceptional scientific work-both landmark papers and essential reviews. Select entries can be read as an "Annotated Classic," which includes the original paper and accompanying reflections of a leading scientist, considering the work from our current vantage point. Our last installment includes a harbinger of the interplay between microbiota and mammalian hosts in 2004, revolutionary papers in 2006 and 2007 unlocking cellular reprogramming, the discovery of beige adipocytes in 2012, and the first example of CRISPR-based genome editing in a nonhuman primate in 2014. In addition to landmark publications, there were innovative developments at the journal in this decade, with the complete redesign of the print journal and the creation of Leading Edge in late 2005 and the restructuring of the online display of the article in 2010. Keeping pace with the changing nature of biological research, over the decade Cell added new article types, introduced guidelines for the organization of supplementary material, and expanded the journal's web-based content to bring editors' and authors' excitement and perspective on individual papers to the readership. An interactive version of the timeline, with links to the papers, full author lists, and Annotated Classics, is available at http://dx.doi.org/10.1016/j.cell.2014.11.004. PMID:25416957

2014-11-20

63

Molecular characterization of novel melanoma cell lines.  

PubMed

We isolated two novel cell lines from different types of sporadic human malignant melanoma: the hmel1 line was obtained from a melanoma skin metastasis and the hmel9 cell line from a primary superficial spreading melanoma. The karyotype and pigmentation parameters were assessed in these cell lines. Cytogenetic analysis in early stages of culture revealed that both cell lines had chromosome instability and simultaneous growth of heteroploid subpopulations. The molecular analysis of some genes involved in melanoma showed that both cell lines harbor BRAF mutations. The unpigmented hmel1 and the pigmented hmel9 lines were found to express the tyrosinase gene. The tyrosine hydroxylase activity was detectable only in hmel9 cells and practically absent in the hmel1 cell line. This activity was found to be correlated with the relative tyrosinase protein amount in both melanoma cell lines. The biological behaviour in the two melanoma cell lines, derived from two different types of melanoma lesions displaying distinct clinical and histopathological features, confirms the heterogeneous characteristics of sporadic melanoma. Similarities and/or differences between cell lines extracted from different melanoma cases could be useful in the future for diagnostic, prognostic and therapeutic purposes. PMID:21880213

Zanna, P; Maida, I; Turpin Sevilla, M C; Susca, F C; Filotico, R; Arciuli, M; Cassano, N; Vena, G A; Cicero, R; Guida, G

2011-01-01

64

[Karyotypic variability of human myeloma cell lines].  

PubMed

Cytogenetic analysis of human myeloma cell lines L363, Karpas 707, RPMI 8226 and U-266 has been performed. Chromosome numbers retained near-diploid (L363, Karpas 707 and U-266) or increased to hypotriploid (RPMI 8226) during many years of maintenance of the cell lines in vitro. Based on G-banding analysis, the complex karyotypes with abnormalities of virtually all chromosome pairs were found in these cell lines but common chromosome translocations were not observed. In addition, chromosome loci involved in structural rearrangements in these cell lines often overlapped with loci of DNA copy number imbalances revealed in myeloma cells in vivo. Besides, distinct types of karyotypic structure of cell populations were found in all of these cell lines which differed by combination of cells with main and additional structural variants of karyotype and cells with non-clonal chromosome aberrations. Taken together, it seems obvious that karyotypic variability of human myeloma cell lines corresponds to karyotypic progression of myeloma in vivo and, hence, has tumor specific pattern. PMID:23074853

Turilova, V K; Smirnova, T D

2012-01-01

65

Cytostasis of tumor cell lines by promyelocytic leukemia cell line HL60 differentiated to granulocyte lineage  

Microsoft Academic Search

The human promyelocytic leukemia cell line HL60, when cultured in medium containing dimethyl sulfoxide (DMSO) or granulocyte colonystimulating factor (G-CSF), stopped dividing and differentiated into cells with granulocyte characteristics. We found that differentiated HL60 cells have no detectable cytolytic activity against cultured human bladder cell line (T24 cell), as measured by release of (3H) thymidine, or against K562 cells, as

T. Hara; T. Umeda; T. Niijima; T. Okabe

1985-01-01

66

Establishment of the AU-bek cell line and comparison with two other bovine cell lines  

Microsoft Academic Search

Summary  Establishment of a new bovine cell line, AU-BEK, is reported. The cell line developed in a culture initiated from bovine embryonic\\u000a kidneys by spontaneous cultural alteration to epithelioid cells that are indefinitely propagable. Epithelioid cells gradually\\u000a increased to become the predominant cell. Whereas normal bovine cells have a diploid number of 60 chromosomes, of which only\\u000a the two sex chromosomes

Charles R. Rossi; George K. Kiesel

1973-01-01

67

Review article Immortal porcine lymphoblastoid cell lines  

E-print Network

Review article Immortal porcine lymphoblastoid cell lines: interest for veterinary and medical porcine breeds. The lymphoblast immortalization has been putatively attributed to an oncogenic virus lymphoblastoďdes porcines immortelles : intéręt pour la recherche vétérinaire et médicale. Les lignées

Paris-Sud XI, Université de

68

Cell-host, LINE and environment  

PubMed Central

Long interspersed nuclear elements -1 (LINEs, L1s) are retroelements occupying almost 17% of the human genome. L1 retrotransposition can cause deleterious effects on the host-cell and it is generally inhibited by suppressive mechanisms, but it can occur in some specific cells during early development as well as in some tumor cells and in the presence of several environmental factors. In a recent publication we reported that extremely low frequency pulsed magnetic field can affect L1 retrotransposition in neuroblastoma cells. In this commentary we discuss the interaction between environment and L1 activity in the light of the new emerging paradigm of host-LINE relationship. PMID:23734298

Del Re, Brunella; Giorgi, Gianfranco

2013-01-01

69

Near neighbour analysis of variant cell lines derived from the promyeloid cell line HL60  

Microsoft Academic Search

The human promyeloid cell line H60 can be induced to differentiate towards either neutrophils or monocytes. Variant cell lines, derived from HL60, which show reduced capacities for neutrophil and monocyte differentiation can be arranged in a developmental sequence which suggests that the potentials for neutrophil and monocyte differentiation are expressed sequentially by HL60 cells in this order. Analysis of the

CM Bunce; JM Lord; AK-Y Wong; G Brown

1988-01-01

70

77 FR 5489 - Identification of Human Cell Lines Project  

Federal Register 2010, 2011, 2012, 2013, 2014

...120104006-2006-01] Identification of Human Cell Lines Project AGENCY: National Institute...repeat (STR) profiling up to 1500 human cell line samples as part of the Identification of Human Cell Lines Project. All data and...

2012-02-03

71

Ion channel phenotype of melanoma cell lines.  

PubMed

Melanoma cells are transformed melanocytes of neural crest origin. K+ channel blockers have been reported to inhibit melanoma cell proliferation. We used whole-cell recording to characterize ion channels in four different human melanoma cell lines (C8161, C832C, C8146, and SK28). Protocols were used to identify voltage-gated (KV), Ca2+-activated (KCa), and inwardly rectifying (KIR) K+ channels; swelling-sensitive Cl- channels (Clswell); voltage-gated Ca2+ channels (CaV) and Ca2+ channels activated by depletion of intracellular Ca2+ stores (CRAC); and voltage-gated Na+ channels (NaV). The presence of Ca2+ channels activated by intracellular store depletion was further tested using thapsigargin to elicit a rise in [Ca2+]i. The expression of K+ channels varied widely between different cell lines and was also influenced by culture conditions. KIR channels were found in all cell lines, but with varying abundance. Whole-cell conductance levels for KIR differed between C8161 (100 pS/pF) and SK28 (360 pS/pF). KCa channels in C8161 cells were blocked by 10 nm apamin, but were unaffected by charybdotoxin (CTX). KCa channels in C8146 and SK28 cells were sensitive to CTX (Kd = 4 nm), but were unaffected by apamin. KV channels, found only in C8146 cells, activated at approximately -20 mV and showed use dependence. All melanoma lines tested expressed CRAC channels and a novel Clswell channel. Clswell current developed at 30 pS/sec when the cells were bathed in 80% Ringer solution, and was strongly outwardly rectifying (4:1 in symmetrical Cl-). We conclude that different melanoma cell lines express a diversity of ion channel types. PMID:9002422

Allen, D H; Lepple-Wienhues, A; Cahalan, M D

1997-01-01

72

Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines  

Microsoft Academic Search

The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http:\\/\\/bioinformatics.istge.it\\/hypercldb\\/) is a hyper- text version of CLDB that improves data accessibil- ity by also allowing information retrieval

Paolo Romano; Maria Assunta Manniello; Ottavia Aresu; Massimiliano Armento; Michela Cesaro; Barbara Parodi

2009-01-01

73

A proteomics approach to identifying fish cell lines  

Microsoft Academic Search

Fish cell lines are relatively easy to culture and most have simple growth requirements that make cross contamination a potential problem. Cell line contamination is not an uncommon incident in laboratories handling more than one cell line and many reports have been made on cross contamination of mammalian cell lines. Although problems of misidentification and cross-con- tamination of fish cell

2005-01-01

74

Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines  

SciTech Connect

Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany) [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany)] [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany)] [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany)] [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany)] [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany)] [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany)] [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)] [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

2011-04-01

75

Umbelliprenin Induces Apoptosis in CLL Cell Lines  

PubMed Central

Chronic lymphocytic leukemia (CLL) remains an incurable disease that requires innovative new approaches to improve therapeutic outcome. Many Ferula species, including F. asa-foetida, synthesize terpenyloxy coumarins. One of these coumarins is umbelliprenin, which has been implicated with induction of apoptosis in some cancer cell lines. In this study induction of apoptosis by umbelliprenin on Jurkat T-CLL and Raji B-CLL cell lines was studied. In this regard, cells were incubated with various concentrations of umbelliprenin in-vitro for different times and assayed for apoptosis with annexin V–FITC/PI double staining flowcytometry method. Results showed that umbelliprenin induced apoptosis in leukemic cells in a dose- and time-dependent manner and that CLL cells were more susceptible to umbelliprenin induced cell death than normal peripheral blood mononuclear cell (PBMCs). Moreover, we study the induction of apoptosis in Jurkat cells by umbelliprenin in the presence of interleukin 4 (IL-4) as an agent that causes resistance to apoptosis in CLL cells, was also student. We showed that IL-4 can not reduce apoptotic effect of umbelliprenin. The preferential toxicity of umbelliprenin for CLL cells, supports the hypothesis that oral administration of umbelliprenin in the form of foods or folk medicines containing this coumarin, might enhance protection against the development of CLL in man with little side effects. In conclusion, umbelliprenin may be an effective therapeutic agent in the treatment of CLL, and thus clinical studies with umbelliprenin may be appropriate. PMID:24250490

Ziai, Seyed Ali; Gholami, Omid; Iranshahi, Mehrdad; Zamani, Amir Hassan; Jeddi-Tehrani, Mahmood

2012-01-01

76

Refractory lining for electrochemical cell  

DOEpatents

Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contcat with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

Blander, Milton (Palos Park, IL); Cook, Glenn M. (Naperville, IL)

1987-01-01

77

TRANSFECTION OF INSECT CELL LINES USING POLYETHYLENIMINE  

Technology Transfer Automated Retrieval System (TEKTRAN)

Insect cell lines have been widely used in recombinant baculovirus expression systems and transient gene expression studies. Critical to these applications have been the transfection of foreign DNA. This has been widely done using labor intensive and cytotoxic liposome-based transfection reagents....

78

Multinucleation of cultured canine epithelial and lymphoma cell lines  

Microsoft Academic Search

Summary  The frequency distribution patterns of monuclear and multinuclear giant cells were determined for two canine lymphoma cell\\u000a lines (DT-5 and 11028), and a normal canine kidney epithelial cell line (DK). The proportion of multinuclear cells in the\\u000a DK line (1.53%) was approximately twice those of the DT-5 (0.75%) and 11028 (0.73%) cell lines. The observed frequency distributions\\u000a of cells with

Joseph Torres; Albert L. Chapman

1984-01-01

79

Investigating citrullinated proteins in tumour cell lines  

PubMed Central

Background The conversion of arginine into citrulline, termed citrullination, has important consequences for the structure and function of proteins. Studies have found PADI4, an enzyme performing citrullination, to be highly expressed in a variety of malignant tumours and have shown that PADI4 participates in the process of tumorigenesis. However, as citrullinated proteins have not been systematically investigated in tumours, the present study aimed to identify novel citrullinated proteins in tumours by 2-D western blotting (2-D WB). Methods Two identical two-dimensional electrophoresis (2-DE) gels were prepared using extracts from ECA, H292, HeLa, HEPG2, Lovo, MCF-7, PANC-1, SGC, and SKOV3 tumour cell lines. The expression profiles on a 2-DE gel were trans-blotted to PVDF membranes, and the blots were then probed with an anti-citrulline antibody. By comparing the 2-DE profile with the parallel 2-D WB profile at a global level, protein spots with immuno-signals were collected from the second 2-DE gel and identified using mass spectrometry. Immunoprecipitation was used to verify the expression and citrullination of the targeted proteins in tumour cell lines. Results 2-D WB and mass spectrometry identified citrullinated ?-enolase (ENO1), heat shock protein 60 (HSP60), keratin 8 (KRT8), tubulin beta (TUBB), T cell receptor chain and vimentin in these cell lines. Immunoprecipitation analyses verified the expression and citrullination of ENO1, HSP60, KRT8, and TUBB in the total protein lysates of the tumour cell lines. Conclusions The citrullination of these proteins suggests a new mechanism in the tumorigenic process. PMID:24099319

2013-01-01

80

Original article Immortalized goat milk epithelial cell lines  

E-print Network

T antigen. The kinetics of growth of TIGMEC1, TIG- MEC2 and TIGMEC3 cell lines showed a doubling time of 24Original article Immortalized goat milk epithelial cell lines replicate CAEV at high level Laila epithelial cells were isolated from CAEV-uninfected goats and three cell lines designated TIGMEC-1, TIGMEC-2

Paris-Sud XI, Université de

81

PI Control of Gene Expression in Tumorous Cell Lines  

E-print Network

cancer cell line genes behave more like their Human Embryonic Kidney cell line counterparts. Two methods of intervention were introduced. The first method was the simpler on-off control intervention while the second method used a more advanced...

Mendonca, Rouella J.

2010-01-16

82

Human Myeloma Cell Line Carrying a Philadelphia Chromosome  

Microsoft Academic Search

A new human plasmacytoma cell line (Karpas 707) has been established from a myeloma patient. The cultured cells are negative for Epstein-Barr viral nuclear antigen and free of mycoplasma. They are similar to plasma cells and secrete only lambda light chains. The cells are hypodiploid and contain the Philadelphia chromosome and other abnormalities. This cell line may be suitable for

Abraham Karpas; Patricia Fischer; David Swirsky

1982-01-01

83

A resource for cell line authentication, annotation and quality control.  

PubMed

Cell line misidentification, contamination and poor annotation affect scientific reproducibility. Here we outline simple measures to detect or avoid cross-contamination, present a framework for cell line annotation linked to short tandem repeat and single nucleotide polymorphism profiles, and provide a catalogue of synonymous cell lines. This resource will enable our community to eradicate the use of misidentified lines and generate credible cell-based data. PMID:25877200

Yu, Mamie; Selvaraj, Suresh K; Liang-Chu, May M Y; Aghajani, Sahar; Busse, Matthew; Yuan, Jean; Lee, Genee; Peale, Franklin; Klijn, Christiaan; Bourgon, Richard; Kaminker, Joshua S; Neve, Richard M

2015-04-16

84

Cell line issues: historical and future perspectives.  

PubMed

The initial decision to use only primary cell cultures for the production of human biological products was challenged in the late 1960s by the introduction of human diploid cells (HDCs), and again in the 1980s by continuous cell lines (CCLs). The history of the HDC controversy is reviewed and lessons from that era that are relevant to the use of CCLs are pointed out. With the introduction of recombinant DNA technology in the 1980s, and the potential usefulness of CCLs in product development, the issue of cell acceptability became more urgent, and several attempts were made to reach a consensus on regulatory issues. In 1986, the World Health Organization convened a Study Group to review the safety issues related to products derived from CCLs. The Study Group made a clear recommendation to pursue CCLs in product development because of the demonstrated capability of modern manufacturing processes to cope with contaminants. Issues such as acceptable levels of cellular DNA in products, the relationship of purity to safety, and the relevance of the genetic stability of recombinant cells to product consistency are current examples of areas in need of discussion and agreement. A system in which regulatory authorities, industry, and the general biomedical community cooperate in finding solutions is ultimately in everyone's best interest. PMID:1478355

Petricciani, J C

1992-01-01

85

Syngeneic mouse mammary carcinoma cell lines: Two closely related cell lines with divergent metastatic behavior  

Microsoft Academic Search

Two cell lines, Met-1fvb2 and DB-7fvb2, with different metastatic potential, were derived from mammary carcinomas in FVB\\/N-Tg(MMTV-PyVmT) and FVB\\/N-Tg(MMTV-PyVmTY315F\\/Y322F) mice, transplanted into syngeneic FVB\\/N hosts and characterized. The lines maintain a stable morphological and biological phenotype after multiple rounds of in vitro culture and in vivo transplantation. The Met-1fvb2 line derived from a FVB\\/N-Tg(MMTV-PyVmT) tumor exhibits invasive growth and 100%

Alexander D. Borowsky; Ruria Namba; Lawrence J. T. Young; Kent W. Hunter; J. Graeme Hodgson; Clifford G. Tepper; Erik T. McGoldrick; William J. Muller; Robert D. Cardiff; Jeffrey P. Gregg

2005-01-01

86

EXAFS studies of prostate cancer cell lines  

NASA Astrophysics Data System (ADS)

Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented.

Czapla, J.; Kwiatek, W. M.; Lekki, J.; Kisiel, A.; Steininger, R.; Goettlicher, J.

2013-04-01

87

Personalized chemotherapy profiling using cancer cell lines from selectable mice  

PubMed Central

Purpose High-throughput chemosensitivity testing of low-passage cancer cell lines can be used to prioritize agents for personalized chemotherapy. However, generating cell lines from primary cancers is difficult, because contaminating stromal cells overgrow the malignant cells. Experimental Design We produced a series of hypoxanthine phosphoribosyl transferase (hprt)-null immunodeficient mice. During growth of human cancers in these mice, hprt-null murine stromal cells replace their human counterparts. Results Pancreatic and ovarian cancers explanted from these mice were grown in selection media to produce pure human cancer cell lines. We screened one cell line with a 3,131-drug panel and identified seventy-seven FDA approved drugs with activity, including two novel drugs to which the cell line was uniquely sensitive. Xenografts of this carcinoma were selectively responsive to both drugs. Conclusion Chemotherapy can be personalized using patient-specific cell lines derived in biochemically selectable mice. PMID:23340293

Kamiyama, Hirohiko; Rauenzahn, Sherri; Shim, Joong Sup; Karikari, Collins A.; Feldmann, Georg; Hua, Li; Kamiyama, Mihoko; Schuler, F. William; Lin, Ming-Tseh; Beaty, Robert M.; Karanam, Balasubramanyam; Liang, Hong; Mullendore, Michael E.; Mo, Guanglan; Hidalgo, Manuel; Jaffee, Elizabeth; Hruban, Ralph H.; Jinnah, H. A.; Roden, Richard B. S.; Jimeno, Antonio; Liu, Jun O.; Maitra, Anirban; Eshleman, James R.

2013-01-01

88

Thrombomodulin modulates cell migration in human melanoma cell lines  

PubMed Central

Malignant melanoma cells are known to have altered expressions of growth factors as compared to normal melanocytes. Thrombomodulin (TM) is a thrombin receptor on endothelial cells that converts thrombin from a procoagulant to an anticoagulant enzyme. TM expression is downregulated in tumor cells, and this phenomenon correlates with tumor cell invasiveness and a poor prognosis in cancer patients. In this study, we evaluated TM expression in two human melanoma cell lines that are known to have either low (WM35) or high (A375) aggressive phenotypes. Analysis by quantitative real-time PCR (qPCR) showed that the mRNA expression of TM is modestly (WM35) or dramatically (A375) downregulated in melanoma cells, as compared to human primary melanocytes. TM expression levels inversely correlated with in vitro migration properties of tumor cells. In addition, interleukin-8 (IL-8) expression also correlated with the degree of aggressiveness, as indicated by high expression levels of this cytokine in A375 cells. Overexpression of TM in A375 cells by transient transfection reversed their aggressive phenotype and dramatically decreased IL-8 expression by these cells. Taken together, these results suggest that down-regulation of TM plays a crucial role in melanocyte transformation and melanoma progression. PMID:24366193

da Silva de Oliveira, Andreia; Yang, Likiu; Echevarria-Lima, Juliana; Monteiro, Robson Q.; Rezaie, Alireza R.

2013-01-01

89

Epigenetic and genetic features of 24 colon cancer cell lines  

PubMed Central

Cell lines are invaluable biomedical research tools, and recent literature has emphasized the importance of genotype authentication and characterization. In the present study, 24 out of 27 cell line identities were confirmed by short tandem repeat profiling. The molecular phenotypes of the 24 colon cancer cell lines were examined, and microsatellite instability (MSI) and CpG island methylator phenotype (CIMP) were determined, using the Bethesda panel mononucleotide repeat loci and two epimarker panels, respectively. Furthermore, the BRAF, KRAS and PIK3CA oncogenes were analyzed for mutations in known hotspots, while the entire coding sequences of the PTEN and TP53 tumor suppressors were investigated. Nine cell lines showed MSI. Thirteen and nine cell lines were found to be CIMP positive, using the Issa panel and the Weisenberger et al. panel, respectively. The latter was found to be superior for CIMP classification of colon cancer cell lines. Seventeen cell lines harbored disrupting TP53 mutations. Altogether, 20/24 cell lines had the mitogen-activated protein kinase pathway activating mutually exclusive KRAS or BRAF mutations. PIK3CA and PTEN mutations leading to hyperactivation of the phosphoinositide 3-kinase/AKT pathway were observed in 13/24 cell lines. Interestingly, in four cell lines there were no mutations in neither BRAF, KRAS, PIK3CA nor in PTEN. In conclusion, this study presents molecular features of a large number of colon cancer cell lines to aid the selection of suitable in vitro models for descriptive and functional research. PMID:24042735

Ahmed, D; Eide, P W; Eilertsen, I A; Danielsen, S A; Eknćs, M; Hektoen, M; Lind, G E; Lothe, R A

2013-01-01

90

Isolation of a Glial-Restricted Tripotential Cell Line From  

E-print Network

Isolation of a Glial-Restricted Tripotential Cell Line From Embryonic Spinal Cord Cultures YUAN in culture. A clonal cell line prepared from immortalized GRP cells, termed GRIP-1, was also shown to retain­79, 2002. © 2002 Wiley-Liss, Inc. INTRODUCTION Pluripotent stem cells, intermediate precursors, and fully

Fischer, Itzhak

91

Derivation of three new human embryonic stem cell lines.  

PubMed

Human embryonic stem cells are pluripotent cells capable of extensive self-renewal and differentiation to all cells of the embryo proper. Here, we describe the derivation and characterization of three Sydney IVF human embryonic stem cell lines not already reported elsewhere, designated SIVF001, SIVF002, and SIVF014. The cell lines display typical compact colony morphology of embryonic stem cells, have stable growth rates over more than 40 passages and are cytogenetically normal. Furthermore, the cell lines express pluripotency markers including Nanog, Oct4, SSEA3 and Tra-1-81, and are capable of generating teratoma cells derived from each of the three germ layers in immunodeficient mice. These experiments show that the cell lines constitute pluripotent stem cell lines. PMID:20198447

Bradley, Cara K; Chami, Omar; Peura, Teija T; Bosman, Alexis; Dumevska, Biljana; Schmidt, Uli; Stojanov, Tomas

2010-04-01

92

Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells?  

Microsoft Academic Search

Established human cancer cell lines are routinely used as experimental models for human cancers. Their validity for such use is analyzed and discussed, with particular focus on thyroid tumors. Although cell lines retain some properties of the cells of origin, from the points of view of their genetics, epigenetics and gene expression, they show clear differences in these properties compared

W. C. G. van Staveren; D. Y. Weiss Solís; A. Hébrant; V. Detours; J. E. Dumont; C. Maenhaut

2009-01-01

93

Isolation of molybdenum cofactor defective cell lines of Nicotiana tabacum  

Microsoft Academic Search

Thirty-nine chlorate resistant cell lines were isolated after plating ethylmethane sulphonate treated allodihaploid cells of Nicotiana tabacum cv. Xanthi on agar medium containing 20 mM chlorate. Thirty-two of these cell lines grew as well on nitrate medium as on amino acid medium and three other cell lines grew well on amino acid medium but poorly on nitrate medium. Four other

Roger J. Buchanan; John L. Wray

1982-01-01

94

Retroviral mediated gene transfer in megakaryocytic cell lines  

Microsoft Academic Search

Summary  There have been no reports, to date, of successful introduction of foreign DNA into committed megakaryocyte precursor cells.\\u000a We have successfully infected two megakaryocytic cell lines, one a committed cell line (CHRF-288-11) and the other a bipotential\\u000a cell line (K562), with a retroviral vector containing the bacteriallacZ gene and a neomycin resistance marker. Modification of standard protocols was required for

William R. Kiffmeyer; Peter J. Stambrook; Michael A. Lieberman

1994-01-01

95

Establishment and characterization of a novel myxofibrosarcoma cell line  

Microsoft Academic Search

We established a novel human myxofibrosarcoma cell line NMFH-1 and analyzed it with spectral karyotyping and comparative genomic hybridization (CGH). NMFH-1 cells are composed of two different types of cells, small, spindle-shaped mononuclear cells and bizarre multinucleated giant cells, which were maintained in vitro over 200 passages. Xenografted tumor showed typical features of myxofibrosarcoma, which included bizarre multinucleated giant cells.

Hiroyuki Kawashima; Akira Ogose; Wenguang Gu; Jun Nishio; Naoko Kudo; Naoki Kondo; Tetsuo Hotta; Hajime Umezu; Tsuyoshi Tohyama; Hirokazu Nishijima; Hiroshi Iwasaki; Naoto Endo

2005-01-01

96

SARS–associated Coronavirus Replication in Cell Lines  

PubMed Central

Given the potential for laboratory-associated severe acute respiratory syndrome–associated coronavirus (SARS-CoV) infections, we must know which cell lines are susceptible to the virus. We investigated 21 cell lines routinely used for virus isolation or research. After infection with SARS-CoV, cells were observed for cytopathic effects, and quantitative real-time polymerase chain reaction was used to measure ongoing viral replication. An indirect immunofluorescence assay was also used as a confirmatory test. The study identified 10 new cell lines capable of supporting the replication of SARS-CoV and confirmed the susceptibility of 4 cell lines previously reported. This study shows that SARS-CoV can be isolated in several cell lines commonly used for diagnostic or research purposes. It also shows that SARS-CoV can achieve high titers in several cell lines, sometimes in the absence of specific cytopathic effects. PMID:16494729

Druce, Julian; Tran, Thomas; Kostecki, Renata; Chibo, Doris; Morris, Jessica; Catton, Mike; Birch, Chris

2006-01-01

97

Differentiation of Embryonic Stem Cell Lines Generated from Adult Somatic Cells by Nuclear Transfer  

Microsoft Academic Search

Embryonic stem (ES) cells are fully pluripotent in that they can differentiate into all cell types, including gametes. We have derived 35 ES cell lines via nuclear transfer (ntES cell lines) from adult mouse somatic cells of inbred, hybrid, and mutant strains. ntES cells contributed to an extensive variety of cell types, including dopaminergic and serotonergic neurons in vitro and

Teruhiko Wakayama; Viviane Tabar; Ivan Rodriguez; Anthony C. F. Perry; Lorenz Studer; Peter Mombaerts

2001-01-01

98

Isozyme and allozyme patterns in embryonic Drosophila cell culture lines  

Microsoft Academic Search

Two independently derived embryonic Drosophila cell culture lines were examined for 19 gene-enzyme systems. At two loci, a-glycerophosphate dehydrogenase on chromosome 2, and isocitrate dehydrogenase on chromosome 3, allelic variation was detected. These can now serve as genetic markers to identify hybrid cell clones. Quantitative differences between cell lines were found for five enzymes.

Stamatis Alahiotis; Edward Berger

1977-01-01

99

Antiproliferative action of metformin in human lung cancer cell lines.  

PubMed

The oral antidiabetic agent metformin has anticancer properties, probably via adenosine monophosphate-activated protein kinase activation. In the present study, growth inhibition was assessed by a clonogenic and by a cell survival assay, apoptosis induction was assessed by Hoechst staining and caspase activities and cell cycle alteration after exposure to metformin, and the interaction of metformin with cisplatin in vitro were elucidated in four human lung cancer cell lines representing squamous, adeno-, large cell and small cell carcinoma. Clonogenicity and cell proliferation were inhibited by metformin in all the cell lines examined. This inhibitory effect was not specific to cancer cells because it was also observed in a non-transformed human mesothelial cell line and in mouse fibroblast cell lines. Inhibition of clonogenicity was observed only when the cells were exposed to metformin for a long period, (10 days) and the surviving fraction, obtained after inhibiting proliferation by increasing the dose, reached a plateau at approximately 0.1-0.3, indicating the cytostatic characteristics of metformin. Metformin induced significant apoptosis only in the small cell carcinoma cell line. A tendency of cell cycle accumulation at the G0/G1 phase was observed in all four cell lines. Cisplatin, in a dose-dependent manner, severely antagonized the growth inhibitory effect of metformin, and even reversed the effect in three cell lines but not in the adenocarcinoma cell line. The present data obtained using various histological types of human lung cancer cell lines in vitro illustrate the cytostatic nature of metformin and its cytoprotective properties against cisplatin. PMID:22576795

Ashinuma, Hironori; Takiguchi, Yuichi; Kitazono, Satoru; Kitazono-Saitoh, Miyako; Kitamura, Atsushi; Chiba, Tetsuhiro; Tada, Yuji; Kurosu, Katsushi; Sakaida, Emiko; Sekine, Ikuo; Tanabe, Nobuhiro; Iwama, Atsushi; Yokosuka, Osamu; Tatsumi, Koichiro

2012-07-01

100

The pursuit of ES cell lines of domesticated ungulates  

Technology Transfer Automated Retrieval System (TEKTRAN)

In contrast to differentiated cells, embryonic stem cells (ESC) maintain an undifferentiated state, have the ability to self-renew, and exhibit pluripotency, i.e., they can give rise to most if not all somatic cell types and to the germ cells, egg and sperm. These characteristics make ES cell lines...

101

Continuous human cell lines and method of making same  

DOEpatents

Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors.

Stampfer, Martha R. (Oakland, CA)

1989-01-01

102

Continuous human cell lines and method of making same  

DOEpatents

Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo(a)pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. 2 tabs.

Stampfer, M.R.

1985-07-01

103

Establishment of human colon cancer cell lines from fresh tumors versus xenografts: comparison of success rate and cell line features.  

PubMed

Obtaining representative human colon cancer cell lines from fresh tumors is technically difficult. Using 32 tumor fragments from patients with colon cancer, the present study shows that prior xenograft leads to more efficient cell line establishment compared with direct establishment from fresh tumors (P < 0.05). From 26 tumor specimens, we successfully established 20 tumor xenografts in nude mice (77%); among 19 of these xenografts, 9 (47%) led to cell lines, including four from liver metastases. Only 3 of 31 tumor specimens (9.7%) grew immediately in vitro, and all were derived from primary tumors. To compare major phenotypic and genotypic characteristics of human colon cancer cell lines derived from the same tumor fragment using two protocols, the two pairs of cell lines obtained from 2 of 32 tumor fragments were extensively studied. They displayed similar morphology and were able to form compact spheroids. Chemosensitivity to 5-fluorouracil, CPT11, and L-OHP differed between cell lines obtained from patient tumors and those derived from xenografts. Matched cell lines shared a common core of karyotype alterations and distinctive additional chromosomal aberrations. Expression levels of genes selected for their role in oncogenesis evaluated by real-time quantitative PCR were found to be statistically correlated whatever the in vitro culture model used. In conclusion, xenotransplantation in mice of tumor fragments before establishment of cell lines enables generation of more novel human cancer cell lines for investigation of colon cancer cell biology, opening up the opportunity of reproducing the diversity of this disease. PMID:17210723

Dangles-Marie, Virginie; Pocard, Marc; Richon, Sophie; Weiswald, Louis-Bastien; Assayag, Franck; Saulnier, Patrick; Judde, Jean-Gabriel; Janneau, Jean-Louis; Auger, Nathalie; Validire, Pierre; Dutrillaux, Bernard; Praz, Françoise; Bellet, Dominique; Poupon, Marie-France

2007-01-01

104

Plant cell biology through the window of the highly synchronized tobacco BY2 cell line  

Microsoft Academic Search

Synchronous cell systems are highly desirable for investigating various aspects of plant cell biology. However, to date, the tobacco BY-2 cell line is the only plant cell line which can be synchronized to high levels. A cell synchrony starting from S phase is obtained after release of BY-2 cells from aphidicolin treatment, while that from M phase is available after

Toshiyuki Nagata; Fumi Kumagai

1999-01-01

105

Herpesvirus-transformed cytotoxic T-cell lines  

Microsoft Academic Search

Investigations of cellular cytotoxicity of the immune system are hampered by the lack of continuously growing, transformed cell lines which express a cytotoxic potential. Here we describe cytotoxic cell lines from the cotton-topped marmoset monkey, transformed by Herpesvirus Ateles (HVA) or Herpesvirus Saimiri (HVS), which can kill certain target cells in a short-term in vitro test. HVA\\/HVS-transformed cells have earlier

Donald R. Johnson; Mikael Jondal

1981-01-01

106

GREG cells, a dysferlin-deficient myogenic mouse cell line  

SciTech Connect

The dysferlinopathies (e.g. LGMD2b, Myoshi myopathy) are progressive, adult-onset muscle wasting syndromes caused by mutations in the gene coding for dysferlin. Dysferlin is a large ({approx} 200 kDa) membrane-anchored protein, required for maintenance of plasmalemmal integrity in muscle fibers. To facilitate analysis of dysferlin function in muscle cells, we have established a dysferlin-deficient myogenic cell line (GREG cells) from the A/J mouse, a genetic model for dysferlinopathy. GREG cells have no detectable dysferlin expression, but proliferate normally in growth medium and fuse into functional myotubes in differentiation medium. GREG myotubes exhibit deficiencies in plasma membrane repair, as measured by laser wounding in the presence of FM1-43 dye. Under the wounding conditions used, the majority ({approx} 66%) of GREG myotubes lack membrane repair capacity, while no membrane repair deficiency was observed in dysferlin-normal C2C12 myotubes, assayed under the same conditions. We discuss the possibility that the observed heterogeneity in membrane resealing represents genetic compensation for dysferlin deficiency.

Humphrey, Glen W.; Mekhedov, Elena; Blank, Paul S. [Program in Physical Biology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 (United States)] [Program in Physical Biology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 (United States); Morree, Antoine de [Center for Human Genetics, Leiden University Medical Center, Leiden (Netherlands)] [Center for Human Genetics, Leiden University Medical Center, Leiden (Netherlands); Pekkurnaz, Gulcin [Program in Physical Biology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 (United States)] [Program in Physical Biology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 (United States); Nagaraju, Kanneboyina [Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010 (United States)] [Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010 (United States); Zimmerberg, Joshua, E-mail: zimmerbj@mail.nih.gov [Program in Physical Biology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 (United States)] [Program in Physical Biology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 (United States)

2012-01-15

107

The transcriptional diversity of 25 Drosophila cell lines  

SciTech Connect

Drosophila melanogaster cell lines are important resources for cell biologists. Here, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal discderived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. Wereport the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25 lines with emphasis on what those patterns reveal about the origins of the lines and the stability of spatial expression patterns. We also offer an initial analysis of previously unannotated transcripts in the cell lines.

Cherbas, Lucy; Willingham, Aarron; Zhang, Dayu; Yang, Li; Zou, Yi; Eads, Brian D.; Carlson, Joseph W.; Landolin, Jane M.; Kapranov, Philipp; Dumais, Jacqueline; Samsonova, Anastasia; Choi, Jeong-Hyeon; Roberts, Johnny; Davis, Carrie A.; Tang, Haixu; van Baren, Marijke J.; Ghosh, Srinka; Dobin, Alexander; Bell, Kim; Lin, Wei; Langton, Laura; Duff, Michael O.; Tenney, Aaron E.; Zaleski, Chris; Brent, Michael R.; Hoskins, Roger A.; Kaufman, Thomas C.; Andrews, Justen; Graveley, Brenton R.; Perrimon, Norbert; Celniker, Susan E.; Gingeras, Thomas R.; Cherbas, Peter

2010-11-15

108

Survey of Interferon Production and Sensitivity in Human Cell Lines  

PubMed Central

Seven presumed diploid and 11 established cell lines were studied for their ability to produce free interferon in response to a standardized Newcastle disease virus challenge. Interferon production was evaluated in both serum-containing and serum-free medium. The ability of these cell lines to respond to the application of a standard interferon preparation by becoming resistant to virus was also examined. The diploid lines were distinctly more efficient producers of interferon than were the established lines. They also evidenced a greater requirement for serum to produce their maximum titers, but some were able to produce good titers in serum-free medium. The diploid lines were uniformly more sensitive to the application of exogenous interferon than were the established cell lines and attained greater degrees of virus resistance, but all lines tested displayed measurable sensitivity to interferon. PMID:4329429

Moehring, J. M.; Stinebring, W. R.; Merchant, D. J.

1971-01-01

109

The effects of oncolytic reovirus in canine lymphoma cell lines.  

PubMed

Reovirus is a potent oncolytic virus in many human neoplasms that has reached phase II and III clinical trials. Our laboratory has previously reported the oncolytic effects of reovirus in canine mast cell tumour (MCT). In order to further explore the potential of reovirus in veterinary oncology, we tested the susceptibility of reovirus in 10 canine lymphoma cell lines. Reovirus-induced cell death, virus replication and infectivity were confirmed in four cell lines with variable levels of susceptibility. The level of Ras activation varied among the cell lines with no correlation with reovirus susceptibility. Reovirus-susceptible cell lines underwent apoptosis as proven by propidium iodide (PI) staining, Annexin V-FITC/PI assay, cleavage of PARP and inhibition of cell death by caspase inhibitor. A single intratumoral injection of reovirus suppressed the growth of canine lymphoma subcutaneous tumour in NOD/SCID mice. Unlike canine MCT, canine lymphoma is less susceptible to reovirus. PMID:25319493

Hwang, C C; Umeki, S; Igase, M; Coffey, M; Noguchi, S; Okuda, M; Mizuno, T

2014-10-15

110

Cold storage and cryopreservation of tick cell lines  

Microsoft Academic Search

BACKGROUND: Tick cell lines are now available from fifteen ixodid and argasid species of medical and veterinary importance. However, some tick cell lines can be difficult to cryopreserve, and improved protocols for short- and long-term low temperature storage will greatly enhance their use as tools in tick and tick-borne pathogen research. In the present study, different protocols were evaluated for

Gertrud Lallinger; Erich Zweygarth; Lesley Bell-Sakyi; Lygia MF Passos

2010-01-01

111

Human Embryonic Stem Cell Lines Derived from Discarded Embryos  

Microsoft Academic Search

ABSTRACT Human pluripotent embryonic stem (ES) cells have important potential in regenerative medicine and as models for human preimplantation development; how- ever, debate continues over whether embryos should be destroyed to produce human ES cells. We have derived four ES cell lines on mouse embryonic fibroblast cells in medium supplemented with basic fibroblast growth fac- tor, human recombinant leukemia inhibitory

Maisam Mitalipova; John Calhoun; Soojung Shin; David Wininger; Thomas Schulz; Scott Noggle; Alison Venable; Ian Lyons; Allan Robins; Steven Stice

2003-01-01

112

Maintenance of mouse male germ line stem cells in vitro.  

PubMed

The proliferation and differentiation of a stem cell are regulated intrinsically by the stem cell and extrinsically by the stem cell niche. Elucidation of regulatory mechanisms of spermatogonial stem cells (SSCs), the stem cell of the postnatal male germ line, would be facilitated by in vitro studies that provide a defined microenvironment reconstituted ex vivo. We analyzed the effect of in vitro environment on the maintenance of adult and immature SSCs in a 7-day culture system. Although the number of adult and immature SSCs decreased in a time-dependent manner, nearly one in four stem cells (24%) could be maintained in vitro for 7 days. Stem cell maintenance was enhanced by coculture with OP9 bone marrow stroma or L fibroblast cell lines, addition of glial cell line-derived neurotrophic factor, or utilization of specific culture medium. In contrast, coculture with TM4 or SF7 Sertoli cell lines and addition of activin A or bone morphogenetic protein 4 (BMP4) reduced stem cell maintenance in vitro. Only 4% of the stem cells remained when cultured with TM4 cells or activin A, and 6% remained when cultured with SF7 cells or BMP4. These results lead to the hypothesis that suppression of germ cell differentiation improves in vitro maintenance of SSCs by interrupting the unidirectional cascade of spermatogenesis and blocking stem cell differentiation. PMID:12606373

Nagano, Makoto; Ryu, Buom-Yong; Brinster, Clayton J; Avarbock, Mary R; Brinster, Ralph L

2003-06-01

113

Insulin-secreting cell lines: classification, characteristics and potential applications.  

PubMed

The use of primary beta-cells in biochemical and molecular research is limited by the availability of pancreatic endocrine tissue. Numerous investigators have attempted to establish an insulin-secreting cell line that retains normal regulation of insulin secretion. Different approaches have been used, including induction of pancreatic tumors by irradiation or viral infection, immortalization of beta-cells in vitro, and development of transgenic mice with targeted expression of a recombinant oncogene in the beta-cell. Few of these attempts have proven successful, because cell differentiation and proliferation capacities are mutually exclusive. The most widely used insulin-secreting cell lines are RIN, HIT, beta TC, MIN6 and INS-1 cells. These cells contain mainly insulin and small amounts of glucagon and somatostatin. RIN cells, except for the subclone RIN-38, are not glucose-responsive. HIT cells and beta TC cells secrete insulin in response to glucose, but their dose-response curve is markedly shifted to the left MIN6, INS-1 and a newly available subclone of beta TC cells (beta TC-6 F7) are reported to retain normal regulation of glucose-induced insulin secretion. Although the behaviour of none of these cell lines perfectly mimics primary beta-cell physiology, they are extremely valuable tools for the study of molecular events underlying beta-cell function and dysfunction. In addition, insulin-secreting cell lines represent a potential source of transplantable tissue to overcome the limited availability of primary islets for this procedure. PMID:8697299

Poitout, V; Olson, L K; Robertson, R P

1996-02-01

114

Establishment and characterization of neonatal mouse sertoli cell lines.  

PubMed

Sertoli cells isolated from 6-day postpartum mouse testes were conditionally immortalized with the simian virus 40 large tumor antigen gene (SV40-LTAg) under the control of a promoter inducible with ponasterone A, an analog of ecdysone. This strategy produced 2 cell lines, which exhibited mixed phenotypes. We first tested the conditional expression of the LTAg gene in the presence or absence of ponasterone A. The results showed that both cell lines expressed LTAg when the inducer was present in the culture media. When ponasterone A was removed, the majority of the cells died. After 60 generations, however, the continued expression of LTAg in the absence of the hormone indicated that unknown changes may have occurred in the genome of the cells. One of the cell lines was further subcloned, resulting in 7 new lines exhibiting a morphology resembling that of Sertoli cells in tissue culture. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed on RNA collected from each cell line in order to determine which cells were phenotypically similar to Sertoli cells in vivo. All cell lines expressed the products of the Sertoli cell-specific genes stem cell factor (SCF) and sulfated glycoprotein-2 (SGP-2), in addition to alpha-inhibin, GATA-1, and steroidogenic factor-1. Further, the lines express growth and differentiation factors known to act upon germ cells in vivo and in vitro such as leukemia inhibitory factor (LIF), transforming growth factor beta (TGF-beta), and basic fibroblast growth factor (bFGF). Moreover, when used as feeder layers in cocultures, at least 2 of these lines are able to maintain the viability of type A spermatogonia for at least 7 days and to support the first steps of spermatogonial differentiation. PMID:12514093

Hofmann, Marie-Claude; Van Der Wee, Katherine S; Dargart, Jamie L; Dirami, Ghenima; Dettin, Luis; Dym, Martin

2003-01-01

115

Progressing Neural Stem Cell Lines to the Clinic  

Microsoft Academic Search

In recent years, prospects for treating serious neurological disorders have improved with the development of cell therapy\\u000a as a viable therapeutic strategy. Initial clinical studies on cell implantation therapy in the brain used primary fetal tissue\\u000a but progress has been made in developing expanded cell lines from somatic neural stem cells and embryonic stem cells. In addition,\\u000a neural stem cell

Kenneth Pollock; John D. Sinden

116

Phenotype and Genotype of Pancreatic Cancer Cell Lines  

PubMed Central

The dismal prognosis of pancreatic adenocarcinoma (PA) is due in part due to a lack of molecular information regarding disease development. Established cell lines remain a useful tool for investigating these molecular events. Here we present a review of available information on commonly used PA cell lines as a resource to help investigators select the cell lines most appropriate for their particular research needs. Information on clinical history, in vitro and in vivo growth characteristics, phenotypic characteristics, such as adhesion, invasion, migration and tumorigenesis, and genotypic status of commonly altered genes (KRAS, p53, p16, and SMAD4) was evaluated. Identification of both consensus and discrepant information in the literature suggests careful evaluation before selection of cell lines and attention be given to cell line authentication. PMID:20418756

Deer, Emily L.; Gonzalez-Hernandez, Jessica; Coursen, Jill D.; Shea, Jill E.; Ngatia, Josephat; Scaife, Courtney L.; Firpo, Matthew A.; Mulvihill, Sean J.

2009-01-01

117

UOK 268 Cell Line for Hereditary Leiomyomatosis and Renal Cell Carcinoma  

Cancer.gov

This technology describes the UOK 268 cell line, a spontaneously immortalized renal tumor cell line that may be of great interest to industry for studying HLRCC, drug screening, and searching for tumor markers related to diagnosis, prognosis, and drug resistance.

118

Production of Uniparental Embryonic Stem Cell Lines  

Microsoft Academic Search

\\u000a Embryonic stem cells, or induced pluripotent cells derived from somatic cells, can yield differentiated progeny with potential\\u000a applicability for tissue repair. This chapter describes the generation of embryonic stem cells from gamete-derived uniparental\\u000a embryos. These embryonic stem cells can be patient-derived and potentially histocompatible with the gamete donor. The production\\u000a of uniparental embryos followed by derivation of embryonic stem cells

Sigrid Eckardt; K. John McLaughlin

119

Identification of a Novel Rhabdovirus in Spodoptera frugiperda Cell Lines  

PubMed Central

ABSTRACT The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. IMPORTANCE The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell line. This paper reports on the identification and characterization of a novel rhabdovirus in Sf9 cells. This was accomplished through the use of next-generation sequencing platforms, de novo assembly tools, and extensive bioinformatics analysis. Rhabdovirus identification was further confirmed by transmission electron microscopy. Infectivity studies showed the lack of replication of Sf-rhabdovirus in human cell lines. The overall study highlights the use of a combinatorial testing approach including conventional methods and new technologies for evaluation of cell lines for unexpected viruses and use of comprehensive bioinformatics strategies for obtaining confident next-generation sequencing results. PMID:24672045

Ma, Hailun; Galvin, Teresa A.; Glasner, Dustin R.; Shaheduzzaman, Syed

2014-01-01

120

Trichothecene-induced cytotoxicity on human cell lines.  

PubMed

Trichothecene cytotoxicity of type A (T-2 toxin and HT-2 toxin), type B (deoxynivalenol, DON, and nivalenol, NIV), and type D (satratoxins G and H) compounds was determined comparatively by using eight permanent human cell lines (Hep-G2, A549, CaCo-2, HEp-2, A204, U937, RPMI 8226, and Jurkat). Viability of cells was measured by a water-soluble tetrazolium (WST-1) reagent cell proliferation assay assessing mitochondrial metabolic activity. Toxicity was expressed as the toxin concentration inhibiting 50% of cell viability (IC50). Depending on the chemotype of the tested trichothecenes, relative cytotoxic activity differed by a factor of 100-1,000, and the corresponding IC50 values were in the range from 2.2 nmol/l (satratoxin H on Jurkat and U937 cells) to 4,900 nmol/l (deoxynivalenol on HEp-2 cells). In contrast, the specific toxicity of each individual mycotoxin towards different cell lines was within remarkable close limits, and between-cell line differences were much smaller than previously reported. For the cell lines tested, IC50 values were 4.4-10.8 nmol/l for T-2 toxin, 7.5-55.8 mol/l for HT-2 toxin, 600-4,900 nmol/l for DON, 300-2,600 nmol/l for NIV, and 2.2-18.3 nmol/l for satratoxins G/H. In addition, for the first time, the toxic activity of trichothecenes on primary cell culture of human endothelial cells (HUVEC) was tested. The susceptibility of this cell line was comparable to the other cell lines tested, with IC50 values ranging from 16.5 nmol/l (T-2 toxin) to 4,500 nmol/l (DON). The results suggest that the current focus of cytotoxicological studies on trichothecenes on lymphoid cell lines may lead to an underestimate of their potential on other target cell systems. PMID:23604982

Nielsen, Carina; Casteel, Maximilian; Didier, Andrea; Dietrich, Richard; Märtlbauer, Erwin

2009-06-01

121

Respiratory epithelial cell lines exposed to anoxia produced inflammatory mediator  

PubMed Central

Human epithelial cell lines were utilized to examine the effects of anoxia on cellular growth and metabolism. Three normal human epithelial cells lines (A549, NHBE, and BEAS-2B) as well as a cystic fibrosis cell line (IB3-1) and its mutation corrected cell line (C38) were grown in the presence and absence of oxygen for varying periods of time. Interleukin-8 (IL-8) levels were measured by enzyme-linked immunosorbent assay technique. Cellular metabolism and proliferation were assayed by determining mitochondrial oxidative burst activity by tetrazolium compound reduction. The viability of cells was indirectly measured by lactate dehydrogenase release. A549, NHBE, and BEAS-2B cells cultured in the absence of oxygen showed a progressive decrease in metabolic activity and cell proliferation after one to three days. There was a concomitant increase in IL-8 production. Cell lines from cystic fibrosis (CF) patients did not show a similar detrimental effect of anoxia. However, the IL-8 level was significantly increased only in IB3-1 cells exposed to anoxia after two days. Anoxia appears to affect certain airway epithelial cell lines uniquely with decreased cellular proliferation and a concomitant increased production of a cytokine with neutrophilic chemotactic activity. The increased ability of the CF cell line to respond to anoxia with increased secretion of inflammatory cytokines may contribute to the inflammatory damage seen in CF bronchial airway. This study indicates the need to use different cell lines in in vitro studies investigating the role of epithelial cells in airway inflammation and the effects of environmental influences. PMID:23301190

Shahriary, Cyrus M.; Nussbaum, Eliezer

2012-01-01

122

Cell line models for differentiation: preadipocytes and adipocytes.  

PubMed

In vitro models have been invaluable in determining the mechanisms involved in adipocyte proliferation, differentiation, adipokine secretion and gene/protein expression. The cells presently available for research purposes all have unique advantages and disadvantages that one should be aware of when selecting cells. Established cell lines, such as 3T3-L1 cells, are easier and less costly to use than freshly isolated cells, even though freshly isolated cells allow for various comparisons such as the in vitro evaluation of different in vivo conditions that may not be possible using cell lines. Moreover, stem cells, transdifferentiated cells or dedifferentiated cells are relatively new cell models being evaluated for the study of adipocyte regulation and physiology. The focus of this brief review is to highlight similarities and differences in adipocyte models to aid in appropriate model selection and data interpretation for successful advancement of our understanding of adipocyte biology. PMID:20864461

Poulos, Sylvia P; Dodson, Michael V; Hausman, Gary J

2010-10-01

123

Establishment of a Human Thymic Myoid Cell Line  

PubMed Central

The subset of myoid cells is a normal component of the thymic stroma. To characterize these cells, we immortalized stromal cells from human thymus by using a plasmid vector encoding the SV40 T oncogene. Among the eight cell lines obtained, one had myoid characteristics including desmin and troponin antigens. This new line was designated MITC (myoid immortalized thymic cells). These cells expressed both the fetal and adult forms of muscle acetylcholine receptor (AChR) at the mRNA level, as well as the myogenic transcription factor MyoD1. ?-Subunit AChR protein expression was detected by flow cytometry and the AChR was functional in patch-clamp studies. In addition, AChR expression was down-modulated by myasthenia gravis sera or by monoclonal antibody anti-AChR on MITC line similarly to TE671 rhabdomyosarcoma cells, making the MITC line an interesting tool for AChR antigenic modulation experiments. Finally, the MITC line expressed LFA-3, produced several cytokines able to act on T cells, and protected total thymocytes from spontaneous apoptosis in vitro. These results are compatible with a role of thymic myoid cells in some steps of thymocyte development. Therefore MITC line appears to be a useful tool to investigate the physiological role of thymic myoid cells. PMID:10514405

Wakkach, Abdel; Poea, Sandrine; Chastre, Eric; Gespach, Christian; Lecerf, Florence; De la Porte, Sabine; Tzartos, Socrates; Coulombe, Alain; Berrih-Aknin, Sonia

1999-01-01

124

Adaptive response induction and variation in human lymphoblastoid cell lines.  

PubMed

Adaptive response is a term used to describe the ability of a low, priming dose of ionizing radiation to modify the effects of a subsequent higher, challenge dose, but it has been observed to be highly variable in both presence and magnitude. To examine this variability, 10 human lymphoblastoid cell lines were screened for adaptability to 137Cs radiation by determining the frequency of micronuclei in binucleated cells. Of these, six adapted, three did not adapt and one was synergistic. The assay was then repeated on each of the cell lines to test for reproducibility. Five cell lines showed the same result both times; four of these adapted and one did not. To determine whether fluctuations in the cell cycle distribution in the irradiated population of cells could alter the adaptive response, and therefore explain some of the observed variability, two of the cell lines were tested for adaptation after enriching the population, by synchronization, for a given cell cycle stage. In both cell lines, the direction of the response was altered when the distribution of cells within the cell cycle was changed, suggesting that the adaptive response can be affected by cell cycle stage at the time of irradiation. PMID:12160888

Sorensen, Karen J; Attix, Cristina M; Christian, Allen T; Wyrobek, Andrew J; Tucker, James D

2002-08-26

125

Quantitative methods to characterize morphological properties of cell lines.  

PubMed

Descriptive terms are often used to characterize cells in culture, but the use of nonquantitative and poorly defined terms can lead to ambiguities when comparing data from different laboratories. Although recently there has been a good deal of interest in unambiguous identification of cell lines via their genetic markers, it is also critical to have definitive, quantitative metrics to describe cell phenotypic characteristics. Quantitative metrics of cell phenotype will aid the comparison of data from experiments performed at different times and in different laboratories where influences such as the age of the population and differences in culture conditions or protocols can potentially affect cellular metabolic state and gene expression in the absence of changes in the genetic profile. Here, we present examples of robust methodologies for quantitatively assessing characteristics of cell morphology and cell-cell interactions, and of growth rates of cells within the population. We performed these analyses with endothelial cell lines derived from dolphin, bovine and human, and with a mouse fibroblast cell line. These metrics quantify some characteristics of these cells lines that clearly distinguish them from one another, and provide quantitative information on phenotypic changes in one of the cell lines over large number of passages. PMID:22619183

Mancia, Annalaura; Elliott, John T; Halter, Michael; Bhadriraju, Kiran; Tona, Alessandro; Spurlin, Tighe A; Middlebrooks, Bobby L; Baatz, John E; Warr, Gregory W; Plant, Anne L

2012-07-01

126

Establishment of Human Colon Cancer Cell Lines from Fresh Tumors versus Xenografts: Comparison of Success Rate and Cell Line Features  

Microsoft Academic Search

Obtaining representative human colon cancer cell lines from fresh tumors is technically difficult. Using 32 tumor fragments from patients with colon cancer, the present study shows that prior xenograft leads to more efficient cell line establishment compared with direct establishment from fresh tumors (P < 0.05). From 26 tumor specimens, we successfully established 20 tumor xenografts in nude mice (77%);

Virginie Dangles-Marie; Marc Pocard; Sophie Richon; Louis-Bastien Weiswald; Jean-Gabriel Judde; Jean-Louis Janneau; Nathalie Auger; Pierre Validire; Bernard Dutrillaux; Francoise Praz; Dominique Bellet; Marie-France Poupon; Departement de Biologie

2007-01-01

127

Establishment and characterization of a bovine rectal myxoma cell line.  

PubMed

A new bovine cell line was developed from tumor biopsy material of rectum obtained from clinical case of 7 years old cattle with tumor mass obliterating the rectal opening. Histopathology of tumor revealed scattered stellate cells arranged singly or in clusters in loose mucinous ground substance, simulating myxoma. The cells obtained from tumor mass have been cultured for more than 36 months in DMEM supplemented with 10% fetal bovine serum (FBS). The population doubling time of this cell line was about 20.64h. The cytogenetic analysis revealed several chromosomal abnormalities with bizarre karyotype. The origin of the cell line was confirmed by PCR amplification of 1086bp fragment of 16s rRNA using bovine species specific primers. The new cell line would act as in vitro model to study many aspect of cancer biology such as tumor development, differentiation and therapeutics regimen to combat cancer. PMID:25441618

Sahoo, Aditya P; Tiwari, Ashok K; Ravi Kumar, G; Chaturvedi, U; Veer Singh, Lakshya; Saxena, Shikha; Palia, S K; Jadon, N S; Singh, R; Singh, K P; Brahmaprakash, B S; Maiti, S K; Das, A K

2015-02-01

128

Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: Comparison of the CGH profiles between cancer cell lines and primary cancer tissues  

Microsoft Academic Search

BACKGROUND: Cell lines are commonly used in various kinds of biomedical research in the world. However, it remains uncertain whether genomic alterations existing in primary tumor tissues are represented in cell lines and whether cell lines carry cell line-specific genomic alterations. This study was performed to answer these questions. METHODS: Array-based comparative genomic hybridization (CGH) was employed with 4030 bacterial

Katumi Tsuji; Shigeto Kawauchi; Soichiro Saito; Tomoko Furuya; Kenzo Ikemoto; Motonao Nakao; Shigeru Yamamoto; Masaaki Oka; Takashi Hirano; Kohsuke Sasaki

2010-01-01

129

Deriving Cell Lines from Zebrafish Embryos and Tumors  

PubMed Central

Abstract Over the last two decades the zebrafish has emerged as a powerful model organism in science. The experimental accessibility, the broad range of zebrafish mutants, and the highly conserved genetic and biochemical pathways between zebrafish and mammals lifted zebrafish to become one of the most attractive vertebrate models to study gene function and to model human diseases. Zebrafish cell lines are highly attractive to investigate cell biology and zebrafish cell lines complement the experimental tools that are available already. We established a straightforward method to culture cells from a single zebrafish embryo or a single tumor. Here we describe the generation of fibroblast-like cell lines from wild-type and ptenb?/? embryos and an endothelial-like cell line from a tumor of an adult ptena+/?ptenb?/? zebrafish. This protocol can easily be adapted to establish stable cell lines from any mutant or transgenic zebrafish line and the average time to obtain a pro-stable cell line is 3–5 months. PMID:23672287

Choorapoikayil, Suma; Overvoorde, John

2013-01-01

130

Development of a conditionally immortalized human pancreatic ? cell line  

PubMed Central

Diabetic patients exhibit a reduction in ? cells, which secrete insulin to help regulate glucose homeostasis; however, little is known about the factors that regulate proliferation of these cells in human pancreas. Access to primary human ? cells is limited and a challenge for both functional studies and drug discovery progress. We previously reported the generation of a human ? cell line (EndoC-?H1) that was generated from human fetal pancreas by targeted oncogenesis followed by in vivo cell differentiation in mice. EndoC-?H1 cells display many functional properties of adult ? cells, including expression of ? cell markers and insulin secretion following glucose stimulation; however, unlike primary ? cells, EndoC-?H1 cells continuously proliferate. Here, we devised a strategy to generate conditionally immortalized human ? cell lines based on Cre-mediated excision of the immortalizing transgenes. The resulting cell line (EndoC-?H2) could be massively amplified in vitro. After expansion, transgenes were efficiently excised upon Cre expression, leading to an arrest of cell proliferation and pronounced enhancement of ? cell–specific features such as insulin expression, content, and secretion. Our data indicate that excised EndoC-?H2 cells are highly representative of human ? cells and should be a valuable tool for further analysis of human ? cells. PMID:24667639

Scharfmann, Raphaël; Pechberty, Severine; Hazhouz, Yasmine; von Bülow, Manon; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Guez, Fanny; Rachdi, Latif; Lohmann, Matthias; Czernichow, Paul; Ravassard, Philippe

2014-01-01

131

Generation and characterization of human insulin-releasing cell lines  

PubMed Central

Background The in vitro culture of insulinomas provides an attractive tool to study cell proliferation and insulin synthesis and secretion. However, only a few human beta cell lines have been described, with long-term passage resulting in loss of insulin secretion. Therefore, we set out to establish and characterize human insulin-releasing cell lines. Results We generated ex-vivo primary cultures from two independent human insulinomas and from a human nesidioblastosis, all of which were cultured up to passage number 20. All cell lines secreted human insulin and C-peptide. These cell lines expressed neuroendocrine and islets markers, confirming the expression profile found in the biopsies. Although all beta cell lineages survived an anchorage independent culture, none of them were able to invade an extracellular matrix substrate. Conclusion We have established three human insulin-releasing cell lines which maintain antigenic characteristics and insulin secretion profiles of the original tumors. These cell lines represent valuable tools for the study of molecular events underlying beta cell function and dysfunction. PMID:19545371

Labriola, Leticia; Peters, Maria G; Krogh, Karin; Stigliano, Iván; Terra, Letícia F; Buchanan, Cecilia; Machado, Marcel CC; Joffé, Elisa Bal de Kier; Puricelli, Lydia; Sogayar, Mari C

2009-01-01

132

Cancer stem cell-like cells exist in mucoepidermoid carcinoma cell line MC3.  

PubMed

Strong evidence for the presence of cancer stem cells (CSCs) in tumors exists. CSCs play an important role in the development, invasion, and drug resistance of carcinoma. Poorly differentiated mucoepidermoid carcinoma (MEC) is a lethal malignancy of human salivary gland tumors. However, whether there are CSCs in MEC and their phenotypes remains unclear. We isolated side population (SP) and sphere-forming cells from the MEC cell line MC3 and identified their characteristics. The results showed that sphere-forming assays could enrich stem cell-like cells, with this group of cells exhibiting high cloning efficiency, possessing strong tumorigenic ability, and highly expressing Oct4 based on PCR and immunocytochemistry assays. They also highly expressed CD44 and lowly expressed CD24 according to PCR, immunocytochemistry assays, and fluorescence-activated cell sorting analysis. Higher cloning efficiency was observed in the SP cells, but PCR revealed that the SP and non-SP cells did not statistically differ in their expression of ABCG2, Oct4, CD44, and CD24. In spite of these, the findings were not conclusive on whether SP cells are stem cell-like cells. In conclusion, CSC-like cells do exist in the MC3 cell line, and sphere-forming assays could enrich them, sphere-forming and SP cells are not the same kind of cell subpopulations, and the characteristics of SP cells need to be further investigated. PMID:24139417

Zhang, Louqiang; Xia, Yichao; Li, Longjiang; Wang, Yin; Liu, Ying; Li, Chunjie; Yu, Tao

2012-01-01

133

Changes in gene expression profile in two multidrug resistant cell lines derived from a same drug sensitive cell line.  

PubMed

Resistance to chemotherapy is one of the most relevant aspects of treatment failure in cancer. Cell lines are used as models to study resistance. We analyzed the transcriptional profile of two multidrug resistant (MDR) cell lines (Lucena 1 and FEPS) derived from the same drug-sensitive cell K562. Microarray data identified 130 differentially expressed genes (DEG) between K562 vs. Lucena 1, 1932 between K562 vs. FEPS, and 1211 between Lucena 1 versus FEPS. The NOTCH pathway was affected in FEPS with overexpression of NOTCH2 and HEY1. The highly overexpressed gene in MDR cell lines was ABCB1, and both presented the ABCB1 promoter unmethylated. PMID:24996974

Moreira, Miguel Angelo Martins; Bagni, Carolina; de Pinho, Marcos Barcelos; Mac-Cormick, Thaís Messias; dos Santos Mota, Mateus; Pinto-Silva, Flávio Eduardo; Daflon-Yunes, Nathalia; Rumjanek, Vivian Mary

2014-08-01

134

Ganglioside composition of the rat choriocarcinoma cell line, Rcho-1  

Microsoft Academic Search

The Rcho-1 cell line, originally established from a rat choriocarcinoma, shows differentiation into placental trophoblastic giant cell-like cells and has been used to study the mechanism of placental function control. In the present study, we analysed the ganglioside composition of Rcho-1 cells by HPTLC orcinol\\/H2SO4, TLC\\/immunostaining and immunohistochemistry. Rcho-1 cells expressed GM3 and GD3 as the major gangliosides and CTH

Takamitsu Shirai; Saki Itonori; Tadashi Tai; Michael J. Soares; Kunio Shiota; Tomoya Ogawa

1996-01-01

135

The Pursuit of ES Cell Lines of Domesticated Ungulates  

Microsoft Academic Search

In contrast to differentiated cells, embryonic stem cells (ESC) maintain an undifferentiated state, have the ability to self-renew,\\u000a and exhibit pluripotency, i.e., they can give rise to most if not all somatic cell types and to the germ cells, egg and sperm.\\u000a These characteristics make ES cell lines important resources for the advancement of human regenerative medicine, and, if established

Neil C. Talbot; Le Ann Blomberg

2008-01-01

136

Single Cell Profiling of Circulating Tumor Cells: Transcriptional Heterogeneity and Diversity from Breast Cancer Cell Lines  

PubMed Central

Background To improve cancer therapy, it is critical to target metastasizing cells. Circulating tumor cells (CTCs) are rare cells found in the blood of patients with solid tumors and may play a key role in cancer dissemination. Uncovering CTC phenotypes offers a potential avenue to inform treatment. However, CTC transcriptional profiling is limited by leukocyte contamination; an approach to surmount this problem is single cell analysis. Here we demonstrate feasibility of performing high dimensional single CTC profiling, providing early insight into CTC heterogeneity and allowing comparisons to breast cancer cell lines widely used for drug discovery. Methodology/Principal Findings We purified CTCs using the MagSweeper, an immunomagnetic enrichment device that isolates live tumor cells from unfractionated blood. CTCs that met stringent criteria for further analysis were obtained from 70% (14/20) of primary and 70% (21/30) of metastatic breast cancer patients; none were captured from patients with non-epithelial cancer (n?=?20) or healthy subjects (n?=?25). Microfluidic-based single cell transcriptional profiling of 87 cancer-associated and reference genes showed heterogeneity among individual CTCs, separating them into two major subgroups, based on 31 highly expressed genes. In contrast, single cells from seven breast cancer cell lines were tightly clustered together by sample ID and ER status. CTC profiles were distinct from those of cancer cell lines, questioning the suitability of such lines for drug discovery efforts for late stage cancer therapy. Conclusions/Significance For the first time, we directly measured high dimensional gene expression in individual CTCs without the common practice of pooling such cells. Elevated transcript levels of genes associated with metastasis NPTN, S100A4, S100A9, and with epithelial mesenchymal transition: VIM, TGFß1, ZEB2, FOXC1, CXCR4, were striking compared to cell lines. Our findings demonstrate that profiling CTCs on a cell-by-cell basis is possible and may facilitate the application of ‘liquid biopsies’ to better model drug discovery. PMID:22586443

Coram, Marc A.; Reddy, Anupama; Deng, Glenn; Telli, Melinda L.; Advani, Ranjana H.; Carlson, Robert W.; Mollick, Joseph A.; Sheth, Shruti; Kurian, Allison W.; Ford, James M.; Stockdale, Frank E.; Quake, Stephen R.; Pease, R. Fabian; Mindrinos, Michael N.; Bhanot, Gyan; Dairkee, Shanaz H.; Davis, Ronald W.; Jeffrey, Stefanie S.

2012-01-01

137

Vaccine production: upstream processing with adherent or suspension cell lines.  

PubMed

The production of viral vaccines in cell culture can be accomplished with primary, diploid, or continuous (transformed) cell lines. Each cell line, each virus type, and each vaccine preparation require the specific design of upstream and downstream processing. Media have to be selected as well as production vessels, cultivation conditions, and modes of operation. Many viruses only replicate to high titers in adherently growing cells, but similar to processes established for recombinant protein production, an increasing number of suspension cell lines is being evaluated for future use. Here, we describe key issues to be considered for the establishment of large-scale virus production in bioreactors. As an example upstream processing of cell culture-derived influenza virus production is described in more detail for adherently growing and for suspension cells. In particular, use of serum-containing, serum-free, and chemically defined media as well as choice of cultivation vessel are considered. PMID:24297427

Genzel, Yvonne; Rödig, Jana; Rapp, Erdmann; Reichl, Udo

2014-01-01

138

Engineering cultured insulin-secreting pancreatic B-cell lines  

Microsoft Academic Search

Despite many triumphs, a significant limitation of the usefulness of many of the available B-cell lines for the study of\\u000a insulin secretion are either inappropriate or lack of responsiveness to glucose. Commonly employed cell lines generated prior\\u000a to the 1990s following X-ray irradiation (RINm5F cells) or simian virus 40 B-cell transformation (HIT-T15 cells and BTC) fall\\u000a into this category. More

Neville H. McClenaghan; P. R. Flatt

1999-01-01

139

Radiation sensitivity of human lung cancer cell lines.  

PubMed

X-Ray survival curves were determined using a panel of 17 human lung cancer cell lines, with emphasis on non-small cell lung cancer (NSCLC). In contrast to classic small cell lung cancer (SCLC) cell lines, NSCLC cell lines were generally less sensitive to radiation as evidenced by higher radiation survival curve extrapolation numbers, surviving fraction values following a 2 Gy dose (SF2) and the mean inactivation dose values (D) values. The spectrum of in vitro radiation responses observed was similar to that expected in clinical practice, although mesothelioma was unexpectedly sensitive in vitro. Differences in radiosensitivity were best distinguished by comparison of SF2 values. Some NSCLC lines were relatively sensitive, and in view of this demonstrable variability in radiation sensitivity, the SF2 value may be useful for in vitro predictive assay testing of clinical specimens. PMID:2539297

Carmichael, J; Degraff, W G; Gamson, J; Russo, D; Gazdar, A F; Levitt, M L; Minna, J D; Mitchell, J B

1989-03-01

140

Establishment and Characterization of Rat Portal Myofibroblast Cell Lines  

PubMed Central

The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC) and portal fibroblasts (PF). In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5’-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myo)fibroblasts and their contribution to the progression of liver fibrosis. PMID:25822334

Fausther, Michel; Goree, Jessica R.; Lavoie, Élise G.; Graham, Alicia L.; Sévigny, Jean; Dranoff, Jonathan A.

2015-01-01

141

Establishment and characterization of rat portal myofibroblast cell lines.  

PubMed

The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC) and portal fibroblasts (PF). In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myo)fibroblasts and their contribution to the progression of liver fibrosis. PMID:25822334

Fausther, Michel; Goree, Jessica R; Lavoie, Élise G; Graham, Alicia L; Sévigny, Jean; Dranoff, Jonathan A

2015-01-01

142

Development and characterization of a largemouth bass cell line.  

PubMed

Abstract The development and characterization of a new cell line, derived from the ovary of Largemouth Bass Micropterus salmoides, is described. Gonad tissue was collected from Largemouth Bass that were electrofished from Oneida Lake, New York. The tissue was processed and grown in culture flasks at approximately 22°C for more than 118 passages during an 8-year period from 2004 to 2011. The identity of these cells as Largemouth Bass origin was confirmed by sequencing a portion of the cytochrome b gene. Growth rate at three different temperatures was documented. The cell line was susceptible to Largemouth Bass virus (LMBV) and its replication was compared with that of Bluegill Lepomis macrochirus fry (BF-2), one of the cell lines recommended for LMBV isolation by the American Fisheries Society Fish Health Section Blue Book. Quantitative PCR results from the replication trial showed the BF-2 cell line produced approximately 10-fold more LMBV copies per cell than the new Largemouth Bass cell line after 6 d, while the titration assay showed similar quantities in each cell line after 1 week. Received February 18, 2014; accepted April 16, 2014. PMID:25229492

Getchell, Rodman G; Groocock, Geoffrey H; Cornwell, Emily R; Schumacher, Vanessa L; Glasner, Lindsay I; Baker, Barry J; Frattini, Stephen A; Wooster, Gregory A; Bowser, Paul R

2014-09-01

143

Establishment and characterization of new human embryonic stem cell lines  

Microsoft Academic Search

Human embryonic stem cells (hESC), with their ability to differentiate into all cell types in the human body, are likely to play a very important therapeutic role in a variety of neurodegenerative and life-threatening disorders in the near future. Although more than 120 different human embryonic stem cell lines have been reported worldwide, only a handful are currently available for

Necati Findikli; Semra Kahraman; Oya Akcin; Semra Sertyel; Zafer Candan

2005-01-01

144

CHARACTERIZATION OF A SPONTANEOUSLY TRANSFORMED CHICKEN MONONUCLEAR CELL LINE  

Technology Transfer Automated Retrieval System (TEKTRAN)

We describe the characterization of a spontaneously transformed chicken monocytic cell line that developed as a single colony of cells in a heterophil culture that was inadvertently left in the incubator over a period of 25 days. These cells, hitherto named HTC, grow efficiently at both 37 C or 41 C...

145

Assessment of cancer cell line representativeness using microarrays for merkel cell carcinoma.  

PubMed

When using cell lines to study cancer, phenotypic similarity to the original tumor is paramount. Yet, little has been done to characterize how closely Merkel cell carcinoma (MCC) cell lines model native tumors. To determine their similarity to MCC tumor samples, we characterized MCC cell lines via gene expression microarrays. Using whole transcriptome gene expression signatures and a computational bioinformatic approach, we identified significant differences between variant cell lines (UISO, MCC13, and MCC26) and fresh frozen MCC tumors. Conversely, the classic WaGa and Mkl-1 cell lines more closely represented the global transcriptome of MCC tumors. When compared with publicly available cancer lines, WaGa and Mkl-1 cells were similar to other neuroendocrine tumors, but the variant cell lines were not. WaGa and Mkl-1 cells grown as xenografts in mice had histological and immunophenotypical features consistent with MCC, whereas UISO xenograft tumors were atypical for MCC. Spectral karyotyping and short tandem repeat analysis of the UISO cells matched the original cell line's description, ruling out contamination. Our results validate the use of transcriptome analysis to assess the cancer cell line representativeness and indicate that UISO, MCC13, and MCC26 cell lines are not representative of MCC tumors, whereas WaGa and Mkl-1 more closely model MCC. PMID:25521454

Daily, Kenneth; Coxon, Amy; Williams, Jonathan S; Lee, Chyi-Chia R; Coit, Daniel G; Busam, Klaus J; Brownell, Isaac

2015-04-01

146

A method for establishing cell lines from Drosophila melanogaster embryos.  

PubMed

A simple method is presented for establishing continuous cell lines from Drosophila melanogaster embryos. Subculturing is performed after the first 8 weeks and at 2-week intervals thereafter. Initial plating densities of 5 x 10(4) to 5 x 10(5) cells per cm2 are required for maintaining the subcultures. Cell lines were established from wild-type embryos, from embryos bearing chromosomal rearrangements and from embryos bearing recessive mutations. Permanent lines have doubling times of 24 to 48 hr and have been maintained for as long as 13 months and 25 subcultures. PMID:404233

Petersen, N S; Riggs, A D; Seecof, R L

1977-01-01

147

Comparative analysis of cell death induction by Taurolidine in different malignant human cancer cell lines  

PubMed Central

Background Taurolidine (TRD) represents an anti-infective substance with anti-neoplastic activity in many malignant cell lines. So far, the knowledge about the cell death inducing mechanisms and pathways activated by TRD is limited. The aim of this study was therefore, to perform a comparative analysis of cell death induction by TRD simultaneously in different malignant cell lines. Materials and methods Five different malignant cell lines (HT29/Colon, Chang Liver/Liver, HT1080/fibrosarcoma, AsPC-1/pancreas and BxPC-3/pancreas) were incubated with increasing concentrations of TRD (100 ?M, 250 ?M and 1000 ?M) for 6 h and 24 h. Cell viability, apoptosis and necrosis were analyzed by FACS analysis (Propidiumiodide/AnnexinV staining). Additionally, cells were co-incubated with the caspase Inhibitor z-VAD, the radical scavenger N-Acetylcystein (NAC) and the Gluthation depleting agent BSO to examine the contribution of caspase activation and reactive oxygen species in TRD induced cell death. Results All cell lines were susceptible to TRD induced cell death without resistance toward this anti-neoplastic agent. However, the dose response effects were varying largely between different cell lines. The effect of NAC and BSO co-treatment were highly different among cell lines - suggesting a cell line specific involvement of ROS in TRD induced cell death. Furthermore, impact of z-VAD mediated inhibition of caspases was differing strongly among the cell lines. Conclusion This is the first study providing a simultaneous evaluation of the anti-neoplastic action of TRD across several malignant cell lines. The involvement of ROS and caspase activation was highly variable among the five cell lines, although all were susceptible to TRD induced cell death. Our results indicate, that TRD is likely to provide multifaceted cell death mechanisms leading to a cell line specific diversity. PMID:20205945

2010-01-01

148

Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines  

Microsoft Academic Search

The recent availability in culture of embryo-derived pluripotential cells which exhibit both a normal karyotype and a high differentiative ability1-3 has encouraged us to assess the potential of these cells to form functional germ cells following their incorporation into chimaeric mice. We report here the results of blastocyst injection studies using three independently isolated XY embryo-derived cell lines (EK.CP1, EK.CC1.1

Allan Bradley; Martin Evans; Matthew H. Kaufman; Elizabeth Robertson

1984-01-01

149

Comparative analysis of cell death induction by Taurolidine in different malignant human cancer cell lines  

Microsoft Academic Search

BACKGROUND: Taurolidine (TRD) represents an anti-infective substance with anti-neoplastic activity in many malignant cell lines. So far, the knowledge about the cell death inducing mechanisms and pathways activated by TRD is limited. The aim of this study was therefore, to perform a comparative analysis of cell death induction by TRD simultaneously in different malignant cell lines. MATERIALS AND METHODS: Five

Ansgar M Chromik; Adrien Daigeler; Daniel Bulut; Annegret Flier; Christina May; Kamran Harati; Jan Roschinsky; Dominique Sülberg; Peter R Ritter; Ulrich Mittelkötter; Stephan A Hahn; Waldemar Uhl

2010-01-01

150

Establishment of a highly metastatic tongue squamous cell carcinoma cell line from New Zealand White rabbit  

Microsoft Academic Search

ObjectivePrior to this study, the widely used tongue squamous cell carcinoma cell lines could only initiate tumours in immunodeficient mice, which greatly delayed studies on immune function during carcinogenesis. This study established a new tongue squamous cell carcinoma cell line named ‘RSCC-1’, which can initiate tumours in both immunocompetent rabbits and immunodeficient nude mice and has high metastatic ability.

Jin Wulong; Liang Zhou; Zhou Xiaojian; Tian Jie; Guo Huilin

2008-01-01

151

DEVELOPMENT OF A BRAIN METASTATIC CANINE PROSTATE CANCER CELL LINE  

PubMed Central

Background Prostate cancer in men has a high mortality and morbidity due to metastatic disease. The pathobiology of prostate cancer metastasis is not well understood and cell lines and animal models that recapitulate the complex nature of the disease are needed. Therefore, the goal of the study was to establish and characterize a new prostate cancer line derived from a dog with spontaneous prostate cancer. Methods A new cell line (Leo) was derived from a dog with spontaneous prostate cancer. Immunohistochemistry and PCR were used to characterize the primary prostate cancer and xenografts in nude mice. Subcutaneous tumor growth and metastases in nude mice were evaluated by bioluminescent imaging, radiography and histopathology. In vitro chemosensitivity of Leo cells to therapeutic agents was measured. Results Leo cells expressed the secretory epithelial cytokeratins (CK) 8, 18 and ductal cell marker, CK7. The cell line grew in vitro (over 75 passages) and was tumorigenic in the subcutis of nude mice. Following intracardiac injection, Leo cells metastasized to the brain, spinal cord, bone, and adrenal gland. The incidence of metastases was greatest to the central nervous system (80%) with a lower incidence to bone (20%) and the adrenal glands (16%). In vitro chemosensitivity assays demonstrated that Leo cells were sensitive to velcade and an HDAC-42 inhibitor with IC50 concentrations of 1.9 nM and 0.95 ?M respectively. Conclusion The new prostate cancer cell line (Leo) will be a valuable model to investigate the mechanisms of the brain and bone metastases. PMID:21321976

Thudi, Nanda K.; Shu, Sherry T.; Martin, Chelsea K.; Lanigan, Lisa G.; Nadella, Murali V.P.; Van Bokhoven, Adrie; Werbeck, Jillian L.; Simmons, Jessica K.; Murahari, Sridhar; Kisseberth, William C.; Breen, Matthew; Williams, Christina; Chen, Ching-Shih; McCauley, Laurie K.; Keller, Evan T.; Rosol, Thomas J.

2010-01-01

152

MORPHOMETRIC SUBTYPING FOR A PANEL OF BREAST CANCER CELL LINES  

PubMed Central

A panel of cell lines of diverse molecular background offers an improved model system for high-content screening, comparative analysis, and cell systems biology. A computational pipeline has been developed to collect images from cell-based assays, segment individual cells and colonies, represent segmented objects in a multidimensional space, and cluster them for identifying distinct subpopulations. While each segmentation strategy can vary for different imaging assays, representation and subpopulation analysis share a common thread. Application of this pipeline to a library of 41 breast cancer cell lines is demonstrated. These cell lines are grown in 2D and imaged through immunofluorescence microscopy. Subpopulations in this panel are identified and shown to correlate with previous subtyping literature that was derived from transcript data. PMID:20011457

Han, Ju; Chang, Hang; Fontenay, Gerald; Wang, Nicholas J.; Gray, Joe W.; Parvin, Bahram

2009-01-01

153

MORPHOMETRIC SUBTYPING FOR A PANEL OF BREAST CANCER CELL LINES  

SciTech Connect

A panel of cell lines of diverse molecular background offers an improved model system for high-content screening, comparative analysis, and cell systems biology. A computational pipeline has been developed to collect images from cell-based assays, segment individual cells and colonies, represent segmented objects in a multidimensional space, and cluster them for identifying distinct subpopulations. While each segmentation strategy can vary for different imaging assays, representation and subpopulation analysis share a common thread. Application of this pipeline to a library of 41 breast cancer cell lines is demonstrated. These cell lines are grown in 2D and imaged through immunofluorescence microscopy. Subpopulations in this panel are identified and shown to correlate with previous subtyping literature that was derived from transcript data.

Han, Ju; Chang, Hang; Fontenay, Gerald; Wang, Nicholas J.; Gray, Joe W.; Parvin, Bahram

2009-05-08

154

Effects of ethanol on an intestinal epithelial cell line  

SciTech Connect

The effect of exposure of an intestinal epithelial cell line to various concentrations of ethanol (217 mM (1%) to 652 mM (3%)) during 24, 48, and 72 hr was investigated in vitro using a rat intestinal epithelial cell line (IRD 98). Incubation of these cells in the presence of ethanol significantly decreased cell growth. This inhibition was accompanied by a strong increase in cellular protein. Stimulation of specific disaccharidases, gamma-glutamyl transferase, and aminopeptidase activities by ethanol was dose- and time-dependent. Ethanol induces a change in the relative proportions of the different lipid classes synthesized; triglycerides, fatty acids, and cholesterol esters were preferentially synthethysed. Our findings show that cell lines are good models for investigation of the effects of ethanol, and that alcohol considerably modifies the functions of intestinal epithelial cells.

Nano, J.L.; Cefai, D.; Rampal, P. (Laboratoire de Gastroenterologie et de Nutrition, U.E.R. de Medecine, Nice (France))

1990-02-01

155

Phenotypes and Karyotypes of Human Malignant Mesothelioma Cell Lines  

PubMed Central

Background Malignant mesothelioma is an aggressive tumour of serosal surfaces most commonly pleura. Characterised cell lines represent a valuable tool to study the biology of mesothelioma. The aim of this study was to develop and biologically characterise six malignant mesothelioma cell lines to evaluate their potential as models of human malignant mesothelioma. Methods Five lines were initiated from pleural biopsies, and one from pleural effusion of patients with histologically proven malignant mesothelioma. Mesothelial origin was assessed by standard morphology, Transmission Electron Microscopy (TEM) and immunocytochemistry. Growth characteristics were assayed using population doubling times. Spectral karyotyping was performed to assess chromosomal abnormalities. Authentication of donor specific derivation was undertaken by DNA fingerprinting using a panel of SNPs. Results Most of cell lines exhibited spindle cell shape, with some retaining stellate shapes. At passage 2 to 6 all lines stained positively for calretinin and cytokeratin 19, and demonstrated capacity for anchorage-independent growth. At passage 4 to 16, doubling times ranged from 30–72 hours, and on spectral karyotyping all lines exhibited numerical chromosomal abnormalities ranging from 41 to 113. Monosomy of chromosomes 8, 14, 22 or 17 was observed in three lines. One line displayed four different karyotypes at passage 8, but only one karyotype at passage 42, and another displayed polyploidy at passage 40 which was not present at early passages. At passages 5–17, TEM showed characteristic features of mesothelioma ultrastructure in all lines including microvilli and tight intercellular junctions. Conclusion These six cell lines exhibit varying cell morphology, a range of doubling times, and show diverse passage-dependent structural chromosomal changes observed in malignant tumours. However they retain characteristic immunocytochemical protein expression profiles of mesothelioma during maintenance in artificial culture systems. These characteristics support their potential as in vitro model systems for studying cellular, molecular and genetic aspects of mesothelioma. PMID:23516439

Relan, Vandana; Morrison, Leanne; Parsonson, Kylie; Clarke, Belinda E.; Duhig, Edwina E.; Windsor, Morgan N.; Matar, Kevin S.; Naidoo, Rishendran; Passmore, Linda; McCaul, Elizabeth; Courtney, Deborah; Yang, Ian A.; Fong, Kwun M.; Bowman, Rayleen V.

2013-01-01

156

METHYLATION OF ARSENITE BY SOME MAMMALIAN CELL LINES  

EPA Science Inventory

THIS ABSTRACT WAS SUBMITTED ELECTRONICALLY;. SPACE CONSTRAINTS WERE SEVERE) Methylation of Arsenite by Some Mammalian Cell Lines. Methylation of arsenite is thought to play an important role in the carcinogenicity of arsenic. Aim 1: Determine if there is diffe...

157

A comprehensive transcriptional portrait of human cancer cell lines.  

PubMed

Tumor-derived cell lines have served as vital models to advance our understanding of oncogene function and therapeutic responses. Although substantial effort has been made to define the genomic constitution of cancer cell line panels, the transcriptome remains understudied. Here we describe RNA sequencing and single-nucleotide polymorphism (SNP) array analysis of 675 human cancer cell lines. We report comprehensive analyses of transcriptome features including gene expression, mutations, gene fusions and expression of non-human sequences. Of the 2,200 gene fusions catalogued, 1,435 consist of genes not previously found in fusions, providing many leads for further investigation. We combine multiple genome and transcriptome features in a pathway-based approach to enhance prediction of response to targeted therapeutics. Our results provide a valuable resource for studies that use cancer cell lines. PMID:25485619

Klijn, Christiaan; Durinck, Steffen; Stawiski, Eric W; Haverty, Peter M; Jiang, Zhaoshi; Liu, Hanbin; Degenhardt, Jeremiah; Mayba, Oleg; Gnad, Florian; Liu, Jinfeng; Pau, Gregoire; Reeder, Jens; Cao, Yi; Mukhyala, Kiran; Selvaraj, Suresh K; Yu, Mamie; Zynda, Gregory J; Brauer, Matthew J; Wu, Thomas D; Gentleman, Robert C; Manning, Gerard; Yauch, Robert L; Bourgon, Richard; Stokoe, David; Modrusan, Zora; Neve, Richard M; de Sauvage, Frederic J; Settleman, Jeffrey; Seshagiri, Somasekar; Zhang, Zemin

2015-03-01

158

Antiproliferative Effect of Solanum nigrum on Human Leukemic Cell Lines  

PubMed Central

Solanum nigrum is used in various traditional medical systems for antiproliferative, antiinflammatory, antiseizure and hepatoprotective activities. We have evaluated organic solvent and aqueous extracts obtained from berries of Solanum nigrum for antiproliferative activity on leukemic cell lines, Jurkat and HL-60 (Human promyelocytic leukemia cells). The cell viability after the treatment with Solanum nigrum extract was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. Results indicated increased cytotoxicity with increasing extract concentrations. Comparative analysis indicated that 50% inhibitory concentration value of methanol extract is the lowest on both cell lines. PMID:23716874

Gabrani, Reema; Jain, Ramya; Sharma, Anjali; Sarethy, Indira P.; Dang, Shweta; Gupta, S.

2012-01-01

159

Reliable in vitro studies require appropriate ovarian cancer cell lines  

PubMed Central

Ovarian cancer is the fifth most common cause of cancer death in women and the leading cause of death from gynaecological malignancies. Of the 75% women diagnosed with locally advanced or disseminated disease, only 30% will survive five years following treatment. This poor prognosis is due to the following reasons: limited understanding of the tumor origin, unclear initiating events and early developmental stages of ovarian cancer, lack of reliable ovarian cancer-specific biomarkers, and drug resistance in advanced cases. In the past, in vitro studies using cell line models have been an invaluable tool for basic, discovery-driven cancer research. However, numerous issues including misidentification and cross-contamination of cell lines have hindered research efforts. In this study we examined all ovarian cancer cell lines available from cell banks. Hereby, we identified inconsistencies in the reporting, difficulties in the identification of cell origin or clinical data of the donor patients, restricted ethnic and histological type representation, and a lack of tubal and peritoneal cancer cell lines. We recommend that all cell lines should be distributed via official cell banks only with strict guidelines regarding the minimal available information required to improve the quality of ovarian cancer research in future. PMID:24936210

2014-01-01

160

A novel mutated cell line with characteristics of dedifferentiated chondrosarcoma.  

PubMed

Dedifferentiated chondrosarcoma (CS) is a rare, highly malignant variant of CS in which a high-grade sarcoma coexists with a low-grade chondroid tumor. In this study, a novel dedifferentiated CS cell line, MS0812, was spontaneously established from mutated human embryonic muscle cells. Several features of the cell line were investigated, including growth characteristics, cytogenetics, electron microscopic features, expression of various antigenic markers and tumor formation. MS0812 has been cultured continuously for more than 3 years. The growth characteristics of MS0812 are similar to the immortalized cell lines as reported. The cell line exhibited complex karyotypes and hyperploidy, the chromosome number ranged from 50 to 158. MS0812 was positive for vimentin, desmin and muscle actin, indicating their muscle origin. With specific inductive condition, MS0812 differentiates into neural cells and adipocytes. Deletion of the p16 gene, which seemed to play a major role in the malignant phenotype of this cell line, was confirmed by PCR and immunocytochemistry. MS0812 formed tumors in nude mice, and the tumor revealed a fibrosarcoma with chondroid components, which were consistent with dedifferentiated CS as reported. Chondroid components showed metachromasia by Alcian blue and toluidine blue and were S100 and collagen-II positive. To our knowledge, this is the first report of the establishment of a human dedifferentiated chondrosarcoma from mutated human embryonic muscle cells, and it is a useful model for the study of the molecular pathogenesis of dedifferentiated CS. PMID:19724881

Yang, Liye; Chen, Qiang; Zhang, Song; Wang, Xianyao; Li, Wenyu; Wen, Jiancheng; Huang, Xiaoping; Zheng, Jiakun; Huang, Ge; Huang, Tianhua; Ju, Guizhi

2009-10-01

161

p53 mutations in human immortalized epithelial cell lines.  

PubMed

Although rodent cells have been immortalized following transfection with a mutant p53 gene, the role of p53 in the immortalization of human cells is unknown. Therefore, human epithelial cell lines were examined for p53 mutations in exons 4-9 which include the evolutionarily conserved regions. A spontaneously immortalized skin keratinocyte cell line, HaCat, and three ras-transfected clones, have a p53 mutational spectrum that is typical of ultraviolet light induced mutations. A normal finite lifespan cell strain (184) and two benzo[a]pyrene immortalized mammary epithelial cell lines derived from 184 (184A1 and 184B5) contain wild type p53 sequences in exons 4-9, although elevated levels of nuclear p53 indicate an alteration in the stability of the normally transient protein. Wild type p53 was found in human bronchial, esophageal and hepatic epithelial cells immortalized by SV40 T antigen gene and human renal epithelial cells immortalized by adenovirus 5. BEAS-2B, an SV40 T antigen immortalized bronchial epithelial cell line and two subclones, have a germline polymorphism at codon 47. Inactivation of p53 by mechanisms such as mutation or complexing with proteins of DNA tumor viruses appears to be important in the immortalization of human epithelial cells. PMID:8504475

Lehman, T A; Modali, R; Boukamp, P; Stanek, J; Bennett, W P; Welsh, J A; Metcalf, R A; Stampfer, M R; Fusenig, N; Rogan, E M

1993-05-01

162

Screening Services – NCI-60 DTP Human Tumor Cell Line Screen  

Cancer.gov

The In Vitro Cell Line Screening Project (IVCLSP) is a dedicated service providing direct support to the DTP anticancer drug discovery program. The in vitro cell line screen was implemented in fully operational form in April of 1990. It required approximately five years (1985 - 1990) to develop, and persistence in the effort reflected dissatisfaction with the performance of prior in vivo primary screens. This project is designed to screen up to 3,000 compounds per year for potential anticancer activity.

163

The Type 1 Alveolar Lining Cells of the Mammalian Lung  

PubMed Central

Using a newly described dissociation and isolation technique, Type 1 alveolar lining cells were obtained from adult rabbit lung within a heterogeneous population. Identification of many lung cell types in this mixed population was by a) comparison of isolated cells with in situ lung cells in lung sections using identical parallel staining, b) stepwise ultrastructural examination of cells during all stages of lung dissociation so that intercellular associations were monitored throughout, and c) Type 1 cell surface changes following collagenase treatment. This phenomenon was studied with both electron and light microscopy, the latter employing tetrachrome staining of basophilic blebs as well as characteristic staining of nucleus and cytoplasm. Following their isolation, most Type 1 cells lost their surface blebs and assumed a “relaxed” state. In this condition, Type 1 cells were exposed to cytochalasin D (CD) for various times and at several concentrations. Surface knobs, having all the characteristics of zeiotic knobs produced in a number of cultured cell lines by exposure to CD, were produced in isolated Type 1 epithelial cells within 45 minutes. The reaction to CD was temperature-dependent, proceeding maximally at 37 C with inhibition at lower temperatures and was inhibited by antimetabolites such as dinitrophenol and 2-deoxyglucose in the presence of CD. As with established cell lines, formation of zeiotic knobs at the isolated Type 1 cell surface appeared closely related to microfilamentous nets located beneath the plasmalemma. The density of this net appeared to vary as isolated Type 1 cells underwent expansion and contraction in response to CD. Zeiotic knobs were formed as the result of herniation of endoplasm through the cell cortex. The significance of such a labile cortical zone is considered in relation to the deformation changes Type 1 cells undergo during inflation-deflation of alveoli and the folding-unfolding of alveolar lining cells as a result of lung volume changes. ImagesFigure 5Figure 6Figure 7Figures 1-3Figure 4Figure 8 PMID:202166

Rosenbaum, Robert M.; Picciano, Paul

1978-01-01

164

Antibodies to major histocompatibility antigens produced by hybrid cell lines  

Microsoft Academic Search

FUSION between myeloma cells and spleen cells from immunised donors has been shown to be a successful method of deriving homogeneous anti-SRBC (anti-sheep red blood cell) and anti-TNP antibodies1,2. One of the most powerful features of this approach is that, by cloning, one may easily derive cell lines synthesising monoclonal antibodies despite using non-purified immunogens. The multiple components of a

G. Galfre; S. C. Howe; C. Milstein; G. W. BUTCHER; J. C. HOWARD

1977-01-01

165

Embryonic germ cell lines and their derivation from mouse primordial germ cells.  

PubMed

When primordial germ cells of the mouse are cultured on feeder layers with the addition of the polypeptide signalling molecules leukaemia inhibitory factor, Steel factor and basic fibroblast growth factor they give rise to cells that resemble undifferentiated blastocyst-derived embryonic stem cells. These primordial germ cell-derived embryonic germ cells (EG cells) can be induced to differentiate extensively in culture and also form teratocarcinomas when injected into nude mice. Additionally, they contribute to chimeras when injected into host blastocysts. We have derived multiple EG cell lines from 8.5 days post coitum (dpc) embryos of C57BL/6 inbred mice. Four independent EG cell lines with normal male karyotypes have formed chimeras (up to 70% coat colour chimerism) when injected into BALB/c host blastocysts. Chimeric mice from all four cell lines are fertile, but only those from one line have transmitted coat colour markers through the germline. Studies have also been carried out to determine whether gonadal primordial germ cells can give rise to pluripotent EG cells. Germ cells from gonads of 15.5 dpc C57BL/6 embryos and newborn mice failed to produce EG cell lines. EG cell lines capable of forming teratocarcinomas and coat colour chimeras have been established from primordial germ cells of 12.5 dpc genital ridges. We are currently testing the genomic imprinting status of the insulin-like growth factor type 2 receptor gene (Igf2r) in our different EG cell lines. PMID:7835148

Labosky, P A; Barlow, D P; Hogan, B L

1994-01-01

166

Efficacy of ribavirin against malignant glioma cell lines  

PubMed Central

Ribavirin (1-?-D-ribofuranosy-1,2,4-triazole-3-carboxamide) has been widely administered as an antiviral agent against RNA and DNA viruses. Ribavirin, in combination with interferon, has predominantly been applied in the treatment of the hepatitis C virus infection and its potential antitumor efficacy has recently become a point of interest. The aim of the present study was to evaluate the effect of ribavirin on the growth of malignant glioma cells, to identify novel predictive genes in malignant glioma cells (by analyzing gene expression profiles) and to assess the influence of ribavirin on the cell cycle of malignant glioma cells. The present study evaluated the antitumor efficacy of ribavirin against various malignant glioma cell lines (A-172, AM-38, T98G, U-87MG, U-138MG, U-251MG and YH-13). After culturing the cells in ribavirin-containing culture medium (final concentration, 0–1,000 ?M) for 72 h, the viable proliferated cells were harvested and counted. The half maximal inhibitory concentration of ribavirin, with regard to the growth of the malignant glioma cell lines, was determined from the concentration of ribavirin required for 50% growth inhibition in comparison to the untreated control cells. Furthermore, the current study identified the genes in which the gene expression levels correlated with the ribavirin sensitivity of the malignant glioma cells lines, using a high-density oligonucleotide array. Finally, cell cycle analysis was performed on the U-87MG cell line. It was identified that ribavirin inhibited the growth of all of the malignant glioma cell lines in a dose-dependent manner, although the ribavirin sensitivity varied between each cell line. Of the extracted genes, PDGFRA demonstrated the strongest positive correlation between gene expression level and ribavirin sensitivity. Cell cycle analysis of the U-87MG cell line demonstrated that ribavirin treatment induces G0/G1 arrest and thus may be an effective agent for inhibiting malignant glioma cell growth. Therefore, the results of the current study indicate that ribavirin may have potential as a therapeutic agent in the treatment of malignant gliomas. PMID:25364409

OGINO, AKIYOSHI; SANO, EMIKO; OCHIAI, YUSHI; YAMAMURO, SHUN; TASHIRO, SHINYA; YACHI, KAZUNARI; OHTA, TAKASHI; FUKUSHIMA, TAKAO; OKAMOTO, YUTAKA; TSUMOTO, KOUHEI; UEDA, TAKUYA; YOSHINO, ATSUO; KATAYAMA, YOICHI

2014-01-01

167

76 FR 16609 - Proposed Information Collection; Comment Request; Identification of Human Cell Lines Project  

Federal Register 2010, 2011, 2012, 2013, 2014

...Comment Request; Identification of Human Cell Lines Project AGENCY: National Institute...repeat (STR) profiling up to 1500 human cell line samples as part of the Identification of Human Cell Lines Project. All data and...

2011-03-24

168

Hypothalamic cell lines to investigate neuroendocrine control mechanisms.  

PubMed

The hypothalamus is the control center for most physiological processes; yet has been difficult to study due to the inherent heterogeneity of this brain region. For this reason, researchers have turned towards cell models. Primary hypothalamic cultures are difficult to maintain, are heterogeneous neuronal and glial cell populations and often contain a minimal number of viable peptide-secreting neurons. In contrast, immortalized, clonal cell lines represent an unlimited, homogeneous population of neurons that can be manipulated using a number of elegant molecular techniques. Cell line studies and in vivo experimentation are complementary and together provide a powerful tool to drive scientific discovery. This review focuses on three key neuroendocrine systems: energy homeostasis, reproduction, and circadian rhythms; and the use of hypothalamic cell lines to dissect the complex pathways utilized by individual neurons in these systems. PMID:19341762

Mayer, Christopher M; Fick, Laura J; Gingerich, Sarah; Belsham, Denise D

2009-08-01

169

BHD Tumor Cell Line and UOK257-2 wild type FLCN-restored Renal Cell Line  

Cancer.gov

Center for Cancer Research, Urologic Oncology Branch is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize kidney cancer tumor cell lines.

170

Rabeprazole exhibits antiproliferative effects on human gastric cancer cell lines  

PubMed Central

Intracellular proton extrusion in gastric cancer cells has been reported to promote cancer cell survival under acidic conditions via hydrogen/potassium adenosine triphosphatase (H+/K+-ATPase). Rabeprazole is a frequently used second-generation proton pump inhibitor (PPI) that irreversibly inactivates gastric H+/K+-ATPase. Therefore, we hypothesized that rabeprazole could reduce the viability of gastric cancer cells. In the present study, four human gastric cancer cell lines and one non-cancer gastric cell line were cultured. Cell viability, the ?- and ?-subunits of H+/K+-ATPase and cellular apoptosis were analyzed by dye exclusion assay, reverse transcription-polymerase chain reaction and annexin V-fluorescein isothiocyanate/propidium iodide staining, respectively. The expression level of total extracellular signal-regulated protein kinase 1/2 (ERK 1/2) and phosphorylated-ERK protein was detected by western blot analysis. Gastric cancer cell lines were more tolerant of the acidic culture media than non-cancer cells. Administration of rabeprazole led to a marked decrease in the viability of MKN-28 cells. Exposure to rabeprazole induced significant apoptosis in AGS cells. Rabeprazole completely inhibited the phosphorylation of ERK 1/2 in the MKN-28 cells, whereas the same effect was not observed in either the KATO III or MKN-45 cells. The ERK 1/2 inhibitor, PD98059, attenuated the viability of the AGS cells. A similar antiproliferative effect was observed in the rabeprazole treatment group. In addition, PD98059 and rabeprazole were able to efficaciously inhibit the phosphorylation of ERK 1/2 in the gastric cancer cells. Therefore, it was concluded that rabeprazole can attenuate the cell viability of human gastric cancer cells through inactivation of the ERK1/2 signaling pathway. The results of the present study demonstrate that rabeprazole inhibits the viability of gastric cancer cells in vitro and may serve as a novel antineoplastic agent. PMID:25202402

GU, MENGLI; ZHANG, YAN; ZHOU, XINXIN; MA, HAN; YAO, HANGPING; JI, FENG

2014-01-01

171

Rabeprazole exhibits antiproliferative effects on human gastric cancer cell lines.  

PubMed

Intracellular proton extrusion in gastric cancer cells has been reported to promote cancer cell survival under acidic conditions via hydrogen/potassium adenosine triphosphatase (H(+)/K(+)-ATPase). Rabeprazole is a frequently used second-generation proton pump inhibitor (PPI) that irreversibly inactivates gastric H(+)/K(+)-ATPase. Therefore, we hypothesized that rabeprazole could reduce the viability of gastric cancer cells. In the present study, four human gastric cancer cell lines and one non-cancer gastric cell line were cultured. Cell viability, the ?- and ?-subunits of H(+)/K(+)-ATPase and cellular apoptosis were analyzed by dye exclusion assay, reverse transcription-polymerase chain reaction and annexin V-fluorescein isothiocyanate/propidium iodide staining, respectively. The expression level of total extracellular signal-regulated protein kinase 1/2 (ERK 1/2) and phosphorylated-ERK protein was detected by western blot analysis. Gastric cancer cell lines were more tolerant of the acidic culture media than non-cancer cells. Administration of rabeprazole led to a marked decrease in the viability of MKN-28 cells. Exposure to rabeprazole induced significant apoptosis in AGS cells. Rabeprazole completely inhibited the phosphorylation of ERK 1/2 in the MKN-28 cells, whereas the same effect was not observed in either the KATO III or MKN-45 cells. The ERK 1/2 inhibitor, PD98059, attenuated the viability of the AGS cells. A similar antiproliferative effect was observed in the rabeprazole treatment group. In addition, PD98059 and rabeprazole were able to efficaciously inhibit the phosphorylation of ERK 1/2 in the gastric cancer cells. Therefore, it was concluded that rabeprazole can attenuate the cell viability of human gastric cancer cells through inactivation of the ERK1/2 signaling pathway. The results of the present study demonstrate that rabeprazole inhibits the viability of gastric cancer cells in vitro and may serve as a novel antineoplastic agent. PMID:25202402

Gu, Mengli; Zhang, Yan; Zhou, Xinxin; Ma, Han; Yao, Hangping; Ji, Feng

2014-10-01

172

Membrane transport changes in an adriamycin-resistant murine leukemia cell line and in its sensitive parental cell line  

Microsoft Academic Search

Multidrug resistance in cancer chemotherapy occurs when cells develop resistance towards structurally and functionally unrelated drugs. It is speculated that alteration of some fundamental process(es) in the cells leads to the development of multidrug resistance. The sodium pump activity of murine leukemia cell lines P388\\/S (sensitive) and P388\\/ADR (resistant) was measured and found to be different in the two cell

Ratna Bose; Hing-Yat Peter Lain

1988-01-01

173

Impact of LPS-induced cardiomyoblast cell apoptosis inhibited by earthworm extracts.  

PubMed

Dilong is an earthworm extract with a dense nutritional content, widely used in Chinese herbal medicine to remove stasis and stimulate wound healing. Earthworm extracts are traditionally used by indigenous people throughout the world. How this Dilong inhibits Lipopolysaccharide (LPS)-induced cardiomyoblast cell apoptosis is still unclear. This study investigates the Dilong extract effect on LPS-induced apoptosis in H9c2 cardiomyoblast cells. LPS (1 ?g/ml) administration for 24 h induced apoptosis in H9c2 cells. Cell apoptosis was detected using MTT, LDH, TUNEL assay and JC-1 staining. Western blot analysis was used to detect pro-apoptotic and anti-apoptotic proteins. Dilong extract totally blocked the LPS impact, leading to the activation of anti-apoptotic proteins, Bcl-2 and Bcl-xL, stabilized the mitochondria membrane and down-regulated the extrinsic and intrinsic pro-apoptotic proteins, TNF-?, active caspase-8, t-Bid, Bax, active caspase-9 and active caspase-3. Dilong could potentially serve as a cardio protective agent against LPS-induced H9c2 cardiomyoblast cell apoptosis. PMID:25249212

Li, Ping-Chun; Tien, Yun-Chen; Day, Cecilia Hsuan; Pai, Peiying; Kuo, Wei-Wen; Chen, Tung-Sheng; Kuo, Chia-Hua; Tsai, Chang-Hai; Ju, Da-Tong; Huang, Chih-Yang

2015-04-01

174

Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines  

Microsoft Academic Search

BACKGROUND: The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. METHODS: Five different malignant cell lines (HT29,

Ansgar M Chromik; Stephan A Hahn; Adrien Daigeler; Annegret Flier; Daniel Bulut; Christina May; Kamran Harati; Jan Roschinsky; Dominique Sülberg; Dirk Weyhe; Ulrich Mittelkötter; Waldemar Uhl

2010-01-01

175

MOLECULAR AND CYTOGENETIC ANALYSIS OF LUNG TUMOR CELL LINES  

EPA Science Inventory

We have measured the levels of amplification of oncogenes and tumor marker genes or other genes of interest in nine human lung tumor cell lines in comparison to normal human bronchial epithelial cells or normal blood lymphocytes to test the hypothesis that aberrant amplification ...

176

Increased transversions in a novel mutator colon cancer cell line  

Microsoft Academic Search

We describe a novel mutator phenotype in the Vaco411 colon cancer cell line which increases the spontaneous mutation rate 10–100-fold over background. This mutator results primarily in transversion base substitutions which are found infrequently in repair competent cells. Of the four possible types of transversions, only three were principally recovered. Spontaneous mutations recovered also included transitions and large deletions, but

James R Eshleman; P Scott Donover; Susan J Littman; Sandra E Swinler; Guo-Min Li; James D Lutterbaugh; James KV Willson; Paul Modrich; W David Sedwick; Sanford D Markowitz; Martina L Veigl

1998-01-01

177

Establishment and Characterization of Neonatal Mouse Sertoli Cell Lines  

Microsoft Academic Search

Sertoli cells isolated from 6-day postpartum mouse testes were conditionally immortalized with the simian virus 40 large tumor antigen gene (SV40-LTAg) under the control of a promoter inducible with ponasterone A, an analog of ecdysone. This strategy produced 2 cell lines, which exhibited mixed phenotypes. We first tested the conditional expression of the LTAg gene in the presence or absence

MARIE-CLAUDE HOFMANN; KATHERINE S. VAN DER WEE; JAMIE L. DARGART; GHENIMA DIRAMI; LUIS DETTIN; MARTIN DYM

2003-01-01

178

Stable, near-haploid mammalian cell line (Dipodomys ordii)  

Microsoft Academic Search

An established SV40-transformed cell line of Dipodomys ordii was cloned for selective loss of chromosomal material. A clone is described which has a modal chromosome number of 50 (in the normal diploid 2n = 72), and has about 66% of the DNA content of normal diploid cells. Karyotype anlysis shows that, although some chromosome rearrangement has taken place, 23 chromosomes

C. J. Bostock; S. Christie; F. T. Hatch; J. A. Mazrimas

1977-01-01

179

Ganglioside GD2 in Small Cell Lung Cancer Cell Lines: Enhancement of Cell Proliferation and Mediation of Apoptosis1  

Microsoft Academic Search

Expression levels of gangliosides and glycosyltransferase genes respon- sible for their syntheses in human lung cancer cell lines and a normal bronchial epithelial cell line were analyzed. Both non-small cell lung cancers and small cell lung cancers (SCLCs) mainly expressed GM2 and GM1, whereas only SCLCs expressed b-series gangliosides, such as GD2, GD1b, and GT1b. Accordingly, many SCLC cell lines

Shoko Yoshida; Satoshi Fukumoto; Haruhiko Kawaguchi; Shigeki Sato; Ryuzo Ueda; Koichi Furukawa

180

Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells  

Microsoft Academic Search

Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal

Junying Yu; Maxim A. Vodyanik; Kim Smuga-Otto; Jessica Antosiewicz-Bourget; Jennifer L. Frane; Shulan Tian; Jeff Nie; Gudrun A. Jonsdottir; Victor Ruotti; Ron Stewart; Igor I. Slukvin; James A. Thomson

2007-01-01

181

Amniotic membrane-derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest  

PubMed Central

Cells derived from the amniotic foetal membrane of human term placenta have drawn particular attention mainly for their plasticity and immunological properties, which render them interesting for stem-cell research and cell-based therapeutic applications. In particular, we have previously demonstrated that amniotic mesenchymal tissue cells (AMTC) inhibit lymphocyte proliferation in vitro and suppress the generation and maturation of monocyte-derived dendritic cells. Here, we show that AMTC also significantly reduce the proliferation of cancer cell lines of haematopoietic and non-haematopoietic origin, in both cell–cell contact and transwell co-cultures, therefore suggesting the involvement of yet-unknown inhibitory soluble factor(s) in this ‘cell growth restraint’. Importantly, we provide evidence that the anti-proliferative effect of AMTC is associated with induction of cell cycle arrest in G0/G1 phase. Gene expression analyses demonstrate that AMTC can down-regulate cancer cells' mRNA expression of genes associated with cell cycle progression, such as cyclins (cyclin D2, cyclin E1, cyclin H) and cyclin-dependent kinase (CDK4, CDK6 and CDK2), whilst they up-regulate cell cycle negative regulator such as p15 and p21, consistent with a block in G0/G1 phase with no progression to S phase. Taken together, these findings warrant further studies to investigate the applicability of these cells for controlling cancer cell proliferation in vivo. PMID:22260183

Magatti, Marta; Munari, Silvia; Vertua, Elsa; Parolini, Ornella

2012-01-01

182

Guidelines for the use of cell lines in biomedical research.  

PubMed

Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise. PMID:25117809

Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

2014-09-01

183

Establishment and characterization of five cell lines derived from human malignant gliomas  

Microsoft Academic Search

We established and characterized five cell lines derived from human malignant gliomas (four glioblastomas multiforme and one highly anaplastic astrocytoma). All cell lines exhibited tumor cell morphology and growth kinetics, and anchorage-independent growth in soft agar. Cytogenetic analysis revealed significant aneuploidy in all five cases as well as clonal chromosomal alterations unique to each cell line. No cell line was

J. T. Rutka; J. R. Giblin; D. Y. Dougherty; H. C. Liu; J. R. McCulloch; C. W. Bell; R. S. Stern; C. B. Wilson; M. L. Rosenblum

1987-01-01

184

Reconstruction of endometrium from human endometrial side population cell lines.  

PubMed

Endometrial regeneration is mediated, at least in part, by the existence of a specialized somatic stem cell (SSC) population recently identified by several groups using the side population (SP) technique. We previously demonstrated that endometrial SP displays genotypic, phenotypic and the functional capability to develop human endometrium after subcutaneous injection in NOD-SCID mice. We have now established seven human endometrial SP (hESP) cell lines (ICE 1-7): four from the epithelial and three from the stromal fraction, respectively. SP cell lines were generated under hypoxic conditions based on their cloning efficiency ability, cultured for 12-15 passages (20 weeks) and cryopreserved. Cell lines displayed normal 46XX karyotype, intermediate telomerase activity pattern and expressed mRNAs encoding proteins that are considered characteristic of undifferentiated cells (Oct-4, GDF3, DNMT3B, Nanog, GABR3) and those of mesodermal origin (WT1, Cardiac Actin, Enolase, Globin, REN). Phenotype analysis corroborated their epithelial (CD9+) or stromal (vimentin+) cell origin and mesenchymal (CD90+, CD73+ and CD45?) attributes. Markers considered characteristic of ectoderm or endoderm were not detected. Cells did not express either estrogen receptor alpha (ER?) or progesterone receptor (PR). The hESP cell lines were able to differentiate in vitro into adipocytes and osteocytes, which confirmed their mesenchymal origin. Finally, we demonstrated their ability to generate human endometrium when transplanted beneath the renal capsule of NOD-SCID mice. These findings confirm that SP cells exhibit key features of human endometrial SSC and open up new possibilities for the understanding of gynecological disorders such as endometriosis or Asherman syndrome. Our cell lines can be a valuable model to investigate new targets for endometrium proliferation in endometriosis. PMID:21712999

Cervelló, Irene; Mas, Aymara; Gil-Sanchis, Claudia; Peris, Laura; Faus, Amparo; Saunders, Philippa T K; Critchley, Hilary O D; Simón, Carlos

2011-01-01

185

Establishment, Immortalisation and Characterisation of Pteropid Bat Cell Lines  

PubMed Central

Background Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. Methodology/Findings Black flying foxes (Pteropus alecto) were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. Conclusions/Significance The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study. PMID:20011515

Crameri, Gary; Todd, Shawn; Grimley, Samantha; McEachern, Jennifer A.; Marsh, Glenn A.; Smith, Craig; Tachedjian, Mary; De Jong, Carol; Virtue, Elena R.; Yu, Meng; Bulach, Dieter; Liu, Jun-Ping; Michalski, Wojtek P.; Middleton, Deborah; Field, Hume E.; Wang, Lin-Fa

2009-01-01

186

Artificial islets from hybrid spheroids of three pancreatic cell lines.  

PubMed

Pancreatic islets have been the focus of recent studies exploring the pathologic mechanisms of diabetes mellitus as well as more effective and radical treatments for this disease. Islet transplantation is a promising therapeutic strategy; however, isolation of pancreatic islets for this purpose has been challenging, because the technique is time consuming and technically difficult, and tissue handling can be variable. Pseudo-islets can be used as an alternative to naďve islets, but require cellular sources or artificial materials. In this study, pancreas-derived cells were used to generate pseudo-islets. Because the pancreas is composed of a variety of cell types, namely ? cells, ? cells, ? cells, and other pancreatic cells that perform different functions, we used 3 different cell lines-NIT-1 (a ?-cell line), ? TC1 clone 6 (an ?-cell line), and TGP52 (a pancreatic epithelial-like cell line)-which we cocultured in nonadhesive culture plates to produce hybrid cellular spheroids. These pseudo-islets had an oval shape and were morphologically similar to naďve islets; additionally, they expressed and secreted the pancreatic hormones insulin, glucagon, and somatostatin, as confirmed by reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay. The results demonstrate that pseudo-islets that mimic naďve islets can be successfully generated by a coculture method. These artificial islets can potentially be used for in vitro tests related to diabetes mellitus, specifically, in drug discovery or for investigating pathology. Moreover, they can be useful for examining basic questions pertaining to cell-cell interactions and tissue development. PMID:24815150

Jo, Y H; Jang, I J; Nemeno, J G; Lee, S; Kim, B Y; Nam, B M; Yang, W; Lee, K M; Kim, H; Takebe, T; Kim, Y S; Lee, J I

2014-05-01

187

A better cell line for making hybridomas secreting specific antibodies  

Microsoft Academic Search

FUSION of myeloma cells which grow in tissue culture with spleen cells from an immunised mouse provides a general method for obtaining cell lines (hybridomas) which make antibody of the desired specificity1-3. Hybrids derived from these myelomas make the immunoglobulin (Ig) heavy and light chains of the myeloma parent as well as the antigen-specific heavy and light chains of the

Marc Shulman; C. D. Wilde; Georges Köhler

1978-01-01

188

Sodium currents during differentiation in a human neuroblastoma cell line  

Microsoft Academic Search

The electrophysiological properties of a human neuroblastoma cell line, LA-N-5, were studied with the whole-cell configuration of the patch clamp technique before and after the induction of differentiation by retinoic acid, a vitamin A metabolite. Action potentials could be elicited from current clamped cells before the induction of differentiation, suggesting that some neuroblasts of the developing sympathetic nervous system are

RICHARD E. WEISS

1991-01-01

189

Induction of Apoptotic Cell Death by Methylglyoxal and 3-Deoxyglucosone in Macrophage-Derived Cell Lines  

Microsoft Academic Search

Production of 2-oxoaldehyde compounds increases during hyperglycemic conditions and is cytotoxic to susceptible cells. We have investigated the effects of methylglyoxal and 3-deoxyglucosone at physiological concentrations on monocytic leukemia U937 cells and other cell lines. Both ladder formation of DNA and nuclear fragmentation were observed in the cells treated with these agents, indicating that apoptotic cell death was induced. The

Ayako Okado; Yoshimi Kawasaki; Yukiko Hasuike; Motoko Takahashi; Tadashi Teshima; Junichi Fujii; Naoyuki Taniguchi

1996-01-01

190

Derivation of ductlike cell lines from a transplantable acinar cell carcinoma of the rat pancreas.  

PubMed Central

Two cell lines were derived from a transplantable acinar cell carcinoma that had been established from a primary carcinoma of the pancreas in an azaserine-treated Lewis rat. The cultured tumor cells initially produced amylase, but production of exocrine enzymes ceased after 1-2 weeks in culture. The cultured cells were tumorigenic in Lewis rats, and one line produced solid tumors composed of ductlike structures surrounded by dense fibrous tissue. The second cell line produced partially solid and partially cystic tumors with a mixed phenotype of squamous, mucinous, and glandular areas when it grew in vivo following regrafting. Both cell lines lost structural and immunohistochemical acinar cell markers while acquiring duct cell markers during culture and regrafting. These studies provide strong support for the hypothesis that ductlike carcinomas can arise from neoplastic pancreatic acinar cells in rats. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 PMID:8391218

Pettengill, O. S.; Faris, R. A.; Bell, R. H.; Kuhlmann, E. T.; Longnecker, D. S.

1993-01-01

191

Variation in the safety of induced pluripotent stem cell lines.  

PubMed

We evaluated the teratoma-forming propensity of secondary neurospheres (SNS) generated from 36 mouse induced pluripotent stem (iPS) cell lines derived in 11 different ways. Teratoma-formation of SNS from embryonic fibroblast-derived iPS cells was similar to that of SNS from embryonic stem (ES) cells. In contrast, SNS from iPS cells derived from different adult tissues varied substantially in their teratoma-forming propensity, which correlated with the persistence of undifferentiated cells. PMID:19590502

Miura, Kyoko; Okada, Yohei; Aoi, Takashi; Okada, Aki; Takahashi, Kazutoshi; Okita, Keisuke; Nakagawa, Masato; Koyanagi, Michiyo; Tanabe, Koji; Ohnuki, Mari; Ogawa, Daisuke; Ikeda, Eiji; Okano, Hideyuki; Yamanaka, Shinya

2009-08-01

192

Three-dimensional cultured glioma cell lines  

NASA Technical Reports Server (NTRS)

Three-dimensional glioma spheroids were produced in vitro with size and histological differentiation previously unattained. The spheroids were grown in liquid media suspension in a Johnson Space Center (JSC) Rotating Wall Bioreactor without using support matrices such as microcarrier beads. Spheroid volumes of greater than 3.5 cu mm and diameters of 2.5 mm were achieved with a viable external layer or rim of proliferating cells, a transitional layer beneath the external layer with histological differentiation, and a degenerative central region with a hypoxic necrotic core. Cell debris was evident in the degenerative central region. The necrotics centers of some of the spheroids had hyaline droplets. Granular bodies were detected predominantly in the necrotic center.

Gonda, Steve R. (inventor); Marley, Garry M. (inventor)

1991-01-01

193

Determination of NAD+ and NADH level in a Single Cell Under H2O2 Stress by Capillary Electrophoresis  

SciTech Connect

A capillary electrophoresis (CE) method is developed to determine both NAD{sup +} and NADH levels in a single cell, based on an enzymatic cycling reaction. The detection limit can reach down to 0.2 amol NAD{sup +} and 1 amol NADH on a home-made CE-LIF setup. The method showed good reproducibility and specificity. After an intact cell was injected into the inlet of a capillary and lysed using a Tesla coil, intracellular NAD{sup +} and NADH were separated, incubated with the cycling buffer, and quantified by the amount of fluorescent product generated. NADH and NAD{sup +} levels of single cells of three cell lines and primary astrocyte culture were determined using this method. Comparing cellular NAD{sup +} and NADH levels with and without exposure to oxidative stress induced by H{sub 2}O{sub 2}, it was found that H9c2 cells respond to the stress by reducing both cellular NAD{sup +} and NADH levels, while astrocytes respond by increasing cellular NADH/NAD{sup +} ratio.

Wenjun Xi

2008-08-18

194

Use of human cell lines The use of human cell lines and tissues in the laboratory presents potential hazards. These potential  

E-print Network

Use of human cell lines The use of human cell lines and tissues in the laboratory presents personnel working with human cells and tissues should be enrolled in the Occupational Health and Safety a well characterized human cell line that the user believes is void of any bloodborne pathogen or any

Arnold, Jonathan

195

Continuous production of erythropoietin by an established human renal carcinoma cell line: development of the cell line  

Microsoft Academic Search

Establishment of a stable, transformed human renal carcinoma cell line that produces erythropoietin in vitro and has maintained this function continuously since 1981 and for > 150 passages in monolayer culture was accomplished by transplantation of human renal clear cell carcinoma tissue from a patient with erythrocytosis into an immunosuppressed athymic mouse. In addition to its immunocrossreactivity with native human

J. B. Sherwood; D. Shouval

1986-01-01

196

Continuous Production of Erythropoietin by an Established Human Renal Carcinoma Cell Line: Development of the Cell Line  

Microsoft Academic Search

Establishment of a stable, transformed human renal carcinoma cell line that produces erythropoietin in vitro and has maintained this function continuously since 1981 and for >150 passages in monolayer culture was accomplished by transplantation of human renal clear cell carcinoma tissue from a patient with erythrocytosis into an immunosuppressed athymic mouse. In addition to its immunocrossreactivity with native human urinary

Judith B. Sherwood; Daniel Shouval

1986-01-01

197

Solid Oxide Fuel Cell Systems PVL Line  

SciTech Connect

In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to test fuel cell components at a scale and under conditions that can be accurately extrapolated to full system performance. This requires specially designed equipment that replicates the pressure (up to 6.5 bara), temperature (about 910 C), anode and cathode gas compositions, flows and power generation density of the full scale design. The SBTS fuel cell anode gas is produced through the reaction of pipeline natural gas with a mixture of steam, CO2, and O2 in a catalytic partial oxidation (CPOX) reactor. Production of the fuel cell anode gas in this manner provides the capability to test a fuel cell with varying anode gas compositions ranging from traditional reformed natural gas to a coal-syngas surrogate fuel. Stark State College and RRFCS have a history of collaboration. This is based upon SSCAs commitment to provide students with skills for advanced energy industries, and RRFCS need for a workforce that is skilled in high temperature fuel cell development and testing. A key to this approach is the access of students to unique SOFC test and evaluation equipment. This equipment is designed and developed by RRFCS, with the participation of SSC interns. In the near-term, the equipment will be used by RRFCS for technology development. When this stage is completed, and RRFCS has moved to commercial products, SSC will utilize this equipment for workforce training. The RRFCS fuel cell design is based upon a unique ceramic substrate architecture in which a porous, flat substrate (tube) provides the support structure for a network of solid oxide fuel cells that are electrically connected in series. These tubes are grouped into a {approx}350-tube repeat configuration, called a stack/block. Stack/block testing, performed at system conditions, provides data that can be confidently scaled to full scale performance. This is the basis for the specially designed and developed test equipment that is required for advancing and accelerating the RRFCS SOFC power system development program. All contract DE-EE0003229 objectives were achieved and deliverables completed during the peri

Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

2012-05-01

198

Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.  

PubMed

The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling. PMID:25410289

Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David

2014-11-20

199

Establishment of a Langerhans cell histiocytosis lesion cell line with dermal dendritic cell characteristics.  

PubMed

A cell line named PRU-1, derived from a Langerhans cell (LC) histiocytosis (LCH) skull lesion of a 7-year-old boy, was established and characterized. PRU-1 is an adherent spindle-shaped cell line that shows no Birbeck granules on electron microscopy. Flow cytometric analysis of cells collected from the early seventh passage showed no LC phenotypes of CD1a and S100 protein. Immunostaining of PRU-1 cells also revealed no expression of LC markers but showed expression of CD11c, CD54 (ICAM-1) and CD68, which was also observed in some peripherally located cells of the original LCH lesion. The PRU-1 cells stained positive for factor XIIIa and negative for CD34, suggesting a dermal dendritic cell phenotype. Cytogenetic analyses revealed abnormalities such as 39,XY,-2,-4,-8,-12,-12,-14,add(18)(q21),20,+mar and 44,XY,-11,-14,add(18)(q21). TCR? rearrangement in the PRU-1 cells was not amplified by PCR. Tumorigenicity was not proven by xenografting into SCID mice. A conditioned medium from PRU-1 culture induced the proliferation of peripheral blood lymphocytes as well as the activation of monocytes from a healthy donor into CD1a-positive LC-like cells. Because the phenotypic characteristics of PRU-1 differed from those of CD1a-positive abnormal LC-like cells (LCH cells), it was likely that the PRU-1 cells were derived from peripherally located cells of the LCH lesion rather than LCH cells. LCH has been regarded as a type of granulomatous neoplasm with several intermingled inflammatory cells and influenced by stimuli such as Merkel cell polyomavirus (MCPyV) infection or cigarette smoking. However, in the PRU-1 cells, MCPyV-DNA was not detected by PCR. Stromal cell-like PRU-1 cells are likely to produce some growth or differentiation factors, which may play important roles in LCH lesion formation, cell maintenance and LC-like cell induction. PMID:25351656

Murakami, Ichiro; Gogusev, Jean; Jaubert, Francis; Matsushita, Michiko; Hayashi, Kazuhiko; Miura, Ikuo; Tanaka, Takehiro; Oka, Takashi; Yoshino, Tadashi

2015-01-01

200

VR09 Cell Line: An EBV-Positive Lymphoblastoid Cell Line with In Vivo Characteristics of Diffuse Large B Cell Lymphoma of Activated B-Cell Type  

PubMed Central

Background small B-cell neoplasms can show plasmacytic differentiation and may potentially progress to aggressive lymphoma (DLBCL). Epstein-Barr virus (EBV) infection may cause the transformation of malignant cells in vitro. Design and Method we established VR09 cell line with plasmacytic differentiation, obtained from a case of atypical, non-CLL B-cell chronic lymphoproliferative disease with plasmacytic features. We used flow cytometry, immunohistochemistry, polymerase chain reaction, cytogenetic analysis and florescence in situ hybridization in the attempt at thoroughly characterizing the cell line. We showed VR09 tumorigenic potential in vivo, leading to the development of activated DLBCL with plasmacytic features. Results VR09 cells displayed plasmacytic appearance and grew as spherical tumors when inoculated subcutaneously into immunodeficient Rag2?/? ?-chain?/? mice. VR09 cell line and tumors displayed the phenotype of activated stage of B cell maturation, with secretory differentiation (CD19+ CD20+ CD79a+ CD79b+/? CD138+ cyclin D1- Ki67 80% IgM+ IgD+ MUM1+ MNDA+ CD10- CD22+ CD23+ CD43+ K+, ?- Bcl2+ Bcl6-) and they presented episomal EBV genome, chromosome 12 trisomy, lack of c-MYC rearrangement and Myd88 gene mutation, presence of somatic hypermutation in the VH region, and wild-type p53. Conclusion This new EBV-positive cell line may be useful to further characterize in vivo activated DLBCL with plasmacytic features. PMID:23285191

Nichele, Ilaria; Zamň, Alberto; Bertolaso, Anna; Bifari, Francesco; Tinelli, Martina; Franchini, Marta; Stradoni, Roberta; Aprili, Fiorenza; Pizzolo, Giovanni; Krampera, Mauro

2012-01-01

201

Phase transitions in tumor growth: II prostate cancer cell lines  

NASA Astrophysics Data System (ADS)

We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

2015-05-01

202

Engineering Retina from Human Retinal Progenitors (Cell Lines)  

PubMed Central

Retinal degeneration resulting in the loss of photoreceptors is the leading cause of blindness. Several therapeutic protocols are under consideration for treatment of this disease. Tissue replacement is one such strategy currently being explored. However, availability of tissues for transplant poses a major obstacle. Another strategy with great potential is the use of adult stem cells, which could be expanded in culture and then utilized to engineer retinal tissue. In this study, we have explored a spontaneously immortalized human retinal progenitor cell line for its potential in retinal engineering using rotary cultures to generate three-dimensional (3D) structures. Retinal progenitors cultured alone or cocultured with retinal pigment epithelial cells form aggregates. The aggregate size increases between days 1 and 10. The cells grown as a 3D culture rotary system, which promotes cell–cell interaction, retain a spectrum of differentiation capability. Photoreceptor differentiation in these cultures is confirmed by significant upregulation of rhodopsin and AaNat, an enzyme implicated in melatonin synthesis (immunohistochemistry and Western blot analysis). Photoreceptor induction and differentiation is further attested to by the upregulation of rod transcription factor Nrl, Nr2e3, expression of interstitial retinal binding protein, and rhodopsin kinase by reverse transcription–polymerase chain reaction. Differentiation toward other cell lineages is confirmed by the expression of tyrosine hydroxylase in amacrine cells, thy 1.1 expression in ganglion cells and calbindin, and GNB3 expression in cone cells. The capability of retinal progenitors to give rise to several retinal cell types when grown as aggregated cells in rotary culture offers hope that progenitor stem cells under appropriate culture conditions will be valuable to engineer retinal constructs, which could be further tested for their transplant potential. The fidelity with which this multipotential cell line retains its capacity to differentiate into multiple cell types holds great promise for the use of tissue-specific adult stem cells for therapy. PMID:19113950

Cao, Yang

2009-01-01

203

The Organelle Proteome of the DT40 Lymphocyte Cell Line*S?  

PubMed Central

A major challenge in eukaryotic cell biology is to understand the roles of individual proteins and the subcellular compartments in which they reside. Here, we use the localization of organelle proteins by isotope tagging technique to complete the first proteomic analysis of the major organelles of the DT40 lymphocyte cell line. This cell line is emerging as an important research tool because of the ease with which gene knockouts can be generated. We identify 1090 proteins through the analysis of preparations enriched for integral membrane or soluble and peripherally associated proteins and localize 223 proteins to the endoplasmic reticulum, Golgi, lysosome, mitochondrion, or plasma membrane by matching their density gradient distributions to those of known organelle residents. A striking finding is that within the secretory and endocytic pathway a high proportion of proteins are not uniquely localized to a single organelle, emphasizing the dynamic steady-state nature of intracellular compartments in eukaryotic cells. PMID:19181659

Hall, Stephanie L.; Hester, Svenja; Griffin, Julian L.; Lilley, Kathryn S.; Jackson, Antony P.

2009-01-01

204

[Sorting of side population cells from multiple myeloma cell lines and analysis of their biological characteristics].  

PubMed

This study was aimed to sort the side population (SP) cells from human multiple myeloma cell lines, then detect the biological characteristics of those SP cells. After Hoechst33342 staining, intracellular Hoechst33342 fluorescence staining differences of myeloma cell lines observed by the fluorescence microscopy. The fluorescence-activated cell sorting (FACS) technology was used to isolate SP cells and main population (MP) cells; proliferative capacity in vitro was determined by cell growth curve; the cell colony forming ability was compared by colony forming test. The CD138 expression was detected by flow cytometry. The expression of ABCG2 mRNA was detected by reverse transcription PCR; CCK-8 assay and colony forming test were used to evaluate the effect of bortezomib on the cell proliferation, vitality and colony forming ability of the two populations. The results showed that the myeloma cell lines had a small proportion of SP cells, especially, RPMI 8226 cells accounted for the highest proportion of SP cells (7.10 ± 2.69)%, which have also been confirmed under the fluorescence microscope; the proliferative activity and cell colony forming ability of SP cells were significantly higher than those of MP cells (P < 0.05). The expression levels of CD138 in SP and MP cells were not significantly different (P > 0.05). RT-PCR results showed that SP cells expressed the drug-resistance gene ABCG2, but MP cells hardly express these genes. The inhibition rate of bortezomib on SP cells was significantly lower than that on MP cells (P < 0.05), however, the difference was not significant (P > 0.05) at bortezomib 40 nmol/L. Bortezomib could reduce colony formation in the both two cell populations, but more severe reduction appeared in the MP cells. It is concluded that the myeloma cell line contain a small amount of SP cells with the cancer stem cell characteristics. PMID:24989288

Zhang, Xiao-Li; Zhang, Li-Na; Huang, Hong-Ming; Ding, Run-Sheng; Shi, Wei; Xu, Rui-Rong; Yu, Xiao-Tang; Jiang, Sheng-Hua

2014-06-01

205

Establishment of a benign meningioma cell line by hTERT-mediated immortalization  

Microsoft Academic Search

Meningioma represents the most common intracranial tumor, but well-characterized cell lines derived from benign meningiomas are not available. A major reason for the lack of benign tumor cell lines is senescence of nonmalignant cells in vitro, while malignant cells are often immortal. We have developed a meningioma cell line by retrovirally transducing primary cells derived from a human WHO grade

Sylvia Püttmann; Volker Senner; Stephan Braune; Beate Hillmann; Rita Exeler; Christian H Rickert; Werner Paulus

2005-01-01

206

Characterisation of seven newly established head and neck squamous cell carcinoma cell lines.  

PubMed

Seven squamous cell carcinoma cell lines were disintegrated from biopsies of patients with head and neck cancer. Genotyping tests verified the authenticity and the human origin of all seven lines. The cell lines designated as University of Kiel, Head and Neck (UKHN) -1 to -3 and UKHN-6 to -9 were subjected to flow cytometry and indirect immunofluorescence to assess aberrant DNA content. To confirm the squamous epithelial origin of the cells, the cytokeratin profile was immunocytologically analysed. The cell lines showed individual differences in mitotic frequency. UKHN-1, -6, -7 and -9 grew as monolayers, whereas UKHN-2, -3, and -8 tend to multilayer stratification. Overexpression of LOXL4 and Pim-1 proteins as distinctive features of head and neck carcinomas were shown in all seven cell lines. Inoculating SCID mice with these cell lines resulted in tumour formation, hence corroborating the tumourigenicity of all seven cell lines. The cell lines were also tested for high-risk HPV types using different DNA-based assays and found to be negative. PMID:24792014

Görögh, Tibor; Quabius, Elgar Susanne; Meyer, Patrick; Hoffmann, Markus

2015-05-01

207

Gene expression patterns within cell lines are predictive of chemosensitivity  

PubMed Central

Background The NCI has undertaken a twenty-year project to characterize compound sensitivity patterns in a selected set of sixty tumor derived cell lines. Previous studies have explored the relationship between compound sensitivity patterns to gene expression, protein expression, and DNA copy number for these same cell lines. A strong correlation between the pattern of expression of a biomarker and sensitivity to a compound could suggest a clinically interesting biological relationship between the two. Results We isolated RNA's and measured expression of 40000 genes using cDNA microarrays from the fifty-nine publicly available cell lines. Analysis of this data set in comparison with published gene expression data sets demonstrates a high degree of reproducibility in expression level measurements even using completely independent RNA preparations and array technologies. Using the fifty-nine cell lines for discovery and an additional seven cell lines for which extensive compound sensitivity data were available as a test set, we determined that gene-compound pairs with a correlation coefficient above 0.6 had a false discovery rate of approximately 5%. Large scale features of the gene expression and chemosensitivity data, such as tissue of origin and other physiological factors, did not seem to explain the majority of correlations between gene and compound patterns. Conclusion A comparison of gene expression and compound sensitivity in panels of cell lines was demonstrated to have a relatively high validation and low false discovery rate supporting the use of this approach and datasets for identifying candidate biomarkers and targeted biologically active compounds. PMID:18261237

Ring, Brian Z; Chang, Stella; Ring, L Winston; Seitz, Robert S; Ross, Douglas T

2008-01-01

208

A CNS catecholaminergic cell line expresses voltage-gated currents.  

PubMed

CATH.a is a central nervous system (CNS) catecholaminergic cell line derived from a transgenic mouse carrying the SV40 T antigen oncogene under the transcriptional control of regulatory elements from the rat tyrosine hydroxylase gene (Suri et al., 1993). CATH.a cells express several differentiated neuronal characteristics including medium and light chain neurofilament proteins, synaptophysin, tyrosine hydroxylase, and dopamine beta-hydroxylase; they synthesize dopamine and norepinephrine. Conversely, they do not express glial-specific fibrillary acidic protein. To establish definitively that CATH.a cells are of neuronal origin, we characterized the repertoire of voltage-gated inward currents expressed by CATH.a cells. Such inward currents are necessary for neuronal excitability. We report that all CATH.a cells possess a tetrodotoxin-sensitive sodium current (peak amplitude = 590 +/- 319 pA) and 68% possess a high voltage-activated calcium current (peak amplitude = 175 +/- 67 pA). Pharmacological analyses suggest that individual cells express varying levels of L- and N-type calcium current, but no P-type current. In addition, in 55% of the cells with a calcium current, about a half of this current is resistant to selective antagonists for L- and N-type currents, suggesting that another calcium current exists in these CATH.a cells which is not L-, N-, or P-type. The heterogeneous pattern of current detected persisted in several CATH. a subclones, suggesting that factors other than genetic variability influence current expression. The demonstration that CATH.a cells express these currents indicates that they have excitable membrane properties characteristic of neurons. Although many peripheral nervous system (PNS) cell lines exist, very few CNS cell lines with differentiated neuronal properties exist. Since the CATH.a cells can be grown continuously in large amounts, they may be useful for purifying, characterizing, and/or cloning various neuronal-specific molecules and thereby may add to our understanding of CNS catecholaminergic neurons. PMID:8661508

Lazaroff, M; Dunlap, K; Chikaraishi, D M

1996-06-01

209

Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells' therapeutic efficacy for myocardial infarction.  

PubMed

Electrophysiological phenotype development and paracrine action of mesenchymal stem cells (MSCs) are the critical factors that determine the therapeutic efficacy of MSCs for myocardial infarction (MI). In such respect, coculture of MSCs with cardiac cells has windowed a platform for cardiac priming of MSCs. Particularly, active gap junctional crosstalk of MSCs with cardiac cells in coculture has been known to play a major role in the MSC modification through coculture. Here, we report that iron oxide nanoparticles (IONPs) significantly augment the expression of connexin 43 (Cx43), a gap junction protein, of cardiomyoblasts (H9C2), which would be critical for gap junctional communication with MSCs in coculture for the generation of therapeutic potential-improved MSCs. MSCs cocultured with IONP-harboring H9C2 (cocultured MSCs: cMSCs) showed active cellular crosstalk with H9C2 and displayed significantly higher levels of electrophysiological cardiac biomarkers and a cardiac repair-favorable paracrine profile, both of which are responsible for MI repair. Accordingly, significantly improved animal survival and heart function were observed upon cMSC injection into rat MI models compared with the injection of unmodified MSCs. The present study highlights an application of IONPs in developing gap junctional crosstalk among the cells and generating cMSCs that exceeds the reparative potentials of conventional MSCs. On the basis of our finding, the potential application of IONPs can be extended in cell biology and stem cell-based therapies. PMID:25688594

Han, Jin; Kim, Bokyoung; Shin, Jung-Youn; Ryu, Seungmi; Noh, Myungkyung; Woo, Jongsu; Park, Jin-Sil; Lee, Youjin; Lee, Nohyun; Hyeon, Taeghwan; Choi, Donghoon; Kim, Byung-Soo

2015-03-24

210

Osmotic stress affects functional properties of human melanoma cell lines  

E-print Network

Understanding the role of microenvironment in cancer growth and metastasis is a key issue for cancer research. Here, we study the effect of osmotic pressure on the functional properties of primary and metastatic melanoma cell lines. In particular, we experimentally quantify individual cell motility and transmigration capability. We then perform a circular scratch assay to study how a cancer cell front invades an empty space. Our results show that primary melanoma cells are sensitive to a low osmotic pressure, while metastatic cells are less. To better understand the experimental results, we introduce and study a continuous model for the dynamics of a cell layer and a stochastic discrete model for cell proliferation and diffusion. The two models capture essential features of the experimental results and allow to make predictions for a wide range of experimentally measurable parameters.

La Porta, Caterina A M; Pasini, Maria; Laurson, Lasse; Alava, Mikko J; Zapperi, Stefano; Amar, Martine Ben

2015-01-01

211

Mutations to Ku Reveal Differences in Human Somatic Cell Lines  

PubMed Central

NHEJ (non-homologous end joining) is the predominant mechanism for repairing DNA double-stranded breaks in human cells. One essential NHEJ factor is the Ku heterodimer, which is composed of Ku70 and Ku86. Here we have generated heterozygous loss-of-function mutations for each of these genes in two different human somatic cell lines, HCT116 and NALM-6 using gene targeting. Previous work had suggested that phenotypic differences might exist between the genes and/or between the cell lines. By providing a side-by-each comparison of the four cell lines, we demonstrate that there are indeed subtle differences between loss-of-function mutations for Ku70 versus Ku86, which is accentuated by whether the mutations were derived in the HCT116 or NALM-6 genetic background. Overall, however, the phenotypes of the four lines are quite similar and they provide a compelling argument for the hypothesis that Ku loss-of-function mutations in human somatic cells result in demonstrable haploinsufficiencies. Collectively, these studies demonstrate the importance of proper biallelic expression of these genes for NHEJ and telomere maintenance and they provide insights into why these genes are uniquely essential for primates. PMID:18387344

Fattah, Kazi R.; Ruis, Brian L.; Hendrickson, Eric A.

2008-01-01

212

Hypoxic cell turnover in different solid tumor lines  

SciTech Connect

Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h.

Ljungkvist, Anna S.E. [Department of Radiation Oncology, Radboud University Medical Center Nijmegen, Nijmegen (Netherlands) and Department of Radiation Sciences, Umeaa University, Umeaa (Sweden)]. E-mail: a.ljungkvist@rther.umcn.nl; Bussink, Johan [Department of Radiation Oncology, Radboud University Medical Center Nijmegen, Nijmegen (Netherlands); Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Medical Center Nijmegen, Nijmegen (Netherlands); Rijken, Paulus F.J.W. [Department of Radiation Oncology, Radboud University Medical Center Nijmegen, Nijmegen (Netherlands); Begg, Adrian C. [Division of Experimental Therapy, Netherlands Cancer Institute, Amsterdam (Netherlands); Raleigh, James A. [Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC (United States); Kogel, Albert J. van der [Department of Radiation Oncology, Radboud University Medical Center Nijmegen, Nijmegen (Netherlands)

2005-07-15

213

9-{beta}-arabinofuranosyladenine preferentially sensitizes radioresistant squamous cell carcinoma cell lines to x-rays  

SciTech Connect

The effect of 9-{beta}-arabinofuranosyladenine (ara-A) on sensitivity to the deleterious effects of x-rays was studied in six squamous cell carcinoma cell lines. Three lines were relatively radioresistant, having D{sub 0} values of 2.31 to 2.89 Gy, and the other three lines were relatively radiosensitive, having D{sub 0} values of between 1.07 and 1.45 Gy. Ara-A (50 or 500 {mu}M) was added to cultures 30 min prior to irradiation and removed 30 min after irradiation, and sensitivity was measured in terms of cell survival. The radiosensitizing effect of ara-A was very dependent on the inherent radiosensitivity of the tumor cell line. Fifty micromolar concentrations of ara-A sensitized only the two most radioresistant lines, SCC-12B.2 and JSQ-3. Five hundred micromolar concentrations of ara-A sensitized the more sensitive cell lines, SQ-20B and SQ-9G, but failed to have any effect on the radiation response of the two most sensitive cell lines, SQ-38 and SCC-61. Concentrations of ara-A as low as 10 {mu}M were equally efficient in inhibiting DNA synthesis in all six cell lines. These results suggest that the target for the radiosensitizing effect of ara-A is probably related to the factor controlling the inherent radiosensitivity of human tumor cells. Therefore, ara-A might be useful in overcoming radiation resistance in vivo.

Heaton, D. [Rush Univ. Medical Center, Chicago, IL (United States). Therapeutic Radiology; Mustafi, R. [Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology; Schwartz, J.L. [Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology]|[Argonne National Lab., IL (United States)

1992-06-01

214

Human neural stem cells overexpressing glial cell line-derived neurotrophic factor in experimental cerebral hemorrhage  

Microsoft Academic Search

Recent studies have reported that glial cell line-derived growth factor (GDNF) has neurotrophic effects on the central nervous system, and the neural stem cells (NSCs) engrafted in animal models of stroke survive and ameliorate the neurological deficits. In this study, a stable human NSC line overexpressing GDNF (F3.GDNF) was transplanted next to the intracerebral hemorrhage (ICH) lesion site and a

H J Lee; I H Park; H J Kim; S U Kim

2009-01-01

215

Assessment of Cell Line Models of Primary Human Cells by Raman Spectral Phenotyping  

Microsoft Academic Search

Researchers have previously questioned the suitability of cell lines as models for primary cells. In this study, we used Raman microspectroscopy to characterize live A549 cells from a unique molecular biochemical perspective to shed light on their suitability as a model for primary human pulmonary alveolar type II (ATII) cells. We also investigated a recently developed transduced type I (TT1)

Robin J. Swain; Sarah J. Kemp; Peter Goldstraw; Teresa D. Tetley; Molly M. Stevens

2010-01-01

216

Establishment and characterization of a bovine mammary myoepithelial cell line.  

PubMed

The thermolabile large T-antigen, encoded by the simian virus 40 early region mutant tsA58, was used to establish clonal cell lines (BMM-UV) from primary bovine myoepithelial cells. The BMM-UV cells have undergone more than 300 population doublings without any signs of senescence, and they contain the intranuclear large T antigen. At low confluency, they grow in a spindlelike manner and develop very long projections that most likely allow for communication of cells at a distance from each other. Establishment results in a decrease in the number of cells that contract in response to oxytocin compared with the parental nontransfected cells (20% versus 45%). Oxytocin responsiveness of BMM-UV cells increases when the cells are cultured in a medium supplemented with staphylococcal proteases. Proliferation of BMM-UV cells increases when they are cultured in the presence of epidermal growth factor (10 ng/ml) or insulinlike growth factor I (50 ng/ml). The BMM-UV cells may become a useful model to study growth properties, cell-to-cell communication, and the function of bovine mammary myoepithelial cells. PMID:8925137

Zavizion, B; van Duffelen, M; Schaeffer, W; Politis, I

1996-03-01

217

Partial characterization of human choriocarcinoma cell line JAR cells in regard to oxidative stress  

Microsoft Academic Search

Characterization of free radical-induced cell injury processes of placenta cells is of vital importance for clinical medicine for the maintenance of intrauterine fetal life. The present study has analyzed cell injury processes in cells of the choriocarcinoma cell line JAR treated with menadione, an anticancer drug, and H2O2 in comparison to osteosarcoma 143B cells using electron microscopic and flow cytometric

Anna Hallmann; Jerzy Klimek; Makoto Masaoka; Jakub K?dzior; Anna Majczak; Edyta Niemczyk; Piotr Trzonkowski; Takashi Wakabayashi

218

A Preliminary Study of Side Population Cells in Human Gastric Cancer Cell Line HGC-27.  

PubMed

Background Cancer stem cell-like side population (SP) cells, which may be responsible for recurrence, tumor metastasis, and resistance to cancer therapy, have been identified and characterized in several types of cell lines from gastric cancer. However, there is no report on isolation of SP cells from human gastric cancer cell line HGC-27. This study aims to analyze the proportion of SP cells in HGC-27 cell line, differentiate SP from non-side population (NSP) cells, and determine whether the SP cells have certain biological properties of stem cells. Material and Methods (1) HGC-27 suspension was prepared and stained with Hoechst33342 and PI for flow cytometric isolation of SP (2). Differences in proliferation and stemness-related gene expression profiles (CD133, CD44, OCT-4, MDR1, EpCAM, and ABCG2) between SP and NSP cells were detected by gastric formation assay and quantitative real-time PCR (3). Oncogenicity of SP and NSP cells was determined in nude mice in vivo. Results (1) SP cells accounted for 0.1-1.0% of HGC-27 cells, and decreased to 0% after verapamil inhibition. Using flow cytometry, we sorted 7.5×10^5 SP cells and most HGC-27 cells were NSP cells (2). Gastric formation assay and MTT demonstrated that there was a significant difference in proliferation between SP and NSP cells. Gene expression analysis showed that the expression of genes was significantly higher in SP cells (3). The oncogenicity experiment in nude mice revealed that 105 SP cells were able to form tumors, which demonstrated higher tumorigenicity than non-SP cells. Conclusions These results collectively suggested that SP cells from HGC-27 cell line have some cancer stem cell properties and could be used for studying the pathogenesis of gastric cancer, which may contribute to discovery of novel therapeutic targets. PMID:25773762

Gao, Ganglong; Sun, Zhenliang; Wenyong, Liu; Dongxia, Ye; Zhao, Runjia; Zhang, Xueli

2015-01-01

219

Characterization of Butyrate Uptake by Nontransformed Intestinal Epithelial Cell Lines  

Microsoft Academic Search

Butyrate (BT) is one of the main end products of anaerobic bacterial fermentation of dietary fiber within the human colon.\\u000a Among its recognized effects, BT inhibits colon carcinogenesis. Our aim was to characterize uptake of BT by two nontransformed\\u000a intestinal epithelial cell lines: rat small intestinal epithelial (IEC-6) and fetal human colonic epithelial (FHC) cells.\\u000a Uptake of 14C-BT by IEC-6

Pedro GoncalvesJoao; Joăo R. Araújo; Fátima Martel

2011-01-01

220

Pheochromocytoma cell lines from heterozygous neurofibromatosis knockout mice  

Microsoft Academic Search

Transplantable tumors and cell lines have been developed from pheochromocytomas arising in mice with a heterozygous knockout mutation of the neurofibromatosis gene, Nf1. Nf1 encodes a ras-GTPase-activating protein, neurofibromin, and mouse pheochromocytoma (MPC) cells in primary cultures typically show extensive spontaneous neuronal differentiation that may result from the loss of the remaining wild-type allele and defective regulation of ras signaling.

J. F. Powers; M. J. Evinger; P. Tsokas; S. Bedri; J. Alroy; M. Shahsavari; A. S. Tischler

2000-01-01

221

Continuous porcine cell lines developed from alveolar macrophages  

Microsoft Academic Search

Porcine monomyeloid cell lines were established following transfection of primary porcine alveolar macrophage cultures with plasmid pSV3neo, carrying genes for neomycin resistance and SV40 large T antigen. The parental clone 3D4 exhibited a relatively rapid doubling time (25.5 h), high plating efficiency and mixed phenotype with respect to growth on a solid support. Single cell cloning of the 3D4 parent

H. M Weingartl; M Sabara; J Pasick; E van Moorlehem; L Babiuk

2002-01-01

222

A CNS Catecholaminergic Cell Line Expresses Voltage-gated Currents  

Microsoft Academic Search

.   CATH.a is a central nervous system (CNS) catecholaminergic cell line derived from a transgenic mouse carrying the SV40 T antigen\\u000a oncogene under the transcriptional control of regulatory elements from the rat tyrosine hydroxylase gene (Suri et al., 1993).\\u000a CATH.a cells express several differentiated neuronal characteristics including medium and light chain neurofilament proteins,\\u000a synaptophysin, tyrosine hydroxylase, and dopamine ?-hydroxylase; they

M. Lazaroff; K. Dunlap; D. M. Chikaraishi

1996-01-01

223

Functionally active Epstein-Barr virus-transformed follicular dendritic cell-like cell lines  

PubMed Central

Follicular dendritic cells (FDC) are unique nonlymphoid cells found only in germinal centers. FDC can be distinguished from other accessory cells based on a characteristic set of cell surface markers. It is known that FDC are able to rescue germinal center B cells from apoptosis. To investigate the role of FDC in the process of selection and maturation of B cells during germinal center reactions, we tried to establish factor-independent immortalized FDC-like cell lines. Because freshly isolated FDC express the Epstein-Barr Virus (EBV) receptor CD21, we attempted EBV transformation on isolated FDC. After incubation of FDC-enriched cell populations with EBV, cell lines were obtained consisting of slowly duplicating very large cells. These cell lines have a fibroblast-like morphology but could be clearly distinguished from several human fibroblast cell lines by displaying a different phenotype including intercellular adhesion molecule 1, CD40, and CD75 expression. Detection of the EBV-encoded proteins latent membrane protein 1 and Epstein-Barr virus nuclear antigen 2 in our FDC-like cell lines implicated successful EBV transformation. FDC-like cells are able to bind nonautologous B cells and preserve the latter from apoptosis. The binding of B cells to FDC-like cells is dependent on adhesion via lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 and closely resembles the pattern of emperipolesis as described by others. These data demonstrate that FDC can be successfully infected by EBV, and that the cell lines obtained share phenotypic and functional characteristics with freshly isolated FDC. PMID:8145036

1994-01-01

224

Optimized protocol for derivation of human embryonic stem cell lines.  

PubMed

For the past 12 years, the biology and applications of human embryonic stem cells (hESCs) have received great attention from the scientific community. Derivatives of the first hESC line obtained by J. Thomson's group (Science 282(5391):1145-1147, 1998) have been used in clinical trials in patients with spinal cord injury, and other hESC lines have now been used to generate cells for use in treating blindness (Lancet 379(9817):713-720, 2012). In addition to the classical protocol based on mouse or human feeder layers using open culture methods (In Vitro Cellular & Developmental Biology - Animal 46(3-4):386-394, 2010; Stem Cells 23(9):1221-1227, 2005; Nature Biotechnology 24(2):185-187, 2006; Human Reproduction 21(2):503-511, 2006; Human Reproduction 20(8):2201-2206, 2005; Fertility and Sterility 83(5):1517-1529, 2005), novel hESC lines have been derived xeno-free (without using animal derived reagents) (PLoS One 5 (4):1024-1026, 2010), feeder-free (without supporting cell monolayers) (Lancet 365(9471):1601-1603, 2005), in microdrops under oil (In Vitro Cellular & Developmental Biology - Animal 46(3-4):236-41, 2010) and in suspension with ROCK inhibitor (Nature Biotechnology 28(4):361-4, 2010). Regardless of the culture system, successful hESC derivation usually requires optimization of embryo culture, the careful and timely isolation of its inner cell mass (ICM), and precise culture conditions up to the establishment of pluripotent cell growth during hESC line derivation. Herein we address the crucial steps of the hESC line derivation protocol, and provide tips to apply quality control to each step of the procedure. PMID:22614996

Camarasa, María Vicenta; Galvez, Víctor Miguel; Brison, Daniel Roy; Bachiller, Daniel

2012-09-01

225

Differential effect of artemisinin against cancer cell lines.  

PubMed

The present study aims at defining the differential cytotoxicity effect of artemisinin toward P815 (murin mastocytoma) and BSR (kidney adenocarcinoma of hamster) cell lines. Cytotoxicity was measured by the growth inhibition using MTT assay. These in vitro cytotoxicity studies were complemented by the determination of apoptotic DNA fragmentation and Annexin V- streptavidin-FITC assay. Furthermore, we examined the in vitro synergism between artemisinin and the chemotherapeutic drug, vincristin. The in vivo study was investigated using the DBA2/P815 (H2d) mouse model. While artemisinin acted on both tumor cell lines, P815 was much more sensitive to this drug than BSR cells, as revealed by the respective IC50 values (12 µM for P815 and 52 µM for BSR cells). On another hand, and interestingly, apoptosis was induced in P815 but not induced in BSR. These data, reveal an interesting differential cytotoxic effect, suggesting the existence of different molecular interactions between artemisinin and the studied cell lines. In vivo, our results clearly showed that the oral administration of artemisinin inhibited solid tumor development. Our study demonstrates that artemisinin caused differential cytotoxic effects depending not only on the concentration and time of exposure but also on the target cells. PMID:24955301

Tilaoui, Mounir; Mouse, Hassan Ait; Jaafari, Abdeslam; Zyad, Abdelmajid

2014-06-01

226

Glycosylation potential of human prostate cancer cell lines.  

PubMed

Altered glycosylation is a universal feature of cancer cells and altered glycans can help cancer cells escape immune surveillance, facilitate tumor invasion, and increase malignancy. The goal of this study was to identify specific glycoenzymes, which could distinguish prostate cancer cells from normal prostatic cells. We investigated enzymatic activities and gene expression levels of key glycosyl- and sulfotransferases responsible for the assembly of O- and N-glycans in several prostatic cells. These cells included immortalized RWPE-1 cells derived from normal prostatic tissues, and prostate cancer cells derived from metastasis in bone (PC-3), brain (DU145), lymph node (LNCaP), and vertebra (VCaP). We found that all cells were capable of synthesizing complex N-glycans and O-glycans with the core 1 structure, and each cell line had characteristic biosynthetic pathways to modify these structures. The in vitro measured activities corresponded well to the mRNA levels of glycosyltransferases and sulfotransferases. Lectin and antibody binding to whole cells supported these results, which form the basis for the development of tumor cell-specific targeting strategies. PMID:22843320

Gao, Yin; Chachadi, Vishwanath B; Cheng, Pi-Wan; Brockhausen, Inka

2012-10-01

227

Cytogenetic and DNA-Fingerprint Characterization of Choriocarcinoma Cell Lines and a Trophoblast \\/Choriocarcinoma Cell Hybrid  

Microsoft Academic Search

We report the successful fusion of human choriocarcinoma cells with normal human trophoblast cells to a choriocarcinoma\\/trophoblast hybrid. The hybrid cells ACH1P were derived from fusion of primary male trophoblast cells with the HGPRT-defective choriocarcinoma cell line AC1-1. The karyotypes of the parental choriocarcinoma cell line JEG-3, its HGPRT-defective mutant clones AC1-1, AC1-5, and AC1-9, and the choriocarcinoma\\/trophoblast hybrid ACH1P

Hans-Georg Frank; Bastian Gunawan; Ingke Ebeling-Stark; Hans-Jürgen Schulten; Hitoshi Funayama; Ulrich Cremer; Berthold Huppertz; Gabi Gaus; Peter Kaufmann; László Füzesi

2000-01-01

228

Bryostatin analogue-induced apoptosis in mantle cell lymphoma cell lines  

PubMed Central

The anti-cancer effects of bryostatin-1, a potent diacylglycerol analogue, have traditionally been attributed to its action on protein kinase C. However, we previously documented apoptosis in a B non-Hodgkin lymphoma cell line involving diacylglycerol analogue stimulation of Ras guanyl-releasing protein, a Ras activator, and Bim, a proapoptotic Bcl-2 family protein. To further explore the role of Bim, we examined several Bim-deficient B non-Hodgkin lymphoma cells for their responses to pico, a synthetic bryostatin-1-like compound. The Bim? mantle cell lymphoma cell lines Jeko-1, Mino, Sp53, UPN1, and Z138 and the Bim+ cell line Rec-1, as well as the Burkitt lymphoma cells lines BL2 (Bim?) and Daudi (Bim+), were examined for their response to pico using assays for proliferation and apoptosis as well as biochemical methods for Ras guanyl-releasing proteins and Bcl-2 family members. With the exception of UPN1, mantle cell lymphoma cell lines underwent pico-induced apoptosis, as did BL2. In some cases, hallmarks of apoptosis were substantially diminished in the presence of mitogen-activated protein kinase kinase inhibitors. Pico treatment generally led to increased expression of proapoptotic Bik, although the absolute levels of Bik varied considerably between cell lines. A pico-resistant variant of Z138 exhibited decreased Bik induction compared to parental Z138 cells. Pico also generally decreased expression of anti-apoptotic Bcl-XL and Mcl1. Although, these changes in Bcl-2 family members seem unlikely to fully account for the differential behavior of the cell lines, our demonstration of a potent apoptotic process in most cell lines derived from mantle cell lymphoma encourages a re-examination of diacylglycerol analogues in the treatment of this subset of B non-Hodgkin lymphoma cases. PMID:22465296

Lopez-Campistrous, Ana; Song, Xiaohua; Schrier, Adam J.; Wender, Paul A.; Dower, Nancy A.; Stone, James C.

2014-01-01

229

Bryostatin analogue-induced apoptosis in mantle cell lymphoma cell lines.  

PubMed

The anti-cancer effects of bryostatin-1, a potent diacylglycerol analogue, have traditionally been attributed to its action on protein kinase C. However, we previously documented apoptosis in a B non-Hodgkin lymphoma cell line involving diacylglycerol analogue stimulation of Ras guanyl-releasing protein, a Ras activator, and Bim, a proapoptotic Bcl-2 family protein. To further explore the role of Bim, we examined several Bim-deficient B non-Hodgkin lymphoma cells for their responses to pico, a synthetic bryostatin-1-like compound. The Bim(-) mantle cell lymphoma cell lines Jeko-1, Mino, Sp53, UPN1, and Z138 and the Bim(+) cell line Rec-1, as well as the Burkitt lymphoma cells lines BL2 (Bim(-)) and Daudi (Bim(+)), were examined for their response to pico using assays for proliferation and apoptosis as well as biochemical methods for Ras guanyl-releasing proteins and Bcl-2 family members. With the exception of UPN1, mantle cell lymphoma cell lines underwent pico-induced apoptosis, as did BL2. In some cases, hallmarks of apoptosis were substantially diminished in the presence of mitogen-activated protein kinase kinase inhibitors. Pico treatment generally led to increased expression of proapoptotic Bik, although the absolute levels of Bik varied considerably between cell lines. A pico-resistant variant of Z138 exhibited decreased Bik induction compared to parental Z138 cells. Pico also generally decreased expression of anti-apoptotic Bcl-XL and Mcl1. Although, these changes in Bcl-2 family members seem unlikely to fully account for the differential behavior of the cell lines, our demonstration of a potent apoptotic process in most cell lines derived from mantle cell lymphoma encourages a re-examination of diacylglycerol analogues in the treatment of this subset of B non-Hodgkin lymphoma cases. PMID:22465296

Lopez-Campistrous, Ana; Song, Xiaohua; Schrier, Adam J; Wender, Paul A; Dower, Nancy A; Stone, James C

2012-08-01

230

A cell line with multinucleated giant cell formation established from a human giant cell tumor of tendon sheath — preliminary report  

Microsoft Academic Search

.   We first established a cell line with unique giant cell formation properties from a human giant cell tumor of tendon sheath\\u000a (GCTTS) arising in the right ankle of a 7-year-old girl. The specimen for cell culture taken from the tumor was heterotransplanted\\u000a into the back of a BALB\\/c (nu\\/nu) nude mouse. An in-vitro cell line was established from a

Masami Hosaka; Masahito Hatori; Richard A. Smith; Shoichi Kokubun

2001-01-01

231

THP-1 cell line: an in vitro cell model for immune modulation approach.  

PubMed

THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. PMID:25130606

Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J

2014-11-01

232

Adaptive response induction and variation in human lymphoblastoid cell lines  

Microsoft Academic Search

Adaptive response is a term used to describe the ability of a low, priming dose of ionizing radiation to modify the effects of a subsequent higher, challenge dose, but it has been observed to be highly variable in both presence and magnitude. To examine this variability, 10 human lymphoblastoid cell lines were screened for adaptability to 137Cs radiation by determining

Karen J Sorensen; Cristina M Attix; Allen T Christian; Andrew J Wyrobek; James D Tucker

2002-01-01

233

DIFFERENCES IN ARACHIDONIC ACID METABOLISM BY HUMAN MYELOMONCYTIC CELL LINES  

EPA Science Inventory

The production of arachidonic acid metabolites by the HL60, ML3, and U937 human phagocyte cell lines were determined after incubation with interferongamma (IFNg; 500 U/ml) or vehicle for 4 days. ells were prelabeled with tritiated arachidonic acid for 4 hours, and media supernata...

234

Differential Sensitivity in the Survival of Oligodendrocyte Cell Lines to  

E-print Network

Differential Sensitivity in the Survival of Oligodendrocyte Cell Lines to Overexpression of Myelin in oligodendrocyte survival by overexpression studies in vitro and in vivo. The classic and sr proteolipids are targeted to different cellular com- partments in the oligodendrocyte, suggesting different cellular

Bongarzone, Ernesto R.

235

USING NEUROBLASTOMA CELL LINES TO EXAMINE ORGANOPHOSPHATE NEUROTOXICITY  

EPA Science Inventory

The need to deploy IN VITRO models to test neurotoxic scribes the use of by industry and government regulatory agencies. his research describes the neuroblastoma cell lines to address the relationship between esterase inhibition and neurotoxic outcome following exposure to organo...

236

DIVERSITY OF ARSENIC METABOLISM IN CULTURED HUMAN CANCER CELL LINES  

EPA Science Inventory

Diversity of arsenic metabolism in cultured human cancer cell lines. Arsenic has been known to cause a variety of malignancies in human. Pentavalent As (As 5+) is reduced to trivalent As (As3+) which is further methylated by arsenic methyltransferase(s) to monomethylarson...

237

Use of Cell Lines in the Investigation of Pharmacogenetic Loci  

PubMed Central

Drug response and toxicity, complex traits that are often highly varied among individuals, likely involve multiple genetic and non-genetic factors. Pharmacogenomic research aims to individualize therapy in an effort to maximize efficacy and minimize toxicity for each patient. Cell lines can be used as a model system for cellular pharmacologic effects, which include, but are not limited to, drug-induced cytotoxicity or apoptosis, biochemical effects and enzymatic reactions. Because severe toxicities may be associated with drugs such as chemotherapeutics, cell lines derived from healthy individuals or patients provide a convenient model to study how human genetic variation alters response to these drugs that would be unsafe or unethical to administer to human volunteers. In addition to the traditional candidate gene approaches that focus on well-understood candidate genes and pathways, the availability of extensive genotypic and phenotypic data on some cell line models has begun to allow genome-wide association (GWA) studies to simultaneously test the entire human genome for associations with drug response and toxicity. Though with some important limitations, the use of these cell lines in pharmacogenomic discovery demonstrates the promise of constructing a more comprehensive model that may ultimately integrate both genetic and non-genetic factors to predict individual response and toxicity to anticancer drugs. PMID:19925429

Zhang, Wei; Dolan, M. Eileen

2009-01-01

238

DNA repair in human promyelocytic cell line, HL-60.  

PubMed

The human promyelocytic cell line, HL-60, shows large changes in endogenous poly(ADP-ribose) and in nuclear ADP-ribosyl transferase activity (ADPRT) during its induced myelocytic differentiation. DNA strand-breaks are an essential activator for this enzyme; and transient DNA strand breaks occur during the myelocytic differentiation of HL-60 cells. We have tested the hypothesis that these post-mitotic, terminally differentiating cells are less efficient in DNA repair, and specifically in DNA strand rejoining, than their proliferating precursor cells. We have found that this hypothesis is not tenable. We observe that there is no detectable reduction in the efficiency of DNA excision repair after exposure to either dimethyl sulphate or gamma-irradiation in HL-60 cells induced to differentiate by dimethyl sulphoxide. Moreover, the efficient excision repair of either dimethyl sulphate or gamma-irradiation induced lesions, both in the differentiated and undifferentiated HL-60 cells, is blocked by the inhibition of ADPRT activity. PMID:3106934

Farzaneh, F; Feon, S; Lebby, R A; Brill, D; David, J C; Shall, S

1987-04-24

239

Feeder-independent continuous culture of the PICM-19 pig liver stem cell line  

Technology Transfer Automated Retrieval System (TEKTRAN)

The PICM-19 pig liver stem cell line is a bipotent cell line, i.e., capable of forming either bile ductules or hepatocyte monolayers in vitro, that was derived from the primary culture of pig embryonic stem cells. The cell line has been strictly feeder-dependent in that cell replication morphology,...

240

ALLOREACTIVE CLONED T CELL LINES I. Interactions Between Cloned Amplifier and Cytolytic T Cell Lines  

Microsoft Academic Search

A population of T cells has been described that can promote or enhance the proliferation and differentiation of Lyt-2,3 ÷ cytolytic T lymphocyte (CTL) I precursor cells in mixed leukocyte culture (MLC) (1-3). Termed amplifier T cells, they have been characterized as Lyt-1 + cells that appear to be stimulated by specific alloantigens, perhaps I region-encoded (1, 2, 4). Amplifier

ANDREW L. GLASEBROOK; FRANK W. FITCH

241

Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines  

PubMed Central

Background Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. Methods Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 ?g/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett’s or Tukey’s post hoc tests, as appropriate. Results We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p?cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. Conclusions The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the anticancer potential of açaí may help in the development of chemopreventive drugs and may have therapeutic effects in the treatment of breast cancer. PMID:24886139

2014-01-01

242

Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines  

Microsoft Academic Search

BACKGROUND: Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). RESULTS: Cell migration assays

Peter Serfozo; Maggie S Schlarman; Chris Pierret; Bernard L Maria; Mark D Kirk

2006-01-01

243

Off-line test of the KISS gas cell  

NASA Astrophysics Data System (ADS)

The KEK Isotope Separation System (KISS) has been constructed at RIKEN to study the ?-decay properties of neutron-rich isotopes with neutron numbers around N = 126 for application to astrophysics. A key component of KISS is a gas cell filled with argon gas at a pressure of 50 kPa to stop and collect the unstable nuclei, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off-line tests to study the basic properties of the gas cell and of KISS using nickel and iron filaments placed in the gas cell.

Hirayama, Yoshikazu; Watanabe, Yutaka; Imai, Nobuaki; Ishiyama, Hironobu; Jeong, Sun-Chan; Miyatake, Hiroari; Oyaizu, Michihiro; Kim, Yung Hee; Mukai, Momo; Matsuo, Yukari; Sonoda, Tetsu; Wada, Michiharu; Huyse, Mark; Kudryavtsev, Yuri; Van Duppen, Piet

2013-12-01

244

Human small cell lung cancer cell lines expressing the proopiomelanocortin gene have aberrant glucocorticoid receptor function.  

PubMed Central

Some human small cell lung carcinomas (SCLC) secrete proopiomelanocortin (POMC) derived peptides, but in contrast to the pituitary, glucocorticoids fail to inhibit this hormone production. We have previously described an in vitro model using human SCLC cell lines that express POMC and are resistant to glucocorticoids. We have now identified the glucocorticoid receptor (GR) in the SCLC cell line COR L24 using a whole cell ligand binding assay (Kd = 5.7 nM; Bmax = 11 fmol/million cells), while another cell line, DMS 79, lacked significant glucocorticoid binding. To analyze GR function both positive (GMCO) and negative (TRE)3-tkCAT), glucocorticoid-regulated reporter gene constructs were transfected into COR L24 cells. In the SCLC cell line, neither hydrocortisone nor dexamethasone (500-2,000 nM) significantly induced chloramphenicol acetyltransferase expression from GMCO; in addition, they did not suppress chloramphenicol acetyltransferase expression from (TRE)3-tkCAT. Similar results were obtained with two other POMC-expressing SCLC cell lines. Expression of wild type GR in COR L24 cells restored glucocorticoid signaling, with marked induction of GMCO reporter gene expression by dexamethasone (9,100 +/- 910%; n = 3), and an estimated EC50 of 10 nM. This failure of the GR explains the resistance of the POMC gene to glucocorticoid inhibition and may have implications for cell growth in SCLC. Images PMID:8163665

Ray, D W; Littlewood, A C; Clark, A J; Davis, J R; White, A

1994-01-01

245

Plasmids and packaging cell lines for use in phage display  

DOEpatents

The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

Bradbury, Andrew M.

2012-07-24

246

Over-expression of secreted proteins from mammalian cell lines  

PubMed Central

Secreted mammalian proteins require the development of robust protein over-expression systems for crystallographic and biophysical studies of protein function. Due to complex disulfide bonds and distinct glycosylation patterns preventing folding and expression in prokaryotic expression hosts, many secreted proteins necessitate production in more complex eukaryotic expression systems. Here, we elaborate on the methods used to obtain high yields of purified secreted proteins from transiently or stably transfected mammalian cell lines. Among the issues discussed are the selection of appropriate expression vectors, choice of signal sequences for protein secretion, availability of fusion tags for enhancing protein stability and purification, choice of cell line, and the large-scale growth of cells in a variety of formats. PMID:24510886

Dalton, Annamarie C; Barton, William A

2014-01-01

247

Initiation of a Zebrafish Blastula Cell Line on Rainbow Trout Stromal Cells and Subsequent Development Under Feeder-Free Conditions into a Cell Line, ZEB2J  

Microsoft Academic Search

A continuous cell line, ZEB2, was developed from zebrafish blastula-stage embryos expressing enhanced green fluorescent protein (GFP). Originally the rainbow trout spleen cell line, RTS34st, was used as feeders to initiate and maintain the cells through several passages. ZEB2 was then grown for 2years without feeders in L-15 with 15% fetal bovine serum (FBS) for 120 population doublings. This new

Jerry G. Xing; Lucy E. J. Lee; Lianchun Fan; Paul Collodi; Shawn E. Holt; Niels C. Bols

2008-01-01

248

Carbon nanoparticles for gene transfection in eukaryotic cell lines.  

PubMed

For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed ?-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests. PMID:24863237

Zanin, H; Hollanda, L M; Ceragioli, H J; Ferreira, M S; Machado, D; Lancellotti, M; Catharino, R R; Baranauskas, V; Lobo, A O

2014-06-01

249

Restoration of WNT4 inhibits cell growth in leukemia-derived cell lines  

PubMed Central

Background WNT signaling pathways are significantly altered during cancer development. Vertebrates possess two classes of WNT signaling pathways: the “canonical” WNT/?-catenin signaling pathway, and the “non-canonical” pathways including WNT/Ca2+ and WNT/Planar cell polarity [PCP] signaling. WNT4 influences hematopoietic progenitor cell expansion and survival; however, WNT4 function in cancer development and the resulting implications for oncogenesis are poorly understood. The aim of this study was twofold: first, to determine the expression of WNT4 in mature peripheral blood cells and diverse leukemia-derived cells including cell lines from hematopoietic neoplasms and cells from patients with leukemia; second, to identify the effect of this ligand on the proliferation and apoptosis of the blast-derived cell lines BJAB, Jurkat, CEM, K562, and HL60. Methods We determined WNT4 expression by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) in peripheral blood mononuclear cells (PBMCs) and T- and B-lymphocytes from healthy individuals, as well as from five leukemia-derived cell lines and blasts derived from patients with leukemia. To analyze the effect of WNT4 on cell proliferation, PBMCs and cell lines were exposed to a commercially available WNT4 recombinant human protein. Furthermore, WNT4 expression was restored in BJAB cells using an inducible lentiviral expression system. Cell viability and proliferation were measured by the addition of WST-1 to cell cultures and counting cells; in addition, the progression of the cell cycle and the amount of apoptosis were analyzed in the absence or presence of WNT4. Finally, the expression of WNT-pathway target genes was measured by qRT-PCR. Results WNT4 expression was severely reduced in leukemia-derived cell lines and blasts derived from patients with leukemia. The exposure of cell lines to WNT4 recombinant protein significantly inhibited cell proliferation; inducing WNT4 expression in BJAB cells corroborated this observation. Interestingly, restoration of WNT4 expression in BJAB cells increased the accumulation of cells in G1 phase, and did not induce activation of canonical WNT/?-catenin target genes. Conclusions Our findings suggest that the WNT4 ligand plays a role in regulating the cell growth of leukemia-derived cells by arresting cells in the G1 cell cycle phase in an FZD6-independent manner, possibly through antagonizing the canonical WNT/?-catenin signaling pathway. PMID:24274766

2013-01-01

250

Analysis of Cell Surface N-glycosylation of the Human Embryonic Kidney 293T Cell Line  

Microsoft Academic Search

Protein glycosylation is a prominent posttranslational modification and is involved in many biological functions. Human cell lines used for the expression of recombinant glycoproteins present variations in their cell surface N-glycosylation due to their cell type–specific origin. We therefore investigated the presence of specific glycosyltransferases by RT-PCR and the cell surface N-glycan structures of HEK293T cells by MALDI-TOF-MS and MALDI-TOF\\/TOF-MS

Stefan O. Reinke; Marion Bayer; Markus Berger; Véronique Blanchard; Stephan Hinderlich

2011-01-01

251

Establishment of lal-/- Myeloid Lineage Cell Line That Resembles Myeloid-Derived Suppressive Cells.  

PubMed

Myeloid-derived suppressor cells (MDSCs) in mouse are inflammatory cells that play critical roles in promoting cancer growth and metastasis by directly stimulating cancer cell proliferation and suppressing immune surveillance. In order to facilitate characterization of biochemical and cellular mechanisms of MDSCs, it is urgent to establish an "MDSC-like" cell line. By cross breeding of immortomouse (simian virus 40 large T antigen transgenic mice) with wild type and lysosomal acid lipase (LAL) knock-out (lal-/-) mice, we have established a wild type (HD1A) and a lal-/- (HD1B) myeloid cell lines. Compared with HD1A cells, HD1B cells demonstrated many characteristics similar to lal-/- MDSCs. HD1B cells exhibited increased lysosomes around perinuclear areas, dysfunction of mitochondria skewing toward fission structure, damaged membrane potential, and increased ROS production. HD1B cells showed increased glycolytic metabolism during blockage of fatty acid metabolism to fuel the energy need. Similar to lal-/- MDSCs, the mTOR signal pathway in HD1B cells is overly activated. Rapamycin treatment of HD1B cells reduced ROS production and restored the mitochondrial membrane potential. HD1B cells showed much stronger immunosuppression on CD4+ T cell proliferation and function in vitro, and enhanced cancer cells proliferation. Knockdown of mTOR with siRNA reduced the HD1B cell ability to immunosuppress T cells and stimulate cancer cell proliferation. Therefore, the HD1B myeloid cell line is an "MDSC-like" cell line that can be used as an alternative in vitro system to study how LAL controls various myeloid cell functions. PMID:25807535

Ding, Xinchun; Wu, Lingyan; Yan, Cong; Du, Hong

2015-01-01

252

Establishment of lal-/- Myeloid Lineage Cell Line That Resembles Myeloid-Derived Suppressive Cells  

PubMed Central

Myeloid-derived suppressor cells (MDSCs) in mouse are inflammatory cells that play critical roles in promoting cancer growth and metastasis by directly stimulating cancer cell proliferation and suppressing immune surveillance. In order to facilitate characterization of biochemical and cellular mechanisms of MDSCs, it is urgent to establish an “MDSC-like” cell line. By cross breeding of immortomouse (simian virus 40 large T antigen transgenic mice) with wild type and lysosomal acid lipase (LAL) knock-out (lal-/-) mice, we have established a wild type (HD1A) and a lal-/- (HD1B) myeloid cell lines. Compared with HD1A cells, HD1B cells demonstrated many characteristics similar to lal-/- MDSCs. HD1B cells exhibited increased lysosomes around perinuclear areas, dysfunction of mitochondria skewing toward fission structure, damaged membrane potential, and increased ROS production. HD1B cells showed increased glycolytic metabolism during blockage of fatty acid metabolism to fuel the energy need. Similar to lal-/- MDSCs, the mTOR signal pathway in HD1B cells is overly activated. Rapamycin treatment of HD1B cells reduced ROS production and restored the mitochondrial membrane potential. HD1B cells showed much stronger immunosuppression on CD4+ T cell proliferation and function in vitro, and enhanced cancer cells proliferation. Knockdown of mTOR with siRNA reduced the HD1B cell ability to immunosuppress T cells and stimulate cancer cell proliferation. Therefore, the HD1B myeloid cell line is an “MDSC-like” cell line that can be used as an alternative in vitro system to study how LAL controls various myeloid cell functions. PMID:25807535

Ding, Xinchun; Wu, Lingyan; Yan, Cong; Du, Hong

2015-01-01

253

Comparative Proteomic Profiling of Pancreatic Ductal Adenocarcinoma Cell Lines  

PubMed Central

Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and - sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines. PMID:25518923

Kim, Yikwon; Han, Dohyun; Min, Hophil; Jin, Jonghwa; Yi, Eugene C.; Kim, Youngsoo

2014-01-01

254

Comparative proteomic profiling of pancreatic ductal adenocarcinoma cell lines.  

PubMed

Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and - sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines. PMID:25518923

Kim, Yikwon; Han, Dohyun; Min, Hophil; Jin, Jonghwa; Yi, Eugene C; Kim, Youngsoo

2014-12-31

255

Human Fucci Pancreatic Beta Cell Lines: New Tools to Study Beta Cell Cycle and Terminal Differentiation  

PubMed Central

Regulation of cell cycle in beta cells is poorly understood, especially in humans. We exploited here the recently described human pancreatic beta cell line EndoC-?H2 to set up experimental systems for cell cycle studies. We derived 2 populations from EndoC-?H2 cells that stably harbor the 2 genes encoding the Fucci fluorescent indicators of cell cycle, either from two vectors, or from a unique bicistronic vector. In proliferating non-synchronized cells, the 2 Fucci indicators revealed cells in the expected phases of cell cycle, with orange and green cells being in G1 and S/G2/M cells, respectively, and allowed the sorting of cells in different substeps of G1. The Fucci indicators also faithfully red out alterations in human beta cell proliferative activity since a mitogen-rich medium decreased the proportion of orange cells and inflated the green population, while reciprocal changes were observed when cells were induced to cease proliferation and increased expression of some beta cell genes. In the last situation, acquisition of a more differentiated beta cell phenotype correlates with an increased intensity in orange fluorescence. Hence Fucci beta cell lines provide new tools to address important questions regarding human beta cell cycle and differentiation. PMID:25259951

Carlier, Géraldine; Maugein, Alicia; Cordier, Corinne; Pechberty, Séverine; Garfa-Traoré, Meriem; Martin, Patrick; Scharfmann, Raphaël; Albagli, Olivier

2014-01-01

256

Cell lines used for microbeam and track segment studies at RARAF Experiments conducted at RARAF have used a host of adherent cell lines for various experiments. While  

E-print Network

549 Human lung carcinoma cells ATCC Lucas' group HeLa Cervice adenocarcinoma cells ATCC Azzam's groupCell lines used for microbeam and track segment studies at RARAF Experiments conducted at RARAF have used a host of adherent cell lines for various experiments. While the primary method of attachment

257

Cell-Type-Dependent Thyroid Hormone Effects on Glioma Tumor Cell Lines  

PubMed Central

Purpose. The present study investigated the potential effects of long-term T3 treatment on glioma tumor cell lines. Thyroid hormone action on cell growth, differentiation and survival during development may be of therapeutic relevance Methods and Results 1321N1 cell line, an astrocytoma grade II, and U87MG, a glioblastoma grade IV, were exposed for 2 and 4 days in medium deprived of T3 and in medium containing 1?nM T3. T3 promoted re-differentiation in both cell lines. However, T3 increased cell proliferation in 1321N1 (2?days) which declined thereafter (4?days) while in U87MG resulted in suppression of cell proliferation. At the molecular level, a 2.9 fold increase in the expression of TR?1 receptor was observed in U87MG versus 1321N1, P < 0.05. TR?1 receptor was undetectable. These changes corresponded to a distinct pattern of T3-induced kinase signaling activation; T3 had no effect on ERK activation in both cell lines but significantly increased phospho-Akt levels in 1321N1. Conclusion. In conclusion, T3 can re-differentiate glioma tumor cells, whereas its effect on cell proliferation appears to be dependent on the type of tumor cell line with aggressive tumors being more sensitive to T3. TR?1 receptor may, at least in part, be implicated in this response. PMID:22229106

Alexandros, Liappas; Iordanis, Mourouzis; Athanasios, Zisakis; Konstantinos, Economou; Robert-William, Lea; Constantinos, Pantos

2011-01-01

258

Cysteine modified polyaniline films improve biocompatibility for two cell lines.  

PubMed

This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using l-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV-visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86°±1 to 90°±1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. PMID:25842107

Yslas, Edith I; Cavallo, Pablo; Acevedo, Diego F; Barbero, César A; Rivarola, Viviana A

2015-06-01

259

Serial analysis of gene expression in a microglial cell line.  

PubMed

We used the serial analysis of gene expression (SAGE) method to systematically analyze transcripts present in a microglial cell line. Over 10,000 SAGE tags were sequenced, and shown to represent 6,013 unique transcripts. Among the diverse transcripts that had not been previously detected in microglia were those for cytokines such as endothelial monocyte-activating polypeptide I (EMAP I), and for cell surface antigens, including adhesion molecules such as CD9, CD53, CD107a, CD147, CD162 and mast cell high affinity IgE receptor. In addition, we detected transcripts that were characteristic of hematopoietic cells or mesodermal structures, such as E3 protein, A1, EN-7, B94, and ufo. Furthermore, the profile contained a transcript, Hn1, that is important in hematopoietic cells and neurological development (Tang et al. Mamm Genome 8:695-696, 1997), suggesting the probable neural differentiation of microglia from the hematopoietic system in development. Messenger RNA expression of these genes was confirmed by RT-PCR in primary cultures of microglia. Significantly, this is the first systematic profiling of the genes expressed in a microglial cell line. The identification and further characterization of the genes described here should provide potential new targets for the study of microglial biology. PMID:10559785

Inoue, H; Sawada, M; Ryo, A; Tanahashi, H; Wakatsuki, T; Hada, A; Kondoh, N; Nakagaki, K; Takahashi, K; Suzumura, A; Yamamoto, M; Tabira, T

1999-12-01

260

Assessment of cell line models of primary human cells by Raman spectral phenotyping.  

PubMed

Researchers have previously questioned the suitability of cell lines as models for primary cells. In this study, we used Raman microspectroscopy to characterize live A549 cells from a unique molecular biochemical perspective to shed light on their suitability as a model for primary human pulmonary alveolar type II (ATII) cells. We also investigated a recently developed transduced type I (TT1) cell line as a model for alveolar type I (ATI) cells. Single-cell Raman spectra provide unique biomolecular fingerprints that can be used to characterize cellular phenotypes. A multivariate statistical analysis of Raman spectra indicated that the spectra of A549 and TT1 cells are characterized by significantly lower phospholipid content compared to ATII and ATI spectra because their cytoplasm contains fewer surfactant lamellar bodies. Furthermore, we found that A549 spectra are statistically more similar to ATI spectra than to ATII spectra. The spectral variation permitted phenotypic classification of cells based on Raman spectral signatures with >99% accuracy. These results suggest that A549 cells are not a good model for ATII cells, but TT1 cells do provide a reasonable model for ATI cells. The findings have far-reaching implications for the assessment of cell lines as suitable primary cellular models in live cultures. PMID:20409492

Swain, Robin J; Kemp, Sarah J; Goldstraw, Peter; Tetley, Teresa D; Stevens, Molly M

2010-04-21

261

Assessment of Cell Line Models of Primary Human Cells by Raman Spectral Phenotyping  

PubMed Central

Abstract Researchers have previously questioned the suitability of cell lines as models for primary cells. In this study, we used Raman microspectroscopy to characterize live A549 cells from a unique molecular biochemical perspective to shed light on their suitability as a model for primary human pulmonary alveolar type II (ATII) cells. We also investigated a recently developed transduced type I (TT1) cell line as a model for alveolar type I (ATI) cells. Single-cell Raman spectra provide unique biomolecular fingerprints that can be used to characterize cellular phenotypes. A multivariate statistical analysis of Raman spectra indicated that the spectra of A549 and TT1 cells are characterized by significantly lower phospholipid content compared to ATII and ATI spectra because their cytoplasm contains fewer surfactant lamellar bodies. Furthermore, we found that A549 spectra are statistically more similar to ATI spectra than to ATII spectra. The spectral variation permitted phenotypic classification of cells based on Raman spectral signatures with >99% accuracy. These results suggest that A549 cells are not a good model for ATII cells, but TT1 cells do provide a reasonable model for ATI cells. The findings have far-reaching implications for the assessment of cell lines as suitable primary cellular models in live cultures. PMID:20409492

Swain, Robin J.; Kemp, Sarah J.; Goldstraw, Peter; Tetley, Teresa D.; Stevens, Molly M.

2010-01-01

262

Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig.  

PubMed

Since pluripotent embryonic stem cell (ESC) lines were first derived from the mouse, tremendous efforts have been made to establish ESC lines in several domestic species including the pig; however, authentic porcine ESCs have not yet been established. It has proven difficult to maintain an ESC-like state in pluripotent porcine cell lines due to the frequent occurrence of spontaneous differentiation into an epiblast stem cell (EpiSC)-like state during culture. We have been able to derive EpiSC-like porcine ESC (pESC) lines from blastocyst stage porcine embryos of various origins, including in vitro fertilized (IVF), in vivo derived, IVF aggregated, and parthenogenetic embryos. In addition, we have generated induced pluripotent stem cells (piPSCs) via plasmid transfection of reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) into porcine fibroblast cells. In this study, we analyzed characteristics such as marker expression, pluripotency and the X chromosome inactivation status in female of our EpiSC-like pESC lines along with our piPSC line. Our results show that these cell lines demonstrate the expression of genes associated with the Activin/Nodal and FGF2 pathways along with the expression of pluripotent markers Oct4, Sox2, Nanog, SSEA4, TRA 1-60 and TRA 1-81. Furthermore all of these cell lines showed in vitro differentiation potential, the X chromosome inactivation in female and a normal karyotype. Here we suggest that the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines. PMID:23326334

Park, Jin-Kyu; Kim, Hye-Sun; Uh, Kyung-Jun; Choi, Kwang-Hwan; Kim, Hyeong-Min; Lee, Taeheon; Yang, Byung-Chul; Kim, Hyun-Jong; Ka, Hak-Hyun; Kim, Heebal; Lee, Chang-Kyu

2013-01-01

263

Bisphosphonates induce apoptosis in human breast cancer cell lines  

PubMed Central

Breast cancer has a prodigious capacity to metastasize to bone. In women with advanced breast cancer and bone metastases, bisphosphonates reduce the incidence of hypercalcaemia and skeletal morbidity. Recent clinical findings suggest that some bisphosphonates reduce the tumour burden in bone with a consequent increase in survival, raising the possibility that bisphosphonates may have a direct effect on breast cancer cells. We have investigated the in vitro effects of bisphosphonates zoledronate, pamidronate, clodronate and EB 1053 on growth, viability and induction of apoptosis in three human breast cancer cell lines (MDA-MB-231, Hs 578T and MCF-7). Cell growth was monitored by crystal violet dye assay, and cell viability was quantitated by MTS dye reduction. Induction of apoptosis was determined by identification of morphological features of apoptosis using time-lapse videomicroscopy, identifying morphological changes in nucleis using Hoechst staining, quantitation of DNA fragmentation, level of expression of bcl-2 and bax proteins and identification of the proteolytic cleavage of Poly (ADP)-ribose polymerase (PARP). All four bisphosphonates significantly reduced cell viability in all three cell lines. Zoledronate was the most potent bisphosphonate with IC50values of 15, 20 and 3 ?M respectively in MDA-MB-231, MCF-7 and Hs 578T cells. Corresponding values for pamidronate were 40, 35 and 25 ?M, whereas clodronate and EB 1053 were more than two orders of magnitude less potent. An increase in the proportion of cells having morphological features characteristic of apoptosis, characteristic apoptotic changes in the nucleus, time-dependent increase in the percentage of fragmented chromosomal DNA, down-regulation in bcl-2 protein and proteolytic cleavage of PARP, all indicate that bisphosphonates have direct anti-tumour effects on human breast cancer cells. © 2000 Cancer Research Campaign PMID:10780527

Senaratne, S G; Pirianov, G; Mansi, J L; Arnett, T R; Colston, K W

2000-01-01

264

A novel tumor cell line cloned from mutated human embryonic bone marrow mesenchymal stem cells.  

PubMed

A novel tumor cell line, denominated F6, was established from mutated human embryonic bone marrow mesenchymal stem cells (MSCs) which were induced by the GM-CSF and IL-4 in vitro. The characteristics of the F6 cell line, such as surface antigens, cell cycle, growth curve, gene expression, morphology, cytogenetics and tumor model were analyzed. The F6 cells were round and grew suspended in a plastic dish. The cell line has a strong self-renewal capability, was positive for CD13, CD29, CD44, but negative for CD1alpha, CD3, CD10, CD14, CD23, CD33, CD34, CD38, CD41, CD45, CD54 and HLA-DR. The surface antigens were lower than those of human embryonic MSCs. The karyotype of F6 cells was abnormal. The cell cycle included: G0/G1 phase, 52.24%; G2/M phase, 8.00%; S phase, 41.76%. After the cells had been passaged serially for more than 17 months (62 passages), their characteristics were still retained. The F6 cells resulted in tumors in SCID nude mice in vivo (8/8) and caused metastasis (3/8). The pathologic examination revealed that the tumor cells extensively invaded surrounding normal tissues such as dermis, muscular tissue, nerve tissue, adipose tissue and lymphoid tissue. F6 cell line, tumor tissues derived from F6 cells and the MSCs expressed different levels of the nucleostemin gene. These findings suggested that F6 may be a novel tumor cell line. It may provide evidence for the theory that cancer originates from stem cells, and may be useful for the investigation on safety of human MSCs in the clinical application. PMID:15289828

Xu, Wenrong; Qian, Hui; Zhu, Wei; Chen, Yongchang; Shao, Qixiang; Sun, Xiaochun; Hu, Jiabo; Han, Chongxu; Zhang, Xiran

2004-09-01

265

Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line  

Microsoft Academic Search

In contrast to mouse epidermal cells, hu- man skin keratinocytes are rather resistant to transfor- mation in vitro. Immortalization has been achieved by SV40 but has resulted in cell lines with altered differentiation. We have established a spontaneously transformed human epithelial cell line from adult skin, which maintains full epidermal differentiation capacity. This HaCaT cell line is obviously immortal (>140

Petra Boukamp; T. Petrussevska; Dirk Breitkreutz; Jiirgen Hornung; Alex Markham; Norbert E. Fusenig

1988-01-01

266

Analysis of LINE-1 expression in human pluripotent cells.  

PubMed

Half of the human genome is composed of repeated DNA, and some types are mobile within our genome (transposons and retrotransposons). Despite their abundance, only a small fraction of them are currently active in our genome (Long Interspersed Element-1 (LINE-1), Alu, and SVA elements). LINE-1 or L1 elements are a family of active non-LTR retrotransposons, the ongoing mobilization of which still impacts our genome. As selfish DNA elements, L1 activity is more prominent in early human development, where new insertions would be transmitted to the progeny. Here, we describe the conventional methods aimed to determine the expression level of LINE-1 elements in pluripotent human cells. PMID:22528351

Muńoz-Lopez, Martin; Garcia-Cańadas, Marta; Macia, Angela; Morell, Santiago; Garcia-Perez, Jose L

2012-01-01

267

Influence of 864 MHz electromagnetic field on growth kinetics of established cell line  

Microsoft Academic Search

Considering often contradictory data on biological effects of mobile phones frequencies on established cell culture lines, our study aimed at evaluating the influence of 864 MHz electromagnetic field on proliferation, colony forming ability and viability of Chinese hamster lung cells of line V79 cell. Prior to exposure for 1, 2 and 3 hours in transversal electromagnetic mode cell (TEM-cell) cell

Ivan Pavicic; Ivancica Trosic

2004-01-01

268

Choosing the right cell line for breast cancer research  

PubMed Central

Breast cancer is a complex and heterogeneous disease. Gene expression profiling has contributed significantly to our understanding of this heterogeneity at a molecular level, refining taxonomy based on simple measures such as histological type, tumour grade, lymph node status and the presence of predictive markers like oestrogen receptor and human epidermal growth factor receptor 2 (HER2) to a more sophisticated classification comprising luminal A, luminal B, basal-like, HER2-positive and normal subgroups. In the laboratory, breast cancer is often modelled using established cell lines. In the present review we discuss some of the issues surrounding the use of breast cancer cell lines as experimental models, in light of these revised clinical classifications, and put forward suggestions for improving their use in translational breast cancer research. PMID:21884641

2011-01-01

269

Designing of promiscuous inhibitors against pancreatic cancer cell lines  

PubMed Central

Pancreatic cancer remains the most devastating disease with worst prognosis. There is a pressing need to accelerate the drug discovery process to identify new effective drug candidates against pancreatic cancer. We have developed QSAR models for predicting promiscuous inhibitors using the pharmacological data. Our models achieved maximum Pearson correlation coefficient of 0.86, when evaluated on 10-fold cross-validation. Our models have also successfully validated the drug-to-oncogene relationship and further we used these models to screen FDA approved drugs and tested them in vitro. We have integrated these models in a webserver named as DiPCell, which will be useful for screening and designing novel promiscuous drug molecules. We have also identified the most and least effective drugs for pancreatic cancer cell lines. On the other side, we have identified resistant pancreatic cancer cell lines, which need investigative scanner on them to put light on resistant mechanism in pancreatic cancer. PMID:24728108

Kumar, Rahul; Chaudhary, Kumardeep; Singla, Deepak; Gautam, Ankur; Raghava, Gajendra P. S.

2014-01-01

270

Designing of promiscuous inhibitors against pancreatic cancer cell lines  

NASA Astrophysics Data System (ADS)

Pancreatic cancer remains the most devastating disease with worst prognosis. There is a pressing need to accelerate the drug discovery process to identify new effective drug candidates against pancreatic cancer. We have developed QSAR models for predicting promiscuous inhibitors using the pharmacological data. Our models achieved maximum Pearson correlation coefficient of 0.86, when evaluated on 10-fold cross-validation. Our models have also successfully validated the drug-to-oncogene relationship and further we used these models to screen FDA approved drugs and tested them in vitro. We have integrated these models in a webserver named as DiPCell, which will be useful for screening and designing novel promiscuous drug molecules. We have also identified the most and least effective drugs for pancreatic cancer cell lines. On the other side, we have identified resistant pancreatic cancer cell lines, which need investigative scanner on them to put light on resistant mechanism in pancreatic cancer.

Kumar, Rahul; Chaudhary, Kumardeep; Singla, Deepak; Gautam, Ankur; Raghava, Gajendra P. S.

2014-04-01

271

Destabilization of Akt Promotes the Death of Myeloma Cell Lines  

PubMed Central

Constitutive activation of Akt is believed to be an oncogenic signal in multiple myeloma and is associated with poor patient prognosis and resistance to available treatment. The stability of Akt proteins is regulated by phosphorylating the highly conserved turn motif (TM) of these proteins and the chaperone protein HSP90. In this study we investigate the antitumor effects of inhibiting mTORC2 plus HSP90 in myeloma cell lines. We show that chronic exposure of cells to rapamycin can inhibit mTORC2 pathway, and AKT will be destabilized by administration of the HSP90 inhibitor 17-allylamino-geldanamycin (17-AAG). Finally, we show that the rapamycin synergizes with 17-AAG and inhibits myeloma cells growth and promotes cell death to a greater extent than either drug alone. Our studies provide a clinical rationale of use mTOR inhibitors and chaperone protein inhibitors in combination regimens for the treatment of human blood cancers. PMID:25243120

Zhang, Yanan; Fu, Yunfeng; Zhang, Fan; Liu, Jing

2014-01-01

272

Effects of cylindrospermopsin on a common carp leucocyte cell line.  

PubMed

Cylindrospermopsin (CYN) is a cytotoxin produced by different cyanobacterial species, increasingly detected in water reservoirs worldwide. There is very little information available concerning the effects of the toxin on fish immune cells. The aim of the study was to elucidate the potential impact of cylindrospermopsin on the selected parameters of a common carp (Cyprinus carpio L.) leucocyte cell line (CLC). The cells were incubated with the cyanotoxin at concentrations of 10, 1 or 0.1?µg?ml(-1) for up to 48?h. Cell viability and proliferation, apoptosis/necrosis induction, cell morphology and phagocytic activity were determined. The two higher toxin concentrations occurred to be evidently cytotoxic in a time-dependent manner and influenced all studied parameters. The lowest used concentration had no effects on cell viability and cell number; however, a strong reduction of bacteria uptake after 24-h exposure was detected. The obtained results indicate that cylindrospermopsin may interfere with the basic functions of fish phagocytic cells and as a consequence influence the fish immunity. PMID:24477983

Sieroslawska, Anna; Rymuszka, Anna

2015-01-01

273

Monocarboxylate transport in human corneal epithelium and cell lines.  

PubMed

Monocarboxylate transporters (MCTs) are transmembrane proteins capable of transferring lactate and other endogenous and exogenous monocarboxylates across the cell membrane. The aim of the present study was to assess the expression and transporter role of human MCT1, MCT3 and MCT4 in the corneal epithelium, corneal epithelial cell lines (primary HCEpiC and immortalized HCE cells) and isolated rabbit corneas. MCT1 and MCT4 were expressed in the human corneal epithelium and the cell lines at mRNA and protein levels. Cellular uptake studies showed saturable and pH-dependent l-lactic acid transport, which was inhibited by various monocarboxylates like diclofenac and flurbiprofen. The permeability of benzoic acid across the rabbit cornea was higher in absorptive direction and this directionality was diminished in the presence of monocarboxylate drug valproic acid. Monocarboxylate transport was functional in the human corneal epithelial cells and rabbit cornea and it may play a role in the ocular drug absorption. PMID:20035863

Vellonen, Kati-Sisko; Häkli, Marika; Merezhinskaya, Natalya; Tervo, Timo; Honkakoski, Paavo; Urtti, Arto

2010-02-19

274

Single-walled carbon nanohorn (SWNH) aggregates inhibited proliferation of human liver cell lines and promoted apoptosis, especially for hepatoma cell lines  

PubMed Central

Single-walled carbon nanohorns (SWNHs) may be useful as carriers for anticancer drugs due to their particular structure. However, the interactions between the material itself and cancerous or normal cells have seldom been studied. To address this problem, the effects of raw SWNH material on the biological functions of human liver cell lines were studied. Our results showed that unmodified SWNHs inhibited mitotic entry, growth, and proliferation of human liver cell lines and promoted their apoptosis, especially in hepatoma cell lines. Individual spherical SWNH particles were found inside the nuclei of human hepatoma HepG2 cells and the lysosomes of normal human liver L02 cells, implying that SWNH particles could penetrate into human liver cells_and the different interacted mechanisms on human normal cell lines compared to hepatoma cell lines. Further research on the mechanisms and application in treatment of hepatocellular carcinoma with SWNHs is needed. PMID:24523586

Zhang, Jinqian; Sun, Qiang; Bo, Jian; Huang, Rui; Zhang, Mengran; Xia, Zhenglin; Ju, Lili; Xiang, Guoan

2014-01-01

275

Can we develop ethically universal embryonic stem-cell lines?  

Microsoft Academic Search

Human embryonic stem-cell (hESC) research faces opposition from those who object to the destruction of human embryos. Over the past few years, a series of new approaches have been proposed for deriving hESC lines without injuring a living embryo. Each of these presents scientific challenges and raises ethical and political questions. Do any of these methods have the potential to

Ronald M Green

2007-01-01

276

Selective expression of carcinoembryonic antigen promoter in cancer cell lines  

Microsoft Academic Search

PURPOSE: This study was designed to characterize the mechanisms regulating the expression of the human carcinoembryonic antigen promoter (pCEA), in terms of tissue-specific targeting for gene therapy. The promoter was subcloned to a luciferase reporter gene (pCEA\\/Luc) in our laboratory and compared with a virally controlled luciferase vector (pSV40\\/Luc). METHODS: Four human cancer cell lines (HeLa, SW480, Caco2, and SW1116)

Alessandro Fichera; Fabrizio Michelassi; Richard B. Arenas

1998-01-01

277

Fluorouracil selectively enriches stem-like cells in the lung adenocarcinoma cell line SPC.  

PubMed

Most adult stem cells are in the G0 or quiescent phase of the cell cycle and account for only a small percentage of the cells in the tissue. Thus, isolation of stem cells from tissues for further study represents a major challenge. This study sought to enrich cancer stem cells and explore cancer stem-like cell clones using 5-fluorouracil (5-FU) in the lung adenocarcinoma cell line, SPC. Proliferation inhibition was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, according to which half maximal inhibitory concentration values were calculated. Expression levels of stem cell markers after treatment with 5-FU were examined using immunofluorescence and Western blotting. Additionally, side population (SP) cells were sorted using FACS. Properties of SP cells were evaluated by using Transwell, colony-forming assays, and tumor formation experiments. 5-FU greatly inhibits proliferation, especially of cells in S phase. SP cells possess greater invasive potential, higher clone-forming potential, and greater tumor-forming ability than non-SP cells. Treatment with 5-FU enriches the SP cells with stem cell properties in human lung adenocarcinoma cell lines. PMID:23359275

Shi, Mu-mu; Xiong, Yan-lei; Jia, Xin-shan; Li, Xin; Zhang, Li; Li, Xiao-lei; Wang, En-Hua

2013-06-01

278

A comparison of primary endothelial cells and endothelial cell lines for studies of immune interactions.  

PubMed

The purpose of this study was to assess the suitability of using endothelial cell (EC) lines for studies of endothelial/immune interactions. The immortal human EC lines HMEC-1, ECV304 and EaHy926 were compared to human umbilical vein endothelial cells (HUVEC) for constitutive and induced expression of surface antigens known to be involved in interactions with T cells. These cell lines were also compared to HUVEC in transendothelial migration assays. Flow cytometry was used to measure cell surface expression of platelet/endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin, major histocompatibility complex (MHC) class I and MHC class II, CD40, CD95 (fas) and lymphocyte function associated antigen-3 (LFA-3) before and after treatment with the cytokines tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). Polymerase chain reaction (PCR) was used to detect expression of the MHC class II transactivator. Significant differences were found in the ability to respond to cytokines between HUVEC and the cell lines, the greatest differences being induction of VCAM-1 and E-selectin in response to TNF-alpha and induction of MHC class II antigens in response to IFN-gamma. Thus unlike HUVEC, induction of VCAM-1 and E-selectin was not detectable on EaHy926 and ECV304 and barely detectable on HMEC-1. MHC class II antigens were not induced on ECV304 in response to IFN-gamma and nor was the class II transactivator (CIITA). Unlike HUVEC and the other cell lines, ECV304 were constitutively negative for PECAM-1. Constitutive and induced expression of MHC class I, ICAM-1, LFA/3, CD40 and fas were most conserved between the cell lines and showed little difference to HUVEC. The migration of peripheral blood mononuclear cells (PBMC) through all cell lines was significantly reduced compared to through HUVEC, suggesting that there is a functional difference between the cell lines with regard to interactions with lymphocytes. In conclusion this study has demonstrated significant differences in the ability of endothelial cell lines to respond to cytokines compared to primary HUVEC cultures. In particular ECV304 compares very poorly with HUVEC. Whether these differences are caused by immortalization procedures or reflect heterogeneity of EC arising from different vascular beds is discussed. PMID:10638837

Lidington, E A; Moyes, D L; McCormack, A M; Rose, M L

1999-12-01

279

Terminally differentiated postmitotic tumor cells in a rat rhabdomyosarcoma cell line  

Microsoft Academic Search

Summary  A permanent rat rhabdomyosarcoma cell line (BA-HAN-1C) has been established, the phenotype of which is characterized by the\\u000a coexistence of undifferentiated mononuclear cells and differentiated multinuclear myotube-like giant cells. The failure of\\u000a attempts to separate these two cell types by repeated recloning procedures indicates their close histogenetic relationship\\u000a and suggests that differentiation in this tumor proceeds in a similar manner

Helmut Erich Gabbert; Claus-Dieter Gerharz; Rainer Engers; Wolfgang Müller-Klieser; Roland Moll

1988-01-01

280

New cell lines from mouse epiblast share defining features with human embryonic stem cells  

Microsoft Academic Search

The application of human embryonic stem (ES) cells in medicine andbiologyhasaninherentrelianceonunderstandingthestarting cellpopulation.HumanEScellsdifferfrommouseEScellsandthe specific embryonic origin of both cell types is unclear. Previous work suggested that mouse ES cells could only be obtained from the embryo before implantation in the uterus1-5. Here we show that cell lines can be derived from the epiblast, a tissue of the post- implantation embryo that

Josh G. Chenoweth; Frances A. Brook; Timothy J. Davies; Edward P. Evans; David L. Mack; Richard L. Gardner; Paul J. Tesar; Ronald D. G. McKay

2007-01-01

281

New Model for Gastroenteropancreatic Large-Cell Neuroendocrine Carcinoma: Establishment of Two Clinically Relevant Cell Lines  

PubMed Central

Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) according to their proliferation index into G1- or G2-neuroendocrine tumors (NET) and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC). Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1) or lymph node metastases (NEC-DUE2) from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup. PMID:24551139

Krieg, Andreas; Mersch, Sabrina; Boeck, Inga; Dizdar, Levent; Weihe, Eberhard; Hilal, Zena; Krausch, Markus; Möhlendick, Birte; Topp, Stefan A.; Piekorz, Roland P.; Huckenbeck, Wolfgang; Stoecklein, Nikolas H.; Anlauf, Martin; Knoefel, Wolfram T.

2014-01-01

282

Establishment and characterization of a novel canine B-cell line derived from a spontaneously occurring diffuse large cell lymphoma  

Microsoft Academic Search

Cell lines derived from spontaneous tumors serve as a research tool for cancer cell biology and new anti-cancer drug development. Isolation and propagation of canine lymphoma cell lines is difficult, thus only a few are available. Now we have established a new B-cell lymphoma cell line CLBL-1 from a dog with confirmed stage IV diffuse large cell lymphoma. Immunophenotyping of

Barbara C. Rütgen; Sabine E. Hammer; Wilhelm Gerner; Maria Christian; Abigail Guija de Arespacochaga; Michael Willmann; Miriam Kleiter; Ilse Schwendenwein; Armin Saalmüller

2010-01-01

283

Development of a Pluripotent ES-like Cell Line from Asian Sea Bass ( Lates calcarifer )—An Oviparous Stem Cell Line Mimicking Viviparous ES Cells  

Microsoft Academic Search

We report a pluripotent embryonic stem cell-like cell line designated as SBES from blastula stage embryos of Asian sea bass\\u000a (Lates calcarifer), which is an economically important cultivable and edible marine fish species in India. The SBES cells were cultured at\\u000a 28°C in Leibovitz L-15 medium supplemented with 20% fetal bovine serum without a feeder layer. The ES-like cells were

V. Parameswaran; Ravi Shukla; Ramesh Bhonde; A. S. Sahul Hameed

2007-01-01

284

Bifurcate effects of glucose on caspase-independent cell death during hypoxia  

SciTech Connect

We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.

Aki, Toshihiko, E-mail: aki.legm@tmd.ac.jp [Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)] [Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Nara, Akina; Funakoshi, Takeshi; Uemura, Koichi [Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)] [Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)

2010-06-04

285

Dynamic DNA methylation across diverse human cell lines and tissues  

PubMed Central

As studies of DNA methylation increase in scope, it has become evident that methylation has a complex relationship with gene expression, plays an important role in defining cell types, and is disrupted in many diseases. We describe large-scale single-base resolution DNA methylation profiling on a diverse collection of 82 human cell lines and tissues using reduced representation bisulfite sequencing (RRBS). Analysis integrating RNA-seq and ChIP-seq data illuminates the functional role of this dynamic mark. Loci that are hypermethylated across cancer types are enriched for sites bound by NANOG in embryonic stem cells, which supports and expands the model of a stem/progenitor cell signature in cancer. CpGs that are hypomethylated across cancer types are concentrated in megabase-scale domains that occur near the telomeres and centromeres of chromosomes, are depleted of genes, and are enriched for cancer-specific EZH2 binding and H3K27me3 (repressive chromatin). In noncancer samples, there are cell-type specific methylation signatures preserved in primary cell lines and tissues as well as methylation differences induced by cell culture. The relationship between methylation and expression is context-dependent, and we find that CpG-rich enhancers bound by EP300 in the bodies of expressed genes are unmethylated despite the dense gene-body methylation surrounding them. Non-CpG cytosine methylation occurs in human somatic tissue, is particularly prevalent in brain tissue, and is reproducible across many individuals. This study provides an atlas of DNA methylation across diverse and well-characterized samples and enables new discoveries about DNA methylation and its role in gene regulation and disease. PMID:23325432

Varley, Katherine E.; Gertz, Jason; Bowling, Kevin M.; Parker, Stephanie L.; Reddy, Timothy E.; Pauli-Behn, Florencia; Cross, Marie K.; Williams, Brian A.; Stamatoyannopoulos, John A.; Crawford, Gregory E.; Absher, Devin M.; Wold, Barbara J.; Myers, Richard M.

2013-01-01

286

Characterization of cell lines stably transfected with rubella virus replicons  

SciTech Connect

Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)] [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

2012-07-20

287

Development of chemotactic responsiveness in myeloid precursor cells: studies with a human leukemia cell line.  

PubMed Central

We have studied the events that occur during the development of chemotaxis in HL60, a promyelocytic leukemia cell line that acquires the features of mature neutrophils when exposed to dimethylformamide (DMF). Chemotactic function first appears between 48 and 96 hr of DMF induction and is associated not only with the coincidental development of deformability, spontaneous motility, greatly increased binding of fMet-Leu-Phe, and orientation but also with decreasing cell size and pleomorphism of nuclei. Surface adhesiveness develops earlier (36-48 hr) and is coincident with a 10-fold increase in protein synthesis not seen in other DMF-inducible cell lines. This burst of protein synthesis precedes the expression of chemotactic function. These studies show that the HL60 cell line can provide a useful model for delineating control mechanisms responsible for the development of complex cellular functions present in differentiated myeloid cells in humans. Images PMID:6932042

Fontana, J A; Wright, D G; Schiffman, E; Corcoran, B A; Deisseroth, A B

1980-01-01

288

Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We identified the inhibitory effect of ISL on cell proliferation of LCLs. Black-Right-Pointing-Pointer We found ISL-induced genes and miRNAs through microarray approach. Black-Right-Pointing-Pointer ISL-treated LCLs represented gene expression changes in cell cycle and p53 pathway. Black-Right-Pointing-Pointer We revealed 12 putative mRNA-miRNA functional pairs associated with ISL effect. -- Abstract: Isoliquiritigenin (ISL) has been known to induce cell cycle arrest and apoptosis of various cancer cells. However, genetic factors regulating ISL effects remain unclear. The aim of this study was to identify the molecular signatures involved in ISL-induced cell death of EBV-transformed lymphoblastoid cell lines (LCLs) using microarray analyses. For gene expression and microRNA (miRNA) microarray experiments, each of 12 LCL strains was independently treated with ISL or DMSO as a vehicle control for a day prior to total RNA extraction. ISL treatment inhibited cell proliferation of LCLs in a dose-dependent manner. Microarray analysis showed that ISL-treated LCLs represented gene expression changes in cell cycle and p53 signaling pathway, having a potential as regulators in LCL survival and sensitivity to ISL-induced cytotoxicity. In addition, 36 miRNAs including five miRNAs with unknown functions were differentially expressed in ISL-treated LCLs. The integrative analysis of miRNA and gene expression profiles revealed 12 putative mRNA-miRNA functional pairs. Among them, miR-1207-5p and miR-575 were negatively correlated with p53 pathway- and cell cycle-associated genes, respectively. In conclusion, our study suggests that miRNAs play an important role in ISL-induced cytotoxicity in LCLs by targeting signaling pathways including p53 pathway and cell cycle.

Lee, Jae-Eun; Hong, Eun-Jung; Nam, Hye-Young [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of)] [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Hwang, Meeyul [Research Center for Biomedical Resource of Oriental Medicine, Daegu Haany University (Korea, Republic of)] [Research Center for Biomedical Resource of Oriental Medicine, Daegu Haany University (Korea, Republic of); Kim, Ji-Hyun [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of)] [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Han, Bok-Ghee, E-mail: bokghee@nih.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of)] [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Jeon, Jae-Pil, E-mail: jpjeon@cdc.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of)] [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of)

2012-10-19

289

Interactions of Streptococcus iniae with phagocytic cell line.  

PubMed

Streptococcus iniae has become one of the most serious aquatic pathogens in the last decade, causing large losses in wild and farmed fish worldwide. There is clear evidence that this pathogen is capable not only of causing serious disease in fish but also of being transferred to and infecting humans. In this study, we investigate the interaction of S. iniae with two murine macrophage cell lines, J774-A1 and RAW 264.7. Cytotoxicity assay demonstrated significant differences between live and UV-light killed IUSA-1 strains. The burst respiratory activity decreased to baseline after 1 and 4 h of exposure for J774-A1 and RAW 264.7, respectively. Immunofluorescent and ultrastructural study of infected cells confirmed the intracellular localization of bacteria at 1 h and 24 h post-infection. Using qRT-PCR arrays, we investigated the changes in the gene expression of immune relevant genes associated with macrophage activation. In this screening, we identified 11 of 84 genes up-regulated, we observed over-expression of pro-inflammatory response as IL-1?, IL-1?, and TNF-?, without a good anti-inflammatory response. Present findings suggest a capacity of S. iniae to modulate a mammalian macrophages cell lines to their survival and replication intracellular, which makes this cell type as a reservoir for continued infection. PMID:24956597

El Aamri, Fatima; Remuzgo-Martínez, S; Acosta, Félix; Real, Fernando; Ramos-Vivas, José; Icardo, José M; Padilla, Daniel

2015-04-01

290

SOLD1 is expressed in bovine trophoblast cell lines and regulates cell invasiveness  

PubMed Central

Background Secreted protein of Ly-6 domain 1 (SOLD1), a secretory-type member of the Ly-6 superfamily, is expressed in both fetal and maternal tissues throughout gestation. SOLD1 mRNA is expressed in the endometrium and in trophoblast mononucleate and binucleate cells, suggesting it plays an important role not only in placental architecture at early gestation, but also in remodeling the endometrium at late gestation. Here, we investigate the expression of SOLD1 mRNA and protein in trophoblast cell lines. In addition, we examine the effect of SOLD1 on the invasive ability of trophoblast cells. Methods We measured SOLD1 gene expression in thirteen bovine trophoblast (BT) cell lines by using quantitative reverse transcription PCR (qRT-PCR). SOLD1 protein levels were examined in two cell lines, BT-C and BT-K, by using Western blotting and immunocytochemistry. In addition, we measured the invasive activity of BT cells in the presence or absence of anti-bovine SOLD1 antibodies. Results At variable levels, SOLD1 was expressed in all thirteen cell lines; however, expression remained below that of proximal fetal membrane tissue. SOLD1 protein, which was approximately 28 kDa in size, was detected in perinuclear area of the cytoplasm in BT cells. Treatment with anti-bovine SOLD1 antibody had a dose-dependent suppressive effect on the invasiveness of BT-K cell lines. Conclusions The present study is the first to investigate SOLD1 expression in vitro, in trophoblastic cell lines. Our data suggested that SOLD1 is involved in the regulation of the trophoblast invasiveness. Therefore, SOLD1 may play an active and crucial role in mediating communication at the fetomaternal interface. PMID:24950590

2014-01-01

291

Nanotopography induced contact guidance of the F11 cell line during neuronal differentiation: a neuronal model cell line for tissue scaffold development  

Microsoft Academic Search

The F11 hybridoma, a dorsal root ganglion-derived cell line, was used to investigate the response of nociceptive sensory neurons to nanotopographical guidance cues. This established this cell line as a model of peripheral sensory neuron growth for tissue scaffold design. Cells were seeded on substrates of cyclic olefin copolymer (COC) films imprinted via nanoimprint lithography (NIL) with a grating pattern

Paul Wieringa; Ilaria Tonazzini; Silvestro Micera; Marco Cecchini

2012-01-01

292

Cell lines with extended in vitro growth potential from human renal proximal tubule: Characterization, response to inducers, and comparison with established cell lines  

Microsoft Academic Search

Few model systems exist for the study of injury to human renal proximal tubule epithelium. Optimized differentiated human renal epithelial cell lines with extended in vitro growth potential would provide an alternative model system to primary culture or other available non-human mammalian kidney cell lines. For this purpose, human renal tubule epithelial cells were isolated from normal kidney cortex and

Lorraine C. Racusen; C. Monteil; Anita Sgrignoli; Margit Lucskay; S. Marouillat; John G. S. Rhim; Jean-paul Morin

1997-01-01

293

Molecular characterization of oct4-expressing yolk sac endoderm stem cell lines.  

E-print Network

that intermingles with the closely related, anatomically indistinguishable epiblast (EPI)- precursor that gives rise to the fetus. In vitro, the EPI-precursor is represented by the well-known embryonic stem (ES) cell lines, but cell lines representing...

Debeb, Bisrat Godefay

2009-05-15

294

p53 alterations in human squamous cell carcinomas and carcinoma cell lines.  

PubMed Central

p53 alterations were studied in a group of 22 primary squamous cell carcinomas (SCC) of the head and neck and in 10 cell lines derived from SCC. Positive immunohistochemical detection of p53 was accomplished in 10 of 22 primary tumors and in 7 of 10 SCC cell lines. Loss of heterozygosity of chromosome 17p, were the p53 gene is localized, was seen in five of seven SCC lines studied. DNA sequencing of the p53 gene of these five cell lines that had lost one allele showed p53 mutations in the remaining allele. In addition, from six primary SCC that exhibited loss of heterozygosity of chromosome 17p, three showed missense mutations of the p53 gene. The mutations of primary tumors and SCC cell lines were scattered in the midregion of the gene, affecting codons 151, 155, 174, 194, 220, 248, and 273. Five of these mutations modified guanine residues, a phenomenon that has been associated with the effect of carcinogens contained in tobacco smoke. Collectively these data show that approximately 50% of primary tumors and cell lines derived from SCC of the head and neck showed abnormalities of the p53 gene. In addition, it is of interest to note that the most invasive cell lines, as determined in an in vivo assay using xenotransplantation of tumor cells into denuded rat tracheal grafts, exhibited the most intense staining. Similarly, of five very advanced primary tumors, four showed intense p53 immunostain. These observations support the evidence that alterations in this tumor suppressor gene could be related to late events in tumor progression. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7682763

Caamano, J.; Zhang, S. Y.; Rosvold, E. A.; Bauer, B.; Klein-Szanto, A. J.

1993-01-01

295

A Conditional Immortalized Mouse Müller Glial Cell Line Expressing Glial and Retinal Stem Cell Genes  

PubMed Central

Purpose. Müller glia have multiple functions in the retina, including synthesis of neurotrophic factors, uptake and metabolism of neurotransmitters, spatial buffering of ions, maintenance of the blood-retinal barrier, and response to injury. A population of Müller glia has some stem cell-like characteristics both in vivo and in vitro. The purpose of this study was to generate and characterize novel Müller glial cell lines from the postnatal mouse retina. Methods. Cells were cultured from postnatal day (P) 10 double heterozygous transgenic (H-2Kb-tsA58/+; HRhoGFP/+) or C57BL/6 mice after papain dissociation. Interferon gamma (IFN?) induction of the SV40 T-antigen (TAg) was assayed by immunohistochemistry and Western blot analysis. Proliferation was assayed by BrdU uptake and cell counts of calcein AM/ethidium bromide–stained cells. Gene expression was analyzed by RT-PCR and immunohistochemistry. Results. Conditionally immortalized (ImM10 [Immortmouse Müller P10]) and spontaneously immortalized (C57M10 [C57BL/6 Müller P10]) Müller glial cell lines were selected by differential adherence to laminin; both consisted of adherent flat cells with large, diffusely staining nuclei and an epithelial morphology. TAg induction stimulated BrdU uptake by Müller glia in mixed retinal cultures from H-2Kb-tsA58/+; HRhoGFP/+ mice and increased the proliferation of ImM10 cells. ImM10 and C57M10 cells expressed genes characteristic of Müller glia but not genes characteristic of differentiated retinal neurons. ImM10 cells also expressed retinal stem cell genes. Conclusions. The ImM10 cell line is a novel, conditionally immortalized Müller glial cell line isolated from the P10 mouse retina that expresses genes characteristic of Müller glial and retinal stem cells. PMID:20505190

Phillips, M. Joseph

2010-01-01

296

Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: Comparison of the CGH profiles between cancer cell lines and primary cancer tissues  

PubMed Central

Background Cell lines are commonly used in various kinds of biomedical research in the world. However, it remains uncertain whether genomic alterations existing in primary tumor tissues are represented in cell lines and whether cell lines carry cell line-specific genomic alterations. This study was performed to answer these questions. Methods Array-based comparative genomic hybridization (CGH) was employed with 4030 bacterial artificial chromosomes (BACs) that cover the genome at 1.0 megabase resolution to analyze DNA copy number aberrations (DCNAs) in 35 primary breast tumors and 24 breast cancer cell lines. DCNAs were compared between these two groups. A tissue microdissection technique was applied to primary tumor tissues to reduce the contamination of samples by normal tissue components. Results The average number of BAC clones with DCNAs was 1832 (45.3% of spotted clones) and 971 (24.9%) for cell lines and primary tumor tissues, respectively. Gains of 1q and 8q and losses of 8p, 11q, 16q and 17p were detected in >50% of primary cancer tissues. These aberrations were also frequently detected in cell lines. In addition to these alterations, the cell lines showed recurrent genomic alterations including gains of 5p14-15, 20q11 and 20q13 and losses of 4p13-p16, 18q12, 18q21, Xq21.1 and Xq26-q28 that were barely detected in tumor tissue specimens. These are considered to be cell line-specific DCNAs. The frequency of the HER2 amplification was high in both cell lines and tumor tissues, but it was statistically different between cell lines and primary tumors (P = 0.012); 41.3 ± 29.9% for the cell lines and 15.9 ± 18.6% for the tissue specimens. Conclusions Established cell lines carry cell lines-specific DCNAs together with recurrent aberrations detected in primary tumor tissues. It must therefore be emphasized that cell lines do not always represent the genotypes of parental tumor tissues. PMID:20070913

2010-01-01

297

Characterization of a Human Carcinosarcoma Cell Line of the Ovary Established after in Vivo Change of Histologic Differentiation  

Microsoft Academic Search

Objectives. Cell lines are valuable in vitro models for clinical and basic research. Most ovarian cancer cell lines described are serous cystadenocarcinomas or poorly differentiated adenocarcinomas. The establishment of ovarian cancer cell lines with rare histologic differentiation is especially of interest. We describe the establishment of a carcinosarcoma cell line of the ovary after in vivo selection.Methods. The cell line

Volker J. Möbus; Claus D. Gerharz; Wolfgang Weikel; Oliver Merk; Liane Dreher; Rolf Kreienberg; Roland Moll

2001-01-01

298

Response of a mouse hybridoma cell line to heat shock, agitation, and sparging  

NASA Technical Reports Server (NTRS)

A mouse hybridoma cell line is used as a model system for studying the effect of environmental stress on attachment-independent mammalian cells. The full time course of recovery for a mouse hybridoma cell line from both a mild and intermediate heat shock is examined. The pattern of intracellular synthesis is compared for actively growing, log phase cells and nondividing, stationary phase cells.

Passini, Cheryl A.; Goochee, Charles F.

1989-01-01

299

Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro  

Microsoft Academic Search

We describe the derivation of pluripotent embryonic stem (ES) cells from human blastocysts. Two diploid ES cell lines have been cultivated in vitro for extended periods while maintaining expression of markers characteristic of pluripotent primate cells. Human ES cells express the transcription factor Oct-4, essential for development of pluripotential cells in the mouse. When grafted into SCID mice, both lines

Benjamin E. Reubinoff; Chui-Yee Fong; Alan Trounson; Ariff Bongso; Martin F. Pera

2000-01-01

300

Transfer of a human chromosomal vector from a hamster cell line to a mouse embryonic stem cell line.  

PubMed

Two transchromosomic mouse embryonic stem (ES) sublines (ESMClox1.5 and ESMClox2.1) containing a human minichromosome (MC) were established from a sample of hybrid colonies isolated in fusion experiments between a normal diploid mouse ES line and a Chinese hamster ovary line carrying the MC. DNA cytometric and chromosome analyses of ESMClox1.5 and ESMClox2.1 indicated a mouse chromosome complement with a heteroploid constitution in a subtetraploid range; the karyotypes showed various degrees of polysomy for different chromosomes. A single copy of the MC was found in the majority of cells in all the isolated hybrid colonies and was stably maintained in the established sublines for more than 100 cell generations either with or without the selective agent. No significant differences from the ES parental cells were observed in growth characteristics of the transchromosomic ES sublines. ESMClox1.5 cells were unable to grow in soft agar; when cultured in hanging drops, they formed embryoid bodies, and when inoculated in nude mice, they produced teratomas. They were able to express the early development markers Oct4 and Nanog, as demonstrated by reverse transcription-polymerase chain reaction assay. All these features are in common with the ES parental line. Further research using the transchromosomic ES sublines described here may allow gene expression studies on transferred human minichromosomes and could shed light on the relationships among ploidy, pluripotency, cell transformation, and tumorigenesis. Disclosure of potential conflicts of interest is found at the end of this article. PMID:17615268

Paulis, Marianna; Bensi, Mirella; Orioli, Donata; Mondello, Chiara; Mazzini, Giuliano; D'Incalci, Maurizio; Falcioni, Cristiano; Radaelli, Enrico; Erba, Eugenio; Raimondi, Elena; De Carli, Luigi

2007-10-01

301

Equilibrium and kinetic analysis of Autographa californica nuclear polyhedrosis virus attachment to different insect cell lines  

Microsoft Academic Search

The kinetic and equilibrium attachment of Autographa californica nuclear polyhedrosis virus (AcMNPV) to seven insect cell lines was evaluated. Kinetic experi- ments revealed differences of up to 10-fold in the infection rates among cell lines. Equilibrium binding also varied between cell lines and was saturable. The Tn 5B1-4 and Tn F cell lines had the highest virus binding affinities and

T. J. Wickham; M. L. Shuler; D. A. Hammer; R. R. Granados; H. A. Wood

1992-01-01

302

Table 1. Expression of the endogenous B29 gene in lymphocyte lines Cell line B29 level  

E-print Network

Cell line B29 level Herpesvirus Burkitt lymphomas Multiple myelomas BJAB 4.7 neg AF-10 1.5 ND BJAB-B1 neg ND 2F7 2.2 EBV Primary effusion lymphomas Diffuse large B cell lymphomas BC-1 neg EBV, HHV-8 KS-2 of 1.0 for B29 expression in the diffuse large B cell lymphoma line R, as determined by Phosphor

Jacobsen, Steve

303

DNA repair in human promyelocytic cell line, HL-60.  

PubMed Central

The human promyelocytic cell line, HL-60, shows large changes in endogenous poly(ADP-ribose) and in nuclear ADP-ribosyl transferase activity (ADPRT) during its induced myelocytic differentiation. DNA strand-breaks are an essential activator for this enzyme; and transient DNA strand breaks occur during the myelocytic differentiation of HL-60 cells. We have tested the hypothesis that these post-mitotic, terminally differentiating cells are less efficient in DNA repair, and specifically in DNA strand rejoining, than their proliferating precursor cells. We have found that this hypothesis is not tenable. We observe that there is no detectable reduction in the efficiency of DNA excision repair after exposure to either dimethyl sulphate or gamma-irradiation in HL-60 cells induced to differentiate by dimethyl sulphoxide. Moreover, the efficient excision repair of either dimethyl sulphate or gamma-irradiation induced lesions, both in the differentiated and undifferentiated HL-60 cells, is blocked by the inhibition of ADPRT activity. Images PMID:3106934

Farzaneh, F; Feon, S; Lebby, R A; Brill, D; David, J C; Shall, S

1987-01-01

304

Retinal Pigment Epithelial Cell Line Suppression of Phagolysosome Activation  

PubMed Central

The eye is an immune privileged tissue with multiple mechanisms of immunosuppression to protect the light gathering tissues from the damage of inflammation. One of theses mechanisms involves retinal pigment epithelial cell suppression of phagosome activation in macrophages. The objective of this work is to determine if the human RPE cell line ARPE-19 is capable of suppressing the activation of the phagolysosome in macrophages in a manner similar to primary RPE. The conditioned media of RPE eyecups, sub-confluent, just confluent cultures, or established confluent cultures of human ARPE-19 cells were generated. These condition media were used to treat macrophages phagocytizing pHrodo bioparticles. After 24 hours incubation the macrophages were imaged by fluorescent microscopy, and fluorescence was measured. The fluorescent intensity is proportional to the amount of bioparticles phagocytized and are in an activated phagolysosome. The conditioned media of in situ mouse RPE eyecups significantly suppressed the activation of phagolysosome. The conditioned media from cultures of human ARPE-19 cells, grown to sub-confluence (50%) or grown to confluence had no effect on phagolysosome activation. In contrast, the conditioned media from established confluent cultures significantly suppressed phagolysosome activation. The neuropeptides alpha-MSH and NPY were depleted from the conditioned media of established confluent ARPE-19 cell cultures. This depleted conditioned media had diminished suppression of phagolysosome activation while promoting macrophage cell death. In addition, the condition media from cultures of ARPE-19 monolayers wounded with a bisecting scrape was diminished in suppressing phagolysosome activation. This technical report suggests that like primary RPE monolayers, established confluent cultures of ARPE-19 cells produce soluble factors that suppress the activation of macrophages, and can be used to study the molecular mechanisms of retinal immunobiology. In addition, the results further demonstrate the importance of an intact monolayer of RPE cells to modulate immune cell activity within the eye.

Taylor, AW; Dixit, S; Yu, J

2015-01-01

305

Metformin inhibits growth and sensitizes osteosarcoma cell lines to cisplatin through cell cycle modulation.  

PubMed

Osteosarcoma (OS) is the most common cancer that affects the bone and appears to be resistant to several chemotherapeutic drugs. The aim of the present study was to verify whether the combination of metformin and cisplatin has an effect on OS cell lines. OS cell lines U2OS, 143B and MG63 were treated with metformin, cisplatin or a combination of both drugs. Viability, apoptosis and cell cycle were evaluated to characterize the effects of the treatments. Western blot analyses were used to evaluate protein expression. All OS cell lines were found to be sensitive to metformin with different values of IC50, showing a slowdown of cell cycle associated or not with apoptosis. In particular, metformin was able to sensitize cells to cisplatin, to which all OS cell lines were resistant, demonstrating a synergistic effect in the combined treatment of the two drugs. The data obtained may have clinical relevance for novel therapeutic strategies for the treatment of OS; metformin inhibits tumor cell growth and amplifies the effect of cisplatin. PMID:24253938

Quattrini, Irene; Conti, Amalia; Pazzaglia, Laura; Novello, Chiara; Ferrari, Stefano; Picci, Piero; Benassi, Maria Serena

2014-01-01

306

3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines  

SciTech Connect

Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

Qin, J.-Z.; Xin, H. [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States)] [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States); Nickoloff, B.J., E-mail: bnickol@lumc.edu [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States)

2010-05-28

307

3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.  

PubMed

Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma. PMID:20430010

Qin, J-Z; Xin, H; Nickoloff, B J

2010-05-28

308

Light can rescue auxin-dependent synchrony of cell division in a tobacco cell line.  

PubMed

Pattern formation in plants has to cope with ambient variability and therefore must integrate environmental cues such as light. Synchrony of cell divisions was previously observed in cell files of tobacco suspension cultures, which represents a simple case of pattern formation. To develop cellular approaches for light-dependent patterning, light-responsive tobacco cell lines were screened from the cell line Nicotiana tabacum L. cv. Virginia Bright Italia 0 (VBI-0). The light responsive and auxin-autonomous cell line VBI-3 was isolated. As in the progenitor line VBI-0, cell divisions are synchronized in VBI-3 during exponential growth phase. This synchrony can be inhibited by 1-N-naphthylphthalamic acid, an auxin transport inhibitor, and this process was accompanied by the disassembly of actin filaments. However, the synchrony could be rescued when the cells were cultured under white light or with exogenous indolyl-3-acetic acid. The rescue was most efficient for continuous far-red light followed by continuous blue light, whereas continuous red light was least effective. These findings are discussed in the context of phytochrome-induced auxin biosynthesis and auxin-dependent synchrony of cell division. PMID:19884227

Qiao, Fei; Petrásek, Jan; Nick, Peter

2010-01-01

309

Cytotoxic effects of mistletoe (Viscum album L.) in head and neck squamous cell carcinoma cell lines.  

PubMed

Head and neck squamous cell carcinoma is a complex disease with several etiologic factors and different molecular changes that may trigger certain events; it is also globally one of the most common malignancies in this topography. Extracts from Viscum album L. (VA) (mistletoe) have been used as adjuvant therapies with promising results in several types of cancer, mainly in European countries. In vitro studies have demonstrated that various types of VA may have cytotoxicity in carcinoma cells, activating the apoptotic cascade or leading cells to necrosis. This study aimed to verify the effects of three types of VA extracts (Iscador Qu Spezial, Iscador P and Iscador M) in squamous cell carcinoma of the tongue cell lines SCC9 and SCC25, not previously studied. A concentration of 0.3 mg/ml (IC50) of the drugs induced apoptosis, affecting gene expression and protein levels of AKT, PTEN and CYCLIN D1. It was concluded that VA extracts have a cytotoxic effect on SCC9 and SCC25 cell lines, but while SCC9 cell line was more resistant to the action of the drugs, Iscador Qu Spezial and Iscador M have higher cytotoxic potential in both cell lines compared to Iscador P. PMID:24026291

Klingbeil, Ma Fátima G; Xavier, Flávia C A; Sardinha, Luiz R; Severino, Patricia; Mathor, Monica B; Rodrigues, Rodrigo V; Pinto, Décio S

2013-11-01

310

Amphibian Cell Culture: Permanent Cell Line from the Bullfrog (Rana catesbeiana)  

Microsoft Academic Search

A line of fibroblast cells has been established from tongue tissue of the bullfrog (Rana catesbeiana). The cells are near-triploid and were subcultured 57 times during the 22\\/3 years of their existence. Some of their characteristics are described.

Ken Wolf; M. C. Quimby

1964-01-01

311

Is radiosensitive cell line cross-sensitive to heat?: Effect of heat on two rat yolk sac tumor cell lines with different radiosensitivity  

Microsoft Academic Search

The differences between two rat yolk sac tumor cell lines, which are of the same origin but differ in their response to irradiation, in thermal sensitivity and development of thermotolerance were investigated. A radiosensitive cell line NMT-1 is consistently less heat sensitive than the radioresistant cell line NMT-1R. The thermotolerances in NMT-1 and in NMT-1R preheated at 43°C for 30

Norio Mitsuhashi; Mohammad Shahidul Islam; Hideyuki Sakurai; Takeo Takahashi; Osamu Murata; Katsuya Maebayashi; Miwako Nozaki; Tetsuo Akimoto; Hiroyuki Muramatsu; Hideo Niibe

1999-01-01

312

Activin promotes astrocytic differentiation of a multipotent neural stem cell line and an astrocyte progenitor cell line from murine central nervous system  

Microsoft Academic Search

The effects of activin A were investigated on the development of a multipotent neural stem cell line (MEB5) and an astrocyte progenitor cell line (AP-16) that were established from murine central nervous system (CNS). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis demonstrated that each cell line expresses both type I and type II activin receptors and signaling molecules for activin, Smad2,

Motonobu Satoh; Hiromu Sugino; Touho Yoshida

2000-01-01

313

Establishment and characterization of a cell line from human circulating colon cancer cells.  

PubMed

Circulating tumor cells (CTC) in blood are promising new biomarkers potentially useful for prognostic prediction and monitoring of therapies in patients with solid tumors including colon cancer. Moreover, CTC research opens a new avenue for understanding the biology of metastasis in patients with cancer. However, an in-depth investigation of CTCs is hampered by the very low number of these cells, especially in the blood of patients with colorectal cancer. Thus, the establishment of cell cultures and permanent cell lines from CTCs has become the most challenging task over the past year. Here, we describe, for the first time, the establishment of cell cultures and a permanent cell line from CTCs of one patient with colon cancer. The cell line designated CTC-MCC-41 has been cultured for more than one year, and the cells have been characterized at the genome, transcriptome, proteome, and secretome levels. This thorough analysis showed that CTC-MCC-41 cells resemble characteristics of the original tumor cells in the patient with colon cancer and display a stable phenotype characterized by an intermediate epithelial/mesenchymal phenotype, stem cell-like properties, and an osteomimetic signature, indicating a bone marrow origin. Functional studies showed that CTC-MCC-41 cells induced rapidly in vitro endothelial cell tube formation and in vivo tumors after xenografting in immunodeficient mice. The establishment of this first colon cancer CTC line allows now a wealth of functional studies on the biology of CTCs as well as in vitro and in vivo drug testing. Cancer Res; 75(5); 892-901. ©2015 AACR. PMID:25592149

Cayrefourcq, Laure; Mazard, Thibault; Joosse, Simon; Solassol, Jérôme; Ramos, Jeanne; Assenat, Eric; Schumacher, Udo; Costes, Valérie; Maudelonde, Thierry; Pantel, Klaus; Alix-Panabičres, Catherine

2015-03-01

314

Cloning of human XAF1 gene promoter and assay of its transcription activity in a variety of cell lines  

Microsoft Academic Search

To investigate the regulation of tumor suppressor XAF1 gene expression in digestive system cancers, we studied XAF1 gene promoter\\u000a transcription activity and mRNA level in digestive system cancer cell lines (human hepatoma cell line HepG2, human colon cancer\\u000a cell line LoVo, and human gastric cancer cell line AGS) and nontumor cell lines (human embryonic liver cell line L02 (L02\\u000a cells)

Qiong Chen; Qing Yu; Yuhu Song; Peiyuan Li; Ying Chang; Zhijun Wang; Lifeng Liu; Wei Wu; Jusheng Lin

2009-01-01

315

9 CFR 113.52 - Requirements for cell lines used for production of biologics.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 false Requirements for cell lines used for production of biologics...Requirements § 113.52 Requirements for cell lines used for production of biologics...or in a filed Outline of Production each cell line used to prepare a biological...

2010-01-01

316

9 CFR 113.52 - Requirements for cell lines used for production of biologics.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 false Requirements for cell lines used for production of biologics...Requirements § 113.52 Requirements for cell lines used for production of biologics...or in a filed Outline of Production each cell line used to prepare a biological...

2011-01-01

317

Exploring the Transcriptome Space of a Recombinant BHK Cell Line Through Next  

E-print Network

Exploring the Transcriptome Space of a Recombinant BHK Cell Line Through Next Generation Sequencing Abstract: Baby Hamster Kidney (BHK) cell lines are used in the production of veterinary vaccines and recombinant proteins. To facilitate transcriptome analysis of BHK cell lines, we embarked on an effort

Karypis, George

318

LETTER doi:10.1038/nature11003 The Cancer Cell Line Encyclopedia enables predictive  

E-print Network

LETTER doi:10.1038/nature11003 The Cancer Cell Line Encyclopedia enables predictive modelling and pharmacological annotation is available1 . Here we describe the Cancer Cell Line Encyclopedia (CCLE cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479of

Kaski, Samuel

319

Establishment and Characterization of Seven Continuous Cell Lines from Freshwater Fish  

Microsoft Academic Search

Seven continuous cell lines were established from salmonid and nonsalmonid fishes. Salmonid cell lines derived from rainbow trout Oncorhynchus mykiss and chum salmon O. keta were designated RTE and RTE-2 (rainbow trout embryo), RTT (rainbow trout tail), and SEH (“sake” or chum salmon embryo head). Nonsalmonid cell lines derived from pond smelt Hypomesus olidus, chevron snakehead Channa striata, and goldfish

R. D. Fernandez; M. Yoshimizu; T. Kimura; Y. Ezura

1993-01-01

320

CpG island methylation is a common finding in colorectal cancer cell lines  

Microsoft Academic Search

Tumour cell lines are commonly used in colorectal cancer (CRC) research, including studies designed to assess methylation defects. Although many of the known genetic aberrations in CRC cell lines have been comprehensively described, no studies have been performed on their methylation status. In this study, 30 commonly used CRC cell lines as well as seven primary tumours from individuals with

C M Suter; M Norrie; S L Ku; K F Cheong; I Tomlinson; R L Ward

2003-01-01

321

Discriminating Normal and Cancerous Thyroid Cell Lines using Implicit Context Representation Cartesian Genetic Programming  

E-print Network

Discriminating Normal and Cancerous Thyroid Cell Lines using Implicit Context Representation a method for discrimi- nating between thyroid cell lines. Five commercial thyroid cell lines were obtained common thyroid malignancy, followed by follicular carcinoma. Both of these cancers have a high chance

Fernandez, Thomas

322

Investigation of Freeze-Linings in Aluminum Production Cells  

NASA Astrophysics Data System (ADS)

The molten cryolite bath creates chemically a very aggressive environment in the Hall-Héroult cell, and thus, the formation of a protective solid layer (freeze-lining) on the cell wall is essential for the operation of the present cell designs. To provide further information on the formation of the freeze-lining deposit in this system, laboratory-based studies were undertaken using an air-cooled probe technique The effects of process conditions, i.e., time, bath agitation, and superheat on the microstructures, morphologies of the phases, and the phase assemblages adjacent to the deposit/bath interface were investigated. A detailed microstructural analysis of the steady-state deposits shows that a dense sealing primary-phase layer of cryolite solid solution was formed at the interface of the bath deposit for the process conditions examined. The formation of sealing primary-phase layer at the bath/deposit interface explicitly indicates that the deposit/liquid bath interface temperature is equal to that of the liquidus of the bulk bath. The experimentally investigated liquidus temperature and subliquidus equilibria differ significantly from those previously reported.

Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

2014-08-01

323

[Comparative study of MDCK and CaCo-2 cell lines for influenza virus isolation].  

PubMed

Study of effectiveness of CaCo-2 cell line for influenza virus isolation was carried out. It was shown that the properties of this cell line strongly depended on the source of its origin and cultivation conditions. The infectious activity of the influenza viruses on CaCo-2 cell line was virtually the same as in the MDCK cell line. The rate of the viral isolation was virtually identical for both cell lines tested, but viruses from post-mortem materials were isolated only in CaCo-2 cell line. In general, the CaCo-2 line is believed to be a valuable cell line for virological research, particularly for influenza virus isolation. PMID:25069285

Danilenko, D M; Smirnova, T D; Gudkova, T M; Prokopets, A V; Bil'danova, E R; Kadyrova, R A; Slita, A V; Eropkin, M Iu

2014-01-01

324

Red Cell Apheresis with Automated In-Line Filtration  

PubMed Central

Summary Background The aim of this study was to provide data on concurrent red blood cell (RBC) and platelet (PLT) apheresis with RBC in-line leukoreduction and automated addition of saline-adenine-glucose-mannitol (SAGM) using the new version (V6.0) of Trima Accel®. Methods In this two-center paired study, each subject completed a test and a control procedure with an interval of 9 weeks between procedures. In the test arm, single RBC and PLT units were collected on the Trima Accel V6.0 (in-line leukofiltration and automated addition of SAGM). In the control arm, they were collected on Trima Accel V5.1/V5.2 (post-collection leukoreduction, manual SAGM addition). RBC percent hemolysis, potassium concentration and adenosine triphosphate over storage, hemoglobin (Hb) yield, and residual white blood cells (WBC) were determined. Results 34 subjects successfully completed both test and control procedures. Post-storage hemolysis was similar in both groups, and all values were less than 0.8% for both arms. Residual WBC counts in all RBC units were less than 1 × 106/unit. In-line processed RBC units (V6.0) have a significantly higher volume and more Hb/unit due to filtration recovery improvements. All procedures were well tolerated by the subjects. Conclusion In-line filtration and automated addition of storage solution on Trima Accel V6.0 allows collection of ready-to-use RBC units that meet EU requirements. PMID:24847185

Matthes, Gert; Ingilizov, Marin; Dobao, Maria Luz; Marques, Susana; Callaert, Martine

2014-01-01

325

Impaired Accessory Cell Function in a Human Dendritic Cell Line after Human Immunodeficiency Virus Infection  

Microsoft Academic Search

We generated human dendritic cell (DC) hybridoma cell lines by fusing HGPRT-deficient promonocytic U937 cells with immature DCs obtained by culturing peripheral blood monocytes with interleukin-4 (IL-4; 1,000 U\\/ml) and granulocyte-macrophage colony-stimulating factor (100 U\\/ml) for 7 days and mature DCs by treatment with tumor necrosis factor alpha (12.5 g\\/ml) for 3 days. Only one fusion with immature DCs was

Prarthana Beuria; Houchu Chen; Michael Timoney; Kirk Sperber

2005-01-01

326

Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines  

Microsoft Academic Search

While the role of nuclear transcription factor activator protein-1 (AP-1) in cell proliferation, and of nuclear factor-?B (NF-?B) in the suppression of apoptosis are known, their role in survival of prostate cancer cells is not well understood. We investigated the role of NF-?B and AP-1 in the survival of human androgen-independent (DU145) and -dependent (LNCaP) prostate cancer cell lines. Our

Asok Mukhopadhyay; Carlos Bueso-Ramos; Devasis Chatterjee; Panayotis Pantazis; Bharat B Aggarwal

2001-01-01

327

Targeting FoxM1 transcription factor in T-cell acute lymphoblastic leukemia cell line.  

PubMed

The Forkhead box protein M1 (FoxM1) is an important transcription factor having significant roles in various cellular events. FoxM1 overexpression has been reported to be related with many types of cancer. However, it is not known whether it contributes to oncogenesis of acute lymphoblastic leukemia. Siomycin A, a thiazol antibiotic, is known to inhibit FoxM1 transcriptional activity. In this study, we aimed to determine gene expression levels of FoxM1 in Jurkat cells (T-cell acute lymphoblastic leukemia cell line) and therapeutic potential of targeting FoxM1 by siomycin A alone and in combination with dexamethasone which improves the survival of children with T-cell acute lymphoblastic leukemia (ALL). We also examined the molecular mechanisms of siomycin A and dexamethasone-induced cell death in Jurkat cells. We demonstrated that FoxM1 mRNA is highly expressed in Jurkat cells. Dexamethasone and siomycin A caused a significant reduction in gene expression levels of FoxM1 in Jurkat cells. Targeting FoxM1 by siomycin A and dexamethasone caused a significant decrease in T-ALL cell line proliferation through induction of G1 cell cycle arrest. All these findings suggest a possible role of FoxM1 in T-cell ALL pathogenesis and represent FoxM1 as an attractive target for T-cell ALL therapy. PMID:25557384

Tüfekçi, Özlem; Yand?m, Melis Kartal; Ören, Hale; ?rken, Gülersu; Baran, Yusuf

2015-03-01

328

Sourcing human embryos for embryonic stem cell lines: Problems & perspectives  

PubMed Central

The ability to successfully derive human embryonic stem cells (hESC) lines from human embryos following in vitro fertilization (IVF) opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ‘discarded’ or ‘spare’ fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART) and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. In case a couple does not desire to ‘cryopreserve’ their embryos then all the embryos remaining following embryo transfer can be considered ‘spare’ or if a couple is no longer in need of the ‘cryopreserved’ embryos then these also can be considered as ‘spare’. But, the question raised by the ethicists is, “what about ‘slightly’ over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to ‘discarded’ embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of ‘discarding’ embryos. What would be the criteria for discarding embryos and the potential ‘use’ of ESC derived from the ‘abnormal appearing’ embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material. PMID:25673530

Mehta, Rajvi H.

2014-01-01

329

PACAP protects against TNF?-induced cell death in olfactory epithelium and olfactory placodal cell lines.  

PubMed

In mouse olfactory epithelium (OE), pituitary adenylate cyclase-activating peptide (PACAP) protects against axotomy-induced apoptosis. We used mouse OE to determine whether PACAP protects neurons during exposure to the inflammatory cytokine TNF?. Live slices of neonatal mouse OE were treated with 40 ng/ml TNF? ± 40nM PACAP for 6h and dying cells were live-labeled with 0.5% propidium iodide. TNF? significantly increased the percentage of dying cells while co-incubation with PACAP prevented cell death. PACAP also prevented TNF?-mediated cell death in the olfactory placodal (OP) cell lines, OP6 and OP27. Although OP cell lines express all three PACAP receptors (PAC1, VPAC1,VPAC2), PACAP's protection of these cells from TNF? was mimicked by the specific PAC1 receptor agonist maxadilan and abolished by the PAC1 antagonist PACAP6-38. Treatment of OP cell lines with blockers or activators of the PLC and AC/MAPKK pathways revealed that PACAP-mediated protection from TNF? involved both pathways. PACAP may therefore function through PAC1 receptors to protect neurons from cell death during inflammatory cytokine release in vivo as would occur upon viral infection or allergic rhinitis-associated injury. PMID:20654718

Kanekar, Shami; Gandham, Mahendra; Lucero, Mary T

2010-12-01

330

Establishment of a pancreatic stem cell line from fibroblast-derived induced pluripotent stem cells  

PubMed Central

Background For cell therapies to treat diabetes, it is important to produce a sufficient number of pancreatic endocrine cells that function similarly to primary islets. Induced pluripotent stem (iPS) cells represent a potentially unlimited source of functional pancreatic endocrine cells. However, the use of iPS cells for laboratory studies and cell-based therapies is hampered by their high tumorigenic potential and limited ability to generate pure populations of differentiated cell types in vitro. The purpose of this study was to establish a pancreatic stem cell line from iPS cells derived from mouse fibroblasts. Methods Mouse iPS cells were induced to differentiate into insulin-producing cells by a multi-step differentiation protocol, which was conducted as described previously with minor modifications. Selection of the pancreatic stem cell was based on morphology and Pdx1 expression. The pancreatic potential of the pancreatic stem cells was evaluated using a reverse transcription PCR, real-time PCR, immunofluorescence, and a glucose challenge test. To assess potential tumorigenicity of the pancreatic stem cells, the cells were injected into the quadriceps femoris muscle of the left hindlimb of nude mice. Results The iPS-derived pancreatic stem cells expressed the transcription factor –Pdx1– a marker of pancreatic development, and continued to divide actively beyond passage 80. Endocrine cells derived from these pancreatic stem cells expressed insulin and pancreatic genes, and they released insulin in response to glucose stimulation. Mice injected with the pancreatic stem cells did not develop tumors, in contrast to mice injected with an equal number of iPS cells. Conclusion This strategy provides a new approach for generation of insulin-producing cells that is more efficient and safer than using iPS cells. We believe that this approach will help to develop a patient-specific cell transplantation therapy for diabetes in the near future. PMID:24886514

2014-01-01

331

Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines  

PubMed Central

Background The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Methods Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 ?M, 250 ?M and 1000 ?M). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. Results TRD 250 ?M caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1). Conclusions This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis. PMID:21034493

2010-01-01

332

Carbon nanotube biocompatibility with cardiac muscle cells  

NASA Astrophysics Data System (ADS)

Purified carbon nanotubes are new carbon allotropes, sharing similarities with graphite, that have recently been proposed for their potential use with biological systems as probes for in vitro research and for diagnostic and clinical purposes. However the biocompatibility of carbon nanotubes with cells represents an important problem that, so far, remains largely uninvestigated. The objective of this in vitro study is to explore the cytocompatibility properties of purified carbon nanofibres with cardiomyocytes. Cardiac muscle cells from a rat heart cell line H9c2 (2-1) have been used. Highly purified single-walled nanotubes (SWNTs) were suspended at the concentration of 0.2 mg ml-1 by ultrasound in complete Dulbecco's modified Eagle's medium, and administered to cells to evaluate cell proliferation and shape changes by light microscopy, cell viability by trypan blue exclusion, and apoptosis, determined flow cytometrically by annexin/PI staining. Microscopic observation evidenced that carbon nanotubes bind to the cell membrane, causing a slight modification in cell shape and in cell count only after three days of treatment. Cell viability was not affected by carbon nanotubes in the first three days of culture, while after this time, cell death was slightly higher in nanotube-treated cells (p = ns). Accordingly, nanotube treatment induced little and non-significant change in the apoptotic cell number at day 1 and 3. The effect of nanotubes bound to cells was tested by reseeding treated cardiomyocytes. Cells from a trypsinized nanotube-treated sample showed a limited ability to proliferate, and a definite difference in shape, with a high degree of cell death: compared to reseeded untreated ones, in SWNT-treated samples the annexin-positive/PI-negative cells increased from 2.9% to 9.3% in SWNT (p<0.05, where p<0.05 defines a statistically significant difference with a probability above 95%), and the annexin-positive/PI-positive cells increased from 5.2% to 18.7% (p<0.05). However, overtime cells from a trypsinized nanotube-treated sample continued to grow, and partially recovered the original shape. In conclusion our results demonstrate that highly purified carbon nanotubes possess no evident short-term toxicity and can be considered biocompatible with cardiomyocytes in culture, while the long-term negative effects, that are evidenced after reseeding, are probably due to physical rather than chemical interactions.

Garibaldi, Silvano; Brunelli, Claudio; Bavastrello, Valter; Ghigliotti, Giorgio; Nicolini, Claudio

2006-01-01

333

Isolation and Enrichment of Mouse Female Germ Line Stem Cells  

PubMed Central

Objective The existence of female germ-line stem cells (FGSCs) has been the subject of a wide range of recent studies. Successful isolation and culture of FGSCs could facilitate studies on regenerative medicine and infertility treatments in the near future. Our aim in the present study was evaluation of the most commonly used techniques in enrichment of FGSCs and in establishment of the best procedure. Materials and Methods In this experimental study, after digesting neonate ovary from C57Bl/6 mice, we performed 2 different isolation experiments: magnetic activated cell sorting (MACS) and pre-plating. MACS was applied using two different antibodies against mouse vasa homolog (MVH) and stage-specific embryonic antigen-1 (SSEA1) markers. After the cells were passaged and proliferated in vitro, colony-forming cells were characterized using reverse transcription-polymerase chain reaction (RT-PCR) (for analysis of expression of Oct4, Nanog, C-kit, Fragilis, Mvh, Dazl, Scp3 and Zp3), alkaline phosphatase (AP) activity test and immunocytochemistry. Results Data showed that colonies can be seen more frequently in pre-plating technique than that in MACS. Using the SSEA1 antibody with MACS, 1.98 ± 0.49% (Mean ± SDV) positive cells were yield as compared to the total cells sorted. The colonies formed after pre-plating expressed pluripotency and germ stem cell markers (Oct4, Nanog, C-kit, Fragilis, Mvh and Dazl) whereas did not express Zp3 and Scp3 at the mRNA level. Immunocytochemistry in these colonies further confirmed the presence of OCT4 and MVH proteins, and AP activity measured by AP-kit showed positive reaction. Conclusion We established a simple and an efficient pre-plating technique to culture and to enrich FGSCs from neonatal mouse ovaries. PMID:25685731

Khosravi-Farsani, Somayeh; Amidi, Fardin; Habibi Roudkenar, Mehryar; Sobhani, Aligholi

2015-01-01

334

Quantitative assessment of telomerase components in cancer cell lines.  

PubMed

Besides its canonical function of catalyzing the formation of telomeric repeats, many groups have recently reported non-canonical functions of hTERT in particular, and telomerase in general. Regulating transcription is the central basis of non-canonical functions of telomerase. However, unlike reverse transcriptase activity of telomerase that requires only a few molecules of enzymatically active hTERT, non-canonical functions of hTERT or other telomerase components theoretically require several hundred copies. Here, we provide the first direct quantification of all the telomerase components in human cancer cell lines. We demonstrate that telomerase components do not exist in a 1:1 stoichiometric ratio, and there are several hundred copies of hTERT in cells. This provides the molecular basis of hTERT to function in other signaling cascades, including transcription. PMID:25749370

Ak?nc?lar, Semih Can; Low, Kee Chung; Liu, Chia Yi; Yan, Ting Dong; Oji, Asami; Ikawa, Masahito; Li, Shang; Tergaonkar, Vinay

2015-04-13

335

A Cell-Permeable Fluorescent Polymeric Thermometer for Intracellular Temperature Mapping in Mammalian Cell Lines  

PubMed Central

Changes in intracellular temperatures reflect the activity of the cell. Thus, the tool to measure intracellular temperatures could provide valuable information about cellular status. We previously reported a method to analyze the intracellular temperature distribution using a fluorescent polymeric thermometer (FPT) in combination with fluorescence lifetime imaging microscopy (FLIM). Intracellular delivery of the FPT used in the previous study required microinjection. We now report a novel FPT that is cell permeable and highly photostable, and we describe the application of this FPT to the imaging of intracellular temperature distributions in various types of mammalian cell lines. This cell-permeable FPT displayed a temperature resolution of 0.05°C to 0.54°C within the range from 28°C to 38°C in HeLa cell extracts. Using our optimized protocol, this cell-permeable FPT spontaneously diffused into HeLa cells within 10 min of incubation and exhibited minimal toxicity over several hours of observation. FLIM analysis confirmed a temperature difference between the nucleus and the cytoplasm and heat production near the mitochondria, which were also detected previously using the microinjected FPT. We also showed that this cell-permeable FPT protocol can be applied to other mammalian cell lines, COS7 and NIH/3T3 cells. Thus, this cell-permeable FPT represents a promising tool to study cellular states and functions with respect to temperature. PMID:25692871

Hayashi, Teruyuki; Fukuda, Nanaho; Uchiyama, Seiichi; Inada, Noriko

2015-01-01

336

A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in Mammalian cell lines.  

PubMed

Changes in intracellular temperatures reflect the activity of the cell. Thus, the tool to measure intracellular temperatures could provide valuable information about cellular status. We previously reported a method to analyze the intracellular temperature distribution using a fluorescent polymeric thermometer (FPT) in combination with fluorescence lifetime imaging microscopy (FLIM). Intracellular delivery of the FPT used in the previous study required microinjection. We now report a novel FPT that is cell permeable and highly photostable, and we describe the application of this FPT to the imaging of intracellular temperature distributions in various types of mammalian cell lines. This cell-permeable FPT displayed a temperature resolution of 0.05°C to 0.54°C within the range from 28°C to 38°C in HeLa cell extracts. Using our optimized protocol, this cell-permeable FPT spontaneously diffused into HeLa cells within 10 min of incubation and exhibited minimal toxicity over several hours of observation. FLIM analysis confirmed a temperature difference between the nucleus and the cytoplasm and heat production near the mitochondria, which were also detected previously using the microinjected FPT. We also showed that this cell-permeable FPT protocol can be applied to other mammalian cell lines, COS7 and NIH/3T3 cells. Thus, this cell-permeable FPT represents a promising tool to study cellular states and functions with respect to temperature. PMID:25692871

Hayashi, Teruyuki; Fukuda, Nanaho; Uchiyama, Seiichi; Inada, Noriko

2015-01-01

337

Role of alpha-synuclein protein levels in mitochondrial morphology and cell survival in cell lines.  

PubMed

?-Synuclein is highly associated with some neurodegeneration and malignancies. Overexpressing wild-type or mutant ?-synuclein promotes neuronal death by mitochondrial dysfunction, the underlying mechanisms of which remain poorly defined. It was recently reported that ?-synuclein expression could directly lead to mitochondrial fragmentation in vitro and in vivo, which may be due to ?-synuclein localization on mitochondria. Here, we applied a double staining method to demonstrate mitochondrial morphogenetic changes in cells overexpressed with ?-synuclein. We show that mitochondrial localization of ?-synuclein was increased following its overexpression in three distinct cell lines, including HeLa, SH-SY5Y, and PC12 cells, but no alteration in mitochondrial morphology was detected. However, ?-synuclein knockdown prevents MPP(+)-induced mitochondrial fragmentation in SH-SY5Y and PC12 cells. These data suggest that ?-synuclein protein levels hardly affect mitochondrial morphology in normal cell lines, but may have some influence on that under certain environmental conditions. PMID:22558453

Zhu, Min; Li, Wenwei; Lu, Chuanzhen

2012-01-01

338

Induction of cell size vesicles from human lymphoma cell lines and their application to drug carriers  

PubMed Central

Sodium butyrate (NaB) induced the membrane enclosed cell size vesicles from several IgM producing cell lines. We considered the application of the cell-derived vesicles (CDVs) to drug delivery system (DDS) using the lung cancer specific IgM producing AE6 cell line. Microscopic observation showed that the DiI fluorescence labeled AE6 vesicles were incorporated into the lung cancer cell line A549. The anticancer drug, actinomycin D (actD), contained in AE6 and Ramos vesicles decreased the A549 cell viability to 46 and 62% of control without actD, respectively. The cytotoxic effect in AE6 vesicles was superior to that in the Ramos vesicles that have the lung cancer non-specific IgM on their surfaces. However, the result of the Ramos vesicles suggests that the surface molecules other than IgM may interact with the A549 cells. In our method for vesicle production, more specific and abundant antibodies mounted vesicles can be generated by transfection of their genes into cells followed by NaB treatment. These suggest that the CDVs may be useful for the development of a drug carrier for DDS. PMID:20069391

Yamanaka, Makoto; Nakamura, Shigeki; Inoue, Aiko; Yasuda, Takashi; Inoue, Yuichi

2010-01-01

339

Single-cell printing to form three-dimensional lines of olfactory ensheathing cells.  

PubMed

Biological laser printing (BioLP) is a unique tool capable of printing high resolution two- and three-dimensional patterns of living mammalian cells, with greater than 95% viability. These results have been extended to primary cultured olfactory ensheathing cells (OECs), harvested from adult Sprague-Dawley rats. OECs have been found to provide stimulating environments for neurite outgrowth in spinal cord injury models. BioLP is unique in that small load volumes ( approximately microLs) are required to achieve printing, enabling low numbers of OECs to be harvested, concentrated and printed. BioLP was used to form several 8 mm lines of OECs throughout a multilayer hydrogel scaffold. The line width was as low as 20 microm, with most lines comprising aligned single cells. Fluorescent confocal microscopy was used to determine the functionality of the printed OECs, to monitor interactions between printed OECs, and to determine the extent of cell migration throughout the 3D scaffold. High-resolution printing of low cell count, harvested OECs is an important advancement for in vitro study of cell interactions and functionality. In addition, these cell-printed scaffolds may provide an alternative for spinal cord repair studies, as the single-cell patterns formed here are on relevant size scales for neurite outgrowth. PMID:18689930

Othon, Christina M; Wu, Xingjia; Anders, Juanita J; Ringeisen, Bradley R

2008-09-01

340

Identification of replication competent murine gammaretroviruses in commonly used prostate cancer cell lines.  

PubMed

A newly discovered gammaretrovirus, termed XMRV, was recently reported to be present in the prostate cancer cell line CWR22Rv1. Using a combination of both immunohistochemistry with broadly-reactive murine leukemia virus (MLV) anti-sera and PCR, we determined if additional prostate cancer or other cell lines contain XMRV or MLV-related viruses. Our study included a total of 72 cell lines, which included 58 of the 60 human cancer cell lines used in anticancer drug screens and maintained at the NCI-Frederick (NCI-60). We have identified gammaretroviruses in two additional prostate cancer cell lines: LAPC4 and VCaP, and show that these viruses are replication competent. Viral genome sequencing identified the virus in LAPC4 and VCaP as nearly identical to another known xenotropic MLV, Bxv-1. We also identified a gammaretrovirus in the non-small-cell lung carcinoma cell line EKVX. Prostate cancer cell lines appear to have a propensity for infection with murine gammaretroviruses, and we propose that this may be in part due to cell line establishment by xenograft passage in immunocompromised mice. It is unclear if infection with these viruses is necessary for cell line establishment, or what confounding role they may play in experiments performed with these commonly used lines. Importantly, our results suggest a need for regular screening of cancer cell lines for retroviral "contamination", much like routine mycoplasma testing. PMID:21698104

Sfanos, Karen Sandell; Aloia, Amanda L; Hicks, Jessica L; Esopi, David M; Steranka, Jared P; Shao, Wei; Sanchez-Martinez, Silvia; Yegnasubramanian, Srinivasan; Burns, Kathleen H; Rein, Alan; De Marzo, Angelo M

2011-01-01

341

Beta-Cell Lines Derived from Transgenic Mice Expressing a Hybrid Insulin Gene-Oncogene  

Microsoft Academic Search

Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The cells produce both proinsulin I and II and efficiently process each into mature insulin, in a

Shimon Efrat; Susanne Linde; Hans Kofod; David Spector; Michael Delannoy; Seth Grant; Douglas Hanahan; Steinunn Baekkeskov

1988-01-01

342

Human Hepatocellular Carcinoma Cell Lines Secrete the Major Plasma Proteins and Hepatitis B Surface Antigen  

Microsoft Academic Search

Analysis of the cell culture fluid from two new human hepatoma-derived cell lines reveals that 17 of the major human plasma proteins are synthesized and secreted by these cells. One of these cell lines, Hep 3B, also produces the two major polypeptides of the hepatitis B virus surface antigen. When Hep 3B is injected into athymic mice, metastatic hepatocellular carcinomas

Barbara B. Knowles; Chin C. Howe; David P. Aden

1980-01-01

343

Research paper Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line  

E-print Network

Research paper Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line Henry C. Ou hair cell loss in the lateral line in a dose-dependent fashion. The kinetics of hair cell loss during online 19 July 2007 Abstract We have used time-lapse imaging to study cisplatin-induced hair cell death

Rubel, Edwin

344

Development of cell lines from the sheep used to construct the CHORI-243 ovine BAC library  

Technology Transfer Automated Retrieval System (TEKTRAN)

Two cell lines, designated MARC.OVSM and MARC.OKF, were initiated from the aorta and kidney, respectively, obtained from the Texel ram used to make the CHORI-243 Ovine BAC library. These cell lines have been submitted to the NIA Aging Cell Repository at the Coriell Cell Respositories, Camden, NJ, U...

345

Establishment and characterization of a novel untransfected corneal endothelial cell line from New Zealand white rabbits  

Microsoft Academic Search

Purpose: To establish and characterize a novel untransfected corneal endothelial cell line from New Zealand white rabbits (NRCE cell line) for studies on corneal endothelial cells. Methods: Primary culture was initiated with a pure population of NRCE cells from corneal endothelia by successive detachment and reattachment procedure of different durations, and cultured in 20% fetal bovine serum-containing DMEM\\/ F12 media

Tingjun Fan; Dansheng Wang; Jun Zhao; Jing Wang; Yongfeng Fu; Ruichao Guo

346

Glycosphingolipid composition of MDA-MB-231 and MCF7 human breast cancer cell lines  

Microsoft Academic Search

Much evidence has shown that glycosphingolipids are involved in cellular recognition, regulation of cell growth, and metastasis. In the present study, the major glycosphingolipids of two widely studied human breast cancer cell lines were examined. The MCF-7 cell line has functional estrogen and EGF receptors, is dependent on estrogen and EGF for growth, and is uninvasive, while MDA-MB-231 cells are

Keiko Nohara; Fang Wang; Sarah Spiegel

1998-01-01

347

A Focused Microarray for Screening Rat Embryonic Stem Cell Lines  

PubMed Central

Here, we describe a focused microarray for screening rat embryonic stem cells (ESCs) and provide validation data that this array can distinguish undifferentiated rat ESCs from rat trophoblast stem (TS) cells, rat extraembryonic endoderm cells, mouse embryonic fibroblast feeder cells, and differentiated rat ESCs. Using this tool, genuine rat ESC lines, which have been expanded in a conventional rat ESC medium containing two inhibitors (2i), for example, glycogen synthase kinase 3 (GSK3) and mitogen-activated protein kinase (MEK) inhibitors, and leukemia inhibitory factor, and genuine rat ESCs, which have been expanded in rat ESC medium containing four inhibitors (4i), for example, GSK3, MEK, Alk5, and Rho-associated kinase inhibitors were compared; as were genuine rat ESCs from 4 different strains of rats. Expression of Cdx2, a gene associated with trophoblast determination, was observed in genuine, undifferentiated rat ESCs from 4 strains and from both 2i and 4i ESC derivation medium. This finding is in contrast to undifferentiated mouse ESCs that do not express Cdx2. The rat ESC focused microarray described in this report has utility for rapid screening of rat ESCs. This tool will enable optimization of culture conditions in the future. PMID:22889370

Hong, James; He, Hong; Bui, Phuoc; Ryba-White, Ben; Rumi, Mohammad A.K.; Soares, Michael J.; Dutta, Debasree; Paul, Soumen; Kawamata, Masaki; Ochiya, Takahiro; Ying, Qi-Long; Rajanahalli, Pavan

2013-01-01

348

Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines  

SciTech Connect

High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

1997-07-01

349

Tessaric acid derivatives induce G2/M cell cycle arrest in human solid tumor cell lines.  

PubMed

A series of analogs were synthesized in a straightforward manner from naturally available sesquiterpenes ilicic acid and tessaric acid. The in vitro antiproliferative activities were examined in the human solid tumor cell lines A2780, HBL-100, HeLa, SW1573, T-47D and WiDr. The most potent analog induced considerably growth inhibition in the range 1.9-4.5 microM. Cell cycle studies for tessaric acid derivatives indicated a prominent arrest of the cell cycle at the G(2)/M phase. Damage to the cells was permanent as determine by the so called 24+24 drug schedule. PMID:19664930

León, Leticia G; Donadel, Osvaldo J; Tonn, Carlos E; Padrón, José M

2009-09-01

350

Evaluating cell lines as tumour models by comparison of genomic profiles  

PubMed Central

Cancer cell lines are frequently used as in vitro tumour models. Recent molecular profiles of hundreds of cell lines from The Cancer Cell Line Encyclopedia and thousands of tumour samples from the Cancer Genome Atlas now allow a systematic genomic comparison of cell lines and tumours. Here we analyse a panel of 47 ovarian cancer cell lines and identify those that have the highest genetic similarity to ovarian tumours. Our comparison of copy-number changes, mutations and mRNA expression profiles reveals pronounced differences in molecular profiles between commonly used ovarian cancer cell lines and high-grade serous ovarian cancer tumour samples. We identify several rarely used cell lines that more closely resemble cognate tumour profiles than commonly used cell lines, and we propose these lines as the most suitable models of ovarian cancer. Our results indicate that the gap between cell lines and tumours can be bridged by genomically informed choices of cell line models for all tumour types. PMID:23839242

Domcke, Silvia; Sinha, Rileen; Levine, Douglas A.; Sander, Chris; Schultz, Nikolaus

2013-01-01

351

Enhancement of Radiation Response in Osteosarcoma and Rhabomyosarcoma Cell Lines by Histone Deacetylase Inhibition  

SciTech Connect

Purpose: Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. Methods and Materials: Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. Results: SAHA induced an inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). Conclusion: Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.

Blattmann, Claudia, E-mail: claudia.blattmann@med.uni-heidelberg.d [Department of Pediatric Oncology, Hematology, Immunology and Pulmology, University of Heidelberg (Germany); Oertel, Susanne [Department of Radiation Oncology, University of Heidelberg (Germany); Ehemann, Volker [Institute of Pathology, University of Heidelberg (Germany)

2010-09-01

352

The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines.  

PubMed

Cancer stem cells (CSC) are rare drug-resistant cancer cell subsets proposed to be responsible for the maintenance and recurrence of cancer and metastasis. Telomerase is constitutively active in both bulk tumor cell and CSC populations but has only limited expression in normal tissues. Thus, inhibition of telomerase has been shown to be a viable approach in controlling cancer growth in nonclinical studies and is currently in phase II clinical trials. In this study, we investigated the effects of imetelstat (GRN163L), a potent telomerase inhibitor, on both the bulk cancer cells and putative CSCs. When breast and pancreatic cancer cell lines were treated with imetelstat in vitro, telomerase activity in the bulk tumor cells and CSC subpopulations were inhibited. Additionally, imetelstat treatment reduced the CSC fractions present in the breast and pancreatic cell lines. In vitro treatment with imetelstat, but not control oligonucleotides, also reduced the proliferation and self-renewal potential of MCF7 mammospheres and resulted in cell death after <4 weeks of treatment. In vitro treatment of PANC1 cells showed reduced tumor engraftment in nude mice, concomitant with a reduction in the CSC levels. Differences between telomerase activity expression levels or telomere length of CSCs and bulk tumor cells in these cell lines did not correlate with the increased sensitivity of CSCs to imetelstat, suggesting a mechanism of action independent of telomere shortening for the effects of imetelstat on the CSC subpopulations. Our results suggest that imetelstat-mediated depletion of CSCs may offer an alternative mechanism by which telomerase inhibition may be exploited for cancer therapy. PMID:21062983

Joseph, Immanual; Tressler, Robert; Bassett, Ekaterina; Harley, Calvin; Buseman, Christen M; Pattamatta, Preeti; Wright, Woodring E; Shay, Jerry W; Go, Ning F

2010-11-15

353

Establishment of new ovarian and colon carcinoma cell lines: differentiation is only possible by cytokeratin analysis.  

PubMed Central

Two human ovarian (OV-MZ-10, OV-MZ-15) and two colon cancer cell lines (CO-MZ-5, CO-MZ-6) were newly established in permanent cell culture. These cell lines have been maintained in vitro for 5-6 years, the passage number varying from 25 to 228. They were established from ascites or solid tumours at the time of primary surgery. By clinical and histopathological judgement alone all four cell lines would have been interpreted as ovarian cancer cell lines. Morphological criteria or the expression of the tumour-associated antigens CA-125 and CEA allowed no differential diagnosis. Only the analysis of the expression of different cytokeratins and vimentin enabled us to verify the different origin of the cell lines. Ovarian cancer cell lines, in contrast to the colon cancer cell lines, are positive for the expression of cytokeratin (CK) 7 and for vimentin. CK 20 proved to be the marker with the best discrimination. CK 20 was found exclusively in the colon carcinoma cell lines, but not in the ovarian carcinoma cell lines. The evaluation of cytokeratin expression is a helpful diagnostic modality in differentiating between adenocarcinoma cell lines derived from ovarian and colon tumours. Images Figure 1 Figure 2 PMID:7510115

Möbus, V. J.; Moll, R.; Gerharz, C. D.; Kieback, D. G.; Weikel, W.; Hoffmann, G.; Kreienberg, R.

1994-01-01

354

Characterization of a Human Squamous Carcinoma Cell Line Resistant to m-Diamminedichloroplatinum(II)1  

Microsoft Academic Search

We have developed a human head and neck squamous cell carcinoma cell line (SCC-25\\/CP) which is relatively stably resistant to m-diam- minedichloroplatinum(II) (('1)1)1') after repeated exposure to escalating doses of the drug. The studies reported elucidate the mechanism(s) by which the SCC-25\\/CP cell line is resistant to CDDP. The SCC-25\\/CP cell line is approximately 30-fold resistant to CDDP, approximately 10-

Beverly A. Teicher; Sylvia A. Holden; Michael J. Kelley; Thomas C. Shea; Carol A. Cucchi; Andre Rosowsky; W. David Henner; Emil Frei

1987-01-01

355

Tick cell lines: tools for tick and tick-borne disease research  

Microsoft Academic Search

Over 40 cell lines are currently available from 13 ixodid\\u000aand one argasid tick species. The successful isolation\\u000aand propagation of several economically important tickborne\\u000apathogens in tick cell lines has created a useful\\u000amodel to study interactions between tick cells and\\u000athese viral and bacterial disease agents. Tick cell lines\\u000ahave already proved to be a useful tool in

Lesley Bell-Sakyi; Erich Zweygarth; Edmour F. Blouin; Ernest A. Gould; Frans Jongejan

2007-01-01

356

Persistence of betanodavirus in Barramundi brain (BB) cell line involves the induction of Interferon response  

Microsoft Academic Search

The BB cell line derived from the brain tissue of a barramundi (Lates calcarifer) that survived nervous necrosis virus (NNV) infection is persistently infected with NNV. To elucidate whether interferon (IFN) plays a role in the mechanism of NNV-persistent infection in BB cell line, a virus-negative control cell line was obtained by treating BB cells with NNV-specific rabbit antiserum for

Y. C. Wu; S. C. Chi

2006-01-01

357

Network signatures of cellular immortalization in human lymphoblastoid cell lines  

SciTech Connect

Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)] [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of); Jeon, Jae-Pil, E-mail: jaepiljeon@hanmail.net [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)] [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)

2013-11-15

358

Macrophage cell lines derived from major histocompatibility complex II-negative mice  

NASA Technical Reports Server (NTRS)

Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

1998-01-01

359

Establishment and characterization of 7 novel hepatocellular carcinoma cell lines from patient-derived tumor xenografts.  

PubMed

Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis worldwide and the molecular mechanism is not well understood. This study aimed to establish a collection of human HCC cell lines from patient-derived xenograft (PDX) models. From the 20 surgical HCC sample collections, 7 tumors were successfully developed in immunodeficient mice and further established 7 novel HCC cell lines (LIXC002, LIXC003, LIXC004, LIXC006, LIXC011, LIXC012 and CPL0903) by primary culture. The characterization of cell lines was defined by morphology, growth kinetics, cell cycle, chromosome analysis, short tandem repeat (STR) analysis, molecular profile, and tumorigenicity. Additionally, response to clinical chemotherapeutics was validated both in vitro and in vivo. STR analysis indicated that all cell lines were unique cells different from known cell lines and free of contamination by bacteria or mycoplasma. The other findings were quite heterogeneous between individual lines. Chromosome aberration could be found in all cell lines. Alpha-fetoprotein was overexpressed only in 3 out of 7 cell lines. 4 cell lines expressed high level of vimentin. Ki67 was strongly stained in all cell lines. mRNA level of retinoic acid induced protein 3 (RAI3) was decreased in all cell lines. The 7 novel cell lines showed variable sensitivity to 8 tested compounds. LIXC011 and CPL0903 possessed multiple drug resistance property. Sorafenib inhibited xenograft tumor growth of LIXC006, but not of LIXC012. Our results indicated that the 7 novel cell lines with low passage maintaining their clinical and pathological characters could be good tools for further exploring the molecular mechanism of HCC and anti-cancer drug screening. PMID:24416385

Xin, Hong; Wang, Ke; Hu, Gang; Xie, Fubo; Ouyang, Kedong; Tang, Xuzhen; Wang, Minjun; Wen, Danyi; Zhu, Yizhun; Qin, Xiaoran

2014-01-01

360

Establishment and Characterization of 7 Novel Hepatocellular Carcinoma Cell Lines from Patient-Derived Tumor Xenografts  

PubMed Central

Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis worldwide and the molecular mechanism is not well understood. This study aimed to establish a collection of human HCC cell lines from patient-derived xenograft (PDX) models. From the 20 surgical HCC sample collections, 7 tumors were successfully developed in immunodeficient mice and further established 7 novel HCC cell lines (LIXC002, LIXC003, LIXC004, LIXC006, LIXC011, LIXC012 and CPL0903) by primary culture. The characterization of cell lines was defined by morphology, growth kinetics, cell cycle, chromosome analysis, short tandem repeat (STR) analysis, molecular profile, and tumorigenicity. Additionally, response to clinical chemotherapeutics was validated both in vitro and in vivo. STR analysis indicated that all cell lines were unique cells different from known cell lines and free of contamination by bacteria or mycoplasma. The other findings were quite heterogeneous between individual lines. Chromosome aberration could be found in all cell lines. Alpha-fetoprotein was overexpressed only in 3 out of 7 cell lines. 4 cell lines expressed high level of vimentin. Ki67 was strongly stained in all cell lines. mRNA level of retinoic acid induced protein 3 (RAI3) was decreased in all cell lines. The 7 novel cell lines showed variable sensitivity to 8 tested compounds. LIXC011 and CPL0903 possessed multiple drug resistance property. Sorafenib inhibited xenograft tumor growth of LIXC006, but not of LIXC012. Our results indicated that the 7 novel cell lines with low passage maintaining their clinical and pathological characters could be good tools for further exploring the molecular mechanism of HCC and anti-cancer drug screening. PMID:24416385

Hu, Gang; Xie, Fubo; Ouyang, Kedong; Tang, Xuzhen; Wang, Minjun; Wen, Danyi; Zhu, Yizhun; Qin, Xiaoran

2014-01-01

361

Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy  

Microsoft Academic Search

BACKGROUND: Musashi1 (Msi1) is an RNA binding protein with a central role during nervous system development and stem cell maintenance. High levels of Msi1 have been reported in several malignancies including brain tumors thereby associating Msi1 and cancer. METHODS: We used the human medulloblastoma cell line Daoy as model system in this study to knock down the expression of Msi1

Patricia C Sanchez-Diaz; Tarea L Burton; Suzanne C Burns; Jaclyn Y Hung

2008-01-01

362

The acceptability of continuous cell lines: A personal & historical perspective.  

PubMed

In the 1950s, only primary cell cultures were acceptable for the production of human biological products. This position was challenged in the late 1960s by human diploid cells (HDCs), and again in the 1980s by continuous cell lines (CCLs). The history of the HDC controversy is reviewed and lessons from that era that are relevant to the use of CCLs are pointed out. It became apparent in the early days of recombinant DNA technology in the 1980s that CCLs were needed for the development of some products. CCL acceptability therefore became more urgent, and several attempts were made to reach a consensus on regulatory issues. In 1986, the World Health Organization convened a Study Group to review the safety issues related to products derived from CCLs. The Study Group made a clear recommendation to pursue CCLs in product development because of the demonstrated capability of modern manufacturing processes to cope with contaminants. Issues such as acceptable levels of cellular DNA in products and the relationship of purity to safety are discussed in the context of the need for regulatory authorities, industry, and the general biomedical community to cooperate in addressing problems in a rational scientific manner. PMID:22358631

Petricciani, J C

1995-01-01

363

Adaptive Line Size Cache for Irregular References on Cell Multicore Processor  

E-print Network

Adaptive Line Size Cache for Irregular References on Cell Multicore Processor Qian Cao, Chongchong Beijing, China caoqian125@126.com Abstract. Software cache promises to achieve programmability on Cell the cache line is always set to a specific size. In this paper, we propose an adaptive cache line

Boyer, Edmond

364

Differential effects of cytotoxic drugs on mortal and immortalized B-lymphoblastoid cell lines from normal and Werner's syndrome patients.  

PubMed

We studied the effects of nine cytotoxic drugs on three groups of B-lymphoblastoid cell lines transformed by Epstein-Barr virus (EBV): group 1, mortal cell lines from normal individuals; group 2, immortalized cell lines from normal individuals with strong telomerase activity; group 3, mortal cell lines from Werner's syndrome (WS) patients. Aminoglycoside antibiotics and alkylating drugs showed significantly stronger cytotoxic effects on immortalized cell lines than on mortal cell lines or the cell lines before immortalization. In contrast, topoisomerase II inhibitors showed no difference or they tended to be less cytotoxic to immortalized cell lines. Mortal cell lines from normal individuals and WS patients showed no difference in sensitivity against all the drugs examined except for the topoisomerase I inhibitor, camptothecin, which had a stronger cytotoxic effect on WS cell lines than other cell lines. We discuss the mechanisms underlying these cytotoxic effects. PMID:9556152

Okada, M; Goto, M; Furuichi, Y; Sugimoto, M

1998-03-01

365

The plasticity and potential of leukemia cell lines to differentiate into dendritic cells  

PubMed Central

Dendritic cells (DCs) are potent antigen-presenting cells that orchestrate the innate and adaptive immune systems to induce immunity. DCs are significant in maintaining immune tolerance towards self-antigens, organ transplantation and allergic responses. DCs are powerful adjuvants for eliciting T-cell immunity and are therefore considered primary targets for inducing immune responses in the prevention and treatment of infectious diseases and cancer. DCs have been increasingly applied in the immunotherapy of cancer worldwide during the last decade; however, a number of the highly specialized biological characteristics of DCs remain to be elucidated. Previous studies of human DCs have been constrained by certain difficulties, therefore the majority of studies have been carried out using in vitro model systems. Suitable cell lines with dendritic-like properties may provide valuable tools for the study of DC physiology and pathology. In the current review, various human DC line differentiation models are discussed. Certain cell lines provide valuable tools for studying the specific aspects of DC biology, despite variations in cell biological and immunological features when compared with primary DCs. PMID:23226789

GUO, QINGWEI; ZHANG, LELING; LI, FU; JIANG, GUOSHENG

2012-01-01

366

Isolation and Immortalization of Patient-derived Cell Lines from Muscle Biopsy for Disease Modeling.  

PubMed

The generation of patient-specific cell lines represents an invaluable tool for diagnostic or translational research, and these cells can be collected from skin or muscle biopsy tissue available during the patient's diagnostic workup. In this protocol, we describe a technique for live cell isolation from small amounts of muscle or skin tissue for primary cell culture. Additionally, we provide a technique for the immortalization of myogenic cell lines and fibroblast cell lines from primary cells. Once cell lines are immortalized, substantial expansion of patient-derived cells can be achieved. Immortalized cells are amenable to many downstream applications, including drug screening and in vitro correction of the genetic mutation. Altogether, these protocols provide a reliable tool to generate and preserve patient-derived cells for downstream applications. PMID:25651101

Robin, Jerome D; Wright, Woody E; Zou, Yaqun; Cossette, Stacy C; Lawlor, Michael W; Gussoni, Emanuela

2015-01-01

367

Adult T-Cell Leukemia: Antigen in an ATL Cell Line and Detection of Antibodies to the Antigen in Human Sera  

Microsoft Academic Search

Indirect immunofluorescence of certain human sera demonstrated an antigen(s) in the cytoplasm of 1-5% of the cells of a T-cell line, MT-1, from a patient with adult T-cell leukemia (ATL), which is endemic in southwestern Japan. The antigen was not detected in other human lymphoid cell lines, including six T-cell lines, seven B-cell lines, and four non-T non-B cell lines.

Yorio Hinuma; Kinya Nagata; Masao Hanaoka; Masuyo Nakai; Tadashi Matsumoto; Ken-Ichiro Kinoshita; Shigeru Shirakawa; Isao Miyoshi

1981-01-01

368

Beta-cell markers and autoantigen expression by a human insulinoma cell line: similarities to native beta cells.  

PubMed

In the present study we have evaluated the expression of different beta-cell markers, islet molecules and auto-antigens relevant in diabetes autoimmunity by a human insulinoma cell line (CM) in order to define its similarities with native beta cells and to discover whether it could be considered as a model for studies on immunological aspects of Type 1 diabetes. First, the positivity of the CM cell line for known markers of neuroendocrine derivation was determined by means of immunocytochemical analysis using different anti-islet monoclonal antibodies including A2B5 and 3G5 reacting with islet gangliosides, and HISL19 binding to an islet glycoprotein. Secondly, the expression and characteristics of glutamic acid decarboxylase (GAD) and of GM2-1 ganglioside, both known to be islet autoantigens in diabetes autoimmunity and expressed by human native beta cells, were investigated in the CM cell line. The pattern of ganglioside expression in comparison to that of native beta cells was also evaluated. Thirdly, the binding of diabetic sera to CM cells reacting with islet cytoplasmic antigens (ICA) was studied by immunohistochemistry. The results of this study showed that beta cell markers identified by anti-islet monoclonal antibodies A2B5, 3G5 and HISL-19 are expressed by CM cells; similarly, islet molecules such as GAD and GM2-1 ganglioside are present and possess similar characteristics to those found in native beta cells; the pattern of expression of other gangliosides by CM cells is also identical to human pancreatic islets; beta cell autoantigen(s) reacting with antibodies present in islet cell antibodies (ICA) positive diabetic sera identified by ICA binding are also detectable in this insulinoma cell line. We conclude that CM cells show close similarities to native beta cells with respect to the expression of neuro-endocrine markers, relevant beta cell autoantigens in Type 1 diabetes (GAD, GM2-1, ICA antigen), and other gangliosides. Therefore, this insulinoma cell line may be considered as an ideal model for studies aimed at investigating autoimmune phenomena occurring in Type 1 diabetes. PMID:8708552

Cavallo, M G; Dotta, F; Monetini, L; Dionisi, S; Previti, M; Valente, L; Toto, A; Di Mario, U; Pozzilli, P

1996-07-01

369

Glial cell line-derived neurotrophic factor receptor ?1 availability regulates glial cell line-derived neurotrophic factor signaling: evidence from mice carrying one or two mutated alleles  

Microsoft Academic Search

Glial cell line-derived neurotrophic factor receptor ?1 (GFR?1, also known as GDNFR-?) is a glycolipid-anchored membrane protein of the GFR? family, which binds glial cell line-derived neurotrophic factor [Jing S. et al. (1996) Cell85, 1113–1124; Treanor J. J. et al. (1996) Nature382, 80–83], a survival factor for several populations of central and peripheral neurons, including midbrain dopamine neurons [Lin L.

A. C. Tomac; A. Grinberg; S. P. Huang; C. Nosrat; Y. Wang; C. Borlongan; S.-Z. Lin; Y.-H. Chiang; L. Olson; H. Westphal; B. J. Hoffer

1999-01-01

370

Pluripotent stem cells of the mouse as a potential in vitro model for mammalian germ cells. Sister chromatid exchanges induced by MMC and ENU in undifferentiated cell lines compared to differentiated cell lines  

Microsoft Academic Search

We tried to develop an in-vitro test system which could serve as a model for mammalian germ cells in vivo. Two pluripotent cell types were used, because they express some germ cell specific immunological and biochemical markers: (1) Embryonal carcinoma cells (ECC) of the line P19 had been isolated from a teratocarcinoma of murine primordial germ cells (PGC). (2) Embryonal

Susanne Bremer; Richard Vogel

1999-01-01

371

Transcription factor binding predicts histone modifications in human cell lines  

PubMed Central

Gene expression in higher organisms is thought to be regulated by a complex network of transcription factor binding and chromatin modifications, yet the relative importance of these two factors remains a matter of debate. Here, we show that a computational approach allows surprisingly accurate prediction of histone modifications solely from knowledge of transcription factor binding both at promoters and at potential distal regulatory elements. This accuracy significantly and substantially exceeds what could be achieved by using DNA sequence as an input feature. Remarkably, we show that transcription factor binding enables strikingly accurate predictions across different cell lines. Analysis of the relative importance of specific transcription factors as predictors of specific histone marks recapitulated known interactions between transcription factors and histone modifiers. Our results demonstrate that reported associations between histone marks and gene expression may be indirect effects caused by interactions between transcription factors and histone-modifying complexes. PMID:25187560

Benveniste, Dan; Sonntag, Hans-Joachim; Sanguinetti, Guido; Sproul, Duncan

2014-01-01

372

Lymphoblastoid cell lines in pharmacogenomic discovery and clinical translation  

PubMed Central

The ability to predict how an individual patient will respond to a particular treatment is the ambitious goal of personalized medicine. The genetic make up of an individual has been shown to play a role in drug response. For pharmacogenomic studies, human lymphoblastoid cell lines (LCLs) comprise a useful model system for identifying genetic variants associated with pharmacologic phenotypes. The availability of extensive genotype data for many panels of LCLs derived from individuals of diverse ancestry allows for the study of genetic variants contributing to interethnic and interindividual variation in susceptibility to drugs. Many genome-wide association studies for drug-induced phenotypes have been performed in LCLs, often incorporating gene-expression data. LCLs are also being used in follow-up studies to clinical findings to determine how an associated variant functions to affect phenotype. This review describes the most recent pharmacogenomic findings made in LCLs, including the translation of some findings to clinical cohorts. PMID:22176622

Wheeler, Heather E; Dolan, M Eileen

2012-01-01

373

Genetic Inheritance of Gene Expression in Human Cell Lines  

PubMed Central

Combining genetic inheritance information, for both molecular profiles and complex traits, is a promising strategy not only for detecting quantitative trait loci (QTLs) for complex traits but for understanding which genes, pathways, and biological processes are also under the influence of a given QTL. As a primary step in determining the feasibility of such an approach in humans, we present the largest survey to date, to our knowledge, of the heritability of gene-expression traits in segregating human populations. In particular, we measured expression for 23,499 genes in lymphoblastoid cell lines for members of 15 Centre d'Etude du Polymorphisme Humain (CEPH) families. Of the total set of genes, 2,340 were found to be expressed, of which 31% had significant heritability when a false-discovery rate of 0.05 was used. QTLs were detected for 33 genes on the basis of at least one P value <.000005. Of these, 13 genes possessed a QTL within 5 Mb of their physical location. Hierarchical clustering was performed on the basis of both Pearson correlation of gene expression and genetic correlation. Both reflected biologically relevant activity taking place in the lymphoblastoid cell lines, with greater coherency represented in Kyoto Encyclopedia of Genes and Genomes database (KEGG) pathways than in Gene Ontology database pathways. However, more pathway coherence was observed in KEGG pathways when clustering was based on genetic correlation than when clustering was based on Pearson correlation. As more expression data in segregating populations are generated, viewing clusters or networks based on genetic correlation measures and shared QTLs will offer potentially novel insights into the relationship among genes that may underlie complex traits. PMID:15514893

Monks, S. A.; Leonardson, A.; Zhu, H.; Cundiff, P.; Pietrusiak, P.; Edwards, S.; Phillips, J. W.; Sachs, A.; Schadt, E. E.

2004-01-01

374

Nuclear Motility in Glioma Cells Reveals a Cell-Line Dependent Role of Various Cytoskeletal Components  

PubMed Central

Nuclear migration is a general term for the movement of the nucleus towards a specific site in the cell. These movements are involved in a number of fundamental biological processes, such as fertilization, cell division, and embryonic development. Despite of its importance, the mechanism of nuclear migration is still poorly understood in mammalian cells. In order to shed light on the mechanical processes underlying nuclear movements, we adapted a micro-patterning based assay. C6 rat and U87 human glioma cells seeded on fibronectin patterns - thereby forced into a bipolar morphology - displayed oscillatory movements of the nucleus or the whole cell, respectively. We found that both the actomyosin system and microtubules are involved in the nuclear/cellular movements of both cell lines, but their contributions are cell-/migration-type specific. Dynein activity was necessary for nuclear migration of C6 cells but active myosin-II was dispensable. On the other hand, coupled nuclear and cellular movements of U87 cells were driven by actomyosin contraction. We explain these cell-line dependent effects by the intrinsic differences in the overall mechanical tension due to the various cytoskeletal elements inside the cell. Our observations showed that the movements of the nucleus and the centrosome are strongly correlated and display large variation, indicating a tight but flexible coupling between them. The data also indicate that the forces responsible for nuclear movements are not acting directly via the centrosome. Based on our observations, we propose a new model for nuclear oscillations in C6 cells in which dynein and microtubule dynamics are the main drivers of nuclear movements. This mechanism is similar to the meiotic nuclear oscillations of Schizosaccharomyces pombe and may be evolutionary conserved. PMID:24691067

Kiss, Alexa; Horvath, Peter; Rothballer, Andrea; Kutay, Ulrike; Csucs, Gabor

2014-01-01

375

Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis mossambicus) Cell Lines  

PubMed Central

Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (? passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371

Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar

2014-01-01

376

Human fibroblast-derived cell lines have characteristics of embryonic stem cells and cells of neuro-ectodermal origin.  

PubMed

Fibroblasts are the most ubiquitous cells in complex organisms. They are the main cells of stromal tissue and play an important role in repair and healing of damaged organs. Here we report new data-initially serendipitous findings-that fibroblast-derived cell line (human fetal lung derived cells, MRC-5) have the morphology, growth rate and gene expression pattern characteristic of embryonic stem cells and cells of neuro-ectodermal origin. We have developed a serum-free culture system to maintain these cells in proliferative state. We discovered that, at proliferative state, these cells express transcription factors of pluripotent cells, OCT-3/4 and REX-1, and embryonic cell surface antigens SSEA-1, SSEA-3, and SSEA-4, as well as TRA-1-60 and TRA-1-81. In addition to embryonic cell markers, the fibroblasts expressed neuroectodermal genes: Musashi-1, nestin, medium neurofilament, and beta-III tubulin. RT-PCR data revealed that mesencephalic transcription factors, Nurr-1 and PTX-3, were also expressed in MRC-5 cells, and that these cells could be induced to express tyrosine hydroxylase (TH). Expression of TH followed down-regulation of genes associated with cell proliferation, OCT-3/4, REX-1, and beta-catenin. These data indicate that the cells commonly known as fibroblasts have some of the characteristics of stem cells, and can be induced to become neuroectodermal cells and perhaps even mature neurons. PMID:16351691

Rieske, Piotr; Krynska, Barbara; Azizi, S Ausim

2005-12-01

377

Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos  

SciTech Connect

Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines.

Fang, Zhen F. [Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kong Jiang Road, Shanghai 200092 (China); Gai, Hui [Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kong Jiang Road, Shanghai 200092 (China); Huang, You Z. [Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kong Jiang Road, Shanghai 200092 (China); Institute of Biochemistry and Cell Biology, Shanghai Institute for Biology Sciences, Chinese Academy of Science, Shanghai 200092 (China); Li, Shan G. [Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kong Jiang Road, Shanghai 200092 (China); Chen, Xue J. [Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kong Jiang Road, Shanghai 200092 (China); Shi, Jian J. [Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kong Jiang Road, Shanghai 200092 (China); Institute of Biochemistry and Cell Biology, Shanghai Institute for Biology Sciences, Chinese Academy of Science, Shanghai 200092 (China); Wu, Li [Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kong Jiang Road, Shanghai 200092 (China); Liu, Ailian [Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kong Jiang Road, Shanghai 200092 (China); Xu, Ping [Shanghai Laboratory Animal Center, Chinese Academy of Science, Shanghai 201615 (China); Sheng, Hui Z. [Center for Developmental Biology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kong Jiang Road, Shanghai 200092 (China)]. E-mail: hzsheng2003@yahoo.com

2006-11-01

378

Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast  

PubMed Central

In the present article, we describe a study of antitumor activity in breast cell lines using silver nanoparticles (Ag NPs) synthesized by a microbiological method. These Ag NPs were tested for their antitumor activity against MCF7 and T47D cancer cells and MCF10-A normal breast cell line. We analyzed cell viability, apoptosis induction, and endocytosis activity of those cell lines and we observed that the effects of the biosynthesized Ag NPs were directly related with the endocytosis activity. Moreover, Ag NPs had higher inhibition efficacy in tumor lines than in normal lines of breast cells, which is due to the higher endocytic activity of tumor cells compared to normal cells. In this way, we demonstrate that biosynthesized Ag NPs can be an alternative for the treatment of tumors.

Ortega, Francisco G; Fernández-Baldo, Martín A; Fernández, Jorge G; Serrano, María J; Sanz, María I; Diaz-Mochón, Juan J; Lorente, José A; Raba, Julio

2015-01-01

379

Akabane Virus Utilizes Alternative Endocytic Pathways to Entry into Mammalian Cell Lines  

PubMed Central

ABSTRACT The entry mechanisms of Akabane virus (AKAV), Bunyaviridae family, have not yet been determined. In this study, chemical inhibitors were used to analyze endocytic mechanisms during AKAV infection of mammalian cell lines. The analyses using drug treatments followed by quantitative measurement of viral RNA and N protein revealed that AKAV enters non-bovine-derived cell lines (Vero, HmLu-1 and BHK cells) in a manner indicative of clathrin endocytosis. By contrast, AKAV infection in bovine-derived cell lines (LB9.K and MDBK cells) is independent of this pathway. Further analyses indicated that AKAV entry into bovine cell lines involves a non-clathrin, non-caveolae endocytic pathway that is dependent on dynamin. We conclude that although both cell types require a low pH for AKAV penetration, AKAV utilizes alternative entry pathways into mammalian cell lines. PMID:25056673

BANGPHOOMI, Norasuthi; TAKENAKA-UEMA, Akiko; SUGI, Tatsuki; KATO, Kentaro; AKASHI, Hiroomi; HORIMOTO, Taisuke

2014-01-01