Science.gov

Sample records for h9n2 avian influenza

  1. Genesis of avian influenza H9N2 in Bangladesh.

    PubMed

    Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Alam, SMRabiul; Hasan, MKamrul; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-12-01

    Avian influenza subtype H9N2 is endemic in many bird species in Asia and the Middle East and has contributed to the genesis of H5N1, H7N9 and H10N8, which are potential pandemic threats. H9N2 viruses that have spread to Bangladesh have acquired multiple gene segments from highly pathogenic (HP) H7N3 viruses that are presumably in Pakistan and currently cocirculate with HP H5N1. However, the source and geographic origin of these H9N2 viruses are not clear. We characterized the complete genetic sequences of 37 Bangladeshi H9N2 viruses isolated in 2011-2013 and investigated their inter- and intrasubtypic genetic diversities by tracing their genesis in relationship to other H9N2 viruses isolated from neighboring countries. H9N2 viruses in Bangladesh are homogenous with several mammalian host-specific markers and are a new H9N2 sublineage wherein the hemagglutinin (HA) gene is derived from an Iranian H9N2 lineage (Mideast_B Iran), the neuraminidase (NA) and polymerase basic 2 (PB2) genes are from Dubai H9N2 (Mideast_C Dubai), and the non-structural protein (NS), nucleoprotein (NP), matrix protein (MP), polymerase acidic (PA) and polymerase basic 1 (PB1) genes are from HP H7N3 originating from Pakistan. Different H9N2 genotypes that were replaced in 2006 and 2009 by other reassortants have been detected in Bangladesh. Phylogenetic and molecular analyses suggest that the current genotype descended from the prototypical H9N2 lineage (G1), which circulated in poultry in China during the late 1990s and came to Bangladesh via the poultry trade within the Middle East, and that this genotype subsequently reassorted with H7N3 and H9N2 lineages from Pakistan and spread throughout India. Thus, continual surveillance of Bangladeshi HP H5N1, H7N3 and H9N2 is warranted to identify further evolution and adaptation to humans. PMID:26038507

  2. Genesis of avian influenza H9N2 in Bangladesh

    PubMed Central

    Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Alam, SMRabiul; Hasan, MKamrul; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Avian influenza subtype H9N2 is endemic in many bird species in Asia and the Middle East and has contributed to the genesis of H5N1, H7N9 and H10N8, which are potential pandemic threats. H9N2 viruses that have spread to Bangladesh have acquired multiple gene segments from highly pathogenic (HP) H7N3 viruses that are presumably in Pakistan and currently cocirculate with HP H5N1. However, the source and geographic origin of these H9N2 viruses are not clear. We characterized the complete genetic sequences of 37 Bangladeshi H9N2 viruses isolated in 2011–2013 and investigated their inter- and intrasubtypic genetic diversities by tracing their genesis in relationship to other H9N2 viruses isolated from neighboring countries. H9N2 viruses in Bangladesh are homogenous with several mammalian host-specific markers and are a new H9N2 sublineage wherein the hemagglutinin (HA) gene is derived from an Iranian H9N2 lineage (Mideast_B Iran), the neuraminidase (NA) and polymerase basic 2 (PB2) genes are from Dubai H9N2 (Mideast_C Dubai), and the non-structural protein (NS), nucleoprotein (NP), matrix protein (MP), polymerase acidic (PA) and polymerase basic 1 (PB1) genes are from HP H7N3 originating from Pakistan. Different H9N2 genotypes that were replaced in 2006 and 2009 by other reassortants have been detected in Bangladesh. Phylogenetic and molecular analyses suggest that the current genotype descended from the prototypical H9N2 lineage (G1), which circulated in poultry in China during the late 1990s and came to Bangladesh via the poultry trade within the Middle East, and that this genotype subsequently reassorted with H7N3 and H9N2 lineages from Pakistan and spread throughout India. Thus, continual surveillance of Bangladeshi HP H5N1, H7N3 and H9N2 is warranted to identify further evolution and adaptation to humans. PMID:26038507

  3. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant economic losses in the poultry industries have resulted from H9N2 low pathogenic avian influenza virus infections across North Africa, the Middle East and Asia. The present study investigated the evolutionary dynamics of H9N2 viruses circulating in Korea from 1996 to 2012. Our analysis o...

  4. H9N2 low pathogenic avian influenza in Pakistan (2012-2015)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have be...

  5. Comparison of biological characteristics of H9N2 avian influenza viruses isolated from different hosts.

    PubMed

    Zhu, Yinbiao; Yang, Yang; Liu, Wei; Liu, Xin; Yang, Da; Sun, Zhihao; Ju, Yong; Chen, Sujuan; Peng, Daxin; Liu, Xiufan

    2015-04-01

    The pathogenicity and transmissibility of H9N2 influenza viruses has been widely investigated; however, few studies comparing the biological characteristics of H9N2 viruses isolated from different hosts have been performed. In this study, eight H9N2 viruses, isolated from chickens (Ck/F98, Ck/AH and Ck/TX), pigeons (Pg/XZ), quail/(Ql/A39), ducks (Dk/Y33) and swine (Sw/YZ and Sw/TZ) were selected, and their biological characteristics were determined. The results showed that all H9N2 viruses maintained a preference for both the avian- and human-type receptors, except for Sw/TZ, which had exclusive preference for the human-type receptor. The viruses replicated well in DF-1 and MDCK cells, whereas only three isolates, Ck/F98, Ck/TX and Sw/TZ, could replicate in A549 cells and also replicated in mouse lungs, resulting in body weight loss in mice. All H9N2 viruses were nonpathogenic to chickens and were detected in the trachea and lung tissues. The viruses were shed primarily by the oropharynx and were transmitted efficiently to naïve contact chickens. Our findings suggest that all H9N2 viruses from different hosts exhibit efficient replication and contact-transmission among chickens, and chickens serve as a good reservoir for the persistence and interspecies transmission of H9N2 influenza viruses. PMID:25616845

  6. H9N2 low pathogenic avian influenza in Pakistan (2012–2015)

    PubMed Central

    Lee, Dong-Hun; Swayne, David E.; Sharma, Poonam; Rehmani, Shafqat Fatima; Wajid, Abdul; Suarez, David L.; Afonso, Claudio L.

    2016-01-01

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have been reported since 2010. Because novel genotypes of Pakistani H9N2 contain mammalian host-specific markers, recent surveillance is essential to better understand any continuing public health risk. Here the authors report on four new H9N2 LPAIVs, three from 2015 and one from 2012. All of the viruses tested in this study belonged to Middle East B genetic group of G1 lineage and had PAKSSR/G motif at the haemagglutinin cleavage site. The mammalian host-specific markers at position 226 in the haemagglutinin receptor-binding site and internal genes suggest that Pakistan H9N2 viruses are still potentially infectious for mammals. Continued active surveillance in poultry and mammals is needed to monitor the spread and understand the potential for zoonotic infection by these H9N2 LPAIVs. PMID:27403327

  7. Molecular evolution of H9N2 avian influenza viruses in Israel.

    PubMed

    Davidson, Irit; Fusaro, Alice; Heidari, Alireza; Monne, Isabella; Cattoli, Giovanni

    2014-06-01

    While the previous phylogenetic analyses of AIV H9N2 in Israel had mainly focused on phylogenetics and on describing different virus introductions into the country, for the first time, the H9N2-HA gene evolutionary history has been examined taking into account its origin, evolution and phylodynamics. The present study reveals the Israeli H9N2 molecular evolution rate, the virus molecular clock and skyline plot. The molecular skyline plot showed two major increments in population diversity sizes, the first which had occurred in 2003, the second between the end of 2007 and the first half of 2008. Between 2004 and 2007 the population size had proved to be constant. The two peaks correspond to the appearance of the 3rd and 4th major genetic groups, as well as to the introduction of two H9N2 vaccines. The mean evolution rate was 6.123 E-3 substitutions/site/year, typical of avian influenza viruses. The time interval from the most recent common ancestor was 12.3 years, corresponding to the year 2000, when H9N2 was first isolated in Israel. PMID:24469467

  8. PB2 subunit of avian influenza virus subtype H9N2: a pandemic risk factor.

    PubMed

    Sediri, Hanna; Thiele, Swantje; Schwalm, Folker; Gabriel, Gülsah; Klenk, Hans-Dieter

    2016-01-01

    Avian influenza viruses of subtype H9N2 that are found worldwide are occasionally transmitted to humans and pigs. Furthermore, by co-circulating with other influenza subtypes, they can generate new viruses with the potential to also cause zoonotic infections, as observed in 1997 with H5N1 or more recently with H7N9 and H10N8 viruses. Comparative analysis of the adaptive mutations in polymerases of different viruses indicates that their impact on the phylogenetically related H9N2 and H7N9 polymerases is higher than on the non-related H7N7 and H1N1pdm09 polymerases. Analysis of polymerase reassortants composed of subunits of different viruses demonstrated that the efficient enhancement of polymerase activity by H9N2-PB2 does not depend on PA and PB1. These observations suggest that the PB2 subunit of the H9N2 polymerase has a high adaptive potential and may therefore be an important pandemic risk factor. PMID:26560088

  9. Serological evidence for avian H9N2 influenza virus infections among Romanian agriculture workers.

    PubMed

    Coman, Alexandru; Maftei, Daniel N; Krueger, Whitney S; Heil, Gary L; Friary, John A; Chereches, Razvan M; Sirlincan, Emanuela; Bria, Paul; Dragnea, Claudiu; Kasler, Iosif; Gray, Gregory C

    2013-12-01

    In recent years, wild birds have introduced multiple highly pathogenic avian influenza (HPAI) H5N1 virus infections in Romanian poultry. In 2005 HPAI infections were widespread among domestic poultry and anecdotal reports suggested domestic pigs may also have been exposed. We sought to examine evidence for zoonotic influenza infections among Romanian agriculture workers. Between 2009 and 2010, 363 adult participants were enrolled in a cross-sectional, seroepidemiological study. Confined animal feeding operation (CAFO) swine workers in Tulcea and small, traditional backyard farmers in Cluj-Napoca were enrolled, as well as a non-animal exposed control group from Cluj-Napoca. Enrollment sera were examined for serological evidence of previous infection with 9 avian and 3 human influenza virus strains. Serologic assays showed no evidence of previous infection with 7 low pathogenic avian influenza viruses or with HPAI H5N1. However, 33 participants (9.1%) had elevated microneutralization antibody titers against avian-like A/Hong Kong/1073/1999(H9N2), 5 with titers ≥ 1:80 whom all reported exposure to poultry. Moderate poultry exposure was significantly associated with elevated titers after controlling for the subjects' age (adjusted OR = 3.6; 95% CI, 1.1-12.1). There was no evidence that previous infection with human H3N2 or H2N2 viruses were confounding the H9N2 seroreactivity. These data suggest that H9N2 virus may have circulated in Romanian poultry and occasionally infected man. PMID:23999337

  10. Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh

    PubMed Central

    Lenny, Brian J.; Shanmuganatham, Karthik; Sonnberg, Stephanie; Feeroz, Mohammed M.; Alam, S.M. Rabiul; Hasan, M. Kamrul; Jones-Engel, Lisa; McKenzie, Pamela; Krauss, Scott; Webster, Robert G.

    2015-01-01

    Avian influenza A(H9N2) is an agricultural and public health threat. We characterized an H9N2 virus from a pet market in Bangladesh and demonstrated replication in samples from pet birds, swine tissues, human airway and ocular cells, and ferrets. Results implicated pet birds in the potential dissemination and zoonotic transmission of this virus. PMID:26583371

  11. Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh.

    PubMed

    Lenny, Brian J; Shanmuganatham, Karthik; Sonnberg, Stephanie; Feeroz, Mohammed M; Alam, S M Rabiul; Hasan, M Kamrul; Jones-Engel, Lisa; McKenzie, Pamela; Krauss, Scott; Webster, Robert G; Jones, Jeremy C

    2015-12-01

    Avian influenza A(H9N2) is an agricultural and public health threat. We characterized an H9N2 virus from a pet market in Bangladesh and demonstrated replication in samples from pet birds, swine tissues, human airway and ocular cells, and ferrets. Results implicated pet birds in the potential dissemination and zoonotic transmission of this virus. PMID:26583371

  12. Chlamydia psittaci infection increases mortality of avian influenza virus H9N2 by suppressing host immune response

    PubMed Central

    Chu, Jun; Zhang, Qiang; Zhang, Tianyuan; Han, Er; Zhao, Peng; Khan, Ahrar; He, Cheng; Wu, Yongzheng

    2016-01-01

    Avian influenza virus subtype H9N2 (H9N2) and Chlamydia psittaci (C. psittaci) are frequently isolated in chickens with respiratory disease. However, their roles in co-infection remain unclear. We tested the hypothesis that C. psittaci enhances H9N2 infection through suppression of host immunity. Thus, 10-day-old SPF chickens were inoculated intra-tracheally with a high or low virulence C. psittaci strain, and were simultaneously vaccinated against Newcastle disease virus (NDV). Significant decreases in body weight, NDV antibodies and immune organ indices occurred in birds with the virulent C. psittaci infection, while the ratio of CD4+/CD8+ T cells increased significantly compared to that of the lower virulence strain. A second group of birds were inoculated with C. psittaci and H9N2 simultaneously (C. psittaci+H9N2), C. psittaci 3 days prior to H9N2 (C. psittaci/H9N2), or 3 days after H9N2 (H9N2/C. psittaci), C. psittaci or H9N2 alone. Survival rates were 65%, 80% and 90% in the C. psittaci/H9N2, C. psittaci+H9N2 and H9N2/C. psittaci groups, respectively and respiratory clinical signs, lower expression of pro-inflammatory cytokines and higher pathogen loads were found in both C. psittaci/H9N2 and C. psittaci+H9N2 groups. Hence, virulent C. psittaci infection suppresses immune response by inhibiting humoral responses and altering Th1/Th2 balance, increasing mortality in H9N2 infected birds. PMID:27405059

  13. Chlamydia psittaci infection increases mortality of avian influenza virus H9N2 by suppressing host immune response.

    PubMed

    Chu, Jun; Zhang, Qiang; Zhang, Tianyuan; Han, Er; Zhao, Peng; Khan, Ahrar; He, Cheng; Wu, Yongzheng

    2016-01-01

    Avian influenza virus subtype H9N2 (H9N2) and Chlamydia psittaci (C. psittaci) are frequently isolated in chickens with respiratory disease. However, their roles in co-infection remain unclear. We tested the hypothesis that C. psittaci enhances H9N2 infection through suppression of host immunity. Thus, 10-day-old SPF chickens were inoculated intra-tracheally with a high or low virulence C. psittaci strain, and were simultaneously vaccinated against Newcastle disease virus (NDV). Significant decreases in body weight, NDV antibodies and immune organ indices occurred in birds with the virulent C. psittaci infection, while the ratio of CD4+/CD8+ T cells increased significantly compared to that of the lower virulence strain. A second group of birds were inoculated with C. psittaci and H9N2 simultaneously (C. psittaci+H9N2), C. psittaci 3 days prior to H9N2 (C. psittaci/H9N2), or 3 days after H9N2 (H9N2/C. psittaci), C. psittaci or H9N2 alone. Survival rates were 65%, 80% and 90% in the C. psittaci/H9N2, C. psittaci+H9N2 and H9N2/C. psittaci groups, respectively and respiratory clinical signs, lower expression of pro-inflammatory cytokines and higher pathogen loads were found in both C. psittaci/H9N2 and C. psittaci+H9N2 groups. Hence, virulent C. psittaci infection suppresses immune response by inhibiting humoral responses and altering Th1/Th2 balance, increasing mortality in H9N2 infected birds. PMID:27405059

  14. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine

    PubMed Central

    Wei, Yandi; Qi, Lu; Gao, Huijie; Sun, Honglei; Pu, Juan; Sun, Yipeng; Liu, Jinhua

    2016-01-01

    To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus–specific CD4+ and CD8+ T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens. PMID:27457755

  15. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine.

    PubMed

    Wei, Yandi; Qi, Lu; Gao, Huijie; Sun, Honglei; Pu, Juan; Sun, Yipeng; Liu, Jinhua

    2016-01-01

    To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus-specific CD4(+) and CD8(+) T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens. PMID:27457755

  16. The comparison of pathology in ferrets infected by H9N2 avian influenza viruses with different genomic features.

    PubMed

    Gao, Rongbao; Bai, Tian; Li, Xiaodan; Xiong, Ying; Huang, Yiwei; Pan, Ming; Zhang, Ye; Bo, Hong; Zou, Shumei; Shu, Yuelong

    2016-01-15

    H9N2 avian influenza virus circulates widely in poultry and has been responsible for sporadic human infections in several regions. Few studies have been conducted on the pathogenicity of H9N2 AIV isolates that have different genomic features. We compared the pathology induced by a novel reassortant H9N2 virus and two currently circulating H9N2 viruses that have different genomic features in ferrets. The results showed that the three viruses can induce infections with various amounts of viral shedding in ferrets. The novel H9N2 induced respiratory infection, but no pathological lesions were observed in lung tissues. The other two viruses induced mild to intermediate pathological lesions in lung tissues, although the clinical signs presented mildly in ferrets. The pathological lesions presented a diversity consistent with viral replication in ferrets. PMID:26638019

  17. Genetic and antigenic evolution of H9N2 avian influenza viruses circulating in Egypt between 2011 and 2013.

    PubMed

    Kandeil, Ahmed; El-Shesheny, Rabeh; Maatouq, Asmaa M; Moatasim, Yassmin; Shehata, Mahmoud M; Bagato, Ola; Rubrum, Adam; Shanmuganatham, Karthik; Webby, Richard J; Ali, Mohamed Ahmed; Kayali, Ghazi

    2014-11-01

    Avian influenza virus subtype H9N2 has been circulating in the Middle East since the 1990s. For uncertain reasons, H9N2 was not detected in Egyptian farms until the end of 2010. Circulation of H9N2 viruses in Egyptian poultry in the presence of the enzootic highly pathogenic H5N1 subtype adds a huge risk factor to the Egyptian poultry industry. In this study, 22 H9N2 viruses collected from 2011 to 2013 in Egypt were isolated and sequenced. The genomic signatures and protein sequences of these isolates were analyzed. Multiple mammalian-host-associated mutations were detected that favor transmission from avian to mammalian hosts. Other mutations related to virulence were also identified. Phylogenetic data showed that Egyptian H9N2 viruses were closely related to viruses isolated from neighboring Middle Eastern countries, and their HA gene resembled those of viruses of the G1-like lineage. No reassortment was detected with H5N1 subtypes. Serological analysis of H9N2 virus revealed antigenic conservation among Egyptian isolates. Accordingly, continuous surveillance that results in genetic and antigenic characterization of H9N2 in Egypt is warranted. PMID:24990416

  18. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.

    PubMed

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-01-01

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans. PMID:27094903

  19. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals

    PubMed Central

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-01-01

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans. PMID:27094903

  20. Detection and Genetic Characteristics of H9N2 Avian Influenza Viruses from Live Poultry Markets in Hunan Province, China

    PubMed Central

    Hu, Shixiong; Cai, Liang; Sun, Qianlai; Li, Wenchao; Deng, Zhihong; Xiang, Xingyu; Zhang, Hengjiao; Li, Fangcai; Gao, Lidong

    2015-01-01

    H9N2 avian influenza viruses (AIVs) are highly prevalent and of low pathogenicity in domestic poultry. These viruses show a high genetic compatibility with other subtypes of AIVs and have been involved in the genesis of H5N1, H7N9 and H10N8 viruses causing severe infection in humans. The first case of human infection with H9N2 viruses in Hunan province of China have been confirmed in November 2013 and identified that H9N2 viruses from live poultry markets (LPMs) near the patient’s house could be the source of infection. However, the prevalence, distribution and genetic characteristics of H9N2 viruses in LPMs all over the province are not clear. We collected and tested 3943 environmental samples from 380 LPMs covering all 122 counties/districts of Hunan province from February to April, 2014. A total of 618 (15.7%) samples were H9 subtype positive and 200 (52.6%) markets in 98 (80.3%) counties/districts were contaminated with H9 subtype AIVs. We sequenced the entire coding sequences of the genomes of eleven H9N2 isolates from environmental samples. Phylogenetic analysis showed that the gene sequences of the H9N2 AIVs exhibited high homology (94.3%-100%). All eleven viruses were in a same branch in the phylogenetic trees and belonged to a same genotype. No gene reassortment had been found. Molecular analysis demonstrated that all the viruses had typical molecular characteristics of contemporary avian H9N2 influenza viruses. Continued surveillance of AIVs in LPMs is warranted for identification of further viral evolution and novel reassortants with pandemic potential. PMID:26554921

  1. Detection and Genetic Characteristics of H9N2 Avian Influenza Viruses from Live Poultry Markets in Hunan Province, China.

    PubMed

    Huang, Yiwei; Zhang, Hong; Li, Xiaodan; Hu, Shixiong; Cai, Liang; Sun, Qianlai; Li, Wenchao; Deng, Zhihong; Xiang, Xingyu; Zhang, Hengjiao; Li, Fangcai; Gao, Lidong

    2015-01-01

    H9N2 avian influenza viruses (AIVs) are highly prevalent and of low pathogenicity in domestic poultry. These viruses show a high genetic compatibility with other subtypes of AIVs and have been involved in the genesis of H5N1, H7N9 and H10N8 viruses causing severe infection in humans. The first case of human infection with H9N2 viruses in Hunan province of China have been confirmed in November 2013 and identified that H9N2 viruses from live poultry markets (LPMs) near the patient's house could be the source of infection. However, the prevalence, distribution and genetic characteristics of H9N2 viruses in LPMs all over the province are not clear. We collected and tested 3943 environmental samples from 380 LPMs covering all 122 counties/districts of Hunan province from February to April, 2014. A total of 618 (15.7%) samples were H9 subtype positive and 200 (52.6%) markets in 98 (80.3%) counties/districts were contaminated with H9 subtype AIVs. We sequenced the entire coding sequences of the genomes of eleven H9N2 isolates from environmental samples. Phylogenetic analysis showed that the gene sequences of the H9N2 AIVs exhibited high homology (94.3%-100%). All eleven viruses were in a same branch in the phylogenetic trees and belonged to a same genotype. No gene reassortment had been found. Molecular analysis demonstrated that all the viruses had typical molecular characteristics of contemporary avian H9N2 influenza viruses. Continued surveillance of AIVs in LPMs is warranted for identification of further viral evolution and novel reassortants with pandemic potential. PMID:26554921

  2. Characterization of Avian H9N2 Influenza Viruses from United Arab Emirates 2000 to 2003

    PubMed Central

    Aamir, U. B.; Wernery, Ulrich; Ilyushina, N.; Webster, R. G.

    2009-01-01

    Our aim was to establish the phylogenetic relation of H9N2 avian viruses in the Middle East to other Asian H9N2 lineages by characterization of 7 viruses isolated from United Arab Emirates (2000-2003). All these viruses had an additional basic amino acid at the hemagglutinin-connecting peptide; 6 contained a mutation associated with increased affinity toward human-like sialic acid substrates. The viruses' surface glycoproteins and most internal genes were >90% similar to those of A/Quail/Hong Kong/G1/97 (H9N2) lineage. The hemadsorbing site of neuraminidase had up to 4 amino acid substitutions, as do human pandemic viruses. M2 sequence analysis revealed amino acid changes at 2 positions, with increasing resistance to amantadine in cell culture. They replicated efficiently in inoculated chickens and were successfully transmitted to contacts. They continue to maintain H5N1-like genes and may augment the spread of H5N1 viruses through regional co-circulation and inapparent infection. These viruses may present as potential pandemic candidates themselves. PMID:17157891

  3. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses.

    PubMed

    Li, Xuyong; Shi, Jianzhong; Guo, Jing; Deng, Guohua; Zhang, Qianyi; Wang, Jinliang; He, Xijun; Wang, Kaicheng; Chen, Jiming; Li, Yuanyuan; Fan, Jun; Kong, Huiui; Gu, Chunyang; Guan, Yuantao; Suzuki, Yasuo; Kawaoka, Yoshihiro; Liu, Liling; Jiang, Yongping; Tian, Guobin; Li, Yanbing; Bu, Zhigao; Chen, Hualan

    2014-11-01

    H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific "internal-gene-combination" predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as "vehicles" to deliver different subtypes of influenza viruses from avian species to humans. PMID:25411973

  4. Genetics, Receptor Binding Property, and Transmissibility in Mammals of Naturally Isolated H9N2 Avian Influenza Viruses

    PubMed Central

    Deng, Guohua; Zhang, Qianyi; Wang, Jinliang; He, Xijun; Wang, Kaicheng; Chen, Jiming; Li, Yuanyuan; Fan, Jun; Kong, Huiui; Gu, Chunyang; Guan, Yuantao; Suzuki, Yasuo; Kawaoka, Yoshihiro; Liu, Liling; Jiang, Yongping; Tian, Guobin; Li, Yanbing; Bu, Zhigao; Chen, Hualan

    2014-01-01

    H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific “internal-gene-combination” predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as “vehicles” to deliver different subtypes of influenza viruses from avian species to humans. PMID:25411973

  5. Protocatechuic Acid, a Novel Active Substance against Avian Influenza Virus H9N2 Infection

    PubMed Central

    Ou, Changbo; Shi, Ningning; Yang, Qunhui; Zhang, Yu; Wu, Zongxue; Wang, Baozhong; Compans, Richard W.; He, Cheng

    2014-01-01

    Influenza virus H9N2 subtype has triggered co-infection with other infectious agents, resulting in huge economical losses in the poultry industry. Our current study aims to evaluate the antiviral activity of protocatechuic acid (PCA) against a virulent H9N2 strain in a mouse model. 120 BALB/c mice were divided into one control group, one untreated group, one 50 mg/kg amantadine hydrochloride-treated group and three PCA groups treated 12 hours post-inoculation with 40, 20 or 10 mg/kg PCA for 7 days. All the infected animals were inoculated intranasally with 0.2 ml of a A/Chicken/Hebei/4/2008(H9N2) inoculum. A significant body weight loss was found in the 20 mg/kg and 40 mg/kg PCA-treated and amantadine groups as compared to the control group. The 14 day survivals were 94.4%, 100% and 95% in the PCA-treated groups and 94.4% in the amantadine hydrochloride group, compared to less than 60% in the untreated group. Virus loads were less in the PCA-treated groups compared to the amantadine-treated or the untreated groups. Neutrophil cells in BALF were significantly decreased while IFN-γ, IL-2, TNF-α and IL-6 decreased significantly at days 7 in the PCA-treated groups compared to the untreated group. Furthermore, a significantly decreased CD4+/CD8+ ratio and an increased proportion of CD19 cells were observed in the PCA-treated groups and amantadine-treated group compared to the untreated group. Mice administered with PCA exhibited a higher survival rate and greater viral clearance associated with an inhibition of inflammatory cytokines and activation of CD8+ T cell subsets. PCA is a promising novel agent against bird flu infection in the poultry industry. PMID:25337912

  6. Low pathogenic avian influenza (H9N2) in chicken: Evaluation of an ancestral H9-MVA vaccine.

    PubMed

    Ducatez, Mariette F; Becker, Jens; Freudenstein, Astrid; Delverdier, Maxence; Delpont, Mattias; Sutter, Gerd; Guérin, Jean-Luc; Volz, Asisa

    2016-06-30

    Modified Vaccinia Ankara (MVA) has proven its efficacy as a recombinant vector vaccine for numerous pathogens including influenza virus. The present study aimed at evaluating a recombinant MVA candidate vaccine against low pathogenic avian influenza virus subtype H9N2 in the chicken model. As the high genetic and antigenic diversity of H9N2 viruses increases vaccine design complexity, one strategy to widen the range of vaccine coverage is to use an ancestor sequence. We therefore generated a recombinant MVA encoding for the gene sequence of an ancestral hemagglutinin H9 protein (a computationally derived amino acid sequence of the node of the H9N2 G1 lineage strains was obtained using the ANCESCON program). We analyzed the genetics and the growth properties of the MVA vector virus confirming suitability for use under biosafety level 1 and tested its efficacy when applied either as an intra-muscular (IM) or an oral vaccine in specific pathogen free chickens challenged with A/chicken/Tunisia/12/2010(H9N2). Two control groups were studied in parallel (unvaccinated and inoculated birds; unvaccinated and non-inoculated birds). IM vaccinated birds seroconverted as early as four days post vaccination and neutralizing antibodies were detected against A/chicken/Tunisia/12/2010(H9N2) in all the birds before challenge. The role of local mucosal immunity is unclear here as no antibodies were detected in eye drop or aerosol vaccinated birds. Clinical signs were not detected in any of the infected birds even in absence of vaccination. Virus replication was observed in both vaccinated and unvaccinated chickens, suggesting the MVA-ancestral H9 vaccine may not stop virus spread in the field. However vaccinated birds showed less histological damage, fewer influenza-positive cells and shorter virus shedding than their unvaccinated counterparts. PMID:27259828

  7. Human infection with an avian influenza A (H9N2) virus in the middle region of China.

    PubMed

    Huang, Yiwei; Li, Xiaodan; Zhang, Hong; Chen, Bozhong; Jiang, Yonglin; Yang, Lei; Zhu, Wenfei; Hu, Shixiong; Zhou, Siyu; Tang, Yunli; Xiang, Xingyu; Li, Fangcai; Li, Wenchao; Gao, Lidong

    2015-10-01

    During the epidemic period of the novel H7N9 viruses, an influenza A (H9N2) virus was isolated from a 7-year-old boy with influenza-like illness in Yongzhou city of Hunan province in November 2013. To identify the possible source of infection, environmental specimens collected from local live poultry markets epidemiologically linked to the human case in Yongzhou city were tested for influenza type A and its subtypes H5, H7, and H9 using real-time RT-PCR methods as well as virus isolation, and four other H9N2 viruses were isolated. The real-time RT-PCR results showed that the environment was highly contaminated with avian influenza H9 subtype viruses (18.0%). Sequencing analyses revealed that the virus isolated from the patient, which was highly similar (98.5-99.8%) to one of isolates from environment in complete genome sequences, was of avian origin. Based on phylogenetic and antigenic analyses, it belonged to genotype S and Y280 lineage. In addition, the virus exhibited high homology (95.7-99.5%) of all six internal gene lineages with the novel H7N9 and H10N8 viruses which caused epidemic and endemic in China. Meanwhile, it carried several mammalian adapted molecular residues including Q226L in HA protein, L13P in PB1 protein, K356R, S409N in PA protein, V15I in M1 protein, I28V, L55F in M2 protein, and E227K in NS protein. These findings reinforce the significance of continuous surveillance of H9N2 influenza viruses. PMID:25965534

  8. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt.

    PubMed

    Young, Sean G; Carrel, Margaret; Malanson, George P; Ali, Mohamed A; Kayali, Ghazi

    2016-01-01

    Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC) curve (AUC) 0.991). PMID:27608035

  9. Deterioration of eggshell quality in laying hens experimentally infected with H9N2 avian influenza virus.

    PubMed

    Qi, Xuefeng; Tan, Dan; Wu, Chengqi; Tang, Chao; Li, Tao; Han, Xueying; Wang, Jing; Liu, Caihong; Li, Ruiqiao; Wang, Jingyu

    2016-01-01

    This study aimed to determine the mechanism by which H9N2 avian influenza virus (AIV) affects eggshell quality. Thirty-week-old specific pathogen free egg-laying hens were inoculated with the chicken-origin H9N2 AIV strain (A/Chicken/shaanxi/01/2011) or with inoculating media without virus by combined intraocular and intranasal routes. The time course for the appearance of viral antigen and tissue lesions in the oviduct was coincident with the adverse changes in egg production in the infected hens. The viral loads of AIV have a close correlation with the changes in the uterus CaBP-D28k mRNA expression as well as the Ca concentrations in the eggshells in the infected hens from 1 to 7 days post inoculation (dpi). Ultrastructural examination of eggshells showed significantly decreased shell thickness in the infected hens from 1 to 5 dpi (P < 0.05). Furthermore, obvious changes in the structure of the external shell surface and shell membrane were detected in the infected hens from 1 to 5 dpi as compared with the control hens. In conclusion, this study confirmed that H9N2 AIV strain (A/Chicken/shaanxi/01/2011) infection is associated with severe lesions of the uterus and abnormal expression of CaBP-D28k mRNA in the uteri of the infected hens. The change of CaBP-D28k mRNA expression may contribute to the deterioration of the eggshell quality of the laying hens infected with AIV. It is noteworthy that the pathogenicity of H9N2 AIV strains may vary depending on the virus strain and host preference. PMID:26915662

  10. Recombinant Newcastle disease virus expressing H9 HA protects chickens against heterologous avian influenza H9N2 virus challenge.

    PubMed

    Nagy, Abdou; Lee, Jinhwa; Mena, Ignacio; Henningson, Jamie; Li, Yuhao; Ma, Jingjiao; Duff, Michael; Li, Yonghai; Lang, Yuekun; Yang, Jianmei; Abdallah, Fatma; Richt, Juergen; Ali, Ahmed; García-Sastre, Adolfo; Ma, Wenjun

    2016-05-17

    In order to produce an efficient poultry H9 avian influenza vaccine that provides cross-protection against multiple H9 lineages, two Newcastle disease virus (NDV) LaSota vaccine strain recombinant viruses were generated using reverse genetics. The recombinant NDV-H9Con virus expresses a consensus-H9 hemagglutinin (HA) that is designed based on available H9N2 sequences from Chinese and Middle Eastern isolates. The recombinant NDV-H9Chi virus expresses a chimeric-H9 HA in which the H9 ectodomain of A/Guinea Fowl/Hong Kong/WF10/99 was fused with the cytoplasmic and transmembrane domain of the fusion protein (F) of NDV. Both recombinant viruses expressed the inserted HA stably and grew to high titers. An efficacy study in chickens showed that both recombinant viruses were able to provide protection against challenge with a heterologous H9N2 virus. In contrast to the NDV-H9Chi virus, the NDV-H9Con virus induced a higher hemagglutination inhibition titer against both NDV and H9 viruses in immunized birds, and efficiently inhibited virus shedding through the respiratory route. Moreover, sera collected from birds immunized with either NDV-H9Con or NDV-H9Chi were able to cross-neutralize two different lineages of H9N2 viruses, indicating that NDV-H9Con and NDV-H9Chi are promising vaccine candidates that could provide cross-protection among different H9N2 lineage viruses. PMID:27102817

  11. Evaluation of Immune Response Against Inactivated Avian Influenza (H9N2) Vaccine, by Using Chitosan Nanoparticles

    PubMed Central

    Khalili, Iraj; Ghadimipour, Rahim; Sadigh Eteghad, Saeed; Fathi Najafi, Mohsen; Ebrahimi, Mohammad Majid; Godsian, Naser; Sefidi Heris, Yousef; Khalili, Mohammad Taghi

    2015-01-01

    Background: Influenza A is a virus that affects a wide range of animals and also human beings. Avian influenza virus (AIV) subtype H9N2 has the potential to create influenza pandemic and vaccination is a common solution for this problem. The vaccine, used for rapid intervention, should be safe to use and highly effective, after a single administration. Chitosan nanoparticles (CNP) have already been recommended as a new adjuvant for inactivated AIV H9N2 vaccine immunization. Objectives: This study aimed at the evaluation and better understanding of optimum concentration of CNP preparations and also, assessment of loading capacity of AIV into CNP, as an adjuvant in specific pathogen-free (SPF) chickens. Materials and Methods: For measurement of vaccine-antibody response, different types of CNP were injected intramuscularly, in a single dose, to 21-day-old specific pathogen-free chickens. Chickens were monitored for the efficacy of the nanoparticles and, also, their immune response, during a follow up of 7 weeks, by using hemagglutination-inhibition (HI) test. The CNP were prepared according to modified ionic gelation method and inactivated antigen was loaded in four hemagglutinin units (HAU) concentrations. Loading capacity of nanoparticles was determined by hemagglutination (HA) method. Inactivated A/H9N2 AIV was mixed with chitosan of low molecular weight. Results: The CNP did not cause any mortality or side effects, when chickens were administered the prepared vaccine. The results strongly showed that this novel vaccine significantly enhances the immunogenicity of inactivated AIV, comparing with ISA70 (SEPPIC, Puteaux, France) adjuvant that is used routinely in the Razi Serum and Vaccine Research and Production Institute, Karaj, Iran, to reduce ISA70’s side effects. Conclusions: The AIV loaded into CNP vaccines induce appropriate antibody titers, after a single immunization, while requiring a low dose of antigen. The CNP also represent an interesting new

  12. Reassortant Avian Influenza A(H9N2) Viruses in Chickens in Retail Poultry Shops, Pakistan, 2009–2010

    PubMed Central

    Angot, Angélique; Rashid, Hamad B.; Cattoli, Giovanni; Hussain, Manzoor; Trovò, Giulia; Drago, Alessandra; Valastro, Viviana; Thrusfield, Michael; Welburn, Sue; Eisler, Mark C.; Capua, Ilaria

    2015-01-01

    Phylogenetic analysis of influenza viruses collected during December 2009–February 2010 from chickens in live poultry retail shops in Lahore, Pakistan, showed influenza A(H9N2) lineage polymerase and nonstructural genes generate through inter- and intrasubtypic reassortments. Many amino acid signatures observed were characteristic of human isolates; hence, their circulation could enhance inter- or intrasubtypic reassortment. PMID:25811830

  13. Photocatalytic inactivation efficiency of anatase Nano-TiO(2) Sol on the H(9) N(2) avian influenza virus.

    PubMed

    Cui, Haixin; Jiang, Jianfang; Gu, Wei; Sun, Changjiao; Wu, Donglai; Yang, Tao; Yang, Guochen

    2010-01-01

    This study was conducted to investigate efficiency of TiO(2) nanomaterial as a novel environment-friendly disinfectant to control avian influenza (AI) by its photochemical sterilization ability. Anatase nano-TiO(2) sol, a neutral, viscous aqueous colloid of 1.6% TiO(2) , was synthesized from peroxotitanic acid solution according to the Ichinose method. Transmission electron microscope images showed that the TiO(2) particles were spindle-shaped with an average size of 50 nm. X-ray diffraction patterns revealed that the crystal phase of TiO(2) particles was anatase type with photocatalytic effect. A photocatalytic film of nano-TiO(2) sol was tested as a means of inactivating H(9) N(2) avian influenza virus (AIV). Inactivation capabilities were examined with 365nm ultraviolet (UV) radiation under black light by adjusting the UV intensity, the UV irradiation time and the quantity of AIV. The titer change of AIV was determined by hemagglutination tests. Cytopathic effect of Madin Darby canine kidney (MDCK) cells was monitored by inverted fluorescence microscope. The results showed that anatase nano-TiO(2) sol significantly inactivated AIV under UV irradiation of 365nm. The inactivation of AIV viruses reached up to 100%. Therefore, anatase nano-TiO(2) sol is a potentially environment-friendly antivirus agent to prevent AI. PMID:20553405

  14. Phylogenetic Analysis of Hemagglutinin Genes of H9N2 Avian Influenza Viruses Isolated from Chickens in Shandong, China, between 1998 and 2013

    PubMed Central

    Zhao, Yuxin; Li, Song; Zhou, Yufa; Song, Wengang; Tang, Yujing; Pang, Quanhai; Miao, Zengmin

    2015-01-01

    Since H9N2 avian influenza virus (AIV) was first isolated in Guangdong province of China, the virus has been circulating in chicken flocks in mainland China. However, a systematic phylogenetic analysis of H9N2 AIV from chickens in Shandong of China has not been conducted. Based on hemagglutinin (HA) gene sequences of H9N2 AIVs isolated from chickens in Shandong of China between 1998 and 2013, genetic evolution of 35 HA gene sequences was systematically analyzed in this study. Our findings showed that the majority of H9N2 AIVs (21 out of 35) belonged to the lineage h9.4.2.5. Most of isolates (33 out of 35) had a PSRSSR↓GLF motif in HA cleavage site. Importantly, 29 out of these 35 isolates had an amino acid exchange (Q226L) in the receptor-binding site. The substitution showed that H9N2 AIVs had the potential affinity to bind to human-like receptor. The currently prevalent H9N2 AIVs in Shandong belonged to the lineage h9.4.2.5 which are different from the vaccine strain SS/94 clade h9.4.2.3. Therefore, the long-term surveillance of H9N2 AIVs is of significance to combat the possible H9N2 AIV outbreaks. PMID:26609523

  15. Phylogenetic Analysis of Hemagglutinin Genes of H9N2 Avian Influenza Viruses Isolated from Chickens in Shandong, China, between 1998 and 2013.

    PubMed

    Zhao, Yuxin; Li, Song; Zhou, Yufa; Song, Wengang; Tang, Yujing; Pang, Quanhai; Miao, Zengmin

    2015-01-01

    Since H9N2 avian influenza virus (AIV) was first isolated in Guangdong province of China, the virus has been circulating in chicken flocks in mainland China. However, a systematic phylogenetic analysis of H9N2 AIV from chickens in Shandong of China has not been conducted. Based on hemagglutinin (HA) gene sequences of H9N2 AIVs isolated from chickens in Shandong of China between 1998 and 2013, genetic evolution of 35 HA gene sequences was systematically analyzed in this study. Our findings showed that the majority of H9N2 AIVs (21 out of 35) belonged to the lineage h9.4.2.5. Most of isolates (33 out of 35) had a PSRSSR↓GLF motif in HA cleavage site. Importantly, 29 out of these 35 isolates had an amino acid exchange (Q226L) in the receptor-binding site. The substitution showed that H9N2 AIVs had the potential affinity to bind to human-like receptor. The currently prevalent H9N2 AIVs in Shandong belonged to the lineage h9.4.2.5 which are different from the vaccine strain SS/94 clade h9.4.2.3. Therefore, the long-term surveillance of H9N2 AIVs is of significance to combat the possible H9N2 AIV outbreaks. PMID:26609523

  16. The infection of turkeys and chickens by reassortants derived from pandemic H1N1 2009 and avian H9N2 influenza viruses

    PubMed Central

    Sun, Honglei; Kong, Weili; Liu, Litao; Qu, Yi; Li, Chong; Shen, Ye; Zhou, Yu; Wang, Yu; Wu, Sizhe; Pu, Juan; Liu, Jinhua; Sun, Yipeng

    2015-01-01

    Outbreaks of pandemic H1N1 2009 (pH1N1) in turkeys have been reported in several countries. Co-infection of pH1N1 and avian H9N2 influenza viruses in turkeys provide the opportunity for their reassortment, and novel reassortant viruses might further be transmitted to other avian species. However, virulence and transmission of those reassortant viruses in poultry remain unclear. In the present study, we generated 16 single-gene reassortant influenza viruses including eight reassortants on the pH1N1 background by individual replacement with a corresponding gene segment from H9N2 and eight reassortants on the H9N2 background replaced individually with corresponding gene from pH1N1, and characterized reassortants viruses in turkeys and chickens. We found that the pH1N1 virus dramatically increased its infectivity and transmissibility in turkeys and chickens after introducing any gene (except for PB2) from H9N2 virus, and H9N2 virus acquired single gene (except for HA) of pH1N1 almost did not influence its replication and transmission in turkeys and chickens. Additionally, 13 reassortant viruses transmitted from turkeys to chickens. Our results indicate that turkeys and chickens are susceptible to pH1N1-H9N2 reassortant viruses, and mixing breeding of different avian species would facilitate the transmission of these reassortant viruses. PMID:26030097

  17. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2).

    PubMed

    Pourghanbari, Gholamhosein; Nili, Hasan; Moattari, Afagh; Mohammadi, Ali; Iraji, Aida

    2016-06-01

    Lemon balm derivatives are going to acquire a novelty as natural and potent remedy for treatment of viral infections since the influenza viruses are developing resistance to the current antivirals widely. Oseltamivir, Melissa officinalis essential oil (MOEO) and their synergistic efficacy against avian influenza virus (AIV) subtype H9N2 were evaluated in vitro in MDCK cells at different time exposure by using TCID50, HA, Real Time PCR and HI assay. The results showed that MOEO could inhibit replication of AVI through the different virus replication phase (P ≤ 0.05). Also the highest antiviral activity of MOEO was seen when AIV incubated with MOEO before cell infection. The TCID50/ml was reduced 1.3-2.1, 2.3-2.8, 3.7-4.5 log 10 than control group (5.6 log 10), HAU/50 µl was decreased 85-94, 71.4-94, 71.4-94 % and viral genome copy number/µl was brought down 68-95, 90-100, 89.6-99.9 % at pre-infection, post-infection and simultaneous stage, respectively. Hemagglutination inhibition result showed the MOEO was not able to inhibit agglutination of the chicken red blood cell (cRBC). Replication of the AVI was suppressed by the different concentration of oseltamivir completely or near 100 %. Also oseltamivir showed a synergistic activity with MOEO especially when oseltamivir concentration reduced under 0.005 mg/ml. The chemical composition was examined by GC-MS analysis and Its main constituents were identified as monoterpenaldehydes citral a, citral b. In conclusion, the findings of the study showed that lemon balm essential oil could inhibit influenza virus replication through different replication cycle steps especially throughout the direct interaction with the virus particles. PMID:27366768

  18. A baculovirus dual expression system-based vaccine confers complete protection against lethal challenge with H9N2 avian influenza virus in mice

    PubMed Central

    2011-01-01

    Background Avian influenza viruses of H9N2 subtype have become highly prevalent in avian species. Although these viruses generally cause only mild to moderate disease, they can infect a wide variety of species, including chickens, quail, turkeys, ducks, geese, pheasant, partridge, and pigeon, even transmitted to mammalian species, including humans, accelerating the efforts to devise protective strategies against them. Results The results showed that stronger immune responses were induced in a mouse model immunized with BV-Dual-HA than in those vaccinated with a DNA vaccine encoding the same antigen. Moreover, complete protection against lethal challenge with H9N2 virus was observed in mice. Conclusion BV-Dual-HA could be utilized as a vaccine candidate against H9N2 virus infection. PMID:21639929

  19. Reassortant H5N1 avian influenza viruses containing PA or NP gene from an H9N2 virus significantly increase the pathogenicity in mice.

    PubMed

    Hao, Xiaoli; Hu, Jiao; Wang, Jiongjiong; Xu, Jing; Cheng, Hao; Xu, Yunpeng; Li, Qunhui; He, Dongchang; Liu, Xiaowen; Wang, Xiaoquan; Gu, Min; Hu, Shunlin; Xu, Xiulong; Liu, Huimou; Chen, Sujuan; Peng, Daxin; Liu, Xiufan

    2016-08-30

    Reassortment between different influenza viruses is a crucial way to generate novel influenza viruses with unpredictable virulence and transmissibility, which may threaten the public health. As currently in China, avian influenza viruses (AIVs) of H9N2 and H5N1 subtypes are endemic in poultry in many areas, while they are prone to reassort with each other naturally. In order to evaluate the risk of the reassortment to public health, A/Goose/Jiangsu/k0403/2010 [GS/10(H5N1)] virus was used as a backbone to generate a series of reassortants, each contained a single internal gene derived from the predominant S genotype of the A/Chicken/Jiangsu/WJ57/2012 [WJ/57(H9N2)]. We next assessed the biological characteristics of these assortments, including pathogenicity, replication efficiency and polymerase activity. We found that the parental WJ/57(H9N2) and GS/10(H5N1) viruses displayed high genetic compatibility. Notably, the H5N1 reassortants containing the PA or NP gene from WJ/57(H9N2) virus significantly increased virulence and replication ability in mice, as well as markedly enhanced polymerase activity. Our results indicate that the endemicity of H9N2 and H5N1 in domestic poultry greatly increases the possibility of generating new viruses by reassortment that may pose a great threat to poultry industry and public health. PMID:27527770

  20. Protection against avian influenza H9N2 virus challenge by immunization with hemagglutinin- or neuraminidase-expressing DNA in BALB/c mice

    SciTech Connect

    Qiu Meizhen; Fang Fang; Chen Yan; Wang Hualin; Chen Quanjiao; Chang Haiyan; Wang Fuyan; Wang Hanzhong; Zhang Ran; Chen Ze . E-mail: chenze2005@263.net

    2006-05-19

    Avian influenza viruses of H9N2 subtype are widely spread in avian species. The viruses have recently been transmitted to mammalian species, including humans, accelerating the efforts to devise protective strategies against them. In this study, an avian influenza H9N2 virus strain (A/Chicken/Jiangsu/7/2002), isolated in Jiangsu Province, China, was used to infect BALB/c mice for adaptation. After five lung-to-lung passages, the virus was stably proliferated in a large quantity in the murine lung and caused the deaths of mice. In addition, we explored the protection induced by H9N2 virus hemagglutinin (HA)- and neuraminidase (NA)-expressing DNAs in BALB/c mice. Female BALB/c mice aged 6-8 weeks were immunized once or twice at a 3-week interval with HA-DNA and NA-DNA by electroporation, respectively, each at a dose of 3, 10 or 30 {mu}g. The mice were challenged with a lethal dose (40x LD{sub 5}) of influenza H9N2 virus four weeks after immunization once or one week after immunization twice. The protections of DNA vaccines were evaluated by the serum antibody titers, residual lung virus titers, and survival rates of the mice. The result showed that immunization once with not less than 10 {mu}g or twice with 3 {mu}g HA-DNA or NA-DNA provided effective protection against homologous avian influenza H9N2 virus.

  1. Phylogenetic and antigenic characterization of reassortant H9N2 avian influenza viruses isolated from wild waterfowl in the East Dongting Lake wetland in 2011–2012

    PubMed Central

    2014-01-01

    Background Wild waterfowl are recognized as the natural reservoir for influenza A viruses. Two distinct lineages, the American and Eurasian lineages, have been identified in wild birds. Gene flow between the two lineages is limited. The H9N2 virus has become prevalent in poultry throughout Eurasia, and mainly circulates in wild ducks and shorebirds in North America. Methods In this study, 22 H9N2 avian influenza viruses were isolated from wild waterfowl feces in East Dongting Lake Nature Reserve in November 2011 and March 2012. The phylogenetic, molecular, and antigenic characteristics of these viruses were analyzed based on analyses of the whole genome sequence of each isolate. Results Phylogenetic analyses indicated that these H9N2 viruses were generated by reassortment events. The HA, NA, PA, and NS genes were derived from the American gene pool, and the other four genes were derived from the Eurasian gene pool. Antigenic analyses indicated that these viruses were significantly different from the Eurasian lineage viruses. Conclusions This study presents the isolation of novel intercontinental recombinant H9N2 viruses from wild waterfowl in the East Dongting Lake wetland. The novel genotype H9N2 virus has not been detected in poultry in the region yet, and may be transmitted to naïve birds in poultry farms. Therefore, our results highlight the need for ongoing surveillance of wild birds and poultry in this region. PMID:24779444

  2. Avian Influenza A(H5N1) and A(H9N2) Seroprevalence and Risk Factors for Infection Among Egyptians: A Prospective, Controlled Seroepidemiological Study

    PubMed Central

    Gomaa, Mokhtar R.; Kayed, Ahmed S.; Elabd, Mona A.; Zeid, Dina Abu; Zaki, Shaimaa A.; El Rifay, Amira S.; Sherif, Lobna S.; McKenzie, Pamela P.; Webster, Robert G.; Webby, Richard J.; Ali, Mohamed A.; Kayali, Ghazi

    2015-01-01

    Background. A(H5N1) and A(H9N2) avian influenza viruses are enzootic in Egyptian poultry, and most A(H5N1) human cases since 2009 have occurred in Egypt. Our understanding of the epidemiology of avian viruses in humans remains limited. Questions about the frequency of infection, the proportion of infections that are mild or subclinical, and the case-fatality rate remain largely unanswered. Methods. We conducted a 3-year, prospective, controlled, seroepidemiological study that enrolled 750 poultry-exposed and 250 unexposed individuals in Egypt. Results. At baseline, the seroprevalence of anti-A(H5N1) antibodies (titer, ≥80) among exposed individuals was 2% significantly higher than that among the controls (0%). Having chronic lung disease was a significant risk factor for infection. Antibodies against A(H9N2) were not detected at baseline when A(H9N2) was not circulating in poultry. At follow-up, A(H9N2) was detected in poultry, and consequently, the seroprevalence among exposed humans was between 5.6% and 7.5%. Vaccination of poultry, older age, and exposure to ducks were risk factors for A(H9N2) infection. Conclusions. Results of this study indicate that the number of humans infected with avian influenza viruses is much larger than the number of reported confirmed cases. In an area where these viruses are enzootic in the poultry, human exposure to and infection with avian influenza becomes more common. PMID:25355942

  3. Use of embryonated chicken egg as a model to study the susceptibility of avian influenza H9N2 viruses to oseltamivir carboxylate.

    PubMed

    Tare, Deeksha S; Pawar, Shailesh D

    2015-11-01

    Avian influenza (AI) H9N2 viruses are endemic in many bird species, and human infections of H9N2 viruses have been reported. Oseltamivir phosphate (Tamiflu(®)) is the available antiviral drug for the treatment and prophylaxis of influenza. There are no reports of use of embryonated chicken egg as a model to study susceptibility of AI viruses to oseltamivir carboxylate (OC), the active metabolite. The present study was undertaken to explore the use of embryonated chicken eggs as a model for testing OC against the AI H9N2 viruses. A total of three AI H9N2 viruses, isolated in poultry in India, were used. Various virus dilutions were tested against 14μg/ml of OC. Three methods, namely (1) the in vitro virus-drug treatment, (2) drug delivery and virus challenge by allantoic route, and (3) drug delivery by albumen route and virus challenge by allantoic route were explored. The viruses were also tested using the fluorescence-based neuraminidase inhibitor (NAI) assay. There was significant inhibition (p<0.05) of the H9N2 viruses in presence of OC. The infectious virus titers as well as hemagglutination titers were significantly lower in presence of OC as compared to controls. The in vitro treatment of virus and drug; and drug and virus delivery at the same time by allantoic route showed significantly higher inhibition (p<0.05) of virus growth than that by the albumen route. In the NAI assay, the half maximal inhibitory concentration (IC50) values of the H9N2 viruses were within the standard range for known susceptible reference virus. In conclusion, the H9N2 viruses used in the study were susceptible to OC. Embryonated chicken egg could be used as a model to study susceptibility of AI viruses to antiviral drugs. PMID:26297959

  4. Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape

    PubMed Central

    Peacock, Thomas; Reddy, Kolli; James, Joe; Adamiak, Beata; Barclay, Wendy; Shelton, Holly; Iqbal, Munir

    2016-01-01

    H9N2 avian influenza virus is a major cause of poultry production loss across Asia leading to the wide use of vaccines. Efficacy of vaccines is often compromised due to the rapid emergence of antigenic variants. To improve the effectiveness of vaccines in the field, a better understanding of the antigenic epitopes of the major antigen, hemagglutinin, is required. To address this, a panel of nine monoclonal antibodies were generated against a contemporary Pakistani H9N2 isolate, which represents a major Asian H9N2 viral lineage. Antibodies were characterized in detail and used to select a total of 26 unique ‘escape’ mutants with substitutions across nine different amino acid residues in hemagglutinin including seven that have not been described as antigenic determinants for H9N2 viruses before. Competition assays and structural mapping revealed two novel, discrete antigenic sites “H9-A” and “H9-B”. Additionally, a second subset of escape mutants contained amino acid deletions within the hemagglutinin receptor binding site. This constitutes a novel method of escape for group 1 hemagglutinins and could represent an alternative means for H9N2 viruses to overcome vaccine induced immunity. These results will guide surveillance efforts for arising antigenic variants as well as evidence based vaccine seed selection and vaccine design. PMID:26738561

  5. A Case-Control Study to Identify Risk Factors Associated with Avian Influenza Subtype H9N2 on Commercial Poultry Farms in Pakistan

    PubMed Central

    Chaudhry, Mamoona; Rashid, Hamad B.; Thrusfield, Michael; Welburn, Sue; Bronsvoort, Barend MdeC.

    2015-01-01

    A 1:1 matched case-control study was conducted to identify risk factors for avian influenza subtype H9N2 infection on commercial poultry farms in 16 districts of Punjab, and 1 administrative unit of Pakistan. One hundred and thirty-three laboratory confirmed positive case farms were matched on the date of sample submission with 133 negative control farms. The association between a series of farm-level characteristics and the presence or absence of H9N2 was assessed by univariable analysis. Characteristics associated with H9N2 risk that passed the initial screening were included in a multivariable conditional logistic regression model. Manual and automated approaches were used, which produced similar models. Key risk factors from all approaches included selling of eggs/birds directly to live bird retail stalls, being near case/infected farms, a previous history of infectious bursal disease (IBD) on the farm and having cover on the water storage tanks. The findings of current study are in line with results of many other studies conducted in various countries to identify similar risk factors for AI subtype H9N2 infection. Enhancing protective measures and controlling risks identified in this study could reduce spread of AI subtype H9N2 and other AI viruses between poultry farms in Pakistan. PMID:25774768

  6. A case-control study to identify risk factors associated with avian influenza subtype H9N2 on commercial poultry farms in Pakistan.

    PubMed

    Chaudhry, Mamoona; Rashid, Hamad B; Thrusfield, Michael; Welburn, Sue; Bronsvoort, Barend MdeC

    2015-01-01

    A 1:1 matched case-control study was conducted to identify risk factors for avian influenza subtype H9N2 infection on commercial poultry farms in 16 districts of Punjab, and 1 administrative unit of Pakistan. One hundred and thirty-three laboratory confirmed positive case farms were matched on the date of sample submission with 133 negative control farms. The association between a series of farm-level characteristics and the presence or absence of H9N2 was assessed by univariable analysis. Characteristics associated with H9N2 risk that passed the initial screening were included in a multivariable conditional logistic regression model. Manual and automated approaches were used, which produced similar models. Key risk factors from all approaches included selling of eggs/birds directly to live bird retail stalls, being near case/infected farms, a previous history of infectious bursal disease (IBD) on the farm and having cover on the water storage tanks. The findings of current study are in line with results of many other studies conducted in various countries to identify similar risk factors for AI subtype H9N2 infection. Enhancing protective measures and controlling risks identified in this study could reduce spread of AI subtype H9N2 and other AI viruses between poultry farms in Pakistan. PMID:25774768

  7. Sequence and phylogenetic analysis of the haemagglutinin genes of H9N2 avian influenza viruses isolated from commercial chickens in Iran.

    PubMed

    Homayounimehr, Ali Reza; Dadras, Habibollah; Shoushtari, Abdolhamid; Pourbakhsh, Seyyed Ali

    2010-08-01

    To determine the genetic relationship of Iranian viruses, the haemagglutinin (HA) genes from ten isolates of H9N2 viruses isolated from commercial chickens in Iran during 1998-2002 were amplified and sequenced. Sequence analysis and phylogenetic studies were conducted by comparing each isolate with those of the available H9N2 strains at GenBank. All these ten isolates had the same sequence -R-S-S-R/G-L- of proteolytic cleavage site of the HA. Nucleotide sequence comparisons of HA gene from Iranian isolates showed 95.2-99.1% identity within the group. Five isolates had leucine (L) at position 226 instead of glutamine (Q). Phylogenetic analysis showed that all our isolates belonged to the G1-like sublineage. Also these isolates showed some degree of homology with other H9N2 isolates e.g., 94.3-96.9% with qu/HK/G1/97, 96.1-98.6% with pa/Chiba/1/97, 95.6-98.2% with pa/Narita/92A/98, and 94.0-96.3% with HK/1073/99. On the basis of phylogenetic and molecular characterization evidence, we concluded that the H9N2 subtype influenza viruses circulating in chicken flocks in Iran since 1998-2002 had a common origin. The results of this study indicated that all Iranian viruses have the potential to emerge as highly pathogenic influenza virus, and considering the homology of these isolates with human H9N2 strains, it seems that the potential of these avian influenza isolates to infect human should not be overlooked. PMID:20390351

  8. The mRNA and Proteins Expression Levels Analysis of TC-1 Cells Immune Response to H9N2 Avian Influenza Virus

    PubMed Central

    Liu, Jiyuan; Li, Ning; Meng, Dan; Hao, Mengchan; Wei, Liangmeng; Chai, Tongjie

    2016-01-01

    Since 1994, the H9N2 avian influenza virus (AIV) has spread widely in mainland China, causing great economic losses to the poultry industry there. Subsequently, it was found that the H9N2 AIV had the ability to infect mammals, which gave rise to great panic. In order to investigate the immune response of a host infected with H9N2 AIV, TC-1 cells were set as a model in this research. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay methods were used to study the expression changes of pattern recognition receptors (PRRs), inflammatory cytokines, and chemokines in AIV-infected TC-1 cells. Our research found that TC-1 cells had similar susceptibility to both CK/SD/w3 (A/Chicken/Shandong/W3/2012) and CK/SD/w4 (A/Chicken/Shandong/W4/2012) H9N2 isolates, while the CK/SD/w3 isolate had a stronger capability of replication in the TC-1 cells. At the same time, the expression of PRRs (melanoma differentiation-associated gene 5, MDA-5), cytokines [interleukin (IL)-1β and IL-6], and chemokines [regulated on activation, normal T cell expressed and secreted (RANTES) and interferon-γ-induced protein-10 kDa (IP-10)] were significantly up-regulated. These results indicated that MDA-5, IL-1β, IL-6, RANTES, and IP-10 might play important roles in the host immune response to H9N2 AIV infection. This study provided useful information for further understanding the interaction between H9N2 virus infection and host immunity, and had certain guiding significance for the prevention and treatment of this disease. PMID:27446066

  9. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses.

    PubMed

    Xiao, Chencheng; Ma, Wenjun; Sun, Na; Huang, Lihong; Li, Yaling; Zeng, Zhaoyong; Wen, Yijun; Zhang, Zaoyue; Li, Huanan; Li, Qian; Yu, Yuandi; Zheng, Yi; Liu, Shukai; Hu, Pingsheng; Zhang, Xu; Ning, Zhangyong; Qi, Wenbao; Liao, Ming

    2016-01-01

    Human infections with avian influenza H7N9 or H10N8 viruses have been reported in China, raising concerns that they might cause human epidemics and pandemics. However, how these viruses adapt to mammalian hosts is unclear. Here we show that besides the commonly recognized viral polymerase subunit PB2 residue 627 K, other residues including 87E, 292 V, 340 K, 588 V, 648 V, and 676 M in PB2 also play critical roles in mammalian adaptation of the H10N8 virus. The avian-origin H10N8, H7N9, and H9N2 viruses harboring PB2-588 V exhibited higher polymerase activity, more efficient replication in mammalian and avian cells, and higher virulence in mice when compared to viruses with PB2-588 A. Analyses of available PB2 sequences showed that the proportion of avian H9N2 or human H7N9 influenza isolates bearing PB2-588 V has increased significantly since 2013. Taken together, our results suggest that the substitution PB2-A588V may be a new strategy for an avian influenza virus to adapt mammalian hosts. PMID:26782141

  10. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses

    PubMed Central

    Xiao, Chencheng; Ma, Wenjun; Sun, Na; Huang, Lihong; Li, Yaling; Zeng, Zhaoyong; Wen, Yijun; Zhang, Zaoyue; Li, Huanan; Li, Qian; Yu, Yuandi; Zheng, Yi; Liu, Shukai; Hu, Pingsheng; Zhang, Xu; Ning, Zhangyong; Qi, Wenbao; Liao, Ming

    2016-01-01

    Human infections with avian influenza H7N9 or H10N8 viruses have been reported in China, raising concerns that they might cause human epidemics and pandemics. However, how these viruses adapt to mammalian hosts is unclear. Here we show that besides the commonly recognized viral polymerase subunit PB2 residue 627 K, other residues including 87E, 292 V, 340 K, 588 V, 648 V, and 676 M in PB2 also play critical roles in mammalian adaptation of the H10N8 virus. The avian-origin H10N8, H7N9, and H9N2 viruses harboring PB2-588 V exhibited higher polymerase activity, more efficient replication in mammalian and avian cells, and higher virulence in mice when compared to viruses with PB2-588 A. Analyses of available PB2 sequences showed that the proportion of avian H9N2 or human H7N9 influenza isolates bearing PB2-588 V has increased significantly since 2013. Taken together, our results suggest that the substitution PB2-A588V may be a new strategy for an avian influenza virus to adapt mammalian hosts. PMID:26782141

  11. Synergistic effects of thymoquinone and curcumin on immune response and anti-viral activity against avian influenza virus (H9N2) in turkeys.

    PubMed

    Umar, S; Shah, M A A; Munir, M T; Yaqoob, M; Fiaz, M; Anjum, S; Kaboudi, K; Bouzouaia, M; Younus, M; Nisa, Q; Iqbal, M; Umar, W

    2016-07-01

    The main objective of this study was to determine the possible effects of thymoquinone (TQ) and curcumin (Cur) on immune-response and pathogenesis of H9N2 avian influenza virus (AIV) in turkeys. The experiment was performed on 75 non-vaccinated mixed-sex turkey poults, divided into 5 experimental groups (A, B, C, D, and E) of 15 birds each. Group A was kept as non-infected and a non-treated negative control (ctrl group) while group B was kept as infected and non-treated positive control (H9N2 group). Turkeys in groups A and B received normal commercial feed while turkeys in groups C and D received TQ, and Cur respectively, and group E concurrently received TQ and Cur from d one through the entire experiment period. All groups were challenged intra-nasally with H9N2 AIV (A/chicken/Pakistan/10RS3039-284-48/2010) at the fourth wk of age except group A. Infected turkeys showed clinical signs of different severity, showing the most prominent disease signs in turkeys in group B. All infected turkeys showed positive results for virus shedding; however, the pattern of virus shedding was different, and with turkeys in group B showing more pronounced virus secretion than the turkeys in the other groups receiving different levels of TQ and Cur. Moreover, significantly higher antibody titer against H9N2 AIV in turkeys shows the immunomodulatory nature of TQ and Cur. Similarly, increased cytokine gene expression suggests antiviral behavior of TQ and Cur especially in combination, leading to suppressed pathogenesis of H9N2 viruses. However, reduced virus shedding and enhanced immune responses were more pronounced in those turkeys receiving TQ and Cur concurrently. This study showed that supplements of TQ and Cur in combination would significantly enhance immune responsiveness and suppress pathogenicity of influenza viruses in turkeys. PMID:26944958

  12. Avian influenza virus H9N2 seroprevalence and risk factors for infection in occupational poultry-exposed workers in Tai'an of China.

    PubMed

    Li, Song; Zhou, Yufa; Song, Wengang; Pang, Quanhai; Miao, Zengmin

    2016-08-01

    To determine risk factor for H9N2 avian influenza virus (AIV) infection, a serological surveillance among both occupational poultry-exposed (OPE) workers and general humans was carried out using both haemagglutination inhibition (HI) and microneutralization (MN) assays in Tai'an, China, between 2011 and 2013. At baseline, the positive rate of anti-H9 antibody (HI and MN titers ≥40) among OPE workers (51/600, 8.5%) was significantly higher than that among the general population (11/600, 1.8%). The result indicated that occupational exposure to chicken flocks was an important risk factor for H9N2 AIV infection. J. Med. Virol. 88:1453-1456, 2016. © 2016 Wiley Periodicals, Inc. PMID:26816053

  13. Genetic and molecular characterization of H9N2 and H5 avian influenza viruses from live poultry markets in Zhejiang Province, eastern China

    PubMed Central

    Wu, Haibo; Peng, Xiuming; Peng, Xiaorong; Cheng, Linfang; Lu, Xiangyun; Jin, Changzhong; Xie, Tiansheng; Yao, Hangping; Wu, Nanping

    2015-01-01

    Live poultry markets (LPMs) are a key source of reassorted avian influenza viruses (AIVs) because of the density of terrestrial and aquatic poultry and the frequency of AIV infection. H9N2 viruses are prevalent in terrestrial poultry throughout Asia and have been isolated from poultry outbreaks worldwide. They infect both avian and mammalian species and may be significant donors of genetic material to emerging human pathogens. LPMs in Zhejiang Province were surveyed from 2013–2014 for AIVs. Three hundred seventy-four (374) AIV strains were isolated from 3,328 samples. Whole–genome sequencing and phylogenetic analyses were performed. We identified a novel H9N2 virus genotype that had undergone reassortment with gene segments from Qa/HK/G1/97–like, Ck/BJ/1/94–like, and Dk/HK/Y439/97–like viruses. Phylogenetic analyses suggested the H9N2 viruses had undergone reassortments with other AIV subtypes. The results also suggested that two different clades (2.3.2 and 2.3.4.6) of H5 viruses were co–circulating in Zhejiang Province. Given that reassorted H5 AIVs were detected in geese and ducks, it is possible that apparently healthy birds contribute to emerging H5 AIVs. Continued surveillance is required in poultry in eastern China. PMID:26627108

  14. Genetic and molecular characterization of H9N2 and H5 avian influenza viruses from live poultry markets in Zhejiang Province, eastern China.

    PubMed

    Wu, Haibo; Peng, Xiuming; Peng, Xiaorong; Cheng, Linfang; Lu, Xiangyun; Jin, Changzhong; Xie, Tiansheng; Yao, Hangping; Wu, Nanping

    2015-01-01

    Live poultry markets (LPMs) are a key source of reassorted avian influenza viruses (AIVs) because of the density of terrestrial and aquatic poultry and the frequency of AIV infection. H9N2 viruses are prevalent in terrestrial poultry throughout Asia and have been isolated from poultry outbreaks worldwide. They infect both avian and mammalian species and may be significant donors of genetic material to emerging human pathogens. LPMs in Zhejiang Province were surveyed from 2013-2014 for AIVs. Three hundred seventy-four (374) AIV strains were isolated from 3,328 samples. Whole-genome sequencing and phylogenetic analyses were performed. We identified a novel H9N2 virus genotype that had undergone reassortment with gene segments from Qa/HK/G1/97-like, Ck/BJ/1/94-like, and Dk/HK/Y439/97-like viruses. Phylogenetic analyses suggested the H9N2 viruses had undergone reassortments with other AIV subtypes. The results also suggested that two different clades (2.3.2 and 2.3.4.6) of H5 viruses were co-circulating in Zhejiang Province. Given that reassorted H5 AIVs were detected in geese and ducks, it is possible that apparently healthy birds contribute to emerging H5 AIVs. Continued surveillance is required in poultry in eastern China. PMID:26627108

  15. Sequence and phylogenetic analysis of neuraminidase genes of H9N2 avian influenza viruses isolated from commercial broiler chicken in Iran (2008 and 2009).

    PubMed

    Soltanialvar, Masoud; Shoushtari, Hamid; Bozorgmehrifard, Mohamadhasan; Charkhkar, Saeed; Akbarnejad, Farshad

    2012-03-01

    A total of 512 tissue samples collected from 30 farms located in various states of Iran during 2008-2009 as part of a program to monitor avian influenza viruses (AIVs) infection in Iran's poultry population. To determine the genetic relationship of Iranian viruses, neuraminidase (NA) genes from ten isolates of H9N2 viruses isolated from commercial chickens in Iran during 2008-2009 were amplified and sequenced. The viruses' neuraminidase gene was >90% similar to those of A/Quail/Hong Kong/G1/97 (H9N2) sublineage. The neuraminidase stalk regions in these Viruses had no deletion as compared to that of chicken/Beijing/1/94 sublineage (Beijing-like viruses) and the two human isolates A/HK/1073/99, A/HK/1074/99. Phylogenetic analysis of neuraminidase (NA) gene showed that it shares a common ancestor A/Quail/Hong Kong/G1/97 isolate which had contributed the internal genes of the H5N1 virus. The results of this study indicated that No (Beijing-like) virus and (Korean-like) virus were found in chickens in Iran, and the NA genes of H9N2 influenza viruses circulating in Iran during the past years were well conserved and the earlier Iranian isolates may be considered to represent such a progenitor. PMID:21744029

  16. Characterization of Low Pathogenic Avian Influenza Virus Subtype H9N2 Isolated from Free-Living Mynah Birds (Acridotheres tristis) in the Sultanate of Oman.

    PubMed

    Body, Mohammad H; Alrarawahi, Abdulmajeed H; Alhubsy, Saif S; Saravanan, Nirmala; Rajmony, Sunil; Mansoor, Muhammad Khalid

    2015-06-01

    A low pathogenic avian influenza virus was identified from free-living birds (mynah, Acridotheres tristis) of the starling family. Virus was isolated by inoculation of homogenized suspension from lung, tracheal, spleen, and cloacal swabs into the allantoic cavity of embryonated chicken eggs. Subtype of the isolate was characterized as H9N2 by hemagglutination inhibition test using monospecific chicken antisera to a wide range of influenza reference strain. Pathogenicity of the isolate was determined by intravenous pathogenicity index. The virus was reisolated from experimentally infected chicken. Additionally, the isolate was subjected to reverse transcriptase PCR using partial hemagglutinin (HA) gene-specific primers and yielded an amplicon of 487 bp. HA gene sequence analysis revealed 99% sequence homology among mynah and chicken isolates from Oman. On phylogenetic analysis, isolates from mynah (A/mynnah/Oman/AIVS6/2005) and chicken (A/chicken/Oman/AIVS3/2006; A/chicken/Oman/AIVS7/2006) clustered together tightly, indicating these free-flying birds may be a source of introduction of H9N2 subtype in poultry bird in Oman. Moreover, the HA gene of H9N2 isolates from Oman resembled those of viruses of the G1-like lineage and were very similar to those from United Arab Emirates. PMID:26473686

  17. Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adoption in mice.

    PubMed

    Sang, Xiaoyu; Wang, Airong; Chai, Tongjie; He, Xijun; Ding, Jie; Gao, Xiaolong; Li, Yuanguo; Zhang, Kun; Ren, Zhiguang; Li, Lin; Yu, Zhijun; Wang, Tiecheng; Feng, Na; Zheng, Xuexing; Wang, Hualei; Zhao, Yongkun; Yang, Songtao; Gao, Yuwei; Xia, Xianzhu

    2015-05-01

    The worldwide circulation of H9N2 avian influenza virus in poultry, the greater than 2.3 % positive rate for anti-H9 antibodies in poultry-exposed workers, and several reports of human infection indicate that H9N2 virus is a potential threat to human health. Here, we found three mutations that conferred high virulence to H9N2 virus in mice after four passages. The PB2-E627K substitution rapidly appeared at the second passage and played a decisive role in virulence. Polymerase complexes possessing PB2-E627K displayed 16.1-fold higher viral polymerase activity when compared to the wild-type virus, which may account for enhanced virulence of this virus. The other two substitutions (HA-N313D and HA-N496S) enhanced binding to both α2,3-linked and α2,6-linked sialic acid receptors; however, the HA-N313D and N496S substitutions alone decreased the virulence of mouse-adapted virus. Furthermore, this mouse-adapted virus was still not transmissible among guinea pigs by direct contact (0/3 pairs). Our findings show that adaption in mice enhanced the viral polymerase activity and receptor-binding ability, which resulted in a virulent phenotype in mice but not a transmissible phenotype in guinea pigs, indicating that host factors play an important role in adaptive evolution of influenza in new hosts. PMID:25782865

  18. Amino acid substitutions in the neuraminidase protein of an H9N2 avian influenza virus affect its airborne transmission in chickens.

    PubMed

    Lv, Jing; Wei, Liangmeng; Yang, Yan; Wang, Bingxiao; Liang, Wei; Gao, Yuwei; Xia, Xianzhu; Gao, Lili; Cai, Yumei; Hou, Peiqiang; Yang, Huili; Wang, Airong; Huang, Rong; Gao, Jing; Chai, Tongjie

    2015-01-01

    Cases of H9N2 avian influenza virus (AIV) in poultry are increasing throughout many Eurasian countries, and co-infections with other pathogens have resulted in high morbidity and mortality in poultry. Few studies have investigated the genetic factors of virus airborne transmission which determine the scope of this epidemic. In this study, we used specific-pathogen-free chickens housed in isolators to investigate the airborne transmissibility of five recombinant H9N2 AIV rescued by reverse genetic technology. The results show that airborne transmission of A/Chicken/Shandong/01/2008 (SD01) virus was related to the neuraminidase (NA) gene, and four amino acid mutations (D368E, S370L, E313K and G381D) within the head region of the SD01 NA, reduced virus replication in the respiratory tract of chickens, reduced virus NA activity, and resulted in a loss of airborne transmission ability in chickens. Similarly, reverse mutations of these four amino acids in the NA protein of r01/NASS virus, conferred an airborne transmission ability to the recombinant virus. We conclude that these four NA residues may be significant genetic markers for evaluating potential disease outbreak of H9N2 AIV, and propose that immediate attention should be paid to the airborne transmission of this virus. PMID:25928577

  19. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    PubMed

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts. PMID:25959557

  20. Antibody and T-cell responses to a virosomal adjuvanted H9N2 avian influenza vaccine: impact of distinct additional adjuvants.

    PubMed

    Radosević, Katarina; Rodriguez, Ariane; Mintardjo, Ratna; Tax, Dennis; Bengtsson, Karin Lövgren; Thompson, Catherine; Zambon, Maria; Weverling, Gerrit Jan; Uytdehaag, Fons; Goudsmit, Jaap

    2008-07-01

    A highly efficacious vaccine is required to counteract a threat of an avian influenza pandemic. Increasing the potency of vaccines by adjuvation is essential not only to overcome generally low immunogenicity of pandemic strains, but also to allow dose sparing and as such to make it feasible to satisfy huge global production demands. In this study we evaluated the ability of four distinct adjuvants to further increase immune responses to a virosomal adjuvanted avian H9N2 influenza vaccine in mice. Currently registered adjuvants aluminium phosphate, aluminium hydroxide and MF59, as well as a novel promising adjuvant MATRIX-M were included in the study. Our results demonstrate that all adjuvants significantly increased the H9N2 haemagglutinin (HA) inhibition and ELISA antibody titers induced with the virosomal adjuvanted vaccine. The adjuvants exhibited different effect on the isotype of virus specific antibodies, with MATRIX-M inducing the most pronounced skewing to IgG2a, i.e. towards Th1 type of response. While the virosomal adjuvanted pandemic influenza vaccine efficiently induced CD4(+) T-cell response, with no further increase upon adjuvation, the CD8(+) T-cell responses induced with virosomal adjuvanted vaccine could be significantly improved upon additional adjuvation with MATRIX-M or MF59. All adjuvants demonstrated a dose sparing effect, i.e. in combination with the virosomal adjuvanted pandemic influenza vaccine they increased immune responses to comparable level independent of the tested vaccine dose. In conclusion, our results demonstrate that immune responses to a virosomal adjuvanted pandemic influenza vaccine can be further enhanced by add-on adjuvants, with MATRIX-M being overall the most potent adjuvant in combination with virosomes, followed by MF59 and finally aluminium-based adjuvants. PMID:18514980

  1. High genetic diversity and frequent genetic reassortment of avian influenza A(H9N2) viruses along the East Asian-Australian migratory flyway.

    PubMed

    Wang, Haiming; Zhang, Zhenjie; Chen, Zhanqiang; Zhang, Yanru; Lv, Qiang; An, Xiaoping; Tong, Yigang; Carr, Michael J; Sun, Shuhong; Shi, Weifeng

    2016-04-01

    To understand the molecular epidemiology and evolution of avian influenza viruses (AIV) along the East Asian-Australian migration flyway, we collected faecal samples (n=2859) between November 2014 and March 2015 from poultry, environmental sources and wild birds in Dongying, Shandong province and Yancheng, Jiangsu province in eastern China. The presence of AIV RNA was evaluated by real-time PCR and the positivity rate ranged from 0 to 29.3%. In both Dongying and Yancheng, samples collected from live poultry markets had the highest positivity rate for AIV RNA. AIV whole genomes were generated and phylogenetically analysed. Our results demonstrate that most of the viruses belonged to the H9N2 subtype, and could be classified into nine novel genotypes based on the phylogenetic analysis of the eight gene segments of the AIV genomes. This revealed a high genetic diversity of H9N2 in this region and suggested that they might have undergone frequent genetic reassortment. In addition, the internal genes (PB2, etc.) of two viruses from wild birds and several viruses from poultry belonged to the same gene constellation, suggesting a potential inter-host transmission of AIV between wild birds and poultry in live markets along routes of migratory flyways. Our results highlight the high genetic diversity of AIV along the East Asian-Australian migration flyway and the need for more extensive AIV surveillance in eastern China. PMID:26876220

  2. Cross reactive antibody and cytotoxic T lymphocytes from avian influenza H9N2 infected chickens against homologous and heterologous avian influenza isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunity against avian influenza (AI) is largely based on the induction of neutralizing antibodies produced against the hemagglutinin, although cytotoxic T lymphocytes (CTL’s) have been reported as critical for clearance of virus from infected cells. Antibody production against a particular virus ...

  3. Isolation and characterization of an H9N2 influenza virus isolated in Argentina

    PubMed Central

    Xu, Kemin; Ferreri, Lucas; Rimondi, Agustina; Olivera, Valeria; Romano, Marcelo; Ferreyra, Hebe; Rago, Virgina; Uhart, Marcela; Chen, Hongjun; Sutton, Troy; Pereda, Ariel; Perez, Daniel R.

    2016-01-01

    As part of our ongoing efforts on animal influenza surveillance in Argentina, an H9N2 virus was isolated from a wild aquatic bird (Netta peposaca), A/rosy-billed pochard/Argentina/CIP051-559/2007 (H9N2) – herein referred to as 559/H9N2. Due to the important role that H9N2 viruses play in the ecology of influenza in nature, the 559/H9N2 isolate was characterized molecularly and biologically. Phylogenetic analysis of the HA gene revealed that the 559/H9N2 virus maintained an independent evolutionary pathway and shared a sister-group relationship with North American viruses, suggesting a common ancestor. The rest of the genome segments clustered with viruses from South America. Experimental inoculation of the 559/H9N2 in chickens and quail revealed efficient replication and transmission only in quail. Our results add to the notion of the unique evolutionary trend of avian influenza viruses in South America. Our study increases our understanding of H9N2 viruses in nature and emphasizes the importance of expanding animal influenza surveillance efforts to better define the ecology of influenza viruses at a global scale. PMID:22709552

  4. Experimental Infection of Chickens with Intercontinental Reassortant H9N2 Influenza Viruses from Wild Birds.

    PubMed

    Lee, Dong-Hun; Kwon, Jung-Hoon; Park, Jae-Keun; Yuk, Seong-Su; Tseren-Ochir, Erdene-Ochir; Noh, Jin-Yong; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-06-01

    The H9N2 subtype of low pathogenic avian influenza (LPAI) virus is the most prevalent LPAI in domestic poultry. We previously reported the natural reassortant H9N2 viruses between North American and Eurasian lineages isolated from wild birds in Korea. These viruses were identified in China and Alaska, providing evidence of intercontinental dispersal. In this study, we evaluated the infectivity, transmissibility, and pathogenic potential of these H9N2 viruses and Eurasian H9N2 virus identified from wild birds using specific-pathogen-free chickens. Three-week-old chickens were infected intranasally. All of these reassortant H9N2 viruses could not be replicated and transmitted in chickens. On the other hand, three out of eight chickens inoculated with the Eurasian H9N2 virus shed detectable levels of virus and showed seroconversion but did not show contact transmission of the virus. Although all reassortant H9N2 viruses could not be replicated and transmitted in chickens, and although there are no reports on reassortant H9N2 virus infection in poultry farms until now, monitoring of reassortant H9N2 viruses should be continued to prepare for the advent and evolution of these viruses. PMID:27309293

  5. Vaccine Efficacy Against a New Avian Influenza (H9N2) Field Isolate from the Middle East (Serology and Challenge Studies).

    PubMed

    Gharaibeh, Saad; Amareen, Shadi

    2015-12-01

    Avian influenza subtype H9N2 is endemic in many countries in the Middle East. The reported prevalence of infection was variable between countries and ranged from 28.7% in Tunisia to 71% in Jordan. Several commercial killed whole-virus vaccine products are used as monovalent or bivalent mixed with Newcastle disease virus. Recently, we have noticed that many of the vaccinated broiler flocks did not show a production advantage over nonvaccinated flocks in the field. A new avian influenza field virus (H9N2) was isolated from these vaccinated and infected broiler flocks in 2013. This virus had 89.1% similarity of its hemagglutinin (HA) gene to the classical virus used for manufacturing the classical vaccine. Inactivated autogenous vaccine was manufactured from this new field isolate to investigate its serological response and protection in specific-pathogen-free (SPF) and breeder-male chickens compared to the classical vaccine. Oropharyngeal virus shedding of vaccinated breeder-male chickens was evaluated at 3, 9, 10, and 14 days postchallenge (DPC). Percentage of chickens shedding the virus at 3 DPC was 64%, 50%, and 64% in the classical vaccine group, autogenous vaccine group, and the control challenged group, respectively. At 7 DPC percentage of virus shedding was 42%, 7%, and 64% in the classical vaccine group, autogenous vaccine group, and the control challenged group, respectively. At 10 DPC only 9% of classical vaccine group was shedding the virus and there was no virus shedding in any of the groups at 14 DPC. There was statistical significance difference (P < 0.05) in shedding only at 7 DPC between the autogenous vaccine group and the other two groups. At 42 days of age (14 DPC), average body weight was 2.720, 2.745, 2.290, and 2.760 kg for the classical vaccine group, autogenous vaccine group, control challenged group, and control unchallenged group, respectively. Only the control challenged group had significantly (P < 0.05) lower average body weight. In

  6. Vaccine Efficacy Against a New Avian Influenza (H9N2) Field Isolate from the Middle East (Serology and Challenge Studies).

    PubMed

    Gharaibeh, Saad; Amareen, Shadi

    2016-05-01

    Avian influenza subtype H9N2 is endemic in many countries in the Middle East. The reported prevalence of infection was variable between countries and ranged from 28.7% in Tunisia to 71% in Jordan. Several commercial killed whole-virus vaccine products are used as monovalent or bivalent mixed with Newcastle disease virus. Recently, we have noticed that many of the vaccinated broiler flocks did not show a production advantage over nonvaccinated flocks in the field. A new avian influenza field virus (H9N2) was isolated from these vaccinated and infected broiler flocks in 2013. This virus had 89.1% similarity of its hemagglutinin (HA) gene to the classical virus used for manufacturing the classical vaccine. Inactivated autogenous vaccine was manufactured from this new field isolate to investigate its serological response and protection in specific-pathogen-free (SPF) and breeder-male chickens compared to the classical vaccine. Oropharyngeal virus shedding of vaccinated breeder-male chickens was evaluated at 3, 9, 10, and 14 days postchallenge (DPC). Percentage of chickens shedding the virus at 3 DPC was 64%, 50%, and 64% in the classical vaccine group, autogenous vaccine group, and the control challenged group, respectively. At 7 DPC percentage of virus shedding was 42%, 7%, and 64% in the classical vaccine group, autogenous vaccine group, and the control challenged group, respectively. At 10 DPC only 9% of classical vaccine group was shedding the virus and there was no virus shedding in any of the groups at 14 DPC. There was statistical significance difference (P < 0.05) in shedding only at 7 DPC between the autogenous vaccine group and the other two groups. At 42 days of age (14 DPC), average body weight was 2.720, 2.745, 2.290, and 2.760 kg for the classical vaccine group, autogenous vaccine group, control challenged group, and control unchallenged group, respectively. Only the control challenged group had significantly (P < 0.05) lower average body weight. In

  7. The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2

    PubMed Central

    Asl Najjari, Amir Hossein; Rajabi, Zolfaghar; Vasfi Marandi, Mehdi; Dehghan, Gholamreza

    2015-01-01

    Influenza is a contagious viral disease that is seen in avian, human and other mammals, so its control is important. Vaccination against influenza virus subtype H9N2 is one of the ways in controlling program, for this reason several vaccines has been produced. Recently, application of inactivated oil-emulsion vaccines in poultry for controlling low pathogenic avian influenza is increasing. At present, oils that are used as adjuvant in commercial vaccines are mineral oils, which not only lack immunizing effect, but also produce some detriments. The aim of this study is the evaluation the immunogenicity of vegetable oils, which are more metabolizable and safer than mineral oils. In this study the efficacy of hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and also nano-selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2 was evaluated in broiler chickens. The results indicated that the prepared emulsions could elicit a little degree of immunity, but they could not inhibit the anamnestic response and infection. With regard to the results, it seems that the intact mixture of fig and olive fruit hexanic extracts could not be administered as an immunoadjuvant in the vaccine, and about nano-selenium. In spite of positive effect on the immunogenicity of avian influenza virus subtype H9N2, it still needs more work. PMID:26893813

  8. The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2.

    PubMed

    Asl Najjari, Amir Hossein; Rajabi, Zolfaghar; Vasfi Marandi, Mehdi; Dehghan, Gholamreza

    2015-01-01

    Influenza is a contagious viral disease that is seen in avian, human and other mammals, so its control is important. Vaccination against influenza virus subtype H9N2 is one of the ways in controlling program, for this reason several vaccines has been produced. Recently, application of inactivated oil-emulsion vaccines in poultry for controlling low pathogenic avian influenza is increasing. At present, oils that are used as adjuvant in commercial vaccines are mineral oils, which not only lack immunizing effect, but also produce some detriments. The aim of this study is the evaluation the immunogenicity of vegetable oils, which are more metabolizable and safer than mineral oils. In this study the efficacy of hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and also nano-selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2 was evaluated in broiler chickens. The results indicated that the prepared emulsions could elicit a little degree of immunity, but they could not inhibit the anamnestic response and infection. With regard to the results, it seems that the intact mixture of fig and olive fruit hexanic extracts could not be administered as an immunoadjuvant in the vaccine, and about nano-selenium. In spite of positive effect on the immunogenicity of avian influenza virus subtype H9N2, it still needs more work. PMID:26893813

  9. Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015.

    PubMed

    Zhou, Jie; Wu, Jie; Zeng, Xianqiao; Huang, Guofeng; Zou, Lirong; Song, Yingchao; Gopinath, Divya; Zhang, Xin; Kang, Min; Lin, Jinyan; Cowling, Benjamin J; Lindsley, William G; Ke, Changwen; Peiris, Joseph Sriyal Malik; Yen, Hui-Ling

    2016-09-01

    Zoonotic infections by avian influenza viruses occur at the human-poultry interface, but the modes of transmission have not been fully investigated. We assessed the potential for airborne and fomite transmission at live poultry markets in Guangzhou city and in Hong Kong Special Administrative Region (SAR), China, during 2014 and 2015. Viral genome and infectious avian influenza A viruses of H5N6, H7N9, and H9N2 subtypes were detected predominantly from particles larger or equal to 1 μm in diameter in the air sampled with cyclone-based bioaerosol samplers at the live poultry markets in Guangzhou. Influenza A(H9N2) viruses were ubiquitously isolated every month during the study period from air and environmental swabs, and different lineages of H9N2 virus were isolated from markets where chickens and minor land-based poultry were sold. The use of de-feathering devices increased the quantity of virus-laden airborne particles while market closure reduced the amount of such particles. The results highlight the possibility of airborne transmission of avian influenza viruses among poultry or from poultry to humans within such settings. This may explain epidemiological observations in which some patients with H7N9 infection reported being in markets but no direct contact with live poultry or poultry stalls. PMID:27608369

  10. Replication and Transmission of H9N2 Influenza Viruses in Ferrets: Evaluation of Pandemic Potential

    PubMed Central

    Song, Haichen; Hossain, Md Jaber; Ramirez-Nieto, Gloria; Monne, Isabella; Stevens, James; Cattoli, Giovanni; Capua, Ilaria; Chen, Li-Mei; Donis, Ruben O.; Busch, Julia; Paulson, James C.; Brockwell, Christy; Webby, Richard; Blanco, Jorge; Al-Natour, Mohammad Q.; Perez, Daniel R.

    2008-01-01

    H9N2 avian influenza A viruses are endemic in poultry of many Eurasian countries and have caused repeated human infections in Asia since 1998. To evaluate the potential threat of H9N2 viruses to humans, we investigated the replication and transmission efficiency of H9N2 viruses in the ferret model. Five wild-type (WT) H9N2 viruses, isolated from different avian species from 1988 through 2003, were tested in vivo and found to replicate in ferrets. However these viruses achieved mild peak viral titers in nasal washes when compared to those observed with a human H3N2 virus. Two of these H9N2 viruses transmitted to direct contact ferrets, however no aerosol transmission was detected in the virus displaying the most efficient direct contact transmission. A leucine (Leu) residue at amino acid position 226 in the hemagglutinin (HA) receptor-binding site (RBS), responsible for human virus-like receptor specificity, was found to be important for the transmission of the H9N2 viruses in ferrets. In addition, an H9N2 avian-human reassortant virus, which contains the surface glycoprotein genes from an H9N2 virus and the six internal genes of a human H3N2 virus, showed enhanced replication and efficient transmission to direct contacts. Although no aerosol transmission was observed, the virus replicated in multiple respiratory tissues and induced clinical signs similar to those observed with the parental human H3N2 virus. Our results suggest that the establishment and prevalence of H9N2 viruses in poultry pose a significant threat for humans. PMID:18698430

  11. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus.

    PubMed

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the "harmful" internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs. PMID:26973600

  12. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus

    PubMed Central

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the “harmful” internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs. PMID:26973600

  13. H9N2 avian influenza virus-derived natural reassortant H5N2 virus in swan containing the hemagglutinin segment from Eurasian H5 avian influenza virus with an in-frame deletion of four basic residues in the polybasic hemagglutinin cleavage site.

    PubMed

    Wang, Youling; Yuan, Xiaoyuan; Qi, Lihong; Zhang, Yuxia; Xu, Huaiying; Yang, Jinxing; Ai, Wu; Qi, Wenbao; Liao, Ming; Wang, Dan; Song, Minxun; Li, Feng

    2016-06-01

    We isolated a novel H5N2 avian influenza virus from swans in China. The virus was derived from a widespread H9N2 avian influenza virus but acquired the hemagglutinin gene from Eurasian H5 subtype with a naturally occurring in-frame deletion of four basic residues in the polybasic hemagglutinin cleavage site. PMID:26910357

  14. Complete Genome Sequence of Influenza Virus H9N2 Associated with a Fatal Outbreak among Chickens in Dubai.

    PubMed

    Lau, Siu-Ying; Joseph, Sunitha; Chan, Kwok-Hung; Chen, Honglin; Patteril, Nissy Annie Gerogy; Elizabeth, Shyna K; Muhammed, Rubeena; Baskar, Vijay; Lau, Susanna K P; Kinne, Joerg; Wernery, Ulrich; Woo, Patrick C Y

    2016-01-01

    We report the complete genome sequence of influenza virus H9N2 associated with a fatal outbreak among chickens in Dubai. All segments are clustered with avian H9N2 viruses circulating in the Middle East but distinct from those in southeast Asia. It is not a reassortant virus or transmitted from other regions. PMID:27540055

  15. Complete Genome Sequence of Influenza Virus H9N2 Associated with a Fatal Outbreak among Chickens in Dubai

    PubMed Central

    Lau, Siu-Ying; Joseph, Sunitha; Chan, Kwok-Hung; Chen, Honglin; Patteril, Nissy Annie Gerogy; Elizabeth, Shyna K.; Muhammed, Rubeena; Baskar, Vijay; Lau, Susanna K. P.; Kinne, Joerg

    2016-01-01

    We report the complete genome sequence of influenza virus H9N2 associated with a fatal outbreak among chickens in Dubai. All segments are clustered with avian H9N2 viruses circulating in the Middle East but distinct from those in southeast Asia. It is not a reassortant virus or transmitted from other regions. PMID:27540055

  16. Genotypic evolution and antigenicity of H9N2 influenza viruses in Shanghai, China.

    PubMed

    Ge, Feifei; Li, Xin; Ju, Houbin; Yang, Dequan; Liu, Jian; Qi, Xinyong; Wang, Jian; Yang, Xianchao; Qiu, Yafeng; Liu, Peihong; Zhou, Jinping

    2016-06-01

    H9N2 influenza viruses have been circulating in China since 1994, but a systematic investigation of H9N2 in Shanghai has not previously been undertaken. Here, using 14 viruses we isolated from poultry and pigs in Shanghai during 2002 and 2006-2014, together with the commercial vaccine A/chicken/Shanghai/F/1998 (Ck/SH/F/98), we analyzed the evolution of H9N2 influenza viruses in Shanghai and showed that all 14 isolates originated from Ck/SH/F/98 antigenically. We evaluated the immune protection efficiency of the vaccine. Our findings demonstrate that H9N2 viruses in Shanghai have undergone extensive reassortment. Various genotypes emerged in 2002, 2006 and 2007, while during 2009-2014 only one genotype was found. Four antigenic groups, A-D, could be identified among the 14 isolates and a variety of antigenically distinct H9N2-virus-derived avian influenza viruses (AIVs) circulated simultaneously in Shanghai during this period. Challenge experiments using vaccinated chickens indicated that the vaccine prevented shedding of antigenic group A and B viruses, but not those of the more recent groups C and D. Genetic analysis showed that compared to the vaccine strain, representative viruses of antigenic groups C and D possess greater numbers of amino acid substitutions in the hemagglutinin (HA) protein than viruses in antigenic groups A and B. Many of these substitutions are located in antigenic sites. Our results indicate that the persistence of H9N2 AIV in China might be due to incomplete vaccine protection and that the avian influenza vaccine should be regularly evaluated and updated to maintain optimal protection. PMID:26935915

  17. Cross reactive immunity derived from chickens infected with H9N2 low pathogenic avian influenza against homologous and heterosubtypic challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because vaccines for use in commercial poultry against avian influenza (AI) are mainly inactivated and delivered parenterally, our knowledge of protective immunity of poultry against AI is largely based on the induction of serum-neutralizing antibodies produced against a specific hemagglutinin (HA) ...

  18. Assessment of the safety and efficacy of low pathogenic avian influenza (H9N2) virus in inactivated oil emulsion vaccine in laying hens.

    PubMed

    Shin, Jeong-Hwa; Mo, Jong Seo; Kim, Jong-Nyeo; Mo, In-pil; Ha, Bong-Do

    2016-03-01

    In Korea, several outbreaks of low pathogenic AI (H9N2) viral infections leading to decreased egg production and increased mortality have been reported on commercial farms since 1996, resulting in severe economic losses. To control the H9N2 LPAI endemic, the Korea Veterinary Authority has permitted the use of the inactivated H9N2 LPAI vaccine since 2007. In this study, we developed a killed vaccine using a low pathogenic H9N2 AI virus (A/chicken/Korea/ADL0401) and conducted safety and efficacy tests in commercial layer farms while focusing on analysis of factors that cause losses to farms, including egg production rate, egg abnormality, and feed efficiency. The egg production rate of the control group declined dramatically 5 days after the challenge. There were no changes in feed consumption of all three groups before the challenge, but rates of the control declined afterward. Clinical signs in the vaccinated groups were similar, and a slight decline in feed consumption was observed after challenge; however, this returned to normal more rapidly than the control group and commercial layers. Overall, the results of this study indicate that the safety and efficacy of the vaccine are adequate to provide protection against the AI field infection (H9N2) epidemic in Korea. PMID:27051337

  19. Assessment of the safety and efficacy of low pathogenic avian influenza (H9N2) virus in inactivated oil emulsion vaccine in laying hens

    PubMed Central

    Shin, Jeong-Hwa; Mo, Jong Seo; Kim, Jong-Nyeo; Mo, In-pil

    2016-01-01

    In Korea, several outbreaks of low pathogenic AI (H9N2) viral infections leading to decreased egg production and increased mortality have been reported on commercial farms since 1996, resulting in severe economic losses. To control the H9N2 LPAI endemic, the Korea Veterinary Authority has permitted the use of the inactivated H9N2 LPAI vaccine since 2007. In this study, we developed a killed vaccine using a low pathogenic H9N2 AI virus (A/chicken/Korea/ADL0401) and conducted safety and efficacy tests in commercial layer farms while focusing on analysis of factors that cause losses to farms, including egg production rate, egg abnormality, and feed efficiency. The egg production rate of the control group declined dramatically 5 days after the challenge. There were no changes in feed consumption of all three groups before the challenge, but rates of the control declined afterward. Clinical signs in the vaccinated groups were similar, and a slight decline in feed consumption was observed after challenge; however, this returned to normal more rapidly than the control group and commercial layers. Overall, the results of this study indicate that the safety and efficacy of the vaccine are adequate to provide protection against the AI field infection (H9N2) epidemic in Korea. PMID:27051337

  20. A live attenuated H9N2 influenza vaccine is well tolerated and immunogenic in healthy adults.

    PubMed

    Karron, Ruth A; Callahan, Karen; Luke, Catherine; Thumar, Bhagvanji; McAuliffe, Josephine; Schappell, Elizabeth; Joseph, Tomy; Coelingh, Kathleen; Jin, Hong; Kemble, George; Murphy, Brian R; Subbarao, Kanta

    2009-03-01

    Development of live attenuated influenza vaccines (LAIV) against avian strains with pandemic potential is an important public-health strategy. Either 1 or 2 10(7)-TCID(50) doses of H9N2 LAIV A/chicken/Hong Kong/G9/97 were administered intranasally to 50 adults in isolation; 41 participants were H9N2 seronegative, 24 of whom received 2 doses. The vaccine was well tolerated; vaccine shedding was minimal. After 2 doses, 92% of H9-seronegative participants had > or = 4-fold increases in hemagglutination-inhibition antibody, and 79% had > or = 4-fold increases in neutralizing antibody; 100% had responses detected by at least 1 assay. Although replication of the H9N2 LAIV was restricted, 2 doses were immunogenic in H9N2-seronegative adults. Trial registration. ClinicalTrials.gov identifier: NCT00110279 . PMID:19210163

  1. Complete genome sequence of a novel H9N2 subtype influenza virus FJG9 strain in china reveals a natural reassortant event

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Chicken/FJ/G9/09 (FJ/G9) is an H9N2 subtype strain of avian influenza virus (H9N2 AIV) strain causing high morbidity, that was isolated from broilers in Fujian province, China, in 2009. The FJ/G9 has been used as the vaccine strain against H9N2 AIV infection in Fujian Province of China. Here, we r...

  2. Multiple introductions of a reassortant H5N1 avian influenza virus of clade 2.3.2.1c with PB2 gene of H9N2 subtype into Indian poultry.

    PubMed

    Tosh, Chakradhar; Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Venkatesh, Govindarajulu; Shukla, Shweta; Mishra, Amit; Mishra, Pranav; Agarwal, Sonam; Singh, Bharati; Dubey, Prashant; Tripathi, Sushil; Kulkarni, Diwakar D

    2016-09-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are a threat to poultry in Asia, Europe, Africa and North America. Here, we report isolation and characterization of H5N1 viruses isolated from ducks and turkeys in Kerala, Chandigarh and Uttar Pradesh, India between November 2014 and March 2015. Genetic and phylogenetic analyses of haemagglutinin gene identified that the virus belonged to a new clade 2.3.2.1c which has not been detected earlier in Indian poultry. The virus possessed molecular signature for high pathogenicity to chickens, which was corroborated by intravenous pathogenicity index of 2.96. The virus was a reassortant which derives its PB2 gene from H9N2 virus isolated in China during 2007-2013. However, the neuraminidase and internal genes are of H5N1 subtype. Phylogenetic and network analysis revealed that after detection in China in 2013/2014, the virus moved to Europe, West Africa and other Asian countries including India. The analyses further indicated multiple introductions of H5N1 virus in Indian poultry and internal spread in Kerala. One of the outbreaks in ducks in Kerala is linked to the H5N1 virus isolated from wild birds in Dubai suggesting movement of virus probably through migration of wild birds. However, the outbreaks in ducks in Chandigarh and Uttar Pradesh were from an unknown source in Asia which also contributed gene pools to the outbreaks in Europe and West Africa. The widespread incidence of the novel H5N1 HPAI is similar to the spread of clade 2.2 ("Qinghai-like") virus in 2005, and should be monitored to avoid threat to animal and public health. PMID:27174088

  3. Experimental co-infection of SPF chickens with low pathogenicity avian influenza virus (LPAIV) subtypes H9N2, H5N2 and H7N9, and infectious bronchitis virus (IBV)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and infectious bronchitis virus (IBV) are two of the most important respiratory viruses affecting poultry worldwide, but little is known about the effect of co-infection of these two viruses in poultry. Low pathogenicity (LP) AIV can produce from mild to moderate upper r...

  4. Molecular characterization of mammalian-adapted Korean-type avian H9N2 virus and evaluation of its virulence in mice.

    PubMed

    Park, Kuk Jin; Song, Min-Suk; Kim, Eun-Ha; Kwon, Hyeok-Il; Baek, Yun Hee; Choi, Eun-Hye; Park, Su-Jin; Kim, Se Mi; Kim, Young-Il; Choi, Won-Suk; Yoo, Dae-Won; Kim, Chul-Joong; Choi, Young Ki

    2015-08-01

    Avian influenza A virus (AIV) is commonly isolated from domestic poultry and wild migratory birds, and the H9N2 subtype is the most prevalent and the major cause of severe disease in poultry in Korea. In addition to the veterinary concerns regarding the H9N2 subtype, it is also considered to be the next potential human pandemic strain due to its rapid evolution and interspecies transmission. In this study, we utilize serial lung-to-lung passage of a low pathogenic avian influenza virus (LPAI) H9N2 (A/Ck/Korea/163/04, WT163) (Y439-lineage) in mice to increase pathogenicity and investigate the potential virulence marker. Mouse-adapted H9N2 virus obtained high virulence (100% mortality) in mice after 98 serial passages. Sequence results show that the mouse adaptation (ma163) possesses several mutations within seven gene segments (PB2, PA, HA, NP, NA, M, and NS) relative to the wild-type strain. The HA gene showed the most mutations (at least 11) with one resulting in the loss of an N-glycosylation site (at amino acid 166). Moreover, reverse genetic studies established that an E627K substitution in PB2 and the loss of the N-glycosylation site in the HA protein (aa166) are critical virulence markers in the mouse-adapted H9N2 virus. Thus, these results add to the increasing body of mutational analysis data defining the function of the viral polymerase and HA genes and their roles in mammalian host adaptation. To our knowledge, this is first report of the generation of a mammalian-adapted Korea H9N2 virus (Y493-lineages). Therefore, this study offers valuable insights into the molecular evolution of the LPAI Korean H9N2 in a new host and adds to the current knowledge of the molecular markers associated with increased virulence. PMID:26224460

  5. Phylogenetic analysis of the hemagglutinin genes of 12 H9N2 influenza viruses isolated from chickens in Iran from 2003 to 2005.

    PubMed

    Moosakhani, F; Shoshtari, A H; Pourbakhsh, S A; Keyvanfar, H; Ghorbani, A

    2010-06-01

    In the present study, the hemagglutinin genes from 12 influenza viruses of the H9N2 subtype were isolated from chicken flocks in different provinces of Iran from 2003 to 2005, amplified and sequenced. All of the 12 isolates showed similar sequences at the cleavage site, RSSF/GLF, bearing eight potential glycosylation sites and sharing the characteristic deduced amino acid residues alanine-190, glutamine-226, and glutamine-227 at the receptor-binding site. Ten out of these 12 isolates possessed leucine at position 226, which prevails in the sequences found in human H2 and H3 strains. Overall, the presence in these Iranian poultry H9N2 viruses of the sequence known to bind to human-type receptors and the presence of antibodies in the human population of Iran to H9N2 showed that it is possible for circulating H9N2 avian influenza viruses in Iran to infect humans. Hence, extensive surveillance of H9N2 in this country is highly recommended. PMID:20608532

  6. Immunoprotection against influenza virus H9N2 by the oral administration of recombinant Lactobacillus plantarumNC8 expressing hemagglutinin in BALB/c mice.

    PubMed

    Shi, Shao-Hua; Yang, Wen-Tao; Yang, Gui-Lian; Cong, Yan-Long; Huang, Hai-Bin; Wang, Qian; Cai, Ruo-Peng; Ye, Li-Ping; Hu, Jing-Tao; Zhou, Jing-Yu; Wang, Chun-Feng; Li, Yu

    2014-09-01

    The H9N2 avian influenza virus (AIV) has become increasingly concerning due to its role in severe economic losses in the poultry industry. Transmission of AIV to mammals, including pigs and humans, has accelerated efforts to devise preventive strategies. To develop an effective oral vaccine against H9N2 AIV, a recombinant Lactobacillus plantarum NC8 strain expressing the hemagglutinin (HA) gene of H9N2 AIV was constructed in this study. Mice were orally immunized with the recombinant NC8-pSIP409-HA strain, and sIgA, IgG and HI antibodies were produced by the NC8-pSIP409-HA strain, which also induced CD8(+) T cell immune responses. Most importantly, oral administration produced complete protection against challenge with mouse-adapted H9N2 virus. These results indicate that the recombinant NC8-pSIP409-HA was more effective at inducing the mucosal, humoral and cellular immune responses. Therefore, L. plantarum NC8-pSIP409-HA could become a promising oral vaccine candidate against H9N2 AIV. PMID:25083619

  7. Dispersal of H9N2 influenza A viruses between East Asia and North America by wild birds

    USGS Publications Warehouse

    Ramey, Andy M.; Reeves, Andrew B.; Sonsthagen, Sarah A.; Teslaa, Joshua L.; Nashold, Sean W.; Donnelly, Tyrone F.; Casler, Bruce; Hall, Jeffrey S.

    2015-01-01

    Samples were collected from wild birds in western Alaska to assess dispersal of influenza A viruses between East Asia and North America. Two isolates shared nearly identical nucleotide identity at eight genomic segments with H9N2 viruses isolated from China and South Korea providing evidence for intercontinental dispersal by migratory birds.

  8. Isolation and phylogenetic analysis of hemagglutinin gene of H9N2 influenza viruses from chickens in South China from 2012 to 2013

    PubMed Central

    Shen, Han-Qin; Yan, Zhuan-Qiang; Zeng, Fan-Gui; Liao, Chang-Tao; Zhou, Qing-Feng; Qin, Jian-Ping; Xie, Qing-Mei; Bi, Ying-Zuo

    2015-01-01

    As part of our ongoing influenza surveillance program in South China, 19 field strains of H9N2 subtype avian influenza viruses (AIVs) were isolated from dead or diseased chicken flocks in Guangdong province, South China, between 2012 and 2013. Hemagglutinin (HA) genes of these strains were sequenced and analyzed and phylogenic analysis showed that 12 of the 19 isolates belonged to the lineage h9.4.2.5, while the other seven belonged to h9.4.2.6. Specifically, we found that all of the viruses isolated in 2013 belonged to lineage h9.4.2.5. The lineage h9.4.2.5 viruses contained a PSRSSR↓GLF motif at HA cleavage site, while the lineage h9.4.2.6 viruses contained a PARSSR↓GLF at the same position. Most of the isolates in lineage h9.4.2.5 lost one potential glycosylation site at residues 200-202, and had an additional one at residues 295-297 in HA1. Notably, 19 isolates had an amino acid exchange (Q226L) in the receptor binding site, which indicated that the viruses had potential affinity of binding to human like receptor. The present study shows the importance of continuing surveillance of new H9N2 strains to better prepare for the next epidemic or pandemic outbreak of H9N2 AIV infections in chicken flocks. PMID:25643797

  9. [Isolation and Identification of a Quail-origin H9N2 Subtype of The Influenza Virus and Its Biologic Characterization].

    PubMed

    Yu, Yang; Si, Weiying; Yuan, Zhuangchuan; Yan, Yan; Zhou, Jiyong

    2016-01-01

    A quail-origin subtype of the influenza virus was isolated from a human-infecting H7N9 subtype of the avian influenza virus found in a live poultry market and was given the name A/Quail/Hangzhou/1/ 2013 (H9N2). We analyzed the whole genome of this virus and its biologic characteristics. Sequence analyses suggested that the: HA and NS genes belonged to a CK/BJ/1/94-like lineage; NA, NP, PA and PB1 genes belonged to a SH/F/98-like lineage; M and PB2 genes belonged to a G1-like lineage. Analyses of key amino acids showed that the cleavage site in HA protein was PSRSSR ↓ GL, and that the HA protein had a human receptor-binding site with Leu226. Deletion of amino acids 69 - 73 was detected in the stalk of NA protein, the M2 protein had an Asn31 mutation, and the NS1 protein had two mutations at Ser42, Ala149. The intravenous pathogenicity of this virus was 0.36. A study in chickens suggested that all inoculated birds shed the virus from the trachea and cloaca on the third day post-infection (p. i. ) until 11 days. All chickens that had direct contact shed the virus on the second day p. i. until 8 days. Results of virus reisolation suggested that lung and tracheal tissues could shed the virus in 5 days, whereas the other organs could shed the virus in 3 days. These results suggest that this virus strain is H9N2 subtype LPAIV, whose lineage is prevalent in mainland China. This research provides evidence on how to monitor and prevent the H9N2 subtype of the avian influenza virus. PMID:27295886

  10. The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1

    PubMed Central

    Munir, Muhammad; Zohari, Siamak; Iqbal, Munir; Abbas, Muhammad; Perez, Daniel Roberto; Berg, Mikael

    2013-01-01

    Apart from natural reassortment, co-circulation of different avian influenza virus strains in poultry populations can lead to generation of novel variants and reassortant viruses. In this report, we studied the genetics and functions of a reassorted non-structural gene (NS) of H9N2 influenza virus collected from back yard poultry (BYP) flock. Phylogenetic reconstruction based on hemagglutinin and neuraminidase genes indicates that an isolate from BYP belongs to H9N2. However, the NS gene-segment of this isolate cluster into genotype Z, clade 2.2 of the highly pathogenic H5N1. The NS gene plays essential roles in the host-adaptation, cell-tropism, and virulence of influenza viruses. However, such interpretations have not been investigated in naturally recombinant H9N2 viruses. Therefore, we compared the NS1 protein of H9N2 (H9N2/NS1) and highly pathogenic H5N1 (H5N1/NS1) in parallel for their abilities to regulate different signaling pathways, and investigated the molecular mechanisms of IFN-β production in human, avian, and mink lung cells. We found that H9N2/NS1 and H5N1/NS1 are comparably similar in inhibiting TNF-α induced nuclear factor κB and double stranded RNA induced activator protein 1 and interferon regulatory factor 3 transcription factors. Thus, the production of IFN-β was inhibited equally by both NS1s as demonstrated by IFN stimulatory response element and IFN-β promoter activation. Moreover, both NS1s predominantly localized in the nucleus when transfected to human A549 cells. This study therefore suggests the possible increased virulence of natural reassortant viruses for their efficient invasion of host immune responses, and proposes that these should not be overlooked for their epizootic and zoonotic potential. PMID:23959028

  11. The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1.

    PubMed

    Munir, Muhammad; Zohari, Siamak; Iqbal, Munir; Abbas, Muhammad; Perez, Daniel Roberto; Berg, Mikael

    2013-10-01

    Apart from natural reassortment, co-circulation of different avian influenza virus strains in poultry populations can lead to generation of novel variants and reassortant viruses. In this report, we studied the genetics and functions of a reassorted non-structural gene (NS) of H9N2 influenza virus collected from back yard poultry (BYP) flock. Phylogenetic reconstruction based on hemagglutinin and neuraminidase genes indicates that an isolate from BYP belongs to H9N2. However, the NS gene-segment of this isolate cluster into genotype Z, clade 2.2 of the highly pathogenic H5N1. The NS gene plays essential roles in the host-adaptation, cell-tropism, and virulence of influenza viruses. However, such interpretations have not been investigated in naturally recombinant H9N2 viruses. Therefore, we compared the NS1 protein of H9N2 (H9N2/NS1) and highly pathogenic H5N1 (H5N1/NS1) in parallel for their abilities to regulate different signaling pathways, and investigated the molecular mechanisms of IFN-β production in human, avian, and mink lung cells. We found that H9N2/NS1 and H5N1/NS1 are comparably similar in inhibiting TNF-α induced nuclear factor κB and double stranded RNA induced activator protein 1 and interferon regulatory factor 3 transcription factors. Thus, the production of IFN-β was inhibited equally by both NS1s as demonstrated by IFN stimulatory response element and IFN-β promoter activation. Moreover, both NS1s predominantly localized in the nucleus when transfected to human A549 cells. This study therefore suggests the possible increased virulence of natural reassortant viruses for their efficient invasion of host immune responses, and proposes that these should not be overlooked for their epizootic and zoonotic potential. PMID:23959028

  12. Testing the Effect of Internal Genes Derived from a Wild-Bird-Origin H9N2 Influenza A Virus on the Pathogenicity of an A/H7N9 Virus.

    PubMed

    Su, Wen; Wang, Chengmin; Luo, Jing; Zhao, Yuliang; Wu, Yan; Chen, Lin; Zhao, Na; Li, Meng; Xing, Chao; Liu, Huimin; Zhang, Hong; Chang, Yung-fu; Li, Tianxian; Ding, Hua; Wan, Xiufeng; He, Hongxuan

    2015-09-22

    Since 2013, avian influenza A(H7N9) viruses have diversified into multiple lineages by dynamically reassorting with other viruses, especially H9N2, in Chinese poultry. Despite concerns about the pandemic threat posed by H7N9 viruses, little is known about the biological properties of H7N9 viruses that may recruit internal genes from genetically distinct H9N2 viruses circulating among wild birds. Here, we generated 63 H7N9 reassortants derived from an avian H7N9 and a wild-bird-origin H9N2 virus. Compared with the wild-type parent, 25/63 reassortants had increased pathogenicity in mice. A reassortant containing PB1 of the H9N2 virus was highly lethal to mice and chickens but was not transmissible to guinea pigs by airborne routes; however, three substitutions associated with adaptation to mammals conferred airborne transmission to the virus. The emergence of the H7N9-pandemic reassortant virus highlights that continuous monitoring of H7N9 viruses is needed, especially at the domestic poultry/wild bird interface. PMID:26344762

  13. LABEL: Fast and Accurate Lineage Assignment with Assessment of H5N1 and H9N2 Influenza A Hemagglutinins

    PubMed Central

    Shepard, Samuel S.; Davis, C. Todd; Bahl, Justin; Rivailler, Pierre; York, Ian A.; Donis, Ruben O.

    2014-01-01

    The evolutionary classification of influenza genes into lineages is a first step in understanding their molecular epidemiology and can inform the subsequent implementation of control measures. We introduce a novel approach called Lineage Assignment By Extended Learning (LABEL) to rapidly determine cladistic information for any number of genes without the need for time-consuming sequence alignment, phylogenetic tree construction, or manual annotation. Instead, LABEL relies on hidden Markov model profiles and support vector machine training to hierarchically classify gene sequences by their similarity to pre-defined lineages. We assessed LABEL by analyzing the annotated hemagglutinin genes of highly pathogenic (H5N1) and low pathogenicity (H9N2) avian influenza A viruses. Using the WHO/FAO/OIE H5N1 evolution working group nomenclature, the LABEL pipeline quickly and accurately identified the H5 lineages of uncharacterized sequences. Moreover, we developed an updated clade nomenclature for the H9 hemagglutinin gene and show a similarly fast and reliable phylogenetic assessment with LABEL. While this study was focused on hemagglutinin sequences, LABEL could be applied to the analysis of any gene and shows great potential to guide molecular epidemiology activities, accelerate database annotation, and provide a data sorting tool for other large-scale bioinformatic studies. PMID:24466291

  14. H9N2 influenza whole inactivated virus combined with polyethyleneimine strongly enhances mucosal and systemic immunity after intranasal immunization in mice.

    PubMed

    Qin, Tao; Yin, Yinyan; Huang, Lulu; Yu, Qinghua; Yang, Qian

    2015-04-01

    Influenza whole inactivated virus (WIV) is more immunogenic and induces protective antibody responses compared with other formulations, like split virus or subunit vaccines, after intranasal mucosal delivery. Polyethyleneimine (PEI), an organic polycation, is widely used as a reagent for gene transfection and DNA vaccine delivery. Although PEI recently has demonstrated potent mucosal adjuvant activity for viral subunit glycoprotein antigens, its immune activity with H9N2 WIV is not well demonstrated. Here, mice were immunized intranasally with H9N2 WIV combined with PEI, and the levels of local respiratory tract and systemic immune responses were measured. Compared to H9N2 WIV alone, antigen-specific IgA levels in the local nasal cavity, trachea, and lung, as well as levels of IgG and its subtypes (IgG1 and IgG2a) in the serum, were strongly enhanced with the combination. Similarly, the activation and proliferation of splenocytes were markedly increased. In addition, PEI is superior as an H9N2 WIV delivery system due to its ability to greatly increase the viral adhesion to mucosal epithelial cells and to enhance the cellular uptake and endosomal escape of antigens in dendritic cells (DCs) and further significantly activate DCs to mature. Taken together, these results provided more insights that PEI has potential as an adjuvant for H9N2 particle antigen intranasal vaccination. PMID:25673304

  15. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus.

    PubMed

    Pu, Juan; Wang, Shuoguo; Yin, Yanbo; Zhang, Guozhong; Carter, Robert A; Wang, Jinliang; Xu, Guanlong; Sun, Honglei; Wang, Min; Wen, Chu; Wei, Yandi; Wang, Dongdong; Zhu, Baoli; Lemmon, Gordon; Jiao, Yuannian; Duan, Susu; Wang, Qian; Du, Qian; Sun, Meng; Bao, Jinnan; Sun, Yipeng; Zhao, Jixun; Zhang, Hui; Wu, Gang; Liu, Jinhua; Webster, Robert G

    2015-01-13

    The emergence of human infection with a novel H7N9 influenza virus in China raises a pandemic concern. Chicken H9N2 viruses provided all six of the novel reassortant's internal genes. However, it is not fully understood how the prevalence and evolution of these H9N2 chicken viruses facilitated the genesis of the novel H7N9 viruses. Here we show that over more than 10 y of cocirculation of multiple H9N2 genotypes, a genotype (G57) emerged that had changed antigenicity and improved adaptability in chickens. It became predominant in vaccinated farm chickens in China, caused widespread outbreaks in 2010-2013 before the H7N9 viruses emerged in humans, and finally provided all of their internal genes to the novel H7N9 viruses. The prevalence and variation of H9N2 influenza virus in farmed poultry could provide an important early warning of the emergence of novel reassortants with pandemic potential. PMID:25548189

  16. Antigenic evolution of H9N2 chicken influenza viruses isolated in China during 2009-2013 and selection of a candidate vaccine strain with broad cross-reactivity.

    PubMed

    Wei, Yandi; Xu, Guanlong; Zhang, Guozhong; Wen, Chu; Anwar, Furkat; Wang, Shuoguo; Lemmon, Gordon; Wang, Jinliang; Carter, Robert; Wang, Min; Sun, Honglei; Sun, Yipeng; Zhao, Jixun; Wu, Gang; Webster, Robert G; Liu, Jinhua; Pu, Juan

    2016-01-15

    We previously demonstrated that H9N2 subtype avian influenza viruses (AIVs) isolated from 1994 to 2008 evolved into distinct antigenic groups (C, D, and E) and then underwent antigenic drift from commercial vaccines, causing a country-wide outbreak during 2010-2013. In this study, H9N2 AIVs isolated from chickens during 2009-2013 were antigenically analyzed by performing hemagglutination inhibition and neutralization assays using a panel of polyclonal antibodies. Our findings confirmed the antigenic drift of recent H9N2 viruses from the commercial vaccine and showed that most of these antigenic variants form a novel HI antigenic group, F, with a few belonging to groups D and E. Slight antigenic variation was observed in group F viruses. Genetic analysis of amino acid sequences deduced from hemagglutinin (HA) gene sequences indicated that 9 of 15 mutations predominant in the 2009-2013 viruses can be mapped to known antigenic sites, which might be responsible for the novel antigenicity of group F. These antigenic changes make it necessary to modify the influenza vaccine to ensure efficient protection. A vaccine candidate, Ck/HeB/YT/10, was selected and provided significant protection against viruses from different antigenic groups in terms of reduction in virus shedding, suggesting broad cross-reactivity. Taken together, our results indicate that the H9N2 chicken influenza viruses in China have evolved from distinct antigenic groups into a novel group F that became dominant during the country-wide outbreak and now seems to be undergoing new antigenic divergence. Systematic surveillance and timely updating of vaccine strains are important for viral prevention and control in the future. PMID:26711021

  17. MVA Vectors Expressing Conserved Influenza Proteins Protect Mice against Lethal Challenge with H5N1, H9N2 and H7N1 Viruses

    PubMed Central

    Hessel, Annett; Savidis-Dacho, Helga; Coulibaly, Sogue; Portsmouth, Daniel; Kreil, Thomas R.; Crowe, Brian A.; Schwendinger, Michael G.; Pilz, Andreas; Barrett, P. Noel; Falkner, Falko G.; Schäfer, Birgit

    2014-01-01

    Background The availability of a universal influenza vaccine able to induce broad cross-reactive immune responses against diverse influenza viruses would provide an alternative to currently available strain-specific vaccines. We evaluated the ability of vectors based on modified vaccinia virus Ankara (MVA) expressing conserved influenza proteins to protect mice against lethal challenge with multiple influenza subtypes. Methods Mice were immunized with MVA vectors expressing H5N1-derived nucleoprotein (NP), the stem region of hemagglutinin (HA), matrix proteins 1 and 2 (M1 and M2), the viral polymerase basic protein 1 (PB1), or the HA stem fused to a quadrivalent matrix protein 2 extracellular domain (M2e). Immunized mice were challenged with lethal doses of H5N1, H7N1 or H9N2 virus and monitored for disease symptoms and weight loss. To investigate the influence of previous exposure to influenza virus on protective immune responses induced by conserved influenza proteins, mice were infected with pandemic H1N1 virus (H1N1pdm09) prior to immunization and subsequently challenged with H5N1 virus. Antibody and T cell responses were assessed by ELISA and flow cytometry, respectively. Results MVA vectors expressing NP alone, or co-expressed with other conserved influenza proteins, protected mice against lethal challenge with H5N1, H7N1 or H9N2 virus. Pre-exposure to H1N1pdm09 increased protective efficacy against lethal H5N1 challenge. None of the other conserved influenza proteins provided significant levels of protection against lethal challenge. NP-expressing vectors induced high numbers of influenza-specific CD4+ and CD8+ T cells and high titer influenza-specific antibody responses. Higher influenza-specific CD4+ T cell responses and NP-specific CD8+ T cell responses were associated with increased protective efficacy. Conclusions MVA vectors expressing influenza NP protect mice against lethal challenge with H5N1, H7N1 and H9N2 viruses by a mechanism involving influenza

  18. A point mutation in the polymerase protein PB2 allows a reassortant H9N2 influenza isolate of wild-bird origin to replicate in human cells.

    PubMed

    Hussein, Islam T M; Ma, Eric J; Hill, Nichola J; Meixell, Brandt W; Lindberg, Mark; Albrecht, Randy A; Bahl, Justin; Runstadler, Jonathan A

    2016-07-01

    H9N2 influenza A viruses are on the list of potentially pandemic subtypes. Therefore, it is important to understand how genomic reassortment and genetic polymorphisms affect phenotypes of H9N2 viruses circulating in the wild bird reservoir. A comparative genetic analysis of North American H9N2 isolates of wild bird origin identified a naturally occurring reassortant virus containing gene segments derived from both North American and Eurasian lineage ancestors. The PB2 segment of this virus encodes 10 amino acid changes that distinguish it from other H9 strains circulating in North America. G590S, one of the 10 amino acid substitutions observed, was present in ~12% of H9 viruses worldwide. This mutation combined with R591 has been reported as a marker of pathogenicity for human pandemic 2009 H1N1 viruses. Screening by polymerase reporter assay of all the natural polymorphisms at these two positions identified G590/K591 and S590/K591 as the most active, with the highest polymerase activity recorded for the SK polymorphism. Rescued viruses containing these two polymorphic combinations replicated more efficiently in MDCK cells and they were the only ones tested that were capable of establishing productive infection in NHBE cells. A global analysis of all PB2 sequences identified the K591 signature in six viral HA/NA subtypes isolated from several hosts in seven geographic locations. Interestingly, introducing the K591 mutation into the PB2 of a human-adapted H3N2 virus did not affect its polymerase activity. Our findings demonstrate that a single point mutation in the PB2 of a low pathogenic H9N2 isolate could have a significant effect on viral phenotype and increase its propensity to infect mammals. However, this effect is not universal, warranting caution in interpreting point mutations without considering protein sequence context. PMID:27101787

  19. Variability of tropism and replicative capacity of two naturally occurring influenza A H9N2 viruses in cell cultures from different tissues.

    PubMed

    Tombari, Wafa; ElBehi, Imen; Amouna, Faten; Ghram, Abdeljelil

    2016-01-01

    Studies carried out on cell permissivity are of great interest to understand virus replication and pathogenicity. We described the results of a comparative analysis of replication efficiency of two naturally occurring influenza A H9N2 variants isolated from poultry and wild birds, differing by only two substitutions Q226L and T384N, in the receptor-binding site of haemagglutinin and the 380 loop region of NA proteins, respectively. Considering the overall growth of both viruses, lung cultures ensured the most efficient growth of TUN12L226N384 strain with titres up to 10(9) TCID50/ml whereas small intestine culture was highly susceptible to the TUN51Q226T384 virus reaching a titre of 10(6) TCID50/ml. The lowest replication was shown in liver cells. The addition of trypsin was essential for the replication of either virus in primary fibroblasts, but it had a marginal positive effect on virus replication in the four other culture types with maximum titres of 10(8) TCID50/ml. This means that in chicken, the proteolytic activation of the H9N2 viruses with the cleavage motif RSSR may be mediated by other endoproteases than trypsin. Further investigations should concentrate on the production of the appropriate set of viruses by a reverse genetics approach and the examination of cellular protease expression in chicken tissues. This would lead to a more complete understanding of the tropism of low-pathogenic Influenza A viruses. PMID:26813086

  20. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens.

    PubMed

    Dash, Sandeep Kumar; Kumar, Manoj; Kataria, Jag Mohan; Nagarajan, Shanmugasundaram; Tosh, Chakradhar; Murugkar, Harshad V; Kulkarni, Diwakar D

    2016-06-01

    Low pathogenic avian influenza H9N2 and highly pathogenic avian influenza H5N1 viruses continue to co-circulate in chickens. Prior infection with low pathogenic avian influenza can modulate the outcome of H5N1 infection. In India, low pathogenic H9N2 and highly pathogenic H5N1 avian influenza viruses are co-circulating in poultry. Herein, by using chickens with prior infection of A/chicken/India/04TI05/2012 (H9N2) virus we explored the outcome of infection with H5N1 virus A/turkey/India/10CA03/2012 natural PB1 gene reassortant from H9N2. Four groups (E1-E4) of SPF chickens (n = 6) prior inoculated with 10(6) EID50 of H9N2 virus were challenged with 10(6) EID50 of H5N1 natural reassortant (PB1-H9N2) virus at days 1 (group E1); 3 (group E2); 7 (group E3) and 14 (group E4) post H9N2 inoculation. The survival percentage in groups E1-E4 was 0, 100, 66.6 and 50%, respectively. Virus shedding periods for groups E1-E4 were 3, 4, 7 and 9 days, respectively post H5N1 challenge. Birds of group E1 and E2 were shedding both H9N2 and H5N1 viruses and mean viral RNA copy number was higher in oropharyngeal swabs than cloacal swabs. In group, E3 and E4 birds excreted only H5N1 virus and mean viral RNA copy number was higher in most cloacal swabs than oral swabs. These results indicate that prior infection with H9N2 virus could protect from lethal challenge of reassortant H5N1 virus as early as with three days prior H9N2 inoculation and protection decreased in groups E3 and E4 as time elapsed. However, prior infection with H9N2 did not prevent infection with H5N1 virus and birds continue to excrete virus in oropharyngeal and cloacal swabs. Amino acid substitution K368E was found in HA gene of excreted H5N1 virus of group E3. Hence, concurrent infection can also cause emergence of viruses with mutations leading to virus evolution. The results of this study are important for the surveillance and epidemiological data analysis where both H9N2 and H5N1 viruses are co-circulating. PMID

  1. Avian influenza

    MedlinePlus

    Bird flu; H5N1; H5N2; H5N8; H7N9; Avian influenza A (HPAI) H5 ... The first avian influenza in humans was reported in Hong Kong in 1997. It was called avian influenza (H5N1). The outbreak was linked ...

  2. Avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a viral infection of birds that varies in severity from asymptomatic infections to mild respiratory and reproductive diseases to an acute, highly fatal systemic disease of chickens, turkeys, guinea fowls, and other avian species. Avian influenza viruses are divided into two ...

  3. [Immune Protection against H9N2 Provided by H1N1 Pre-infection in Pigs].

    PubMed

    Wang, Jia; Wu, Maocai; Hong, Wenshan; Zheng, Zuoyi; Chen, Rirong

    2015-07-01

    To explore the impact of the history of infection by the influenza A virus subtype H1N1 on secondary infection by the influenza A virus subtype H9N2, pigs non-infected and pre-infected with H1N1 were inoculated with H9N2 in parallel to compare nasal shedding and seroconversion patterns. Unlike pigs without a background of H1N1 infection, nasal shedding was not detected in pigs pre-infected with H1N1. Both groups generated antibodies against H9N2. However, levels of H1N1 antibodies in pigs pre-infected with H1N1 increased quickly and dramatically after challenge with H9N2. Cross-reaction was not observed between H1N1 antibodies and H9N2 viruses. These findings suggest that circulation of the H1N1 virus might be a barrier to the introduction and transmission of the avian H9N2 virus, thereby delaying its adaptation in pigs. PMID:26524907

  4. Genotype diversity of H9N2 viruses isolated from wild birds and chickens in Hunan Province, China.

    PubMed

    Wang, Ba; Liu, Zhihua; Chen, Quanjiao; Gao, Zhimin; Fang, Fang; Chang, Haiyan; Chen, Jianjun; Xu, Bing; Chen, Ze

    2014-01-01

    Three H9N2 avian influenza viruses were isolated from the Dongting Lake wetland, among which one was from fresh egret feces, the other two were from chicken cloacal swabs in poultry markets. Phylogenetic analyses suggested that eight genes of the egret-derived H9N2 virus might come from Korean-like or American-like lineages. The two poultry-derived H9N2 viruses were reassortants between the CK/BJ/94-like and G1-like viruses. Except the PB1 genes (90.6%), the nucleotide sequence of other internal genes of the two viruses exhibited high homology (>95%). In addition, they also exhibited high homology (96-98.3%) with some genes of the H7N9 virus that caused an epidemic in China in 2013. Nucleotide sequence of the poultry-derived and egret-derived H9N2 viruses shared low homology. Infection studies showed that the egret-derived H9N2 virus was non-pathogenic to both mice and chickens, and the virus was unable to infect chickens even through 8 passages continuously in the lung. On the other hand, the chickens infected by poultry-derived viruses showed obvious clinical symptoms and even died; the infected mice showed no noticeable clinical symptoms and weight loss, but viruses could be detected in their lungs. In conclusion, for the egret-derived H9N2 virus, it would take a long adaptation process to achieve cross-species transmission in poultry and mammals. H9N2 viruses isolated at different times from the same host species in the same geographical region presented different evolutionary status, and virus isolated from different hosts in the same geographical region exhibited genetic diversity. Therefore, it is important to continue the H9N2 virus surveillance for understanding their evolutionary trends so as to provide guidance for disease control and prevention. PMID:24979703

  5. Phylogeography and Evolutionary History of Reassortant H9N2 Viruses with Potential Human Health Implications ▿ †

    PubMed Central

    Fusaro, Alice; Monne, Isabella; Salviato, Annalisa; Valastro, Viviana; Schivo, Alessia; Amarin, Nadim Mukhles; Gonzalez, Carlos; Ismail, Mahmoud Moussa; Al-Ankari, Abdu-Rahman; Al-Blowi, Mohamed Hamad; Khan, Owais Ahmed; Maken Ali, Ali Safar; Hedayati, Afshin; Garcia Garcia, Juan; Ziay, Ghulam M.; Shoushtari, Abdolhamid; Al Qahtani, Kassem Nasser; Capua, Ilaria; Holmes, Edward C.; Cattoli, Giovanni

    2011-01-01

    Avian influenza viruses of the H9N2 subtype have seriously affected the poultry industry of the Far and Middle East since the mid-1990s and are considered one of the most likely candidates to cause a new influenza pandemic in humans. To understand the genesis and epidemiology of these viruses, we investigated the spatial and evolutionary dynamics of complete genome sequences of H9N2 viruses circulating in nine Middle Eastern and Central Asian countries from 1998 to 2010. We identified four distinct and cocirculating groups (A, B, C, and D), each of which has undergone widespread inter- and intrasubtype reassortments, leading to the generation of viruses with unknown biological properties. Our analysis also suggested that eastern Asia served as the major source for H9N2 gene segments in the Middle East and Central Asia and that in this geographic region within-country evolution played a more important role in shaping viral genetic diversity than migration between countries. The genetic variability identified among the H9N2 viruses was associated with specific amino acid substitutions that are believed to result in increased transmissibility in mammals, as well as resistance to antiviral drugs. Our study highlights the need to constantly monitor the evolution of H9N2 viruses in poultry to better understand the potential risk to human health posed by these viruses. PMID:21680519

  6. Avian Influenza

    MedlinePlus

    ... infectious viral disease of birds. Most avian influenza viruses do not infect humans; however some, such as ... often causing no apparent signs of illness. AI viruses can sometimes spread to domestic poultry and cause ...

  7. H9N2 Influenza A Virus Isolated from a Greater White-Fronted Wild Goose (Anser albifrons) in Alaska Has a Mutation in the PB2 Gene, Which Is Associated with Pathogenicity in Human Pandemic 2009 H1N1.

    PubMed

    Reeves, Andrew B; Ip, Hon S

    2016-01-01

    We report here the genomic sequence of an H9N2 influenza A virus [A/greater white-fronted goose/Alaska/81081/2008 (H9N2)]. This virus shares ≥99.8% identity with a previously reported virus. Both strains contain a G590S mutation in the polymerase basic 2 (PB2) gene, which is a pathogenicity marker in the pandemic 2009 H1N1 virus when combined with R591. PMID:27587808

  8. H9N2 Influenza A Virus Isolated from a Greater White-Fronted Wild Goose (Anser albifrons) in Alaska Has a Mutation in the PB2 Gene, Which Is Associated with Pathogenicity in Human Pandemic 2009 H1N1

    PubMed Central

    2016-01-01

    We report here the genomic sequence of an H9N2 influenza A virus [A/greater white-fronted goose/Alaska/81081/2008 (H9N2)]. This virus shares ≥99.8% identity with a previously reported virus. Both strains contain a G590S mutation in the polymerase basic 2 (PB2) gene, which is a pathogenicity marker in the pandemic 2009 H1N1 virus when combined with R591. PMID:27587808

  9. Avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; i....

  10. AVIAN INFLUENZA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian Influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; ...

  11. Avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural host for avian influenza virus (AIV) is in wild birds, including ducks, gulls, and shorebirds, where the virus causes primarily an enteric infection with little disease. However, AIV can infect a wide variety of host species, and with a certain level of adaptation for the aberrant host ...

  12. Avian Influenza.

    PubMed

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur. PMID:15847721

  13. Avian influenza.

    PubMed

    Zeitlin, Gary A; Maslow, Melanie J

    2006-03-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004 alone, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate over 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantines, and disinfection. To prepare for and prevent increased human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short, interfering RNAs and new vaccine strategies that use plasmid-based genetic systems offer promise, should a pandemic occur. PMID:16566867

  14. Occurrence and Reassortment of Avian Influenza A (H7N9) Viruses Derived from Coinfected Birds in China

    PubMed Central

    Liu, Wei; Fan, Hang; Raghwani, Jayna; Lam, Tommy Tsan-Yuk; Li, Jing; Pybus, Oliver G.; Yao, Hong-Wu; Wo, Ying; Liu, Kun; An, Xiao-Ping; Pei, Guang-Qian; Li, Hao; Wang, Hong-Yu; Zhao, Jian-Jun; Jiang, Tao; Ma, Mai-Juan; Xia, Xian; Dong, Yan-De; Zhao, Tong-Yan; Jiang, Jia-Fu; Yang, Yin-Hui; Guan, Yi

    2014-01-01

    ABSTRACT Over the course of two waves of infection, H7N9 avian influenza A virus has caused 436 human infections and claimed 170 lives in China as of July 2014. To investigate the prevalence and genetic diversity of H7N9, we surveyed avian influenza viruses in poultry in Jiangsu province within the outbreak epicenter. We found frequent occurrence of H7N9/H9N2 coinfection in chickens. Molecular clock phylogenetic analysis confirms coinfection by H7N9/H9N2 viruses and also reveals that the identity of the H7N9 outbreak lineage is confounded by ongoing reassortment between outbreak viruses and diverse H9N2 viruses in domestic birds. Experimental inoculation of a coinfected sample in cell culture yielded two reassortant H7N9 strains with polymerase segments from the original H9N2 strain. Ongoing reassortment between the H7N9 outbreak lineage and diverse H9N2 viruses may generate new strains with the potential to infect humans, highlighting the need for continued viral surveillance in poultry and humans. IMPORTANCE We found frequent occurrence of H7N9/H9N2 coinfection in chickens. The H7N9 outbreak lineage is confounded by ongoing reassortment between H7N9 and H9N2 viruses. The importance of H9N2 viruses as the source of novel avian influenza virus infections in humans requires continuous attention. PMID:25210174

  15. LPAIV H9N2 Drives the Differential Expression of Goose Interferons and Proinflammatory Cytokines in Both In Vitro and In Vivo Studies

    PubMed Central

    Zhou, Hao; Chen, Shun; Yan, Bing; Chen, Hongjun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Jing, Bo; Cheng, Anchun

    2016-01-01

    Geese, as aquatic birds, are an important natural reservoir of avian influenza virus (AIV). To characterize the innate antiviral immune response against AIV H9N2 strain infection in geese as well as the probable relationship between the expression of immune-related genes and the distribution of viral antigens, we investigated the levels of immune-related gene transcription both in AIV H9N2 strain-infected geese and in vitro. The patterns of viral location and the tissue distribution of CD4- and CD8α-positive cells were concurrently detected by immunohistochemical staining, which revealed respiratory and digestive organs as the primary sites of antigen-positive signals. Average AIV H9N2 viral loads were detected in the feces, Harderian gland (HG), and trachea, where higher copy numbers were detected compared with the rectum. Our results suggested the strong induction of proinflammatory cytokine expression compared with interferons (IFNs). Notably, in most tissues from the AIV H9N2 strain-infected birds, IFNα and IFNγ gene transcripts were differentially expressed. However, inverse changes in IFNα and IFNγ expression after AIV H9N2 strain infection were observed in vitro. Taken together, the results suggest that AIV H9N2 is widely distributed in multiple tissues, efficiently induces inflammatory cytokines in the HG and spleen of goslings and inversely influences type I and II IFN expression both in vivo and in vitro. The findings of this study further our understanding of host defense mechanisms and the pathogenesis of the H9N2 influenza virus in geese. PMID:26925041

  16. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  17. Pandemic Threat Posed by Avian Influenza A Viruses

    PubMed Central

    Horimoto, Taisuke; Kawaoka, Yoshihiro

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans. PMID:11148006

  18. Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets

    PubMed Central

    Sang, Xiaoyu; Wang, Airong; Ding, Jie; Kong, Huihui; Gao, Xiaolong; Li, Lin; Chai, Tongjie; Li, Yuanguo; Zhang, Kun; Wang, Chengyu; Wan, Zhonghai; Huang, Geng; Wang, Tiecheng; Feng, Na; Zheng, Xuexing; Wang, Hualei; Zhao, Yongkun; Yang, Songtao; Qian, Jun; Hu, Guixue; Gao, Yuwei; Xia, Xianzhu

    2015-01-01

    H9N2 avian influenza viruses circulate worldwide in poultry and have sporadically infected humans, raising concern whether H9N2 viruses have pandemic potential. Here, we use a guinea pig model to examine whether serial passage results in adaptive viral changes that confer a transmissible phenotype to a wild-type H9N2 virus. After nine serial passages of an H9N2 virus through guinea pigs, productive transmission by direct contact occurred in 2/3 guinea pig pairs. The efficiency of transmission by direct contact increased following the fifteenth passage and occurred in 3/3 guinea pig pairs. In contrast, airborne transmission of the passaged virus was less efficient and occurred in 1/6 guinea pig pairs and 0/6 ferret pairs after the fifteenth passage. Three amino acid substitutions, HA1-Q227P, HA2-D46E, and NP-E434K, were sufficient for contact transmission in guinea pigs (2/3 pairs). The two HA amino acid substitutions enhanced receptor binding to α2,3-linked sialic acid receptors. Additionally, the HA2-D46E substitution increased virus thermostability whereas the NP-E434K mutation enhanced viral RNA polymerase activity in vitro. Our findings suggest that adaptive changes that enhance viral receptor binding, thermostability, and replicative capacity in mammalian cells can collectively enhance the transmissibility of H9N2 AIVs by direct contact in the guinea pig model. PMID:26552719

  19. Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets.

    PubMed

    Sang, Xiaoyu; Wang, Airong; Ding, Jie; Kong, Huihui; Gao, Xiaolong; Li, Lin; Chai, Tongjie; Li, Yuanguo; Zhang, Kun; Wang, Chengyu; Wan, Zhonghai; Huang, Geng; Wang, Tiecheng; Feng, Na; Zheng, Xuexing; Wang, Hualei; Zhao, Yongkun; Yang, Songtao; Qian, Jun; Hu, Guixue; Gao, Yuwei; Xia, Xianzhu

    2015-01-01

    H9N2 avian influenza viruses circulate worldwide in poultry and have sporadically infected humans, raising concern whether H9N2 viruses have pandemic potential. Here, we use a guinea pig model to examine whether serial passage results in adaptive viral changes that confer a transmissible phenotype to a wild-type H9N2 virus. After nine serial passages of an H9N2 virus through guinea pigs, productive transmission by direct contact occurred in 2/3 guinea pig pairs. The efficiency of transmission by direct contact increased following the fifteenth passage and occurred in 3/3 guinea pig pairs. In contrast, airborne transmission of the passaged virus was less efficient and occurred in 1/6 guinea pig pairs and 0/6 ferret pairs after the fifteenth passage. Three amino acid substitutions, HA1-Q227P, HA2-D46E, and NP-E434K, were sufficient for contact transmission in guinea pigs (2/3 pairs). The two HA amino acid substitutions enhanced receptor binding to α2,3-linked sialic acid receptors. Additionally, the HA2-D46E substitution increased virus thermostability whereas the NP-E434K mutation enhanced viral RNA polymerase activity in vitro. Our findings suggest that adaptive changes that enhance viral receptor binding, thermostability, and replicative capacity in mammalian cells can collectively enhance the transmissibility of H9N2 AIVs by direct contact in the guinea pig model. PMID:26552719

  20. Avian Influenza (Bird Flu)

    MedlinePlus

    ... this page: About CDC.gov . Avian Influenza H5 Viruses in the United States Updates and Publications Information ... Humans Examples of Human Infections with Avian Influenza Viruses Outbreaks Health Care and Laboratorian Guidance HPAI A ...

  1. Pigeon RIG-I Function in Innate Immunity against H9N2 IAV and IBDV.

    PubMed

    Xu, Wenping; Shao, Qiang; Zang, Yunlong; Guo, Qiang; Zhang, Yongchao; Li, Zandong

    2015-07-01

    Retinoic acid-inducible gene I (RIG-I), a cytosolic pattern recognition receptor (PRR), can sense various RNA viruses, including the avian influenza virus (AIV) and infectious bursal disease virus (IBDV), and trigger the innate immune response. Previous studies have shown that mammalian RIG-I (human and mice) and waterfowl RIG-I (ducks and geese) are essential for type I interferon (IFN) synthesis during AIV infection. Like ducks, pigeons are also susceptible to infection but are ineffective propagators and disseminators of AIVs, i.e., "dead end" hosts for AIVs and even highly pathogenic avian influenza (HPAI). Consequently, we sought to identify pigeon RIG-I and investigate its roles in the detection of A/Chicken/Shandong/ZB/2007 (H9N2) (ZB07), Gansu/Tianshui (IBDV TS) and Beijing/CJ/1980 (IBDV CJ-801) strains in chicken DF-1 fibroblasts or human 293T cells. Pigeon mRNA encoding the putative pigeon RIG-I analogs was identified. The exogenous expression of enhanced green fluorescence protein (EGFP)-tagged pigeon RIG-I and caspase activation and recruitment domains (CARDs), strongly induced antiviral gene (IFN-β, Mx, and PKR) mRNA synthesis, decreased viral gene (M gene and VP2) mRNA expression, and reduced the viral titers of ZB07 and IBDV TS/CJ-801 virus strains in chicken DF-1 cells, but not in 293T cells. We also compared the antiviral abilities of RIG-I proteins from waterfowl (duck and goose) and pigeon. Our data indicated that waterfowl RIG-I are more effective in the induction of antiviral genes and the repression of ZB07 and IBDV TS/CJ-801 strain replication than pigeon RIG-I. Furthermore, chicken melanoma differentiation associated gene 5(MDA5)/ mitochondrial antiviral signaling (MAVS) silencing combined with RIG-I transfection suggested that pigeon RIG-I can restore the antiviral response in MDA5-silenced DF-1 cells but not in MAVS-silenced DF-1 cells. In conclusion, these results demonstrated that pigeon RIG-I and CARDs have a strong antiviral ability

  2. Virulence determinants in the PB2 gene of a mouse-adapted H9N2 virus.

    PubMed

    Liu, Qingtao; Huang, Junqing; Chen, Yuxin; Chen, Hongzhi; Li, Qunhui; He, Liang; Hao, Xiaoli; Liu, Jingjing; Gu, Min; Hu, Jiao; Wang, Xiaoquan; Hu, Shunlin; Liu, Xiaowen; Liu, Xiufan

    2015-01-01

    The molecular bases of adaptation and pathogenicity of H9N2 influenza virus in mammals are largely unknown. Here, we show that a mouse-adapted PB2 gene with a phenylalanine-to-leucine mutation (F404L) mainly contributes to enhanced polymerase activity, replication, and pathogenicity of H9N2 in mice and also increases the virulence of the H5N1 and 2009 pandemic H1N1 influenza viruses. Therefore, we defined a novel pathogenic determinant, providing further insights into the pathogenesis of influenza viruses in mammals. PMID:25339773

  3. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.

    PubMed

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert

    2016-03-01

    It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses. PMID:26671828

  4. Avian Influenza A(H5N1) Virus in Egypt.

    PubMed

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Maatouq, Asmaa M; Cai, Zhipeng; McKenzie, Pamela P; Webby, Richard J; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A

    2016-03-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  5. Avian Influenza A(H5N1) Virus in Egypt

    PubMed Central

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Maatouq, Asmaa M.; Cai, Zhipeng; McKenzie, Pamela P.; Webby, Richard J.; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A.

    2016-01-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  6. Avian influenza: recent developments.

    PubMed

    Capua, Ilaria; Alexander, Dennis J

    2004-08-01

    This paper reviews the worldwide situation regarding avian influenza infections in poultry from 1997 to March 2004. The increase in the number of primary introductions and the scientific data available on the molecular basis of pathogenicity have generated concerns particularly for legislative purposes and for international trade. This has led to a new proposed definition of 'avian influenza' to extend all infections caused by H5 and H7 viruses regardless of their virulence as notifiable diseases, although this has encountered some difficulties in being approved. The paper also reviews the major outbreaks caused by viruses of the H5 or H7 subtype and the control measures applied. The zoonotic aspects of avian influenza, which until 1997 were considered to be of limited relevance in human medicine, are also discussed. The human health implications have now gained importance, both for illness and fatalities that have occurred following natural infection with avian viruses, and for the potential of generating a reassortant virus that could give rise to the next human influenza pandemic. PMID:15370036

  7. Avian influenza (fowl plague)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; ...

  8. Characterization of Avian Influenza and Newcastle Disease Viruses from Poultry in Libya.

    PubMed

    Kammon, Abdulwahab; Heidari, Alireza; Dayhum, Abdunaser; Eldaghayes, Ibrahim; Sharif, Monier; Monne, Isabela; Cattoli, Giovanni; Asheg, Abdulatif; Farhat, Milad; Kraim, Elforjani

    2015-09-01

    On March 2013, the Libyan poultry industry faced severe outbreaks due to mixed infections of APMV-1 (Newcastle disease) and low pathogenic avian influenza (AI) of the H9N2 subtype which were causing high mortality and great economic losses. APMV-1 and H9N2 were isolated and characterized. Genetic sequencing of the APMV-1/chicken/Libya/13VIR/ 7225-1/2013 isolate revealed the presence of a velogenic APMV-1 belonging to lineage 5 (GRRRQKR*F Lin.5) or genotype VII in class II, according to the nomenclature in use. Three AI viruses of the H9N2 subtype, namely A/avian/Libya/13VIR7225-2/2013, A/avian/Libya/13VIR7225-3/2013, and A/avian/Libya/13VIR7225-5/2013, were isolated and found to belong to the G1 lineage. Analysis of amino acid sequences showed that the analyzed H9N2 viruses contained the amino acid Leu at position 226 (H3 numbering) at the receptor binding site of the HA, responsible for human virus-like receptor specificity. On March 2014, an outbreak of highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was diagnosed in a backyard poultry farm in an eastern region of Libya. The H5N1 isolate (A/chicken/Libya/14VIR2749-16/2014) was detected by real time RT-PCR (rRT-PCR). Genetic characterization of the HA gene revealed that the identified subtype was highly pathogenic, belonged to the 2.2.1 lineage, and clustered with recent Egyptian viruses. This study revealed the presence of a velogenic APMV-1 genotype and of two influenza subtypes, namely HPAI H5N1 and H9N2, which are of major interest for public and animal health. Considering these findings, more investigations must be undertaken to establish and implement adequate influenza surveillance programs; this would allow better study of the epidemiology of APMV-1 genotype VII in Libya and evaluation of the current vaccination strategies. PMID:26478162

  9. Evaluation of a smartphone-based rapid fluorescent diagnostic system for H9N2 virus in specific-pathogen-free chickens.

    PubMed

    Yeo, Seon-Ju; Cuc, Bui Thi; Sung, Haan Woo; Park, Hyun

    2016-08-01

    Repeated interspecies transmission of H9N2 virus from poultry to humans and human infections transmitted via aerosols highlight the need for a highly sensitive, rapid diagnostic system for the detection of this virus. However, no such test exhibiting high performance has been developed. In this study, the performance of a smartphone-based rapid fluorescent diagnostic system (SRFDS) was optimized for the diagnosis of an H9N2-virus-infected animal. To suppress the nonspecific reactivity of the bioconjugate in oropharyngeal (OP) and cloacal (CL) samples derived from chickens, different blocking reagents were tested, and a mixture of casein and sucrose was found to be optimal. To assess the performance of SRFDS, OP and CL samples were obtained from specific-pathogen-free chickens and used for comparison of this method with real-time reverse transcription PCR (rRT-PCR) at time points of three, five, and seven days postinfection (dpi). The limit of detection of SRFDS was found to be 7.5 PFU/mL, which was 138-fold higher than that of a conventional colloidal-gold-based avian influenza rapid diagnostic test. In the animal study, the presence of viral antigen was monitored with SRFDS, and the relative sensitivity (relative to rRT-PCR results) was 94.44 % (17/18) and 95.23 % (20/21) in OP and CL specimens, respectively. The specificity of SRFDS was 100 %. These results imply that the diagnostic performance of SRFDS might be comparable to that of rRT-PCR for diagnosis of H9N2 in chickens and that this test can be used as a highly sensitive rapid diagnostic method in field studies on broiler poultry and wild birds. PMID:27287435

  10. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses

    PubMed Central

    Gandhale, Pradeep N.; Kumar, Himanshu; Kulkarni, Diwakar D.

    2016-01-01

    The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens. PMID:27071061

  11. Pathobiology of avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus causes serious disease in a wide variety of birds and mammals. Its natural hosts are wild aquatic birds, in which most infections are unapparent. Avian Influenza (AI) viruses are classified into 16 hemagglutinin (H1-16) and nine neuraminidase (N1-9) subtypes. Each virus has on...

  12. Avian influenza prevention and control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza is one of the most important diseases affecting the poultry industry around the world. Avian Influenza virus (AIV) has a broad host range in birds and mammals, although the natural reservoir is considered to be in wild birds where it typically causes an asymptomatic to mild infectio...

  13. Avian influenza: Vaccination and control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a viral disease of poultry that remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Strategies to control avian influenza (AI) virus are developed to prevent, manage or eradicate the virus from the country, re...

  14. Avian influenza in Mexico.

    PubMed

    Villarreal, C

    2009-04-01

    The outbreak of highly pathogenic avian influenza (HPAI) H5N2 in Mexico in 1994 led to a clear increase in biosecurity measures and improvement of intensive poultry production systems. The control and eradication measures implemented were based on active surveillance, disease detection, depopulation of infected farms and prevention of possible contacts (identified by epidemiological investigations), improvement of biosecurity measures, and restriction of the movement of live birds, poultry products, by-products and infected material. In addition, Mexico introduced a massive vaccination programme, which resulted in the eradication of HPAI in a relatively short time in two affected areas that had a high density of commercial poultry. PMID:19618630

  15. Transmission of Avian Influenza Virus (H3N2) to Dogs

    PubMed Central

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun

    2008-01-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) isolate. The beagles shed virus through nasal excretion, seroconverted, and became ill with severe necrotizing tracheobronchitis and bronchioalveolitis with accompanying clinical signs (e.g., high fever). Consistent with histologic observation of lung lesions, large amounts of avian influenza virus binding receptor (SAα 2,3-gal) were identified in canine tracheal, bronchial, and bronchiolar epithelial cells, which suggests potential for direct transmission of avian influenza virus (H3N2) from poultry to dogs. Our data provide evidence that dogs may play a role in interspecies transmission and spread of influenza virus. PMID:18439355

  16. Molecular identification and comparative transcriptional analysis of myxovirus resistance GTPase (Mx) gene in goose (Anser cygnoide) after H9N2 AIV infection.

    PubMed

    Zeng, Miao; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2016-08-01

    Interferon (IFN)-induced myxovirus resistance (Mx) GTPases belong to the family of dynamin-like GTPases and control a diverse range of viruses. In this study, the identified goose Mx (goMx) mRNA is 2009bp long, shares partially conserved exons with other homologues, and shares highly conserved domains in its primary structure. The amino acid position 629 (629aa) of the goMx protein was identified as serine (Ser), in contrast to the Ser located at 631aa in chicken Mx, which is considered to be responsible for the lack of chicken Mx antiviral activity. In addition, the goMx 142aa residue in the dynamin family signature differs from that of other functional Mx proteins. Transcriptional analysis revealed that goMx was mainly expressed in the digestive, respiratory and immune systems in an age-specific manner. GoMx transcript levels in goose peripheral blood mononuclear cells (PBMCs) were found to be significantly up-regulated by various agonists and avian viruses. Furthermore, a time course study of the effects of H9N2 avian influenza virus (AIV) on goMx expression in infected goslings suggested that H9N2 AIV affected goMx expression. However, significant changes in goMx expression were observed in the trachea, lung and small intestine of infected birds. Altogether, these results indicate that goMx protein may have acquired its broad antiviral activity by changing only a few amino acids at select sites, even as it shares a conserved architectures with species. PMID:27477505

  17. Avian influenza vaccination and control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Vaccination with high quality efficacious vaccines that are properly delivered can contribute to the control of avian AI outbreaks when used as part of a compr...

  18. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Submit What's this? Submit Button Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Españ ...

  19. Avian influenza virus in pregnancy.

    PubMed

    Liu, Shelan; Sha, Jianping; Yu, Zhao; Hu, Yan; Chan, Ta-Chien; Wang, Xiaoxiao; Pan, Hao; Cheng, Wei; Mao, Shenghua; Zhang, Run Ju; Chen, Enfu

    2016-07-01

    The unprecedented epizootic of avian influenza viruses, such as H5N1, H5N6, H7N1 and H10N8, has continued to cause disease in humans in recent years. In 2013, another novel influenza A (H7N9) virus emerged in China, and 30% of those patients died. Pregnant women are particularly susceptible to avian influenza and are more likely to develop severe complications and to die, especially when infection occurs in the middle and late trimesters. Viremia is believed to occur infrequently, and thus vertical transmission induced by avian influenza appears to be rare. However, avian influenza increases the risk of adverse pregnancy outcomes, including spontaneous abortion, preterm birth and fatal distress. This review summarises 39 cases of pregnant women and their fetuses from different countries dating back to 1997, including 11, 15 and 13 infections with H7N9, H5N1 and the 2009 pandemic influenza (H1N1), respectively. We analysed the epidemic features, following the geographical, population and pregnancy trimester distributions; underlying diseases; exposure history; medical timelines; human-to-human transmission; pathogenicity and vertical transmission; antivirus treatments; maternal severity and mortality and pregnancy outcome. The common experiences reported in different countries and areas suggest that early identification and treatment are imperative. In the future, vigilant virologic and epidemiologic surveillance systems should be developed to monitor avian influenza viruses during pregnancy. Furthermore, extensive study on the immune mechanisms should be conducted, as this will guide safe, rational immunomodulatory treatment among this high-risk population. Most importantly, we should develop a universal avian influenza virus vaccine to prevent outbreaks of the different subtypes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27187752

  20. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist. The... vaccinated for certain types of avian influenza, or that have moved through regions where any subtype...

  1. Live poultry market workers are susceptible to both avian and swine influenza viruses, Guangdong Province, China.

    PubMed

    Chen, Jidang; Ma, Jun; White, Sarah K; Cao, Zhenpeng; Zhen, Yun; He, Shuyi; Zhu, Wanjun; Ke, Changwen; Zhang, Yongbiao; Su, Shuo; Zhang, Guihong

    2015-12-31

    Guangdong Province is recognized for dense populations of humans, pigs, poultry and pets. In order to evaluate the threat of viral infection faced by those working with animals, a cross-sectional, sero-epidemiological study was conducted in Guangdong between December 2013 and January 2014. Individuals working with swine, at poultry farms, or live poultry markets (LPM), and veterinarians, and controls not exposed to animals were enrolled in this study and 11 (4 human, 3 swine, 3 avian, and 1 canine) influenza A viruses were used in hemagglutination inhibition (HI) assays (7 strains) and the cross-reactivity test (9 strains) in which 5 strains were used in both tests. Univariate analysis was performed to identify which variables were significantly associated with seropositivity. Odds ratios (OR) revealed that swine workers had a significantly higher risk of elevated antibodies against A/swine/Guangdong/L6/2009(H1N1), a classical swine virus, and A/swine/Guangdong/SS1/2012(H1N1), a Eurasian avian-like swine virus than non-exposed controls. Poultry farm workers were at a higher risk of infection with avian influenza H7N9 and H9N2. LPM workers were at a higher risk of infection with 3 subtypes of avian influenza, H5N1, H7N9, and H9N2. Interestingly, the OR also indicated that LPM workers were at risk of H1N1 swine influenza virus infection, perhaps due to the presence of pigs in the LPM. While partial confounding by cross-reactive antibodies against human viruses or vaccines cannot be ruled out, our data suggests that animal exposed people as are more likely to have antibodies against animal influenza viruses. PMID:26476563

  2. Cross-Reactive, Cell-Mediated Immunity and Protection of Chickens from Lethal H5N1 Influenza Virus Infection in Hong Kong Poultry Markets

    PubMed Central

    Seo, Sang Heui; Webster, Robert G.

    2001-01-01

    In 1997, avian H5N1 influenza virus transmitted from chickens to humans resulted in 18 confirmed infections. Despite harboring lethal H5N1 influenza viruses, most chickens in the Hong Kong poultry markets showed no disease signs. At this time, H9N2 influenza viruses were cocirculating in the markets. We investigated the role of H9N2 influenza viruses in protecting chickens from lethal H5N1 influenza virus infections. Sera from chickens infected with an H9N2 influenza virus did not cross-react with an H5N1 influenza virus in neutralization or hemagglutination inhibition assays. Most chickens primed with an H9N2 influenza virus 3 to 70 days earlier survived the lethal challenge of an H5N1 influenza virus, but infected birds shed H5N1 influenza virus in their feces. Adoptive transfer of T lymphocytes or CD8+ T cells from inbred chickens (B2/B2) infected with an H9N2 influenza virus to naive inbred chickens (B2/B2) protected them from lethal H5N1 influenza virus. In vitro cytotoxicity assays showed that T lymphocytes or CD8+ T cells from chickens infected with an H9N2 influenza virus recognized target cells infected with either an H5N1 or H9N2 influenza virus in a dose-dependent manner. Our findings indicate that cross-reactive cellular immunity induced by H9N2 influenza viruses protected chickens from lethal infection with H5N1 influenza viruses in the Hong Kong markets in 1997 but permitted virus shedding in the feces. Our findings are the first to suggest that cross-reactive cellular immunity can change the outcome of avian influenza virus infection in birds in live markets and create a situation for the perpetuation of H5N1 influenza viruses. PMID:11222674

  3. Avian influenza virus RNA extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  4. Avian Influenza: Our current understanding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) has become one of the most important diseases of the poultry industry around the world. The virus has a broad host range in birds and mammals, although the natural reservoir is considered to be in wild birds where it typically causes an asymptomatic to mild infection. T...

  5. Influenza vaccines for avian species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  6. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056... Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule... importation of bird and poultry products from regions where any subtype of highly pathogenic avian...

  7. A brief introduction to avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is caused by a type A influenza virus isolated from and adapted to an avian host. This chapter covers the basic physicochemical aspects of AIV including; virus family and properties, subtype classification; basic molecular biology and genetics. The avian host range and ecology...

  8. DIVA vaccination strategies for avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination for both low pathogenic and highly pathogenic avian influenza is commonly used for countries that have been endemic for avian influenza influenza virus, but stamping out policies are common for countries that are normally free of the disease. Stamping out policies of euthanizing infecte...

  9. Avian influenza surveillance reveals presence of low pathogenic avian influenza viruses in poultry during 2009-2011 in the West Bengal State, India

    PubMed Central

    2012-01-01

    Introduction More than 70 outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 have been reported in poultry in the western and north-eastern parts of India. Therefore, in view of the recent HPAI H5N1 outbreaks in poultry, active AI surveillance encompassing wild, resident, migratory birds and poultry was undertaken during 2009–2011 in the State of West Bengal. Methods A total of 5722 samples were collected from West Bengal; 3522 samples (2906 fecal droppings + 616 other environmental samples) were from migratory birds and 2200 samples [1604 tracheal, cloacal swabs, environmental samples, tissue samples + 596 blood (serum)] were from domestic ducks and poultry. All tracheal, cloacal and environmental samples were processed for virus isolation. Virus isolates were detected using hemagglutination assay and identified using hemagglutination inhibition (HI) and reverse transcriptase polymerase chain reaction (RT-PCR) assays. Sequencing and phylogenetic analysis of partial region of the hemagglutinin and neuraminidase genes was done. Intravenous pathogenicity index assays were performed in chickens to assess pathogenicity of AI virus isolates. Serum samples were tested for detection of antibodies against AI viruses using HI assay. Results A total of 57 AI H9N2, 15 AI H4N6 and 15 Newcastle Disease (NDV) viruses were isolated from chickens, from both backyard and wet poultry markets; AI H4N6 viruses were isolated from backyard chickens and domestic ducks. Characterization of AI H9N2 and H4N6 viruses revealed that they were of low pathogenicity. Domestic ducks were positive for antibodies against H5 and H7 viruses while chickens were positive for presence of antibodies against AI H9N2 and NDV. Conclusions In the current scenario of HPAI H5N1 outbreaks in West Bengal, this report shows presence of low pathogenic AI H9N2 and H4N6 viruses in chickens and domestic ducks during the period 2009–2011. This is the first report of isolation of H4N6 from India

  10. Newly Emergent Highly Pathogenic H5N9 Subtype Avian Influenza A Virus

    PubMed Central

    Yu, Yang; Wang, Xingbo; Jin, Tao; Wang, Hailong; Si, Weiying; Yang, Hui; Wu, Jiusheng; Yan, Yan; Liu, Guang; Sang, Xiaoyu; Wu, Xiaopeng; Gao, Yuwei; Xia, Xianzhu; Yu, Xinfen; Pan, Jingcao; Gao, George F.

    2015-01-01

    ABSTRACT The novel H7N9 avian influenza virus (AIV) was demonstrated to cause severe human respiratory infections in China. Here, we examined poultry specimens from live bird markets linked to human H7N9 infection in Hangzhou, China. Metagenomic sequencing revealed mixed subtypes (H5, H7, H9, N1, N2, and N9). Subsequently, AIV subtypes H5N9, H7N9, and H9N2 were isolated. Evolutionary analysis showed that the hemagglutinin gene of the novel H5N9 virus originated from A/Muscovy duck/Vietnam/LBM227/2012 (H5N1), which belongs to clade 2.3.2.1. The neuraminidase gene of the novel H5N9 virus originated from human-infective A/Hangzhou/1/2013 (H7N9). The six internal genes were similar to those of other H5N1, H7N9, and H9N2 virus strains. The virus harbored the PQRERRRKR/GL motif characteristic of highly pathogenic AIVs at the HA cleavage site. Receptor-binding experiments demonstrated that the virus binds α-2,3 sialic acid but not α-2,6 sialic acid. Identically, pathogenicity experiments also showed that the virus caused low mortality rates in mice. This newly isolated H5N9 virus is a highly pathogenic reassortant virus originating from H5N1, H7N9, and H9N2 subtypes. Live bird markets represent a potential transmission risk to public health and the poultry industry. IMPORTANCE This investigation confirms that the novel H5N9 subtype avian influenza A virus is a reassortant strain originating from H5N1, H7N9, and H9N2 subtypes and is totally different from the H5N9 viruses reported before. The novel H5N9 virus acquired a highly pathogenic H5 gene and an N9 gene from human-infecting subtype H7N9 but caused low mortality rates in mice. Whether this novel H5N9 virus will cause human infections from its avian host and become a pandemic subtype is not known yet. It is therefore imperative to assess the risk of emergence of this novel reassortant virus with potential transmissibility to public health. PMID:26085150

  11. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh.

    PubMed

    Gerloff, Nancy A; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S; Luby, Stephen P; Wentworth, David E; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  12. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh

    PubMed Central

    Gerloff, Nancy A.; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S.; Luby, Stephen P.; Wentworth, David E.; Donis, Ruben O.; Sturm-Ramirez, Katharine; Davis, C. Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  13. Avian influenza: the Canadian experience.

    PubMed

    Pasick, J; Berhane, Y; Hooper-McGrevy, K

    2009-04-01

    Reports of sporadic avian influenza outbreaks involving domestic poultry date back to the 1960s. With the exception of A/turkey/Ontario/7732/1966 (H5N9), which was isolated from a turkey breeding establishment, all viruses characterised prior to 2004 fit the criteria of low pathogenic avian influenza (LPAI). Only in retrospect was A/turkey/Ontario/7732/1966 shown to meet the criteria of a highly pathogenic avian influenza (HPAI). In 2004, Canada reported its first case of HPAI to the World Organisation for Animal Health (OIE). The outbreak, which began in a broiler breeder farm in the Fraser Valley of British Columbia, involved an H7N3 LPAI virus which underwent a sudden virulence shift to HPAI. More than 17 million birds were culled and CAN$380 million in gross economic costs incurred before the outbreak was eventually brought under control. In its aftermath a number of changes were implemented to mitigate the impact of any future HPAI outbreaks. These changes involved various aspects of avian influenza detection and control, including self-quarantine, biosecurity, surveillance, and laboratory testing. In 2005, a national surveillance programme for influenza A viruses in wild birds was initiated. Results of this survey provided evidence for wild birds as the likely source of an H5N2 LPAI outbreak that occurred in domestic ducks in the Fraser Valley in the autumn of 2005. Wild birds were once again implicated in an H7N3 HPAI outbreak involving a broiler breeder operation in Saskatchewan in 2007. Fortunately, both of these outbreaks were limited in extent, a consequence of some of the changes implemented in response to the 2004 British Columbia outbreak. PMID:19618638

  14. Avian Influenza in Birds

    MedlinePlus

    ... and even kill certain domesticated bird species including chickens, ducks, and turkeys. Infected birds can shed avian ... virus’ ability to cause disease and mortality in chickens in a laboratory setting [2.5 MB, 64 ...

  15. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza A is a major pathogen of birds, swine, and humans. Strains can jump from one species to another in a process that often requires genetic mutation and genome reassortment and results in outbreaks and, potentially, pandemics. H9N2 avian influenza is one of the most predominant influenza subt...

  16. 76 FR 4046 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ...We are amending the regulations concerning the importation of animals and animal products to prohibit or restrict the importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza is considered to exist. We are also adding restrictions concerning importation of live poultry and birds that have been vaccinated for certain types of avian influenza,......

  17. The global nature of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their agricultural or anthropocentric production systems. Avian influenza viruses or evidence of their infection have been detected in poultry and wild birds...

  18. Biology and transmission of avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural host and reservoir for avian influenza is in wild birds where the viral infection is typically asymptomatic. The virus primarily replicates in the enteric tract and transmission is thought to be primarily by fecal-oral transmission. Avian influenza can infect a broad host range, but fo...

  19. Avian influenza diagnostics and surveillance methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The clinical presentation of avian influenza (AI) varies by virus strain and host species. The clinical disease and lesions the virus produces in poultry are not pathognomonic for avian influenza; therefore, diagnosis of AI virus (AIV) infection requires a laboratory test. Detection of AIV infecti...

  20. Avian influenza biology and disease transmission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural host and reservoir for avian influenza is in wild birds where the viral infection is typically asymptomatic. The virus primarily replicates in the enteric tract and transmission is thought to be primarily by fecal oral transmission. Avian influenza can infect a broad host range, but fo...

  1. Avian influenza: preparedness and response strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus is naturally found in wild birds, primarily waterfowl, but the virus may also be found in poultry. In the United States we have a strong passive and active surveillance program for avian influenza in poultry. This includes serologic testing on most flocks that go through the ...

  2. A brief introduction to avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) causes a disease of high economic importance for poultry production worldwide. The earliest recorded cases of probable high pathogenicity AIV in poultry were reported in Italy in the 1870’s and avian influenza been recognized in domestic poultry through the modern era of ...

  3. Influenza vaccines for avian species.

    PubMed

    Kapczynski, Darrell R; Swayne, David E

    2009-01-01

    Beginning in Southeast Asia in 2003, a multinational epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity and mortality in many bird species, was responsible for considerable economic losses via trade restrictions, and crossed species barriers (including its recovery from human cases). To date, these H5N1 HPAI viruses have been isolated in European, Middle Eastern, and African countries, and are considered endemic in many areas where regulatory control and different production sectors face substantial hurdles in controlling the spread of this disease. While control of avian influenza (AI) virus infections in wild bird populations may not be feasible at this point, control and eradiation of AI from commercial, semicommercial, zoo, pet, and village/backyard birds will be critical to preventing events that could lead to the emergence of epizootic influenza virus. Efficacious vaccines can help reduce disease, viral shedding, and transmission to susceptible cohorts. However, only when vaccines are used in a comprehensive program including biosecurity, education, culling, diagnostics and surveillance can control and eradication be considered achievable goals. In humans, protection against influenza is provided by vaccines that are chosen based on molecular, epidemiologic, and antigenic data. In poultry and other birds, AI vaccines are produced against a specific hemagglutinin subtype of AI, and use is decided by government and state agricultural authorities based on risk and economic considerations, including the potential for trade restrictions. In the current H5N1 HPAI epizootic, vaccines have been used in a variety of avian species as a part of an overall control program to aid in disease management and control. PMID:19768403

  4. Little Evidence of Subclinical Avian Influenza Virus Infections among Rural Villagers in Cambodia

    PubMed Central

    Gray, Gregory C.; Krueger, Whitney S.; Chum, Channimol; Putnam, Shannon D.; Wierzba, Thomas F.; Heil, Gary L.; Anderson, Benjamin D.; Yasuda, Chadwick Y.; Williams, Maya; Kasper, Matthew R.; Saphonn, Vonthanak; Blair, Patrick J.

    2014-01-01

    In 2008, 800 adults living within rural Kampong Cham Province, Cambodia were enrolled in a prospective cohort study of zoonotic influenza transmission. After enrollment, participants were contacted weekly for 24 months to identify acute influenza-like illnesses (ILI). Follow-up sera were collected at 12 and 24 months. A transmission substudy was also conducted among the family contacts of cohort members reporting ILI who were influenza A positive. Samples were assessed using serological or molecular techniques looking for evidence of infection with human and avian influenza viruses. Over 24 months, 438 ILI investigations among 284 cohort members were conducted. One cohort member was hospitalized with a H5N1 highly pathogenic avian influenza (HPAI) virus infection and withdrew from the study. Ninety-seven ILI cases (22.1%) were identified as influenza A virus infections by real-time RT-PCR; none yielded evidence for AIV. During the 2 years of follow-up, 21 participants (3.0%) had detectable antibody titers (≥1∶10) against the studied AIVs: 1 against an avian-like A/Migratory duck/Hong Kong/MPS180/2003(H4N6), 3 against an avian-like A/Teal/Hong Kong/w312/97(H6N1), 9 (3 of which had detectible antibody titers at both 12- and 24-month follow-up) against an avian-like A/Hong Kong/1073/1999(H9N2), 6 (1 detected at both 12- and 24-month follow-up) against an avian-like A/Duck/Memphis/546/74(H11N9), and 2 against an avian-like A/Duck/Alberta/60/76(H12N5). With the exception of the one hospitalized cohort member with H5N1 infection, no other symptomatic avian influenza infections were detected among the cohort. Serological evidence for subclinical infections was sparse with only one subject showing a 4-fold rise in microneutralization titer over time against AvH12N5. In summary, despite conducting this closely monitored cohort study in a region enzootic for H5N1 HPAI, we were unable to detect subclinical avian influenza infections, suggesting either that these

  5. Avian influenza: an osteopathic component to treatment

    PubMed Central

    Hruby, Raymond J; Hoffman, Keasha N

    2007-01-01

    Avian influenza is an infection caused by the H5N1 virus. The infection is highly contagious among birds, and only a few known cases of human avian influenza have been documented. However, healthcare experts around the world are concerned that mutation or genetic exchange with more commonly transmitted human influenza viruses could result in a pandemic of avian influenza. Their concern remains in spite of the fact that the first United States vaccine against the H5N1 virus was recently approved. Under these circumstances the fear is that a pandemic of avian influenza could result in the kind of mortality that was seen with the Spanish influenza pandemic of 1918–1919, where the number of deaths was estimated to be as high as 40 million people. Retrospective data gathered by the American Osteopathic Association shortly after the 1918–1919 influenza pandemic have suggested that osteopathic physicians (DOs), using their distinctive osteopathic manipulative treatment (OMT) methods, observed significantly lower morbidity and mortality among their patients as compared to those treated by allopathic physicians (MDs) with standard medical care available at the time. In light of the limited prevention and treatment options available, it seems logical that a preparedness plan for the treatment of avian influenza should include these OMT procedures, provided by DOs and other healthcare workers capable of being trained to perform these therapeutic interventions. The purpose of this paper is to discuss the characteristics of avian influenza, describe the success of DOs during the 1918–1919 Spanish influenza pandemic, describe the evidence base for the inclusion of OMT as part of the preparedness plan for the treatment of avian influenza, and describe some of the specific OMT procedures that could be utilized as part of the treatment protocol for avian influenza patients. PMID:17620133

  6. Pandemic preparedness: lessons learnt from H2N2 and H9N2 candidate vaccines.

    PubMed

    Hehme, N; Engelmann, H; Künzel, W; Neumeier, E; Sänger, R

    2002-12-01

    Vaccination against influenza is considered to be one of the key interventions in case of a pandemic. Unfortunately, shortages in vaccine supplies will occur because of the substantial increase in vaccine demands worldwide and the limited available supply resources. The recommended use of monovalent--instead of current trivalent--vaccines containing 15 micro g hemagglutinin (HA) per dose can theoretically triple vaccine volumes but is unlikely to meet the demand. Furthermore, previous experiences demonstrated that one dose of 15 micro g HA will not be sufficient to elicit protective antibody levels in unprimed individuals. Modified formulation approaches were investigated, that would be suitable to provide significantly higher volumes of potent vaccine within a given period of time. Low doses of HA combined with aluminum (Al) adjuvants and the use of whole virus instead of split or subunit antigens can lead to substantial increases in process yield. In addition, production of whole virus vaccines will reduce manufacturing complexity. In a dose-finding study in healthy adults and elderly, immune responses after administration of Al-adjuvanted low-dose formulations were compared to a standard split virus vaccine (Fluarix, GlaxoSmithKline Biologicals, Rixensart, Belgium). All vaccines were safe and well tolerated. Antigen concentrations as low as 1.9 micro g HA/strain per dose of adjuvant-containing experimental vaccines induced protective antibody levels in primed populations. Reactogenicity profiles of Al-adjuvanted low-dose vaccines were investigated in a feasibility trial. Neither the use of Al-adjuvant nor of whole virus had a significant effect on general reactions. Studies in unprimed populations with H2N2 and H9N2 candidate vaccines showed different results, with a potential need for a two-dose schedule. Indeed, hemagglutination inhibition titers did not reach protective levels after a single vaccine dose but could be met following administration of a second

  7. An update on avian influenza in Mexico.

    PubMed

    Villarreal-Chávez, C; Rivera-Cruz, E

    2003-01-01

    The avian influenza high-pathogenicity virus was eradicated in poultry of Mexico in a relatively short period by the use of inactivated emulsified vaccine, enforcing biosecurity, and controlling movement of poultry and poultry products. Mexico maintains a permanent and reliable monitoring program for AI. H5N2 is the only avian influenza subtype identified. It is possible to control and eradicate the avian influenza low-pathogenicity virus mainly by controlled depopulation of positive poultry, reinforcing biosecurity, and the use of vaccines. PMID:14575101

  8. Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection

    PubMed Central

    Wu, Donglin; Zou, Shumei; Bai, Tian; Li, Jing; Zhao, Xiang; Yang, Lei; Liu, Hongmin; Li, Xiaodan; Yang, Xianda; Xin, Li; Xu, Shuang; Zou, Xiaohui; Li, Xiyan; Wang, Ao; Guo, Junfeng; Sun, Bingxin; Huang, Weijuan; Zhang, Ye; Li, Xiang; Gao, Rongbao; Shen, Bo; Chen, Tao; Dong, Jie; Wei, Hejiang; Wang, Shiwen; Li, Qun; Li, Dexin; Wu, Guizhen; Feng, Zijian; Gao, George F.; Wang, Yu; Wang, Dayan; Fan, Ming; Shu, Yuelong

    2015-01-01

    Live poultry markets are a source of human infection with avian influenza A (H7N9) virus. On February 21, 2014, a poultry farmer infected with H7N9 virus was identified in Jilin, China, and H7N9 and H9N2 viruses were isolated from the patient's farm. Reassortment between these subtype viruses generated five genotypes, one of which caused the human infection. The date of H7N9 virus introduction to the farm is estimated to be between August 21, 2013 (95% confidence interval [CI] June 6, 2013-October 6, 2013) and September 25, 2013 (95% CI May 28, 2013-January 4, 2014), suggesting that the most likely source of virus introduction was the first batch of poultry purchased in August 2013. The reassortment event that led to the human virus may have occurred between January 2, 2014 (95% CI November 8, 2013-February 12, 2014) and February 12, 2014 (95% CI January 19, 2014-February 18, 2014). Our findings demonstrate that poultry farms could be a source of reassortment between H7N9 virus and H9N2 virus as well as human infection, which emphasizes the importance to public health of active avian influenza surveillance at poultry farms. PMID:25591105

  9. Effect of intranasal immunization with inactivated avian influenza virus on local and systemic immune responses in ducks.

    PubMed

    Kang, H; Wang, H; Yu, Q; Yang, Q

    2012-05-01

    To evaluate the effects of co-administration of inactivated avian influenza H9N2 virus and adjuvants in waterfowls, 10-d-old ducks were immunized intranasally with inactivated avian influenza virus (IAIV) combined with CpG DNA and sodium cholate. Immunoglobulin A and IgG antibody levels in throat and tracheal tissues increased significantly, as did specific IgA and IgG antibody levels in the serum after intranasal immunization with IAIV combined with CpG DNA and sodium cholate, compared with immunization with IAIV only. Furthermore, enhanced hemagglutination inhibition titers were also detected in serum samples taken between the third and seventh weeks after immunization with IAIV and both adjuvants compared with IAIV alone. The expression of IL-2 and IL-6 in tracheal and lung tissues increased significantly in the early period after booster immunization. However, the enhancement induced by a single adjuvant was insignificant, and no significant change was detected in the antibody titers or cytokine levels between the ducks that received IAIV alone or saline. In the viral challenge study, prior administration of both CpG DNA and sodium cholate with IAIV reduced the viral titers in the oropharynx and cloaca swabs. Our study suggests that the combination of CpG DNA and sodium cholate could be beneficial to immunization with inactivated H9N2 virus by enhancing the local and systemic immune responses. PMID:22499863

  10. Antigenic Cartography of H9 Avian Influenza Virus and Its Application to Vaccine Selection.

    PubMed

    Wang, Yue; Davidson, Irit; Fouchier, Ron; Spackman, Erica

    2016-05-01

    Vaccination is frequently used as a control method for the H9 subtype of low pathogenicity avian influenza virus (AIV), which is widespread in Asia and the Middle East. One of the most important factors for selecting an effective vaccine strain is the antigenic match between the hemagglutinin protein of the vaccine and the strain circulating in the field. To demonstrate the antigenic relationships among H9 AIVs, with a focus on Israeli H9 isolates, antigenic cartography was used to develop a map of H9 AIVs. Based on their antigenic diversity, three isolates from Israel were selected for vaccination-challenge studies: 1) the current vaccine virus, A/chicken/Israel/215/2007 H9N2 (Ck/215); 2) A/chicken/Israel/1163/2011 H9N2 (Ck/1163); and 3) A/ostrich/Israel/1436/2003 (Os/1436). A 50% infective dose (ID50) model was used to determine the effect of the vaccines on susceptibility to infection by using a standardized dose of vaccine. Sera collected immediately prior to challenge showed that Ck/215 was the most immunogenic, followed by Ck/1163 and Os/1436. A significant difference in ID50 was only observed with Ck/215 homologous challenge, where the ID50 was increased by 2 log 10 per bird. The ID50 for Ck/1163 was the same, regardless of vaccine, including sham vaccination. The ID50 for Os/1436 was above the maximum possible dose and therefore could not be established. PMID:27309058

  11. Epidemiology, Evolution, and Recent Outbreaks of Avian Influenza Virus in China

    PubMed Central

    Su, Shuo; Wong, Gary; Gray, Gregory C.; Gao, George F.

    2015-01-01

    Novel reassortants of H7N9, H10N8, and H5N6 avian influenza viruses (AIVs) are currently circulating in China's poultry flocks, occasionally infecting humans and other mammals. Combined with the sometimes enzootic H5N1 and H9N2 strains, this cauldron of genetically diverse AIVs pose significant risks to public health. Here, we review the epidemiology, evolution, and recent outbreaks of AIVs in China, discuss reasons behind the recent increase in the emergence of novel AIVs, and identify warning signs which may point to the emergence of a potentially virulent and highly transmissible AIV to humans. This review will be useful to authorities who consider options for the detection and control of AIV transmission in animals and humans, with the goal of preventing future epidemics and pandemics. PMID:26063419

  12. CpG oligodeoxynucleotide-specific goose TLR21 initiates an anti-viral immune response against NGVEV but not AIV strain H9N2 infection.

    PubMed

    Qi, Yulin; Yan, Bing; Chen, Shun; Chen, Hongjun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Yang, Qiao; Sun, Kunfeng; Wu, Ying; Chen, Xiaoyue; Jing, Bo; Cheng, Anchun

    2016-03-01

    Toll-like receptors (TLRs) recognize components of pathogens and mediate the host innate immune response. TLR21 is a TLR that specifically recognizes exogenous double-stranded DNA and rapidly signals to downstream innate immune factors. This study reports the cDNA of goose TLR21 and identifies its immune characteristics. The goose TLR21 is 3161 base pairs and encodes a 975 amino acid protein. As predicted, the goose transmembrane protein TLR21 has a signal peptide, leucine-rich repeat regions, a transmembrane domain, and a Toll/interleukin-1 receptor domain. Multiple sequence alignments and phylogenetic analyses showed that goose TLR21 has homology to chicken TLR21. The tissue distribution of TLR21 suggested that it has high transcript levels in immune-associated tissues, especially in the bursa of Fabricius, the Hadrian gland, and the thymus. After challenge with agonist ODN2006 and new type gosling viral enteritis virus (NGVEV), significant induction of TLR21 production, pro-inflammatory cytokines IL-1β and IL-6, and interferons were observed in peripheral blood mononuclear cells. Both synthetic DNA (ODN2006) and viral DNA (NGVEV) can be recognized by goose TLR21, which leads to a rapid up-regulation of pro-inflammatory cytokines and anti-viral molecules. In vivo, avian influenza A virus H9N2 and NGVEV were used to infect goslings, which was followed by a significant up-regulation of TLR21 mRNA transcripts in multiple tissues of NGVEV-infected geese. In general, goose TLR21 plays an important role in binding invading pathogenic DNA viruses, which subsequently triggers an innate immune response; furthermore, it acts as a functional homologue of mammalian TLR9, as TLR21 recognizes a mammalian TLR9 agonist. PMID:26621545

  13. Avian influenza: an emerging pandemic threat.

    PubMed

    Jin, Xian Wen; Mossad, Sherif B

    2005-12-01

    While we are facing the threat of an emerging pandemic from the current avian flu outbreak in Asia, we have learned important traits of the virus responsible for the 1918 Spanish influenza pandemic that made it so deadly. By using stockpiled antiviral drugs effectively and developing an effective vaccine, we can be in a better position than ever to mitigate the global impact of an avian influenza pandemic. PMID:16392727

  14. Replication and Adaptive Mutations of Low Pathogenic Avian Influenza Viruses in Tracheal Organ Cultures of Different Avian Species

    PubMed Central

    Petersen, Henning; Matrosovich, Mikhail; Pleschka, Stephan; Rautenschlein, Silke

    2012-01-01

    Transmission of avian influenza viruses (AIV) between different avian species may require genome mutations that allow efficient virus replication in a new species and could increase virulence. To study the role of domestic poultry in the evolution of AIV we compared replication of low pathogenic (LP) AIV of subtypes H9N2, H7N7 and H6N8 in tracheal organ cultures (TOC) and primary embryo fibroblast cultures of chicken, turkey, Pekin duck and homing pigeon. Virus strain-dependent and avian species-related differences between LPAIV were observed in growth kinetics and induction of ciliostasis in TOC. In particular, our data demonstrate high susceptibility to LPAIV of turkey TOC contrasted with low susceptibility of homing pigeon TOC. Serial virus passages in the cells of heterologous host species resulted in adaptive mutations in the AIV genome, especially in the receptor-binding site and protease cleavage site of the hemagglutinin. Our data highlight differences in susceptibility of different birds to AIV viruses and emphasizes potential role of poultry in the emergence of new virus variants. PMID:22912693

  15. Avian Influenza A (H7N9) Virus

    MedlinePlus

    ... this page: About CDC.gov . Avian Influenza H5 Viruses in the United States Updates and Publications Information ... Humans Examples of Human Infections with Avian Influenza Viruses Outbreaks Health Care and Laboratorian Guidance HPAI A ...

  16. Prevention and Treatment of Avian Influenza A Viruses in People

    MedlinePlus

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Button Past Newsletters Prevention and Treatment of Avian Influenza A Viruses in People Language: English Español ...

  17. Avian influenza surveillance of wild birds

    USGS Publications Warehouse

    Slota, Paul

    2007-01-01

    The President's National Strategy for Pandemic Influenza directs federal agencies to expand the surveillance of United States domestic livestock and wildlife to ensure early warning of hightly pathogenic avian influenza (HPAI) in the U.S. The immediate concern is a potential introduction of HPAI H5N1 virus into the U.S. The presidential directive resulted in the U.S. Interagency Strategic Plan for Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (referred to as the Wild Bird Surveillance Plan or the Plan).

  18. Lactobacillus plantarum vaccine vector expressing hemagglutinin provides protection against H9N2 challenge infection.

    PubMed

    Shi, Shao-Hua; Yang, Wen-Tao; Yang, Gui-Lian; Zhang, Xu-Ke; Liu, Yu-Ying; Zhang, Li-Jiao; Ye, Li-Ping; Hu, Jing-Tao; Xing, Xin; Qi, Chong; Li, Yu; Wang, Chun-Feng

    2016-01-01

    Hemagglutinin (HA) has been demonstrated as an effective candidate vaccine antigen against AIVs. Dendritic cell-targeting peptide (DCpep) can enhance the robustness of immune responses. The purpose of this study was to evaluate whether DCpep could enhance the immune response against H9N2 AIV when utilizing Lactobacillus plantarum NC8 (NC8) to present HA-DCpep in mouse and chicken models. To accomplish this, a mucosal vaccine of a recombinant NC8 strain expressing HA and DCpep that was constructed in a previous study was employed. Orally administered NC8-pSIP409-HA-DCpep elicited high serum titers of hemagglutination-inhibition (HI) antibodies in mice and also induced robust T cell immune responses in both mouse and chicken models. Orally administered NC8-pSIP409-HA-DCpep elicited high serum titers of hemagglutination-inhibition (HI) antibodies in mice and also induced robust T cell immune responses in both mouse and chicken models. These results revealed that recombinant L. plantarum NC8-pSIP409-HA-DCpep is an effective vaccine candidate against H9N2 AIVs. PMID:26363195

  19. Avian influenza and pandemic influenza preparedness in Hong Kong.

    PubMed

    Lam, Ping Yan

    2008-06-01

    Avian influenza A H5N1 continues to be a major threat to global public health as it is a likely candidate for the next influenza pandemic. To protect public health and avert potential disruption to the economy, the Hong Kong Special Administrative Region Government has committed substantial effort in preparedness for avian and pandemic influenza. Public health infrastructures for emerging infectious diseases have been developed to enhance command, control and coordination of emergency response. Strategies against avian and pandemic influenza are formulated to reduce opportunities for human infection, detect pandemic influenza timely, and enhance emergency preparedness and response capacity. Key components of the pandemic response include strengthening disease surveillance systems, updating legislation on infectious disease prevention and control, enhancing traveller health measures, building surge capacity, maintaining adequate pharmaceutical stockpiles, and ensuring business continuity during crisis. Challenges from avian and pandemic influenza are not to be underestimated. Implementing quarantine and social distancing measures to contain or mitigate the spread of pandemic influenza is problematic in a highly urbanised city like Hong Kong as they involved complex operational and ethical issues. Sustaining effective risk communication campaigns during interpandemic times is another challenge. Being a member of the global village, Hong Kong is committed to contributing its share of efforts and collaborating with health authorities internationally in combating our common public health enemy. PMID:18618061

  20. Avian influenza in North and South America, 2002-2005.

    PubMed

    Senne, Dennis A

    2007-03-01

    Between 2002 and 2005, three outbreaks of highly pathogenic avian influenza (HPAI) occurred in the Americas: one outbreak in Chile (H7N3) in 2002, one outbreak in the United States (H5N2) in 2004, and one outbreak in Canada (H7N3) in 2004. The outbreak in Chile was limited to a large broiler breeder operation and a nearby turkey flock and represented the first outbreak of HPAI in that country. The outbreak of HPAI in the United States occurred in Texas and was limited to one premise where chickens were raised for sale in nearby live-bird markets. The outbreak in Canada was the largest of the three HPAI outbreaks, involving 42 premises and approximately 17 million birds in the Fraser Valley, British Columbia. In each of the HPAI outbreaks, the disease was successfully eradicated by depopulation of infected farms. All other reports of infections in poultry and isolations from wild bird species pertained to low pathogenicity avian influenza (LPAI) viruses. Animal Health Officials in Canada reported subtypes H3, H5, and H6 in domestic poultry, and H3, H5, H11, and H13 from imported and/or wild bird species. An LPAI H5N2 virus continues to circulate in Mexico and the Central American countries of Guatemala and El Salvador. Each country reported isolations of H5N2 virus from poultry and the large-scale use of inactivated and recombinant H5 vaccines in their AI control programs. In Colombia, AI was reported for the first time when antibodies to H9N2 were detected in chickens by routine surveillance. Intensive surveillance activities in the United States detected AI virus or specific antibodies to 13 of the 16 hemagglutinin (H1-H13) and all nine neuraminidase subtypes in live-bird markets, small holder farms, and in commercial poultry from 29 states. The largest outbreak of LPAI in the United States occurred in 2002, when 197 farms were depopulated (4.7 million birds) to control an outbreak in Virginia and surrounding states. The outbreak was caused by an LPAI H7N2 virus

  1. The prevention and control of avian influenza: The avian influenza coordinated agriculture project1

    PubMed Central

    Cardona, C.; Slemons, R.; Perez, D.

    2015-01-01

    The Avian Influenza Coordinated Agriculture Project (AICAP) entitled “Prevention and Control of Avian Influenza in the US” strives to be a significant point of reference for the poultry industry and the general public in matters related to the biology, risks associated with, and the methods used to prevent and control avian influenza. To this end, AICAP has been remarkably successful in generating research data, publications through an extensive network of university- and agency-based researchers, and extending findings to stakeholders. An overview of the highlights of AICAP research is presented. PMID:19276431

  2. Sustained live poultry market surveillance contributes to early warnings for human infection with avian influenza viruses.

    PubMed

    Fang, Shisong; Bai, Tian; Yang, Lei; Wang, Xin; Peng, Bo; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Zhu, Wenfei; Wang, Dayan; Cheng, Jinquan; Shu, Yuelong

    2016-01-01

    Sporadic human infections with the highly pathogenic avian influenza (HPAI) A (H5N6) virus have been reported in different provinces in China since April 2014. From June 2015 to January 2016, routine live poultry market (LPM) surveillance was conducted in Shenzhen, Guangdong Province. H5N6 viruses were not detected until November 2015. The H5N6 virus-positive rate increased markedly beginning in December 2015, and viruses were detected in LPMs in all districts of the city. Coincidently, two human cases with histories of poultry exposure developed symptoms and were diagnosed as H5N6-positive in Shenzhen during late December 2015 and early January 2016. Similar viruses were identified in environmental samples collected in the LPMs and the patients. In contrast to previously reported H5N6 viruses, viruses with six internal genes derived from the H9N2 or H7N9 viruses were detected in the present study. The increased H5N6 virus-positive rate in the LPMs and the subsequent human infections demonstrated that sustained LPM surveillance for avian influenza viruses provides an early warning for human infections. Interventions, such as LPM closures, should be immediately implemented to reduce the risk of human infection with the H5N6 virus when the virus is widely detected during LPM surveillance. PMID:27485495

  3. An avian live attenuated master backbone for potential use in epidemic and pandemic influenza vaccines

    PubMed Central

    Hickman, Danielle; Hossain, Md Jaber; Song, Haichen; Araya, Yonas; Solórzano, Alicia; Perez, Daniel R.

    2008-01-01

    The unprecedented emergence in Asia of multiple avian influenza virus (AIV) subtypes with a broad host range poses a major challenge in the design of vaccination strategies that are both effective and available in a timely manner. The present study focused on the protective effects of a genetically modified AIV as a source for the preparation of vaccines for epidemic and pandemic influenza. It has previously been demonstrated that a live attenuated AIV based on the internal backbone of influenza A/Guinea fowl/Hong Kong/WF10/99 (H9N2), called WF10att, is effective at protecting poultry species against low- and high-pathogenicity influenza strains. More importantly, this live attenuated virus provided effective protection when administered in ovo. In order to characterize the WF10att backbone further for use in epidemic and pandemic influenza vaccines, this study evaluated its protective effects in mice. Intranasal inoculation of modified attenuated viruses in mice provided adequate protective immunity against homologous lethal challenges with both the wild-type influenza A/WSN/33 (H1N1) and A/Vietnam/1203/04 (H5N1) viruses. Adequate heterotypic immunity was also observed in mice vaccinated with modified attenuated viruses carrying H7N2 surface proteins. The results presented in this report suggest that the internal genes of a genetically modified AIV confer similar protection in a mouse model and thus could be used as a master donor strain for the generation of live attenuated vaccines for epidemic and pandemic influenza. PMID:18931063

  4. Pathobiology of avian influenza in domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic ducks are an important source of food and income in many parts of the world. The susceptibility of domestic ducks to avian influenza (AI) viruses varies depending on many factors, including the species and the age of the ducks, the virus strain, and management practices. Although wild wat...

  5. Viral vectors for avian influenza vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior to 2003, vaccines against avian influenza (AI) had limited, individual country or regional use in poultry. In late 2003, H5N1 high pathogenicity (HP) AI spread from China to multiple Southeast Asian countries, and to Europe during 2005 and Africa during 2006, challenging governments and all p...

  6. Rapid molecular diagnostic tools for avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An accurate and early diagnosis of a foreign animal disease is crucial for rapid control and eradication of an outbreak in a country previously free of the disease. Historically many animal diseases have been controlled based solely on clinical signs of disease. However with avian influenza virus ...

  7. Avian influenza vaccines and vaccination for poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines against avian influenza (AI) have had more limited use in poultry than vaccines against other poultry diseases such as Newcastle disease (ND) and infectious bronchitis, and have been used more commonly in the developing world. Over the past 40 years, AI vaccines have been primarily based o...

  8. Avian influenza vaccines and therapies for poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines have been used in avian influenza (AI) control programs to prevent, manage or eradicate AI from poultry and other birds. The best protection is produced from the humoral response against the hemagglutinin (HA) protein. A variety of vaccines have been developed and tested under experimenta...

  9. Detection of Avian H7N9 Influenza A Viruses in the Yangtze Delta Region of China During Early H7N9 Outbreaks.

    PubMed

    Li, Yin; Huang, Xin-Mei; Zhao, Dong-Min; Liu, Yu-Zhuo; He, Kong-Wang; Liu, Yao-Xing; Chen, Chang-Hai; Long, Li-Ping; Xu, Yifei; Xie, Xing-Xing; Han, Kai-Kai; Liu, Xiao-Yan; Yang, Jing; Zhang, You-Fa; Fan, Feng; Webby, Richard; Wan, Xiu-Feng

    2016-05-01

    Since the first H7N9 human case in Shanghai, February 19, 2013, the emerging avian-origin H7N9 influenza A virus has become an epizootic virus in China, posing a potential pandemic threat to public health. From April 2 to April 28, 2013, some 422 oral-pharyngeal and cloacal swabs were collected from birds and environmental surfaces at five live poultry markets (LPMs) and 13 backyard poultry farms (BPFs) across three cities, Wuxi, Suzhou, and Nanjing, in the Yangtze Delta region. In total 22 isolates were recovered, and six were subtyped as H7N9, nine as H9N2, four as H7N9/H9N2, and three unsubtyped influenza A viruses. Genomic sequences showed that the HA and NA genes of the H7N9 viruses were similar to those of the H7N9 human isolates, as well as other avian-origin H7N9 isolates in the region, but the PB1, PA, NP, and MP genes of the sequenced viruses were more diverse. Among the four H7N9/H9N2 mixed infections, three were from LPM, whereas the other one was from the ducks at one BPF, which were H7N9 negative in serologic analyses. A survey of the bird trading records of the LPMs and BPFs indicates that trading was a likely route for virus transmission across these regions. Our results suggested that better biosecurity and more effective vaccination should be implemented in backyard farms, in addition to biosecurity management in LPMs. PMID:27309047

  10. Detection of avian H7N9 influenza A viruses at the Yangtze Delta Region of China during early H7N9 outbreaks

    PubMed Central

    Li, Yin; Huang, Xin-mei; Zhao, Dong-min; Liu, Yu-zhuo; He, Kong-wang; Liu, Yao-xing; Chen, Chang-hai; Long, Li-Ping; Xu, Yifei; Xie, Xing-xing; Han, Kai-kai; Liu, Xiao-yan; Yang, Jing; Zhang, You-Fa; Fan, Feng; Webby, Richard; Wan, Xiu-Feng

    2016-01-01

    SUMMARY Since the first H7N9 human case in Shanghai, February 19, 2013, the emerging avian-origin H7N9 influenza A virus has become an epizootic virus in China, posing a potential pandemic threat to public health. From April 2 to April 28, 2013, 422 oral-pharyngeal and cloacal swabs were collected from birds and environmental surfaces at five live poultry markets (LPMs) and 13 backyard poultry farms (BPFs) across three cities, Wuxi, Suzhou, and Nanjing, in the Yangtze Delta Region. A total of 22 isolates were recovered, and 6 were subtyped as H7N9, 9 as H9N2, 4 as H7N9/H9N2, and 3 un-subtyped influenza A viruses. Genomic sequences showed that the HA and NA genes of the H7N9 viruses were similar to those of the H7N9 human isolates as well as other avian origin H7N9 isolates in the region but the PB1, PA, NP, and MP genes of the sequenced viruses were, however, more diverse. Among the four H7N9/H9N2 mixed infections, three were from LPM whereas the other one from the ducks at one BPF, which were H7N9 negative in serological analyses. A survey of the bird trading records of the LPMs and BPFs indicates that trading was a likely route for virus transmission across these regions. Our results suggested that a better biosecurity and more effective vaccination should be implemented in backyard farms besides biosecurity management in LPMs. PMID:27309047

  11. THE MOLECULAR BIOLOGY OF AVIAN INFLUENZA VIRUS IN SHORT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is an important pathogen of poultry as it can cause severe economic losses through disease, including respiratory signs and mortality, and effects on trade. Avian influenza virus is classified as type A influenza, which is a member of the orthomyxoviridae family. Charact...

  12. Development of an immunochromatographic strip for rapid detection of H9 subtype avian influenza viruses.

    PubMed

    Peng, Fuhu; Wang, Zheng; Zhang, Shuhui; Wu, Renwei; Hu, Sishun; Li, Zili; Wang, Xiliang; Bi, Dingren

    2008-03-01

    An immunochromatographic strip was developed for the detection of the H9 subtype of avian influenza viruses (H9AIVs) in poultry, using two monoclonal antibodies (MAb), 4C4 for H9AIV hemagglutinin (HA) and 4D4 for nucleoprotein. The 4C4 MAb was labeled with colloidal gold as the detection reagent, and the 4D4 MAb was blotted on the test line while a goat anti-mouse antibody was used on the control line of the nitrocellulose membrane. In comparison with the HA and HA inhibition (HI) tests, the strip was specific for the detection of H9AIV, with a sensitivity at 0.25 HA units within 10 min. Storage of the strips at room temperature for 6 months or at 4 degrees C for 12 months did not change their sensitivity and specificity. Evaluation of the strip with experimental tracheal and cloacal swab samples collected from H9N2-infected chickens revealed that the strip detected the H9N2 viruses on day 3 postinoculation, earlier than the appearance of clinical symptoms. Application of the strip for the analysis of 157 tracheal or cloacal samples from potentially infected chickens on five poultry farms showed that four farms had chickens that were infected with H9AIV. Further characterization of 10 positive and 30 negative randomly selected samples showed that no single sample was false positive or negative, as determined by the standard virus isolation and HI assays. Therefore, the immunochromatographic strip for the detection of H9AIVs has high specificity, sensitivity, and stability. This finding, together with the advantages of rapid detection and easy operation and without the requirement for special skills and equipment, makes the strip suitable for onsite detection and the differentiation of H9AIVs from other viruses in poultry. PMID:18199737

  13. Development of an Immunochromatographic Strip for Rapid Detection of H9 Subtype Avian Influenza Viruses▿

    PubMed Central

    Peng, Fuhu; Wang, Zheng; Zhang, Shuhui; Wu, Renwei; Hu, Sishun; Li, Zili; Wang, Xiliang; Bi, Dingren

    2008-01-01

    An immunochromatographic strip was developed for the detection of the H9 subtype of avian influenza viruses (H9AIVs) in poultry, using two monoclonal antibodies (MAb), 4C4 for H9AIV hemagglutinin (HA) and 4D4 for nucleoprotein. The 4C4 MAb was labeled with colloidal gold as the detection reagent, and the 4D4 MAb was blotted on the test line while a goat anti-mouse antibody was used on the control line of the nitrocellulose membrane. In comparison with the HA and HA inhibition (HI) tests, the strip was specific for the detection of H9AIV, with a sensitivity at 0.25 HA units within 10 min. Storage of the strips at room temperature for 6 months or at 4°C for 12 months did not change their sensitivity and specificity. Evaluation of the strip with experimental tracheal and cloacal swab samples collected from H9N2-infected chickens revealed that the strip detected the H9N2 viruses on day 3 postinoculation, earlier than the appearance of clinical symptoms. Application of the strip for the analysis of 157 tracheal or cloacal samples from potentially infected chickens on five poultry farms showed that four farms had chickens that were infected with H9AIV. Further characterization of 10 positive and 30 negative randomly selected samples showed that no single sample was false positive or negative, as determined by the standard virus isolation and HI assays. Therefore, the immunochromatographic strip for the detection of H9AIVs has high specificity, sensitivity, and stability. This finding, together with the advantages of rapid detection and easy operation and without the requirement for special skills and equipment, makes the strip suitable for onsite detection and the differentiation of H9AIVs from other viruses in poultry. PMID:18199737

  14. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    USGS Publications Warehouse

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  15. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail.

    PubMed

    Obadan, Adebimpe O; Kimble, Brian J; Rajao, Daniela; Lager, Kelly; Santos, Jefferson J S; Vincent, Amy; Perez, Daniel R

    2015-09-01

    Influenza A virus is a major pathogen of birds, swine and humans. Strains can jump between species in a process often requiring mutations and reassortment, resulting in outbreaks and, potentially, pandemics. H9N2 avian influenza is predominant in poultry across Asia and occasionally infects humans and swine. Pandemic H1N1 (H1N1pdm) is endemic in humans and swine and has a history of reassortment in pigs. Previous studies have shown the compatibility of H9N2 and H1N1pdm for reassortment in ferrets, a model for human infection and transmission. Here, the effects of ferret adaptation of H9 surface gene segments on the infectivity and transmission in at-risk natural hosts, specifically swine and quail, were analysed. Reassortant H9N1 and H9N2 viruses, carrying seven or six gene segments from H1N1pdm, showed infectivity and transmissibility in swine, unlike the wholly avian H9N2 virus with ferret-adapted surface genes. In quail, only the reassortant H9N2 with the six internal gene segments from the H1N1pdm strain was able to infect and transmit, although less efficiently than the wholly avian H9N2 virus with ferret-adapted surface genes. These results highlight that ferret-adapted mutations on the haemagglutinin of H9 subtype virus do not restrict the ability of the virus to infect swine and quail, and that the ability to transmit in these species depends on the context of the whole virus. As such, this study emphasizes the threat that H9N2 reassortant viruses pose to humans and agricultural species and the importance of the genetic constellation of the virus to its ability to replicate and transmit in natural hosts of influenza. PMID:25986634

  16. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail

    PubMed Central

    Obadan, Adebimpe O.; Kimble, Brian J.; Rajao, Daniela; Lager, Kelly; Santos, Jefferson J. S.; Vincent, Amy

    2015-01-01

    Influenza A virus is a major pathogen of birds, swine and humans. Strains can jump between species in a process often requiring mutations and reassortment, resulting in outbreaks and, potentially, pandemics. H9N2 avian influenza is predominant in poultry across Asia and occasionally infects humans and swine. Pandemic H1N1 (H1N1pdm) is endemic in humans and swine and has a history of reassortment in pigs. Previous studies have shown the compatibility of H9N2 and H1N1pdm for reassortment in ferrets, a model for human infection and transmission. Here, the effects of ferret adaptation of H9 surface gene segments on the infectivity and transmission in at-risk natural hosts, specifically swine and quail, were analysed. Reassortant H9N1 and H9N2 viruses, carrying seven or six gene segments from H1N1pdm, showed infectivity and transmissibility in swine, unlike the wholly avian H9N2 virus with ferret-adapted surface genes. In quail, only the reassortant H9N2 with the six internal gene segments from the H1N1pdm strain was able to infect and transmit, although less efficiently than the wholly avian H9N2 virus with ferret-adapted surface genes. These results highlight that ferret-adapted mutations on the haemagglutinin of H9 subtype virus do not restrict the ability of the virus to infect swine and quail, and that the ability to transmit in these species depends on the context of the whole virus. As such, this study emphasizes the threat that H9N2 reassortant viruses pose to humans and agricultural species and the importance of the genetic constellation of the virus to its ability to replicate and transmit in natural hosts of influenza. PMID:25986634

  17. Avian influenza: Current world situation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The human pandemic H1N1 (pH1N1) virus had its origin with animal influenza viruses, likely through a reassortment event between a North American swine influenza virus and another unidentified virus. The first turkey flock to be diagnosed with pH1N1 occurred in Chile, in August 2009. The flock suff...

  18. Avian influenza virus and free-ranging wild birds

    USGS Publications Warehouse

    Dierauf, Leslie A.; Karesh, W.B.; Ip, Hon S.; Gilardi, K.V.; Fischer, John R.

    2006-01-01

    Recent media and news reports and other information implicate wild birds in the spread of highly pathogenic avian influenza in Asia and Eastern Europe. Although there is little information concerning highly pathogenic avian influenza viruses in wild birds, scientists have amassed a large amount of data on low-pathogenicity avian influenza viruses during decades of research with wild birds. This knowledge can provide sound guidance to veterinarians, public health professionals, the general public, government agencies, and other entities with concerns about avian influenza.

  19. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Feeroz, Mohammed M; Rabiul Alam, SM; Kamrul Hasan, M; Akhtar, Sharmin; Jones-Engel, Lisa; Walker, David; McClenaghan, Laura; Rubrum, Adam; Franks, John; Seiler, Patrick; Jeevan, Trushar; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage. PMID:26038508

  20. Avian Influenza Virus and DIVA Strategies.

    PubMed

    Hasan, Noor Haliza; Ignjatovic, Jagoda; Peaston, Anne; Hemmatzadeh, Farhid

    2016-05-01

    Vaccination is becoming a more acceptable option in the effort to eradicate avian influenza viruses (AIV) from commercial poultry, especially in countries where AIV is endemic. The main concern surrounding this option has been the inability of the conventional serological tests to differentiate antibodies produced due to vaccination from antibodies produced in response to virus infection. In attempts to address this issue, at least six strategies have been formulated, aiming to differentiate infected from vaccinated animals (DIVA), namely (i) sentinel birds, (ii) subunit vaccine, (iii) heterologous neuraminidase (NA), (iv) nonstructural 1 (NS1) protein, (v) matrix 2 ectodomain (M2e) protein, and (vi) haemagglutinin subunit 2 (HA2) glycoprotein. This short review briefly discusses the strengths and limitations of these DIVA strategies, together with the feasibility and practicality of the options as a part of the surveillance program directed toward the eventual eradication of AIV from poultry in countries where highly pathogenic avian influenza is endemic. PMID:26900835

  1. Origin of the European avian-like swine influenza viruses.

    PubMed

    Krumbholz, Andi; Lange, Jeannette; Sauerbrei, Andreas; Groth, Marco; Platzer, Matthias; Kanrai, Pumaree; Pleschka, Stephan; Scholtissek, Christoph; Büttner, Mathias; Dürrwald, Ralf; Zell, Roland

    2014-11-01

    The avian-like swine influenza viruses emerged in 1979 in Belgium and Germany. Thereafter, they spread through many European swine-producing countries, replaced the circulating classical swine H1N1 influenza viruses, and became endemic. Serological and subsequent molecular data indicated an avian source, but details remained obscure due to a lack of relevant avian influenza virus sequence data. Here, the origin of the European avian-like swine influenza viruses was analysed using a collection of 16 European swine H1N1 influenza viruses sampled in 1979-1981 in Germany, the Netherlands, Belgium, Italy and France, as well as several contemporaneous avian influenza viruses of various serotypes. The phylogenetic trees suggested a triple reassortant with a unique genotype constellation. Time-resolved maximum clade credibility trees indicated times to the most recent common ancestors of 34-46 years (before 2008) depending on the RNA segment and the method of tree inference. PMID:25073465

  2. Evaluating the cell mediated immune response of avian species to avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The measurement of avian cellular immunity is critical to understanding the role and regulation of avian lymphocytes following avian influenza virus infection. Although the ability to measure avian T cell responses has steadily increased over the last few years, few studies have examined the role o...

  3. Diversity and evolution of avian influenza viruses in live poultry markets, free-range poultry and wild wetland birds in China.

    PubMed

    Chen, Liang-Jun; Lin, Xian-Dan; Guo, Wen-Ping; Tian, Jun-Hua; Wang, Wen; Ying, Xu-Hua; Wang, Miao-Ruo; Yu, Bin; Yang, Zhan-Qiu; Shi, Mang; Holmes, Edward C; Zhang, Yong-Zhen

    2016-04-01

    The wide circulation of novel avian influenza viruses (AIVs) highlights the risk of pandemic influenza emergence in China. To investigate the prevalence and genetic diversity of AIVs in different ecological contexts, we surveyed AIVs in live poultry markets (LPMs), free-range poultry and the wetland habitats of wild birds in Zhejiang and Hubei provinces. Notably, LPMs contained the highest frequency of AIV infection, and the greatest number of subtypes (n = 9) and subtype co-infections (n = 14), as well as frequent reassortment, suggesting that they play an active role in fuelling AIV transmission. AIV-positive samples were also identified in wild birds in both provinces and free-range poultry in one sampling site close to a wetland region in Hubei. H9N2, H7N9 and H5N1 were the most commonly sampled subtypes in the LPMs from Zhejiang, whilst H5N6 and H9N2 were the dominant subtypes in the LPMs from Hubei. Phylogenetic analyses of the whole-genome sequences of 43 AIVs revealed that three reassortant H5 subtypes were circulating in LMPs in both geographical regions. Notably, the viruses sampled from the wetland regions and free-range poultry contained complex reassortants, for which the origins of some segments were unclear. Overall, our study highlights the extent of AIV genetic diversity in two highly populated parts of central and south-eastern China, particularly in LPMs, and emphasizes the need for continual surveillance. PMID:26758561

  4. The Detection of a Low Pathogenicity Avian Influenza Virus Subtype H9 Infection in a Turkey Breeder Flock in the United Kingdom.

    PubMed

    Reid, Scott M; Banks, Jill; Ceeraz, Vanessa; Seekings, Amanda; Howard, Wendy A; Puranik, Anita; Collins, Susan; Manvell, Ruth; Irvine, Richard M; Brown, Ian H

    2016-05-01

    In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey breeder farm in Eastern England comprising 4966 birds. Point-of-lay turkey breeding birds had been moved from a rearing site and within 5 days had shown rapid onset of clinical signs of dullness, coughing, and anorexia. Three houses were involved, two contained a total of 4727 turkey hens, and the third housed 239 male turkeys. Around 50% of the hens were affected, whereas the male turkeys demonstrated milder clinical signs. Bird morbidity rose from 10% to 90%, with an increase in mortality in both houses of turkey hens to 17 dead birds in one house and 27 birds in the second house by day 6. The birds were treated with an antibiotic but were not responsive. Postmortem investigation revealed air sacculitis but no infraorbital sinus swellings or sinusitis. Standard samples were collected, and influenza A was detected. H9 virus infection was confirmed in all three houses by detection and subtyping of hemagglutinating agents in embryonated specific-pathogen-free fowls' eggs, which were shown to be viruses of H9N2 subtype using neuraminidase inhibition tests and a suite of real-time reverse transcription PCR assays. LPAI virus pathotype was suggested by cleavage site sequencing, and an intravenous pathogenicity index of 0.00 confirmed that the virus was of low pathogenicity. Therefore, no official disease control measures were required, and despite the high morbidity, birds recovered and were kept in production. Neuraminidase sequence analysis revealed a deletion of 78 nucleotides in the stalk region, suggesting an adaptation of the virus to poultry. Hemagglutinin gene sequences of two of the isolates clustered with a group of H9 viruses containing other contemporary European H9 strains in the Y439/Korean-like group. The closest matches to the two isolates were A/turkey/Netherlands/11015452/11 (H9N2; 97.9-98% nucleotide identity) and A/mallard/Finland/Li13384/10 (H9N2; 97

  5. Pathogenesis and pathobiology of avian influenza virus infection in birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian Influenza (AI) viruses vary in their ability to produce infection, disease and death in different bird species. Based on the pathobiological features in chickens, AI viruses are categorized as, low (LP) and high pathogenicity (HP). Typically, LPAI (low pathogenicity avian influenza) viruses ...

  6. Sequencing of avian influenza virus genomes following random amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian Influenza (AI) is a significant disease of birds and a threat to humans. Recently, as a result of the emergence of Asian H5N1 viruses capable of zoonotic spread, wild and domestic bird surveillance for Avian Influenza viruses (AIV) has increased worldwide, requiring the development of fast a...

  7. Avian influenza in Indonesia: Observations of disease detection in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza, subtype H5N1, also known as highly pathogenic notifiable avian influenza (HPNAI), has spread throughout Indonesia since 2003. As of June 2007 there have been a total of 100 documented human cases in Indonesia, 80 of which have been fatal. Although efforts have be...

  8. Experimental vaccinations for avian influenza virus including DIVA approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a viral disease of poultry that remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Strategies to control avian influenza (AI) virus are developed to prevent, manage or eradicate the virus from the country, re...

  9. Practical aspects of vaccination of poultry against avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic (HP) AIV has become endemic in several regions of the world. Vaccination f...

  10. Different cation-protonation patterns in mol­ecular salts of unsymmetrical dimethyhydrazine: C2H9N2·Br and C2H9N2·H2PO3

    PubMed Central

    Katinaitė, Judita; Harrison, William T. A.

    2016-01-01

    We describe the syntheses and crystal structures of two mol­ecular salts containing the 1,1-di­methyl­hydrazinium cation, namely 1,1-di­methyl­hydrazin-1-ium bromide, C2H9N2 +·Br−, (I), and 2,2-di­methyl­hydrazin-1-ium di­hydrogen phosphite, C2H9N2 +·H2PO3 −, (II). In (I), the cation is protonated at the methyl­ated N atom and N—H⋯Br hydrogen bonds generate [010] chains in the crystal. In (II), the cation is protonated at the terminal N atom and cation-to-anion N—H⋯O and anion-to-anion O—H⋯O hydrogen bonds generate (001) sheets. PMID:27536415

  11. Different cation-protonation patterns in mol-ecular salts of unsymmetrical dimethyhydrazine: C2H9N2·Br and C2H9N2·H2PO3.

    PubMed

    Katinaitė, Judita; Harrison, William T A

    2016-08-01

    We describe the syntheses and crystal structures of two mol-ecular salts containing the 1,1-di-methyl-hydrazinium cation, namely 1,1-di-methyl-hydrazin-1-ium bromide, C2H9N2 (+)·Br(-), (I), and 2,2-di-methyl-hydrazin-1-ium di-hydrogen phosphite, C2H9N2 (+)·H2PO3 (-), (II). In (I), the cation is protonated at the methyl-ated N atom and N-H⋯Br hydrogen bonds generate [010] chains in the crystal. In (II), the cation is protonated at the terminal N atom and cation-to-anion N-H⋯O and anion-to-anion O-H⋯O hydrogen bonds generate (001) sheets. PMID:27536415

  12. New USDA licensed avian influenza vaccine (rHVT-AI) for protection against H5 avian influenza and usage discussion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, a new avian influenza vaccine was licensed by USDA for use in the United States for protection of commercial poultry. The vaccine is a recombinant herpes virus of turkeys expressing the hemagglutinin gene of an H5 subtype avian influenza virus belonging to the 2.2 clade of the H5N1 highly ...

  13. Complete Coding Sequences of One H9 and Three H7 Low-Pathogenic Influenza Viruses Circulating in Wild Birds in Belgium, 2009 to 2012

    PubMed Central

    Rosseel, Toon; Marché, Sylvie; Steensels, Mieke; Vangeluwe, Didier; Linden, Annick; van den Berg, Thierry; Lambrecht, Bénédicte

    2016-01-01

    The complete coding sequences of four avian influenza A viruses (two H7N7, one H7N1, and one H9N2) circulating in wild waterfowl in Belgium from 2009 to 2012 were determined using Illumina sequencing. All viral genome segments represent viruses circulating in the Eurasian wild bird population. PMID:27284153

  14. Complete Coding Sequences of One H9 and Three H7 Low-Pathogenic Influenza Viruses Circulating in Wild Birds in Belgium, 2009 to 2012.

    PubMed

    Van Borm, Steven; Rosseel, Toon; Marché, Sylvie; Steensels, Mieke; Vangeluwe, Didier; Linden, Annick; van den Berg, Thierry; Lambrecht, Bénédicte

    2016-01-01

    The complete coding sequences of four avian influenza A viruses (two H7N7, one H7N1, and one H9N2) circulating in wild waterfowl in Belgium from 2009 to 2012 were determined using Illumina sequencing. All viral genome segments represent viruses circulating in the Eurasian wild bird population. PMID:27284153

  15. USGS highly pathogenic avian influenza research strategy

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-01-01

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  16. Ecology of avian influenza virus in birds.

    PubMed

    Causey, Douglas; Edwards, Scott V

    2008-02-15

    Avian influenza A virus (an orthomyxovirus) is a zoonotic pathogen with a natural reservoir entirely in birds. The influenza virus genome is an 8-segment single-stranded RNA with high potential for in situ recombination. Two segments code for the hemagglutinin (H) and neuraminidase (N) antigens used for host-cell entry. At present, 16 H and 9 N subtypes are known, for a total of 144 possible different influenza subtypes, each with potentially different host susceptibility. With >10,000 species of birds found in nearly every terrestrial and aquatic habitat, there are few places on earth where birds cannot be found. The avian immune system differs from that of humans in several important features, including asynchronous B and T lymphocyte systems and a polymorphic multigene immune complex, but little is known about the immunogenetics of pathogenic response. Postbreeding dispersal and migration and a naturally high degree of environmental vagility mean that wild birds have the potential to be vectors that transmit highly pathogenic variants great distances from the original sources of infection. PMID:18269325

  17. Little Evidence of Avian or Equine Influenza Virus Infection among a Cohort of Mongolian Adults with Animal Exposures, 2010–2011

    PubMed Central

    Khurelbaatar, Nyamdavaa; Krueger, Whitney S.; Heil, Gary L.; Darmaa, Badarchiin; Ulziimaa, Daramragchaa; Tserennorov, Damdindorj; Baterdene, Ariungerel; Anderson, Benjamin D.; Gray, Gregory C.

    2014-01-01

    Avian (AIV) and equine influenza virus (EIV) have been repeatedly shown to circulate among Mongolia’s migrating birds or domestic horses. In 2009, 439 Mongolian adults, many with occupational exposure to animals, were enrolled in a prospective cohort study of zoonotic influenza transmission. Sera were drawn upon enrollment and again at 12 and 24 months. Participants were contacted monthly for 24 months and queried regarding episodes of acute influenza-like illnesses (ILI). Cohort members confirmed to have acute influenza A infections, permitted respiratory swab collections which were studied with rRT-PCR for influenza A. Serologic assays were performed against equine, avian, and human influenza viruses. Over the 2 yrs of follow-up, 100 ILI investigations in the cohort were conducted. Thirty-six ILI cases (36%) were identified as influenza A infections by rRT-PCR; none yielded evidence for AIV or EIV. Serological examination of 12 mo and 24 mo annual sera revealed 37 participants had detectable antibody titers (≥1∶10) against studied viruses during the course of study follow-up: 21 against A/Equine/Mongolia/01/2008(H3N8); 4 against an avian A/Teal/Hong Kong/w3129(H6N1), 11 against an avian-like A/Hong Kong/1073/1999(H9N2), and 1 against an avian A/Migrating duck/Hong Kong/MPD268/2007(H10N4) virus. However, all such titers were <1∶80 and none were statistically associated with avian or horse exposures. A number of subjects had evidence of seroconversion to zoonotic viruses, but the 4-fold titer changes were again not associated with avian or horse exposures. As elevated antibodies against seasonal influenza viruses were high during the study period, it seems likely that cross-reacting antibodies against seasonal human influenza viruses were a cause of the low-level seroreactivity against AIV or EIV. Despite the presence of AIV and EIV circulating among wild birds and horses in Mongolia, there was little evidence of AIV or EIV infection in this prospective

  18. Isolation and genetic characterization of novel reassortant H6N6 subtype avian influenza viruses isolated from chickens in eastern China.

    PubMed

    Wu, Haibo; Lu, Rufeng; Peng, Xiuming; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Lu, Xiangyun; Xie, Tiansheng; Yao, Hangping; Wu, Nanping

    2016-07-01

    H6 subtype avian influenza viruses (AIVs) possess the ability to cross the species barrier to infect mammals and pose a threat to human health. From June 2014 to July 2015, 12 H6N6 AIVs were isolated from chickens in live-poultry markets in Zhejiang Province, Eastern China. Phylogenetic analysis showed that these isolates received their genes from H6 and H9N2 subtype AIVs of poultry in China. These novel reassortant viruses showed moderate pathogenicity in mice and were able to replicate in mice without prior adaptation. Considering that novel reassorted H6N6 viruses were isolated from chickens in this study, it is possible that these chickens play an important role in the generation of novel reassorted H6N6 AIVs, and these results emphasize the need for continued surveillance of the H6N6 AIVs circulating in poultry. PMID:27101069

  19. Evidence of previous avian influenza infection among US turkey workers.

    PubMed

    Kayali, G; Ortiz, E J; Chorazy, M L; Gray, G C

    2010-06-01

    The threat of an influenza pandemic is looming, with new cases of sporadic avian influenza infections in man frequently reported. Exposure to diseased poultry is a leading risk factor for these infections. In this study, we used logistic regression to investigate serological evidence of previous infection with avian influenza subtypes H4, H5, H6, H7, H8, H9, H10, and H11 among 95 adults occupationally exposed to turkeys in the US Midwest and 82 unexposed controls. Our results indicate that farmers practising backyard, organic or free-ranging turkey production methods are at an increased risk of infection with avian influenza. Among these farmers, the adjusted odds ratios (ORs) for elevated microneutralization assay titres against avian H4, H5, H6, H9, and H10 influenza strains ranged between 3.9 (95% CI 1.2-12.8) and 15.3 (95% CI 2.0-115.2) when compared to non-exposed controls. The measured ORs were adjusted for antibody titres against human influenza viruses and other exposure variables. These data suggest that sometime in their lives, the workers had been exposed to low pathogenicity avian influenza viruses. These findings support calls for inclusion of agricultural workers in priority groups in pandemic influenza preparedness efforts. These data further support increasing surveillance and other preparedness efforts to include not only confinement poultry facilities, but more importantly, also small scale farms. PMID:19486492

  20. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015

    PubMed Central

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F.; Shi, Weifeng; Lei, Fumin

    2015-01-01

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health. PMID:26259704

  1. Rapid diagnostics for avian influenza -- Advances in testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of tools are available for the diagnosis of avian influenza virus. They can be generally divided into the serologic diagnostic tests and direct virus detection tests. The serologic tests are important primarily for active surveillance to assure our poultry flocks are free of avian influe...

  2. Ambient Influenza and Avian Influenza Virus during Dust Storm Days and Background Days

    PubMed Central

    Chen, Pei-Shih; Tsai, Feng Ta; Lin, Chien Kun; Yang, Chun-Yuh; Chan, Chang-Chuan; Young, Chea-Yuan; Lee, Chien-Hung

    2010-01-01

    Background The spread of influenza and highly pathogenic avian influenza (H5N1) presents a significant threat to human health. Avian influenza outbreaks in downwind areas of Asian dust storms (ADS) suggest that viruses might be transported by dust storms. Objectives We developed a technique to measure ambient influenza and avian influenza viruses. We then used this technique to measure concentrations of these viruses on ADS days and background days, and to assess the relationships between ambient influenza and avian influenza viruses, and air pollutants. Methods A high-volume air sampler was used in parallel with a filter cassette to evaluate spiked samples and unspiked samples. Then, air samples were monitored during ADS seasons using a filter cassette coupled with a real-time quantitative polymerase chain reaction (qPCR) assay. Air samples were monitored during ADS season (1 January to 31 May 2006). Results We successfully quantified ambient influenza virus using the filtration/real-time qPCR method during ADS days and background days. To our knowledge, this is the first report describing the concentration of influenza virus in ambient air. In both the spiked and unspiked samples, the concentration of influenza virus sampled using the filter cassette was higher than that using the high-volume sampler. The concentration of ambient influenza A virus was significantly higher during the ADS days than during the background days. Conclusions Our data imply the possibility of long-range transport of influenza virus. PMID:20435545

  3. Avian Influenza spread and transmission dynamics

    USGS Publications Warehouse

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John Y.; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  4. Avian influenza: Public health and food safety concerns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian Influenza (AI) is an asymptomatic infection or disease caused by Influenza virus A. AI viruses are species specific and rarely crosses the species barrier. However subtypes H5, H7 and H9 have caused sporadic infections in humans mostly as a result of direct contact with infected birds. H5N1 hi...

  5. A New Generation of Modified Live-Attenuated Avian Influenza Viruses Using a Two-Strategy Combination as Potential Vaccine Candidates▿

    PubMed Central

    Song, Haichen; Nieto, Gloria Ramirez; Perez, Daniel R.

    2007-01-01

    In light of the recurrent outbreaks of low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI), there is a pressing need for the development of vaccines that allow rapid mass vaccination. In this study, we introduced by reverse genetics temperature-sensitive mutations in the PB1 and PB2 genes of an avian influenza virus, A/Guinea Fowl/Hong Kong/WF10/99 (H9N2) (WF10). Further genetic modifications were introduced into the PB1 gene to enhance the attenuated (att) phenotype of the virus in vivo. Using the att WF10 as a backbone, we substituted neuraminidase (NA) for hemagglutinin (HA) for vaccine purposes. In chickens, a vaccination scheme consisting of a single dose of an att H7N2 vaccine virus at 2 weeks of age and subsequent challenge with the wild-type H7N2 LPAI virus resulted in complete protection. We further extended our vaccination strategy against the HPAI H5N1. In this case, we reconstituted an att H5N1 vaccine virus, whose HA and NA genes were derived from an Asian H5N1 virus. A single-dose immunization in ovo with the att H5N1 vaccine virus in 18-day-old chicken embryos resulted in more than 60% protection for 4-week-old chickens and 100% protection for 9- to 12-week-old chickens. Boosting at 2 weeks posthatching provided 100% protection against challenge with the HPAI H5N1 virus for chickens as young as 4 weeks old, with undetectable virus shedding postchallenge. Our results highlight the potential of live att avian influenza vaccines for mass vaccination in poultry. PMID:17596317

  6. Surveillance of Influenza A Virus and Its Subtypes in Migratory Wild Birds of Nepal

    PubMed Central

    Sharma, Ajay; Bhatta, Tarka; Adhikari, Pratikshya; Sherchan, Adarsh Man; Shrestha, Bishwo; Bista, Manisha; Rajbhandari, Rajesh; Oberoi, Mohinder; Bisht, Khadak; Hero, Jean-Marc; Dissanayake, Ravi; Dhakal, Maheshwar; Hughes, Jane; Debnath, Nitish

    2015-01-01

    Nepal boarders India and China and all three countries lie within the Central Asian Flyway for migratory birds. Novel influenza A H7N9 caused human fatalities in China in 2013. Subclinical infections of influenza A H7N9 in birds and the potential for virus dispersal by migratory birds prompted this study to assess avian H7N9 viral intrusion into Nepal. Surveillance of influenza A virus in migratory birds was implemented in early 2014 with assistance from the Food and Agricultural Organization (FAO). Of 1811 environmental fecal samples collected from seven wetland migratory bird roosting areas, influenza A H9N2 was found in one sample from a ruddy shelduck in Koshi Tappu Wildlife Reserve located in southern Nepal. Avian H7N9 and other highly pathogenic avian influenza viruses were not detected. This study provides baseline data on the status of avian influenza virus in migratory bird populations in Nepal. PMID:26176773

  7. Avian influenza: Myth or mass murder?

    PubMed Central

    Louie, Carol

    2005-01-01

    The purpose of the present article was to determine whether avian influenza (AI) is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat. Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A viruses reviewed were classified as pandemic because they met three key criteria: first, the viruses were highly pathogenic within the human population; second, the viruses were easily transmissible from person to person; and finally, the viruses were novel, such that a large proportion of the population was susceptible to infection. Information about the H5N1 subtype of AI has also been critically assessed. Evidence suggests that this AI subtype is both novel and highly pathogenic. The mortality rate from epidemics in Thailand in 2004 was as high as 66%. Clearly, this virus is aggressive. It causes a high death rate, proving that humans have a low immunity to the disease. To date, there has been little evidence to suggest that AI can spread among humans. There have been cases where the virus has transferred from birds to humans, in settings such as farms or open markets with live animal vending. If AI were to undergo a genetic reassortment that allowed itself to transmit easily from person to person, then a serious pandemic could ensue, resulting in high morbidity and mortality. Experts at the World Health Organization and the United States Centers for Disease Control and Prevention agree that AI has the potential to undergo an antigenic shift, thus triggering the next pandemic. PMID:18159544

  8. Global Dynamics of Avian Influenza Epidemic Models with Psychological Effect

    PubMed Central

    Liu, Sanhong; Pang, Liuyong; Ruan, Shigui

    2015-01-01

    Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza. PMID:25861378

  9. A Complete Molecular Diagnostic Procedure for Applications in Surveillance and Subtyping of Avian Influenza Virus

    PubMed Central

    Tseng, Chun-Hsien; Tsai, Hsiang-Jung; Chang, Chung-Ming

    2014-01-01

    Introduction. The following complete molecular diagnostic procedure we developed, based on real-time quantitative PCR and traditional PCR, is effective for avian influenza surveillance, virus subtyping, and viral genome sequencing. Method. This study provides a specific and sensitive step-by-step procedure for efficient avian influenza identification of 16 hemagglutinin and 9 neuraminidase avian influenza subtypes. Result and Conclusion. This diagnostic procedure may prove exceedingly useful for virological and ecological advancements in global avian influenza research. PMID:25057497

  10. Adenovirus as a carrier for the development of influenza virus-free avian influenza vaccines

    PubMed Central

    Tang, De-chu C; Zhang, Jianfeng; Toro, Haroldo; Shi, Zhongkai; Van Kampen, Kent R

    2009-01-01

    A long-sought goal during the battle against avian influenza is to develop a new generation of vaccines capable of mass immunizing humans as well as poultry (the major source of avian influenza for human infections) in a timely manner. Although administration of the currently licensed influenza vaccine is effective in eliciting protective immunity against seasonal influenza, this approach is associated with a number of insurmountable problems for preventing an avian influenza pandemic. Many of the hurdles may be eliminated by developing new avian influenza vaccines that do not require the propagation of an influenza virus during vaccine production. Replication-competent adenovirus-free adenovirus vectors hold promise as a carrier for influenza virus-free avian influenza vaccines owing to their safety profile and rapid manufacture using cultured suspension cells in a serum-free medium. Simple and efficient mass-immunization protocols, including nasal spray for people and automated in ovo vaccination for poultry, convey another advantage for this class of vaccines. In contrast to parenteral injection of adenovirus vector, the potency of adenovirus-vectored nasal vaccine is not appreciably interfered by pre-existing immunity to adenovirus. PMID:19348562

  11. Avian influenza viruses and avian paramyxoviruses in wintering and breeding waterfowl populations in North Carolina, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although wild ducks are recognized reservoirs for avian influenza (AIV) and avian paramyxoviruses (APMV), information related to the prevalence of these viruses in breeding and migratory duck populations on North American wintering grounds is limited. Wintering (n=2,889) and resident breeding (n=524...

  12. Susceptibility of avian species to north american H13 low pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  13. Comparative susceptibility of avian species to low pathogenic avian influenza viruses of the H13 subtype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  14. Intense circulation of A/H5N1 and other avian influenza viruses in Cambodian live-bird markets with serological evidence of sub-clinical human infections.

    PubMed

    Horm, Srey Viseth; Tarantola, Arnaud; Rith, Sareth; Ly, Sowath; Gambaretti, Juliette; Duong, Veasna; Y, Phalla; Sorn, San; Holl, Davun; Allal, Lotfi; Kalpravidh, Wantanee; Dussart, Philippe; Horwood, Paul F; Buchy, Philippe

    2016-01-01

    Surveillance for avian influenza viruses (AIVs) in poultry and environmental samples was conducted in four live-bird markets in Cambodia from January through November 2013. Through real-time RT-PCR testing, AIVs were detected in 45% of 1048 samples collected throughout the year. Detection rates ranged from 32% and 18% in duck and chicken swabs, respectively, to 75% in carcass wash water samples. Influenza A/H5N1 virus was detected in 79% of samples positive for influenza A virus and 35% of all samples collected. Sequence analysis of full-length haemagglutinin (HA) and neuraminidase (NA) genes from A/H5N1 viruses, and full-genome analysis of six representative isolates, revealed that the clade 1.1.2 reassortant virus associated with Cambodian human cases during 2013 was the only A/H5N1 virus detected during the year. However, multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of HA and NA genes revealed co-circulation of at least nine low pathogenic AIVs from HA1, HA2, HA3, HA4, HA6, HA7, HA9, HA10 and HA11 subtypes. Four repeated serological surveys were conducted throughout the year in a cohort of 125 poultry workers. Serological testing found an overall prevalence of 4.5% and 1.8% for antibodies to A/H5N1 and A/H9N2, respectively. Seroconversion rates of 3.7 and 0.9 cases per 1000 person-months participation were detected for A/H5N1 and A/H9N2, respectively. Peak AIV circulation was associated with the Lunar New Year festival. Knowledge of periods of increased circulation of avian influenza in markets should inform intervention measures such as market cleaning and closures to reduce risk of human infections and emergence of novel AIVs. PMID:27436362

  15. Evaluation of a competitive ELISA for antibody detection against avian influenza virus.

    PubMed

    Song, Dae Sub; Lee, Youn Jeong; Jeong, Ok Mi; Kim, Yong Joo; Park, Chan Hee; Yoo, Jung Eun; Jeon, Woo Jin; Kwon, Jun Hun; Ha, Gun Woo; Kang, Bo Kyu; Lee, Chul Seung; Kim, Hye Kwon; Jung, Byeong Yeal; Kim, Jae Hong; Oh, Jin Sik

    2009-12-01

    Active serologic surveillance is necessary to control the spread of the avian influenza virus (AIV). In this study, we evaluated a commercially-available cELISA in terms of its ability to detect AIV antibodies in the sera of 3,358 animals from twelve species. cELISA detected antibodies against reference H1- through H15-subtype AIV strains without cross reactivity. Furthermore, the cELISA was able to detect antibodies produced following a challenge of the AIV H9N2 subtype in chickens, or following vaccination of the AIV H9 or H5 subtypes in chickens, ducks and geese. Next, we tested the sensitivity and specificity of the cELISA with sera from twelve different animal species, and compared these results with those obtained by the hemagglutination-inhibition (HI) test, the "gold standard" in AIV sera surveillance, a second commercially-available cELISA (IZS ELISA), or the agar gel precipitation (AGP) test. Compared with the HI test, the sensitivities and specificities of cELISA were 95% and 96% in chicken, 86% and 88% in duck, 97% and 100% in turkey, 100% and 87% in goose, and 91% and 97% in swine, respectively. The sensitivities and specificities of the cELISA in this study were higher than those of IZS ELISA for the duck, turkey, goose, and grey partridge sera samples. The results of AGP test against duck and turkey sera also showed significant correlation with the results of cELISA (R-value >0.9). In terms of flock sensitivity, the cELISA correlated better with the HI test than with commercially-available indirect ELISAs, with 100% flock sensitivity. PMID:19934598

  16. First reported detection of a low pathogenicity avian influenza virus subtype H9 infection in domestic fowl in England.

    PubMed

    Parker, C D; Reid, S M; Ball, A; Cox, W J; Essen, S C; Hanna, A; Mahmood, S; Slomka, M J; Irvine, R M; Brown, I H

    2012-10-13

    In December 2010, infection with a H9N1 low pathogenicity avian influenza (LPAI) virus was detected in a broiler breeder flock in East Anglia. Disease suspicion was based on acute drops in egg production in two of four sheds on the premises, poor egg shell quality and evidence of diarrhoea. H9N1 LPAI virus infection was confirmed by real-time reverse transcription PCR. Sequencing revealed high nucleotide identity of 93.6 per cent and 97.9 per cent with contemporary North American H9 and Eurasian N1 genes, respectively. Attempted virus isolation in embryonated specific pathogen free (SPF) fowls' eggs was unsuccessful. Epidemiological investigations were conducted to identify the source of infection and any onward spread. These concluded that infection was restricted to the affected premises, and no contacts or movements of poultry, people or fomites could be attributed as the source of infection. However, the infection followed a period of extremely cold weather and snow which impacted on the biosecurity protocols on site, and also led to increased wild bird activity locally, including waterfowl and game birds around the farm buildings. Analysis of the N1 gene sequence suggested direct introduction from wild birds. Although H9 infection in poultry is not notifiable, H9N2 LPAI viruses have been associated with production and mortality episodes in poultry in many parts of Asia and the Middle East. In the present H9N1 outbreak, clinical signs were relatively mild in the poultry with no mortality, transient impact on egg production and no indication of zoonotic spread. However, this first reported detection of H9 LPAI virus in chickens in England was also the first H9 UK poultry case for 40 years, and vindicates the need for continued vigilance and surveillance of avian influenza viruses in poultry populations. PMID:22949546

  17. Immuno-PCR for one step detection of H5N1 avian influenza virus and Newcastle disease virus using magnetic gold particles as carriers.

    PubMed

    Deng, MingJun; Long, Ling; Xiao, XiZhi; Wu, ZhenXing; Zhang, FengJuan; Zhang, YanMing; Zheng, XiaoLong; Xin, XueQian; Wang, Qun; Wu, DongLai

    2011-06-15

    Detecting avian influenza virus (AIV) and Newcastle disease virus (NDV) at low concentrations from tracheal and cloacal swabs of avian influenza- and Newcastle disease-infected poultry was carried out using a highly sensitive immunological-polymerase chain reaction (immuno-PCR) method. Magnetic gold particles were pre-coated with a capture antibody, either a monoclonal anti-AIV/H5 or monoclonal anti-NDV/F and viruses serially diluted ten-fold from 10(2) to 10(-5)EID(50)/ml. A biotinylated detection antibody bound to the viral antigen was then linked via a streptavidin bridge to biotinylated reporter DNA. After extensive washing, reporter DNA was released by denaturation, transferred to PCR tubes, amplified, electrophoresed and visualized. An optimized immuno-PCR method was able to detect as little as 10(-4)EID(50)/ml AIV and NDV. To further evaluate the specificity and the clinical application of this IPCR assay for AIV H5N1 and NDV, the tracheal swab specimens, taken from chickens which were infected with H5N1/AIV, H9N2/AIV, H7N2/AIV, NDV, IBDV, IBV/H(120), were detected by IPCR. Our data demonstrated that this monoclonal antibody-based immuno-PCR method provides a platform capable of rapid screening of clinical samples for trace levels of AIV H5 and NDV in one step. PMID:21511345

  18. Swine influenza virus: zoonotic potential and vaccination strategies for the control of avian and swine influenzas.

    PubMed

    Thacker, Eileen; Janke, Bruce

    2008-02-15

    Influenza viruses are able to infect humans, swine, and avian species, and swine have long been considered a potential source of new influenza viruses that can infect humans. Swine have receptors to which both avian and mammalian influenza viruses bind, which increases the potential for viruses to exchange genetic sequences and produce new reassortant viruses in swine. A number of genetically diverse viruses are circulating in swine herds throughout the world and are a major cause of concern to the swine industry. Control of swine influenza is primarily through the vaccination of sows, to protect young pigs through maternally derived antibodies. However, influenza viruses continue to circulate in pigs after the decay of maternal antibodies, providing a continuing source of virus on a herd basis. Measures to control avian influenza in commercial poultry operations are dictated by the virulence of the virus. Detection of a highly pathogenic avian influenza (HPAI) virus results in immediate elimination of the flock. Low-pathogenic avian influenza viruses are controlled through vaccination, which is done primarily in turkey flocks. Maintenance of the current HPAI virus-free status of poultry in the United States is through constant surveillance of poultry flocks. Although current influenza vaccines for poultry and swine are inactivated and adjuvanted, ongoing research into the development of newer vaccines, such as DNA, live-virus, or vectored vaccines, is being done. Control of influenza virus infection in poultry and swine is critical to the reduction of potential cross-species adaptation and spread of influenza viruses, which will minimize the risk of animals being the source of the next pandemic. PMID:18269323

  19. Avian influenza: the political economy of disease control in Cambodia.

    PubMed

    Ear, Sophal

    2011-01-01

    Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations. PMID:22702421

  20. Avian influenza in Chile: a successful experience.

    PubMed

    Max, Vanessa; Herrera, José; Moreira, Rubén; Rojas, Hernán

    2007-03-01

    Avian influenza (AI) was diagnosed in May 2002 for the first time in Chile and South America. The epidemic was caused by the highly pathogenic AI (HPAI) virus subtype H7N3 that emerged from a low pathogenic virus. The index farm was a broiler breeder, located in San Antonio, V Region, which at the time was a densely populated poultry area. Stamping of 465,000 breeders, in 27 sheds, was immediately conducted. Surveillance activities detected a second outbreak, 1 wk later, at a turkey breeding farm from the same company. The second farm was located 4 km from the index case. Only 25% of the sheds were infected, and 18,500 turkeys were destroyed. In both outbreaks, surveillance zones and across-country control measures were established: prediagnosis quarantine, depopulation, intensive surveillance, movement control, and increased biosecurity. Other measures included cleaning, disinfection, and controlling the farms with sentinels to detect the potential presence of the virus. Zoning procedures were implemented to allow the international trade of poultry products from unaffected areas. Positive serologic results to H5N2 virus also were detected in other poultry farms, but there was no evidence of clinical signs or virus isolation. Epidemiological investigation and laboratory confirmation determined that positive serology was related to a contaminated imported batch of vaccine against inclusion body hepatitis. All actions taken allowed the control of the epidemic, and within 7 mo, Chile was free of AI. Epidemic and control measures that prevented further spread are described in this article, which illustrates the importance of a combination of control measures during and after an outbreak of AI. This study is a good example of how veterinary services need to respond if their country is affected by HPAI. PMID:17494584

  1. Digital diffraction detection of protein markers for avian influenza.

    PubMed

    Im, Hyungsoon; Park, Yong Il; Pathania, Divya; Castro, Cesar M; Weissleder, Ralph; Lee, Hakho

    2016-04-12

    Rapid pathogen testing is expected to play a critical role in infection control and in limiting epidemics. Smartphones equipped with state-of-the-art computing and imaging technologies have emerged as new point-of-use (POU) sensing platforms. We herein report a new assay format for fast, sensitive and portable detection of avian influenza-associated antibodies. PMID:26980325

  2. Impact of host genes on resistance to avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N1 high pathogenicity avian influenza (HPAI) virus has caused massive outbreaks of infection and disease in poultry, significant numbers of infections in wild aquatic birds and some infections in mammals and humans in Asia, Europe and Africa. The primary intervention strategy in poultry within de...

  3. Pathobiology of avian influenza virus infections in wild birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Individual avian Influenza (AI) viruses vary in their ability to produce infection, disease and death in different bird species. Based on the pathobiological features in chickens, AI viruses (AIV) are categorized as low pathogenicity (LPAI) or high pathogenicity (HPAI) viruses, and can be of any of...

  4. Rumor Surveillance and Avian Influenza H5N1

    PubMed Central

    Patel, Mahomed; Olowokure, Babatunde; Roces, Maria C.; Oshitani, Hitoshi

    2005-01-01

    We describe the enhanced rumor surveillance during the avian influenza H5N1 outbreak in 2004. The World Health Organization’s Western Pacific Regional Office identified 40 rumors; 9 were verified to be true. Rumor surveillance informed immediate public health action and prevented unnecessary and costly responses. PMID:15757567

  5. The changing ecology, epidemiology and pathobiology of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-five epizootics of high pathogenicity avian influenza (HPAI) have occurred in the world since 1959. The largest of these outbreaks has been the H5N1 HPAI which has caused problems in poultry and some wild birds in over 60 countries of Asia, Europe and Africa since beginning in 1996. The H5N1 ...

  6. Avian influenza: worldwide situation and effectiveness of current vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N2 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...

  7. Prevention and control of avian influenza in Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 15 years. For 2011-2012, 19 countries reported outbreaks of H5N1 in domestic poultry, wild birds or both. The majority of the outbr...

  8. Immunohistochemical staining of avian influenza viruses in tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunohistochemical methods are commonly used for studying the pathogenesis of avian influenza virus by allowing the identification of sites of replication of the virus in infected tissues and the correlation with the histopathological changes observed. In this chapter, the materials and methods fo...

  9. DETECTION OF AVIAN INFLUENZA VIRUS USING AN INTERFEROMETRIC BIOSENSOR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An optical interferometric waveguide immunoassay for direct and label-less detection of avian influenza virus is described. The assay response is based on index of refraction changes that occur upon binding of virus particles to antigen (hemagglutinin) specific antibodies on the waveguide surface. ...

  10. Practical aspects of surveillance for avian influenza in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overall approach to surveillance for avian influenza virus (AIV) in poultry will vary depending on the situation, resources, and goals of a given surveillance program. However, the optimal methods for sample collection, transport, and handling are universal. Many practical questions have been ...

  11. Review of rapid molecular diagnostic tools for avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular diagnostics tests are commonly used to diagnose avian influenza virus (AIV) because they are sensitive, can be performed rapidly, with high throughput, and at a moderate cost. Molecular diagnostic tests have recently proven themselves to be invaluable in controlling disease outbreaks arou...

  12. Recent worldwide outbreaks of avian influenza and methods for control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-five epizootics of high pathogenicity avian influenza (HPAI) have occurred in the world since 1959. The largest of these outbreaks has been the H5N1 HPAI which has caused problems in poultry and other birds in 55 countries of Asia, Europe and Africa since 1996. These viruses have also cause...

  13. Rapidly Expanding Range of Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions. PMID:26079209

  14. Highly pathogenic avian influenza virus among wild birds in Mongolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  15. Thermal inactivation of avian influenza virus in liquid egg products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty eight percent of the 200 million cases of shelled eggs produced per year in the U.S. are processed as liquid egg product. The U.S. also exports internationally a large amount of egg products. Although the U.S. is normally free of avian influenza, concern about contamination of egg product wit...

  16. Avian Influenza Vaccine Technologies and Laboratory Methods for Assessing Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines can be used in avian influenza (AI) control programs to prevent, manage or eradicate AI from poultry and other birds. The best protection is produced from the humoral response against the hemagglutinin (HA) protein and such protection is HA subtype specific. A variety of vaccines have been ...

  17. Highly Pathogenic Avian Influenza: Intersecting Humans, Animals, and the Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Eurasian-African H5N1 highly pathogenic avian influenza (HPAI) virus has caused an unprecedented epizootic affecting mainly poultry, but has crossed multiple species barriers to infect captive and wild birds, carnivorous mammals and humans. There is still great concern over the continued infecti...

  18. Movements of birds and avian influenza from Asia into Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian-origin avian influenza (AI) virus is spread in part by migratory birds. We describe the extensive overlap of Asian and American bird vectors in Alaska as the ‘Beringian Crucible’. Seven years of AI surveillance among waterfowl and shorebirds in this region (1998-2004; 8,255 samples) show remar...

  19. Avian Influenza vaccine technologies and laboratory methods for assessing protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines can be used in avian influenza (AI) control programs to prevent, manage or eradicate AI from poultry and other birds. The best protection is produced from the humoral response against the hemagglutinin (HA) protein and such protection is HA subtype specific. A variety of vaccines have been ...

  20. Avian Influenza Vaccination of Poultry and Passive Case Reporting, Egypt

    PubMed Central

    Grosbois, Vladimir; Jobre, Yilma; Saad, Ahmed; El Nabi, Amira Abd; Galal, Shereen; Kalifa, Mohamed; El Kader, Soheir Abd; Dauphin, Gwenaëlle; Roger, François; Lubroth, Juan; Peyre, Marisa

    2012-01-01

    We investigated the influence of a mass poultry vaccination campaign on passive surveillance of highly pathogenic avian influenza subtype (H5N1) outbreaks among poultry in Egypt. Passive reporting dropped during the campaign, although probability of infection remained unchanged. Future poultry vaccination campaigns should consider this negative impact on reporting for adapting surveillance strategies. PMID:23171740

  1. Canada geese and the epidemiology of avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canada geese (Branta canadensis) are numerous, highly visible, and widely distributed in both migratory and resident populations in North America; as a member of the Order Anseriformes, they are often suggested as a potential reservoir and source for avian influenza (AI) viruses. To further examine...

  2. Immunohistochemical staining of avian influenza virus in tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunohistochemical methods are commonly used for studying the pathogenesis of avian influenza (AI) virus by allowing the identification of sites of replication of the virus in infected tissues and the correlation with the histopathological changes observed. In this chapter, the materials and metho...

  3. The changing role of avian influenza on global health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses are a diverse group divided into 144 different subtypes based on different combinations of the 16 hemagglutinin and 9 neuraminidase subtypes, and two different pathotypes (low [LP] and high pathogenicity [HP]). LPAI viruses are maintained in wild birds, and must be adapt...

  4. Rapidly expanding range of highly pathogenic avian influenza viruses

    USGS Publications Warehouse

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  5. Avian influenza worldwide: current status and successful control tools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 15 years. For 2010-2011, 20 countries reported outbreaks of H5N1 in domestic poultry (n = 11), wild birds (n = 4) or both (n=5). Th...

  6. Rapidly expanding range of highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent introduction of highly pathogenic avian influenza virus (HPAIV) H5N8 into Europe and North America poses significant risks to poultry industries and wildlife populations and warrants continued and heightened vigilance. First discovered in South Korean poultry and wild birds in early 2014...

  7. Conducting influenza virus pathogenesis studies in avian species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian infection studies with influenza A are an important means of assessing host susceptibility, viral pathogenesis, host responses to infection, mechanisms of transmission and viral pathotype. Complex systems and natural settings may also be explored with carefully designed infection studies. In ...

  8. Innate resistance to avian influenza: Of MHC's and Mx proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is an economically important virus of poultry that has significant impact on global trade. Recently, increased attention to animal genomics has been applied to enhance innate resistance to infectious diseases in poultry. Two known contributors to innate resistance are the host m...

  9. Avian influenza virus infection dynamics in shorebird hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using serial cross-sectional data from 2000-2008 and generalized linear models, we examined temporal trends of springtime avian influenza virus (AIV) prevalence and antibody prevalence in four Charadriiformes species at the Delaware Bay migratory stopover site. Prevalence of AIV in Ruddy Turnstones ...

  10. Scientific basis for use of vaccination as a strategy to control avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines have been used to control a variety of piscian, avian, and mammalian diseases. Commercial usage of vaccines against avian influenza (AI) began in 1979, in Minnesota to control H4 and H6 low pathogenicity avian influenza (LPAI) which was causing economically significant disease in turkey br...

  11. Avian Influenza: a global threat needing a global solution

    PubMed Central

    Koh, GCH; Wong, TY; Cheong, SK; Koh, DSQ

    2008-01-01

    There have been three influenza pandemics since the 1900s, of which the 1919–1919 flu pandemic had the highest mortality rates. The influenza virus infects both humans and birds, and mutates using two mechanisms: antigenic drift and antigenic shift. Currently, the H5N1 avian flu virus is limited to outbreaks among poultry and persons in direct contact to infected poultry, but the mortality rate among infected humans is high. Avian influenza (AI) is endemic in Asia as a result of unregulated poultry rearing in rural areas. Such birds often live in close proximity to humans and this increases the chance of genetic re-assortment between avian and human influenza viruses which may produce a mutant strain that is easily transmitted between humans. Once this happens, a global pandemic is likely. Unlike SARS, a person with influenza infection is contagious before the onset of case-defining symptoms which limits the effectiveness of case isolation as a control strategy. Researchers have shown that carefully orchestrated of public health measures could potentially limit the spread of an AI pandemic if implemented soon after the first cases appear. To successfully contain and control an AI pandemic, both national and global strategies are needed. National strategies include source surveillance and control, adequate stockpiles of anti-viral agents, timely production of flu vaccines and healthcare system readiness. Global strategies such as early integrated response, curbing the disease outbreak at source, utilization of global resources, continuing research and open communication are also critical. PMID:19014538

  12. International standards for the control of avian influenza.

    PubMed

    Pearson, J E

    2003-01-01

    The Office International des Epizooties (OIE) has developed international standards to reduce the risk of the spread of high-pathogenicity avian influenza though international trade. These standards include providing a definition of high-pathogenicity avian influenza (HPAI), procedures for prompt reporting of HPAI outbreaks, requirements that must be met for a country or zone to be defined as free of HPAI, requirements that should be met to import live birds and avian products into a HPAI-free country or zone, and the general provisions that countries should meet to reduce the risk of spread of HPAI through trade. The goal of these standards is to facilitate trade while minimizing the risk of the introduction of HPAI. PMID:14575096

  13. Personal protective equipment and risk for avian influenza (H7N3).

    PubMed

    Morgan, Oliver; Kuhne, Mirjam; Nair, Pat; Verlander, Neville Q; Preece, Richard; McDougal, Marianne; Zambon, Maria; Reacher, Mark

    2009-01-01

    An outbreak of avian influenza (H7N3) among poultry resulted in laboratory-confirmed disease in 1 of 103 exposed persons. Incomplete use of personal protective equipment (PPE) was associated with conjunctivitis and influenza-like symptoms. Rigorous use of PPE by persons managing avian influenza outbreaks may reduce exposure to potentially hazardous infected poultry materials. PMID:19116052

  14. Personal Protective Equipment and Risk for Avian Influenza (H7N3)

    PubMed Central

    Kuhne, Mirjam; Nair, Pat; Verlander, Neville Q.; Preece, Richard; McDougal, Marianne; Zambon, Maria; Reacher, Mark

    2009-01-01

    An outbreak of avian influenza (H7N3) among poultry resulted in laboratory-confirmed disease in 1 of 103 exposed persons. Incomplete use of personal protective equipment (PPE) was associated with conjunctivitis and influenza-like symptoms. Rigorous use of PPE by persons managing avian influenza outbreaks may reduce exposure to potentially hazardous infected poultry materials. PMID:19116052

  15. Persistence of Highly Pathogenic Avian Influenza Viruses in Natural Ecosystems

    PubMed Central

    Feare, Chris J.; Renaud, François; Thomas, Frédéric; Gauthier-Clerc, Michel

    2010-01-01

    Understanding of ecologic factors favoring emergence and maintenance of highly pathogenic avian influenza (HPAI) viruses is limited. Although low pathogenic avian influenza viruses persist and evolve in wild populations, HPAI viruses evolve in domestic birds and cause economically serious epizootics that only occasionally infect wild populations. We propose that evolutionary ecology considerations can explain this apparent paradox. Host structure and transmission possibilities differ considerably between wild and domestic birds and are likely to be major determinants of virulence. Because viral fitness is highly dependent on host survival and dispersal in nature, virulent forms are unlikely to persist in wild populations if they kill hosts quickly or affect predation risk or migratory performance. Interhost transmission in water has evolved in low pathogenic influenza viruses in wild waterfowl populations. However, oropharyngeal shedding and transmission by aerosols appear more efficient for HPAI viruses among domestic birds. PMID:20587174

  16. Prevalence of avian respiratory viruses in broiler flocks in Egypt.

    PubMed

    Hassan, Kareem E; Shany, Salama A S; Ali, A; Dahshan, Al-Hussien M; El-Sawah, Azza A; El-Kady, Magdy F

    2016-06-01

    In this study, respiratory viral pathogens were screened using real-time RT-PCR in 86 broiler chicken flocks suffering from respiratory diseases problems in 4 Egyptian governorates between January 2012 and February 2014. The mortality rates in the investigated flocks ranged from 1 to 47%. Results showed that mixed infection represented 66.3% of the examined flocks. Mixed infectious bronchitis (IBV) and avian influenza (AI)-H9N2 viruses were the most common infection (41.7%). Lack of AI-H9N2 vaccination and high rates of mixed infections in which AI-H9N2 is involved indicate an early AI-H9N2 infection with a potential immunosuppressive effect that predisposes for other viral infections. High pathogenic AI-H5N1 and virulent Newcastle disease virus (vNDV) infections were also detected (26.7% and 8.1%, respectively). Interestingly, co-infection of AI-H9N2 with either AIV-H5N1 or vNDV rarely resulted in high mortality. Partial cell-mediated immunity against similar internal AI genes, as well as virus interference between AI and vNDV, could be an explanation for this. Highly prevalent IBV and AI-H9N2 were isolated and were molecularly characterized based on S1 gene hypervariable region 3 ( HVR3: ) and hemagglutinin gene (HA) sequences, respectively. IBV strains were related to the variant group of IBV with multiple mutations in HVR3. Though AI-H9N2 viruses showed low rate of evolution in comparison to recent strains, few amino acid substitutions indicative of antibody selection pressure were observed in the HA gene. In conclusion, mixed viral infections, especially with IBV and AI-H9N2 viruses, are the predominant etiology of respiratory disease problems in broiler chickens in Egypt. Further investigations of the role of AI, IBV, and ND viruses' co-infections and interference in terms of altering the severity of clinical signs and lesions and/or generating novel reassortants within each virus are needed. PMID:26976895

  17. Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype

    PubMed Central

    Veits, Jutta; Weber, Siegfried; Stech, Olga; Breithaupt, Angele; Gräber, Marcus; Gohrbandt, Sandra; Bogs, Jessica; Hundt, Jana; Teifke, Jens P.; Mettenleiter, Thomas C.; Stech, Jürgen

    2012-01-01

    High-pathogenic avian influenza viruses (HPAIVs) evolve from low-pathogenic precursors specifying the HA serotypes H5 or H7 by acquisition of a polybasic HA cleavage site. As the reason for this serotype restriction has remained unclear, we aimed to distinguish between compatibility of a polybasic cleavage site with H5/H7 HA only and unique predisposition of these two serotypes for insertion mutations. To this end, we introduced a polybasic cleavage site into the HA of several low-pathogenic avian strains with serotypes H1, H2, H3, H4, H6, H8, H10, H11, H14, or H15, and rescued HA reassortants after cotransfection with the genes from either a low-pathogenic H9N2 or high-pathogenic H5N1 strain. Oculonasal inoculation with those reassortants resulted in varying pathogenicity in chicken. Recombinants containing the engineered H2, H4, H8, or H14 in the HPAIV background were lethal and exhibited i.v. pathogenicity indices of 2.79, 2.37, 2.85, and 2.61, respectively, equivalent to naturally occurring H5 or H7 HPAIV. Moreover, the H2, H4, and H8 reassortants were transmitted to some contact chickens. The H2 reassortant gained two mutations in the M2 proton channel gate region, which is affected in some HPAIVs of various origins. Taken together, in the presence of a polybasic HA cleavage site, non-H5/H7 HA can support a highly pathogenic phenotype in the appropriate viral background, indicating requirement for further adaptation. Therefore, the restriction of natural HPAIV to serotypes H5 and H7 is likely a result of their unique predisposition for acquisition of a polybasic HA cleavage site. PMID:22308331

  18. Outbreak of H7N8 Low Pathogenic Avian Influenza in Commercial Turkeys with Spontaneous Mutation to Highly Pathogenic Avian Influenza.

    PubMed

    Killian, Mary Lea; Kim-Torchetti, Mia; Hines, Nichole; Yingst, Sam; DeLiberto, Thomas; Lee, Dong-Hun

    2016-01-01

    Highly pathogenic avian influenza (HPAI) subtype H7N8 was detected in commercial turkeys in January 2016. Control zone surveillance discovered a progenitor low pathogenic avian influenza (LPAI) virus in surrounding turkey flocks. Data analysis supports a single LPAI virus introduction followed by spontaneous mutation to HPAI on a single premises. PMID:27313288

  19. Outbreak of H7N8 Low Pathogenic Avian Influenza in Commercial Turkeys with Spontaneous Mutation to Highly Pathogenic Avian Influenza

    PubMed Central

    Killian, Mary Lea; Hines, Nichole; Yingst, Sam; DeLiberto, Thomas; Lee, Dong-Hun

    2016-01-01

    Highly pathogenic avian influenza (HPAI) subtype H7N8 was detected in commercial turkeys in January 2016. Control zone surveillance discovered a progenitor low pathogenic avian influenza (LPAI) virus in surrounding turkey flocks. Data analysis supports a single LPAI virus introduction followed by spontaneous mutation to HPAI on a single premises. PMID:27313288

  20. Measurement of avian cytokines with real time RT-PCR following infection with avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both functional and molecular techniques have been employed to measure the production of cytokines following influenza infection. Historically, the use of functional or antibody based techniques were employed in mammalian immunology. In avian immunology, only a few commercial antibodies are availa...

  1. Immediate early responses of avian tracheal epithelial cells to infection with highly pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) avian influenza viruses (AIV) present an on going threat to the U.S. poultry industry. In order to develop new AIV control strategies it is necessary to understand the underlying mechanism of viral infection. Because the early events of AIV infection can occur on tracheal ep...

  2. Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China

    PubMed Central

    Ma, Ying; Feng, Youjun; Liu, Di; Gao, George F.

    2009-01-01

    The outbreak and spread of severe acute respiratory syndrome-associated coronavirus and the subsequent identification of its animal origin study have heightened the world's awareness of animal-borne or zoonotic pathogens. In addition to SARS, the highly pathogenic avian influenza virus (AIV), H5N1, and the lower pathogenicity H9N2 AIV have expanded their host ranges to infect human beings and other mammalian species as well as birds. Even the ‘well-known’ reservoir animals for influenza virus, migratory birds, became victims of the highly pathogenic H5N1 virus. Not only the viruses, but bacteria can also expand their host range: a new disease, streptococcal toxic shock syndrome, caused by human Streptococcus suis serotype 2 infection, has been observed in China with 52 human fatalities in two separate outbreaks (1998 and 2005, respectively). Additionally, enterohaemorrhagic Escherichia coli O157:H7 infection has increased worldwide with severe disease. Several outbreaks and sporadic isolations of this pathogen in China have made it an important target for disease control. A new highly pathogenic variant of porcine reproductive and respiratory syndrome virus (PRRSV) has been isolated in both China and Vietnam recently; although PRRSV is not a zoonotic human pathogen, its severe outbreaks have implications for food safety. All of these pathogens occur in Southeast Asia, including China, with severe consequences; therefore, we discuss the issues in this article by addressing the situation of the zoonotic threat in China. PMID:19687041

  3. Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China.

    PubMed

    Ma, Ying; Feng, Youjun; Liu, Di; Gao, George F

    2009-09-27

    The outbreak and spread of severe acute respiratory syndrome-associated coronavirus and the subsequent identification of its animal origin study have heightened the world's awareness of animal-borne or zoonotic pathogens. In addition to SARS, the highly pathogenic avian influenza virus (AIV), H5N1, and the lower pathogenicity H9N2 AIV have expanded their host ranges to infect human beings and other mammalian species as well as birds. Even the 'well-known' reservoir animals for influenza virus, migratory birds, became victims of the highly pathogenic H5N1 virus. Not only the viruses, but bacteria can also expand their host range: a new disease, streptococcal toxic shock syndrome, caused by human Streptococcus suis serotype 2 infection, has been observed in China with 52 human fatalities in two separate outbreaks (1998 and 2005, respectively). Additionally, enterohaemorrhagic Escherichia coli O157:H7 infection has increased worldwide with severe disease. Several outbreaks and sporadic isolations of this pathogen in China have made it an important target for disease control. A new highly pathogenic variant of porcine reproductive and respiratory syndrome virus (PRRSV) has been isolated in both China and Vietnam recently; although PRRSV is not a zoonotic human pathogen, its severe outbreaks have implications for food safety. All of these pathogens occur in Southeast Asia, including China, with severe consequences; therefore, we discuss the issues in this article by addressing the situation of the zoonotic threat in China. PMID:19687041

  4. Detection of Evolutionarily Distinct Avian Influenza A Viruses in Antarctica

    PubMed Central

    Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M. Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G.; González-Acuña, Daniel

    2014-01-01

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. PMID:24803521

  5. Innate immune responses to avian influenza differ between chickens and ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Avian influenza (AI) remains a constant economic threat to commercial poultry production throughout the world. Influenza viruses can occur naturally among wild bird species, including aquatic waterfowl, without causing significant morbidity or mortality. Conversely, commercial poultr...

  6. Multiplex polymerase chain reaction for the detection and differentiation of avian influenza viruses and other poultry respiratory pathogens.

    PubMed

    Rashid, S; Naeem, K; Ahmed, Z; Saddique, N; Abbas, M A; Malik, S A

    2009-12-01

    A multiplex reverse transcription-PCR (mRT-PCR) was developed and standardized for the detection of type A influenza viruses, avian influenza virus (AIV) subtype H7, H9, and H5 hemagglutinin gene with simultaneous detection of 3 other poultry respiratory pathogens, Newcastle disease virus (NDV), infectious bronchitis virus (IBV), and infectious laryngotracheitis virus (ILTV). Seven sets of specific oligonucleotide primers were used in this study for the M gene of AIV and hemagglutinin gene of subtypes H7, H9, and H5 of AIV. Three sets of other specific oligonucleotide primers were used for the detection of avian respiratory pathogens other than AIV. The mRT-PCR DNA products were visualized by agarose gel electrophoresis and consisted of DNA fragments of 1,023 bp for M gene of AIV, 149 bp for IBV, 320 bp for NDV, and 647 bp for ILTV. The second set of primers used for m-RT-PCR of H7N3, H9N2, and H5N1 provided DNA products of 300 bp for H7, 456 bp for H5, and 808 bp for H9. The mRT-PCR products for the third format consisted of DNA fragments of 149 bp for IBV, 320 bp for NDV, 647 bp for ILTV, 300 bp for H7, 456 bp for H5, and 808 bp for H9. The sensitivity and specificity of mRT-PCR was determined and the test was found to be sensitive and specific for the detection of AIV and other poultry respiratory pathogens. In this present study, multiplex PCR technique has been developed to simultaneously detect and differentiate the 3 most important subtypes of AIV along with the 3 most common avian respiratory pathogens prevalent in poultry in Pakistan. Therefore, a mRT-PCR that can rapidly differentiate between these pathogens will be very important for the control of disease transmission in poultry and in humans, along with the identification of 3 of the most common respiratory pathogens often seen as mixed infections in poultry, and hence economic losses will be reduced in poultry. PMID:19903950

  7. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    PubMed

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. PMID:27486732

  8. Monitoring Avian Influenza A(H7N9) Virus through National Influenza-like Illness Surveillance, China

    PubMed Central

    Xu, Cuiling; Havers, Fiona; Wang, Lijie; Chen, Tao; Shi, Jinghong; Wang, Dayan; Yang, Jing; Yang, Lei; Widdowson, Marc-Alain

    2013-01-01

    In China during March 4–April 28, 2013, avian influenza A(H7N9) virus testing was performed on 20,739 specimens from patients with influenza-like illness in 10 provinces with confirmed human cases: 6 (0.03%) were positive, and increased numbers of unsubtypeable influenza-positive specimens were not seen. Careful monitoring and rapid characterization of influenza A(H7N9) and other influenza viruses remain critical. PMID:23879887

  9. Avian influenza vaccines against H5N1 'bird flu'.

    PubMed

    Li, Chengjun; Bu, Zhigao; Chen, Hualan

    2014-03-01

    H5N1 avian influenza viruses (AIVs) have spread widely to more than 60 countries spanning three continents. To control the disease, vaccination of poultry is implemented in many of the affected countries, especially in those where H5N1 viruses have become enzootic in poultry and wild birds. Recently, considerable progress has been made toward the development of novel avian influenza (AI) vaccines, especially recombinant virus vector vaccines and DNA vaccines. Here, we will discuss the recent advances in vaccine development and use against H5N1 AIV in poultry. Understanding the properties of the available, novel vaccines will allow for the establishment of rational vaccination protocols, which in turn will help the effective control and prevention of H5N1 AI. PMID:24491922

  10. Surveillance of avian influenza viruses in Papua New Guinean poultry, June 2011 to April 2012

    PubMed Central

    Jonduo, Marinjho; Wong, Sook-San; Kapo, Nime; Ominipi, Paskalis; Abdad, Mohammad; Siba, Peter; McKenzie, Pamela; Webby, Richard

    2013-01-01

    We investigated the circulation of avian influenza viruses in poultry populations throughout Papua New Guinea to assess the risk to the poultry industry and human health. Oropharyngeal swabs, cloacal swabs and serum were collected from 537 poultry from 14 provinces of Papua New Guinea over an 11–month period (June 2011 through April 2012). Virological and serological investigations were undertaken to determine the prevalence of avian influenza viruses. Neither influenza A viruses nor antibodies were detected in any of the samples. This study demonstrated that avian influenza viruses were not circulating at detectable levels in poultry populations in Papua New Guinea during the sampling period. However, avian influenza remains a significant risk to Papua New Guinea due to the close proximity of countries having previously reported highly pathogenic avian influenza viruses and the low biosecurity precautions associated with the rearing of most poultry populations in the country. PMID:24478918

  11. Emergence of fatal avian influenza in New England harbor seals

    USGS Publications Warehouse

    Anthony, S.J.; St. Leger, J. A.; Pugliares, K.; Ip, H.S.; Chan, J.M.; Carpenter, Z.W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J.T.; Pedersen, J.; Karesh, W.; Daszak, P.; Rabadan, R.; Rowles, T.; Lipkin, W.I.

    2012-01-01

    From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission.

  12. The Role of Environmental Transmission in Recurrent Avian Influenza Epidemics

    PubMed Central

    Breban, Romulus; Drake, John M.; Stallknecht, David E.; Rohani, Pejman

    2009-01-01

    Avian influenza virus (AIV) persists in North American wild waterfowl, exhibiting major outbreaks every 2–4 years. Attempts to explain the patterns of periodicity and persistence using simple direct transmission models are unsuccessful. Motivated by empirical evidence, we examine the contribution of an overlooked AIV transmission mode: environmental transmission. It is known that infectious birds shed large concentrations of virions in the environment, where virions may persist for a long time. We thus propose that, in addition to direct fecal/oral transmission, birds may become infected by ingesting virions that have long persisted in the environment. We design a new host–pathogen model that combines within-season transmission dynamics, between-season migration and reproduction, and environmental variation. Analysis of the model yields three major results. First, environmental transmission provides a persistence mechanism within small communities where epidemics cannot be sustained by direct transmission only (i.e., communities smaller than the critical community size). Second, environmental transmission offers a parsimonious explanation of the 2–4 year periodicity of avian influenza epidemics. Third, very low levels of environmental transmission (i.e., few cases per year) are sufficient for avian influenza to persist in populations where it would otherwise vanish. PMID:19360126

  13. Research update on avian influenza viruses and H1N1 influenza virus in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Southeast Poultry Research Laboratory conducts research on many areas related to AI including pathogenesis and transmission studies, use of vaccination, virus ...

  14. Characterization of Immune Responses to an Inactivated Avian Influenza Virus Vaccine Adjuvanted with Nanoparticles Containing CpG ODN.

    PubMed

    Singh, Shirene M; Alkie, Tamiru N; Abdelaziz, Khaled Taha; Hodgins, Douglas C; Novy, Anastasia; Nagy, Éva; Sharif, Shayan

    2016-06-01

    Avian influenza virus (AIV), a mucosal pathogen, gains entry into host chickens through respiratory and gastrointestinal routes. Most commercial AIV vaccines for poultry consist of inactivated, whole virus with adjuvant, delivered by parenteral administration. Recent advances in vaccine development have led to the application of nanoparticle emulsion delivery systems, such as poly (d,l-lactic-co-glycolic acid) (PLGA) nanoparticles to enhance antigen-specific immune responses. In chickens, the Toll-like receptor 21 ligand, CpG oligodeoxynucleotides (ODNs), have been demonstrated to be immunostimulatory. The objective of this study was to compare the adjuvant potential of CpG ODN 2007 encapsulated in PLGA nanoparticles with nonencapsulated CpG ODN 2007 when combined with a formalin-inactivated H9N2 virus, through intramuscular and aerosol delivery routes. Chickens were vaccinated at days 7 and 21 posthatch for the intramuscular route and at days 7, 21, and 35 for the aerosol route. Antibody-mediated responses were evaluated weekly in sera and lacrimal secretions in specific pathogen-free chickens. The results indicate that nonencapsulated CpG ODN 2007 in inactivated AIV vaccines administered by the intramuscular route generated higher antibody responses compared to the encapsulated CpG ODN 2007 formulation by the same route. Additionally, encapsulated CpG ODN 2007 in AIV vaccines administered by the aerosol route elicited higher mucosal responses compared to nonencapsulated CpG ODN 2007. Future studies may be aimed at evaluating protective immune responses induced with PLGA encapsulation of AIV and adjuvants. PMID:27077969

  15. Prevention, control and eradication of avian influenza including the use of vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is one of the most important diseases affecting the poultry industry worldwide. The AI virus can cause a range of clinical disease in poultry. AI viruses that cause mild disease with low mortality are termed low pathogenic avian influenza (LPAI) viruses. Viruses that replicat...

  16. Phylogenetics and pathogenesis of early avian influenza viruses (H5N2), Nigeria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior to the first officially recognized outbreaks of highly pathogenic avian influenza (HPAI) in poultry in Nigeria, in February 2006, an effort based at the poultry diagnostic clinic of the University of Ibadan Veterinary Teaching Hospital, was underway to isolate avian influenza viruses from sick...

  17. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian ...

  18. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses from an avian reservoir, and then generate mammalian adaptable influenza A viruses (IAVs) is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and...

  19. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 1959, 31 epizootics of high pathogenicity avian influenza (HPAI) have occurred in birds. Rapid detection and accurate identification of HPAI has been critical to controlling such epizootics in poultry. Specific paradigms for the detection and diagnosis of avian influenza virus (AIV) in poultry...

  20. Impact of vaccines and vaccination on global control of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pathogenicity avian influenza (HPAI) and low pathogenicity notifiable avian influenza (LPNAI) in poultry are notifiable to World Organisation for Animal Health (OIE) by its member countries. A comprehensive review of AI control methods has been completed. There may be variation between countr...

  1. Antigenic cartographic analysis of H7 avian influenza viruses with chicken serum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antigenic cartography is a relatively new method that can be used to evaluate the antigenic relatedness among avian influenza virus isolates. Evaluation of antigenic relationships among avian influenza viruses can be applied to vaccine design and to understanding the evolution of the virus. Initia...

  2. Susceptibility of wood ducks to H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in wild birds, especially for species in the Order Anseriformes. Although these infections document the susceptibili...

  3. Impact of poultry vaccines on control of H5N1 high pathogenicity avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of vaccines against avian influenza (AI) have been sporadic in poultry until 2002 when the H5N1 high pathogenicity avian influenza (HPAI) spread from China to Hong Kong, and then multiple southeast Asian countries in 2003-2004, and to Europe in 2005, and Africa in 2006. Over the past 40 years, ...

  4. Strategies and challenges to the development and application of avian influenza vaccines in birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines against avian influenza (AI) have had limited use in poultry until 2002, when the H5N1 high pathogenicity avian influenza (HPAI) spread from China to Hong Kong, and then multiple southeast Asian countries in 2003-2004, and to Europe in 2005, and Africa in 2006. Over the past 40 years, AI ...

  5. Current situation of avian influenza with emphasis on pathobiology, epidemiology and control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza is one of the most important diseases affecting the poultry industry around the world. Avian Influenza virus (AIV) has a broad host range in birds and mammals, although the natural reservoir is considered to be in wild birds where it typically causes an asymptomatic to mild infectio...

  6. Helping poultry and people through research on high pathogenicity avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses are a diverse group divided into 144 different subtypes based on different combinations of the 16 hemagglutinin and 9 neuraminidase subtypes, and two different pathotypes (low [LP] and high pathogenicity [HP]). Low pathogenicity avian influenza (LPAI) viruses are maintai...

  7. Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus

    PubMed Central

    Qiao, Chuanling; Liu, Qinfang; Bawa, Bhupinder; Shen, Huigang; Qi, Wenbao; Chen, Ying; Mok, Chris Ka Pun; García-Sastre, Adolfo; Richt, Jürgen A.

    2012-01-01

    Both H9N2 avian influenza and 2009 pandemic H1N1 viruses (pH1N1) are able to infect humans and swine, which has raised concerns that novel reassortant H9 viruses with pH1N1 genes might be generated in these hosts by reassortment. Although previous studies have demonstrated that reassortant H9 viruses with pH1N1 genes show increased virulence in mice and transmissibility in ferrets, the virulence and transmissibility of reassortant H9 viruses in natural hosts such as chickens and swine remain unknown. This study generated two reassortant H9 viruses (H9N2/CA09 and H9N1/CA09) in the background of the pH1N1 A/California/04/2009 (CA09) virus by replacing either both the haemagglutinin (HA) and neuraminidase (NA) genes or only the HA gene with the respective genes from the A/quail/Hong Kong/G1/1997 (H9N2) virus and evaluated their replication, pathogenicity and transmission in chickens and pigs compared with the parental viruses. Chickens that were infected with the parental H9N2 and reassortant H9 viruses seroconverted. The parental H9N2 and reassortant H9N2/CA09 viruses were transmitted to sentinel chickens, but H9N1/CA09 virus was not. The parental H9N2 replicated poorly and was not transmitted in pigs, whereas both H9N2/CA09 and H9N1/CA09 viruses replicated and were transmitted efficiently in pigs, similar to the pH1N1 virus. These results demonstrated that reassortant H9 viruses with pH1N1 genes show enhanced replication and transmissibility in pigs compared with the parental H9N2 virus, indicating that they may pose a threat for humans if such reassortants arise in swine. PMID:22875253

  8. Control of avian influenza: philosophy and perspectives on behalf of migratory birds

    USGS Publications Warehouse

    Friend, Milton

    1992-01-01

    Aquatic birds are considered the primary reservoir for influenza A viruses (Nettles et al., 1987).  However, there is little concern about avian influenza among conservation agencies responsible for the welfare of those species.  IN contrast, the poultry industry has great concern about avian influenza and view aquatic birds as a source for infection of poultry flocks.  In some instances, differences in these perspectives created conflict between conservation agencies and the poultry industry.  I speak on behalf of migratory birds, but philosophy and perspectives offered are intended to be helpful to the poultry industry in their efforts to combat avian influenza.

  9. Sero-survey of Avian Influenza in backyard poultry and wild bird species in Iran-2014.

    PubMed

    Fallah Mehrabadi, M H; Bahonar, A R; Vasfi Marandi, M; Sadrzadeh, A; Tehrani, F; Salman, M D

    2016-06-01

    In almost all villages in Iran backyard birds, especially chickens, are kept for egg and meat production. AI H9N2 subtype is endemic in Iran. Therefore, estimation of AI prevalence among these birds is important to determine the risk of transmission of infection to commercial farms. The aim of this study was to estimate subclinical infections or previous exposure to H5, H7, and H9 subtypes and to identify potentially important determinants of prevalence of this infectious at premises level in backyard poultry, bird gardens, zoos, and wild bird markets in Iran. A survey was conducted using a cross-sectional design throughout the entire country. A total of 329 villages, seven bird gardens, three zoos and five wild bird markets were included. In each village four families that kept birds were included in the collection of biological samples and background information. The Enzyme-Linked Immunosorbent Assay (ELISA) was used as the screening test and all ELISA-positive samples were examined with the HI test to differentiate H5, H7, and H9. Among the bird gardens, eight of 15 premises (53.3%) were positive in both the ELISA test and HI for H9N2. Testing of samples collected in the villages revealed that 296 out of 329 villages (90%) had positive ELISA tests and also HI tests for H9. The HI-H9 mean titers in positive units were significantly higher than negative units (P<.001). This study revealed no significant statistical differences between risk variables in seropositive and seronegative bird gardens in the case of H9 (P>.05). The results of this study showed that among the risk variables, mountainous area was a protective factor and lack of hygienic disposal of dead birds was a risk factor for AI; this was also observed in rural poultry. The high sero-prevalence of influenza H9N2 in rural domestic poultry indicates that the disease is endemic. It is necessary to include backyard poultry in any surveillance system and control strategy due to the existence of AIV in

  10. Susceptibility of selected wild avian species to experimental infection with H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in wide diversity of wild avian species but, to date, the role that different species play in the transmission and maintenance of H5N1 HPAI viruses is poorly understood. To begin to address these uncertainties a...

  11. USGS role and response to highly pathogenic avian influenza

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-01-01

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  12. Proteomics Analysis of Cellular Proteins Co-Immunoprecipitated with Nucleoprotein of Influenza A Virus (H7N9)

    PubMed Central

    Sun, Ningning; Sun, Wanchun; Li, Shuiming; Yang, Jingbo; Yang, Longfei; Quan, Guihua; Gao, Xiang; Wang, Zijian; Cheng, Xin; Li, Zehui; Peng, Qisheng; Liu, Ning

    2015-01-01

    Avian influenza A viruses are serious veterinary pathogens that normally circulate among avian populations, causing substantial economic impacts. Some strains of avian influenza A viruses, such as H5N1, H9N2, and recently reported H7N9, have been occasionally found to adapt to humans from other species. In order to replicate efficiently in the new host, influenza viruses have to interact with a variety of host factors. In the present study, H7N9 nucleoprotein was transfected into human HEK293T cells, followed by immunoprecipitated and analyzed by proteomics approaches. A series of host proteins co-immunoprecipitated were identified with high confidence, some of which were found to be acetylated at their lysine residues. Bioinformatics analysis revealed that spliceosome might be the most relevant pathway involved in host response to nucleoprotein expression, increasing our emerging knowledge of host proteins that might be involved in influenza virus replication activities. PMID:26528969

  13. Proteomics Analysis of Cellular Proteins Co-Immunoprecipitated with Nucleoprotein of Influenza A Virus (H7N9).

    PubMed

    Sun, Ningning; Sun, Wanchun; Li, Shuiming; Yang, Jingbo; Yang, Longfei; Quan, Guihua; Gao, Xiang; Wang, Zijian; Cheng, Xin; Li, Zehui; Peng, Qisheng; Liu, Ning

    2015-01-01

    Avian influenza A viruses are serious veterinary pathogens that normally circulate among avian populations, causing substantial economic impacts. Some strains of avian influenza A viruses, such as H5N1, H9N2, and recently reported H7N9, have been occasionally found to adapt to humans from other species. In order to replicate efficiently in the new host, influenza viruses have to interact with a variety of host factors. In the present study, H7N9 nucleoprotein was transfected into human HEK293T cells, followed by immunoprecipitated and analyzed by proteomics approaches. A series of host proteins co-immunoprecipitated were identified with high confidence, some of which were found to be acetylated at their lysine residues. Bioinformatics analysis revealed that spliceosome might be the most relevant pathway involved in host response to nucleoprotein expression, increasing our emerging knowledge of host proteins that might be involved in influenza virus replication activities. PMID:26528969

  14. Troop education and avian influenza surveillance in military barracks in Ghana, 2011

    PubMed Central

    2012-01-01

    Background Influenza A viruses that cause highly pathogenic avian influenza (HPAI) also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. Method Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. Results Of the 1028 participants that took part in the seminars, 668 (65%) showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI) infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. Conclusion Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen avian influenza surveillance

  15. Current developments in avian influenza vaccines, including safety of vaccinated birds as food.

    PubMed

    Swayne, D E; Suarez, D L

    2007-01-01

    Until recently, most vaccines against avian influenza were based on oil-emulsified inactivated low- or high-pathogenicity viruses. Now, recombinant fowl pox and avian paramyxovirus type 1 vaccines with avian influenza H5 gene inserts (+ or - N1 gene insert) are available and licensed. New technologies might overcome existing limitations to make available vaccines that can be grown in tissue culture systems for more rapid production; provide optimized protection, as a result of closer genetic relations to field viruses; allow mass administration by aerosol, in drinking-water or in ovo; and allow easier strategies for identifying infected birds within vaccinated populations (DIVA). The technologies include avian influenza viruses with partial gene deletions, avian influenza-Newcastle disease virus chimeras, vectored vaccines such as adenoviruses and Marek's disease virus, and subunit vaccines. These new methods should be licensed only after their purity, safety, efficacy and potency against avian influenza viruses have been demonstrated, and, for live vectored vaccines, restriction of viral transmission to unvaccinated birds. Use of vaccines in countries affected by highly pathogenic avian influenza will not only protect poultry but will provide additional safety for consumers. Experimental studies have shown that birds vaccinated against avian influenza have no virus in meat and minimal amounts in eggs after HPAI virus challenge, and that replication and shedding from their respiratory and alimentary tracts is greatly reduced. PMID:18411943

  16. Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation

    PubMed Central

    Chang, Pengxiang; Kuchipudi, Suresh V.; Mellits, Kenneth H.; Sebastian, Sujith; James, Joe; Liu, Jinhua; Shelton, Holly; Chang, Kin-Chow

    2015-01-01

    Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) influenza viruses in PAM. We found that PAM were readily susceptible to initial infection with all five avian and mammalian influenza viruses but only avian viruses caused early and extensive apoptosis (by 6 h of infection) resulting in reduced virus progeny and moderated pro-inflammation. Full length viral PB1-F2 present only in avian influenza viruses is a virulence factor that targets AM for mitochondrial-associated apoptotic cell death. With the use of reverse genetics on an avian H5N1 virus, we found that full length PB1-F2 contributed to increased apoptosis and pro-inflammation but not to reduced virus replication. Taken together, we propose that early apoptosis of PAM limits the spread of avian influenza viruses and that PB1-F2 could play a contributory role in the process. PMID:26642934

  17. Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation.

    PubMed

    Chang, Pengxiang; Kuchipudi, Suresh V; Mellits, Kenneth H; Sebastian, Sujith; James, Joe; Liu, Jinhua; Shelton, Holly; Chang, Kin-Chow

    2015-01-01

    Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) influenza viruses in PAM. We found that PAM were readily susceptible to initial infection with all five avian and mammalian influenza viruses but only avian viruses caused early and extensive apoptosis (by 6 h of infection) resulting in reduced virus progeny and moderated pro-inflammation. Full length viral PB1-F2 present only in avian influenza viruses is a virulence factor that targets AM for mitochondrial-associated apoptotic cell death. With the use of reverse genetics on an avian H5N1 virus, we found that full length PB1-F2 contributed to increased apoptosis and pro-inflammation but not to reduced virus replication. Taken together, we propose that early apoptosis of PAM limits the spread of avian influenza viruses and that PB1-F2 could play a contributory role in the process. PMID:26642934

  18. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides

    PubMed Central

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2015-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  19. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides.

    PubMed

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2016-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  20. Emergence of influenza A viruses.

    PubMed Central

    Webby, R J; Webster, R G

    2001-01-01

    Pandemic influenza in humans is a zoonotic disease caused by the transfer of influenza A viruses or virus gene segments from animal reservoirs. Influenza A viruses have been isolated from avian and mammalian hosts, although the primary reservoirs are the aquatic bird populations of the world. In the aquatic birds, influenza is asymptomatic, and the viruses are in evolutionary stasis. The aquatic bird viruses do not replicate well in humans, and these viruses need to reassort or adapt in an intermediate host before they emerge in human populations. Pigs can serve as a host for avian and human viruses and are logical candidates for the role of intermediate host. The transmission of avian H5N1 and H9N2 viruses directly to humans during the late 1990s showed that land-based poultry also can serve between aquatic birds and humans as intermediate hosts of influenza viruses. That these transmission events took place in Hong Kong and China adds further support to the hypothesis that Asia is an epicentre for influenza and stresses the importance of surveillance of pigs and live-bird markets in this area. PMID:11779380

  1. Host genetics determine susceptibility to avian influenza infection and transmission dynamics.

    PubMed

    Ruiz-Hernandez, Raul; Mwangi, William; Peroval, Marylene; Sadeyen, Jean-Remy; Ascough, Stephanie; Balkissoon, Devanand; Staines, Karen; Boyd, Amy; McCauley, John; Smith, Adrian; Butter, Colin

    2016-01-01

    Host-genetic control of influenza virus infection has been the object of little attention. In this study we determined that two inbred lines of chicken differing in their genetic background , Lines 0 and C-B12, were respectively relatively resistant and susceptible to infection with the low pathogenicity influenza virus A/Turkey/England/647/77 as defined by substantial differences in viral shedding trajectories. Resistant birds, although infected, were unable to transmit virus to contact birds, as ultimately only the presence of a sustained cloacal shedding (and not oropharyngeal shedding) was critical for transmission. Restriction of within-bird transmission of virus occurred in the resistant line, with intra-nares or cloacal infection resulting in only local shedding and failing to transmit fully through the gastro-intestinal-pulmonary tract. Resistance to infection was independent of adaptive immune responses, including the expansion of specific IFNγ secreting cells or production of influenza-specific antibody. Genetic resistance to a novel H9N2 virus was less robust, though significant differences between host genotypes were still clearly evident. The existence of host-genetic determination of the outcome of influenza infection offers tools for the further dissection of this regulation and also for understanding the mechanisms of influenza transmission within and between birds. PMID:27279280

  2. Host genetics determine susceptibility to avian influenza infection and transmission dynamics

    PubMed Central

    Ruiz-Hernandez, Raul; Mwangi, William; Peroval, Marylene; Sadeyen, Jean-Remy; Ascough, Stephanie; Balkissoon, Devanand; Staines, Karen; Boyd, Amy; McCauley, John; Smith, Adrian; Butter, Colin

    2016-01-01

    Host-genetic control of influenza virus infection has been the object of little attention. In this study we determined that two inbred lines of chicken differing in their genetic background , Lines 0 and C-B12, were respectively relatively resistant and susceptible to infection with the low pathogenicity influenza virus A/Turkey/England/647/77 as defined by substantial differences in viral shedding trajectories. Resistant birds, although infected, were unable to transmit virus to contact birds, as ultimately only the presence of a sustained cloacal shedding (and not oropharyngeal shedding) was critical for transmission. Restriction of within-bird transmission of virus occurred in the resistant line, with intra-nares or cloacal infection resulting in only local shedding and failing to transmit fully through the gastro-intestinal-pulmonary tract. Resistance to infection was independent of adaptive immune responses, including the expansion of specific IFNγ secreting cells or production of influenza-specific antibody. Genetic resistance to a novel H9N2 virus was less robust, though significant differences between host genotypes were still clearly evident. The existence of host-genetic determination of the outcome of influenza infection offers tools for the further dissection of this regulation and also for understanding the mechanisms of influenza transmission within and between birds. PMID:27279280

  3. Avian Influenza Viruses, Inflammation, and CD8(+) T Cell Immunity.

    PubMed

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8(+) T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644

  4. Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity

    PubMed Central

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8+ T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644

  5. Large-Scale Avian Influenza Surveillance in Wild Birds throughout the United States

    PubMed Central

    Bevins, Sarah N.; Pedersen, Kerri; Lutman, Mark W.; Baroch, John A.; Schmit, Brandon S.; Kohler, Dennis; Gidlewski, Thomas; Nolte, Dale L.; Swafford, Seth R.; DeLiberto, Thomas J.

    2014-01-01

    Avian influenza is a viral disease that primarily infects wild and domestic birds, but it also can be transmitted to a variety of mammals. In 2006, the United States of America Departments of Agriculture and Interior designed a large-scale, interagency surveillance effort that sought to determine if highly pathogenic avian influenza viruses were present in wild bird populations within the United States of America. This program, combined with the Canadian and Mexican surveillance programs, represented the largest, coordinated wildlife disease surveillance program ever implemented. Here we analyze data from 197,885 samples that were collected from over 200 wild bird species. While the initial motivation for surveillance focused on highly pathogenic avian influenza, the scale of the data provided unprecedented information on the ecology of avian influenza viruses in the United States, avian influenza virus host associations, and avian influenza prevalence in wild birds over time. Ultimately, significant advances in our knowledge of avian influenza will depend on both large-scale surveillance efforts and on focused research studies. PMID:25116079

  6. A cross-sectional study of avian influenza in one district of Guangzhou, 2013.

    PubMed

    Zhang, Haiming; Peng, Cong; Duan, Xiaodong; Shen, Dan; Lan, Guanghua; Xiao, Wutao; Tan, Hai; Wang, Ling; Hou, Jialei; Zhu, Jiancui; He, Riwen; Zhang, Haibing; Zheng, Lilan; Yang, Jianyu; Zhang, Zhen; Zhou, Zhiwei; Li, Wenhua; Hu, Mailing; Zhong, Jinhui; Chen, Yuhua

    2014-01-01

    Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area. PMID:25356738

  7. Serological survey of avian influenza virus infection in non-avian wildlife in Xinjiang, China.

    PubMed

    Wei, Yu-Rong; Yang, Xue-Yun; Li, Yuan-Guo; Wei, Jie; Ma, Wen-Ge; Ren, Zhi-Guang; Guo, Hui-Ling; Wang, Tie-Cheng; Mi, Xiao-Yun; Adili, Gulizhati; Miao, Shu-Kui; Shaha, Ayiqiaolifan; Gao, Yu-Wei; Huang, Jiong; Xia, Xian-Zhu

    2016-04-01

    We conducted a serological survey to detect antibodies against avian influenza virus (AIV) in Gazella subgutturosa, Canis lupus, Capreolus pygargus, Sus scrofa, Cervus elaphus, Capra ibex, Ovis ammon, Bos grunniens and Pseudois nayaur in Xinjiang, China. Two hundred forty-six sera collected from 2009 to 2013 were assayed for antibodies against H5, H7 and H9 AIVs using hemagglutination inhibition (HI) tests and a pan-influenza competitive ELISA. Across all tested wildlife species, 4.47 % harbored anti-AIV antibodies that were detected by the HI assay. The seroprevalence for each AIV subtype across all species evaluated was 0 % for H5 AIV, 0.81 % for H7 AIV, and 3.66 % for H9 AIV. H7-reactive antibodies were found in Canis lupus (9.09 %) and Ovis ammon (4.55 %). H9-reactive antibodies were found in Gazella subgutturosa (4.55 %), Canis lupus (27.27 %), Pseudois nayaur (23.08 %), and Ovis ammon (4.55 %). The pan-influenza competitive ELISA results closely corresponded to the cumulative prevalence of AIV exposure as measured by subtype-specific HI assays, suggesting that H7 and H9 AIV subtypes predominate in the wildlife species evaluated. These data provide evidence of prior infection with H7 and H9 AIVs in non-avian wildlife in Xinjiang, China. PMID:26733295

  8. Beliefs underlying blood donors' intentions to donate during two phases of an avian influenza outbreak.

    PubMed

    Masser, Barbara M; White, Katherine M; Hamilton, Kyra; McKimmie, Blake M

    2012-02-01

    Using a Theory of Planned Behavior (TPB) framework the current study explored the beliefs of current blood donors (N=172) about donating during a low and high-risk phase of a potential avian influenza outbreak. While the majority of behavioral, normative, and control beliefs identified in preliminary research differed as a function of donors' intentions to donate during both phases of an avian influenza outbreak, regression analyses suggested that the targeting of different specific beliefs during each phase of an outbreak would yield most benefit in bolstering donors' intentions to remain donating. The findings provide insight in how to best motivate donors in different phases of an avian influenza outbreak. PMID:22142514

  9. Inactivation of various influenza strains to model avian influenza (Bird Flu) with various disinfectant chemistries.

    SciTech Connect

    Oberst, R. D.; Bieker, Jill Marie; Souza, Caroline Ann

    2005-12-01

    Due to the grave public health implications and economic impact possible with the emergence of the highly pathogenic avian influenza A isolate, H5N1, currently circulating in Asia we have evaluated the efficacy of various disinfectant chemistries against surrogate influenza A strains. Chemistries included in the tests were household bleach, ethanol, Virkon S{reg_sign}, and a modified version of the Sandia National Laboratories developed DF-200 (DF-200d, a diluted version of the standard DF-200 formulation). Validation efforts followed EPA guidelines for evaluating chemical disinfectants against viruses. The efficacy of the various chemistries was determined by infectivity, quantitative RNA, and qualitative protein assays. Additionally, organic challenges using combined poultry feces and litter material were included in the experiments to simulate environments in which decontamination and remediation will likely occur. In all assays, 10% bleach and Sandia DF-200d were the most efficacious treatments against two influenza A isolates (mammalian and avian) as they provided the most rapid and complete inactivation of influenza A viruses.

  10. Economic epidemiology of avian influenza on smallholder poultry farms☆

    PubMed Central

    Boni, Maciej F.; Galvani, Alison P.; Wickelgren, Abraham L.; Malani, Anup

    2013-01-01

    Highly pathogenic avian influenza (HPAI) is often controlled through culling of poultry. Compensating farmers for culled chickens or ducks facilitates effective culling and control of HPAI. However, ensuing price shifts can create incentives that alter the disease dynamics of HPAI. Farmers control certain aspects of the dynamics by setting a farm size, implementing infection control measures, and determining the age at which poultry are sent to market. Their decisions can be influenced by the market price of poultry which can, in turn, be set by policy makers during an HPAI outbreak. Here, we integrate these economic considerations into an epidemiological model in which epidemiological parameters are determined by an outside agent (the farmer) to maximize profit from poultry sales. Our model exhibits a diversity of behaviors which are sensitive to (i) the ability to identify infected poultry, (ii) the average price of infected poultry, (iii) the basic reproductive number of avian influenza, (iv) the effect of culling on the market price of poultry, (v) the effect of market price on farm size, and (vi) the effect of poultry density on disease transmission. We find that under certain market and epidemiological conditions, culling can increase farm size and the total number of HPAI infections. Our model helps to inform the optimization of public health outcomes that best weigh the balance between public health risk and beneficial economic outcomes for farmers. PMID:24161559

  11. Ten years on: generating innovative responses to avian influenza.

    PubMed

    Forster, Paul

    2014-01-01

    Since 2006, the number of recorded H5N1 avian influenza outbreaks has declined globally, but at mid-2012 the disease was enzootic in six countries in Asia and Africa, and sporadic outbreaks continue over a wide area. It is now accepted that it will take decades to eliminate the H5N1 virus in poultry and 'unconventional' response approaches have been called for. Drawing on increased understandings of the epizoosis over the last 10 years, this paper investigates what conditions are required if such innovative approaches are to be generated. It argues that addressing the spread and persistence of avian influenza is primarily a political matter, and if approaches appropriate for enzooticity are to be devised, the social, political, and economic dynamics of the disease and responses to it need to be identified and prioritised. A dominant response strategy focused on outbreak events, containment and eradication has obscured these important dynamics. If innovative 'unconventional' responses are to be generated, a wider range of perspectives and expertise needs to be engaged. This will result in political processes of negotiation, which the technically led, development-orientated institutions directing and funding the global response are ill-equipped to facilitate. PMID:24337506

  12. [SARS, avian influenza, and human metapneumovirus infection].

    PubMed

    Casas, Inmaculada; Pozo, Francisco

    2005-01-01

    Beginning in the 1950s respiratory viruses have been gradually discovered by isolation in cell cultures The last were the coronaviruses in the 1960s. No new respiratory viruses were discovered until 2001 when human metapneumovirus was found in respiratory specimens from children with bronchiolitis. A year later, in November 2002, severe acute respiratory syndrome (SARS) suddenly appeared as atypical pneumonia. A novel virus belonging to the Coronaviridae family was found to be a cause of this infection. In 2004, a second coronavirus was discovered (CoV-NL63) and in 2005 a third new coronavirus was described (CoV-HKU1). In addition, several subtypes of the influenza A virus, previously known to infect only poultry and wild birds, were recently found to have been directly transmitted to humans. Respiratory infection has been a considerable problem for humans for centuries. Now, in the 21st century, with new associated viruses continuously emerging, it remains an important field for work. PMID:16159544

  13. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector.

    PubMed

    Toro, Haroldo; Tang, De-chu C; Suarez, David L; Sylte, Matt J; Pfeiffer, Jennifer; Van Kampen, Kent R

    2007-04-12

    Protective immunity against avian influenza virus was elicited in chickens by single-dose in ovo vaccination with a non-replicating human adenovirus vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 (89% hemagglutinin homology; 68% protection) and H5N2 (94% hemagglutinin homology; 100% protection) highly pathogenic avian influenza virus challenges. This vaccine can be mass-administered using available robotic in ovo injectors which provide a major advantage over current vaccination regimens. In addition, this class of adenovirus-vectored vaccines can be produced rapidly with improved safety since they do not contain any replication-competent adenoviruses. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural avian influenza virus infections. PMID:17055126

  14. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    USGS Publications Warehouse

    Dong-Hun Lee; Justin Bahl; Mia Kim Torchetti; Mary Lea Killian; Ip, Hon S.; David E Swayne

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  15. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans.

    PubMed

    Kalthoff, Donata; Breithaupt, Angele; Teifke, Jens P; Globig, Anja; Harder, Timm; Mettenleiter, Thomas C; Beer, Martin

    2008-08-01

    Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity. PMID:18680652

  16. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015

    PubMed Central

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S.; DeLiberto, Thomas J.

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  17. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014-2015.

    PubMed

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S; DeLiberto, Thomas J; Swayne, David E

    2016-07-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  18. Historical and Recent Cases of H3 Influenza A Virus in Turkeys in Minnesota.

    PubMed

    Guo, Xi; Flores, Cristian; Munoz-Aguayo, Jeannette; Halvorson, David A; Lauer, Dale; Cardona, Carol J

    2015-12-01

    Subtype H3 influenza A viruses (IAVs) are abundant in wild waterfowl and also infect humans, pigs, horses, dogs, and seals. In Minnesota, turkeys are important and frequent hosts of IAV from wild waterfowl and from pigs. Over 48 yr of surveillance history, 11 hemagglutinin (HA) subtypes of IAV from waterfowl, as well as two HA subtypes from swine, H1 and H3, have infected turkeys in Minnesota. However, there have only been two cases of avian-origin H3 IAV infections in turkeys during this 48-yr period. The first avian-origin IAV infection was detected in seven breeder and commercial flocks in 1982 and was caused by a mixed H3H4/N2 infection. In 2013, an avian-origin H3H9/N2 outbreak occurred in five flocks of turkeys between 15 and 56 wk of age. Phylogenetic analysis of the HA gene segment from the 2013 isolate indicated that the virus was related to a wild bird lineage H3 IAV. A meta-analysis of historical H3 infections in domesticated poultry demonstrated that avian-origin H3 infections have occurred in chickens and ducks but were rare in turkeys. H9N2 virus was subsequently selected during the egg cultivation of the 2013 H3H9/N2 mixed virus. A growth curve analysis suggested that passage 3 of A/Turkey/Minnesota/13-20710-2/2013(mixed) had a slightly lower replication rate than a similar avian-origin H3N2. The challenge studies indicated that the infectious dose of avian-origin H3N2 for turkey poults was greater than 10(6) 50% egg infective dose. Considered together, these data suggest that avian-origin H3 introductions to turkeys are rare events. PMID:26629625

  19. Historical and Recent Cases of H3 Influenza A Virus in Turkeys in Minnesota.

    PubMed

    Guo, Xi; Flores, Cristian; Munoz-Aguayo, Jeannette; Halvorson, David A; Lauer, Dale; Cardona, Carol J

    2016-05-01

    Subtype H3 influenza A viruses (IAVs) are abundant in wild waterfowl and also infect humans, pigs, horses, dogs, and seals. In Minnesota, turkeys are important and frequent hosts of IAV from wild waterfowl and from pigs. Over 48 yr of surveillance history, 11 hemagglutinin (HA) subtypes of IAV from waterfowl, as well as two HA subtypes from swine, H1 and H3, have infected turkeys in Minnesota. However, there have only been two cases of avian-origin H3 IAV infections in turkeys during this 48-yr period. The first avian-origin IAV infection was detected in seven breeder and commercial flocks in 1982 and was caused by a mixed H3H4/N2 infection. In 2013, an avian-origin H3H9/N2 outbreak occurred in five flocks of turkeys between 15 and 56 wk of age. Phylogenetic analysis of the HA gene segment from the 2013 isolate indicated that the virus was related to a wild bird lineage H3 IAV. A meta-analysis of historical H3 infections in domesticated poultry demonstrated that avian-origin H3 infections have occurred in chickens and ducks but were rare in turkeys. H9N2 virus was subsequently selected during the egg cultivation of the 2013 H3H9/N2 mixed virus. A growth curve analysis suggested that passage 3 of A/Turkey/Minnesota/13-20710-2/2013(mixed) had a slightly lower replication rate than a similar avian-origin H3N2. The challenge studies indicated that the infectious dose of avian-origin H3N2 for turkey poults was greater than 10(6) 50% egg infective dose. Considered together, these data suggest that avian-origin H3 introductions to turkeys are rare events. PMID:27309087

  20. BirdFlu2009: Avian Influenza and Human Health. 9-10 September 2009, Oxford, UK.

    PubMed

    Temperton, Nigel

    2009-11-01

    The BirdFlu2009 meeting entitled Avian Influenza and Human Health, held in Oxford, included topics covering new developments in the control of seasonal, avian and swine influenza virus infection, with a focus on the human-animal interface. This conference report highlights selected presentations on sialidase therapy for influenza infection, the use of IVIgs to study antibody diversity and reactivity, detecting oseltamivir carboxylate in waste water, H5N1 infection in Egyptian children, preparedness for an influenza pandemic and an indirect sandwich ELISA to detect H5 avian influenza virus. Investigational drugs discussed include NEX-DAS-181 (NexBio Inc) and MVA-NP-M1 (The Edward Jenner Institute for Vaccine Research). PMID:19844852

  1. Comparison of pathogenicities of H7 avian influenza viruses via intranasal and conjunctival inoculation in cynomolgus macaques.

    PubMed

    Shichinohe, Shintaro; Itoh, Yasushi; Nakayama, Misako; Ozaki, Hiroichi; Soda, Kosuke; Ishigaki, Hirohito; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2016-06-01

    The outbreak of H7N9 low pathogenic avian influenza viruses in China has attracted attention to H7 influenza virus infection in humans. Since we have shown that the pathogenicity of H1N1 and H5N1 influenza viruses in macaques was almost the same as that in humans, we compared the pathogenicities of H7 avian influenza viruses in cynomolgus macaques via intranasal and conjunctival inoculation, which mimics natural infection in humans. H7N9 virus, as well as H7N7 highly pathogenic avian influenza virus, showed more efficient replication and higher pathogenicity in macaques than did H7N1 and H7N3 highly pathogenic avian influenza viruses. These results are different from pathogenicity in chickens as reported previously. Therefore, our results obtained in macaques help to estimate the pathogenicity of H7 avian influenza viruses in humans. PMID:26994587

  2. Pathogenesis of H5N1 avian influenza virus reassortants in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic H5N1 avian influenza viruses produce severe disease and mortality in chickens. Identification of viral genes important for cell tropism and replication efficiency helps identify virulence factors. To determine which viral gene or genes contribute to the virulence of H5N1 avian in...

  3. The pathogenicity of H7 subtype avian influenza viruses in chickens, turkeys and ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses infect numerous avian species, and low pathogenicity (LP) AI viruses of the H7 subtype are typically reported to produce mild or subclinical infections in both wild aquatic birds and domestic poultry. However relatively little work has been done to compare LPAI viruses ...

  4. Comparative susceptibility of waterfowl and gulls to highly pathogenic avian influenza H5N1 virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild avian species in the Orders Anseriformes (ducks, geese, swans) and Charadriiformes (gulls, terns, shorebirds) have traditionally been considered the natural reservoirs for avian influenza viruses (AIV) and morbidity or mortality is rarely associated with AIV infection in these hosts. However, ...

  5. Current developments in avian influenza vaccines including food safety aspects in vaccinated birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oil emulsified inactivated low or high pathogenicity (HP) avian influenza AI viruses were the only type of vaccines available for many years. More recently, recombinant fowl poxvirus and avian paramyxovirus type 1 vaccines with AI H5 gene inserts (+ or - N1 gene insert) have been licensed for use. ...

  6. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against avian influenza (AI) virus was elicited in chickens by single dose in ovo vaccination with a replication competent adenovirus (RCA) -free human adenovirus vector (Ad5) encoding an avian AI virus H5 hemagglutinin. Vaccinated chickens were protected against both H5N1 and H5...

  7. Experience in control of avian influenza in the Americas.

    PubMed

    Villarreal, C

    2007-01-01

    The outbreaks of highly pathogenic avian influenza (HPAI) in Canada in 1966, the USA in 1984 and Mexico in 1994 led to a clear increase in biosecurity measures and improved intensive poultry production systems. In the past 12 years (1994-2006), there have been four outbreaks of HPAI on the American continent: in Mexico in 1994 (H5N2), in Chile in 2002 (H7N3), in the USA in 2004 (H5N2) and in Canada in 2004 (H7N3). In all cases, the control and eradication measures were based on prompt detection, depopulation of infected farms and epidemiological contacts, increased biosecurity measures and control of the movement of live poultry and their products, by-products and infected material. In Mexico, in addition to the aforementioned measures, the use of massive vaccination allowed eradication of HPAI in a relatively short time in two affected areas of high-density commercial poultry. PMID:18416017

  8. Free-grazing Ducks and Highly Pathogenic Avian Influenza, Thailand

    PubMed Central

    Chaitaweesub, Prasit; Parakamawongsa, Tippawon; Premashthira, Sith; Tiensin, Thanawat; Kalpravidh, Wantanee; Wagner, Hans; Slingenbergh, Jan

    2006-01-01

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004–May 2005). Results demonstrate a strong association between H5N1 virus in Thailand and abundance of free-grazing ducks and, to a lesser extent, native chickens, cocks, wetlands, and humans. Wetlands used for double-crop rice production, where free-grazing duck feed year round in rice paddies, appear to be a critical factor in HPAI persistence and spread. This finding could be important for other duck-producing regions in eastern and southeastern Asian countries affected by HPAI. PMID:16494747

  9. Highly Pathogenic Avian Influenza H5N1, Thailand, 2004

    PubMed Central

    Chaitaweesub, Prasit; Songserm, Thaweesak; Chaisingh, Arunee; Hoonsuwan, Wirongrong; Buranathai, Chantanee; Parakamawongsa, Tippawon; Premashthira, Sith; Amonsin, Alongkorn; Gilbert, Marius; Nielen, Mirjam; Stegeman, Arjan

    2005-01-01

    In January 2004, highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first confirmed in poultry and humans in Thailand. Control measures, e.g., culling poultry flocks, restricting poultry movement, and improving hygiene, were implemented. Poultry populations in 1,417 villages in 60 of 76 provinces were affected in 2004. A total of 83% of infected flocks confirmed by laboratories were backyard chickens (56%) or ducks (27%). Outbreaks were concentrated in the Central, the southern part of the Northern, and Eastern Regions of Thailand, which are wetlands, water reservoirs, and dense poultry areas. More than 62 million birds were either killed by HPAI viruses or culled. H5N1 virus from poultry caused 17 human cases and 12 deaths in Thailand; a number of domestic cats, captive tigers, and leopards also died of the H5N1 virus. In 2005, the epidemic is ongoing in Thailand. PMID:16318716

  10. Scale-Free Distribution of Avian Influenza Outbreaks

    NASA Astrophysics Data System (ADS)

    Small, Michael; Walker, David M.; Tse, Chi Kong

    2007-11-01

    Using global case data for the period from 25 November 2003 to 10 March 2007, we construct a network of plausible transmission pathways for the spread of avian influenza among domestic and wild birds. The network structure we obtain is complex and exhibits scale-free (although not necessarily small-world) properties. Communities within this network are connected with a distribution of links with infinite variance. Hence, the disease transmission model does not exhibit a threshold and so the infection will continue to propagate even with very low transmissibility. Consequentially, eradication with methods applicable to locally homogeneous populations is not possible. Any control measure needs to focus explicitly on the hubs within this network structure.

  11. Highly Pathogenic Avian Influenza Virus among Wild Birds in Mongolia

    PubMed Central

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B.; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J.; Leung, Connie Y. H.; Peiris, J. S. Malik; Spackman, Erica; Swayne, David E.; Joly, Damien O.

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study. PMID:22984464

  12. Control strategies for highly pathogenic avian influenza: a global perspective.

    PubMed

    Lubroth, J

    2007-01-01

    Comprehensive programmes for the prevention, detection and control of highly pathogenic avian influenza (HPAI) require a national dimension and relevant national legislation in which veterinary services can conduct surveillance, competent diagnosis and rapid response. Avian influenza was controlled and prevented by vaccination long before the current H5N1 crisis. The use of vaccine cannot be separated from other essential elements of a vaccination campaign, which include education in poultry production practices, such as hygiene, all in-all out production concepts, separation of species, biosecurity (bio-exclusion to keep the disease out and biocontainment to keep the disease from spreading once suspected or detected), competence in giving the vaccine and the role of vaccination teams, post-vaccination monitoring to ensure efficacy and to detect the circulation of wild-type virus, surveillance and buffer zones in outbreak areas, and performance indicators to determine when vaccination can cease. Reporting of disease can be improved through well-structured, adequately financed veterinary services and also by fair compensation for producers who suffer financial loss. A rapid response to suspected cases of HPAI should be ensured in simulation exercises involving various sectors of the food production and marketing chain, policy-makers, official veterinary structures and other government personnel. As for other transboundary animal diseases, national approaches must be part of a regional strategy and regional networks for cooperation and information sharing, which in turn reflect global policies and international standards, such as the quality of vaccines, reporting obligations, humane interventions, cleaning and disinfection methods, restocking times, monitoring and safe trade. PMID:18411931

  13. China's heath care system and avian influenza preparedness.

    PubMed

    Kaufman, Joan A

    2008-02-15

    The severe acute respiratory syndrome crisis exposed serious deficiencies in China's public health system and willingness to report outbreaks of threats to public health. Consequently, China may be one of the weak links in global preparedness for avian influenza. China's rural health care system has been weakened by 20 years of privatization and fiscal decentralization. China plays a huge role in the global poultry industry, with a poultry population of 14 billion birds, 70%-80% of which are reared in backyard conditions. Although surveillance has been strengthened, obstacles to the timely reporting of disease outbreaks still exist. The weakened health care system prevents many sick people from seeking care at a health care facility, where reporting would originate. Inadequate compensation to farmers for culled birds leads to nonreporting, and local officials may be complicit if they suspect that reporting might lead to economic losses for their communities. At the local level, China's crisis-management ability and multisectoral coordination are weak. The poor quality of infection control in many rural facilities is a serious and well-documented problem. However, traditions of community political mobilization suggest that the potential for providing rural citizens with public health information is possible when mandated from the central government. Addressing these issues now and working on capacity issues, authority structures, accountability, and local reporting and control structures will benefit the control of a potential avian influenza outbreak, as well as inevitable outbreaks of other emerging infectious diseases in China's Pearl River Delta or in other densely populated locations of animal husbandry in China. PMID:18269328

  14. The role of vaccines and vaccination in high pathogenicity avian influenza control and eradication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty epizootics of high pathogenicity avian influenza (HPAI) have occurred in the world since influenza was identified as the etiology in 1955. Twenty-four of the epizootics were eradicated by using stamping-out programs composed of education, biosecurity, rapid diagnostics and surveillance, and ...

  15. Pathobiology of Asian highly pathogenic avian influenza H5N1 virus infection in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks and other wild aquatic birds are the natural reservoir of influenza type A viruses which normally are nonpathogenic in these birds. However, the Asian H5N1 avian influenza (AI) viruses have evolved from producing no disease or mild respiratory infections in ducks, to some strains producing se...

  16. A combination in-ovo vaccine for avian influenza virus and Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The protection of poultry from H5N1 highly pathogenic avian influenza A (HPAI) and Newcastle disease virus (NDV) can be achieved through vaccination, as part of a broader disease control strategy. We have previously generated a recombinant influenza virus expressing; (i) an H5N1 hemagglutinin protei...

  17. Low pathogenicity avian influenza viruses infect chicken layers by different routes of inoculation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to develop better control measures against avian influenza (AI) it’s necessary to understand how the virus transmits in poultry. In a previous study in which the infectivity and transmissibility of the pandemic H1N1influenza virus was examined in different poultry species, we found that no ...

  18. Human Infection with Highly Pathogenic A(H7N7) Avian Influenza Virus, Italy, 2013

    PubMed Central

    Rossini, Giada; Facchini, Marzia; Vaccari, Gabriele; Di Trani, Livia; Di Martino, Angela; Gaibani, Paolo; Vocale, Caterina; Cattoli, Giovanni; Bennett, Michael; McCauley, John W.; Rezza, Giovanni; Moro, Maria Luisa; Rangoni, Roberto; Finarelli, Alba Carola; Landini, Maria Paola; Castrucci, Maria Rita; Donatelli, Isabella

    2014-01-01

    During an influenza A(H7N7) virus outbreak among poultry in Italy during August–September 2013, infection with a highly pathogenic A(H7N7) avian influenza virus was diagnosed for 3 poultry workers with conjunctivitis. Genetic analyses revealed that the viruses from the humans were closely related to those from chickens on affected farms. PMID:25271444

  19. Within-host variation of avian influenza viruses

    PubMed Central

    Iqbal, Munir; Xiao, Hiaxia; Baillie, Greg; Warry, Andrew; Essen, Steve C.; Londt, Brandon; Brookes, Sharon M.; Brown, Ian H.; McCauley, John W.

    2009-01-01

    The emergence and spread of H5N1 avian influenza viruses from Asia through to Europe and Africa pose a significant animal disease problem and have raised concerns that the virus may pose a pandemic threat to humans. The epizootological factors that have influenced the wide distribution of the virus are complex, and the variety of viruses currently circulating reflects these factors. Sequence analysis of the virus genes sheds light on the H5N1 virus evolution during its emergence and spread, but the degree of virus variation at the level of an individual infected bird has been described in only a few studies. Here, we describe some results of a study in which turkeys, ducks and chickens were infected with either one of two H5N1 or one of three H7N1 viruses, and the degree of sequence variation within an individual infected avian host was examined. We developed ‘deep amplicon’ sequence analysis for this work, and the methods and results provide a background framework for application to disease outbreaks in the field. PMID:19687042

  20. Newcastle disease virus detection and differentiation from avian influenza.

    PubMed

    Miller, Patti J; Torchetti, Mia Kim

    2014-01-01

    Newcastle disease (ND) is a contagious and often fatal disease that affects over 250 bird species worldwide, and is caused by infection with virulent strains of avian paramyxovirus-1 (APMV-1) of the family Paramyxoviridae, genus Avulavirus. Infections of poultry with virulent strains of APMV-1 (Newcastle disease virus) are reportable to the World Organization for Animal Health (OIE). Vaccination of poultry species is a key measure in the control of ND. Other APMV-1 viruses of low virulence, which are not used as vaccines, are also often isolated from wild bird species. The APMV-1 virus, like avian influenza virus (AIV), is a hemagglutinating virus (HA) and able to agglutinate chicken red blood cells (RBC). Because the clinical presentation of ND can be difficult to distinguish from disease caused by AIV, techniques for differential diagnosis are essential, as well as the ability to detect mixed infections. When an HA positive virus is detected from virus isolation, additional assays can be performed to determine which virus is present. Both antigenic and molecular methods are necessary as some virulent ND viruses from cormorants in the USA after 2002 have lost their ability to hemagglutinate chicken RBC and molecular methods are needed for identification. PMID:24899433

  1. The Irrationality of GOF Avian Influenza Virus Research

    PubMed Central

    Wain-Hobson, Simon

    2014-01-01

    The last two and a half years have witnessed a curious debate in virology characterized by a remarkable lack of discussion. It goes by the misleading epithet “gain of function” (GOF) influenza virus research, or simply GOF. As will be seen, there is nothing good to be gained. The controversial experiments confer aerosol transmission on avian influenza virus strains that can infect humans, but which are not naturally transmitted between humans. Some of the newer strains are clearly highly pathogenic for man. It will be shown here that the benefits of the work are erroneous and overstated while the risk of an accident is finite, if small. The consequence of any accident would be anywhere from a handful of infections to a catastrophic pandemic. There has been a single open international meeting in this period, which is surprising given that openness and discussion are essential to good science. Despite US and EU government funding, no risk–benefit analysis has been published, which again is surprising. This research can be duplicated readily in many labs and requires little high tech. It falls under the definition of DURC without the slightest shadow of a doubt and constitutes the most important challenge facing contemporary biology. PMID:25077136

  2. Sero-surveillance and risk factors for avian influenza and Newcastle disease virus in backyard poultry in Oman.

    PubMed

    Shekaili, Thunai Al; Clough, Helen; Ganapathy, Kannan; Baylis, Matthew

    2015-11-01

    Avian Influenza (AI) and Newcastle disease (ND) are the most important reportable poultry diseases worldwide. Low pathogenic AI (H9N2) and ND viruses are known to have been circulating in the Middle East, including in Oman, for many decades. However, detailed information on the occurrence of these pathogens is almost completely lacking in Oman. As backyard poultry are not vaccinated against either virus in Oman, this sector is likely to be the most affected poultry production sector for both diseases. Here, in the first survey of AI and ND viruses in backyard poultry in Oman, we report high flock-level seroprevalences of both viruses. Serum and oropharyngeal swabs were taken from 2350 birds in 243 backyard flocks from all regions and governorates of Oman. Information was recorded on location, type of bird and housing type for each sampled farm. Individual bird serum samples were tested using commercial indirect antibody detection ELISA kits. Pooled oropharyngeal samples from each flock were inoculated onto FTA cards and tested by RT-PCR. Samples came from chickens (90.5%), turkeys (2.1%), ducks (6.2%), guinea fowl (0.8%) and geese (0.4%). The bird-level seroprevalence of antibody to AI and ND viruses was 37.5% and 42.1% respectively, and at the flock level it was 84% and 90% respectively. There were statistically significant differences between some different regions of Oman in the seroprevalence of both viruses. Flock-level NDV seropositivity in chickens was significantly associated with AIV seropositivity, and marginally negatively associated with flock size. AIV seropositivity in chickens was marginally negatively associated with altitude. All oropharyngeal samples were negative for both viruses by RT-PCR, consistent with a short duration of infection. This study demonstrates that eight or nine out of ten backyard poultry flocks in Oman are exposed to AI and ND viruses, and may present a risk for infection for the commercial poultry sector in Oman, or wild birds

  3. Transmission and reassortment of avian influenza viruses at the Asian-North American interface

    USGS Publications Warehouse

    Ramey, Andrew M.; Pearce, John M.; Ely, Craig R.; Guy, Lisa M. Sheffield; Irons, David B.; Derksen, Dirk V.; Ip, Hon S.

    2010-01-01

    Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian–North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted.

  4. Sialic acid receptor specificity on erythrocytes affects detection of antibody to avian influenza haemagglutinin.

    PubMed

    Stephenson, I; Wood, J M; Nicholson, K G; Zambon, M C

    2003-07-01

    Haemagglutination-inhibition tests (HI) are used to detect increases in influenza antibody in serum. However, they are relatively insensitive for the detection of human antibody responses to avian haemagglutinin, even in the presence of high titres of neutralising antibody after confirmed infection or vaccination. Human influenza viruses bind preferentially sialic acid containing N-acetylneuraminic acid alpha2,6-galactose (SAalpha2,6Gal) linkages while avian and equine viruses bind preferentially those containing N-acetylneuraminic acid alpha2,3-galactose (SAalpha2,3Gal) linkages. Increasing the proportion of SAalpha2,3Gal linkages on the erythrocytes used, by enzymatic modification or change of species, improves the ability of erythrocytes to bind to avian influenza strains and thereby improves the sensitivity of detection of antibody to avian and equine HA in a range of mammalian and human sera using HI tests. PMID:12767002

  5. Evaluation of cytokine gene expression after avian influenza virus infection in avian cell lines and primary cell cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The innate immune responses elicited by avian influenza virus (AIV) infection has been studied by measuring cytokine gene expression by relative real time PCR (rRT-PCR) in vitro, using both cell lines and primary cell cultures. Continuous cell lines offer advantages over the use of primary cell cult...

  6. Evaluation and optimization of avian embryos and cell culture methods for efficient isolation and propagation of avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveillance of wild bird populations for avian influenza viruses (AIV) contributes to our understanding of AIV evolution and ecology. Both real-time reverse transcriptase polymerase chain reaction (RRT-PCR) and virus isolation in embryonating chicken eggs (ECE) are standard methods for detecting A...

  7. Landscape attributes driving avian influenza virus circulation in the Lake Alaotra region of Madagascar.

    PubMed

    Guerrini, Laure; Paul, Mathilde C; Leger, Lucas; Andriamanivo, Harentsoaniaina R; Maminiaina, Olivier F; Jourdan, Marion; Molia, Sophie; Rakotondravao, René; Chevalier, Véronique

    2014-05-01

    While the spatial pattern of the highly pathogenic avian influenza H5N1 virus has been studied throughout Southeast Asia, little is known on the spatial risk factors for avian influenza in Africa. In the present paper, we combined serological data from poultry and remotely sensed environmental factors in the Lake Alaotra region of Madagascar to explore for any association between avian influenza and landscape variables. Serological data from cross-sectional surveys carried out on poultry in 2008 and 2009 were examined together with a Landsat 7 satellite image analysed using supervised classification. The dominant landscape features in a 1-km buffer around farmhouses and distance to the closest water body were extracted. A total of 1,038 individual bird blood samples emanating from 241 flocks were analysed, and the association between avian influenza seroprevalence and these landcape variables was quantified using logistic regression models. No evidence of the presence of H5 or H7 avian influenza subtypes was found, suggesting that only low pathogenic avian influenza (LPAI) circulated. Three predominant land cover classes were identified around the poultry farms: grassland savannah, rice paddy fields and wetlands. A significant negative relationship was found between LPAI seroprevalence and distance to the closest body of water. We also found that LPAI seroprevalence was higher in farms characterised by predominant wetlands or rice landscapes than in those surrounded by dry savannah. Results from this study suggest that if highly pathogenic avian influenza H5N1 virus were introduced in Madagascar, the environmental conditions that prevail in Lake Alaotra region may allow the virus to spread and persist. PMID:24893021

  8. Highly Pathogenic Avian Influenza Virus Infection of Mallards with Homo- and Heterosubtypic Immunity Induced by Low Pathogenic Avian Influenza Viruses

    PubMed Central

    Fereidouni, Sasan R.; Starick, Elke; Beer, Martin; Wilking, Hendrik; Kalthoff, Donata; Grund, Christian; Häuslaigner, Rafaela; Breithaupt, Angele; Lange, Elke; Harder, Timm C.

    2009-01-01

    The potential role of wild birds as carriers of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 is still a matter of debate. Consecutive or simultaneous infections with different subtypes of influenza viruses of low pathogenicity (LPAIV) are very common in wild duck populations. To better understand the epidemiology and pathogenesis of HPAIV H5N1 infections in natural ecosystems, we investigated the influence of prior infection of mallards with homo- (H5N2) and heterosubtypic (H4N6) LPAIV on exposure to HPAIV H5N1. In mallards with homosubtypic immunity induced by LPAIV infection, clinical disease was absent and shedding of HPAIV from respiratory and intestinal tracts was grossly reduced compared to the heterosubtypic and control groups (mean GEC/100 µl at 3 dpi: 3.0×102 vs. 2.3×104 vs. 8.7×104; p<0.05). Heterosubtypic immunity induced by an H4N6 infection mediated a similar but less pronounced effect. We conclude that the epidemiology of HPAIV H5N1 in mallards and probably other aquatic wild bird species is massively influenced by interfering immunity induced by prior homo- and heterosubtypic LPAIV infections. PMID:19693268

  9. The influence of economic indicators, poultry density and the performance of Veterinary Services on the control of high-pathogenicity avian influenza in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pathogenicity avian influenza (HPAI) and low pathogenicity notifiable avian influenza (LPNAI) in poultry are notifiable to World Organisation for Animal Health (OIE) by its member countries. There may be variation between countries’ responses to avian influenza (AI) outbreak situations based o...

  10. Assessment of national strategies for control of high pathogenicity avian influenza and low pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-nine distinct epizootics of highly pathogenic avian influenza (HPAI) have occurred since 1959. The H5N1 HPAI panzootic affecting Asia, Africa and Eastern Europe has been the largest among these, affecting poultry and/or wild birds in 63 countries. Historically, control strategies have focus...

  11. Assessment of reduced vaccine dose on efficacy of an inactivated avian influenza vaccine against an H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) vaccines have emerged to be a viable emergency tool for use in a comprehensive strategy for dealing with high pathogenicity (HP) AI in developed countries. However, the available doses of inactivated AI vaccine are limited to national vaccine banks and inventory stocks of some ...

  12. Lemna (duckweed) expressed hemagglutinin from avian influenza H5N1 protects chickens against H5N1 high pathogenicity avian influenza virus challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last two decades, transgenic plants have been explored as safe and cost effective alternative expression platforms for producing recombinant proteins. In this study, a synthetic hemagglutinin (HA) gene from the high pathogenicity avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1)...

  13. EFFICACY OF A FOWLPOX-VECTORED AVIAN INFLUENZA H5 VACCINE AGAINST ASIAN H5N1 HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUS CHALLENGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recombinant fowlpox-avian influenza (AI) H5 vaccine (rFP-AIV-H5) expressing the hemagglutinin of the A/turkey/Ireland/1378/83 H5N8 AI isolate has been used in Central America since 1998 to control H5N2 low pathogenicity (LP) AI. Previously, this vaccine was shown to induce full protection against...

  14. Potency, efficacy, and antigenic mapping of H7 avian influenza virus vaccines against the 2012 H7N3 highly pathogenic avian influenza virus from Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the spring of 2012 an outbreak of H7N3 highly pathogenic (HP) avian influenza virus (AIV) occurred in poultry in Mexico. Vaccination was implemented as a control measure along with increased biosecurity and surveillance. At that time there was no commercially available H7 AIV vaccine in North Ame...

  15. Protection against H7N3 high pathogenicity avian influenza in chickens immunized with a recombinant fowlpox and an inactivated avian influenza vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beginning on June 2012, an H7N3 highly pathogenic avian influenza (HPAI) epizootic was reported in the State of Jalisco (Mexico), with some 22.4 million chickens that died, were slaughtered on affected farms or were preemptively culled on neighboring farms. In the current study, layer chickens were ...

  16. Reduction of high pathogenicity avian influenza virus in eggs from chickens once or twice vaccinated with an oil-emulsified inactivated H5 avian influenza vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The negative impact of high pathogenicity avian influenza virus (HPAIV) infection on egg production and deposition of virus in eggs, as well as any protective effect of vaccination, is unknown. Individually housed non-vaccinated, sham-vaccinated and inactivated H5N9 vaccinated once or twice adult Wh...

  17. Protection of poultry against the 2012 Mexican H7N3 highly pathogenic avian influenza virus with inactivated H7 avian influenza vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In June of 2012, an outbreak of highly pathogenic avian influenza (HPAI) H7N3 was reported poultry in Jalisco, Mexico. Since that time the virus has spread to the surrounding States of Guanajuato and Aguascalientes and new outbreaks continue to be reported. To date more than 25 million birds have di...

  18. Effect of homosubtypic and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in wood ducks (Aix sponsa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus...

  19. Vaccine protection of turkeys against H5N1 highly pathogenic avian influenza virus with a recombinant HVT expressing the hemagglutinin gene of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies...

  20. The avian and mammalian host range of highly pathogenic avian H5N1 influenza

    PubMed Central

    Kaplan, Bryan S.; Webby, Richard J.

    2013-01-01

    Highly pathogenic H5N1 influenza viruses have been isolated from a number of avian and mammalian species. Despite intensive control measures the number of human and animal cases continues to increase. A more complete understanding of susceptible species and of contributing environmental and molecular factors is crucial if we are to slow the rate of new cases. H5N1 is currently endemic in domestic poultry in only a handful of countries with sporadic and unpredictable spread to other countries. Close contact of terrestrial bird or mammalian species with infected poultry/waterfowl or their biological products is the major route for interspecies transmission. Intra-species transmission of H5N1 in mammals, including humans, has taken place on a limited scale though it remains to be seen if this will change; recent laboratory studies suggest that it is indeed possible. Here we review the avian and mammalian species that are naturally susceptible to H5N1 infection and the molecular factors associated with its expanded host range. PMID:24025480

  1. Susceptibility and Status of Avian Influenza in Ostriches.

    PubMed

    Abolnik, Celia; Olivier, Adriaan; Reynolds, Chevonne; Henry, Dominic; Cumming, Graeme; Rauff, Dionne; Romito, Marco; Petty, Deryn; Falch, Claudia

    2016-05-01

    The extensive nature of ostrich farming production systems bears the continual risk of point introductions of avian influenza virus (AIV) from wild birds, but immune status, management, population density, and other causes of stress in ostriches are the ultimate determinants of the severity of the disease in this species. From January 2012 to December 2014, more than 70 incidents of AIV in ostriches were reported in South Africa. These included H5N2 and H7N1 low pathogenicity avian influenza (LPAI) in 2012, H7N7 LPAI in 2013, and H5N2 LPAI in 2014. To resolve the molecular epidemiology in South Africa, the entire South African viral repository from ostriches and wild birds from 1991 to 2013 (n = 42) was resequenced by next-generation sequencing technology to obtain complete genomes for comparison. The phylogenetic results were supplemented with serological data for ostriches from 2012 to 2014, and AIV-detection data from surveillance of 17 762 wild birds sampled over the same period. Phylogenetic evidence pointed to wild birds, e.g., African sacred ibis (Threskiornis aethiopicus), in the dissemination of H7N1 LPAI to ostriches in the Eastern and Western Cape provinces during 2012, in separate incidents that could not be epidemiologically linked. In contrast, the H7N7 LPAI outbreaks in 2013 that were restricted to the Western Cape Province appear to have originated from a single-point introduction from wild birds. Two H5N2 viruses detected in ostriches in 2012 were determined to be LPAI strains that were new introductions, epidemiologically unrelated to the 2011 highly pathogenic avian influenza (HPAI) outbreaks. Seventeen of 27 (63%) ostrich viruses contained the polymerase basic 2 (PB2) E627K marker, and 2 of the ostrich isolates that lacked E627K contained the compensatory Q591K mutation, whereas a third virus had a D701N mutation. Ostriches maintain a low upper- to midtracheal temperature as part of their adaptive physiology for desert survival, which may

  2. Characteristics of diagnostic tests used in the 2002 low pathogenicity avian influenza H7N2 outbreak in Virginia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An outbreak of low pathogenicity avian influenza (LPAI) H7N2 occurred in 2002 in the Shenandoah Valley, Virginia, a high density poultry production region. A combination of clinical signs, and laboratory diagnostic tests designed to detect avian influenza (AI) antibodies, virus, or H7 specific RNA ...

  3. Microarray analysis following infection with highly pathogenic avian influenza H5N1 virus in naive and vaccinated SPF chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a viral disease of poultry that remains a constant threat to commercial poultry throughout the world. Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) H5N1 have originated in Southeast Asia and spread to several European, Middle Eastern, and A...

  4. Single vaccination provides limited protection to ducks and geese against H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, high pathogenicity avian influenza has spread from Asia to Europe and into Africa causing the largest epizootic of high pathogenicity avian influenza (HPAI) of the last 50 years including infecting domestic and wild waterfowl. Our study was conducted to investigate whether single vaccina...

  5. Survivability of Eurasian H5N1 highly pathogenic avian influenza viruses in water varies between strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic habitats play critical role in the transmission and maintenance of low pathogenic avian influenza (LPAI) viruses in wild waterfowl; however the importance of these environments in the ecology of H5N1 highly pathogenic avian influenza (HPAI) viruses is unknown. In laboratory-based studies, L...

  6. Highly pathogenic H5N1 avian influenza viruses differentially affect gene expression in primary chicken embryo fibroblasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses cause severe clinical disease associated with high mortality in chickens and other gallinaceous species. However, the mechanism by which different strains of avian influenza viruses overcome host response in birds is still unclear. In the present study, ch...

  7. Experimental infection of mallard ducks with different subtype H5 and H7 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of some Asian lineage H5N1 HPAIVs which can cause severe disease in ducks. With ...

  8. Avian influenza vaccination in North America: strategies and difficulties.

    PubMed

    Suarez, D L; Lee, C W; Swayne, D E

    2006-01-01

    Vaccination with high quality efficacious vaccines that are properly delivered can contribute to the control of avian influenza (AI) outbreaks when used as part of a comprehensive control programme that includes quarantines, animal movement controls, increased biosecurity, enhanced surveillance, and education. In North America both whole virus killed adjuvanted vaccines and fowlpox recombinant vaccines have been used to aid in the control of AI. The fowlpox recombinant vaccine is licensed in several countries including the United States (U.S.), but it has only been used in the field in Mexico and some Central American countries. The U.S., however, has considerable experience with the use of killed vaccines, primarily in turkeys. In the state of Minnesota in the 1980s and early 1990s, outbreaks of AI in range-reared turkeys were common, and vaccines were used successfully as part of a controlled marketing programme. More recently, several large layer flocks in Connecticut were vaccinated as an alternative to immediate depopulation after an H7N2 low pathogenic AI outbreak. The vaccinated flocks were intensively monitored for virus shed using sentinel birds, dead bird testing, and eventually some serological surveillance using a neuraminidase DIVA (differentiation of infected from vaccinated animal) approach. With these successes, vaccination is being considered as a valuable tool in comprehensive AI control strategies. Consideration for matching the vaccine to the field strain should also be considered to provide optimal protection including reduced shedding of virus. Antigenic drift of AI viruses after extended vaccination programmes has been observed in chickens, similar to what has been observed with human influenza viruses. Therefore, periodical evaluation of the vaccine to the field strain is necessary to maintain good protection from clinical disease and virus shedding. PMID:16447502

  9. Detection method for avian influenza viruses in water.

    PubMed

    Rönnqvist, Maria; Ziegler, Thedi; von Bonsdorff, Carl-Henrik; Maunula, Leena

    2012-03-01

    Recent events have shown that humans may become infected with some pathogenic avian influenza A viruses (AIV). Since soil and water, including lakes, rivers, and seashores, may be contaminated by AIV excreted by birds, effective methods are needed for monitoring water for emerging viruses. Combining water filtration with molecular methods such as PCR is a fast and effective way for detecting viruses. The objective of this study was to apply a convenient method for the detection of AIV in natural water samples. Distilled water and lake, river, and seawater were artificially contaminated with AIV (H5N3) and passed through a filter system. AIV was detected from filter membrane by real-time RT-PCR. The performance of Zetapor, SMWP, and Sartobind D5F membranes in recovering influenza viruses was first evaluated using contaminated distilled water. SWMP, which gave the highest virus recoveries, was then compared with a pre-filter combined GF/F filter membrane in a trial using natural water samples. In this study, the cellulose membrane SMWP was found to be practical for recovery of AIVs in water. Viral yields varied between 62.1 and 65.9% in distilled water and between 1 and 16.7% in natural water samples. The borosilicate glass membrane GF/F combined with pre-filter was also feasible in filtering natural water samples with viral yields from 1.98 to 7.33%. The methods described can be used for monitoring fresh and seawater samples for the presence of AIV and to determine the source of AIV transmission in an outbreak situation. PMID:23412765

  10. Global avian influenza surveillance in wild birds: a strategy to capture viral diversity.

    PubMed

    Machalaba, Catherine C; Elwood, Sarah E; Forcella, Simona; Smith, Kristine M; Hamilton, Keith; Jebara, Karim B; Swayne, David E; Webby, Richard J; Mumford, Elizabeth; Mazet, Jonna A K; Gaidet, Nicolas; Daszak, Peter; Karesh, William B

    2015-04-01

    Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health-administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008-2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing and sharing of isolates with the scientific community. PMID:25811221

  11. Global Avian Influenza Surveillance in Wild Birds: A Strategy to Capture Viral Diversity

    PubMed Central

    Machalaba, Catherine C.; Elwood, Sarah E.; Forcella, Simona; Smith, Kristine M.; Hamilton, Keith; Jebara, Karim B.; Swayne, David E.; Webby, Richard J.; Mumford, Elizabeth; Mazet, Jonna A.K.; Gaidet, Nicolas; Daszak, Peter

    2015-01-01

    Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health–administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008–2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing and sharing of isolates with the scientific community. PMID:25811221

  12. Outbreaks of highly pathogenic avian influenza H5N1 clade 2.3.2.1c in hunting falcons and kept wild birds in Dubai implicate intercontinental virus spread.

    PubMed

    Naguib, Mahmoud M; Kinne, Jörg; Chen, Honglin; Chan, Kwok-Hung; Joseph, Sunitha; Wong, Po-Chun; Woo, Patrick C Y; Wernery, Renate; Beer, Martin; Wernery, Ulrich; Harder, Timm C

    2015-11-01

    Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 have continued to perpetuate with divergent genetic variants in poultry within Asia since 2003. Further dissemination of Asian-derived H5 HPAIVs to Europe, Africa and, most recently, to the North American continent has occurred. We report an outbreak of HPAIV H5N1 among falcons kept for hunting and other wild bird species bred as falcon prey in Dubai, United Arab Emirates, during the autumn of 2014. The causative agent was identified as avian influenza virus subtype H5N1, clade 2.3.2.1c, by genetic and phylogenetic analyses. High mortality in infected birds was in accordance with systemic pathomorphological and histological alterations in affected falcons. Genetic analysis showed the HPAIV H5N1 of clade 2.3.2.1c is a reassortant in which the PB2 segment was derived from an Asian-origin H9N2 virus lineage. The Dubai H5N1 viruses were closely related to contemporary H5N1 HPAIVs from Nigeria, Burkina-Faso, Romania and Bulgaria. Median-joining network analysis of 2.3.2.1c viruses revealed that the Dubai outbreak was an episode of a westward spread of these viruses on a larger scale from unidentified Asian sources. The incursion into Dubai, possibly via infected captive hunting falcons returning from hunting trips to central Asian countries, preceded outbreaks in Nigeria and other West African countries. The alarmingly enhanced geographical mobility of clade 2.3.2.1.c and clade 2.3.4.4 viruses may represent another wave of transcontinental dissemination of Asian-origin HPAIV H5 viruses, such as the outbreak at Qinghai Lake caused by clade 2.2 (‘Qinghai’ lineage) in 2005. PMID:26350163

  13. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model.

    PubMed

    Linke, Lyndsey M; Wilusz, Jeffrey; Pabilonia, Kristy L; Fruehauf, Johannes; Magnuson, Roberta; Olea-Popelka, Francisco; Triantis, Joni; Landolt, Gabriele; Salman, Mo

    2016-03-01

    Influenza A viruses pose significant health and economic threats to humans and animals. Outbreaks of avian influenza virus (AIV) are a liability to the poultry industry and increase the risk for transmission to humans. There are limitations to using the AIV vaccine in poultry, creating barriers to controlling outbreaks and a need for alternative effective control measures. Application of RNA interference (RNAi) techniques hold potential; however, the delivery of RNAi-mediating agents is a well-known obstacle to harnessing its clinical application. We introduce a novel antiviral approach using bacterial vectors that target avian mucosal epithelial cells and deliver (small interfering RNA) siRNAs against two AIV genes, nucleoprotein (NP) and polymerase acidic protein (PA). Using a red fluorescent reporter, we first demonstrated vector delivery and intracellular expression in avian epithelial cells. Subsequently, we demonstrated significant reductions in AIV shedding when applying these anti-AIV vectors prophylactically. These antiviral vectors provided up to a 10,000-fold reduction in viral titers shed, demonstrating in vitro proof-of-concept for using these novel anti-AIV vectors to inhibit AIV shedding. Our results indicate this siRNA vector technology could represent a scalable and clinically applicable antiviral technology for avian and human influenza and a prototype for RNAi-based vectors against other viruses. PMID:26910902

  14. Early Indicators of Disease in Ferrets Infected with a High Dose of Avian Influenza H5N1

    PubMed Central

    Long, James P.; Vela, Eric M.; Stark, Gregory V.; Jones, Kelly J.; Miller, Stephen T.; Bigger, John E.

    2012-01-01

    Avian influenza viruses are widespread in birds, contagious in humans, and are categorized as low pathogenicity avian influenza or highly pathogenic avian influenza. Ferrets are susceptible to infection with avian and human influenza A and B viruses and have been widely used as a model to study pathogenicity and vaccine efficacy. In this report, the natural history of the H5N1 influenza virus A/Vietnam/1203/04 influenza infection in ferrets was examined to determine clinical and laboratory parameters that may indicate (1) the onset of disease and (2) survival. In all, twenty of 24 animals infected with 7 × 105 TCID50 of A/Vietnam/1203/04 succumbed. A statistical analysis identified a combination of parameters including weight loss, nasal wash TCID50, eosinophils, and liver enzymes such as alanine amino transferase that might possibly serve as indicators of both disease onset and challenge survival. PMID:23240077

  15. In ovo and in vitro susceptibility of American alligators (Alligator mississippiensis) to avian influenza virus infection.

    PubMed

    Temple, Bradley L; Finger, John W; Jones, Cheryl A; Gabbard, Jon D; Jelesijevic, Tomislav; Uhl, Elizabeth W; Hogan, Robert J; Glenn, Travis C; Tompkins, S Mark

    2015-01-01

    Avian influenza has emerged as one of the most ubiquitous viruses within our biosphere. Wild aquatic birds are believed to be the primary reservoir of all influenza viruses; however, the spillover of H5N1 highly pathogenic avian influenza (HPAI) and the recent swine-origin pandemic H1N1 viruses have sparked increased interest in identifying and understanding which and how many species can be infected. Moreover, novel influenza virus sequences were recently isolated from New World bats. Crocodilians have a slow rate of molecular evolution and are the sister group to birds; thus they are a logical reptilian group to explore susceptibility to influenza virus infection and they provide a link between birds and mammals. A primary American alligator (Alligator mississippiensis) cell line, and embryos, were infected with four, low pathogenic avian influenza (LPAI) strains to assess susceptibility to infection. Embryonated alligator eggs supported virus replication, as evidenced by the influenza virus M gene and infectious virus detected in allantoic fluid and by virus antigen staining in embryo tissues. Primary alligator cells were also inoculated with the LPAI viruses and showed susceptibility based upon antigen staining; however, the requirement for trypsin to support replication in cell culture limited replication. To assess influenza virus replication in culture, primary alligator cells were inoculated with H1N1 human influenza or H5N1 HPAI viruses that replicate independent of trypsin. Both viruses replicated efficiently in culture, even at the 30 C temperature preferred by the alligator cells. This research demonstrates the ability of wild-type influenza viruses to infect and replicate within two crocodilian substrates and suggests the need for further research to assess crocodilians as a species potentially susceptible to influenza virus infection. PMID:25380354

  16. Generation of Influenza Virus from Avian Cells Infected by Salmonella Carrying the Viral Genome

    PubMed Central

    Zhang, Xiangmin; Kong, Wei; Wanda, Soo-Young; Xin, Wei; Alamuri, Praveen; Curtiss, Roy

    2015-01-01

    Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 107 50% tissue culture infective doses (TCID50)/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF) and Madin-Darby canine kidney (MDCK) cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo. PMID:25742162

  17. Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos).

    PubMed

    Hill, Nichola J; Takekawa, John Y; Ackerman, Joshua T; Hobson, Keith A; Herring, Garth; Cardona, Carol J; Runstadler, Jonathan A; Boyce, Walter M

    2012-12-01

    Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories. PMID:22971007

  18. The consequences of climate change at an avian influenza 'hotspot'.

    PubMed

    Brown, V L; Rohani, Pejman

    2012-12-23

    Avian influenza viruses (AIVs) pose significant danger to human health. A key step in managing this threat is understanding the maintenance of AIVs in wild birds, their natural reservoir. Ruddy turnstones (Arenaria interpres) are an atypical bird species in this regard, annually experiencing high AIV prevalence in only one location-Delaware Bay, USA, during their spring migration. While there, they congregate on beaches, attracted by the super-abundance of horseshoe crab eggs. A relationship between ruddy turnstone and horseshoe crab (Limulus polyphemus) population sizes has been established, with a declining horseshoe crab population linked to a corresponding drop in ruddy turnstone population sizes. The effect of this interaction on AIV prevalence in ruddy turnstones has also been addressed. Here, we employ a transmission model to investigate how the interaction between these two species is likely to be altered by climate change. We explore the consequences of this modified interaction on both ruddy turnstone population size and AIV prevalence and show that, if climate change leads to a large enough mismatch in species phenology, AIV prevalence in ruddy turnstones will increase even as their population size decreases. PMID:22933039

  19. Experience in control of avian influenza in Asia.

    PubMed

    Sims, L D

    2007-01-01

    Highly pathogenic H5N1 avian influenza viruses have been circulating in Asia for over ten years, providing considerable experience on which to base appropriate long-term strategies for their control. Experience in Hong Kong SAR demonstrates that existing production and marketing practices should be changed and a range of parallel measures used. It also shows the extent of surveillance required to ensure continuing freedom from infection. Certain high-risk practices should be changed or otherwise overcome in order to control and prevent disease, including intensive rearing of large numbers of poultry in premises without biosecurity commensurate with the level of risk for exposure; complex market chains involving many smallholders selling poultry through large numbers of transporters and middlemen in poorly regulated live poultry markets; and rearing of large numbers of ducks outdoors. These high-risk practices are compounded by weak veterinary services and poor reporting systems. In many parts of Asia, these methods of rearing and marketing are an integral way of life, support the poorest members of the community or cannot be changed quickly without severe socioeconomic consequences. The gains made so far will be ephemeral unless there is a shift from an emergency focus to one of consolidation in which these high-risk practices are identified and sustainable measures implemented to minimize the risks they pose, taking account of the socioeconomic effects of interventions. Vaccination will play a key role, as it currently does in China and Viet Nam. PMID:18411934

  20. Electronic microarray assays for avian influenza and Newcastle disease virus.

    PubMed

    Lung, Oliver; Beeston, Anne; Ohene-Adjei, Samuel; Pasick, John; Hodko, Dalibor; Hughes, Kimberley Burton; Furukawa-Stoffer, Tara; Fisher, Mathew; Deregt, Dirk

    2012-11-01

    Microarrays are suitable for multiplexed detection and typing of pathogens. Avian influenza virus (AIV) is currently classified into 16 H (hemagglutinin) and 9 N (neuraminidase) subtypes, whereas Newcastle disease virus (NDV) strains differ in virulence and are broadly classified into high and low pathogenicity types. In this study, three assays for detection and typing of poultry viruses were developed on an automated microarray platform: a multiplex assay for simultaneous detection of AIV and detection and pathotyping of NDV, and two separate assays for differentiating all AIV H and N subtypes. The AIV-NDV multiplex assay detected all strains in a 63 virus panel, and accurately typed all high pathogenicity NDV strains tested. A limit of detection of 10(1)-10(3) TCID(50)/mL and 200-400 EID(50)/mL was obtained for NDV and AIV, respectively. The AIV typing assays accurately typed all 41 AIV strains and a limit of detection of 4-200 EID(50)/mL was obtained. Assay validation showed that the microarray assays were generally comparable to real-time RT-PCR. However, the AIV typing microarray assays detected more positive clinical samples than the AIV matrix real-time RT-PCR, and also provided information regarding the subtype. The AIV-NDV multiplex and AIV H typing microarray assays detected mixed infections and could be useful for detection and typing of AIV and NDV. PMID:22796283

  1. First Characterization of Avian Influenza Viruses from Greenland 2014.

    PubMed

    Hartby, Christina Marie; Krog, Jesper Schak; Merkel, Flemming; Holm, Elisabeth; Larsen, Lars Erik; Hjulsager, Charlotte Kristiane

    2016-05-01

    In late February 2014, unusually high numbers of wild thick-billed murres (Uria lomvia) were found dead on the coast of South Greenland. To investigate the cause of death, 45 birds were submitted for laboratory examination in Denmark. Avian influenza viruses (AIVs) with subtypes H11N2 and low pathogenic H5N1 were detected in some of the birds. Characterization of the viruses by full genome sequencing revealed that all the gene segments belonged to the North American lineage of AIVs. The seemingly sparse and mixed subtype occurrence of low pathogenic AIVs in these birds, in addition to the emaciated appearance of the birds, suggests that the murre die-off was due to malnutrition as a result of sparse food availability or inclement weather. Here we present the first characterization of AIVs isolated in Greenland, and our results support the idea that wild birds in Greenland may be involved in the movement of AIV between North America and Europe. PMID:27309071

  2. Impact of avian influenza on village poultry production globally.

    PubMed

    Alders, Robyn; Awuni, Joseph Adongo; Bagnol, Brigitte; Farrell, Penny; de Haan, Nicolene

    2014-01-01

    Village poultry and their owners were frequently implicated in disease transmission in the early days of the highly pathogenic avian influenza (HPAI) H5N1 pandemic. With improved understanding of the epidemiology of the disease, it was recognized that village poultry raised under extensive conditions pose less of a threat than intensively raised poultry of homogeneous genetic stock with poor biosecurity. This paper provides an overview of village poultry production and the multiple ways that the HPAI H5N1 pandemic has impacted on village poultry, their owners, and the traders whose livelihoods are intimately linked to these birds. It reviews impact in terms of gender and cultural issues; food security; village poultry value chains; approaches to biosecurity; marketing; poultry disease prevention and control; compensation; genetic diversity; poultry as part of livelihood strategies; and effective communication. It concludes on a positive note that there is growing awareness amongst animal health providers of the importance of facilitating culturally sensitive dialogue to develop HPAI prevention and control options. PMID:24136383

  3. Canada geese and the epidemiology of avian influenza viruses.

    PubMed

    Harris, Mark T; Brown, Justin D; Goekjian, Virginia H; Luttrell, M Page; Poulson, Rebecca L; Wilcox, Benjamin R; Swayne, David E; Stallknecht, David E

    2010-07-01

    Canada geese (Branta canadensis) are numerous, highly visible, and widely distributed in both migratory and resident populations in North America; as a member of the order Anseriformes, they are often suggested as a potential reservoir and source for avian influenza (AI) viruses. To further examine the role of Canada Geese in the ecology of AI, we re-evaluated existing literature related to AI virus in this species and tested breeding populations of Canada Geese from three states (Georgia, West Virginia, and Minnesota, USA) by virus isolation and serology. The ability of AI virus to persist in goose feces under experimental conditions also was evaluated as an additional measure of the potential for this species to serve as an AI virus reservoir. Virus was not isolated from 1,668 cloacal swabs and type-specific antibody prevalence was low (4/335, 1.2%). Finally, under experimental conditions, AI virus persistence in goose feces and in water contaminated with goose feces was limited as compared to published estimates from duck feces and water. Our results are consistent with historic reports of a low prevalence of AI virus infection in this species, and we suggest that Canada Geese play a minor, if any, role as a reservoir for low pathogenic AI viruses that naturally circulate in wild bird populations. PMID:20688710

  4. Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos).

    USGS Publications Warehouse

    Takekawa, John Y.; Hill, Nichola J.; Ackerman, Joshua T.; Herring, Garth; Hobson, Keith; Cardona, Carol J.; Runstadler, Jonathan; Boyce, Walter M.

    2012-01-01

    Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.

  5. Avian Influenza Ecology in North Atlantic Sea Ducks: Not All Ducks Are Created Equal

    PubMed Central

    Hall, Jeffrey S.; Russell, Robin E.; Franson, J. Christian; Soos, Catherine; Dusek, Robert J.; Allen, R. Bradford; Nashold, Sean W.; TeSlaa, Joshua L.; Jónsson, Jón Eínar; Ballard, Jennifer R.; Harms, Naomi Jane; Brown, Justin D.

    2015-01-01

    Wild waterfowl are primary reservoirs of avian influenza viruses (AIV). However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61%) in these sea duck populations but low virus prevalence (0.3%). Using these data we estimated that an antibody half-life of 141 weeks (3.2 years) would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology. PMID:26677841

  6. Efficacy of experimental animal and vegetable oil-emulsion vaccines for Newcastle disease and avian influenza.

    PubMed

    Stone, H D

    1993-01-01

    Acceptable oil-emulsion vaccines were sought to replace mineral oil-emulsion vaccines that, by regulations, require a 42-day minimum holding period for poultry between injection and slaughter for consumption. Water-in-oil emulsions were prepared using animal or vegetable oils in a ratio of 4 parts oil to 1 part Newcastle disease or avian influenza aqueous antigen. Beeswax particles suspended in the oil at the 5% or 10% level (wt:vol) served as the oil-phase surfactant. Hemagglutination-inhibition titers induced by mineral-oil vaccines were not significantly different from those induced by the most efficacious formulations prepared from animal and vegetable oils. Tissue reaction from injection of animal- and vegetable-oil vaccines was less than that induced by mineral-oil vaccines. An inactivated avian influenza vaccine formulated from peanut oil induced protection against morbidity and death when vaccinated chickens were challenged with a virulent isolate of avian influenza virus. PMID:8363505

  7. Avian influenza ecology in North Atlantic sea ducks: Not all ducks are created equal

    USGS Publications Warehouse

    Hall, Jeffrey S.; Russell, Robin E.; Franson, J. Christian; Soos, Catherine; Dusek, Robert J.; Allen, R. Bradford; Nashold, Sean W.; Teslaa, Joshua L.; Jónsson, Jón Einar; Ballard, Jennifer R.; Harms, Naomi Jnae; Brown, Justin D.

    2015-01-01

    Wild waterfowl are primary reservoirs of avian influenza viruses (AIV). However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61%) in these sea duck populations but low virus prevalence (0.3%). Using these data we estimated that an antibody half-life of 141 weeks (3.2 years) would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology.

  8. Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br6(C2H9N2)2]n

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. Ferid; Arous, M.

    2013-11-01

    The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin-spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325-376 K and the frequency range from 10-2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.

  9. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers

    PubMed Central

    Gomaa, Mokhtar R.; Kandeil, Ahmed; Kayed, Ahmed S.; Elabd, Mona A.; Zaki, Shaimaa A.; Abu Zeid, Dina; El Rifay, Amira S.; Mousa, Adel A.; Farag, Mohamed M.; McKenzie, Pamela P.; Webby, Richard J.; Ali, Mohamed A.; Kayali, Ghazi

    2016-01-01

    Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80) among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses. PMID:27258357

  10. Identification of avian RIG-I responsive genes during influenza infection

    PubMed Central

    Barber, Megan RW; Aldridge, Jerry R; Fleming-Canepa, Ximena; Wang, Yong-Dong; Webster, Robert G; Magor, Katharine E

    2013-01-01

    Ducks can survive infection with highly pathogenic avian influenza viruses that are lethal to chickens. We showed that the influenza detector, RIG-I, can initiate antiviral responses in ducks, but this gene is absent in chickens. We can reconstitute this pathway by transfecting chicken DF-1 embryonic fibroblast cells with duck RIG-I, which augments their antiviral response to influenza and decreases viral titre. However, the genes downstream of duck RIG-I that mediate this antiviral response to influenza are not known. Using microarrays, we compared the transcriptional profile of chicken embryonic fibroblasts transfected with duck RIG-I or empty vector, and infected with low or highly pathogenic avian influenza viruses. Transfected duck RIG-I expressed in chicken cells was associated with the marked induction of many antiviral innate immune genes upon infection with both viruses. We used real-time PCR to confirm upregulation of a subset of these antiviral genes including MX1, PKR, IFIT5, OASL, IFNB, and downregulation of the influenza matrix gene. These results provide some insight into the genes induced by duck RIG-I upon influenza infection, and provide evidence that duck RIG-I can function to elicit an interferon-driven, antiviral response against influenza in chicken embryonic fibroblasts. PMID:23220072

  11. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch

    PubMed Central

    Kim, Yeu-Chun; Song, Jae-Min; Lipatov, Aleksandr S.; Choi, Seong-O; Lee, Jeong Woo; Donis, Ruben O.; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2012-01-01

    Effective public health responses to an influenza pandemic require an effective vaccine that can be manufactured and administered to large populations in the shortest possible time. In this study, we evaluated a method for vaccination against avian influenza virus that uses a DNA vaccine for rapid manufacturing and delivered by a microneedle skin patch for simplified administration and increased immunogenicity. We prepared patches containing 700 µm-long microneedles coated with an avian H5 influenza hemagglutinin DNA vaccine from A/Viet Nam/1203/04 influenza virus. The coating DNA dose increased with DNA concentration in the coating solution and the number of dip coating cycles. Coated DNA was released into the skin tissue by dissolution within minutes. Vaccination of mice using microneedles induced higher levels of antibody responses and hemagglutination inhibition titers, and improved protection against lethal infection with avian influenza as compared to conventional intramuscular delivery of the same dose of the DNA vaccine. Additional analysis showed that the microneedle coating solution containing carboxymethylcellulose and a surfactant may have negatively affected the immunogenicity of the DNA vaccine. Overall, this study shows that DNA vaccine delivery by microneedles can be a promising approach for improved vaccination to mitigate an influenza pandemic. PMID:22504442

  12. An avian-only Filippov model incorporating culling of both susceptible and infected birds in combating avian influenza.

    PubMed

    Chong, Nyuk Sian; Dionne, Benoit; Smith, Robert

    2016-09-01

    Depopulation of birds has always been an effective method not only to control the transmission of avian influenza in bird populations but also to eliminate influenza viruses. We introduce a Filippov avian-only model with culling of susceptible and/or infected birds. For each susceptible threshold level [Formula: see text], we derive the phase portrait for the dynamical system as we vary the infected threshold level [Formula: see text], focusing on the existence of endemic states; the endemic states are represented by real equilibria, pseudoequilibria and pseudo-attractors. We show generically that all solutions of this model will approach one of the endemic states. Our results suggest that the spread of avian influenza in bird populations is tolerable if the trajectories converge to the equilibrium point that lies in the region below the threshold level [Formula: see text] or if they converge to one of the pseudoequilibria or a pseudo-attractor on the surface of discontinuity. However, we have to cull birds whenever the solution of this model converges to an equilibrium point that lies in the region above the threshold level [Formula: see text] in order to control the outbreak. Hence a good threshold policy is required to combat bird flu successfully and to prevent overkilling birds. PMID:26865385

  13. Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan.

    PubMed

    Moriguchi, Sachiko; Onuma, Manabu; Goka, Koichi

    2016-08-01

    Avian influenza A, a highly pathogenic avian influenza, is a lethal infection in certain species of wild birds, including some endangered species. Raptors are susceptible to avian influenza, and spatial risk assessment of such species may be valuable for conservation planning. We used the maximum entropy approach to generate potential distribution models of three raptor species from presence-only data for the mountain hawk-eagle Nisaetus nipalensis, northern goshawk Accipiter gentilis and peregrine falcon Falco peregrinus, surveyed during the winter from 1996 to 2001. These potential distribution maps for raptors were superimposed on avian influenza A risk maps of Japan, created from data on incidence of the virus in wild birds throughout Japan from October 2010 to March 2011. The avian influenza A risk map for the mountain hawk-eagle showed that most regions of Japan had a low risk for avian influenza A. In contrast, the maps for the northern goshawk and peregrine falcon showed that their high-risk areas were distributed on the plains along the Sea of Japan and Pacific coast. We recommend enhanced surveillance for each raptor species in high-risk areas and immediate establishment of inspection systems. At the same time, ecological risk assessments that determine factors, such as the composition of prey species, and differential sensitivity of avian influenza A virus between bird species should provide multifaceted insights into the total risk assessment of endangered species. PMID:26972333

  14. Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan

    PubMed Central

    MORIGUCHI, Sachiko; ONUMA, Manabu; GOKA, Koichi

    2016-01-01

    Avian influenza A, a highly pathogenic avian influenza, is a lethal infection in certain species of wild birds, including some endangered species. Raptors are susceptible to avian influenza, and spatial risk assessment of such species may be valuable for conservation planning. We used the maximum entropy approach to generate potential distribution models of three raptor species from presence-only data for the mountain hawk-eagle Nisaetus nipalensis, northern goshawk Accipiter gentilis and peregrine falcon Falco peregrinus, surveyed during the winter from 1996 to 2001. These potential distribution maps for raptors were superimposed on avian influenza A risk maps of Japan, created from data on incidence of the virus in wild birds throughout Japan from October 2010 to March 2011. The avian influenza A risk map for the mountain hawk-eagle showed that most regions of Japan had a low risk for avian influenza A. In contrast, the maps for the northern goshawk and peregrine falcon showed that their high-risk areas were distributed on the plains along the Sea of Japan and Pacific coast. We recommend enhanced surveillance for each raptor species in high-risk areas and immediate establishment of inspection systems. At the same time, ecological risk assessments that determine factors, such as the composition of prey species, and differential sensitivity of avian influenza A virus between bird species should provide multifaceted insights into the total risk assessment of endangered species. PMID:26972333

  15. Linking avian communities and avian influenza ecology in southern Africa using epidemiological functional groups

    PubMed Central

    2012-01-01

    The ecology of pathogens, and particularly their emergence in multi-host systems, is complex. New approaches are needed to reduce superficial complexities to a level that still allows scientists to analyse underlying and more fundamental processes. One promising approach for simplification is to use an epidemiological-function classification to describe ecological diversity in a way that relates directly to pathogen dynamics. In this article, we develop and apply the epidemiological functional group (EFG) concept to explore the relationships between wild bird communities and avian influenza virus (AIV) in three ecosystems in southern Africa. Using a two year dataset that combined bird counts and bimonthly sampling for AIV, we allocated each bird species to a set of EFGs that captured two overarching epidemiological functions: the capacity of species to maintain AIV in the system, and their potential to introduce the virus. Comparing AIV prevalence between EFGs suggested that the hypothesis that anseriforms (ducks) and charadriiforms (waders) drive AIV epidemiology cannot entirely explain the high prevalence observed in some EFGs. If anseriforms do play an important role in AIV dynamics in each of the three ecosystems, the role of other species in the local maintenance of AIV cannot be ruled out. The EFG concept thus helped us to identify gaps in knowledge and to highlight understudied bird groups that might play a role in AIV epidemiology. In general, the use of EFGs has potential for generating a range of valuable insights in epidemiology, just as functional group approaches have done in ecology. PMID:23101696

  16. Avian influenza, domestic ducks and rice agriculture in Thailand.

    PubMed

    Gilbert, Marius; Xiao, Xiangming; Chaitaweesub, Prasit; Kalpravidh, Wantanee; Premashthira, Sith; Boles, Stephen; Slingenbergh, Jan

    2007-01-01

    Highly pathogenic avian influenza (HPAI) caused by H5N1 viruses has become a global scale problem which first emerged in southern China and from there spread to other countries in Southeast and East Asia, where it was first confirmed in end 2003. In previous work, geospatial analyses demonstrated that free grazing ducks played critical role in the epidemiology of the disease in Thailand in the winter 2004/2005, both in terms of HPAI emergence and spread. This study explored the geographic association between free grazing duck census counts and current statistics on the spatial distribution of rice crops in Thailand, in particular the crop calendar of rice production. The analysis was carried out using both district level rice statistics and rice distribution data predicted with the aid of remote sensing, using a rice-detection algorithm. The results indicated a strong association between the number of free grazing ducks and the number of months during which second-crop rice harvest takes place, as well as with the rice crop intensity as predicted by remote sensing. These results confirmed that free grazing duck husbandry was strongly driven by agricultural land use and rice crop intensity, and that this later variable can be readily predicted using remote sensing. Analysis of rice cropping patterns may provide an indication of the location of populations of free grazing ducks in other countries with similar mixed duck and rice production systems and less detailed duck census data. Apart from free ranging ducks and rice cropping, the role of hydrology and seasonality of wetlands and water bodies in the HPAI risk analysis is also discussed in relation to the presumed dry season aggregation of wild waterfowl and aquatic poultry offering much scope for virus transmission. PMID:18418464

  17. Cost-benefit analysis of avian influenza control in Nepal.

    PubMed

    Karki, S; Lupiani, B; Budke, C M; Karki, N P S; Rushton, J; Ivanek, R

    2015-12-01

    Numerous outbreaks of highly pathogenic avian influenza A strain H5N1 have occurred in Nepal since 2009 despite implementation of a national programme to control the disease through surveillance and culling of infected poultry flocks. The objective of the study was to use cost-benefit analysis to compare the current control programme (CCP) with the possible alternatives of: i) no intervention (i.e., absence of control measures [ACM]) and ii) vaccinating 60% of the national poultry flock twice a year. In terms of the benefit-cost ratio, findings indicate a return of US $1.94 for every dollar spent in the CCP compared with ACM. The net present value of the CCP versus ACM, i.e., the amount of money saved by implementing the CCP rather than ACM, is US $861,507 (the benefits of CCP [prevented losses which would have occurred under ACM] minus the cost of CCP). The vaccination programme yields a return of US $2.32 for every dollar spent when compared with the CCR The net present value of vaccination versus the CCP is approximately US $12 million. Sensitivity analysis indicated thatthe findings were robust to different rates of discounting, whereas results were sensitive to the assumed market loss and the number of birds affected in the outbreaks under the ACM and vaccination options. Overall, the findings of the study indicate that the CCP is economically superior to ACM, but that vaccination could give greater economic returns and may be a better control strategy. Future research should be directed towards evaluating the financial feasibility and social acceptability of the CCP and of vaccination, with an emphasis on evaluating market reaction to the presence of H5N1 infection in the country. PMID:27044153

  18. Avian influenza, domestic ducks and rice agriculture in Thailand

    PubMed Central

    Gilbert, Marius; Xiao, Xiangming; Chaitaweesub, Prasit; Kalpravidh, Wantanee; Premashthira, Sith; Boles, Stephen; Slingenbergh, Jan

    2008-01-01

    Highly pathogenic avian influenza (HPAI) caused by H5N1 viruses has become a global scale problem which first emerged in southern China and from there spread to other countries in Southeast and East Asia, where it was first confirmed in end 2003. In previous work, geospatial analyses demonstrated that free grazing ducks played critical role in the epidemiology of the disease in Thailand in the winter 2004/2005, both in terms of HPAI emergence and spread. This study explored the geographic association between free grazing duck census counts and current statistics on the spatial distribution of rice crops in Thailand, in particular the crop calendar of rice production. The analysis was carried out using both district level rice statistics and rice distribution data predicted with the aid of remote sensing, using a rice-detection algorithm. The results indicated a strong association between the number of free grazing ducks and the number of months during which second-crop rice harvest takes place, as well as with the rice crop intensity as predicted by remote sensing. These results confirmed that free grazing duck husbandry was strongly driven by agricultural land use and rice crop intensity, and that this later variable can be readily predicted using remote sensing. Analysis of rice cropping patterns may provide an indication of the location of populations of free grazing ducks in other countries with similar mixed duck and rice production systems and less detailed duck census data. Apart from free ranging ducks and rice cropping, the role of hydrology and seasonality of wetlands and water bodies in the HPAI risk analysis is also discussed in relation to the presumed dry season aggregation of wild waterfowl and aquatic poultry offering much scope for virus transmission. PMID:18418464

  19. Investigating Avian Influenza Infection Hotspots in Old-World Shorebirds

    PubMed Central

    Gaidet, Nicolas; Ould El Mamy, Ahmed B.; Cappelle, Julien; Caron, Alexandre; Cumming, Graeme S.; Grosbois, Vladimir; Gil, Patricia; Hammoumi, Saliha; de Almeida, Renata Servan; Fereidouni, Sasan R.; Cattoli, Giovanni; Abolnik, Celia; Mundava, Josphine; Fofana, Bouba; Ndlovu, Mduduzi; Diawara, Yelli; Hurtado, Renata; Newman, Scott H.; Dodman, Tim; Balança, Gilles

    2012-01-01

    Heterogeneity in the transmission rates of pathogens across hosts or environments may produce disease hotspots, which are defined as specific sites, times or species associations in which the infection rate is consistently elevated. Hotspots for avian influenza virus (AIV) in wild birds are largely unstudied and poorly understood. A striking feature is the existence of a unique but consistent AIV hotspot in shorebirds (Charadriiformes) associated with a single species at a specific location and time (ruddy turnstone Arenaria interpres at Delaware Bay, USA, in May). This unique case, though a valuable reference, limits our capacity to explore and understand the general properties of AIV hotspots in shorebirds. Unfortunately, relatively few shorebirds have been sampled outside Delaware Bay and they belong to only a few shorebird families; there also has been a lack of consistent oropharyngeal sampling as a complement to cloacal sampling. In this study we looked for AIV hotspots associated with other shorebird species and/or with some of the larger congregation sites of shorebirds in the old world. We assembled and analysed a regionally extensive dataset of AIV prevalence from 69 shorebird species sampled in 25 countries across Africa and Western Eurasia. Despite this diverse and extensive coverage we did not detect any new shorebird AIV hotspots. Neither large shorebird congregation sites nor the ruddy turnstone were consistently associated with AIV hotspots. We did, however, find a low but widespread circulation of AIV in shorebirds that contrast with the absence of AIV previously reported in shorebirds in Europe. A very high AIV antibody prevalence coupled to a low infection rate was found in both first-year and adult birds of two migratory sandpiper species, suggesting the potential existence of an AIV hotspot along their migratory flyway that is yet to be discovered. PMID:23029383

  20. Migratory Birds Reinforce Local Circulation of Avian Influenza Viruses

    PubMed Central

    Vuong, Oanh; Bestebroer, Theo; Lexmond, Pascal; Klaassen, Marcel; Fouchier, Ron A. M.

    2014-01-01

    Migratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV) in wild birds, has largely remained unstudied. During an autumn H3 LPAIV epizootic in free-living mallards (Anas platyrhynchos) — a partially migratory species — we identified resident and migratory host populations using stable hydrogen isotope analysis of flight feathers. We investigated the role of migratory and resident hosts separately in the introduction and maintenance of H3 LPAIV during the epizootic. To test this we analysed (i) H3 virus kinship, (ii) temporal patterns in H3 virus prevalence and shedding and (iii) H3-specific antibody prevalence in relation to host migratory strategy. We demonstrate that the H3 LPAIV strain causing the epizootic most likely originated from a single introduction, followed by local clonal expansion. The H3 LPAIV strain was genetically unrelated to H3 LPAIV detected both before and after the epizootic at the study site. During the LPAIV epizootic, migratory mallards were more often infected with H3 LPAIV than residents. Low titres of H3-specific antibodies were detected in only a few residents and migrants. Our results suggest that in this LPAIV epizootic, a single H3 virus was present in resident mallards prior to arrival of migratory mallards followed by a period of virus amplification, importantly associated with the influx of migratory mallards. Thus migrants are suggested to act as local amplifiers rather than the often suggested role as vectors importing novel strains from afar. Our study exemplifies that a multifaceted interdisciplinary approach offers promising opportunities to elucidate the role of migratory and resident hosts in infectious disease dynamics in wildlife. PMID:25391154

  1. Comparative pathology of H5N1 highly pathogenic avian influenza virus infection in avian species in the Orders Anseriformes and Charadriiformes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirteen species of ducks, geese, swans and gulls present in the North American wild bird populations were inoculated intranasally with A/Whooper Swan/Mongolia/244/05 (H5N1) avian influenza virus to evaluate the range of viral shedding and pathology within these two avian orders. Based on mortality...

  2. Journalists’ views about reporting avian influenza and a potential pandemic: a qualitative study

    PubMed Central

    Hooker, Claire; King, Catherine; Leask, Julie

    2011-01-01

    Please cite this paper as: Hooker et al. (20XX) Journalists’ views about reporting avian influenza and a potential pandemic: a qualitative study. Influenza and Other Respiratory Viruses 6(3), 224–229. Background  The mass media is a key component of any public communication strategy for influenza or other respiratory illnesses, but coverage can be variable. In this study, we explored the factors that influenced journalists’ coverage of avian influenza as a model for coverage of a potential influenza pandemic. Methods  This study involved semi‐structured interviews with 16 journalists from major Australian print, radio and television media organisations reporting on avian influenza and pandemic planning. Journalists, including reporters, editors and producers, were interviewed between October 2006 and August 2007. Thematic analysis was used to draw out major lessons for health communicators. Results  Coverage of avian influenza was influenced by a small set of news values: catastrophic potential, cultural and geographical proximity, unfamiliarity and uncertainty. Lack of novelty and the absence of compelling images led to a decline in coverage. Journalists expressed concerns about the accuracy and impacts of reporting, but saw as critically important, their primary role as informants. They hence emphasised the importance of journalistic independence. Journalists all intended to continue working in a pandemic. Conclusions  Health experts need to adapt their timetables and resources to journalists’ needs to improve their mutual communication. In crisis situations, journalists communicate with the public efficiently and effectively, but expert and journalistic views on the role and content of coverage may diverge in the post‐acute, reflective phase of a crisis. PMID:22176678

  3. Transmission of Avian Influenza A Viruses Between Animals and People

    MedlinePlus

    ... many different animals, including ducks, chickens, pigs, whales, horses, and seals. However, certain subtypes of influenza A ... pigs, and H7N7 and H3N8 virus infections of horses. Influenza A viruses that typically infect and transmit ...

  4. The avian-origin H3N2 canine influenza virus has limited replication in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genetically and antigenically distinct H3N2 canine influenza of avian-origin was detected in March of 2015 in Chicago, Illinois. A subsequent outbreak was reported with over 1,000 dogs in the Midwest affected. The potential for canine-to-swine transmission was unknown. Experimental infection in pi...

  5. Pathogenesis of H5N1 avian influenza virus gene reassortants in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic H5N1 avian influenza viruses produce severe disease and mortality in chickens. Identification of viral genes important for cell tropism and replication efficiency helps identify and target virulence factors. To determine which viral gene or genes contribute to the virulence of H5...

  6. Avian influenza mucosal vaccination in chickens with replication-defective recombinant adenovirus vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated protection conferred by mucosal vaccination with replication competent adenovirus (RCA)-free recombinant adenovirus expressing a codon-optimized avian influenza (AI) H5 gene (AdTW68.H5ck). Commercial layer-type chicken groups were singly vaccinated ocularly at 5 days of age, or singly v...

  7. Development and evaluation of a potential universal Salmonella-vectored avian influenza vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of vaccines for effective control of avian influenza (AI) virus in poultry and wild birds is in high demand. Most AI vaccines target the immunodominant antigens such as hemagglutinin (HA) and neuraminidase (NA); however, these vaccines only provide protection against a particular AI ser...

  8. An evaluation of optimal methods for avian influenza virus sample collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sample collection and transport are critical components of any diagnostic testing program and due to the amount of avian influenza virus (AIV) testing in the U.S. and worldwide, small improvements in sensitivity and specificity can translate into substantial cost savings from better test accuracy. ...

  9. Impact of emergence of avian influenza in North America and preventative measures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 1959, the world has experienced 39 highly pathogenic avian influenza (HPAI) epizootics with the largest beginning in 1996 in China that spread to affect 70 countries in Asia, Europe and Africa, and recently North America. Eurasian H5N8 and reassortant H5N2 HPAI viruses were identified in USA. ...

  10. Vaccination of chickens against avian influenza using yeast cell surface display of H5 hemagglutinin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional vaccination methods for avian influenza (AI) require costly and time-consuming injection of individual birds, often multiple times, in order to produce protection. These vaccines are difficult to change quickly in response to new threats as manufacturing takes time. Yeast are an ideal ...

  11. H7 avian influenza virus vaccines protect chickens against challenge with antigenically diverse isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination has been a critical tool in the control of some avian influenza viruses (AIV) and has been used routinely in Pakistan to help control sporadic outbreaks of highly pathogenic (HP) H7 AIV since 1995. During that time, several AIV isolates were utilized as inactivated vaccines with varying...

  12. An evaluation of poultry avian influenza diagnostic methods with domestic duck specimens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring of poultry, including domestic ducks, for avian influenza virus (AI) virus has increased considerably in recent years. However, the current methods validated for the diagnosis and detection of AI virus infection in chickens and turkeys have not been evaluated for performance with samples...

  13. Avian influenza vaccine development: Application technology platforms, field use and predictors of protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines against avian influenza (AI) began over 100 years ago as experimentally produced products, but commercial application did not occur until: 1) a reliable method was developed to grow and titer the virus (i.e. embryonating chicken eggs), 2) an efficient and predictable method was developed to...

  14. Strategies and challenges for eliciting immunity against avian influenza virus in birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines and vaccination have emerged during the past two decades as essential tools in avian influenza (AI) control for poultry because they: increase resistance to infection, prevent illness and death, reduce virus replication and shed from respiratory and alimentary tracts, and reduce virus trans...

  15. Analysis of H7 avian influenza viruses by antigenic cartography and correlation to protection by vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H7 hemagglutinin subtype one of the most common subtypes of avian influenza virus (AIV) in poultry world wide and since it has the potential to become highly pathogenic it is among the priority subtypes for vaccination. Selection of the optimal vaccine seed strains may now be aided by antigenic...

  16. Protection of chickens against avian influenza with non-replicating adenovirus-vectored vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose vaccination with a replication competent adenovirus (RCA) -free human adenovirus (Ad) vector encoding a H7 hemagglutinin gene from a low pathogenic North American isolate (AdChNY94.H7). Chickens vaccinate...

  17. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Diagnostic surveillance program for low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing...

  18. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Diagnostic surveillance program for low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing...

  19. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Diagnostic surveillance program for low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing...

  20. Overview of H5N8 avian influenza virus outbreaks – SEPRL research activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2014, outbreaks of highly pathogenic avian influenza (HPAI) H5N8 in poultry farms have been reported in Korea, Japan, China, Germany, United Kingdom, and the Netherlands. The first outbreak report of this virus was in domestic ducks in the Republic of Korea in January 2014. In Europe, the first...

  1. Paired serologic and polymerase chain reaction analyses of avian influenza prevalence in Alaskan shorebirds

    USGS Publications Warehouse

    Pearce, John M.; Ruthrauff, Daniel R.; Hall, Jeffrey S.

    2012-01-01

    Surveillance has revealed low prevalence of avian influenza viruses (AIV) in shorebirds except Ruddy Turnstones (Arenaria interpres) on the North American Atlantic coast. Similarly, of five species of shorebirds surveyed in Alaska in 2010, Ruddy Turnstones had the highest AIV antibody prevalence; prevalence of AIV RNA was low or zero.

  2. Accumulation and inactivation of avian influenza virus by the filter feeding invertebrate daphnia magna

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The principle mode of avian influenza A virus (AIV) transmission among wild birds is thought to occur via an indirect fecal-oral route, whereby individuals contract the virus from the environment through contact with virus-contaminated water. AIV can remain viable for periods of months to years in w...

  3. Airborne transmission of H5N1 high pathogenicity avian influenza viruses during simulated home slaughter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most H5N1 human infections have occurred following exposure to H5N1 high pathogenicity avian influenza (HPAI) virus-infected poultry, especially when poultry are home slaughtered or slaughtered in live poultry markets. Previous studies have demonstrated that slaughter of clade 1 isolate A/Vietnam/1...

  4. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreas...

  5. The role of vaccines and vaccination in avian influenza control and eradication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comprehensive review of avian influenza (AI) control methods has been completed. From 2002-2010, over 113 billion doses of AI vaccine were used in poultry in 15 countries. The majority of vaccine (over 90%) was used in China while significant amounts were used in Egypt, Indonesia, and Vietnam. ...

  6. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...

  7. Thermal inactivation of high pathogenicity avian influenza viruses in chicken meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pathogenicity avian influenza (HPAI) viruses cause severe disease with high mortality in chickens and related gallinaceous poultry. Some HPAI viruses cause systemic infections and replicate to high titers in skeletal muscle fibers. To prevent transmission of these viruses through contaminate...

  8. High doses of highly pathogenic avian influenza virus in chicken meat are required to infect ferrets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N1 high pathogenicity avian influenza viruses (HPAIV) have caused natural and experimental infections in various animals through consumption of infected bird carcasses and meat. However, little is known about the quantity of virus required and if all HPAIV subtypes can cause infections following c...

  9. Erythrocyte binding preference of avian influenza H5N1 viruses.

    PubMed

    Louisirirotchanakul, Suda; Lerdsamran, Hatairat; Wiriyarat, Witthawat; Sangsiriwut, Kantima; Chaichoune, Kridsda; Pooruk, Phisanu; Songserm, Taweesak; Kitphati, Rungrueng; Sawanpanyalert, Pathom; Komoltri, Chulaluk; Auewarakul, Prasert; Puthavathana, Pilaipan

    2007-07-01

    Five erythrocyte species (horse, goose, chicken, guinea pig, and human) were used to agglutinate avian influenza H5N1 viruses by hemagglutination assay and to detect specific antibody by hemagglutination inhibition test. We found that goose erythrocytes confer a greater advantage over other erythrocyte species in both assays. PMID:17522271

  10. Low pathogenicity notifiable avian influenza (LPNAI) with an emphasis on vaccination programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been 30 epizootics of H5 or H7 high pathogenicity avian influenza (HPAI) from 1959 to early 2012. The largest has been the H5N1 HPAI which began in Guangdong China in 1996, and has affected over 250 million poultry and/or wild birds in 63 countries. For most countries, stamping-out prog...

  11. Chlorine inactivation of H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two Asian strains of H5N1 highly pathogenic avian influenza virus were studied to determine their resistance to chlorination. Experiments were conducted at two pH levels (pH 7 and 8) at 5 C. CT (chlorine concentration x exposure time) values were calculated for different levels of inactivation. R...

  12. Verification of poultry carcass composting research through application during actual avian influenza outbreaks.

    PubMed

    Flory, Gary A; Peer, Robert W

    2010-01-01

    An avian influenza outbreak in 2002 affected 197 poultry farms in Virginia and cost an estimated $130 million in losses and cleanup. In 2004-2005, researchers initiated a project to investigate the feasibility and practicality of in-house composting of turkey mortalities (heavy hens and toms) as a method of disposal and disease containment. Occurrences of low pathogenic avian influenza (LPAI) in West Virginia and Virginia in 2007 provided an opportunity for first responders to verify composting as an effective carcass disposal method. Many lessons learned from these experiences have led to improvements in the application of this technology. Market-weight turkeys, once thought too large for effective composting, were composted sufficiently for land application within 4 to 6 weeks. Additionally, fire-fighting foam, a new method of mass depopulation, proved to be compatible with composting. Knowledge gained from these incidents will be valuable not only for future responses to LPAI but also for outbreaks of highly pathogenic avian influenza such as the H5N1 virus, which currently causes disease in both animals and humans in many parts of the world. Since three-quarters of all recent emerging infectious diseases (EIDs) have arisen from animals, control of disease in animals is the principal way to reduce human exposure and prevent EIDs. Many of the general approaches and specific techniques used to eradicate the avian influenza virus can also be used to control other EIDs such as H1N1, Nipah virus, Rift Valley Fever, and plague. PMID:20375437

  13. Serum and egg yolk antibody detection in chickens infected with low pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveillance for low pathogenicity avian influenza virus (LPAIV) infections has primarily relied on labor intensive collection and serological testing of serum, but for many poultry diseases, easier to collect yolk samples have replaced serum for surveillance testing. A time course LPAIV infection s...

  14. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used ...

  15. Inactivation of avian influenza virus in chicken litter as a potential method to decontaminate poultry houses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Full cleaning and disinfection of a poultry house after an avian influenza virus (AIV) outbreak is expensive and labor intensive. An alternative to full house cleaning and disinfection is to inactivate the virus with high temperatures within the house. Litter in the house normally has a high virus...

  16. The affect of infectious bursal disease virus on avian influenza virus vaccine efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunosuppressive viruses are known to affect vaccinal immunity, however the impact of virally induced immunosuppression on avian influenza vaccine efficacy has not been quantified. In order to determine the effect of exposure to infectious bursal disease virus (IBDV) on vaccinal immunity to highly ...

  17. Avian influenza virus isolation, propagation and titration in embryonated chicken eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) virus is usually isolated, propagated, and titrated in embryonated chickens eggs (ECE). Most any sample type can be accommodated for culture with appropriate processing. Isolation may also be accomplished in cell culture particularly if mammalian lineage isolates are suspected, ...

  18. Global assessment of avian influenza control strategies with emphasis on vaccines and vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) has infect poultry and/or wild birds in 62 countries during the past 15 years. Field outbreaks have occurred in vaccinated flocks as the result of vaccine failure or improperly administration to the target species. Antigenic drift in field viruses h...

  19. Impact of vaccines and vaccination on global control of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been 29 epizootics of H5 or H7 high pathogenicity avian influenza (HPAI) since 1959. The largest of these epizootics, affecting more birds and countries than the other 28 epizootics combined, has been the H5N1 HPAI which began in Guangdong China in 1996, and has killed or resulted in cull...

  20. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses.

    PubMed

    He, Biao; Zheng, Bo-jian; Wang, Qian; Du, Lanying; Jiang, Shibo; Lu, Lu

    2015-02-01

    Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines. PMID:25479556

  1. Global assessments of high pathogenicity avian influenza control, including vaccination programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been 32 epizootics of H5 or H7 high pathogenicity avian influenza (HPAI) from 1959 to early 2013. The largest has been the H5N1 HPAI which began in Guangdong China in 1996, and has affected over 250 million poultry and/or wild birds in 63 countries. For most countries, stamping-out progra...

  2. Current status of avian influenza with emphasis on pathobiology, ecology, disease diagnosis and control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-six epizootics of high pathogenicity avian influenza (HPAI) have occurred in the world since 1959. The largest of these outbreaks has been the H5N1 HPAI which has caused problems in poultry and some wild birds in over 60 countries of Asia, Europe and Africa since beginning in 1996. The H5N1 H...

  3. 9 CFR 147.9 - Standard test procedures for avian influenza.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Standard test procedures for avian influenza. 147.9 Section 147.9 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT AUXILIARY PROVISIONS ON NATIONAL POULTRY IMPROVEMENT...

  4. 9 CFR 147.9 - Standard test procedures for avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Standard test procedures for avian influenza. 147.9 Section 147.9 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT AUXILIARY PROVISIONS ON NATIONAL POULTRY IMPROVEMENT...

  5. 9 CFR 147.9 - Standard test procedures for avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Standard test procedures for avian influenza. 147.9 Section 147.9 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT AUXILIARY PROVISIONS ON NATIONAL POULTRY IMPROVEMENT...

  6. 9 CFR 147.9 - Standard test procedures for avian influenza.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Standard test procedures for avian influenza. 147.9 Section 147.9 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT AUXILIARY PROVISIONS ON NATIONAL POULTRY IMPROVEMENT...

  7. New Avian Influenza Virus (H5N1) in Wild Birds, Qinghai, China

    PubMed Central

    Li, Yanbing; Liu, Liling; Zhang, Yi; Duan, Zhenhua; Tian, Guobin; Zeng, Xianying; Shi, Jianzhong; Zhang, Licheng

    2011-01-01

    Highly pathogenic avian influenza virus (H5N1) (QH09) was isolated from dead wild birds (3 species) in Qinghai, China, during May–June 2009. Phylogenetic and antigenic analyses showed that QH09 was clearly distinguishable from classical clade 2.2 viruses and belonged to clade 2.3.2. PMID:21291602

  8. 9 CFR 147.9 - Standard test procedures for avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Standard test procedures for avian influenza. 147.9 Section 147.9 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT AUXILIARY PROVISIONS ON NATIONAL POULTRY IMPROVEMENT PLAN Blood Testing Procedures § 147.9...

  9. Use of interferon treatment to protect chickens against highly pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a significant public health concern and serious economic threat to the commercial poultry industry worldwide. While properly matched vaccines can be effective at limiting morbidity and mortality, the use of therapeutics in veterinary animals to combat this disease are relativ...

  10. Avian influenza virus-induced regulation of duck fibroblast gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza (HPAI) H5N1 viruses have been non-pathogenic in ducks causing no disease or mild respiratory infections. However, in 2002, new viruses emerged causing systemic disease and death. To better understand the differences in pathogenicity of HPAI viruses in ducks, we in...

  11. Increased virulence in ducks of H5N1 highly pathogenic avian influenza viruses from Egypt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks has increased over time. These changes in virulence have been reported with viruses from countries with high population of domestic ducks. Since 2006, H5N1 HPAI outbreaks in Egypt have been occurring in po...

  12. Avian Influenza Biosecurity: Filling the Gaps with Non-Traditional Education

    ERIC Educational Resources Information Center

    Madsen, Jennifer; Tablante, Nathaniel

    2013-01-01

    Outbreaks of highly pathogenic avian influenza have become endemic, crippling trade and livelihood for many, and in rare cases, resulting in human fatalities. It is imperative that up-to-date education and training in accessible and interactive formats be available to key target audiences like poultry producers, backyard flock owners, and…

  13. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY General Provisions § 145.15 Diagnostic surveillance program for low... H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  14. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT NATIONAL POULTRY IMPROVEMENT PLAN FOR BREEDING POULTRY General Provisions § 145.15 Diagnostic surveillance program for low... H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  15. The global avian influenza situation and assessment of effective control methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 15 years. For 2011-2012, 19 countries reported outbreaks of H5N1 in domestic poultry, wild birds or both. The majority of the outbr...

  16. Global avian influenza surveillance in wild birds: A strategy to capture viral diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a global threat to food animal production and distribution systems as well as human health. However, a sustained, comprehensive and coordinated global effort to monitor the continually changing genetic diversity of AI viruses (AIVs) circulating in nature is lacking. Two strai...

  17. Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses are transmitted within wild aquatic bird populations through an indirect fecal-oral route involving fecal-contaminated water. In this study, the influence of filter-feeding bivalves, Corbicula fluminea, on the infectivity of AI virus in water was examined. A single cla...

  18. Experimental co-infection of chickens and turkeys with avian influenza and newcastle disease viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are the two most important viruses affecting poultry worldwide. Co-infections of poultry with AIV and NDV are a problem from both the clinical point of view and the diagnosis of these viruses. The goal of this study was to examine the i...

  19. Highly pathogenic avian influenza virus and generation of novel reassortants, United States, 2014-2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North Americ...

  20. Studies on H5N1 avian influenza virus gene reassortants in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to determine which viral gene or genes contribute to the virulence of H5N1 avian influenza viruses in chickens, we used reverse genetics to generate single-gene recombinant viruses and examined their pathogenicity in chickens. Intranasal inoculation of two week-old chickens with the recomb...

  1. Intranasal application of alpha interferon reduces morbidity associated with low pathogenic avian influenza infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type I interferons, including interferon alpha (IFN-alpha), are expressed rapidly after viral infection, and represent a first line of defense initiated by the innate immune response. Following infection of chickens with avian influenza virus (AIV), transcription of IFN-alpha is quickly up regulate...

  2. Current developments in avian influenza vaccines including food safety aspects in vaccinated birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, vaccines against avian influenza (AI) have had more limited use in poultry than vaccines for other poultry diseases such as Newcastle disease (ND) and infectious bronchitis. These AI vaccines have been primarily based on low or high pathogenicity (HP) AI viruses that were grown in emb...

  3. Cross-clade immunity in cats vaccinated with a canarypox-vectored avian influenza vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several felid species have been shown to be susceptible to infection with highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype. Infection of felids by H5N1 HPAI virus is often fatal, and cat-to-cat transmission has been documented. Domestic cats may then be involved in the transmis...

  4. Susceptibility of wood ducks (Aix sponsa) to H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is un...

  5. Is the occurrence of avian influenza virus in charadriiformes species and location dependent?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Birds in the order Charadriiformes were sampled at multiple sites in the eastern half of the continental U.S., as well as Argentina, Chile, and Bermuda during 1999–2005 and tested for avian influenza virus (AIV). Of more than 9,400 birds sampled, AIV virus was isolated from 300 birds. Although rud...

  6. Impact of vaccines and vaccination on global control of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been 30 epizootics of H5 or H7 high pathogenicity avian influenza (HPAI) from 1959 to early 2012. The largest of these epizootics, affecting more birds and countries than the other 29 epizootics combined, has been the H5N1 HPAI which began in Guangdong China in 1996, and has killed or re...

  7. Passive antibody transfer in chickens to model maternal antibody after avian influenza vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal antibodies (MAb) may interfere with avian influenza (AI) vaccination. MAb interference prevents an immune response by binding to the vaccine antigen. Once MAb titers are depleted, the chick is susceptible to a circulating AI virus. This study examined the affect of MAb on seroconversion ...

  8. Survey for Highly Pathogenic Avian Influenza from Poultry in Two Northeastern States, Nigeria

    PubMed Central

    Musa, Ibrahim Waziri; Abdu, Paul Ayuba; Sackey, Anthony Kojo Bedu; Oladele, Sunday Blessing

    2013-01-01

    Highly pathogenic avian influenza (HPAI) is a major global zoonosis. It has a complex ecological distribution with almost unpredictable epidemiological features thus placing it topmost in the World Organization for Animal Health list A poultry diseases. Structured questionnaire survey of poultry farmer's knowledge, attitudes, and practices (KAP) in two Nigerian states revealed the presence of risk farming practices that may enable avian influenza high chance of introduction/reintroduction. There existed significant statistical association between farmer's educational levels and AI awareness and zoonotic awareness (P < 0.005). Poultry rearing of multiage and species (81%), multiple sources of stock (62%), inadequate dead-bird disposal (71%), and access to live bird markets (LBMs) (62%) constituted major biosecurity threats in these poultry farming communities. Haemagglutination inhibition (HI) test detected antibodies against H5 avian influenza (AI) in 8 of the 400 sera samples; rapid antigen detection test kit (RADTK) was negative for all the 400 cloaca and trachea swabs. These results and other poultry diseases similar to AI observed in this study could invariably affect avian influenza early detection, reporting, and control. We recommend strong policy initiatives towards poultry farmers' attitudinal change and increasing efforts on awareness of the implications of future HPAI outbreaks in Nigeria. PMID:23936731

  9. Gene expression responses to highly pathogenic avian influenza H5N1 virus infections in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in host response to infection with avian influenza (AI) viruses were investigated by identifying genes differentially expressed in tissues of infected ducks. Clear differences in pathogenicity were observed among ducks inoculated with five H5N1 HPAI viruses. Virus titers in tissues cor...

  10. Pathogenicity of two Egyptian H5N1 highly pathogenic avian influenza viruses in domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Interestingly, the pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in ducks. These changes in vir...

  11. Keynote symposium - avian influenza: Vectors, vaccines, public health, and product marketability introduction and welcome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper is the introduction to the Keynote Symposium titled “Avian Influenza: Vectors, Vaccines, Public Health, and Product Marketability” that the author organized for the Poultry Science Association (PSA) on July 20, 2008. The purpose of the symposium was to provide the members and guests of PS...

  12. Differentiation of infected and vaccinated animals (DIVA) using the NS1 protein of avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination against avian influenza (AI) virus, a powerful tool for control of the disease, may result in issues related to surveillance programs and international trade of poultry and poultry products. The use of AI vaccination in poultry would have greater world-wide acceptance if a reliable test...

  13. Update on H7N3 highly pathogenic avian influenza in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Jalisco, Mexico. This region is responsible for approximately 55% of the eggs produced in Mexico, and infection with this virus seve...

  14. Avian Influenza (H7N9) Virus Infection in Chinese Tourist in Malaysia, 2014

    PubMed Central

    William, Timothy; Thevarajah, Bharathan; Lee, Shiu Fee; Suleiman, Maria; Jeffree, Mohamad Saffree; Menon, Jayaram; Saat, Zainah; Thayan, Ravindran; Tambyah, Paul Anantharajah

    2015-01-01

    Of the ≈400 cases of avian influenza (H7N9) diagnosed in China since 2003, the only travel-related cases have been in Hong Kong and Taiwan. Detection of a case in a Chinese tourist in Sabah, Malaysia, highlights the ease with which emerging viral respiratory infections can travel globally. PMID:25531078

  15. Molecular and antigenic characterization of recent H5N1 avian influenza isolates from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recent sequence comparison of the hemagglutinin (HA) gene of Asian H5N1 avian influenza viruses isolated over the past 10 years demonstrated separation into three clades with recent isolates separating into two clades. Most reported viruses from Vietnam from 2001-2005 clustered in Clade 1, but 19...

  16. High pathogenicity avian influenza virus in the reproductive tract of chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection with high pathogenicity avian influenza virus (HPAIV) has been associated with a wide range of clinical manifestations in poultry including severe depression in egg production and isolation of HPAIV from eggs laid by infected hens. To evaluate the pathobiology in the reproductive tract of...

  17. Experimental infection studies of avian influenza in wild birds as a complement to surveillance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last ten years, an unprecedented amount of experimental and field research has expanded our understanding of AI virus infection in wild birds. The majority of this work, however, has specifically focused on H5N1 high pathogenicity avian influenza (HPAI) viruses, which is a biologically uni...

  18. Determinants of pathogenicity of H5N1 highly pathogenic avian influenza viruses in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks have been implicated in the dissemination and evolution of the H5N1 highly pathogenic avian influenza (HPAI) viruses. The pathogenicity of H5N1 HPAI viruses in domestic ducks has increased over time with some viruses producing 100% mortality in very short time. The determinants of pathogenic...

  19. Characterization of low pathogenicity H5N1 avian influenza viruses from North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low pathogenic H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 ...

  20. The evolutionary genetics and emergence of avian influenza viruses in wild birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We surveyed the genetic diversity of avian influenza virus (AIV) in wild birds, comprising 167 complete viral genomes sampled from 14 bird species in four locations across North America. This revealed 29 combinations of hemagglutinin (HA) and neuraminidase (NA) subtypes, with 26% of isolates showin...